forked from lofar-astron/prefactor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pre-Facet-Target.parset
898 lines (807 loc) · 68.2 KB
/
Pre-Facet-Target.parset
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
##########################################################################
# Pre-Facet Target Calibration Pipeline v3.0 (04/09/2019) #
# #
# Target part of the basic Pre-Facet calibration pipeline: #
# - requires LOFAR software version >= 3.1.0 #
# - requires losoto software version >= 2.0.0 #
# - expects shared filesystem, that all nodes can reach all files! #
# (E.g. a single workstation or compute cluster with shared filesystem #
# doesn't work on multiple nodes on CEP3.) #
##########################################################################
##########################################
### parameters you will need to adjust. ##
##########################################
## information about the target data
! target_input_path = /data/scratch/drabent/ ## specify the directory where your target data is stored
! target_input_pattern = L228163*.MS ## regular expression pattern of all your target files
## location of the software
! prefactor_directory = /home/drabent/prefactor ## path to your prefactor copy
! losoto_directory = /home/drabent/losoto ## path to your local LoSoTo installation
! aoflagger = /home/drabent/aoflagger/bin/aoflagger ## path to your aoflagger executable
## location of the calibrator solutions
! cal_solutions = input.output.job_directory/../Pre-Facet-Calibrator/results/cal_values/cal_solutions.h5
##########################################
### parameters you may need to adjust ##
##########################################
! refant = 'CS00.*' ## regular expression of reference antennas from which to choose.
! flag_baselines = [] ## NDPPP-compatible pattern for baselines or stations to be flagged (may be an empty list, i.e.: [] )
! process_baselines_target = [CR]S*& ## performs A-Team-clipping/demixing and direction-independent phase-only self-calibration only on these baselines. Choose [CR]S*& if you want to process only cross-correlations and remove international stations.
! filter_baselines = {{ process_baselines_target }} ## selects only this set of baselines to be processed for the full pipeline. Choose [CR]S*& if you want to process only cross-correlations and remove international stations.
! do_smooth = False ## enable or disable baseline-based smoothing
! rfistrategy = HBAdefault.rfis ## strategy to be applied with the statistical flagger (AOFlagger) for wideband flagging
! min_unflagged_fraction = 0.5 ## minimum fraction of unflagged data after RFI flagging and A-team clipping
! compression_bitrate = 16 ## defines the bitrate of Dysco compression of the data after the final step, choose 0 if you do NOT want to compress the data
! raw_data = False ## use autoweight, set to True in case you are using raw data
! propagatesolutions = True ## use already derived solutions as initial guess for the upcoming time slot
# demixing options (only used if demix step is added to the prep_cal_strategy variable)
! demix_sources = [CasA,CygA] ## choose sources to demix (provided as list)
! demix_target = "" ## if given, the target source model (its patch in the SourceDB) is taken into account when solving
! demix_freqstep = 16 ## number of channels to average when demixing.
! demix_timestep = 10 ## number of time slots to average when demixing
# definitions for pipeline options -- do not change!
! default_flagging = flagbaseline,flagelev,flagamp ## regular flagging after pre-processing by the observatory pipelines
! raw_flagging = flagedge,aoflag,{{ default_flagging }} ## full flagging (usually only necessary for raw data)
! demix = demix, ## Do not change! Only demix_step should be edited if needed
! clipATeam = clipATeam, ## Do not change! Only clipATeam_step should be edited if needed
! none = ## Do not change!
# pipeline options
! initial_flagging = {{ default_flagging }} ## choose {{ raw_flagging }} if you process raw data
! demix_step = {{ none }} ## choose {{ demix }} if you want to demix
! apply_steps = applyclock,applybeam,applyRM ## comma-separated list of apply_steps performed in the target preparation (NOTE: only use applyRM if you have performed RMextract before!)
! clipATeam_step = {{ clipATeam }} ## choose {{ none }} if you want to skip A-team-clipping
! gsmcal_step = phase ## choose tec if you want to fit TEC instead of self-calibrating for phases
! updateweights = True ## update the weights column, in a way consistent with the weights being inverse proportional to the autocorrelations
##########################################
### parameters for pipeline performance ##
##########################################
! num_proc_per_node = input.output.max_per_node ## number of processes to use per step per node (usually max_per_node from pipeline.cfg)
! num_proc_per_node_limit = 4 ## number of processes to use per step per node for tasks with high i/o (dppp or cp) or memory (eg calibration)
! max_dppp_threads = 10 ## number of threads per process for NDPPP
! min_length = 5 ## minimum amount of chunks to concatenate in frequency necessary to perform the wide-band flagging in the RAM. It data is too big aoflag will use indirect-read.
! overhead = 0.7 ## Only use this fraction of the available memory for deriving the amount of data to be concatenated.
