-
Notifications
You must be signed in to change notification settings - Fork 29
/
svm2.py
executable file
·276 lines (248 loc) · 8.89 KB
/
svm2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/python
import svmlight
import ngrams
import os
import pickle
import numpy
import matplotlib.pyplot as plt
from classifier import LinearSVMClassifier
import data
TRAIN_SIZE = 300
TEST_SIZE = 1000-TRAIN_SIZE
K = 3
class FeatureMap:
"""
SVM light requires features to be identified with numbers,
so this object maps features (strings) to numbers
"""
def __init__(self):
self.fmap = {}
self.size = 1
def hasFeature(self,f):
return f in self.fmap
def getFeature(self,f):
return self.fmap[f]
def getID(self,id):
return self.fmap[id]
def addFeature(self,f):
if f not in self.fmap:
self.fmap[f]=self.size
self.fmap[self.size]=f
self.size += 1
def getSize(self):
return self.size
class Indexes:
"""
Indexes object generates indices for different configurations
Modes:
'r' : random
'd' : deterministic
'k' : k-fold cross-fold validation
"""
def __init__(self):
self.mode = 'r'
self.iterations = 10
def __init__(self,mode,iterations):
self.mode = mode
self.iterations = iterations
self.pos_train_ind = None
self.pos_test_ind = None
self.neg_train_ind = None
self.neg_test_ind = None
self.gen_indices = generate_indices(mode,iterations)
def next(self):
(a,b,c,d) = self.gen_indices.next()
self.pos_train_ind = a
self.pos_test_ind = b
self.neg_train_ind = c
self.neg_test_ind = d
def get_pos_train_ind(self):
return self.pos_train_ind
def get_pos_test_ind(self):
return self.pos_test_ind
def get_neg_train_ind(self):
return self.neg_train_ind
def get_neg_test_ind(self):
return self.neg_test_ind
def test_svmlight():
training_data = [(1, [(1,2),(2,5),(3,6),(5,1),(4,2),(6,1)]),
(1, [(1,2),(2,1),(3,4),(5,3),(4,1),(6,1)]),
(1, [(1,2),(2,2),(3,4),(5,1),(4,1),(6,1)]),
(1, [(1,2),(2,1),(3,3),(5,1),(4,1),(6,1)]),
(-1, [(1,2),(2,1),(3,1),(5,3),(4,2),(6,1)]),
(-1, [(1,1),(2,1),(3,1),(5,3),(4,1),(6,1)]),
(-1, [(1,1),(2,2),(3,1),(5,3),(4,1),(6,1)]),
(-1, [(1,1),(2,1),(3,1),(5,1),(4,3),(6,1)]),
(-1, [(1,2),(2,1),(3,1),(5,2),(4,1),(6,5)]),
(-1, [(7,10)])]
test_data = [(0, [(1,2),(2,6),(3,4),(5,1),(4,1),(6,1)]),
(0, [(1,2),(2,6),(3,4)])]
model = svmlight.learn(training_data, type='classification', verbosity=0)
svmlight.write_model(model, 'my_model.dat')
predictions = svmlight.classify(model, test_data)
for p in predictions:
print '%.8f' % p
# output should be 2 positive numbers
def gen_ngrams(n=2,data="pos"):
"Generate ngrams and save locally"
temp = []
for i in os.listdir("%s" % data):
temp.append(open("%s/" % data + i).read())
temp = "\n".join(temp)
aggregate_ngrams = ngrams.ngrams(n, temp)
pickle.dump(aggregate_ngrams, open("%s_%sgram.dump" % (data,n),'w'))
def gen_all_ngrams():
"Generate a bunch of ngrams for convenience"
gen_ngrams(n=1,data="pos")
gen_ngrams(n=1,data="neg")
gen_ngrams(n=2,data="pos")
gen_ngrams(n=2,data="neg")
gen_ngrams(n=3,data="pos")
gen_ngrams(n=3,data="neg")
def load_ngrams(n,data="pos"):
"Load ngram data from disk"
return pickle.load(open("%s_%sgram.dump" % (data,n)))
def gen_feature_map(strings,fmap):
for string in strings:
fmap.addFeature(string)
def load_features(n,fmap):
print "Positive data"
p = load_ngrams(n,"pos")
v = p.values()
upper = numpy.percentile(v,99.85)
lower = numpy.percentile(v,65)
print "> filtering %s values" % len(v)
items = filter(lambda x: x[1] > lower and x[1] < upper, p.items())
keys = [item[0] for item in items]
print "> gen_feature_map with %s keys" % len(keys)
gen_feature_map(keys,fmap)
print "Negative data"
n = load_ngrams(n,"neg")
v = n.values()
upper = numpy.percentile(v,99.85)
lower = numpy.percentile(v,65)
print "> filtering %s values" % len(v)
items = filter(lambda x: x[1] > lower and x[1] < upper, n.items())
keys = [item[0] for item in items]
print "> gen_feature_map with %s keys" % len(keys)
gen_feature_map(keys,fmap)
def training_set(ind,n=3):
"""
