-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemtk.tex
570 lines (445 loc) · 17.7 KB
/
demtk.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
\title{A Toolkit for Digital Elevation Models}
\section{Sources of DEM}
%RUN_VERBATIMS python3
A DEM is a two-dimensional array of numbers. Each number
represents a height in meters. The positions inside the array are mapped into
geographical coordinates (typically UTM). The mapping between positions in
the array and geographical coordinates is called \emph{georeferencing}.
Thus, a geo-referenced DEM can be interpreted as a cloud of points in 3D
space.
You can display the data in a DEM as an image, by mapping the heights to
pixel intensities:
\begin{quote}
\begin{verbatim}
import iio
x = iio.read("i/terrassa.tif")
X = (255.0 * (x - x.min())/(x.max() - x.min())).clip(0,255)
iio.write("o/terrassa.png", X)
\end{verbatim}
\includegraphics{o/terrassa.png}~\verb+terrassa.png+
\end{quote}
Notice that DEMs are stored as TIFF files of floating-point values. To
display them, we quantize their range of values into 8 bits and save them on
a PNG file.
srtm4
lidar sites
\verb+dem_from_pair+
lonlat vs utm in DEM
\clearpage
\section{DEM Rendering}
%grayscale
The simplest way to represent a DEM is by mapping the heights to pixel
intensities of a traditional 8-bit grayscale image.
For that we will use the function \verb+qauto+, defined below
\begin{quote}
\begin{verbatim}
def qauto(x): # quantize a floating-point image into 8 bits
from numpy import float, uint8
m = x.min()
M = x.max()
X = (255 * (x.astype(float) - m) / (M - m) ).astype(uint8)
return X
\end{verbatim}
\end{quote}
In the following experiments we work with the DEM stored on file
\verb+fuji.tif+ of the area around the Fuji volcano. The data comes from
the SRTM4, which has a resolution of 90m per pixel.
\begin{quote}
\begin{verbatim}
import iio
x = iio.read("i/fuji.tif")
X = qauto(x)
iio.write("o/fuji.png", X)
\end{verbatim}
\includegraphics{o/fuji.png}~\verb+fuji.png+
\end{quote}
This image shows Fuji in the center (about $3700m$), surrounded by a mostly
flat area and a few mountains ranges around it (of maximum height
about~$1700m$). When my son looked at this image he said it was a beautiful
picture of the moon, behind some clouds on a foggy night. Clearly, images
obtained by mapping heights to intensities are difficult to interpret.
\subsection{Hillshading}
Our visual system is not used to the direct representation of geometry by
light intensity.
Instead, light is reflected by the surface of objects and we
receive this reflected light, which we know how to interpret. The amount of
reflected light depends on the characteristics of the light and of the
surface. The simplest
illumination model is the Lambertian lighting, whereby there is a single
point light source and each surface element reflects an amount of light
proportional to the scalar product between the surface normal and the
direction of the light source.
Consider the Lambertian model on a continuous setting, where the surface is
defined by a function~\[z=u(x,y)\] and the light source is located at the
infinity on the direction of the vector~$\vec s = (a,b,c)$. The normal to
the surface at the location~$(x,y)$ is
\[
\vec n(x,y) = \frac{1}{\sqrt{1+u_x^2+u_y^2}}\left(-u_x, -u_y, 1\right)
\]
and thus the light intensity reflected at the location~$(x,y)$ is
\[
I(x,y) = \max\left(0,
\frac{c - au_x - bu_y}{\sqrt{1+u_x^2+u_y^2}}
\right)
\]
The maximum is needed because when the scalar product~$\vec n\cdot\vec s$ is
negative, the surface element is invisible from the light source. This
function~$I(x,y)$ is the light intensity that we would observe if we were
right in the vertical direction and very far away (this is called a
\emph{nadir view} or, in some contexts, an~\emph{orthoimage}). Now, if~$c$
is large enough---the sun is way above the horizon---then there are no
shadows and~$I>0$. Even more, if the slope of the surface is small with
respect to~$c$, then we can make the
approximation~$1\approx\sqrt{1+u_x^2+u_y^2}$. In that case, the value of~$I$
is proportional to the directional derivative of~$u$ along the
direction~$(a,b)$. Let us see how this looks.
First, we define a function to compute the directional derivative (by
default, from the top-left direction).
\begin{quote}
\begin{verbatim}
def render_shading(a, s=(1,1)): # directional derivative of a along s
from numpy import pad
x = pad(a, ((0,0),(0,1)), 'edge')[:,1:] - a # da / dx
y = pad(a, ((0,1),(0,0)), 'edge')[1:,:] - a # da / dy
z = s[0] * x + s[1] * y # da / ds
return z
\end{verbatim}
\end{quote}
And now we display the Fuji DEM using this function
%import iio
\begin{quote}
\begin{verbatim}
x = iio.read("i/fuji.tif").squeeze()
X = render_shading(x)
iio.write("o/fuji_shading.png", qauto(X) )
\end{verbatim}
\includegraphics{o/fuji_shading.png}~\verb+fuji_shading.png+
\end{quote}
Now, when my son saw this image, he said: well, now that's a close-up photo of a
crater in the moon! He did not realize it was exactly the same data, but
with a different color scheme.
This image looks a bit flat to my eyes.
As if a slightly crumpled, but mostly flat, aluminium foil.
It can be made livelier by filtering it by a Riesz kernel, defined by
in the frequency domain by
\[
\widehat{R_\sigma}(\xi,\eta)
=
\left(\xi^2+\eta^2\right)^{-\sigma/2}
\]
\begin{quote}
\begin{verbatim}
def filter_riesz0(x, s): # Riesz scale-space (periodic boundary conditions)
from numpy.fft import fft2, ifft2, fftfreq
from numpy import repeat, hypot
h, w = x.shape
p = repeat(w*fftfreq(w).reshape(1,w), h, axis=0) # x-frequencies
q = repeat(h*fftfreq(h).reshape(h,1), w, axis=1) # y-frequencies
r = hypot(p, q) # image of spectral radius
r[0,0] = 1 # avoid warnings when 1/0
X = fft2(x) * r**s # apply the filter in the frequency domain
if (s <= 0):
X[0,0] = 0 # for negative s, set the mean to zero
return ifft2(X).real
\end{verbatim}
\end{quote}
\begin{quote}
\begin{verbatim}
def filter_riesz(x, s): # Riesz scale-space (symmetric boundary conditions)
from numpy import pad
h, w = x.shape
y = pad(x, ((0,h),(0,w)), 'symmetric')
z = filter_riesz0(y, s)
return z[0:h,0:w]
\end{verbatim}
\end{quote}
\begin{quote}
\begin{verbatim}
x = iio.read("i/fuji.tif").squeeze()
X = filter_riesz(render_shading(x), -0.5)
iio.write("o/fuji_smooth.png", qauto(X) )
\end{verbatim}
\includegraphics{o/fuji_smooth.png}~\verb+fuji_smooth.png+
\end{quote}
Looking at this image, my kid said: this is the same crater as before, but
much closer!
\clearpage
\subsection{Shadows}
The technique of~\emph{hillshading} can be interpreted in two ways.
From the point of view of mathematics, it is simply a directional derivative
of the DEM re-scaled to a gray-scale palette.
From the point of view of computer graphics, it is a rendering of the DEM
data as a Lambertian (matte) surface, where the intensity of reflected light
by a surface element is proportional to the cosine of the angle towards the
light source.
The Lambertian model is one of the simpler lighting models, but not the
simplest. The simplest one is a binary mask, depending on whether each
surface element is accessible by the light source. Computing this
illumination model is called~\emph{shadow casting}. Since the shadow casting
algorithm is not very interesting in itself, we refer to the~\verb+demtk+
library.
\begin{quote}
\begin{verbatim}
# cast shadows over Fuji
x = iio.read("i/fuji.tif").squeeze()
import demtk
z = demtk.render_shadows(x, (1,1,25))
iio.write("o/fuji_shadows.png", qauto(z) )
\end{verbatim}
\includegraphics{o/fuji_shadows.png}~\verb+fuji_shadows.png+
\end{quote}
While shadows alone are not very interesting by themselves, they can be used
to add some ``spice'' to other renderings. More importantly, they form the
basis of the ambient occlusion introduced below.
