diff --git a/README.md b/README.md index b2a5e6c..030b145 100644 --- a/README.md +++ b/README.md @@ -334,6 +334,13 @@ We conducted training on the following four datasets using the `DDPM` sampler wi ![model_459_ema](assets/animate_face_459_ema.jpg) +#### Base on the 64×64 model to generate 160×160 (every size) images + +Of course, based on the 64×64 U-Net model, we generate 160×160 `NEU-DET` images in the `generate.py` file (single output, each image occupies 21GB of GPU memory). Detailed images are as follows: + +![model_499_ema](assets/neu160_0.jpg)![model_499_ema](assets/neu160_1.jpg)![model_499_ema](assets/neu160_2.jpg)![model_499_ema](assets/neu160_3.jpg)![model_499_ema](assets/neu160_4.jpg)![model_499_ema](assets/neu160_5.jpg) + + ### Deployment To be continued. diff --git a/README_zh.md b/README_zh.md index c8bf030..ad426df 100644 --- a/README_zh.md +++ b/README_zh.md @@ -337,6 +337,12 @@ Industrial Defect Diffusion Model ![model_459_ema](assets/animate_face_459_ema.jpg) +#### 基于64×64模型生成160×160(任意大尺寸)图像 + +当然,我们根据64×64的基础模型,在`generate.py`文件中生成160×160的`NEU-DET`图片(单张输出,每张图片占用显存21GB)。详细图片如下: + +![model_499_ema](assets/neu160_0.jpg)![model_499_ema](assets/neu160_1.jpg)![model_499_ema](assets/neu160_2.jpg)![model_499_ema](assets/neu160_3.jpg)![model_499_ema](assets/neu160_4.jpg)![model_499_ema](assets/neu160_5.jpg) + ### 部署 未完待续