Caution: Do not use 0 as label because it evaluates to False
"""
pos = os.listdir("pos")
feature_vectors = [ngrams.ngrams(n, open("pos/"+pos[i]).read()) for i in ind.get_pos_train_ind()]
labels = [1 for i in ind.get_pos_train_ind()]
neg = os.listdir("neg")
feature_vectors.extend([ngrams.ngrams(n, open("neg/"+neg[i]).read()) for i in ind.get_neg_train_ind()])
labels.extend([2 for i in ind.get_neg_train_ind()])
(matrix, gramsdict) = ngrams.ngrams_to_matrix(feature_vectors, labels, return_gramsdict=True)
return (matrix.asMatrix(), gramsdict)
def get_accuracy(results):
size = len(results)/2
pos_correct = len(numpy.nonzero(numpy.array(results[0:size]) > 0.0)[0])
neg_correct = len(numpy.nonzero(numpy.array(results[size:]) < 0.0)[0])
pos_accuracy = float(pos_correct)/size
neg_accuracy = float(neg_correct)/size
accuracy = float(pos_correct+neg_correct)/size/2
print "Accuracy: %s (pos) %s (neg) %s (overall)" % (pos_accuracy, neg_accuracy, accuracy)
return (pos_accuracy, neg_accuracy, accuracy)
def plot_results(results):
size = len(results)/2
# plot positive labels
print "POSITIVE"
pos_hist = numpy.histogram(p[0:size])
print pos_hist
fig = plt.figure()
fig.suptitle('SVM results', fontsize=12)
fig.add_subplot(1,2,1)
plt.title('positive')
plt.hist(p[0:nresults/2])
pos_axis = plt.axis()
# plot negative labels
print "NEGATIVE"
fig.add_subplot(1,2,2)
plt.title('negative')
neg_hist = numpy.histogram(p[size:])
print neg_hist
plt.hist(p[nresults/2:])
neg_axis = plt.axis()
# match axes of the two graphs
low_axis = [min(a,b) for (a,b) in zip(pos_axis,neg_axis)]
high_axis = [max(a,b) for (a,b) in zip(pos_axis,neg_axis)]
new_axis = [low_axis[0],high_axis[1],low_axis[2],high_axis[3]]
plt.axis(new_axis)
plt.subplot(1,2,1)
plt.axis(new_axis)
# display plot
plt.show()
def shuffle_ind():
ind = numpy.arange(1000)
from numpy.random import shuffle
shuffle(ind)
return ind
def generate_indices(mode='r',iterations=1):
if mode=='d': # deterministic
def get_indices():
ind = numpy.arange(1000)
pos_train_ind = ind[:TRAIN_SIZE]
pos_test_ind = ind[TRAIN_SIZE:]
neg_train_ind = ind[:TRAIN_SIZE]
neg_test_ind = ind[TRAIN_SIZE:]
for i in range(iterations):
yield (pos_train_ind, pos_test_ind, neg_train_ind, neg_test_ind)
elif mode=='r': # random
def get_indices():
for i in range(iterations):
pos_ind = shuffle_ind()
pos_train_ind = pos_ind[:TRAIN_SIZE]
pos_test_ind = pos_ind[TRAIN_SIZE:]
neg_ind = shuffle_ind()
neg_train_ind = neg_ind[:TRAIN_SIZE]
neg_test_ind = neg_ind[TRAIN_SIZE:]
yield (pos_train_ind, pos_test_ind, neg_train_ind, neg_test_ind)
elif mode=='k': # k-fold cross-validation
pass #TODO
return get_indices()
def run_svm(mode='r',iterations=2):
# setup work (generate all the ngrams if they don't exist yet)
import os
if not os.path.isfile('pos_%sgram.dump' % n):
gen_all_ngrams()
ind = Indexes(mode,iterations)
acc = (0,0,0)
# run svm
for i in range(iterations):
ind.next()
(train, gramsdict) = training_set(ind,n=n)
classifier = LinearSVMClassifier(data.Data(numpy.array(train, dtype=numpy.uint16).T))
j = ind.get_pos_test_ind()[0]
pos = os.listdir("pos")
test = ngrams.grams_to_featurevector(gramsdict, ngrams.ngrams(n, open("pos/"+pos[j]).read()), label=None)
print classifier.classify(test, dtype=numpy.uint16)
neg = os.listdir("neg")
j = ind.get_neg_test_ind()[0]
test = ngrams.grams_to_featurevector(gramsdict, ngrams.ngrams(n, open("neg/"+neg[j]).read()), label=None)
print classifier.classify(test, dtype=numpy.uint16)
print m[-2]
print m[-1]
# p = test_model(m,ind,n=n)
# nresults = len(p)
# acc = [(a+b) for (a,b) in zip(acc,get_accuracy(p))]
print acc
return (m,p)
fmap = FeatureMap()
# USAGE:
# $ ipython
# $ run -i svm
# $ get_accuracy(p)
# $ plot_results(p)
#if __name__ == "__main__":
n = 2 # specifies n in n-grams
(m,p) = (None, None)
run_svm()
# RESULTS
# 80% accuracy with TRAIN_SIZE=300
# 84% accuracy with TRAIN_SIZE=500
# 50% accuracy with TRAIN_SIZE=900 (why?)
# Segfault with TRAIN_SIZE=100 (why?)