\clearpage
\subsection{Ambient occlusion}
Deep valleys, narrow streets and the bottom of wells have a dark feeling
associated to them. Even if they can be lit by direct sunlight, this is far
less likely than, for example, the top of a mountain. A way to capture this
darkness is called ``ambient occlusion'' or the ``cloudy sky model''. The
idea is that the brightness reflected by a surface element is proportional to
the spherical angle of visible sky from that point. Thus the top of a
mountain sees the whole sky and it is the brightest possible, and the bottom
of a well sees just a tiny portion of the sky and it is very dark. An exact
computation of ambient occlusion is very expensive, however it can be
very well approximated by sampling the sky and a finite set of points and
computing the average of the resulting shadows.
Notice that the average image of a small number of shadow images already
gives an idea of the overall geometry: you can see the bright ridges, the
dark valleys.
\begin{quote}
\begin{verbatim}
# coarse approximation of ambient occlusion
x = iio.read("i/fuji.tif").squeeze()
z = 0*x
z += demtk.render_shadows(x, ( 1, 0, 25) )
z += demtk.render_shadows(x, ( 1, 1, 25) )
z += demtk.render_shadows(x, ( 0, 1, 25) )
z += demtk.render_shadows(x, (-1, 1, 25) )
z += demtk.render_shadows(x, (-1, 0, 25) )
z += demtk.render_shadows(x, (-1,-1, 25) )
z += demtk.render_shadows(x, ( 0,-1, 25) )
z += demtk.render_shadows(x, ( 1,-1, 25) )
iio.write("o/fuji_aaaprox.png", qauto(z/8) )
\end{verbatim}
\includegraphics{o/fuji_aaaprox.png}~\verb+fuji_aaaprox.png+
\end{quote}
For urban regions, the average shadow image gives a clarifying view of dark
thin streets and bright rooftops.
\begin{quote}
\begin{verbatim}
# coarse approximation of ambient occlusion
x = iio.read("i/terrassa.tif").squeeze()
z = 0*x
z += demtk.render_shadows(x, ( 1, 0, 2) )
z += demtk.render_shadows(x, ( 1, 1, 2) )
z += demtk.render_shadows(x, ( 0, 1, 2) )
z += demtk.render_shadows(x, (-1, 1, 2) )
z += demtk.render_shadows(x, (-1, 0, 2) )
z += demtk.render_shadows(x, (-1,-1, 2) )
z += demtk.render_shadows(x, ( 0,-1, 2) )
z += demtk.render_shadows(x, ( 1,-1, 2) )
iio.write("o/terrassa_aaaprox.png", qauto(z/8) )
\end{verbatim}
\includegraphics{o/terrassa_aaaprox.png}~\verb+terrassa_aaaprox.png+
\end{quote}
Let us try a linear approximation of ambient occlusion. If there is an object
of height~$h$ above me at a distance~$d$, it occludes a portion of the sky of
size proportional to $h/d$. Of course, objects occlude themselves so this
effect is not additive. But if we consider that it is additive---as a first
approximation---, this amounts to computing the convolution of the height
map~$h(x,y)$ by the kernel~$1/\sqrt{x^2+y^2}$, which is a particular case
for~$\sigma=1$ of our old friend: Riesz kernel. Since we are only interested
in the substractive effect of heights (a deep well nearby does not make my
sky any brighter), we have to keep only the negative part of the Riesz
filter:
\begin{quote}
\begin{verbatim}
# linear approximation of ambient occlusion
x = iio.read("i/terrassa.tif").squeeze()
z = filter_riesz(x, 1)
iio.write("o/terrassa_aalin.png", qauto(z.clip(-1000,0)) )
\end{verbatim}
\includegraphics{o/terrassa_aalin.png}~\verb+terrassa_aalin.png+
\end{quote}
\clearpage
\subsection{Color palette}
A common way to display topographic maps is using a color palette.
