forked from lofar-astron/prefactor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConcatenate.parset
140 lines (118 loc) · 9.15 KB
/
Concatenate.parset
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
##########################################################################
# Concatenate Pipeline #
# #
# Concat part of the basic Pre-Facet calibration pipeline: #
# - intended for use to concat single-subband target data produced by #
# production runs and retrieved through the LTA #
# - expects shared filesystem, that all nodes can reach all files! #
# (E.g. a single workstation or compute cluster with shared filesystem #
# doesn't work on multiple nodes on CEP3.) #
##########################################################################
##########################################
### parameters you will need to adjust. ##
##########################################
## information about the input
! target_input_path = /data/scratch/drabent ## specify the directory where your target data is stored
! target_input_pattern = L*.MS ## regular expression pattern of all your target files
## location of the software
! prefactor_directory = /home/drabent/prefactor/ ## path to your prefactor copy
##########################################
### parameters you may need to adjust ##
##########################################
## averaging for the target data
! avg_timeresolution_concat= 8. ## average to 8 sec/timeslot
! avg_freqresolution_concat= 97.64kHz ## average to 97.64 kHz/ch (= 2 ch/SB)
## concatenating the target data
! num_SBs_per_group = 10 ## make concatenated measurement-sets with that many subbands
! reference_stationSB = None ## station-subband number to use as reference for grouping, "None" -> use lowest frequency input data as reference
##########################################
### parameters you may want to adjust ##
##########################################
## main directories
! lofar_directory = $LOFARROOT ## base directory of your LOFAR installation
! job_directory = input.output.job_directory ## directory of the prefactor outputs
## script and plugin directories
! scripts = {{ prefactor_directory }}/scripts
pipeline.pluginpath = {{ prefactor_directory }}/plugins
## result directories
! results_directory = {{ job_directory }}/results ## location of the results
##########################################
### parameters for pipeline performance ##
##########################################
! num_proc_per_node = input.output.max_per_node ## number of processes to use per step per node (usually max_per_node from pipeline.cfg)
! error_tolerance = False ## set this to True if you want the pipeline run to continue if single bands fail
########################################################
## ##
## BEGIN PIPELINE: DO NOT UPDATE BELOW THIS LINE! ##
## ##
########################################################
# which steps to run
pipeline.steps = [createmap_target, combine_target_map, sortmap_target, do_sortmap_maps, dpppconcat, make_results_mapfile, move_results]
# generate a mapfile of all the target data
createmap_target.control.kind = plugin
createmap_target.control.type = createMapfile
createmap_target.control.method = mapfile_from_folder
createmap_target.control.mapfile_dir = input.output.mapfile_dir
createmap_target.control.filename = createmap_target.mapfile
createmap_target.control.folder = {{ target_input_path }}
createmap_target.control.pattern = {{ target_input_pattern }}
# combine all entries into one mapfile, for the sortmap script
combine_target_map.control.kind = plugin
combine_target_map.control.type = createMapfile
combine_target_map.control.method = mapfile_all_to_one
combine_target_map.control.mapfile_dir = input.output.mapfile_dir
combine_target_map.control.filename = combine_target_map.mapfile
combine_target_map.control.mapfile_in = createmap_target.output.mapfile
# sort the target data by frequency into groups so that NDPPP can concatenate them
sortmap_target.control.type = pythonplugin
sortmap_target.control.executable = {{ scripts }}/sort_times_into_freqGroups.py
sortmap_target.argument.flags = [combine_target_map.output.mapfile]
sortmap_target.argument.filename = sortmap_target
sortmap_target.argument.mapfile_dir = input.output.mapfile_dir
sortmap_target.argument.target_path = input.output.working_directory/input.output.job_name
sortmap_target.argument.numSB = {{ num_SBs_per_group }}
sortmap_target.argument.NDPPPfill = True
sortmap_target.argument.stepname = dpppconcat
sortmap_target.argument.firstSB = {{ reference_stationSB }}
sortmap_target.argument.truncateLastSBs = False
# convert the output of sortmap_target into usable mapfiles
do_sortmap_maps.control.kind = plugin
do_sortmap_maps.control.type = mapfilenamesFromMapfiles
do_sortmap_maps.control.mapfile_groupmap = sortmap_target.output.groupmapfile.mapfile
do_sortmap_maps.control.mapfile_datamap = sortmap_target.output.mapfile.mapfile
# run NDPPP to concatenate the target
dpppconcat.control.type = dppp
dpppconcat.control.max_per_node = {{ num_proc_per_node }}
dpppconcat.control.error_tolerance = {{ error_tolerance }}
dpppconcat.control.mapfile_out = do_sortmap_maps.output.groupmap # tell the pipeline to give the output useful names
dpppconcat.control.mapfiles_in = [do_sortmap_maps.output.datamap]
dpppconcat.control.inputkey = msin
dpppconcat.argument.msin.datacolumn = DATA
dpppconcat.argument.msin.missingdata = True #\ these two lines will make NDPPP generate dummy data when
dpppconcat.argument.msin.orderms = False #/ concatenating data
dpppconcat.argument.msout.datacolumn = DATA
dpppconcat.argument.msout.writefullresflag = False
dpppconcat.argument.msout.overwrite = True
dpppconcat.argument.msout.storagemanager = "Dysco"
dpppconcat.argument.msout.storagemanager.databitrate = 0
dpppconcat.argument.steps = [avg]
dpppconcat.argument.avg.type = average
dpppconcat.argument.avg.timeresolution = {{ avg_timeresolution_concat }}
dpppconcat.argument.avg.freqresolution = {{ avg_freqresolution_concat }}
# make mapfile with the filenames of the results that we want
make_results_mapfile.control.kind = plugin
make_results_mapfile.control.type = makeResultsMapfile
make_results_mapfile.control.mapfile_dir = input.output.mapfile_dir
make_results_mapfile.control.filename = make_results_mapfile.mapfile
make_results_mapfile.control.mapfile_in = dpppconcat.output.mapfile
make_results_mapfile.control.target_dir = {{ results_directory }}
make_results_mapfile.control.make_target_dir = True
make_results_mapfile.control.new_suffix = .ms
# move the results to where we want them
move_results.control.kind = recipe
move_results.control.type = executable_args
move_results.control.executable = /bin/mv
move_results.control.max_per_node = {{ num_proc_per_node }}
move_results.control.mapfiles_in = [dpppconcat.output.mapfile,make_results_mapfile.output.mapfile]
move_results.control.inputkeys = [source,destination]
move_results.control.arguments = [source,destination]