-
Notifications
You must be signed in to change notification settings - Fork 0
/
paradox.twb
600 lines (599 loc) · 39.3 KB
/
paradox.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20223.24.0202.0944 -->
<workbook original-version='18.1' source-build='2022.3.14 (20223.24.0202.0944)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='paradox' inline='true' name='federated.1ji69y604ub0dq14rtq8p0erez4t' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='paradox' name='textscan.0rct5xw09k6w691extc3u1ipjhdy'>
<connection class='textscan' directory='/Users/colingeraghty/Documents/data-visualization-capstone' filename='paradox.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.0rct5xw09k6w691extc3u1ipjhdy' name='paradox.csv' table='[paradox#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Year' ordinal='0' />
<column datatype='integer' name='Positive Impact (Life Expectancy)' ordinal='1' />
<column datatype='integer' name='Ethical Concern (Bias Index)' ordinal='2' />
<column datatype='string' name='F4' ordinal='3' />
<column datatype='string' name='F5' ordinal='4' />
<column datatype='string' name='F6' ordinal='5' />
<column datatype='string' name='F7' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.0rct5xw09k6w691extc3u1ipjhdy' name='paradox.csv' table='[paradox#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Year' ordinal='0' />
<column datatype='integer' name='Positive Impact (Life Expectancy)' ordinal='1' />
<column datatype='integer' name='Ethical Concern (Bias Index)' ordinal='2' />
<column datatype='string' name='F4' ordinal='3' />
<column datatype='string' name='F5' ordinal='4' />
<column datatype='string' name='F6' ordinal='5' />
<column datatype='string' name='F7' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[paradox.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Year</remote-name>
<remote-type>129</remote-type>
<local-name>[Year]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>Year</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Positive Impact (Life Expectancy)</remote-name>
<remote-type>20</remote-type>
<local-name>[Positive Impact (Life Expectancy)]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>Positive Impact (Life Expectancy)</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Ethical Concern (Bias Index)</remote-name>
<remote-type>20</remote-type>
<local-name>[Ethical Concern (Bias Index)]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>Ethical Concern (Bias Index)</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>F4</remote-name>
<remote-type>129</remote-type>
<local-name>[F4]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>F4</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>F5</remote-name>
<remote-type>129</remote-type>
<local-name>[F5]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>F5</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>F6</remote-name>
<remote-type>129</remote-type>
<local-name>[F6]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>F6</remote-alias>
<ordinal>5</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>F7</remote-name>
<remote-type>129</remote-type>
<local-name>[F7]</local-name>
<parent-name>[paradox.csv]</parent-name>
<remote-alias>F7</remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<_.fcp.ObjectModelTableType.true...column caption='paradox.csv' datatype='table' name='[__tableau_internal_object_id__].[paradox.csv_39E693739F874BCCB8AA8CBF2502FF58]' role='measure' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='paradox.csv' id='paradox.csv_39E693739F874BCCB8AA8CBF2502FF58'>