To each height it corresponds a different color. This is computed by
composing the height function with the image of the desired colormap. The
colormap itself may be designed by hand, or read from ``palette'' image.
The traditional colormap goes from green to white through a sequence of
earthy tones.
\begin{quote}
\begin{verbatim}
# read palette from file
img_terrain = iio.read("i/DEM_poster.png")
pal_terrain = img_terrain[0][0:256]
\end{verbatim}
\includegraphics{i/DEM_poster.png}~\verb+DEM_poster.png+
\end{quote}
\begin{quote}
\begin{verbatim}
# apply palette to DEM
x = iio.read("i/fuji.tif").squeeze()
X = pal_terrain[qauto(x)]
iio.write("o/fuji_palette.png", X )
\end{verbatim}
\includegraphics{o/fuji_palette.png}~\verb+fuji_palette.png+
\end{quote}
Palette-rendered topographic maps are beautiful and colorful, but they are so
evocative that there is often the danger of interpreting them too seriously.
For instance, you see that there is a height where the green color
disappears, and another height where everything is white. But this has
nothing to do with the tree-line or the presence of snow. The assignment of
colors is essentially arbitrary.
\begin{samepage}
The arbitrariety of color palettes is very apparent when we use a
geographic palette to render a urban elevation map. This does not mean that
the tops of the skyscrapers are covered in snow!
\begin{quote}
\begin{verbatim}
# render a urban DEM using a "terrain" palette
x = iio.read("i/terrassa.tif").squeeze()
X = pal_terrain[qauto(x)]
iio.write("o/terrassa_pal.png", X )
\end{verbatim}
\includegraphics{o/terrassa_pal.png}~\verb+terrassa_pal.png+
\end{quote}
\end{samepage}
Notice that, even if palettes provide an absolute meaning to heights, some
resolution is lost. For example, it is almost impossible to see the concave
crater of the volcano, while it was very clearly seen on the hill-shaded DEM.
Thus, a useful technique consists in combining both renderings, for example
by taking their average:
\begin{quote}
\begin{verbatim}
x = iio.read("i/fuji.tif").squeeze()
from numpy import newaxis
x_lam = qauto(render_shading(x))[:,:,newaxis] # lambertian shading of x
x_pal = pal_terrain[qauto(x)] # color palette of x
X = qauto(x_lam**.8 * x_pal) # combination (geometric mean)
iio.write("o/fuji_combined.png", X)
\end{verbatim}
\includegraphics{o/fuji_combined.png}~\verb+fuji_combined.png+
\end{quote}
%\subsection{Level lines}
%
%
\clearpage
\subsection{Curvature map}
%sign of Riesz scale space as an indicator of ridges/valleys
The sign of Riesz scale space is a good indicator of local
convexity/concavity. By using oriented palettes we can highlight the valleys
(blue)
and ridges (red) of a topographic map.
\begin{quote}
\begin{verbatim}
from numpy import fmax, dstack
x = iio.read("i/fuji.tif").squeeze()
r = filter_riesz(x, 1)
x_signed = qauto(r)
x_ridges = 2.0*qauto(fmax(0,r)).clip(0,255)
x_valleys = 255-2.0*qauto(fmax(0,-r)).clip(0,255)
x_curv = dstack([x_valleys, x_valleys-x_ridges, 255.0-x_ridges])
iio.write("o/fuji_signed.png" , x_signed )
iio.write("o/fuji_ridges.png" , x_ridges )
iio.write("o/fuji_valleys.png", x_valleys )
iio.write("o/fuji_curv.png", x_curv )
\end{verbatim}
\includegraphics{o/fuji_signed.png}~\verb+fuji_signed.png+
\includegraphics{o/fuji_ridges.png}~\verb+fuji_ridges.png+
\includegraphics{o/fuji_valleys.png}~\verb+fuji_valleys.png+
\includegraphics{o/fuji_curv.png}~\verb+fuji_curv.png+
\end{quote}
For urban regions, this gives a segmentation between rooftops (in red),
streets (in blue) and flat or otherwise ambiguous parts (in white).