! min_separation = 30 ## minimal accepted distance to an A-team source on the sky in degrees (will raise a WARNING)
! error_tolerance = False ## set this to True if you want the pipeline run to continue if single bands fail
##########################################
### parameters you may want to adjust ##
##########################################
## main directories
! lofar_directory = $LOFARROOT ## base directory of your LOFAR installation
! job_directory = input.output.job_directory ## directory of the prefactor outputs
! working_directory = input.output.working_directory/input.output.job_name ## specify the working_directory (intermediate data products)
! log_file = input.output.log_file ## location of the logfile
! mapfile_dir = input.output.mapfile_dir ## specify mapfile directory
## script and plugin directories
! scripts = {{ prefactor_directory }}/scripts
pipeline.pluginpath = {{ prefactor_directory }}/plugins
## skymodel directory
! calibrator_path_skymodel = {{ prefactor_directory }}/skymodels
! A-team_skymodel = {{ calibrator_path_skymodel }}/Ateam_LBA_CC.skymodel
! target_skymodel = {{ job_directory }}/target.skymodel ## path to the skymodel for the phase-only calibration of the target
! use_target = True ## download the phase-only calibration skymodel from TGSS, "Force" : always download , "True" download if {{ target_skymodel }} does not exist , "False" : never download
! skymodel_source = TGSS ## use GSM if you want to use the experimental (!) GSM SkyModel creator using TGSS, NVSS, WENSS and VLSS
## result directories
! results_directory = {{ job_directory }}/results ## location of the results
! inspection_directory = {{ results_directory }}/inspection ## directory where the inspection plots will be stored
! cal_values_directory = {{ results_directory }}/cal_values ## directory where the final h5parm solution set will be stored
## calibrator + target solutions
! solutions = {{ cal_values_directory }}/solutions.h5
## averaging for the target data
! avg_timeresolution = 4. ## average to 4 sec/timeslot
! avg_freqresolution = 48.82kHz ## average to 48.82 kHz/ch (= 4 ch/SB)
! avg_timeresolution_concat = 8. ## average to 8 sec/timeslot
! avg_freqresolution_concat = 97.64kHz ## average to 97.64 kHz/ch (= 2 ch/SB)
## concatenating the target data
! num_SBs_per_group = 10 ## make concatenated measurement-sets with that many subbands, choose a high number if running LBA
! reference_stationSB = None ## station-subband number to use as reference for grouping, "None" -> use lowest frequency input data as reference
## RMextract settings
! ionex_server = "ftp://ftp.aiub.unibe.ch/CODE/" ## to download from the "standard" server
! ionex_prefix = CODG ## the prefix of the IONEX files
! ionex_path = {{ job_directory }}/IONEX/ ## path where the IONEX files can be stored or are already stored
## Proxy Settings for RMextract ## Only needed if commmunication to the outside world goes via proxy, leave empty otherwise
! proxy_server = ## Url "my.proxy.com" or ip of proxy server
! proxy_port = ## Port of the server
! proxy_type = ## Proxy Type: "socks4" or "socks5"
! proxy_user = None ## username for proxy server. Leave None if you do not need one
! proxy_pass = None ## Password for proxy server. Leave None if you do not need one
########################################################
## ##
## BEGIN PIPELINE: DO NOT UPDATE BELOW THIS LINE! ##
## ##
########################################################
# which steps to run
pipeline.steps = [prep, {{ clipATeam_step }} concat, prep_gsmcal, {{ gsmcal_step }}, finalize]
# pipeline substeps
pipeline.steps.prep = [createmap_target, get_targetname, combine_data_target_map, check_Ateam_separation, mk_targ_values_dir, copy_cal_sols, check_station_mismatch, createmap_preptarg, createmap_insttarg, create_ateam_model_map, make_sourcedb_ateam, expand_sourcedb_ateam, h5imp_RMextract, prepare_losoto_RMextract, process_losoto_RMextract, ndppp_prep_target]
pipeline.steps.clipATeam = [predict_ateam, ateamcliptar, plotateamclip]
pipeline.steps.concat = [combine_target_map, check_bad_antennas, sortmap_target, do_sortmap_maps, dpppconcat, combine_concat_map, ms_concat_target, ms_concat_target_map, expand_memory_map, aoflag]
pipeline.steps.prep_gsmcal = [check_unflagged, check_unflagged_map, combine_concat_map, combine_frac_map, plot_unflagged, sky_tar, create_target_model_map, make_sourcedb_target, expand_sourcedb_target, gsmcal_parmmap, h5_gsmsol_map, smooth_data, find_refant]
pipeline.steps.phase = [gsmcal_phase, h5imp_gsmcal, prepare_losoto_phase]
pipeline.steps.tec = [gsmcal_tec, h5imp_gsmcal, prepare_losoto_tec ]
pipeline.steps.finalize = [process_losoto_gsmcal, add_missing_stations, h5exp_gsm, apply_gsmcal, make_results_mapfile, make_results_compress, move_results, h5parm_name, structure_function, make_summary]
#############################
## Prepare target part ##
#############################
# generate a mapfile of all the target data
createmap_target.control.kind = plugin
createmap_target.control.type = createMapfile
createmap_target.control.method = mapfile_from_folder
createmap_target.control.mapfile_dir = {{ mapfile_dir }}
createmap_target.control.filename = createmap_target.mapfile
createmap_target.control.folder = {{ target_input_path }}
createmap_target.control.pattern = {{ target_input_pattern }}
# get the target name
get_targetname.control.kind = plugin
get_targetname.control.type = getTargetName
get_targetname.control.mapfile_in = createmap_target.output.mapfile
# combine all entries into one mapfile, for the sortmap script
combine_data_target_map.control.kind = plugin
combine_data_target_map.control.type = createMapfile
combine_data_target_map.control.method = mapfile_all_to_one
combine_data_target_map.control.mapfile_dir = {{ mapfile_dir }}
combine_data_target_map.control.filename = combine_data_tar_map.mapfile
combine_data_target_map.control.mapfile_in = createmap_target.output.mapfile
# warn for potential nearby A-Team sources
check_Ateam_separation.control.type = pythonplugin
check_Ateam_separation.control.executable = {{ scripts }}/check_Ateam_separation.py
check_Ateam_separation.control.mapfile_in = combine_data_target_map.output.mapfile
