forked from shyamsn97/hyper-nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hypernet.py
140 lines (118 loc) · 4.8 KB
/
hypernet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple # noqa
import torch
import torch.nn as nn
from functorch import vmap # noqa
from hypernn.base import HyperNetwork
from hypernn.torch.utils import FunctionalParamVectorWrapper, count_params
def create_functional_target_network(target_network: nn.Module):
func_model = FunctionalParamVectorWrapper(target_network)
return func_model
class TorchHyperNetwork(nn.Module, HyperNetwork):
def __init__(
self,
target_network: nn.Module,
num_target_parameters: Optional[int] = None,
):
super().__init__()
self.functional_target_network = create_functional_target_network(
target_network
)
self.target_weight_shapes = self.functional_target_network.target_weight_shapes
self.num_target_parameters = num_target_parameters
if num_target_parameters is None:
self.num_target_parameters = count_params(target_network)
self.__device_param_dummy__ = nn.Parameter(
torch.empty(0)
) # to keep track of device
def assert_parameter_shapes(self, generated_params):
assert generated_params.shape[-1] >= self.num_target_parameters
def generate_params(self, *args, **kwargs) -> Tuple[torch.Tensor, Dict[str, Any]]:
raise NotImplementedError("Generate params not implemented!")
def target_forward(
self,
*args,
generated_params: torch.Tensor,
assert_parameter_shapes: bool = True,
**kwargs,
) -> torch.Tensor:
if assert_parameter_shapes:
self.assert_parameter_shapes(generated_params)
return self.functional_target_network(generated_params, *args, **kwargs)
def forward(
self,
*args,
generated_params: Optional[torch.Tensor] = None,
has_aux: bool = False,
assert_parameter_shapes: bool = True,
generate_params_kwargs: Dict[str, Any] = {},
**kwargs,
):
"""
Main method for creating / using generated parameters and passing in input into the target network
Args:
generated_params (Optional[torch.Tensor], optional): Generated parameters of the target network. If not provided, the hypernetwork will generate the parameters. Defaults to None.
has_aux (bool, optional): If True, return the auxiliary output from generate_params method. Defaults to False.
assert_parameter_shapes (bool, optional): If True, raise an error if generated_params does not have shape (num_target_parameters,). Defaults to True.
generate_params_kwargs (Dict[str, Any], optional): kwargs to be passed to generate_params method
*args, *kwargs, arguments to be passed into the target network (also gets passed into generate_params)
Returns:
output (torch.Tensor) | (torch.Tensor, Dict[str, torch.Tensor]): returns output from target network and optionally auxiliary output.
"""
aux_output = {}
if generated_params is None:
generated_params, aux_output = self.generate_params(
**generate_params_kwargs
)
if has_aux:
return (
self.target_forward(
*args,
generated_params=generated_params,
assert_parameter_shapes=assert_parameter_shapes,
**kwargs,
),
generated_params,
aux_output,
)
return self.target_forward(
*args,
generated_params=generated_params,
assert_parameter_shapes=assert_parameter_shapes,
**kwargs,
)
@property
def device(self) -> torch.device:
return self.__device_param_dummy__.device
@classmethod
def count_params(
cls,
target: nn.Module,
target_input_shape: Optional[Any] = None,
inputs: Optional[Any] = None,
):
return count_params(target, target_input_shape, inputs=inputs)
@classmethod
def from_target(
cls,
target_network: nn.Module,
target_input_shape: Optional[Any] = None,
num_target_parameters: Optional[int] = None,
inputs: Optional[List[Any]] = None,
*args,
**kwargs,
) -> TorchHyperNetwork:
if num_target_parameters is None:
num_target_parameters = cls.count_params(
target_network, target_input_shape, inputs=inputs
)
return cls(
target_network=target_network,
num_target_parameters=num_target_parameters,
*args,
**kwargs,
)
def save(self, path: str):
torch.save(self.state_dict(), path)
def load(self, path: str):
self.load_state_dict(torch.load(path))