%\begin{quote}
%\begin{verbatim}
%# build blue-yellow palette
%from numpy import arange, vstack
%pal_blue_yellow = vstack([arange(256), arange(256), 255-arange(256)]).T
%
%# render urban scene with sign of a Riesz filter
%from numpy import uint8
%x = iio.read("i/terrassa.tif").squeeze()
%t = filter_riesz(x, 1)
%T = (127.5 + 60 * t / t.std()).clip(0.255).astype(uint8)
%iio.write("o/terrassa_curv.png", pal_blue_yellow[T] )
%\end{verbatim}
%\includegraphics{o/terrassa_curv.png}~\verb+terrassa_curv.png+
%\end{quote}
\clearpage
\subsection{Combined rendering}
The best results are often obtained by merging the outputs of several
techniques above. The function \verb+demtk.render+ by default produces a
high-contrast rendering suitable for display in low-resolution projectors.
\begin{quote}
\begin{verbatim}
import demtk, iio
x = iio.read("i/terrassa.tif").squeeze()
iio.write("o/terrassa_full.png", demtk.render(x))
x = iio.read("i/fuji.tif").squeeze()
iio.write("o/fuji_full.png", demtk.render(x))
\end{verbatim}
\includegraphics{o/terrassa_full.png}~\verb+terrassa_full.png+
\includegraphics{o/fuji_full.png}~\verb+fuji_full.png+
\end{quote}
\section{DEM Denoising}
\begin{quote}
\begin{verbatim}
import demtk, iio
x = iio.read("i/terrassa.tif").squeeze()
iio.write("o/terrassa_erosion.png", demtk.render(demtk.cross_erosion(x)))
iio.write("o/terrassa_dilation.png", demtk.render(demtk.cross_dilation(x)))
iio.write("o/terrassa_median.png", demtk.render(demtk.cross_median(x)))
iio.write("o/terrassa_median5.png", demtk.render(demtk.cross_median(x,5)))
\end{verbatim}
\includegraphics{o/terrassa_erosion.png}~\verb+terrassa_erosion.png+
\includegraphics{o/terrassa_dilation.png}~\verb+terrassa_dilation.png+
\includegraphics{o/terrassa_median5.png}~\verb+terrassa_median5.png+
\end{quote}
%\begin{quote}
%\begin{verbatim}
%import demtk, iio
%x = iio.read("i/fuji.tif").squeeze()
%iio.write("o/fuji_erosion.png", demtk.render(demtk.cross_erosion(x)))
%iio.write("o/fuji_dilation.png", demtk.render(demtk.cross_dilation(x)))
%\end{verbatim}
%\includegraphics{o/fuji_erosion.png}~\verb+fuji_erosion.png+
%\includegraphics{o/fuji_dilation.png}~\verb+fuji_dilation.png+
%\end{quote}
morphological operations
cc filter
\section{DEM Interpolation}
cc border, avg, min, min5pc
poisson, biharmonic, TV, with Dirichlet boundary conditions
neumann boundaries at selected points
\section{DEM Registration}
apply shift (manually selected)
multiscale correlation
phase correlation
\section{DEM Comparison}
difference of registered images, signed palette
filtering of difference
\section{DEM Fusion}
nanavg
nanmed
xmedians
cnt
filtered fusion (by iqd, cnt, ...)
\section{DEM Flattening}
plyflatten
multiscale plyflatten
splatting
\section{DEM Elevation}
isolated points
local mesh
refined mesh heuristics
\section{DEM Colorization}
naive colorization
shadowed colorization
orthophoto merging (color median)
orthophoto merging by Poisson
orthophoto merging by osmosis
% vim:set tw=77 filetype=tex spell spelllang=en: