-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheda.py
59 lines (52 loc) · 1.86 KB
/
eda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import pandas as pd
import streamlit as st
from pandas_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
# Web App Title
st.markdown('''
# **The Exploratory Data Analysis (EDA) App**
Designed and built for Research purposes by **CHAKRADAR M** under the guidance of *Dr.Alok Aggarwal*
---
''')
# Upload CSV data
with st.sidebar.header('1. Upload your CSV data'):
uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"])
st.sidebar.markdown("""
[Example CSV input file](https://raw.githubusercontent.com/chakree10/EDA-web-app/main/Boston.csv)
""")
# Pandas Profiling Report
if uploaded_file is not None:
@st.cache
def load_csv():
csv = pd.read_csv(uploaded_file)
return csv
df = load_csv()
pr = ProfileReport(df, explorative=True)
st.header('**Input DataFrame**')
st.write(df)
st.write('---')
st.header('**Statistics of Data its Distributions and Relationships Report**')
st_profile_report(pr)
else:
st.info('Awaiting for CSV file to be uploaded.')
if st.button('Press to use Example Dataset'):
# Example data
@st.cache
def load_data():
a = pd.DataFrame(
np.random.rand(100, 5),
columns=['a', 'b', 'c', 'd', 'e']
)
return a
df = load_data()
pr = ProfileReport(df, explorative=True)
st.header('**Input DataFrame**')
st.write(df)
st.write('---')
st.header('**Pandas Profiling Report**')
st_profile_report(pr)
link1 = '[Regression-Problem](https://share.streamlit.io/chakree10/regression/main/regressor.py)'
st.markdown(link1, unsafe_allow_html=True)
link2 = '[Classification-Problem](https://share.streamlit.io/chakree10/classification/main/classifier.py)'
st.markdown(link2, unsafe_allow_html=True)