From ad7968966fd80f11579d8c69a8b2f10867647655 Mon Sep 17 00:00:00 2001 From: weiglszonja Date: Sun, 1 Dec 2024 18:40:21 +0100 Subject: [PATCH] Add tutorials --- ...embargo_2024_processedbehaviorinterface.py | 2 +- .../tutorials/ephys_example_notebook.ipynb | 2893 +++++++++++++++++ .../tutorials/ephys_run_session_to_nwb.ipynb | 231 ++ 3 files changed, 3125 insertions(+), 1 deletion(-) create mode 100644 src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_example_notebook.ipynb create mode 100644 src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_run_session_to_nwb.ipynb diff --git a/src/constantinople_lab_to_nwb/schierek_embargo_2024/interfaces/schierek_embargo_2024_processedbehaviorinterface.py b/src/constantinople_lab_to_nwb/schierek_embargo_2024/interfaces/schierek_embargo_2024_processedbehaviorinterface.py index 2513549..61cdf8f 100644 --- a/src/constantinople_lab_to_nwb/schierek_embargo_2024/interfaces/schierek_embargo_2024_processedbehaviorinterface.py +++ b/src/constantinople_lab_to_nwb/schierek_embargo_2024/interfaces/schierek_embargo_2024_processedbehaviorinterface.py @@ -107,7 +107,7 @@ def add_to_nwbfile( if column in data: data[column] = list(np.array(data[column]).astype(bool)) - columns_to_add = data.keys() + columns_to_add = list(data.keys()) if column_name_mapping is not None: columns_to_add = [column for column in column_name_mapping.keys() if column in data.keys()] diff --git a/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_example_notebook.ipynb b/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_example_notebook.ipynb new file mode 100644 index 0000000..2c57009 --- /dev/null +++ b/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_example_notebook.ipynb @@ -0,0 +1,2893 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "90ae0edb-2fab-47dc-ad31-e79cf2905733", + "metadata": {}, + "source": [ + "# Electrophysiology demo\n", + "\n", + "This tutorial demonstrates how to access an NWB file from the [DANDI:001264](https://dandiarchive.org/dandiset/001264/draft) dataset using `pynwb`.\n", + "\n", + "This dataset contains extracellular electrophysiology recordings from rats performing a value-based decision-making task. \n", + "\n", + "Neural data were acquired using Neuropixels probes (384 channels, 30 kHz sampling rate) with Neuropix-PXI hardware and OpenEphys, and preprocessed using Kilosort 2.5 with manual curation in Phy. \n", + "\n", + "Trials were initiated by a nose-poke in a lit center port and required maintaining a