forked from zhiqix/NL2GQL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Smaller_LLM.py
54 lines (46 loc) · 2.13 KB
/
Smaller_LLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import openai
from Config import *
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
import requests
# from peft import PeftModel, PeftConfig
'''
Deployment Plan for 7B-Scale Models - Further optimization for vllm deployment can be considered.
chat: Local deployment of the original model.
chat_with_api: Remote deployment with API connectivity.
'''
class SMALLER_LLM:
def __init__(self):
print('Initializing...')
self.model_path = SLLM_MODEL_PATH
self.api_url = API_URL
# Check if API usage is disabled
if not USE_API:
# Initialize tokenizer and model from the local path
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, use_fast=False, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(self.model_path, device_map=DEVICE_MAP, torch_dtype=torch.bfloat16, trust_remote_code=True)
self.model.generation_config = GenerationConfig.from_pretrained(self.model_path)
# Check if LORA model is to be used and LORA_PATH is provided
if USE_LORA and LORA_PATH != "":
# Load the model from LORA_PATH
self.model = PeftModel.from_pretrained(self.model, LORA_PATH)
def chat(self, text):
messages = []
messages.append({"role": "user", "content": text})
response = self.model.chat(self.tokenizer, messages)
return response[0]
def chat_with_api(self, text):
# Set the OpenAI API base and key for remote deployment
openai.api_base = "http://xxxx:8000/v1" # Replace with your service's IP
openai.api_key = "xxxx" # Fill in your API key here
# Create a ChatCompletion request with the user's text
completion = openai.ChatCompletion.create(
model=SLLM_MODEL_NAME,
messages=[
{"role": "user", "content": text},
],
stream=False,
)
# Retrieve and return the generated content
return completion.choices[0].message.content