diff --git a/src/pyvibracore/results/nuisance.py b/src/pyvibracore/results/nuisance.py new file mode 100644 index 0000000..7555dc1 --- /dev/null +++ b/src/pyvibracore/results/nuisance.py @@ -0,0 +1,294 @@ +from __future__ import annotations + +from typing import Any, List, Tuple + +import geopandas as gpd +import matplotlib.patches as patches +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from numpy.typing import NDArray +from scipy import interpolate +from scipy.interpolate import interpolate +from shapely.geometry import LineString, Point, Polygon + +from pyvibracore.results.plot_utils import _north_arrow, _scalebar + +# CUR 166-1997 Tabel 5.20 Factor Cfc voor flooren +CFC_FACTOR_FLOORS = { + "driving": { + "concrete": {"Cfc": 1.4, "Vfc": 0.17}, + "wood": {"Cfc": 1.4, "Vfc": 0.17}, + }, + "vibrate": { + "concrete": {"Cfc": 1.7, "Vfc": 0.27}, + "wood": {"Cfc": 2.5, "Vfc": 0.44}, + }, +} + +TARGET_VALUE = { + "<= 1 day": [0.8, 6, 0.4], + "2 days": [0.72, 6, 0.38], + "3 days": [0.64, 6, 0.34], + "4 days": [0.56, 6, 0.36], + "5 days": [0.48, 6, 0.32], + ">= 6 days; <26 days": [0.4, 6, 0.3], + ">= 26 days; <78 days": [0.3, 6, 0.2], +} + + +def _nuisance_prediction( + A1: List[float], + A2: List[float], + A3: List[float], + vibrationVelocity_eff: List[float], + vibrationVelocity_per: List[float], + distance: List[float], +) -> NDArray: + """ + Based on the 'Handleiding meten en rekenen industrielawaai' 2004 methode l. + More information: https://open.overheid.nl/Details/ronl-15eb5528-d835-4f6a-b3a1-fc0851b334f9/1 + + Parameters + ---------- + A1: + target value [-] + A2: + target value [-] + A3: + target value [-] + vibrationVelocity_eff: + vibration velocity [mm/s] + vibrationVelocity_per: list + vibration velocity [mm/s] + distance: + distance with respect ot building [m] + + Returns + ------- + space: NDArray + """ + + df = pd.DataFrame( + { + "vibrationVelocity_per": vibrationVelocity_per, + "vibrationVelocity_eff": vibrationVelocity_eff, + "distance": distance, + } + ).drop_duplicates(subset=["vibrationVelocity_per", "vibrationVelocity_eff"]) + + # interpolate and predict + f_eff = interpolate.interp1d( + df["vibrationVelocity_eff"], + df["distance"], + kind="cubic", + assume_sorted=False, + fill_value="extrapolate", + ) + A1_d = f_eff(A1) + A2_d = f_eff(A2) + + # interpolate and predict + f_per = interpolate.interp1d( + df["vibrationVelocity_per"], + df["distance"], + kind="cubic", + assume_sorted=False, + fill_value="extrapolate", + ) + A3_d = f_per(A3) + + return np.min([np.max([A2_d, A3_d], axis=0), A1_d], axis=0) + + +def df_nuisance( + response_dict: dict, + cfc: float, + u_eff: float, + period: float, +) -> pd.DataFrame: + arr = np.array(response_dict["data"]["vibrationVelocity"]) + distances = _nuisance_prediction( + *zip(*TARGET_VALUE.values()), + vibrationVelocity_per=arr * cfc * u_eff * np.sqrt(period / 12), + vibrationVelocity_eff=arr * cfc * u_eff, + distance=response_dict["data"]["distance"], + ) + + return pd.DataFrame( + { + "labels": TARGET_VALUE.keys(), + "distance": distances, + } + ) + + +def map_nuisance( + buildings: gpd.GeoDataFrame, + source_location: Point | LineString | Polygon, + building_name: str, + response_dict: dict, + cfc: float, + u_eff: float, + period: float, + title: str = "Legend:", + figsize: Tuple[float, float] = (10.0, 12.0), + settings: dict | None = None, + **kwargs: Any, +) -> plt.Figure: + """ + Create map of the input building settings. + + Parameters + ---------- + buildings: + GeoDataFrame of the input buildings + response_dict: + response of the single prepal or cur166 endpoint. + source_location: + location of the vibration source + building_name: + name of the building + u_eff: + Vibration transfer to part of a building (u_eff) CUR 166-1997 page 514 [-] + cfc: + Vibration transfer to part of a building (Cfc) CUR 166-1997 table 5.20 or 5.21 [-] + period: + Operating period of the building code [hours] + title: + Legend title + figsize: + Size of the activate figure, as the `plt.figure()` argument. + settings: + Plot settings used in plot: default settings are: + + .. code-block:: python + + { + "source_location": {"label": "Trillingsbron", "color": "blue"}, + "levels": [ + { + "label": ">80 db [0 dagen]", + "level": 80, + "color": "darkred", + }, + { + "label": ">75 db [5 dagen]", + "level": 75, + "color": "red", + }, + { + "label": ">70 db [15 dagen]", + "level": 70, + "color": "orange", + }, + { + "label": ">65 db [30 dagen]", + "level": 65, + "color": "darkgreen", + }, + { + "label": ">60 db [50 dagen]", + "level": 60, + "color": "green", + }, + ], + } + **kwargs: + All additional keyword arguments are passed to the `pyplot.subplots()` call. + + Returns + ------- + Figure + """ + if settings is None: + settings = { + "source_location": {"label": "Trillingsbron", "color": "blue"}, + "levels": [ + { + "label": "<= 1 day", + "color": "darkred", + }, + { + "label": ">= 6 days; <26 days", + "color": "orange", + }, + { + "label": ">= 26 days; <78 days", + "color": "green", + }, + ], + } + + kwargs_subplot = { + "figsize": figsize, + "tight_layout": True, + } + + kwargs_subplot.update(kwargs) + + fig, axes = plt.subplots(**kwargs_subplot) + + gpd.GeoSeries(source_location).plot( + ax=axes, color=settings["source_location"]["color"], alpha=1, zorder=1, aspect=1 + ) + + building = buildings.get(buildings["name"] == building_name) + if building.empty: + raise ValueError(f"No buildings with name {building_name}.") + + buildings.where(buildings["name"] == building_name).plot( + ax=axes, zorder=2, color="gray", aspect=1 + ) + buildings.where(buildings["name"] != building_name).plot( + ax=axes, zorder=2, color="lightgray", aspect=1 + ) + + # plot contour + levels = [TARGET_VALUE[values["label"]] for values in settings["levels"]] + arr = np.array(response_dict["data"]["vibrationVelocity"]) + distances = _nuisance_prediction( + *zip(*levels), + vibrationVelocity_per=arr * cfc * u_eff * np.sqrt(period / 12), + vibrationVelocity_eff=arr * cfc * u_eff, + distance=response_dict["data"]["distance"], + ) + colors = [values["color"] for values in settings["levels"]] + for distance, color in zip(distances, colors): + gpd.GeoSeries(building.buffer(distance).exterior).plot( + ax=axes, zorder=3, color=color, aspect=1 + ) + + # plot name + for idx, row in buildings.iterrows(): + x = row.geometry.centroid.xy[0][0] + y = row.geometry.centroid.xy[1][0] + + axes.annotate( + idx, + xy=(x, y), + horizontalalignment="center", + ) + + # add legend + axes.legend( + title=title, + title_fontsize=18, + fontsize=15, + loc="lower right", + handles=[ + patches.Patch( + facecolor=value["color"], + label=value["label"], + alpha=0.9, + linewidth=2, + edgecolor="black", + ) + for value in settings["levels"] + ], + ) + + _north_arrow(axes) + _scalebar(axes) + + return fig