center fixation for 0.8 to 1.2 seconds, during which a tone indicated the possible reward size. A subsequent side LED indicated the potential reward location, followed by a delay period drawn from an exponential distribution (mean = 2.5 s). Rats could opt out at any time by poking the unlit port, restarting the trial. Catch trials, where the delay period only ended if the rat opted out, constituted 15-25% of the trials. Rats received penalties for premature fixation breaks. Additionally, the tasks introduced semi-observable hidden states by varying reward statistics across uncued blocks (high, low, and mixed), structured hierarchically, with blocks transitioning after 40 successfully completed trials." + ] + }, + { + "cell_type": "markdown", + "id": "f58b841c-573c-4b9f-92d3-8c6d0cad2e08", + "metadata": {}, + "source": [ + "# Reading an NWB file\n", + "\n", + "This section demonstrates how to read an NWB file using `pynwb`.\n", + "Based on the [NWB File Basics](https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_file.html#sphx-glr-tutorials-general-plot-file-py) tutorial from [PyNWB](https://pynwb.readthedocs.io/en/stable/#).\n", + "\n", + "An [NWBFile](https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.NWBFile) represents a single session of an experiment. Each NWBFile must have a `session description`, `identifier`, and `session start time`.\n", + "\n", + "Reading is carried out using the [NWBHDF5IO](https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.NWBHDF5IO) class. To read the NWB file use the read mode \"r\" to retrieve an NWBFile object." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "55f744a2-8657-4bcc-927e-61be5c1b84c5", + "metadata": {}, + "outputs": [], + "source": [ + "from pynwb import NWBHDF5IO\n", + "import ndx_structured_behavior\n", + "\n", + "nwbfile_path = \"/Volumes/T9/Constantinople/nwbfiles/J076_2023-12-12_14-52-04.nwb\"\n", + "io = NWBHDF5IO(nwbfile_path, load_namespaces=True)\n", + "nwbfile = io.read()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4781be7e-7af0-492e-bfb0-a4af09ecf0c2", + "metadata": {}, + "source": [ + "# Streaming an NWB file\n", + "\n", + "This section demonstrates how to access the files on the [DANDI Archive](https://dandiarchive.org) without downloading them. Based on the [Streaming NWB files](https://pynwb.readthedocs.io/en/stable/tutorials/advanced_io/streaming.html) tutorial from [PyNWB](https://pynwb.readthedocs.io/en/stable/#).