-
Notifications
You must be signed in to change notification settings - Fork 28
References
[1] A. Basu, D. Warzel, A. Eftekhari, J. S. Kirby, J. Freymann, J. Knable, A. Sharma, and P. Jacobs, Call for Data Standardization: Lessons Learned and Recommendations in an Imaging Study, JCO Clinical Cancer Informatics, 1–11 (2019).
[2] T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson, D. Geman, K. Baggerly, and R. A. Irizarry, Tackling the widespread and critical impact of batch effects in high-throughput data, Nature Reviews Genetics, 733–739 (2010).
[3] L. Scarpace, T. Mikkelsen, S. Cha, S. Rao, S. Tekchandani, D. Gutman, J. Saltz, B. Erickson, N. Pedano, A. Flanders, J. Barnholtz-Sloan, Q. Ostrom, D. Barboriak, and L. Pierce, Radiology Data from The Cancer Genome Atlas Glioblastoma Multiforme [TCGA-GBM] collection, The Cancer Imaging Archive, http://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9.
[4] E. A. Gardner, J. H. Ellis, R. J. Hyde, A. M. Aisen, D. J. Quint, and P. L. Carson, Detection of degradation of magnetic resonance (MR) images: comparison of an automated MR image-quality analysis system with trained human observers, Academic Radiology 2, 277--281 (1995).
[5] O. Ieremeiev, V. Lukin, N. Ponomarenko, and K. Egiazarian, Robust linearized combined metrics of image visual quality, Electronic Imaging 2018, 260--1--260--6 (2018).
[6] J. P. Woodard and M. P. Carley-Spencer, No-reference image quality metrics for structural MRI, Neuroinformatics 4, 243--262 (2006).
[7] P. S. Foundation, The Python Package Index (PyPI), https://pypi.org/.
[8] S. van der Walt, J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors, scikit-image: image processing in Python, PeerJ 2, e453 (2014).
[9] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Scientific data 4, 170117 (2017).
[10] O. Esteban, D. Birman, M. Schaer, O. O. Koyejo, R. A. Poldrack, and K. J. Gorgolewski, MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites, PloS one (2017).
If you find this useful, additional details can be found in the full paper.
MRQy has been developed at INVent Lab, affiliated with the Center for Computational Imaging and Personalized Diagnostics, at Case Western Reserve University.