check_Ateam_separation.control.inputkey = MSfile
check_Ateam_separation.argument.min_separation = {{ min_separation }}
check_Ateam_separation.argument.outputimage = {{ inspection_directory }}/A-Team_elevation_target.png
check_Ateam_separation.argument.flags = [MSfile]
# create the cal_values_directory if needed
mk_targ_values_dir.control.kind = plugin
mk_targ_values_dir.control.type = makeDirectory
mk_targ_values_dir.control.directory = {{ cal_values_directory }}
# move the results to where we want them
copy_cal_sols.control.kind = recipe
copy_cal_sols.control.type = executable_args
copy_cal_sols.control.executable = /bin/cp
copy_cal_sols.control.max_per_node = 1
copy_cal_sols.control.skip_infile = True
copy_cal_sols.control.mapfile_in = combine_data_target_map.output.mapfile
copy_cal_sols.argument.flags = [{{ cal_solutions }},{{ solutions }}]
# check potential station mismatch
check_station_mismatch.control.kind = plugin
check_station_mismatch.control.type = compareStationList
check_station_mismatch.control.mapfile_in = createmap_target.output.mapfile
check_station_mismatch.control.h5parmdb = {{ solutions }}
check_station_mismatch.control.solset_name = calibrator
check_station_mismatch.control.filter = {{ filter_baselines }}
###################################
## Prepare for demixing/clipping ##
###################################
# generate a mapfile of the target
createmap_preptarg.control.kind = plugin
createmap_preptarg.control.type = makeResultsMapfile
createmap_preptarg.control.mapfile_dir = {{ mapfile_dir }}
createmap_preptarg.control.filename = createmap_preptarg.mapfile
createmap_preptarg.control.mapfile_in = createmap_target.output.mapfile
createmap_preptarg.control.target_dir = {{ working_directory }}
createmap_preptarg.control.make_target_dir = False
createmap_preptarg.control.new_suffix = .ndppp_prep_target
# generate a mapfile for the instrument table of the target
createmap_insttarg.control.kind = plugin
createmap_insttarg.control.type = changeMapfile
createmap_insttarg.control.mapfile_in = createmap_preptarg.output.mapfile
createmap_insttarg.control.join_files = instrument
createmap_insttarg.control.newname = createmap_insttarg.mapfile
# create a mapfile with the A-Team skymodel, length = 1
create_ateam_model_map.control.kind = plugin
create_ateam_model_map.control.type = addListMapfile
create_ateam_model_map.control.hosts = ['localhost']
create_ateam_model_map.control.files = [ {{ A-team_skymodel }} ]
create_ateam_model_map.control.mapfile_dir = {{ mapfile_dir }}
create_ateam_model_map.control.filename = ateam_model_name.mapfile
# make sourcedbs from the A-Team skymodel, length = 1
make_sourcedb_ateam.control.kind = recipe
make_sourcedb_ateam.control.type = executable_args
make_sourcedb_ateam.control.executable = {{ lofar_directory }}/bin/makesourcedb
make_sourcedb_ateam.control.error_tolerance = {{ error_tolerance }}
make_sourcedb_ateam.control.args_format = lofar
make_sourcedb_ateam.control.outputkey = out
make_sourcedb_ateam.control.mapfile_in = create_ateam_model_map.output.mapfile
make_sourcedb_ateam.control.inputkey = in
make_sourcedb_ateam.argument.format = <
make_sourcedb_ateam.argument.outtype = blob
# expand the sourcedb mapfile so that there is one entry for every file, length = nfiles
expand_sourcedb_ateam.control.kind = plugin
expand_sourcedb_ateam.control.type = expandMapfile
expand_sourcedb_ateam.control.mapfile_in = make_sourcedb_ateam.output.mapfile
expand_sourcedb_ateam.control.mapfile_to_match = createmap_target.output.mapfile
expand_sourcedb_ateam.control.mapfile_dir = {{ mapfile_dir }}
expand_sourcedb_ateam.control.filename = expand_sourcedb_ateam.datamap
#############################
## RM target correction ##
#############################
# get ionex files once for every day that is covered by one of the input MSs
h5imp_RMextract.control.type = pythonplugin
h5imp_RMextract.control.executable = {{ scripts }}/createRMh5parm.py
h5imp_RMextract.control.error_tolerance = {{ error_tolerance }}
h5imp_RMextract.argument.flags = [combine_data_target_map.output.mapfile, {{ solutions }}]
h5imp_RMextract.argument.ionex_server = {{ ionex_server }}
h5imp_RMextract.argument.ionex_prefix = {{ ionex_prefix }}
h5imp_RMextract.argument.ionexPath = {{ ionex_path }}
h5imp_RMextract.argument.solset_name = target
h5imp_RMextract.argument.proxyServer = {{ proxy_server }}
h5imp_RMextract.argument.proxyPort = {{ proxy_port }}
h5imp_RMextract.argument.proxyType = {{ proxy_type }}
h5imp_RMextract.argument.proxyUser = {{ proxy_user }}
h5imp_RMextract.argument.proxyPass = {{ proxy_pass }}
# create losoto v2 parset file
prepare_losoto_RMextract.control.kind = plugin
prepare_losoto_RMextract.control.type = makeLosotoParset
prepare_losoto_RMextract.control.steps = [plotRM]
prepare_losoto_RMextract.control.filename = {{ job_directory }}/losoto.parset
prepare_losoto_RMextract.control.global.ncpu = {{ num_proc_per_node }}
prepare_losoto_RMextract.control.plotRM.operation = PLOT
prepare_losoto_RMextract.control.plotRM.soltab = target/RMextract
prepare_losoto_RMextract.control.plotRM.axesInPlot = time
prepare_losoto_RMextract.control.plotRM.axisInTable = ant
prepare_losoto_RMextract.control.plotRM.prefix = {{ inspection_directory }}/RMextract
# do the processing on the LoSoTo file
process_losoto_RMextract.control.kind = recipe
process_losoto_RMextract.control.type = executable_args
process_losoto_RMextract.control.executable = {{ losoto_directory }}/bin/losoto
process_losoto_RMextract.control.max_per_node = {{ num_proc_per_node }}
process_losoto_RMextract.control.mapfile_in = combine_data_target_map.output.mapfile
process_losoto_RMextract.control.inputkey = input
process_losoto_RMextract.argument.flags = [{{ solutions }}, {{ job_directory }}/losoto.parset]
#############################
## Apply calibrator sols ##
#############################
# run NDPPP on the target data to flag, transfer calibrator values, and average
ndppp_prep_target.control.type = dppp
ndppp_prep_target.control.max_per_node = {{ num_proc_per_node_limit }}
ndppp_prep_target.control.error_tolerance = {{ error_tolerance }}