\n", + "\n", + "The `dandi.dandiapi.DandiAPIClient` can be used to get the S3 URL of the NWB file stored in the DANDI Archive.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f402c0a8-285a-4270-9c46-c3ff2d24b13a", + "metadata": {}, + "outputs": [], + "source": [ + "# from dandi.dandiapi import DandiAPIClient\n", + "\n", + "# client = DandiAPIClient.for_dandi_instance(\"dandi\")\n", + "\n", + "# dandiset_id = \"001264\"\n", + "# file_path = \"sub-J076/sub-J076_ecephys.nwb\"\n", + "\n", + "# with DandiAPIClient() as client:\n", + "# asset = client.get_dandiset(dandiset_id, 'draft').get_asset_by_path(file_path)\n", + "# s3_url = asset.get_content_url(follow_redirects=1, strip_query=True)\n" + ] + }, + { + "cell_type": "markdown", + "id": "5b5f586b-c337-4c13-8a69-a83c640d1ebf", + "metadata": {}, + "source": [ + "We will use `remfile` for streaming the file. You can read more about `remfile` at [this tutorial section](https://pynwb.readthedocs.io/en/stable/tutorials/advanced_io/streaming.html#method-3-remfile)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "25469dcf-3453-4391-be40-a1b9b199d31e", + "metadata": {}, + "outputs": [], + "source": [ + "# import h5py\n", + "# from pynwb import NWBHDF5IO\n", + "# import remfile\n", + "\n", + "# # We stream the file using remfile and open it with h5py and pynwb\n", + "# file = remfile.File(s3_url)\n", + "# h5_file = h5py.File(file, \"r\")\n", + "# io = NWBHDF5IO(file=h5_file, load_namespaces=True)\n", + "\n", + "# nwbfile = io.read()" + ] + }, + { + "cell_type": "markdown", + "id": "25a5bb56-7dd1-4d4e-b56c-a65543811c89", + "metadata": {}, + "source": [ + "Importantly, the session start time is the reference time for all timestamps in the file. For instance, an event with a timestamp of 0 in the file means the event occurred exactly at the session start time." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6562ea81-123b-41d4-acc3-c25b8434a1ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "datetime.datetime(2023, 12, 12, 14, 53, 12, tzinfo=tzoffset(None, -18000))" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.session_start_time" + ] + }, + { + "cell_type": "markdown", + "id": "0fcae1c6-d866-4bd1-897d-563323d83e28", + "metadata": {}, + "source": [ + "This section demonstrates how to access the [Subject](https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.Subject) field in an NWBFile.\n", + "\n", + "The [Subject](https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.Subject) field can be accessed as `nwbfile.subject`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4c98c8ab-dd37-448d-a28c-a7f8a61a76da", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

