-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwarpingOperator.py
144 lines (113 loc) · 5.09 KB
/
warpingOperator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import random
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
from torchvision.transforms import GaussianBlur
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def base_detail_decomp(samples, gaussian_filter):
#samplesLR: b, num_im, h, w
b, num_im, h, w = samples.shape
base = gaussian_filter(samples)
detail = samples - base
return base, detail #b, num_im, h, w
k = np.load('blur_kernel.npy').squeeze()
size = k.shape[0]
class BlurLayer(nn.Module):
def __init__(self):
super(BlurLayer, self).__init__()
self.seq = nn.Sequential(
nn.ReflectionPad2d(size//2),
nn.Conv2d(1, 1, size, stride=1, padding=0, bias=None, groups=1)
)
self.weights_init()
def forward(self, x):
return self.seq(x)
def weights_init(self):
for name, f in self.named_parameters():
f.data.copy_(torch.from_numpy(k))
f.required_grad = False
Gaussian_Filter = GaussianBlur(11, sigma=1).to(device)
class TVL1(nn.Module):
def __init__(self,TVLoss_weight=1):
super(TVL1,self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self,x):
batch_size = x.size()[0]
h_x = x.size()[-2]
w_x = x.size()[-1]
count_h = self._tensor_size(x[...,1:,:])
count_w = self._tensor_size(x[...,:,1:])
h_tv = torch.abs((x[...,1:,:]-x[...,:h_x-1,:])).sum()
w_tv = torch.abs((x[...,:,1:]-x[...,:,:w_x-1])).sum()
#print("h,w:", h_tv, w_tv)
return self.TVLoss_weight*(h_tv/count_h+w_tv/count_w)/batch_size
#return self.TVLoss_weight*(h_tv+w_tv)/batch_size
def _tensor_size(self,t):
return t.size()[-3]*t.size()[-2]*t.size()[-1]
class WarpedLoss(nn.Module):
def __init__(self, p = 1, interpolation = 'bilinear'):
super(WarpedLoss, self).__init__()
if p == 1:
self.criterion = nn.L1Loss(reduction='mean') #change to reduction = 'mean'
if p == 2:
self.criterion = nn.MSELoss(reduction='mean')
self.interpolation = interpolation
def cubic_interpolation(self, A, B, C, D, x):
a,b,c,d = A.size()
x = x.view(a,1,c,d)#.repeat(1,3,1,1)
return B + 0.5*x*(C - A + x*(2.*A - 5.*B + 4.*C - D + x*(3.*(B - C) + D - A)))
def warp(self, x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
"""
if torch.sum(flo*flo) == 0:
return x
else:
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
grid = torch.cat((xx, yy), 1).float()
grid = grid.to(device)
#print(grid.shape)
vgrid = Variable(grid) + flo.to(device)
if self.interpolation == 'bilinear':
# scale grid to [-1,1]
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone() / max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone() / max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = nn.functional.grid_sample(x, vgrid,align_corners = True)
if self.interpolation == 'bicubicTorch':
# scale grid to [-1,1]
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone() / max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone() / max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = nn.functional.grid_sample(x, vgrid,align_corners = True,mode = 'bicubic')
#mask = torch.ones(x.size()).cuda()
#mask = nn.functional.grid_sample(mask, vgrid,align_corners = True,mode = 'bicubic')
#mask[mask < 0.9999] = 0
#mask[mask > 0] = 1
return output#, mask
def forward(self, input, target, flow, losstype = 'L1', masks = None):
# Warp input on target
warped = self.warp(target, flow)
input_ = input[...,5:-5,5:-5]
warped_ = warped[...,5:-5,5:-5]
if losstype == 'HighRes-net':
warped_ = warped_/torch.sum(warped_, dim = (2,3), keepdims = True)*torch.sum(input_, dim = (2,3), keepdims = True)
if losstype == 'Detail':
_, warped_ = base_detail_decomp(warped_, Gaussian_Filter)
_, input_ = base_detail_decomp(input_, Gaussian_Filter)
if losstype == 'DetailReal':
_, warped_ = base_detail_decomp(warped_, Gaussian_Filter)
_, input_ = base_detail_decomp(input_, Gaussian_Filter)
masks = masks[...,2:-2,2:-2]
warped_ = warped_ * masks[:,:1] * masks[:,1:]
input_ = input_ * masks[:,:1] * masks[:,1:]
self.loss = self.criterion(input_, warped_)
return self.loss, warped