<properties context=''>
<relation connection='textscan.0rct5xw09k6w691extc3u1ipjhdy' name='paradox.csv' table='[paradox#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Year' ordinal='0' />
<column datatype='integer' name='Positive Impact (Life Expectancy)' ordinal='1' />
<column datatype='integer' name='Ethical Concern (Bias Index)' ordinal='2' />
<column datatype='string' name='F4' ordinal='3' />
<column datatype='string' name='F5' ordinal='4' />
<column datatype='string' name='F6' ordinal='5' />
<column datatype='string' name='F7' ordinal='6' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='paradox' name='federated.1ji69y604ub0dq14rtq8p0erez4t' />
</datasources>
<datasource-dependencies datasource='federated.1ji69y604ub0dq14rtq8p0erez4t'>
<column datatype='integer' name='[Ethical Concern (Bias Index)]' role='measure' type='quantitative' />
<column datatype='integer' name='[Positive Impact (Life Expectancy)]' role='measure' type='quantitative' />
<column datatype='string' name='[Year]' role='dimension' type='nominal' />
<column-instance column='[Year]' derivation='None' name='[none:Year:nk]' pivot='key' type='nominal' />
<column-instance column='[Ethical Concern (Bias Index)]' derivation='Sum' name='[sum:Ethical Concern (Bias Index):qk]' pivot='key' type='quantitative' />
<column-instance column='[Positive Impact (Life Expectancy)]' derivation='Sum' name='[sum:Positive Impact (Life Expectancy):qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.1ji69y604ub0dq14rtq8p0erez4t].[sum:Ethical Concern (Bias Index):qk]' field-type='quantitative' fold='true' scope='rows' synchronized='true' type='space' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1ji69y604ub0dq14rtq8p0erez4t].[:Measure Names]' />
</encodings>
</pane>
<pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1ji69y604ub0dq14rtq8p0erez4t].[sum:Positive Impact (Life Expectancy):qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1ji69y604ub0dq14rtq8p0erez4t].[:Measure Names]' />
</encodings>
</pane>
<pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1ji69y604ub0dq14rtq8p0erez4t].[sum:Ethical Concern (Bias Index):qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<encodings>
<color column='[federated.1ji69y604ub0dq14rtq8p0erez4t].[:Measure Names]' />
</encodings>
</pane>
</panes>
<rows>([federated.1ji69y604ub0dq14rtq8p0erez4t].[sum:Positive Impact (Life Expectancy):qk] + [federated.1ji69y604ub0dq14rtq8p0erez4t].[sum:Ethical Concern (Bias Index):qk])</rows>
<cols>[federated.1ji69y604ub0dq14rtq8p0erez4t].[none:Year:nk]</cols>
</table>
<simple-id uuid='{0501791C-9AF9-450A-A59D-77089BA1B633}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='1' param='[federated.1ji69y604ub0dq14rtq8p0erez4t].[:Measure Names]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1ji69y604ub0dq14rtq8p0erez4t].[none:Year:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{BAA45BC9-F179-4A8B-9927-326ADD14021B}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO3deXQU1502/udWVW9qSa19AYQ2zL4ZY8CMjWWWGEJs7BC84NjJmffEM79J
PFnG2eZkmXc8yzszSSbHnjdvZkscD4mXEBwTMMYYzGazmUWAzCKEhCSEdiS11HvV/f0hqwMG
2+qm1N2ins85iaHorvr2Ves+VbeWK6SUEkREZDlKsgsgIqLkYAAQEVkUA4CIyKIYAEREFjWq
AmBgYAA9PT3JLoOIaES0tbUhEokkbHujKgB0XUc4HE52GUREIyIUCsEwjIRtb1QFABERmYcB
QERkUQwAsiy/34/nnnsOPp8PALB582YcP348yVURJQ4DgCzL6XQiFArhtddeQ2dnJzZs2IDS
0lKEw2EcP34cdXV1kFJC13WcP38e1dXV8Hq9kFKisbERfr8fzc3Nyf4YRHHTkl0AUbIIIfDE
E0/gG9/4BhoaGnDfffchMzMTP/7xjxGJRHDx4kU88sgjyM/Px0svvQSHw4GGhgY8++yz+Na3