subject (Subject)

age: TBD
age__reference: birth
sex: U
species: Rattus norvegicus
subject_id: J076
" + ], + "text/plain": [ + "subject pynwb.file.Subject at 0x5090464480\n", + "Fields:\n", + " age: TBD\n", + " age__reference: birth\n", + " sex: U\n", + " species: Rattus norvegicus\n", + " subject_id: J076" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.subject" + ] + }, + { + "cell_type": "markdown", + "id": "12b5b6aa-9a44-4de3-a8e2-a50b5d538f6f", + "metadata": {}, + "source": [ + "# Access Recording\n", + "\n", + "This section demonstrates how to access the raw `ElectricalSeries` data.\n", + "\n", + "`NWB` organizes data into different groups depending on the type of data. Groups can be thought of as folders within the file. Here are some of the groups within an NWBFile and the types of data they are intended to store:\n", + "\n", + "- `acquisition`: raw, acquired data that should never change\n", + "- `processing`: processed data, typically the results of preprocessing algorithms and could change\n", + "\n", + "## Raw ElectricalSeries\n", + "\n", + "The raw ElectricalSeries data is stored in an [pynwb.ecephys.ElectricalSeries](https://pynwb.readthedocs.io/en/stable/pynwb.ecephys.html#pynwb.ecephys.ElectricalSeries) object which is added to `nwbfile.acquisition`. The data can be accessed as `nwbfile.acquisition[\"ElectricalSeries\"]`.\n", + "\n", + "The data in `ElectricalSeries` is stored as a two dimensional array: the first dimension is time, the second dimension represents electrodes/channels.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1c694cd3-33e9-46b8-a87e-a34d4d4eaf64", + "metadata": {}, + "outputs": [], + "source": [ + "electrical_series = nwbfile.acquisition[\"ElectricalSeries\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b83afa53-8f41-4dac-b812-607161e5ea13", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfwAAAOrCAYAAAACn0f3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3RU1RYG8G8mk957BUIaBAi9JTRpShdBRFQQVMQGPnt/oj4L9q6ISlNBkSJFxALSEnonISEJCaT3nsm0+/44ySQhCaRMMsnw/dZihWl3ziQzd+7dZ5+9ZZIkSSAiIiIiIiIiIiIiog5NbuwBEBERERERERERERFRyzHgT0RERERERERERERkAhjwJyIiIiIiIiIiIiIyAQz4ExERERERERERERGZAAb8iYiIiIiIiIiIiIhMAAP+REREREREREREREQmgAF/IiIiIiIiIiIiIiITwIA/EREREREREREREZEJYMCfiIiIiIiIiIiIiMgEMOBPRERERERERERERGQCGPAnIiIiIiIiIiIiIjIBDPgTEREREREREREREZkABvyJiIiIiIiIiIiIiEwAA/5ERERERERERERERCaAAX8iIiIiIiIiIiIiIhPAgD8RERERERERERERkQlgwJ+IiIiIiIiIiIiIyAQw4E9EREREREREREREZAIY8CciIiIiIiIiIiIiMgEM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJkBh7AEQdXSHE3NRqtKgu5cDvB2tIJPJjD0kIiIiIiIiIiIiugEx4E/UAhuOXcEzv57RX3ayMUd3L3uEejsg1NsBPbwdEORhBytzMyOOkoiIiIiIiIiIiG4EMkmSJGMPgqgjOpyYi3u+Owy1VoJcBuga+CSZyWUIdLfVTwL09nVE/y7OnAQgIiIiIiIiIiIig2LAn6gZLueW4dYvDiC/TI0e3g745aFwZBUpEZNejJj0Iv2/tEJlvY+3MpdjaIArRgS7Y2SwG4I87FgKiIiIiIiIiIiIiFqEAX+iJipSqjHjy0jEZ5XA3d4SWx8bBm9H63rvW1Cmqj0JkFGEmPRiaK9aDuDtaIURwW4YGeKOYYFucLa1aIuXQkRERERERERERCaEAX+iJtBodbhv9THsi8uGpUKOXxaFo08npyZto7BcjaiEXOy7mI19cdlIyS+vdbtMBvT2dcTIEHeM7u6B/p2dDfgKiIiIiIiIiIiIyFQx4E/UBEu3nseqyCQAwOd39cOU3j4t2p4kSUjKLcP+yuB/VEIuSlXaWve5rZ8v3pjeC3aW7LFNREREREQ3Jp1OwqXcUvi72sJMznKoREREDWHAn6iR1h5KxitbzgEA/jMuGP8ZF2Lw51BpdDh5OR/7Lmbj39hsnE8rAgD4u9rg87v6o5evo8Gfk4iIOhaNVofcUhU8HayMPRQiIoIIRKfkl8PRxhyO1ubGHo5JisssxnMbz+Dk5QL08XPEOzN7I9TbwdjDIiIiapcY8CdqhAMXc3DvyiPQ6iRM7eODT+/s2+pNdiVJwi/HruDVreehVOtgYSbH8xO7Y8Ewfzb4JSK6AUmShD+jM7Fs5wUk5pTipUmhWDgywNjDolaWUaiEo7U5rC3MjD0UIgJQUqFBbEYRomv06YrNKEaZSgtzMxnGdPfAjP5+GN3NAxYKubGH2+FVaLT4ck8Cvvw3HmptdehCIZdh0agALB4TDCtz7h+JiIhqYsCf6DoSsktw2xcHUaTUoE8nJ/z84NA2Pai8mFmMx346idjMYgDAuFAPvHt7H7iwsS8R0Q3j5OV8vPV7DI4m5euvM5PLsOGhcPZ6MWHfHbiEN7ZHQyYDurraItTbAaHe9pU/HeDtaMUkAKJWlFmkxKkrBYhJL8KF9GLEZBQhObesUY91sjHHtD4+mNHfD338HPlZbYbjyXl4buNZxGeVAACCPOzw0KhArNiXqD83CnCzxdszwjAkwNWYQyUiImpXGPAnuob8UhVu+/IgknLL4O1ohd8eHQYPI5RQUKq1eGN7NH48fBkA4OVghY/v7IuhPLAlIjJpybmleHdXLHacSddfN6GnFy7nlSE6vQidXKyxY8kIOFixhISp+Ts6EwvXHsO1jtSdbMzR3at6AqCHtwO6e9lDYWaaWcUarQ4anWTUbF6lWotylRbOTLwweT8fvYyXNp+DRlf3QyiTAf6utmICzkt8/rp52eN8WiE2nkjFngtZtR4X4G6Lmf39ML2fL3ydrNvyZXRIJRUavPfHBaw5lAxJAszNZHj4piA8OjoQlgozqDQ6LN+bgM92x0Ol1QEA7hrSGc9P7M7vQyIiIjDg32rKVBqUXdV89VqcrM1N9uSso1JpdJj3/WEcSsyDjYUZNjwUjp4+xq2h//vZdDy38QyKlRrIZcDiMcFYMjaYTauIiExMfqkKn+6+iB8OJetLGPTr7ISXJoVioL8LErNLMOWzAyhTadus1By1nZj0Itz+VSRKVVoM7uqCZ27phgvp1SVELmQUQanW1fvY7l72WLVgMLwcTavHw7bTaXhx81mUqbQIcLPVT3KEetujh7cD3O0tm/0ZqNBokVuiQnZxBXJKKq76Ka7PLqlATnEFiis0AIBevg6Y0c8P0/r6wM3O0pAvldqBXecz8PAPx6GTAFsLM3S/anVNdy972FgoGnx8XqkK206nYdOJFJxOKax1W3iAK2b098XEMG/YWTa8jRvV7guZeHnzOaQVKgEAfTs5YdnM3ujmZV/nvvFZJXhh0xn96jdPB0u8cWsv3NzTq03HTERE1N4w4G9gGq0On/5zEV/tTahVY/B67C0ViAhyxYhgd4wKcUcnF5tWHCVdjyRJeHHzWaw7cgUyGfD1PQNwSzs5cLySV4Yl60/i5OUCAMDgri745M6+8HZkthARUUenVGuxKjIJX+yJR7FSBBa7uNrguQndMbGXV62A5oZjV/DMr2cAAO/d3huzBnYyypjJsLKLKzD9i4NILShHF1cbbHlkWJ1scq1OQlJuqb5+eEzlREB6ZYDM18kaa+4fjEB3O2O8BIPS6SR8/HccPt0df837udpa1Cl55GRjjpxilQje1wnkVwf0C8vVzR6fmVyGUSHumNHfF+NCPVlL3AQcTszF3O+PQKXRYWAXZ6y9f0iLemjEZxVj04lUbD6Zqv+MAoCzjTlW3zcYvf2cDDDqji+npAKvb4vG1tNpAAAbCzM8e0s3zA33v2Zyk04n4ccjl7Fs5wWUVE7ITQrzwtJpPeFhb1oTn0RERI3FgL8BpRWU4/H1J2vV120uf1cbjAxxx4hgd4QHujL7o419uz8R/9sRAwB4bkJ3PHxToJFHVJtaq8OHf8Xh670JkCRxwvD+rD4YG+pp7KEREVEz6HQSfjudivd3xSG1oByA2LcvGRuMu4d0qbfxoyRJeHz9KWw9nQYbCzNsWzzcJAK8NzKlWou7VhzCicsFsLdSYPMjEQjyqJvV2pDDibl4YM0xFCs1cLG1wKoFgzp0MLG0QoMnfzmFXeczAQCjQtyxaGQAYjOL9RMdsZnFUGnqX+3QHA5WCrjZW8LNzhLu9pZwr/zpZmdR+dMSaq2E7WfSsPVUGnJLVfrH2lspMKW3N2b098PALs5cddMBxaQX4Y7lUShWatDN0x6/LAqHo41hSsTodBIOJeZi08lU/H42HWUqLRysFPjxgaEI8zPuKmJjkiQJm06k4o0d0SgoE5NvN3Vzx/+m94Kfc+OT4NILy/HKlnP4OyYLgPgsvzy5B2YN9ONnsRkkSeLvjYioA2PA30D+PJ+BZ349g8JyNWQy4NGbgnD7AD805jtSq5NwNrUQe+Oysf9iDrKLK2rdrpDL0L+LM0YGu2FkiDt6+ThCzhIuBiFJErKKKxB9VYZcVWOomf398P6s3u32YGf/xWw88fNp5JSI90wnF2t9HdGqWr5+ztZ8vxARtWMqjQ4PrDmGfXHZAABLhRz3De+Kh28KvG4t4iKlGpM/3Y8reeXo6eOATY9EwFLBDOOOSJIk/OfnU/jtVBrM5DKsnD8II0Pcm7yd6LQi3LvyCLKLK2BrYYZv5g3EsCA3g4yvKVp67JSSX4YHVh/DhQzRmHPhiK54fmJonUxfjVaHSzmllcdyxfpVD1k1jqftLBV1gvbudpZws6/+6WZnATc7yyZl6Ku1OuyLy8amE6n4KzpTX0scADq72OC2fr6Y0d8XXVxtW/S7oLZxJa8MM7+KRFZxBXydrLHx4YhWK411ObcMd34ThbRCJRytzfHjA0PQy/fGC/qXVGjwVI1JPWcbc7w6tSdu7evTrH2IJEnYcTYdS7eeR06JmIwb38MTn83pZ5TVN+dSC7Hsjws4npyPXr6OGBXijhHBbu32fD4ppxSbTqbit1NiNUqIpx1CvRz0Ja16eDvAyYb9S4iIOgIG/FtIqdbi7d9jsDoqGQDgbm+Jj2f3bfaJlSRJuJBRjP0Xs7EvLgdHkvLqZC15OVhhwTB/zBnSmU2JmkCl0SE+q6R6+XuGODHMq5GZVdPQABesvm9wuw+cZBdX4MlfTmH/xZx6b7ezVKC7lz26N6HuKBERtQ1JkvD8xrP4+dgVAMCM/r546uZuTWrqePJyPmZ9HQWNTsL9w7vilSk9Wmu41Io+++ciPvgrDgDw+q09MS/cv9nbupxbhnu+O4zLeWWwMJPj4zv7YlKYd7O2depKAZbtvICoxNxGP8ZCIceUMG88OCoA3b0cmvycx5LysGjtceSWqmBhJsebt/Vqcsmq3JIKlKm0cLOzbFE5lsYqLFNjx9l0bDqRgmPJtVf7zuzvhzdv68VyP+1YbkkFZn0dhcScUjjbmGPDQxEI8mjdFVPJuaW485tDSC9UwslGBP2N3S+sLV3JE5N6sZliUu+2fr54eXIoXA3QE6OgTIU3d8Rgw/EUAMAgf2d8e+8gOFq3zblzakE5PtgVi82nUuttvO5sY47hwe4YGeyGEcHuRu25Ulimxvazadh0IhXHk69fqcDb0apO+TR/V1v2lCMiamcY8G+BhOwSPPbTScSkFwEQy4w/uKOPQRt3lau0OHwpF/sv5mBfXDYuVmaeAyKQe/eQzlgwrKvJNWYztM0nU/DipnMoV9ffSNlSIUc3L/vK7Hhx8DLQ36XDHLhIkoRzqUU4l1aon9C4kF6sbyx3NZkMGBfqiecmdGtSqQAiIjKsFfsS8ebvooTci5O648GRzSsh99W/CVj2xwUAwMr5gzC6u4fBxkit7/ez6XjkxxMAgLlDu+CN6b1avM2sYiXu/f4oYtKLIJMBb04Pw11DOjf68Zdzy/DurgvYfia9ReMYFeKORaMCEB7g2qiM3V+OXsFLW85CrZXgZmeB5XMHYEAXlxaNoa0l55bqa7ZfzisDAPTp5IQVcwfAw4HH7O1NaYUGc1YcwpmUQlibm2Hdg0PRt5NTmzx3Uo4I+mcUiaD/Tw8MRQ+fpk+SdTSHE3Px8I8nkFc5qff2jDDMHOBn8OdZd+QyXtp8FjpJNDRfc9/gVv0MFpar8eW/8Vh5MEmftNfL1wH3hvvjQkZxnfP5Kt087TGicjX/4K4urT45qNbqsDc2G5tOpuDv6Kxaq5M6uVhjRj8/9OnkiLjM6mS5hOxSaHX1h47sLRWYNbAT7h/RtUkJC0RE1HoY8G+mX4