ndppp_prep_target.control.mapfiles_in = [createmap_target.output.mapfile,expand_sourcedb_ateam.output.mapfile,createmap_insttarg.output.mapfile]
ndppp_prep_target.control.inputkeys = [input_file,sourcedb,instrument]
ndppp_prep_target.argument.numthreads = {{ max_dppp_threads }}
ndppp_prep_target.argument.msin = input_file
ndppp_prep_target.argument.msin.datacolumn = DATA
ndppp_prep_target.argument.msin.baseline = check_station_mismatch.output.filter
ndppp_prep_target.argument.msin.autoweight = {{ raw_data }}
ndppp_prep_target.argument.msout.datacolumn = DATA
ndppp_prep_target.argument.msout.writefullresflag = False
ndppp_prep_target.argument.msout.overwrite = True
ndppp_prep_target.argument.msout.storagemanager = "Dysco"
ndppp_prep_target.argument.msout.storagemanager.databitrate = 0
ndppp_prep_target.argument.steps = [{{ initial_flagging }},{{ demix_step }}filter,applyPA,applybandpass,{{ apply_steps }},avg]
ndppp_prep_target.argument.filter.type = filter
ndppp_prep_target.argument.filter.baseline = check_station_mismatch.output.filter
ndppp_prep_target.argument.filter.remove = true
ndppp_prep_target.argument.flagedge.type = preflagger
ndppp_prep_target.argument.flagedge.chan = [0..nchan/32-1,31*nchan/32..nchan-1] # we are running on a single subband
ndppp_prep_target.argument.aoflag.type = aoflagger
ndppp_prep_target.argument.aoflag.memoryperc = 10
ndppp_prep_target.argument.aoflag.keepstatistics = false
ndppp_prep_target.argument.flagbaseline.type = preflagger
ndppp_prep_target.argument.flagbaseline.baseline = {{ flag_baselines }}
ndppp_prep_target.argument.flagelev.type = preflagger
ndppp_prep_target.argument.flagelev.elevation = 0deg..30deg
ndppp_prep_target.argument.flagamp.type = preflagger
ndppp_prep_target.argument.flagamp.amplmin = 1e-30
ndppp_prep_target.argument.applyPA.type = applycal
ndppp_prep_target.argument.applyPA.parmdb = {{ solutions }}
ndppp_prep_target.argument.applyPA.correction = polalign
ndppp_prep_target.argument.applyPA.solset = calibrator
ndppp_prep_target.argument.applybandpass.type = applycal
ndppp_prep_target.argument.applybandpass.parmdb = {{ solutions }}
ndppp_prep_target.argument.applybandpass.correction = bandpass
ndppp_prep_target.argument.applybandpass.updateweights = {{ updateweights }}
ndppp_prep_target.argument.applybandpass.solset = calibrator
ndppp_prep_target.argument.applyclock.type = applycal
ndppp_prep_target.argument.applyclock.parmdb = {{ solutions }}
ndppp_prep_target.argument.applyclock.correction = clock
ndppp_prep_target.argument.applyclock.solset = calibrator
ndppp_prep_target.argument.applytec.type = applycal
ndppp_prep_target.argument.applytec.parmdb = {{ solutions }}
ndppp_prep_target.argument.applytec.correction = tec
ndppp_prep_target.argument.applytec.solset = calibrator
ndppp_prep_target.argument.applyphase.type = applycal
ndppp_prep_target.argument.applyphase.parmdb = {{ solutions }}
ndppp_prep_target.argument.applyphase.correction = phaseOrig
ndppp_prep_target.argument.applyphase.solset = calibrator
ndppp_prep_target.argument.applyRM.type = applycal
ndppp_prep_target.argument.applyRM.parmdb = {{ solutions }}
ndppp_prep_target.argument.applyRM.correction = RMextract
ndppp_prep_target.argument.applyRM.solset = target
ndppp_prep_target.argument.applybeam.type = applybeam
ndppp_prep_target.argument.applybeam.usechannelfreq = True
ndppp_prep_target.argument.applybeam.updateweights = {{ updateweights }}
ndppp_prep_target.argument.applybeam.invert = True
ndppp_prep_target.argument.avg.type = average
ndppp_prep_target.argument.avg.timeresolution = {{ avg_timeresolution }}
ndppp_prep_target.argument.avg.freqresolution = {{ avg_freqresolution }}
ndppp_prep_target.argument.demix.type = demixer
ndppp_prep_target.argument.demix.baseline = {{ process_baselines_target }}
ndppp_prep_target.argument.demix.demixfreqstep = {{ demix_freqstep }}
ndppp_prep_target.argument.demix.demixtimestep = {{ demix_timestep }}
ndppp_prep_target.argument.demix.ignoretarget = False
ndppp_prep_target.argument.demix.targetsource = {{ demix_target }}
ndppp_prep_target.argument.demix.subtractsources = {{ demix_sources }}
ndppp_prep_target.argument.demix.ntimechunk = {{ max_dppp_threads }}
ndppp_prep_target.argument.demix.skymodel = sourcedb
ndppp_prep_target.argument.demix.freqstep = 1
ndppp_prep_target.argument.demix.timestep = 1
ndppp_prep_target.argument.demix.instrumentmodel = instrument
#############################
## Clip A-Team ##
#############################
# Predict, corrupt, and predict the ateam-resolution model, length = nfiles
predict_ateam.control.type = dppp
predict_ateam.control.mapfiles_in = [ndppp_prep_target.output.mapfile,expand_sourcedb_ateam.output.mapfile]
predict_ateam.control.inputkeys = [msin,sourcedb]
predict_ateam.control.inplace = True
predict_ateam.control.max_per_node = {{ num_proc_per_node_limit }}
predict_ateam.control.error_tolerance = {{ error_tolerance }}
predict_ateam.argument.numthreads = {{ max_dppp_threads }}
predict_ateam.argument.msin.datacolumn = DATA
predict_ateam.argument.msout.datacolumn = MODEL_DATA
predict_ateam.argument.msout.storagemanager = "Dysco"
predict_ateam.argument.msout.storagemanager.databitrate = 0
predict_ateam.argument.steps = [filter,predict]
predict_ateam.argument.filter.type = filter
predict_ateam.argument.filter.baseline = {{ process_baselines_target }}
predict_ateam.argument.filter.remove = False
predict_ateam.argument.predict.type = predict
predict_ateam.argument.predict.operation = replace
predict_ateam.argument.predict.sourcedb = sourcedb
predict_ateam.argument.predict.sources = [VirA_4_patch,CygAGG,CasA_4_patch,TauAGG]
predict_ateam.argument.predict.usebeammodel = True
predict_ateam.argument.predict.usechannelfreq = False
predict_ateam.argument.predict.onebeamperpatch = True
# run the a-team clipper to flag data affected by the a-team
ateamcliptar.control.kind = recipe
ateamcliptar.control.type = executable_args
ateamcliptar.control.max_per_node = {{ num_proc_per_node }}
ateamcliptar.control.executable = {{ scripts }}/Ateamclipper.py
ateamcliptar.control.error_tolerance = {{ error_tolerance }}
ateamcliptar.control.mapfile_in = ndppp_prep_target.output.mapfile
