-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathrun_tailornet.py
140 lines (117 loc) · 5.3 KB
/
run_tailornet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import numpy as np
import torch
from psbody.mesh import Mesh
from models.tailornet_model import get_best_runner as get_tn_runner
from models.smpl4garment import SMPL4Garment
from utils.rotation import normalize_y_rotation
from visualization.blender_renderer import visualize_garment_body
from dataset.canonical_pose_dataset import get_style, get_shape
from visualization.vis_utils import get_specific_pose, get_specific_style_old_tshirt
from visualization.vis_utils import get_specific_shape, get_amass_sequence_thetas
from utils.interpenetration import remove_interpenetration_fast
# Set output path where inference results will be stored
OUT_PATH = "/BS/cpatel/work/code_test2"
def get_single_frame_inputs(garment_class, gender):
"""Prepare some individual frame inputs."""
betas = [
get_specific_shape('tallthin'),
get_specific_shape('shortfat'),
get_specific_shape('mean'),
get_specific_shape('somethin'),
get_specific_shape('somefat'),
]
# old t-shirt style parameters are centered around [1.5, 0.5, 1.5, 0.0]
# whereas all other garments styles are centered around [0, 0, 0, 0]
if garment_class == 'old-t-shirt':
gammas = [
get_specific_style_old_tshirt('mean'),
get_specific_style_old_tshirt('big'),
get_specific_style_old_tshirt('small'),
get_specific_style_old_tshirt('shortsleeve'),
get_specific_style_old_tshirt('big_shortsleeve'),
]
else:
gammas = [
get_style('000', garment_class=garment_class, gender=gender),
get_style('001', garment_class=garment_class, gender=gender),
get_style('002', garment_class=garment_class, gender=gender),
get_style('003', garment_class=garment_class, gender=gender),
get_style('004', garment_class=garment_class, gender=gender),
]
thetas = [
get_specific_pose(0),
get_specific_pose(1),
get_specific_pose(2),
get_specific_pose(3),
get_specific_pose(4),
]
return thetas, betas, gammas
def get_sequence_inputs(garment_class, gender):
"""Prepare sequence inputs."""
beta = get_specific_shape('somethin')
if garment_class == 'old-t-shirt':
gamma = get_specific_style_old_tshirt('big_longsleeve')
else:
gamma = get_style('000', gender=gender, garment_class=garment_class)
# downsample sequence frames by 2
thetas = get_amass_sequence_thetas('05_02')[::2]
betas = np.tile(beta[None, :], [thetas.shape[0], 1])
gammas = np.tile(gamma[None, :], [thetas.shape[0], 1])
return thetas, betas, gammas
def run_tailornet():
gender = 'female'
garment_class = 'skirt'
thetas, betas, gammas = get_single_frame_inputs(garment_class, gender)
# # uncomment the line below to run inference on sequence data
# thetas, betas, gammas = get_sequence_inputs(garment_class, gender)
# load model
tn_runner = get_tn_runner(gender=gender, garment_class=garment_class)
# from trainer.base_trainer import get_best_runner
# tn_runner = get_best_runner("/BS/cpatel/work/data/learn_anim/tn_baseline/{}_{}/".format(garment_class, gender))
smpl = SMPL4Garment(gender=gender)
# make out directory if doesn't exist
if not os.path.isdir(OUT_PATH):
os.mkdir(OUT_PATH)
# run inference
for i, (theta, beta, gamma) in enumerate(zip(thetas, betas, gammas)):
print(i, len(thetas))
# normalize y-rotation to make it front facing
theta_normalized = normalize_y_rotation(theta)
with torch.no_grad():
pred_verts_d = tn_runner.forward(
thetas=torch.from_numpy(theta_normalized[None, :].astype(np.float32)).cuda(),
betas=torch.from_numpy(beta[None, :].astype(np.float32)).cuda(),
gammas=torch.from_numpy(gamma[None, :].astype(np.float32)).cuda(),
)[0].cpu().numpy()
# get garment from predicted displacements
body, pred_gar = smpl.run(beta=beta, theta=theta, garment_class=garment_class, garment_d=pred_verts_d)
pred_gar = remove_interpenetration_fast(pred_gar, body)
# save body and predicted garment
body.write_ply(os.path.join(OUT_PATH, "body_{:04d}.ply".format(i)))
pred_gar.write_ply(os.path.join(OUT_PATH, "pred_gar_{:04d}.ply".format(i)))
def render_images():
"""Render garment and body using blender."""
i = 0
while True:
body_path = os.path.join(OUT_PATH, "body_{:04d}.ply".format(i))
if not os.path.exists(body_path):
break
body = Mesh(filename=body_path)
pred_gar = Mesh(filename=os.path.join(OUT_PATH, "pred_gar_{:04d}.ply".format(i)))
visualize_garment_body(
pred_gar, body, os.path.join(OUT_PATH, "img_{:04d}.png".format(i)), garment_class='t-shirt', side='front')
i += 1
# Concate frames of sequence data using this command
# ffmpeg -r 10 -i img_%04d.png -vcodec libx264 -crf 10 -pix_fmt yuv420p check.mp4
# Make GIF
# convert -delay 200 -loop 0 -dispose 2 *.png check.gif
# convert check.gif -resize 512x512 check_small.gif
if __name__ == '__main__':
import sys
if len(sys.argv) == 1 or sys.argv[1] == 'inference':
run_tailornet()
elif sys.argv[1] == 'render':
render_images()
else:
raise AttributeError