voWysjKMGTMGf/mXf5nsj0IUFx4BkKXl5eVh6dKlOHnyJJYvXw6fz4dDhw5hxowZmDJlCnbu
3ImSkhJMmzYNTqcTtbW1AAaHj+677z489dRTSf4ERPHjEQBZmhAC06dPR11dHZxOJ3w+HwzD
gGEYmDx5MnJzc7F+/Xr09/fj0Ucfxe7duwEAaWlpWLhwIYQQSf4ERPFjABAB0Y7c5XJhxYoV
2LhxI3JycjBz5kxkZ2dj27ZtaGxsRF9fX/T17PxptBOj6XHQfX19CAaDyM/PT3YpdBPRdR26
rsNutwMADMOA1+uFYRjIzMyEEAJtbW3IysqCEAIOhwPBYBBOpzPJldPNpqmpCYWFhdHv4kjj
EQBZnqqqUFU1+ndFUeDxeK56TXFx8VV/Z+dPNwOeBCYisqjrDgFdvHgRgUAgGfV8rEgkgszM
TDgcjmSXQkRkusuXL0NRlIQ9D2jUnQNIS0uDpnHkiohuPufPn0dFRUXCtschICIii2IAEBFZ
FAOAiMiiGABERBbFACAisigGABGRRTEAiIgsigFARGRRDAAiIotiABARWRQDgIjIohgAREQW
ldQA6OrqQnt7O4aeR2cYBlpbW9Hf35/MsoiIUs7AwABaWloQiUSiy3p6etDZ2Yl4n+mZtMdq
btu2DcFgEHa7HT6fD6tWrcIbb7wBRVHQ1taGZcuWYcyYMckqj4goZdTX12P37t0oLy/HG2+8
gbVr16K+vh7Hjh2Dy+VCQUEBFi5cGPN6kxYAra2tWLt2LYQQWLduHYLBILxeLx566CF0d3dj
3759HxkAo+gJ1kREN6yxsRGLFi1CWVkZ+vv70dfXh+rqajz44IOw2+148cUXMX/+/KtmthuO
pAXAwoUL8a//+q+w2WxYtGgRgsEg0tPTIYRAeno6gsEggMFJYHRdBwCEw2EEAoGYPyQR0ccx
zr0J49y2xG7UlQPt7u9etUhKiVAoFN3J1TQNqqpi3rx5+NnPfgaPx4OMjAzk5eUB+OPUpG63
G8FgEGlpaTGVkLQA2L9/P/78z/8cNpsNL7/8Mm655Zbo2Jau69FOXtO06AQwQxNxc0IYIjJT
sL8ZoYadCd2myBwDl8t19TIhrjsh/P79+3H//fejsrISr7/+Otra2iCljAbFlX1mLJLWk/r9
fiiKAiklwuEw7HY7ent7MTAwgNraWuTn5yerNCKilNLf3w+73R7t6P1+PzweDxoaGpCZmRnt
Q2OVtABYsWIFtmzZAgCoqqqC3W7HPffcg82bNyMjIwNLly5NVmlERCllyZIl2LFjBw4fPozC
wkKUl5ejsLAQb731FsLhMJYtWwYhRMzr5ZzARGR5wX3/F6H9/y+h2xSZY5D+v968ahnnBCYi
ooRgABARWRQDgIjIojiYTkQJYXgvQQYT+5gXYXdDyeQTBT4KA4CIEiK4858RSfDNVmr5IqQ9
8LOEbnM04RAQEZFFMQCIiCyKAUBEZFEMACIii2IAEBFZFAOAiMiiGABERBbFACAisigGABGR
RTEAiIgsigFARGRRfBYQ0U0kfHIDwqc3JXSbwl0A14r/k9BtkjkYAEQ3EaO3GXrTwYRuU3hK
Ero9Mg+HgIiILIoBQERkUQwAIiKLYgAQEVkUA4CIyKIYAEREFsUAICKyKAYAEZFFMQCIiCyK
AUBEZFF8FARRjPRLx2EMdCR0m4o7H2rxzIRuk25+DACiGIUO/RcidTsSuk2t4h64Vj2X0G3S
zY9DQEREFsUAICKyKAYAEZFFMQCIiCwqaSeBL168iEgkAgAQQqCkpAThcBh1dXXweDwoLi6G
ECJZ5RERpYzu7m54vd7o3wsLC2G329HU1IRQKISKigqoqhrzepN2BNDZ2YnW1la0tLRg/fr1
kFJi06ZN6Ovrw969e3H+/PlklUZElFK8Xi9aW1vR2tqKjRs3oqenB8eOHcOJEydw8eJFvP32
23GtN2lHALNmzQIAnDx5EgsWLEAwGISu65g/fz4mTZqE3bt3o7Ky8pr3GYYBwzASXS5RlJRJ
2CbksL73MhnFAcOrDUlpuFHVbh9VR2lpKUpLS+H1elFfX4/CwkK8/fbbWL16NWw2G1566SVE
IhFoWmxdelLvAzAMA++99x4ee+wxDAwMwO12AwBcLhfC4TAAIBKJQNd1AEA4HIamaUn7YVHi
hDZ/HehvTeg2lSkPQJv58Ce+zpCJ3wExDBn9nfj41yW+NimHV5s0Ev97a0hjeO32QR+TSB/V
bqFQKNrHaZoWHdqRUmLfvn1YsGABpJQQQsButwMY7DNDodDoCoCzZ8+ivLwcNpsNNpsNwWAQ
wGBHP/ShNU2LfqhgMAi73R7zh6TRJ9zbANnTmNBtaqHLcDgcn/g6Q1EQSUA9V1IVZVi1BVUV
ie7KhBDDbrdEx5My3HbTtJRotys79Q/z+/1ob2/HsmXLAAwGgmEYEEJEd45jlbRzAFJK7N+/
H3fccQcAwOl0YmBgAK2trThy5AhKSkqSVRoRUUq5cu9fCAEhBAoKCnD8+HE0NDRAURTYbLaY
15u0AAiHw5g/f3407VRVxYoVK3D06FHYbDbMnj07WaUREaWc/Pz8q86L3nXXXejp6UFtbS3u
vffeuK6aTNpYit1ux5QpU65alpubixUrViSpIiKi1CSEwMyZVz8M0G63o6qq6obWyxvBiIgs
igFARGRRDAAiIotiABARWRQDgIjIohgAREQWxQAgIrIoBgARkUUxAIiILIoBQERkUQwAIiKL
YgAQEVkUA4CIyKIYAEREFsUAICKyKAYAEZFFMQCIiCyKAUBEZFEMACIii2IAEBFZFAOAiMii
GABERBbFACAisigGABGRRTEAiIgsigFARGRRDAAiIotiABARWRQDgIjIohgAREQWxQAgIrIo
BgARkUUxAIiILIoBQERkUUkNgGAwiLa2NoRCIQCAlBJdXV3w+XzJLIuIKOXouo6Ojg709/dH
l3m9XvT09EBKGdc6NbOKi1VnZydef/11lJSUwG63Y+HChdi+fTv8fj8uX76Me++9F4WFhckq
j4goZei6jldeeQUFBQUIBoNYtmwZLly4gIMHD8LhcGD8+PG4/fbbY15v0gJg165dePDBB5GR
kQEACAQC6OjowCOPPIKOjg4cOnQIK1euTFZ5REQp4/3338fEiRNx2223RZcdPnwYDzzwABwO
B1566SXMmTMHqqrGtN6kBUB7ezvefPNNhEIhVFZWYtKkScjMzIQQAh6PB4FAAAAQiUSg6zoA
IBwOIxAIxPwhafSJ95D2RkTCERh+/ye+buj7mEi6ocM/jNqMSCQB1VxNSjms2nQj8e1m6Mbw
2i2cGu0mpUQoFIp+/zVNg6qqaG5uRnd3N+rq6uB0OrFixQpIKZGWlgYAcLvdCAaD0b8PV9IC
IDMzE/fffz8URcGvf/1rTJgwIfqLZRgGFGXw9ISqqtEO32azwel0QtOSVjYlSL8QSHQEaDYN
DpfrE1/nV1UkurtQFRWuYdQW1DSEElDPlYQQw6rNryS+3RRVGV672VKj3YQQsNls17xWVVUs