ateamcliptar.control.arguments = [allms]
ateamcliptar.control.inputkey = allms
# run the a-team clipper to flag data affected by the a-team
plotateamclip.control.type = pythonplugin
plotateamclip.control.executable = {{ scripts }}/plot_Ateamclipper.py
plotateamclip.control.error_tolerance = {{ error_tolerance }}
plotateamclip.control.skip_infile = True
plotateamclip.control.mapfile_in = combine_data_target_map.output.mapfile
plotateamclip.argument.txtfile = {{ working_directory }}/Ateamclipper.txt
plotateamclip.argument.outfile = {{ inspection_directory }}/Ateamclipper.png
#############################
## concatenate ##
#############################
# combine all entries into one mapfile, for the sortmap script
combine_target_map.control.kind = plugin
combine_target_map.control.type = createMapfile
combine_target_map.control.method = mapfile_all_to_one
combine_target_map.control.mapfile_dir = {{ mapfile_dir }}
combine_target_map.control.filename = combine_target_map.mapfile
combine_target_map.control.mapfile_in = ndppp_prep_target.output.mapfile
# check bad antennas
check_bad_antennas.control.kind = plugin
check_bad_antennas.control.type = identifyBadAntennas
check_bad_antennas.control.mapfile_in = ndppp_prep_target.output.mapfile
check_bad_antennas.control.filter = {{ process_baselines_target }}
# sort the target data by frequency into groups so that NDPPP can concatenate them
sortmap_target.control.type = pythonplugin
sortmap_target.control.executable = {{ scripts }}/sort_times_into_freqGroups.py
sortmap_target.argument.flags = [combine_target_map.output.mapfile]
sortmap_target.argument.filename = sortmap_target
sortmap_target.argument.mapfile_dir = {{ mapfile_dir }}
sortmap_target.argument.target_path = {{ working_directory }}
sortmap_target.argument.numSB = {{ num_SBs_per_group }}
sortmap_target.argument.NDPPPfill = True
sortmap_target.argument.stepname = dpppconcat
sortmap_target.argument.firstSB = {{ reference_stationSB }}
sortmap_target.argument.truncateLastSBs = False
# convert the output of sortmap_target into usable mapfiles
do_sortmap_maps.control.kind = plugin
do_sortmap_maps.control.type = mapfilenamesFromMapfiles
do_sortmap_maps.control.mapfile_groupmap = sortmap_target.output.groupmapfile.mapfile
do_sortmap_maps.control.mapfile_datamap = sortmap_target.output.mapfile.mapfile
# run NDPPP to concatenate the target
dpppconcat.control.type = dppp
dpppconcat.control.max_per_node = {{ num_proc_per_node_limit }}
dpppconcat.control.error_tolerance = {{ error_tolerance }}
dpppconcat.control.mapfile_out = do_sortmap_maps.output.groupmap # tell the pipeline to give the output useful names
dpppconcat.control.mapfiles_in = [do_sortmap_maps.output.datamap]
dpppconcat.control.inputkey = msin
dpppconcat.argument.msin.datacolumn = DATA
dpppconcat.argument.msin.missingdata = True #\ these two lines will make NDPPP generate dummy data when
dpppconcat.argument.msin.orderms = False #/ concatenating data
dpppconcat.argument.msin.baseline = check_bad_antennas.output.filter
dpppconcat.argument.filter.type = filter
dpppconcat.argument.filter.baseline = check_bad_antennas.output.filter
dpppconcat.argument.filter.remove = True
dpppconcat.argument.msout.datacolumn = DATA
dpppconcat.argument.msout.writefullresflag = False
dpppconcat.argument.msout.overwrite = True
dpppconcat.argument.msout.storagemanager = "Dysco"
dpppconcat.argument.msout.storagemanager.databitrate = 0
dpppconcat.argument.steps = [filter,avg]
dpppconcat.argument.avg.type = average
dpppconcat.argument.avg.timeresolution = {{ avg_timeresolution_concat }}
dpppconcat.argument.avg.freqresolution = {{ avg_freqresolution_concat }}
# combine all entries into one mapfile, for the sortmap script
combine_concat_map.control.kind = plugin
combine_concat_map.control.type = createMapfile
combine_concat_map.control.method = mapfile_all_to_one
combine_concat_map.control.mapfile_dir = {{ mapfile_dir }}
combine_concat_map.control.filename = combine_concat_map.mapfile
combine_concat_map.control.mapfile_in = do_sortmap_maps.output.groupmap
# virtually concatenate target subbands
ms_concat_target.control.type = pythonplugin
ms_concat_target.control.executable = {{ scripts }}/concat_MS.py
ms_concat_target.control.error_tolerance = {{ error_tolerance }}
ms_concat_target.argument.filename = concatmapfile.mapfile
ms_concat_target.argument.mapfile_dir = {{ mapfile_dir }}
ms_concat_target.argument.min_length = {{ min_length }}
ms_concat_target.argument.overhead = {{ overhead }}
ms_concat_target.argument.flags = [combine_concat_map.output.mapfile,outputkey]
# convert the output of ms_concat_target into usable mapfiles
ms_concat_target_map.control.kind = plugin
ms_concat_target_map.control.type = mapfilenamesFromMapfiles
ms_concat_target_map.control.mapfile_concatmap = ms_concat_target.output.concatmapfile.mapfile
# convert the output of ms_concat_target into usable mapfiles
expand_memory_map.control.kind = plugin
expand_memory_map.control.type = expandMapfile
expand_memory_map.control.mapfile_in = ms_concat_target.output.memory.mapfile
expand_memory_map.control.mapfile_to_match = ms_concat_target_map.output.concatmap
expand_memory_map.control.mapfile_dir = {{ mapfile_dir }}
expand_memory_map.control.filename = expand_memory_map.mapfile
# run aoflagger on the concatenated data
aoflag.control.kind = recipe
aoflag.control.type = executable_args
aoflag.control.inplace = True
aoflag.control.executable = {{ aoflagger }}
aoflag.control.max_per_node = 1
aoflag.control.error_tolerance = {{ error_tolerance }}
aoflag.control.mapfiles_in = [ms_concat_target_map.output.concatmap,expand_memory_map.output.mapfile]
aoflag.control.inputkeys = [msin,memory]
aoflag.control.args_format = wsclean
aoflag.argument.strategy = {{ prefactor_directory }}/rfistrategies/{{ rfistrategy }}
aoflag.argument.flags = [-v,memory,-combine-spws,msin]
#############################
## phasecal target ##
#############################
#check all files for minimum unflagged fraction
check_unflagged.control.type = pythonplugin
check_unflagged.control.executable = {{ scripts }}/check_unflagged_fraction.py
check_unflagged.argument.flags = [dpppconcat.output.mapfile]
