forked from Lu-Feng/SelaVPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
100 lines (90 loc) · 6.57 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import torch
import argparse
def parse_arguments():
parser = argparse.ArgumentParser(description="Benchmarking Visual Geolocalization",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Training parameters
parser.add_argument("--train_batch_size", type=int, default=4,
help="Number of triplets (query, pos, negs) in a batch. Each triplet consists of 12 images")
parser.add_argument("--infer_batch_size", type=int, default=16,
help="Batch size for inference (caching and testing)")
parser.add_argument("--criterion", type=str, default='triplet', help='loss to be used',
choices=["triplet", "sare_ind", "sare_joint"])
parser.add_argument("--margin", type=float, default=0.1,
help="margin for the triplet loss")
parser.add_argument("--epochs_num", type=int, default=50,
help="number of epochs to train for")
parser.add_argument("--patience", type=int, default=3)
parser.add_argument("--lr", type=float, default=0.00001, help="_")
parser.add_argument("--optim", type=str, default="adam", help="_", choices=["adam", "sgd"])
parser.add_argument("--cache_refresh_rate", type=int, default=1000,
help="How often to refresh cache, in number of queries")
parser.add_argument("--queries_per_epoch", type=int, default=5000,
help="How many queries to consider for one epoch. Must be multiple of cache_refresh_rate")
parser.add_argument("--negs_num_per_query", type=int, default=2,
help="How many negatives to consider per each query in the loss")
parser.add_argument("--neg_samples_num", type=int, default=1000,
help="How many negatives to use to compute the hardest ones")
parser.add_argument("--mining", type=str, default="partial", choices=["partial", "full", "random", "msls_weighted"])
# Model parameters
parser.add_argument("--l2", type=str, default="before_pool", choices=["before_pool", "after_pool", "none"],
help="When (and if) to apply the l2 norm with shallow aggregation layers")
parser.add_argument('--pca_dim', type=int, default=None, help="PCA dimension (number of principal components). If None, PCA is not used.")
parser.add_argument("--registers", action='store_true', help="_")
# Initialization parameters
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--foundation_model_path", type=str, default=None,
help="Path to load foundation model checkpoint.")
parser.add_argument("--resume", type=str, default=None,
help="Path to load checkpoint from, for resuming training or testing.")
# Other parameters
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"])
parser.add_argument("--num_workers", type=int, default=8, help="num_workers for all dataloaders")
parser.add_argument('--resize', type=int, default=[224,224], nargs=2, help="Resizing shape for images (HxW).")
parser.add_argument('--dense_feature_map_size', type=int, default=[61,61,128], nargs=3,
help="size of dense feature map (a 61x61 grid 128-dim local features)")
parser.add_argument('--test_method', type=str, default="hard_resize",
choices=["hard_resize", "single_query", "central_crop", "five_crops", "nearest_crop", "maj_voting"],
help="This includes pre/post-processing methods and prediction refinement")
parser.add_argument("--majority_weight", type=float, default=0.01,
help="only for majority voting, scale factor, the higher it is the more importance is given to agreement")
parser.add_argument("--efficient_ram_testing", action='store_true', help="_")
parser.add_argument("--val_positive_dist_threshold", type=int, default=25, help="_")
parser.add_argument("--train_positives_dist_threshold", type=int, default=10, help="_")
parser.add_argument('--recall_values', type=int, default=[1,5,10,20], nargs="+",
help="Recalls to be computed, such as R@5.")
parser.add_argument("--rerank_num", type=int, default=100, help="_")
# Data augmentation parameters
parser.add_argument("--brightness", type=float, default=None, help="_")
parser.add_argument("--contrast", type=float, default=None, help="_")
parser.add_argument("--saturation", type=float, default=None, help="_")
parser.add_argument("--hue", type=float, default=None, help="_")
parser.add_argument("--rand_perspective", type=float, default=None, help="_")
parser.add_argument("--horizontal_flip", action='store_true', help="_")
parser.add_argument("--random_resized_crop", type=float, default=None, help="_")
parser.add_argument("--random_rotation", type=float, default=None, help="_")
# Paths parameters
parser.add_argument("--datasets_folder", type=str, default=None, help="Path with all datasets")
parser.add_argument("--dataset_name", type=str, default="pitts30k", help="Relative path of the dataset")
parser.add_argument("--pca_dataset_folder", type=str, default=None,
help="Path with images to be used to compute PCA (ie: pitts30k/images/train")
parser.add_argument("--save_dir", type=str, default="default",
help="Folder name of the current run (saved in ./logs/)")
args = parser.parse_args()
if args.datasets_folder == None:
try:
args.datasets_folder = os.environ['DATASETS_FOLDER']
except KeyError:
raise Exception("You should set the parameter --datasets_folder or export " +
"the DATASETS_FOLDER environment variable as such \n" +
"export DATASETS_FOLDER=../datasets_vg/datasets")
if args.queries_per_epoch % args.cache_refresh_rate != 0:
raise ValueError("Ensure that queries_per_epoch is divisible by cache_refresh_rate, " +
f"because {args.queries_per_epoch} is not divisible by {args.cache_refresh_rate}")
if torch.cuda.device_count() >= 2 and args.criterion in ['sare_joint', "sare_ind"]:
raise NotImplementedError("SARE losses are not implemented for multiple GPUs, " +
f"but you're using {torch.cuda.device_count()} GPUs and {args.criterion} loss.")
if args.pca_dim != None and args.pca_dataset_folder == None:
raise ValueError("Please specify --pca_dataset_folder when using pca")
return args