XrwYhYWFeOedd3Du3DlIKSGlhBDiqj4zFkk7CZyeno729nYoigJFUZCWlobLly8jHA6joaEB
OTk5AAYbZOh/REQ3uyv7vKF+r6KiAidPnoSiKBBCQNM0uN1uXLp0CV6vF36/Hw6HI+ZtJW1X
+t5778XmzZsRCoUwc+ZMOBwOLFq0CC+//DLcbjc+/elPJ6s0IqKUUllZiaamJrz00kvIzs5G
ZWUlioqK8Prrr0PXdSxdujSuneSkBYDT6cTq1auvWlZeXo7y8vIkVURElJqEELjnnnuuWpaR
kYGHH374htbLG8GIiCyKAUBEZFEMACIii2IAEBFZFAOAiMiiGABERBbFACAisigGABGRRTEA
iIgsKu47gXVdR3d3N6SUyM7Ovu4DjIiIKHXFHABerxfr169HTU0NMjIyIIRAX18fKioq8PDD
DyM3N3ck6iQiIpPFFAB+vx8/+9nPsGTJEqxduxZ2ux3A4DP7z549i//6r//Cn/7pnyI/P39E
iiUiIvPEFAB2ux1f//rXYbfbsW/fPkyePDk6/DNt2jRMmjRppOokIiKTxRQAV07O4vf78c//
/M+w2+1YunQp5s+fHz0iICKi1Bf3SeDFixfjrrvuwpYtW/DMM8+goqICq1atwooVK8ysj4iI
Rkjcl4H+5je/wZe+9CW0tbVh3bp1+Ld/+zfs2bMnKXO5EhFR7OI+ApgyZQrWrFkDm82GYDAI
IQT+9m//llM3EhGNEnEfAbz44ovRzn7nzp3YsWMHJ2snIhpF4g6AcDiM/v5+6LqO3t5eGIZh
Zl1ERDTC4t5l/+IXv4jvfve7UFUVxcXF+OY3v2lmXURENIKklDd2DuDv//7vEQqF4HQ6zayL
iIhGUF9fH15++eX4A+CZZ57BwMBA9L6Axx9/HDNnzjStQCIiMl8kEsGvf/1r3HHHHfEHgM/n
w49+9CMoCh8oSkQ0WqiqiieffBKqqsYfAB6PB+vWrUNaWhoAYMGCBRg3bpxpRRIRkfmEENGR
m7gDYPny5ejp6Yn+nZeAEhGNLnGP31RUVCAUCqG/vz96OSgREY0ece+2/+QnP0FZWRl6enow
MDCA6dOnm1kXERGNsLiPAIQQWLlyJUpLS/GZz3wGJ0+eNLMuIiIaYXEHwKRJk5CdnY2amhr8
4he/QFlZmYllERHRSIt7COiee+6By+XC9773PXR1dUWvBiIiotEh7iOA//zP/4SUEna7HXV1
ddi+fbuZdRER0QiL+QhASomnn34aJ0+exFe+8hUIIRAIBPDd7353JOojIiKT7d+/H+vWrYtv
COif/umf8Otf/xqPPvooFEWBEIJ3BBMRjRLz5s3D3LlzYx8CEkJA0zT09/dDURRomoa9e/ei
urp6JOokIiKTDfXdce+2nz9/HkIISCkhpUR9fX1M7w+FQmhvb0d7e3v0jmJd19HQ0IDu7m5O
LUlE9AEpJTo6OtDe3o6Ojg4YhgEpJdra2tDc3Bz3fCxxXwW0YMECfO9738PYsWPx/vvv45ln
nonp/dXV1WhqakJOTg6ysrIwa9YsbNq0CR6PB83NzbjrrrtQWloab3lERDcNv9+PV155BdOm
TYOqqpg3bx7OnDmD2tpapKWl4dy5c6iqqop5vXEHwJo1a3Drrbeis7MTTzzxBDIyMmJ6f1tb
GxYvXgyPxwMhBPx+P4LBIKqqqnD58mXs2bPnugEwdMRBZLbhfreS8e2TQMrWBgy3tuRUN6za
ktSnfHi7H1VHe3s7Zs+ejTvuuAOKokBKiffffx8PPvgg7HY7XnzxRUQikZifyRZ3AOzZswcb
N25ESUkJ2traMHnyZEyaNGnY73c6nXjrrbcQDAYxZ84cFBcXIz09HQCQlpaGcDgMYPDZ1UPP
GQqHw1BVlc8dsoBk/ELquo5gMPiJr0vG9KeGYQyrNl2PJKCaq0kpb4J2S3yf8lHtFgqFot9/
TdOifV59fT0aGxtRUFAQ3dt3OBwABvvMUCiUuADYtGkT/u7v/g4///nPUVRUhFOnTsUUAEuX
LgUw2Kn/6le/wqOPPopQKARgsNOPPq5U06IfKhgMwuFw8MmjFhARIuH7i5qmwTGM2e38ioJE
d7Oqogxr5r2gqiGUgHquJIQYVm1+RU14uynDbTctNdpNCAG73X7NaysrK1FZWQkpJTZt2oTW
1lZIKWEYBoQQV/WZsYj7JLDL5cKJEyfQ29uLbdu2YcyYMTG9/9ixY+jt7UVfXx9UVYXT6YTX
60V3dzdOnjwZ8/qIiG5WtbW1aGtrw8DAAHw+HxwOB3Jzc3HmzBm0tLREb8qNVdy70l/96lex
YcMGaJqG2267DXPnzo3p/ZmZmdizZw+klFi5ciVUVcWnPvUp7NmzBx6PB3feeWe8pRERjQgp
gYC0o0XPxcVIHvqkGyoM5Ch9KNHaka/2QoMOIczdbl5eHg4ePIhgMIjp06cjLy8PixYtwq5d
uxAOh7Fs2TKIGDYaCoVQU1MTfwCEQiEYhgGbzRY9kRuLiooKVFRUXLWssLAQq1atirckIqIR
ISUwIJ3YE5iJ3YGZuKTnIYI/DrkISDgQQqWtBcuc72GWo87UIMjOzsa999571TKn03nNsuEK
hULYtWtX/AHwD//wD1i1ahUKCwvxwgsvwO12Y8aMGfGujogoJUkJnI8U4/n+5WiIFENeZ+Rc
QiAAJ2rC5TgTHo95oVN41P0WspQB048GzJCeno6vfe1r8Z8DyM7Oxt13341p06bh/vvvR2Nj
o5n1ERElnZTAmXAJ/rX3IdRHxly387+aQAQa3g1Ox3N9n0WP4UYqX7Ue9xFAJBLB008/DU3T
0N3dDZvNhqNHj+J73/uemfURESVNp+HBv3vvR49MBxDLrrzA2ch4PN+/Al/JfBU2pOal63EH
wNNPPx0d9x+6npVzAhDRzcKQAusH7kaHkYXYOv8hAkdCE7EvMBV3OU+k5FBQ3ENAzz//PM6e
PQvDMPDcc8+hpaUl5ruBiYhSVVMkH+8FJyO+zn+QhILX/XcgjNiv0U+EuAPgySefxAsvvIAn
nngCy5Ytw+zZs82si4goaaQEDgUnIwjbDa+rRc9DfbjYhKrMF3cA/PKXv0R5eTm+853vYP36
9bh48aKZdRGRhUkAhgTCUkFIqghLFboUCTuhakDgbGSceesKl5iyLrPFfQ7gvvvuQ0nJ4Iea
Nm0aBgYGTCuKiKxJSqDHSMfB4GScCFWgRc+DTzqhIYI8tRcTbc2Y73gfZVorVDFyaWBAoFOP
d+z/Wu1GtinrMVvMAXD27FmcO3cOn/70p/H888/ji1/8Ik6ePAmn04mxY8eORI1EdJOTEghK
Ddv8t2OLfz76pPuDf/ljB9wTycC5yDi86b8ds+21eNi9A0Xq5RE6uSoQluY9cyxk4rrMFHNV
/f39aGtrAwCcOHECANDV1QW32/1xbyMiui4pgV7Djf/yrsSx8C346L3uweURaHgvNBl1kbF4
Mv0PmG6vNz0EBCTSlAAu65mmrM8tAqasx2xxnQPo7+9Ha2srgsEgWltb0dfXZ3ZdRGQBEoBf
OvCf3s98Quf/YQKXjQz8P+8qnA2PM/3cgAIDxWoXzJphYZzabsp6zBZzAGRnZ6OlpQU//elP
kZ6ejp/+9KeoqalBYWHhSNRHRDcxKYHX/fNRHZ6A2MfbBfqkGy/03wuvdJlalxDADPt5U9Zl
QwRT7Kn1pIQLFy7gd7/7XexDQOXl5fjHf/zHkaiJiCxEAmjVc/GWfy7iP9kqcEEvwm7/LKxM
22/aUJAAMMd+Fq+Ku9AjM26gPolptnoUqpfNKcwkhYWFuOuuu+K/DJSI6IZI4N3ANPTf8N67
wJ7gTPhl7M/D/zhZygCWpx3EjUxN5EAID7j3QhnBK5bi4XA40NzcHP9loAMDA9i5cyc8Hg8y
MjJQUVHBO4GJaNjCUHEiXAEzLrVs03PQoudhgtJy44V9QAhgqfM9nA6Nj/H8xCAFOlal7UWF
Zl5NZvH5fHj++efjPwL48Y9/DCEEDh48iK6uLhw8eNDM+ohoBEkJ+A07zoeLsMc/A6/75uMN
3+04GJiES5FshKUy4jdd+QwnOvQsU9YVgYrmSJ4p67qSQ4ngSxmbMN12HsM/ISyhIYKVrn1Y
kXYgJZ8B5PP5UFxcHP8RgN/vx7Jly1BbW4tQKBSdxJ2IUtcfJzaZgT2BWWjR86BDjXZtAhJO
EcIErRnLXO9hhv08NBgj0olFoMIvHaatr98w/1J0ASBT9eGpzA34g28hdgTmwCed+OijAYkC
5TIeTNuDO5w1UIVh0q1k5pJSora2Nv4AWLRoEX7wgx/gwoULaGhowPe//30z6yMikw1NbPKr
/uWo/5iJTfzSiRPhSpwKl2GBowaPurcjU/GNSAgoMMxblzBvXVcSANKUIB5y78RCx0nsDc7A
yVAFuo1MBKQdCiTSRABFahduc5zBAscpZCn9KbnnP8Tj8eCLX/xi7AHw3nvvYfr06cjIyMB3
v/td+Hw+5OTkxDUhMRElhpTA6XAJ/m/fZ4f5bPvBiU32BmeiU/fgK5kb4DE5BBwihHTFj6Bx
40cBAhI5ysjdjyQACCFRYuvAo9oOhNJ2wyvTEJQ2CEi4RBAZih/qCB0tmSkcDmPr1q2oqqqK
PQAOHToEr9eL1157DQUFBRBCwOv1oqioiCeBia5gSKDXSEd9pAgteh4GDCdsQke+chnltlYU
qd0J6zA6bmBik9ORUrzQvxz/X+bvYTNxjz1NBDFO7UCXcePnARwIo0Qb+ZutxAf/5xARODA6
b4DVNA0VFRX4yU9+EnsAPPTQQ3jppZfQ2NiIDRs2RCeFWbVqFSZPnmx6sUSjjZRAq56NN/zz
cTg4CX3SjStHggUGLw+cYGvGctdBzLCfH9kHm0mB9QNV6LyBiU0OhSbjtuAULHTUmBZYCiTm
Os7geLhyGFMtfhyJCttFFKg95hR2kxNCYPr06Zg0aVLsAZCbm4svf/nLqKqqwtSpU6MBQESA
LgX2BabhZd9iXDaufwORBBCAAyfDFTgTHo9Fzmo85H4baUpwRE4YNkYK8F5w0nVrGS4JBZt9
d2Ce47Rp0xsKAdxmP4Mt6ny06Hlx16dBxzLne9BSdNrFVGWz2WIPgP3798Pv96OmpgbPP/98
dPnjjz+OmTNnmlkf0ahiSGC7fw5eGliCEGwYzjh7GDbsCMxBj5GOJzP+ALcSNLWmoYlNQiZM
bNKs56M+XISJdvPm/shQ/Fidtgs/965COK4aJW53nMJsR13Kj72nopgDYMaMGZBSYu7cudD1
PyYu5wMmK5MSOBkqxyu+xcPs/K94LxQcCU3E7wbuxmPp20wdDjJzMhIDCmrD40wNACGAuY4z
uF9/B7/33QU9pqkTJW7RmrDW/Rb3/uMU88Cb2+1Geno6MjIykJWVhaysLBw4cACHDh0aifqI
RgWfdOCVgcUISDviGcqQULAzMBunw+NNvQHLgIIOwxNXTdczEhObKELivrR38Yh7O1wigOHc
cCVgYI79LJ7K3IAsZYB7/3EyZZaCgYEBqGpqTnpMNNKkBI6GbsEFvRA30tGGYMNW/+2YbGu8
4tasG5fqE5sIAKowcK/rICbZGvGa704cD1UiDA1Xt6eEgESx2oWVrn24w1kDG3R2/jcg5p9m
bW0tfvSjH0FesZvS1dWFv/iLvzC1MKLRwoDAgeAUyBveyxY4Ey5Fl56JAq3XlNoGJzYJolc3
5xLtkZrYZPA6e6Bca8VXM3+Hdj0L74dL0RwpQL90woYICtQeTLQ1odLWwo7fJDEFgGEYKC8v
x7PPPnvtijQNhjF4jbCi8CGjlBhD+yERKAhLDRIKBAzYhB4dFx7pjsInHWiKFMCMYRafdKBJ
LzAtAIYmNrmk58KM+sZqHTde1McQYjC0irTLKNJS6xHKN6OYAsDv9+PnP/85HnzwQZSWlkaH
fQzDQGtrK37729/ikUce4eQwNOKkHNzzvhApxL7gNJwOj0ennoWgtMEhwshTejHJ1og7nDUo
01qhQI5YEASkA17DnIsgJAQ6dY8p6wIGO9TptvM4Epp4w+uyI4zJttSa2IRuTEwB4Ha78YUv
fAH/8z//g9bWVhQWFkJRFLS1tSEzMxOPP/44O38acVICXUYG1g9U4UBw6jVjxSFph1d3o14v
xvbAbZjnOIU17p3IVfpGJASkFDBMnFojEtOVMB9PYPAqm9/77vpgovX4JzaZbq9HIW+2uqnE
fA4gLy8PX//61xEIBHDp0iUYhoGioiJOCk8JISXQECnCz7wPDGNYY/A6+3eCM1AXHoO/yPw9
yrVW00NAExE4RBhheePX2gPmj7NnK/2413UQv/XdE/c6HAhhVVrqTWxCNybu3Ran04ny8nJU
Vlay86eEkADa9Sw81/fZGMe0BVqNXDzXtxqteraJ19cMcosAchVzxuxV6BijdpqyriFCAPe6
DmGGrQ7xTHKuQMcDaXtRoV0ytS5KvrgDoLGxMXolUF9fH3p6eGhIIysiVbzQf+8H16LHPoF4
h5GFF/rvRUSae8myXUQwxXYB8XSuH1ag9GCMZm4AAIBDCePJjD9gqq0e8UxssjztgFm3ElAK
iTsA/uM//gNSSkgpceTIEWzfvt3MuoiuIgFUhypucApBgZPhChwLVpp7FCCAhc6TcOJGH+Mg
scBZA7cw93EQwGCLZSkD+MvMDfi0a/8wbrganNjkf6Vvwmr3bmgpOrEJ3ZiYzwFIKfH9738f
R44cwbe+9S0IITAwMIC/+qu/Gon6iAAMnmjd6b/1hk+2Sgi8HZiD2xy1ECaNZwsApVob7nSe
wFuBuYgvoCSK1U7c4zw6YlcrCTE4XPWIewcWOk5gb2AmasLl6DYyEJT2wXsGRABFajfmOs5g
geP9lJ/YhG5MXLf1ffvb38bvfvc7PPjggxBCwOFwwOGIfVIHwzCwceNGzJkzB/WU5okAAB7C
SURBVOPHj8eFCxdw4MABpKenY8mSJXGtk25O/YYTtZFxuPFxCIFzkbHwGi54VJ8ZpQEYfJzB
A2l70RApwrmY6xzseB9zv4Vspd+0mq5naGKTUls7SrW3EJQavNL9oYlNfCM2DSTFT0qJQ4cO
IRKJYOHChfB6vdi+fTsikQgWLVqEgoKCmNcZ8+6UEAIZGRnwer1wu93IzMzEvn37cOTIkZg3
fujQIfh8PvT09CASiWDXrl34zGc+g3HjxvHZQnSVdiP7g+fs3LigtJv+TBsBwKMM4M8yNmKC
1oxYxtkzhA9fTN+CmfbEPdFy6M5bpxJBvtqLcVonxmpdyFH7YRPs/FNRZ2cnzp8/j7a2NgDA
7t27ceutt2Lx4sXYvn37VU9nGK64H+xRX18f/bOUEo2NjZgzZ86w39/b24sLFy5g5syZMAwD
gUAAHo8HaWlpmDBhArZu3Qpg8Chh6IMZhoFgMIhIJBJv2TRKfPjL7DMcpl1rr0PBgOG8Znkk
EoEMfPIlmLpx/VmxhACK1Mv4WuZv8ZrvTuwJzEQADlz/aEBCgYGJWhMeTn8bE7SLH9vp6h/8
jnxibXrin4oppRxebUbiazOG225J6FOu125Syqt+hoqiQAgBwzCwfft2LFu2DLt374aUEn19
fRg/fjyEELDb7QgGg3A6r/1ef5y4A+DOO+/EX//1X2PMmDGoq6vD//7f/3vY75VSYsuWLfjU
pz6F5uZmGIaBSCQCTRssR1XV6GMlpJRX/dlut/PBcxYQEeKqfWjVxAm/BeR116eq6rDmtjYU
5SMfPiwE4FF9+Hz6NtztPIZ9wel4P1SKTiMLAWmHJnR4RD/KbZewwPE+ptka4BDhT9zjVhRl
WLWFVDOnWR+eoQ7ok3xcu42U4bebmjLtNnRxzdBrAODgwYOYOHEiHA5HtE8UQkT//co+MxZx
B8CDDz6I22+/HZcvX8aTTz4Z03wAwWAQqqpi79696OjogJQShYWF8Hq9AACv1xtNMlVVox2+
qqoQQvBZQxaUpfTDBh0hE44CNOjIVrzXLB/ud+uTp3kB1Og4+w6E3Sr80gFdqlBgwC7CcIpQ
dBhmOASG94wtkaRrdUZ9bUka8/pwbUKI6I7wECklvF4vfD4fGhoacO7cOZw7dw5CCPj9fjgc
Dvh8vrjOmcYdALt27cKGDRug6zoMw8Cf/dmfYfbs2cN6r9PpxJo1awAANTU10HUdRUVFyMnJ
wWuvvYbu7m6sWLEi3tLoJpSn9iJb6UObkXvD68pS+pGfgEcaDE0gbocOuzDvhDNZixACy5Yt
AzD4PLY33ngDkyZNghAC69evh9PpRGVlZVwjI3EHwObNm/GlL30J58+fRyQSGdZh1vVMmTIF
UkoIIbB06VL09PTA5XLFPJZFNzc7IrjNcQav++/AjV0JJHGb/Qzs4HkkGn2cTifuu+8+AMAt
t9yCMWPGQNd1ZGZmxrW+uI+nbTYbxo0bh7q6OqSnp+PEiRPxFaAo0eRSFAU5OTlwuVycbJ6u
IgSwxHkEbuG/ofWkiQCWug7zKhcala4cIhJCID09HR6PJ+7+Mu4AeOyxx+ByuVBeXo7Dhw9j
6dKl8a6KaFgK1B48kLYHIs7TdQIGHkjbi0KVz5knAm4gAMaPH4/Nmzeju7sbq1evRk5Ojpl1
EV1DCGCZ6zDucR6JOQQEDFQ5j+FTrkPc+yf6QNwB8MMf/hBSSkycOBHPPfccamtrzayL6LpU
YeDx9G2437UXdoTwyTdcSdgRwn2ud/B4+lZTLyclGu3iPgnsdrvx2c9+NjqGf/bsWUyceOOz
DhF9HAHAJnSsdu/GDPt5bPItxOlwKQK49iIEJ0KYZGvEfWnvYqKtCQr3/ImuEncAGIaBH/zg
B9A0Da2trbDb7Th79iy+8Y1vmFkf0XUpAphka8Ytnt+iTc/BufAYXNJzEZB2OEUIRWo3Jtgu
okjtHtHpIIlGs7gD4Otf/zpCodBVy3iDFiWSEIAKiTFaF8ZoXckuh2jUCAaDeOutt+IPgP37
9+PIkSPRy49Wr16NqVOnmlYgERGNjLa2Nhw/fjz+ANi0aRO+9a1vRa/hz8/PN604IiIaOWlp
aWhpaYk/ACZOnAiv1xt9/gSf0ElENDrk5uZi6dKl8QfAuXPnYBhG9Ahg5cqVcd+OTEREiSOE
wP333x9/AOTk5OBrX/vaNU+uIyKi1CeEiD8AAOCb3/wmbDYbAODzn/88Zs6caUphREQ08uIO
gO985ztXzVwTy3wARESUPPv378e6detiD4DW1lZs3br1min7qqqqUFZWZlZ9REQ0Qm6//XbM
nj079gBwOBwYO3bsNctdLpcphRER0cgammkx5gDIzs7mo5+JiG4CfHYDEZFFxX0S+OLFi/jN
b36DsrIy5OXlYdq0aSgoKDCzNiIiGkFxHwE8++yz+NznPoeLFy/C6XTi0KFDZtZFREQj7IaG
gPLy8iClRH19ffR+ACIiGh3iDoDHH38czzzzDA4fPozGxkYsWrTIzLqIiGiExX0OoL29HU89
9RTGjBkTfR4QERGNHnEHgMvlwi9/+UsMDAxg5syZWL58OXJzc82sjYiIRkB3dzcaGxvjD4A7
7rgDs2fPxokTJ/Dv//7vyMzMxH333WdmjURENAJ0XYff748/AJ5//nkcO3YMEyZMwNe+9jVM
njzZzPqIiGiE5OfnIz8/P/4AWLJkCR577DFe/UNENErFHADvvvsuAoEATp8+jQsXLkSXP/bY
Y3wcNBHRKBJzANx6660wDAO33XbbVdNAZmRkmFoYERGNjBMnTuD111+P/T4Al8sFt9uN//7v
/0Z2djZyc3PR0NCAnTt3jkCZRERktrKyMqxZsyb2IwApJTZs2ICjR4/ilVdeAQAcOXKEVwAR
EY0SGRkZyMjIiO8kcF5eHtxuN/Lz8yGEwOc//3lMmzbN7BqJiGgESCmxa9eu2AMgEAhg7ty5
mDZtGux2e3S5YRi8I5iIaJSw2+2xB8CxY8fg9/tRU1ODhoaG6PInnngCs2bNMrM+IiIaAZFI
BOXl5bEHwIIFCwAA99xzDwAgHA4jEAjwKiAiolHi8uXL+MUvfhF7AAghAAD/8i//gqeeego/
+MEP4PP58JWvfCWmu4HfeecdXLhwAVJKTJo0CXPnzkVNTQ2OHDkCTdOwatUqpKWlxVoeEdFN
p6GhAXv37oWmaUhLS8PKlSvR09ODLVu2QEqJRYsWobS0NKZ1GoYR/+OgvV4vent74fF48OST
T+LEiRMxvf/WW2/Fo48+ikcffRQnT55EOBzG4cOHsXbtWsyfPx/79u2LtzQioptKYWEh1q5d
i4cffhiqqqKzsxO7d+/G8uXLsWbNGuzZsweGYcS0ztOnT8f/KIiCggJ8+9vfxlNPPYXTp0+j
vLw8pvc7HA6cPn0adXV1mDBhAgKBALKzs6GqKoqLi1FdXQ1gMKWGPpiu6wgEAjzZbAFSyoRv
MxKOwPD7P/F1uq4noJoPbdMYfHjXJzGuuDkzUaSUw6pNNxLfboZuDK/dwqnRblLKq26wVRQF
iqLA6XSiqakJ9fX18Pv9yM3NRSAQQF5eHgDA7XYjFArB6XQOa9tZWVl4+umn4w+AL3/5y7h8
+TIikQgmTJgQ1zmA/v7+aCNIKaPDS0KIqzqAK5c7nU5oWtxl0yjRLwQSHQGaTYPD5frE1/lV
FYnuLlRFhWsYtQU1DaEE1HMlIcSwavMriW83RVWG12621Gg3IUS0v/swv9+PUCgEKSXC4XC0
nxx6fSw7TXa7Hbfeemv8AbBlyxZs2rQJHo8Hfr8fP/zhD5GdnT3s9xuGgblz5wIA1q1bB03T
0NfXBykluru7o+P/ivLHUaor/0xEdDO63ghHJBLBxIkTMXHiROzbtw9NTU3QNA39/f1wOp3w
+XxwOBwxbyvuAHjjjTfw7LPPQtM07NmzB1u3bsUjjzwy7Pdv3LgxmmC5ublwuVwoLS3Fyy+/
jEAggPvvvz/e0oiIbiqHDx9GQ0MD0tLS0NfXh1tvvRUulwsbNmyAqqqYPXt2XDvINzQj2JEj
R1BSUoKDBw9i3rx5Mb1/9erVCAQCEEJEk2vhwoUIBoOw2Wwc5yci+sCCBQswd+5chEIhuFwu
CCFQUlKCtWvXwjCMuPb+gRsIgG9+85tYt24dOjo6cOedd+LOO++MeR0fPmExNMZPRERX0zTt
mvOfNzofS1wBsGfPHuzatQszZszAV7/61Y88aUFERKkr5kGjjo4O/Pa3v8Xq1avx3nvv4fTp
0yNRFxERjbCYA6ClpQWzZs3ClClTcM8996C2tnYk6iIiohEW8xCQrut46623cO7cObS3tyMU
CmHfvn1Yu3YtZsyYMRI1EhHRCIg5AKZNm4Yf//jH1yyP5R4AIiJKvpgDwOFwYMyYMSNRCxER
JRBvrSUisigGABGRRTEAiIgsigFARGRRDAAiIotiABARWRQDgIjIohgAREQWxQAgIrIoBgAR
kUUxAIiILIoBQERkUQwAIiKLYgAQEVkUA4CIyKIYAEREFsUAICKyKAYAEZFFMQCIiCyKAUBE
ZFEMACIii2IAEBFZFAOAiMiiGABERBbFACAisigGABGRRTEAiIgsigFARGRRSQsAXdfR0NCA
6upq+Hw+AEAwGMTx48fR1NQEKWWySiMiSilSSrS3t+PYsWPo6OgAABiGgbq6Opw6dQqRSCSu
9SYtAM6cOQMA8Hg82LhxIyKRCP7whz8gIyMDFy9exOHDh5NVGhFRSmlpaUFPTw+ys7Nx6NAh
tLa2YteuXRgYGICqqnj99dfj2mnWRqDWYZk6dSqklGhpaYGu6wgEAtA0DeXl5SgsLMTWrVsx
d+5cSCmjH0xKiVAoBF3Xk1U2JUgyjgB1XUcwGPzE1xmGkYBqrt3mcGpLxu+GlHL0t1skNdpN
SnlVOwkhIITA2LFjAQADAwPo6uqCy+XCpUuXUFVVBSEEjh8/jlAoBIfDEVMNSQsAKSX279+P
xsZGPPDAA4hEIrDZbAAAVVWjjWAYRvTPuq7D5XJBVdVklU0JEhYCiY4ARVGgaZ/8K6ELkYBq
riYUMazapKIg0V2ZEMOrTVcS326KGN7PVKpJaDdcv92uDHFVVSGEgJQSTU1N2LFjB5YsWYKM
jAwoigLxwXdR07S4wj9pAXD48GH09PRgzZo1UBQFgUAA/f39AID+/v5okqmqGu3wNU2DoigM
ABoRQohhfbdEMgIAw6stkoTaAAyv3ZCE2sTwaktKu12nNiFEdEf4St3d3di2bRseffRRpKWl
RV8bDAZhs9ng8/lgt9tjLiFpAbBv3z5MnDgR27dvh6ZpqKqqQnp6Ot588020tbXhnnvuSVZp
REQp5ejRo3A4HHjnnXcAAHPnzsX06dPx2muvweVyYfz48cM60vmwpAXAF77wheghy9Ae1fLl
y9Ha2op58+bB4/EkqzQiopTyJ3/yJwgEAtG/p6enY+rUqSgsLEQkEkFBQUFc601aAGRmZl6z
TFXV6MkOIiIa5HK54HK5rlmel5d3Q+vljWBERBbFACAisigGABGRRTEAiIgsigFARGRRDAAi
IotiABARWRQDgIjIohgAREQWxQAgIrIoBgARkUUxAIiILIoBQERkUQwAIiKLYgAQEVkUA4CI
yKIYAEREFsUAICKyKAYAEZFFMQCIiCyKAUBEZFEMACIii2IAEBFZFAOAiMiiGABERBbFACAi
sigGABGRRTEAiIgsigFARGRRDAAiIotiABARWRQDgIjIohgAREQWxQAgIrIoLVkbjkQiOHjw
IAKBABYvXgwAOHv2LN577z04nU6sWLECLpcrWeUREaUMKSXOnTuHgwcP4rHHHgMA9PT0YOvW
rTAMA4sWLcLYsWNjXm/SjgCqq6vhdrvR2dkJAAiHw9i/fz8+97nPYerUqThw4ECySiMiSimt
ra1oamqCYRjRZbt27cKiRYvwmc98Bjt37oSUMub1Ju0IYM6cOZBS4syZMwCAQCCArKws2O12
lJaW4tSpUwAAwzCiH8wwDASDQYTD4WSVTQkSz5f5RkUiERh+/ye+TteNT3yN2XRDh38YtRmR
SAKquZqUcli16YaegGquZhjGqGo3KSV0/Y/tJISAoigoKipCcXExXnrppejrfD4fioqKIISA
y+VCMBiE0+mMqYakBYAQ4qpfcsMwoKoqAEBRlKv+bejPUko4HI7o6+jmNSAEEh0BmqrBPoxf
IL+qINFdmaKow/rlDmkaQgmo50pCiGHVFlBUJLqbVRRleO2mpka7fbhfFEJc9d8hUkoIIaLL
P9xnDlfSAuDDnE4n+vr6IKVEb29vtGEURYGiDI5UDXX8H24MIlOI4X23kvHtE0jt7/2ory1J
5V+vNk375G55qF/0+XxwOBwYGBiA3W6PeftJC4B3330XbW1tOH/+PDZu3Ihly5ahqKgIr7zy
CrxeLx544IFklUZElFLq6upw/Phx1NfX49VXX8Vtt92G22+/HS+//DJsNhumTp0a18hI0gJg
4cKF1yyrqqqC3++H3W4fVgoSEVlBZWUlKisrr1k+duxYGIYR89j/kJTqZYUQSEtLS3YZRESj
QjzDPlfijWBERBbFACAisigGABGRRTEAiIgsigFARGRRDAAiIotiABARWRQDgIjIohgAREQW
xQAgIrIoBgARkUUxAIiILIoBQERkUQwAIiKLYgAQEVkUA4CIyKIYAEREFsUAICKyKAYAEZFF
MQCIiCyKAUBEZFEMACIii2IAEBFZFAOAiMiiGABERBbFACAisigGABGRRTEAiIgsKqUCQEqJ
trY2DAwMJLsUIqKUEg6H0dLSgnA4bNo6UyYApJTYunUrjhw5gvXr1+PSpUvJLomIKCXouo51
69bhzJkz+M1vfoNQKGTKelMmAILBIHp6erB8+XKsXLkShw8fTnZJREQpoa6uDpMmTUJVVRUm
T56Muro6U9abUgGQkZEBIQQyMjIQDAaTXRIRUUro6upCcXExhBAoLi5GV1eXKetNmQBQVRWR
SATA4OGOqqpJroiIKDXY7fbosE8wGITdbjdlvSkTAE6nE729vfD5fDh37hzy8vKSXRIRUUoo
KytDdXU1wuEwTp48ifHjx5uy3pQJAE3TUFVVhT/84Q9oamrCvHnzkl0SEVFKyMnJQVlZGTZs
2IAxY8agsLDQlPVqpqzFJOPHjzct2YiIbhZCCMybN8/0HeOUCoDhCIfDMAwj2WXQCItoGZD2
rIRuU8AOMYzL68JqGvQE1yZVF9Th1CbsiCS63WwZw7osMay6ktBuacOrDbbEt5uWeU1tUsrE
1iCvs8WLFy8iEAgktJDhUlU1ZU8QSykhhEh2GdfF2uLD2uLD2uKjqipCoRB0XU/I9q4bAKmq
r68PwWAQ+fn5yS7lGlJKhMNh087Omy0SiUDTUu+AL9XbLRgMwuFwJLuM60rl2kKhEGw2W0p2
tKncbk1NTSgsLEzY70PKnAQmIqLEYgCYKFWHpgBAUVL3R53K7cba4sPaRofUGxMYpYQQKf3F
StUASPV2S8VhsyGpXBt/pqOD+jd/8zd/k+wihisYDELXdbjd7mG/p6urC52dnfB4PACA5ubm
6CMnPrzumpoaFBUV4dChQxg7dqyptdONk1KisbERJ06cgK7ryM7OhmEYOHnyJOrr65GXlwdN
0xAIBHDo0CH09vYiLy8PQgg0Nzfj6NGjSE9PR1pa2ojU1tbWhuPHj8Pr9SI3NxdCCJw7dw41
NTXIycmBw+GArus4evQoLl68iMLCQiiKgnPnzuHChQtobW2F2+0ekfHpnp4eHDt2DO3t7cjL
y4OqqmhpacHRo0fhcrmiv1M+nw8NDQ3Izc0FAAwMDODgwYPw+/3Rz2QmKSXa29tx/Phx9PX1
ITc3F4qioK6uDjU1NcjOzobD4YCUEn19fWhtbUVW1uDVOle2W1paGpxOp6m1AYPtVl1djba2
NuTn50NVVVy6dAlHjx6F0+lEeno6dF1HbW0tTp06BYfDgfT0dAwMDODQoUPw+XwxtVtfXx/S
09MTFqCpuVtootOnT2P9+vXo7+8HALz77rvXvdQqEomgqakJAFBfX5/QGml46urqcPbsWYwf
Px779+9Ha2srjhw5gvb2dmRkZGDLli2QUmLz5s3weDy4dOkSjh07hu7ubrz99tuorKzEq6++
Gn3kiJkuX76MAwcOoLi4GA0NDaipqUF9fT2OHz+OkpISbNiwAYZhYNeuXYhEIlBVFW+99RZ0
Xce+ffuQnp4+Yr/4uq7jzTffRH5+PkKhEHbu3Im+vj5s27YN5eXl2LJlCwYGBlBfX49XX30V
u3btAjDYOb/66qsoLi7GmTNnUFtba3ptPT092LdvH4qLi9HY2IiTJ0/iwoULOHbsGEpKSvDq
q6/CMAxUV1dj8+bNOHjwYPQzJaLdtm3bhtzcXEQiEezYsQNerxdbt25FeXk53njjDQwMDODI
kSPo6urCuHHj8MYbb8Dv9+P3v/89CgsLUVtbizNnzphem1lu+gAAgPnz51/T8b/99tsAgP7+
fhw4cCBZpVEMysvLsXTpUowfPx5utxuGYaC2thZ33303pk6dinA4jN7eXkgpMWXKFNx9992o
ra3F6dOnsXDhQowbNw7Tp09HQ0OD6bVlZWXhvvvuQ1lZGbKzs6HrOmpqalBVVYWysjLk5OSg
r68PLS0tmDdvHmbPno2uri4Eg0G4XC6UlJRgwoQJMR3dDpeiKPjc5z6HiooKFBUVIRKJ4OzZ
s5g3bx5KSkowffp0XLhwAWPGjMEjjzyC9PR0AIDX60VGRgYqKirwqU99CtXV1abX5vF4cP/9
90fbaKjd7r77bpSVlSEvLw89PT2YNGkS1qxZEx3KDIVCcDqd0XYbqtlMiqJg9erVmDBhQrTd
amtrcfvtt6OkpAQzZ85EfX095syZE/1+aZoGr9cLt9uNyspKLFu2DCdOnDC9NrNYIgDGjx+P
vr4+9PT0RJd1dnYCGNzzv3I5pS5VVREMBvHKK68gPz8fRUVFAAbHdIUQSEtLg9frhcvlghAC
drsduq7D6/VGhw08Hg+8Xq/ptSmKAsMwsHXrVvT09GD69OmIRCLRYQmPx4P+/n6oqgohBBRF
gaIoEELAZrNhy5Yt+NWvfoXu7m7TaxNCQAiBffv2Yf/+/Vi8eDF8Ph8yMjKuqs3hcFy1J+33
+6PDpU6n09SJSIYMtdubb76Jrq4uzJw5E+FwGC6X66rahn6mV77Pbrdjy5YteP755017OuaV
htpt//79ePfdd7F06VIMDAwgMzPzqtpUVUVXVxdefPFFzJ07FwCQnp4+ou1mFsucDbn77ruj
h7Y0OoVCIbzwwgtYsWIFxo0bF10+NKQy1Kn5/X4Ag3eNK4qC9PR09Pb2Ijc3NzrObDZd17F+
/XpMnToVM2bMgBACmqYhGAwiLS0Nvb290fFiADAMA4ZhwOVyYdWqVQCAhoYGHDt2DIsXLza9
vq1bt8LpdOKhhx6CoihIS0uLDosO1fZhLpcrGpbBYHBETp7quo7f/e53mDRpEmbNmhUNxEAg
ALfb/ZG1ORyOaLs1Njbi6NGjWLp0qen1bdu2DTabDQ8//HC03YbaZKi2rq4uvPrqq/jsZz+L
7Oxs9Pf3R9t2pNrNLJY4AgAQPfE1tOff39+P1tZWHD16NMmV0XBVV1ejuLgYkUgEDQ0N8Pv9
qKysxO7du3Hq1CmoqgqPxwMpJU6fPo1du3bhlltuwZQpU7B37160tLTg+PHjKC8vN722lpaW
6JwWDQ0N6O3txbRp07Bjxw40Njais7MTmZmZ0YsMqqurkZ2djZaWFuzevRstLS04duwYiouL
Ta8tEAhEz51cuHABnZ2dmDhxIvbv34+LFy/ixIkTKC0txeXLl9HU1IT+/n40NTXB4XCgt7cX
9fX12Lp1K2bNmmV6ba2trfD5fPB4PNF2mzp1Kt5++200Njaivb0dHo8HHR0daG5uhtfrRXNz
M5qbm7Fr167oieyRarczZ86gtLQUFy5cQEdHByZOnIgDBw7g4sWLqK6uRllZGfbu3Ytp06ah
t7cXDQ0NcLlc6O/vx/nz5/Hmm29ixowZptdmlpv+KiCXywWPxwO73Y5x48YhOzsb+fn5KCgo
wKlTp1BaWopx48YhMzMTmZmZyMjIQEZGRvSqIUodqqrCMAz4fD74fD5kZWWhvLwcXq8XfX19
qKqqgqZpqKysRF1dHXJycjBr1iy4XC7k5uaitrYWVVVVIzJeDAwOSwzV5nK5MG7cONhsNjQ2
NmLJkiVwOBwoLy9HS0sLIpEI7rrrLmRkZEQDbcKECZg4caLpV9roug6HwxGtTdM0FBYWoqCg
AGfPnsXChQuRlZWFjo4OtLe3o7CwEAMDA8jJycHUqVNx6tQpjB8/HpMmTRqRq4CGjt6ubDeH
w4ELFy5gyZIlcDqdaG5uRk9PDwoKCuD3+1FWVgZg8KipsrJyRGrTdR12uz1am6qqKCwsRGFh
Ic6ePYs77rgD2dnZsNvtCAaD0dcVFhZi4sSJOHPmDEpKSjB58uSUvQro/wdXhhV1wj5u/wAA
AABJRU5ErkJggg==
</thumbnail>
</thumbnails>
</workbook>