check_unflagged.argument.min_fraction = {{ min_unflagged_fraction }}
# prune flagged files from mapfile
check_unflagged_map.control.kind = plugin
check_unflagged_map.control.type = pruneMapfile
check_unflagged_map.control.mapfile_in = check_unflagged.output.flagged.mapfile
check_unflagged_map.control.mapfile_dir = {{ mapfile_dir }}
check_unflagged_map.control.filename = check_unflagged_map.mapfile
check_unflagged_map.control.prune_str = None
# compress mapfiles for plotting
combine_concat_map.control.kind = plugin
combine_concat_map.control.type = compressMapfile
combine_concat_map.control.mapfile_in = dpppconcat.output.mapfile
combine_concat_map.control.mapfile_dir = {{ mapfile_dir }}
combine_concat_map.control.filename = combine_concat_map.mapfile
# compress mapfiles for plotting
combine_frac_map.control.kind = plugin
combine_frac_map.control.type = compressMapfile
combine_frac_map.control.mapfile_in = check_unflagged.output.unflagged_fraction.mapfile
combine_frac_map.control.mapfile_dir = {{ mapfile_dir }}
combine_frac_map.control.filename = combine_frac_map.mapfile
# plot the unflagged fraction
plot_unflagged.control.type = pythonplugin
plot_unflagged.control.executable = {{ scripts }}/plot_unflagged_fraction.py
plot_unflagged.control.mapfiles_in = [combine_concat_map.output.mapfile,combine_frac_map.output.mapfile]
plot_unflagged.control.inputkeys = [msin,frac]
plot_unflagged.argument.flags = [msin,frac]
plot_unflagged.argument.outfile = {{ inspection_directory }}/unflagged_fraction.png
# if wished, download the tgss skymodel for the target
sky_tar.control.type = pythonplugin
sky_tar.control.executable = {{ scripts }}/download_skymodel_target.py
sky_tar.argument.flags = [combine_target_map.output.mapfile]
sky_tar.argument.DoDownload = {{ use_target }}
sky_tar.argument.SkymodelPath = {{ target_skymodel }}
sky_tar.argument.Radius = 5. #in degrees
sky_tar.argument.Source = {{ skymodel_source }}
# create a mapfile with the target skymodel, length = 1
create_target_model_map.control.kind = plugin
create_target_model_map.control.type = addListMapfile
create_target_model_map.control.hosts = ['localhost']
create_target_model_map.control.files = [ {{ target_skymodel }} ]
create_target_model_map.control.mapfile_dir = {{ mapfile_dir }}
create_target_model_map.control.filename = target_model_name.mapfile
# make sourcedbs from the target skymodel, length = 1
make_sourcedb_target.control.kind = recipe
make_sourcedb_target.control.type = executable_args
make_sourcedb_target.control.executable = {{ lofar_directory }}/bin/makesourcedb
make_sourcedb_target.control.error_tolerance = {{ error_tolerance }}
make_sourcedb_target.control.args_format = lofar
make_sourcedb_target.control.outputkey = out
make_sourcedb_target.control.mapfile_in = create_target_model_map.output.mapfile
make_sourcedb_target.control.inputkey = in
make_sourcedb_target.argument.format = <
make_sourcedb_target.argument.outtype = blob
# expand the sourcedb mapfile so that there is one entry for every file, length = nfiles
expand_sourcedb_target.control.kind = plugin
expand_sourcedb_target.control.type = expandMapfile
expand_sourcedb_target.control.mapfile_in = make_sourcedb_target.output.mapfile
expand_sourcedb_target.control.mapfile_to_match = check_unflagged_map.output.mapfile
expand_sourcedb_target.control.mapfile_dir = {{ mapfile_dir }}
expand_sourcedb_target.control.filename = expand_sourcedb_target.datamap
# generate mapfile with the parmDB names to be used in the gsmcal steps
gsmcal_parmmap.control.kind = plugin
gsmcal_parmmap.control.type = createMapfile
gsmcal_parmmap.control.method = add_suffix_to_file
gsmcal_parmmap.control.mapfile_in = check_unflagged_map.output.mapfile
gsmcal_parmmap.control.add_suffix_to_file = .h5
gsmcal_parmmap.control.mapfile_dir = {{ mapfile_dir }}
gsmcal_parmmap.control.filename = gsmcal_parmdbs.mapfile
# generate a mapfile with all files in a single entry
h5_gsmsol_map.control.kind = plugin
h5_gsmsol_map.control.type = compressMapfile
h5_gsmsol_map.control.mapfile_in = gsmcal_parmmap.output.mapfile
h5_gsmsol_map.control.mapfile_dir = {{ mapfile_dir }}
h5_gsmsol_map.control.filename = h5_imp_gsmsol_map.mapfile
# baseline-dependent smoothing
smooth_data.control.type = executable_args
smooth_data.control.inplace = True
smooth_data.control.max_per_node = {{ num_proc_per_node }}
smooth_data.control.error_tolerance = {{ error_tolerance }}
smooth_data.control.executable = {{ scripts }}/BLsmooth.py
smooth_data.control.mapfile_in = check_unflagged_map.output.mapfile
smooth_data.control.inputkey = msin
smooth_data.argument.flags = [-S,{{ do_smooth }},-r,-f,0.2,-i,DATA,-o,SMOOTHED_DATA,msin]
# solve/store direction-independent phase-only self-calibration corrected UV-data to a fully Dysco compressed new MS
gsmcal_phase.control.type = dppp
gsmcal_phase.control.error_tolerance = {{ error_tolerance }}
gsmcal_phase.control.inplace = True
gsmcal_phase.control.max_per_node = {{ num_proc_per_node_limit }}
gsmcal_phase.control.mapfiles_in = [check_unflagged_map.output.mapfile,expand_sourcedb_target.output.mapfile,gsmcal_parmmap.output.mapfile]
gsmcal_phase.control.inputkeys = [input_file,sourcedb,parmdb]
gsmcal_phase.argument.msin = input_file
gsmcal_phase.argument.msin.datacolumn = SMOOTHED_DATA
gsmcal_phase.argument.numthreads = {{ max_dppp_threads }}
gsmcal_phase.argument.steps = [filter,gaincal]
gsmcal_phase.argument.filter.type = filter
gsmcal_phase.argument.filter.blrange = [150, 999999]
gsmcal_phase.argument.gaincal.type = gaincal
gsmcal_phase.argument.gaincal.parmdb = parmdb
gsmcal_phase.argument.gaincal.caltype = phaseonly
gsmcal_phase.argument.gaincal.sourcedb = sourcedb
gsmcal_phase.argument.gaincal.maxiter = 50
gsmcal_phase.argument.gaincal.solint = 1
gsmcal_phase.argument.gaincal.nchan = 0
gsmcal_phase.argument.gaincal.tolerance = 1e-3
gsmcal_phase.argument.gaincal.propagatesolutions = {{ propagatesolutions }}
gsmcal_phase.argument.gaincal.usebeammodel = True
gsmcal_phase.argument.gaincal.usechannelfreq = True
gsmcal_phase.argument.gaincal.beammode = array_factor
gsmcal_phase.argument.gaincal.onebeamperpatch = False
# solve for direction-independent TEC
gsmcal_tec.control.type = dppp
gsmcal_tec.control.error_tolerance = {{ error_tolerance }}
gsmcal_tec.control.inplace = True
gsmcal_tec.control.max_per_node = {{ num_proc_per_node_limit }}
gsmcal_tec.control.mapfiles_in = [check_unflagged_map.output.mapfile,expand_sourcedb_target.output.mapfile,gsmcal_parmmap.output.mapfile]
gsmcal_tec.control.inputkeys = [input_file,sourcedb,parmdb]
gsmcal_tec.argument.msin = input_file
gsmcal_tec.argument.numthreads = {{ num_proc_per_node }}
gsmcal_tec.argument.msin.datacolumn = SMOOTHED_DATA
gsmcal_tec.argument.steps = [teccal]
gsmcal_tec.argument.teccal.type = ddecal
gsmcal_tec.argument.teccal.mode = tec
gsmcal_tec.argument.teccal.h5parm = parmdb
gsmcal_tec.argument.teccal.sourcedb = sourcedb
gsmcal_tec.argument.teccal.uvlambdamin = 100
gsmcal_tec.argument.teccal.maxiter = 400
gsmcal_tec.argument.teccal.solint = 3
gsmcal_tec.argument.teccal.nchan = 8
gsmcal_tec.argument.teccal.tolerance = 1e-3
gsmcal_tec.argument.teccal.stepsize = 0.2
gsmcal_tec.argument.teccal.approximatetec = True
gsmcal_tec.argument.teccal.maxapproxiter = 400
gsmcal_tec.argument.teccal.approxtolerance = 1e-3
gsmcal_tec.argument.teccal.propagatesolutions = {{ propagatesolutions }}
gsmcal_tec.argument.teccal.usebeammodel = True
gsmcal_tec.argument.teccal.usechannelfreq = True
gsmcal_tec.argument.teccal.beammode = array_factor
gsmcal_tec.argument.teccal.onebeamperpatch = False
# get the target name
find_refant.control.kind = plugin
find_refant.control.type = findRefAnt
find_refant.control.mapfile_in = check_unflagged_map.output.mapfile
find_refant.control.station_filter = {{ refant }}
###########################
## Analyze cal ##
###########################
# collect all instrument tables into one h5parm
h5imp_gsmcal.control.kind = recipe
h5imp_gsmcal.control.type = executable_args
h5imp_gsmcal.control.executable = {{ losoto_directory }}/bin/H5parm_collector.py
h5imp_gsmcal.control.error_tolerance = {{ error_tolerance }}
h5imp_gsmcal.control.mapfile_in = h5_gsmsol_map.output.mapfile
h5imp_gsmcal.control.inputkey = h5in
h5imp_gsmcal.control.outputkey = outh5parm
h5imp_gsmcal.argument.flags = [-q,-v,-c,h5in]
h5imp_gsmcal.argument.outh5parm = outh5parm
# create losoto v2 parset file
prepare_losoto_phase.control.kind = plugin
prepare_losoto_phase.control.type = makeLosotoParset
prepare_losoto_phase.control.steps = [plotP, plotP2, plotPd, plotPd2]
prepare_losoto_phase.control.filename = {{ job_directory }}/losoto.parset
prepare_losoto_phase.control.global.ncpu = {{ num_proc_per_node }}
prepare_losoto_phase.control.plotP.operation = PLOT
prepare_losoto_phase.control.plotP.soltab = sol000/phase000
prepare_losoto_phase.control.plotP.axesInPlot = [time,freq]
prepare_losoto_phase.control.plotP.axisInTable = ant
prepare_losoto_phase.control.plotP.plotFlag = True
prepare_losoto_phase.control.plotP.prefix = {{ inspection_directory }}/ph_
prepare_losoto_phase.control.plotP.refAnt = find_refant.output.refant
prepare_losoto_phase.control.plotP.minmax = [-3.14,3.14]
prepare_losoto_phase.control.plotP2.operation = PLOT
prepare_losoto_phase.control.plotP2.soltab = sol000/phase000
prepare_losoto_phase.control.plotP2.axesInPlot = [time]
prepare_losoto_phase.control.plotP2.axisInTable = ant
prepare_losoto_phase.control.plotP2.axisInCol = pol
prepare_losoto_phase.control.plotP2.plotFlag = True
prepare_losoto_phase.control.plotP2.prefix = {{ inspection_directory }}/ph_
prepare_losoto_phase.control.plotP2.refAnt = find_refant.output.refant
prepare_losoto_phase.control.plotP2.minmax = [-3.14,3.14]
prepare_losoto_phase.control.plotPd.operation = PLOT
prepare_losoto_phase.control.plotPd.soltab = sol000/phase000
prepare_losoto_phase.control.plotPd.axesInPlot = [time,freq]
prepare_losoto_phase.control.plotPd.axisInTable = ant
prepare_losoto_phase.control.plotPd.axisDiff = pol
prepare_losoto_phase.control.plotPd.plotFlag = True
prepare_losoto_phase.control.plotPd.prefix = {{ inspection_directory }}/ph_poldif
prepare_losoto_phase.control.plotPd.refAnt = find_refant.output.refant
prepare_losoto_phase.control.plotPd.minmax = [-3.14,3.14]
prepare_losoto_phase.control.plotPd2.operation = PLOT
prepare_losoto_phase.control.plotPd2.soltab = sol000/phase000
prepare_losoto_phase.control.plotPd2.axesInPlot = [time]
prepare_losoto_phase.control.plotPd2.axisInTable = ant
prepare_losoto_phase.control.plotPd2.axisDiff = pol
prepare_losoto_phase.control.plotPd2.plotFlag = True
prepare_losoto_phase.control.plotPd2.prefix = {{ inspection_directory }}/ph_poldif_
prepare_losoto_phase.control.plotPd2.refAnt = find_refant.output.refant
prepare_losoto_phase.control.plotPd2.minmax = [-3.14,3.14]
# create losoto v2 parset file
prepare_losoto_tec.control.kind = plugin
prepare_losoto_tec.control.type = makeLosotoParset
prepare_losoto_tec.control.steps = [duplicatePbkp,plotTEC1,dejump,plotTEC2]
prepare_losoto_tec.control.filename = {{ job_directory }}/losoto.parset
prepare_losoto_tec.control.global.ncpu = {{ num_proc_per_node }}
prepare_losoto_tec.control.duplicatePbkp.operation = DUPLICATE
prepare_losoto_tec.control.duplicatePbkp.soltab = sol000/tec000
prepare_losoto_tec.control.duplicatePbkp.soltabOut = tecOrig000
prepare_losoto_tec.control.plotTEC1.operation = PLOT
prepare_losoto_tec.control.plotTEC1.soltab = sol000/tec000
prepare_losoto_tec.control.plotTEC1.axesInPlot = time
prepare_losoto_tec.control.plotTEC1.axisInTable = ant
prepare_losoto_tec.control.plotTEC1.plotFlag = True
prepare_losoto_tec.control.plotTEC1.minmax = [-0.5,0.5]
prepare_losoto_tec.control.plotTEC1.prefix = {{ inspection_directory }}/tec
prepare_losoto_tec.control.plotTEC1.refAnt = find_refant.output.refant
prepare_losoto_tec.control.dejump.operation = TECJUMP
prepare_losoto_tec.control.dejump.soltab = sol000/tec000
prepare_losoto_tec.control.dejump.refAnt = find_refant.output.refant
prepare_losoto_tec.control.plotTEC2.operation = PLOT
prepare_losoto_tec.control.plotTEC2.soltab = sol000/tec000
prepare_losoto_tec.control.plotTEC2.axesInPlot = time
prepare_losoto_tec.control.plotTEC2.axisInTable = ant
prepare_losoto_tec.control.plotTEC2.plotFlag = True
prepare_losoto_tec.control.plotTEC2.minmax = [-0.5,0.5]
prepare_losoto_tec.control.plotTEC2.prefix = {{ inspection_directory }}/tec_nojump
prepare_losoto_tec.control.plotTEC2.refAnt = find_refant.output.refant
# do the processing on the LoSoTo file
process_losoto_gsmcal.control.kind = recipe
process_losoto_gsmcal.control.type = executable_args
process_losoto_gsmcal.control.inplace = True
process_losoto_gsmcal.control.executable = {{ losoto_directory }}/bin/losoto
process_losoto_gsmcal.control.max_per_node = {{ num_proc_per_node }}
process_losoto_gsmcal.control.mapfile_in = h5imp_gsmcal.output.mapfile
process_losoto_gsmcal.control.inputkey = h5in
process_losoto_gsmcal.argument.flags = [h5in,{{ job_directory }}/losoto.parset]
# add missing stations to the soltab if any
add_missing_stations.control.type = pythonplugin
add_missing_stations.control.inplace = True
add_missing_stations.control.executable = {{ scripts }}/add_missing_stations.py
add_missing_stations.control.error_tolerance = {{ error_tolerance }}
add_missing_stations.control.mapfile_in = h5imp_gsmcal.output.mapfile
add_missing_stations.control.inputkey = h5in
add_missing_stations.argument.flags = [h5in]
add_missing_stations.argument.solset = sol000
add_missing_stations.argument.refsolset = target
add_missing_stations.argument.refh5 = {{ solutions }}
add_missing_stations.argument.soltab_in = {{ gsmcal_step }}000
add_missing_stations.argument.soltab_out = {{ skymodel_source }}{{ gsmcal_step }}
add_missing_stations.argument.bad_antennas = check_bad_antennas.output.filter
add_missing_stations.argument.filter = {{ process_baselines_target }}
# output the final soltab into an external h5parm
h5exp_gsm.control.kind = recipe
h5exp_gsm.control.type = executable_args
h5exp_gsm.control.inplace = True
h5exp_gsm.control.executable = {{ losoto_directory }}/bin/H5parm_collector.py
h5exp_gsm.control.error_tolerance = {{ error_tolerance }}
h5exp_gsm.control.mapfile_in = h5imp_gsmcal.output.mapfile
h5exp_gsm.control.inputkey = h5in
h5exp_gsm.argument.flags = [-q,-v,-H,h5in]
h5exp_gsm.argument.insoltab = {{ skymodel_source }}{{ gsmcal_step }}
h5exp_gsm.argument.outsolset = target
h5exp_gsm.argument.outh5parm = {{ solutions }}
################################
## final step (EXPERIMENTAL) ##
################################
# apply the final solutions to the data and compress it
apply_gsmcal.control.type = dppp
apply_gsmcal.control.error_tolerance = {{ error_tolerance }}
apply_gsmcal.control.max_per_node = {{ num_proc_per_node_limit }}
apply_gsmcal.argument.msin = check_unflagged_map.output.mapfile
apply_gsmcal.argument.numthreads = {{ max_dppp_threads }}
apply_gsmcal.argument.msin.datacolumn = DATA
apply_gsmcal.argument.msout.storagemanager = "Dysco"
apply_gsmcal.argument.msout.storagemanager.databitrate = {{ compression_bitrate }}
apply_gsmcal.argument.steps = [applygsm]
apply_gsmcal.argument.applygsm.type = applycal
apply_gsmcal.argument.applygsm.correction = {{ skymodel_source }}{{ gsmcal_step }}
apply_gsmcal.argument.applygsm.parmdb = {{ solutions }}
apply_gsmcal.argument.applygsm.solset = target
# make mapfile with the filenames of the results that we want
make_results_mapfile.control.kind = plugin
make_results_mapfile.control.type = makeResultsMapfile
make_results_mapfile.control.mapfile_dir = {{ mapfile_dir }}
make_results_mapfile.control.filename = make_results_mapfile.mapfile
make_results_mapfile.control.mapfile_in = apply_gsmcal.output.mapfile
make_results_mapfile.control.target_dir = {{ results_directory }}
make_results_mapfile.control.make_target_dir = True
make_results_mapfile.control.new_suffix = .pre-cal.ms
# compress mapfiles for plotting
make_results_compress.control.kind = plugin
make_results_compress.control.type = compressMapfile
make_results_compress.control.mapfile_in = make_results_mapfile.output.mapfile
make_results_compress.control.mapfile_dir = {{ mapfile_dir }}
make_results_compress.control.filename = make_results_compress.mapfile
# move the results to where we want them
move_results.control.kind = recipe
move_results.control.type = executable_args
move_results.control.executable = /bin/mv
move_results.control.max_per_node = {{ num_proc_per_node_limit }}
move_results.control.mapfiles_in = [apply_gsmcal.output.mapfile,make_results_mapfile.output.mapfile]
move_results.control.inputkeys = [source,destination]
move_results.control.arguments = [source,destination]
# set the pointing direction
h5parm_name.control.type = pythonplugin
h5parm_name.control.executable = {{ scripts }}/h5parm_pointingname.py
h5parm_name.control.error_tolerance = {{ error_tolerance }}
h5parm_name.control.skip_infile = True
h5parm_name.control.mapfile_in = combine_data_target_map.output.mapfile
h5parm_name.argument.flags = [{{ solutions }}]
h5parm_name.argument.solsetName = target
h5parm_name.argument.pointing = get_targetname.output.targetName
# set the pointing direction
structure_function.control.type = pythonplugin
structure_function.control.executable = {{ scripts }}/getStructure_from_phases.py
structure_function.control.error_tolerance = {{ error_tolerance }}
structure_function.control.skip_infile = True
structure_function.control.mapfile_in = combine_data_target_map.output.mapfile
structure_function.argument.flags = [{{ solutions }}]
structure_function.argument.solset = target
structure_function.argument.soltab = {{ skymodel_source }}{{ gsmcal_step }}
structure_function.argument.outbasename = get_targetname.output.targetName
structure_function.argument.output_dir = {{ inspection_directory }}
# set the pointing direction
make_summary.control.type = pythonplugin
make_summary.control.executable = {{ scripts }}/make_summary.py
make_summary.control.error_tolerance = {{ error_tolerance }}
make_summary.control.mapfile_in = make_results_compress.output.mapfile
make_summary.control.inputkey = infiles
make_summary.argument.observation_directory = {{ working_directory }}
make_summary.argument.logfile = {{ log_file }}
make_summary.argument.h5parmdb = {{ solutions }}
make_summary.argument.inspection_directory = {{ inspection_directory }}
make_summary.argument.MSfile = infiles
########################################################
## ##
## END PIPELINE ##
## ##
########################################################