+n4L+/nUOZSguFXIZnJ3TDA8MDWn1pXmpBOdZGJePHw8n6Zn7mZjJM6+OLB0cGoJsXg7dXS8guwaRP9qOi8qDL08FSn40gyt7Yw9/VFgqzuvWROzJJkpCSX16rVFFMRhGSc8v09zGTyzB7UCf8Z1wwm1p1AJIkYeOJVHy++yKGBrhi6bSezBYk6sD+js7EwrXHIEnArAF+ePf25peQ0+kkzPv+CA7E58DV1gI7Hx/BwGIHcSalAHcsj4JSrcOIYDesnD/IYMckheVqLFx9DEeS8gAAT98cgkdHB13zfZZfqsLne+KxJioJaq04TejX2QmPjQ6q0zy4IZeyS7Fif6K+HA8AhPk64sGRAZjYy6ve16fR6vD2zgv47sAlAECotwO+vXdghw4eSZKENVHJeH17NLQ6CV4OVvhm3oAO3VfB1Kg0Oty/+ij2X8yBQi7Dd/MHYVQzSmm1xKWcUtz5TRQyiyrgbGOOnxYORai36Qb91x25jFe2nINGJ8HNzrJyUs+51Z7vj3PpWLLuFFRaHTq72GDt/YMNXmZLpdHhh0PJ+Gz3ReRX9iHwdbLGM7d0w7Q+PrViBOmF5dgfl4N9F7NxID5H37egiqVCjnGhnpjR3xcjQ9xhbqDvA0kSZYQ3nUjF1tNptVa5i/4jPpjZ3xcDGug/olRrEZ9VUqMUrjjHrNn03Ewuw9Te3nhwZOANMXFFRNSeMeDfRCUVGryy5Rw2n0wFIOpzfjqnX5tlgVQpVqrx89Er+O7AJaQXKvXXj+nugQdHBmBIV5d2W3e+LWm0Otz+dRROXSmAv6sNfnko/IYPbJdUaHAwPgfv74rVZ5jYWJhh0chALBzZlaV+2qnLuWV4cfNZHIivLt3Ux88R38wbCE8G9Yg6nJj0Itz+VSRKVVoM7uqCH+4fUm9j3qbIKlJiwif7kVeqwvAgN6y5b3C7rBFM1TIKlbj1iwPILKpAoLstNj0yzOAlJ5RqLR776ST+jhE1shcM88crk3vUeW8o1VqsjkzCF3viUVSZVNLF1QbP3tIdk8K8mnxcKUkS9l/MwTf7Emt9d3VyscYDwwMwa6Cf/pijsFyNxetO6vtYTOzlhQ/u6GMyxyQH43PwyI8nUFiuhqVCjvdn9cHUPj7GHtYNT6cTfTO2nk4DAHw8uy+m9/M1ylgSsksw55tDyCqugIutBdYtHGpyiVwarQ7/2xGDVZFJAICePg5YMW8gfNpgUi8yIQcPrjmOkgoN3Owssfq+QQYpnyRJEn4/m4F3d13QJ1XZWynw2Ogg3Bvhf93EHK1OwrnUQn053xOX86GpkUXvamuBaX19MLO/H3r6ODR5P1xaocHhS7nYF5eDvXHZuJRTqr/NTC7DTSHumNHfD2NDPZqVRCRJEjKKlNh5NgPfHbiE1IJy/W0jgt2waGQghgU1bnUXEREZFgP+TXAutRCP/XQCSZVf5lN6e+OtGWFGraOv0uiw/UwavtlXO4uqTycnLBoZgFt6enWYsjSt4Ys98XhvVyzkMmDDQ+Edbkl4a9JoddhwPAUf/hWnbxTtbm+JJ8eHYNYAP5Nb8dBRabQ6rIpMwgd/xulLUo0IdkNkQi60OgmeDpZYMW8gswWJOpDs4gpM/+IgUgvK0dnFBlseHQaXRmZOX8+eC1lYsOooAOC5Cd3x8E3NKxFkTOuOXMbKg5cQEeiGmf390Mu36UGOjqBMpcEdy6NwLrUITjbm2PLIMPi7tU5zV41Wh+c3ncWvlfWsb+vni3dv7w1zMzl0OglbT6fhvV2x+mCNk405lowJxj1Du7R4IgoQx9Df7EvEjrPp+pIQTjbmmBfuj1Eh7njm19NIzBaBqMfHBuPxscEmN1l1KacUD6w+ioTK17l4TBCeGBdicq+zo5AkCa9vj8bKg0kAgFem9MD9w7sadUzxWSWYs+IQsosr4GprgXUPDkWIZ+OC/pIk4VhyPjadSMH+izlQa3XXfxAAGWTwdbauVY+9NXp9FZap8di6E/qeY5PDvPHerN5tOql3LrUQ935/BLmlKthbKrDi3oEYGuDa7O0dTcrDmzticOpKAQCx6n5euH+TVkNdrVipxr+x2dh8MhV747JrldAJ9rDDjP5+mN7PB96O9U+S6HQSotOLsO9iNvbH5eBYcp5+pVaVXr4OmNHPD9P6+hi0FLFGq8OOs+n4Zl8izqcV6a/v6eOAB0cGYHKYN88viYjaEAP+jSBJElYeTMLbO2Og1kqwMpfjtWk9ccfATu3mBFSSJOyNy8Y3+xIRmVDdVM3H0Qr9ujijR43GOl4OVu1m3K0pOq0It35xAGqthEWjAvDCxFBjD6ldKq3QYMX+RHyzLxFlKhFQDvG0w/MTu2N0N48b4r3SXkWnFeH5TWdwJqUQAODnbI23bgvDyBB3RMbn4OEa2YLvzeqDacwWJGr3lGot7lpxCCcuF8DeUoFNj0QguJEBncZ6fVs0vj94CQq5DBseCke/zq1XKsHQtpxMxX9+PlXrusYEOToanU7CIz+ewB/nM6CQy7D2/iEID2x+4KkxJEnC2zsv4Jt9iQCAm7q5Y36EP97/MxbnUkVwxkIhx4Jh/njkpqBWaW55Ja8M3x24hJ+PXqnTV8nKXI4PZvXF5N7Nay7cERQp1Viy7iT+jRUrGW7p6YkP7+gLW0vTWMnQkXz5bzze/SMWAPDQqEA8P7G7kUckxGcV485vDiOnpAJudiLT/1rfEfX1i2gpmQzwd7UV545elWVQfRzg49i8c8j4rBIsXHNMn13+xLgQLBl77dJirSUxuwRzvzuC1IJyWCjk+HxOP9zc06vRj1eqtfgzOhMbjl3RT14AIhHw2Vu6o7OrjcHGml1cgW2n07DpZIp+Hw2Iv8+wQDfM6O+LW3p6obRCg/0Xc7C/skRQTomq1nYszOQY6O+MkSHuGNPdo9GTSM0lSRIOxudi+b6EWr8jXydrPDCiK+4Y2In7PCKiNsCAfyPodBLmfn8YB+Nz0c3THp/f1c/gJ+eGdDalEMv3JeD3s+mor6+Ok4159cFb5SRAsKcdLBWGrwV+ODEXK/YnQicBw4NEI6JAd9tWP8BTaXSY9vkBXMgoRoinHbYtHt4qr8+UZBUr8fHfF/Hz0Sv6bJLwAFe8NDkUvXxbvuSVGk+p1uKz3RexfG8iNDoJchmwYFhXPHVzSK1MqKScUjyw5hjiK0szPTo6EE+N78ZsQaJ2SpIkPPHzKWw5lQa5DFi5YHCr1Iqu0Ggx48tInE8rQicXa+xYMsKoqxEba29cNu5fdRQanYS+nZyg1Yl6w1VkMiAi0BUz+vlhQi+vDh0weH9XLD7fEw8AWDYzDLMHNb6Zbkst35uAt3deqHP9jH6+eOqWbm1SMz+/VIUfDiVjdVQSckpU8Ha0wop5A2+I4w2tTsKyP6onXrp72WPFvIHo5GK4QCFd2y9Hr+DZjWcAtLx/Smu4mFmMOSsOIadEBTc7S6x/cCiCPOz0txeWqbHjbDo2nUjBseT8Wo8d2MW5SZnbGp2ES9ml9fb6upqDlQLdvR1qJZKFeNpfsxTMv7FZWLzuJIqVGlibm+HDO/pgYphxJ/UyCpWY9/1hxGWWQC4D3pnZG3cM7NTg/XU6CUeS8rD5RCp+P5uO4gqN/rbB/i54cXJoq5f3jc0oxqaTKdhyMhWZRRX66y0Ucn1z4JqCPOz0TYCHdHUxWnm082mFWLEvEdvOVK/ucrQ2x70R/nhiXHC7+twREZkaBvwbKatIiW8PXMKT40M6TJPMK3ll2BObhZj0IkSnFyM2owhKdf3LO83kssoMOl/MGdwZ9i0MDMRnleCdnRf09WJr8nG0wohgd4wMccewIFc42RimjEFNVSfSCrkMWx4ddkOcQBpKfFZx5d8uS3/d9L4+ePqWbvBzbr8noyqNDicv52PfxWwcT86Ht6M1RgS7YXiwW4fq23A4MRcvbDqLxMosqO5e9nhnZu8GTySKlGo8vu4k9lRmC47v4YmPZveFXQcOhBGZqs93X8T7f8YBAF6b1hP3Rvi32nMlZpdgymcHUKbSYlofH3xyZ992fWJ96koB7lpxCGUqLXr7OeKnhUNhZ6lAXGYxNp1IxZaTqcgoqu5ZZG1uhom9vDCjvx/CA107TPnCmPQi/Hz0ir6G9cIRXfHS5B5tPo5fjl3B8xvPQCcBw4Jc8cJE40zuK9VaRCXmol8np1Y5HmzPfj2eghc3nYVKq4OLrQW+vmcABndl6UlANLJeeTAJ6YXl6OZZXWqmm9e1g8v1kSQJWcUViE4vwoX0YkSnF2HHmTToJGBsdw8snzugXZYZic0oxl0rDiG3VAV3e0v8cP8QpOSXYdOJVPwVk1kryNvJxRoz+vnhtn6+LS4LVlKhQWyGOHesasx6Ib24zoqcKnIZEOBuVyuRrIe3AzzsLfHdgUt46/cY6CRx/rfi3oEGqZtvCAVlKty/+hiOV06YvDCxOxaNql0CLzG7BJtPpmLTidRatektFHLc3MMTswZ2wshgtzb9btXqJEQm5GDTiVT8cS5D/3dxtDavTK5zw/Bg93bX7Dy1oBzfH7iEdUcuo0ylxeQwb3xxd39jD4uIyKQx4H8D0eokJOWW6g/eYioP5Go2/QUAe0sF7hraGfcN69rkZqBZxUp88vdFrK+RJT6kqwsC3O2wLy671sESIA4Se/s5YWRlBkLfTk4tPug+eTkfM7+KhE4CnhwfgiVjg1u0vRvVocRcvPV7jL6cjIVCjgURlcv8bYyfKSpJEpJyyyqbXGUjKiEXpar6T0ZCvR3077EBXZzb5aRdkVKNd3ZewE+HLwMQy2+XjA3CgyMDr1s/mdmCRO3f72fT8ciPJwAAc4d2wRvTe7X6c244dgXP/CqyWF+/tSfmhfu3+nM2R3xWCWZ9HYn8MjW6utni14fC4XpVdqpWJyEqIRebTqRgZ40gBwB4OVhhaICLPigY6u0Ad3vD1SVuqaxiJbaeSsPGE6mISa8uyzC2uwe+mTfQaJMV59MKUa7SYkAX53Y9GWTKjifnYdHaE8gpqYC5mQz/m96rTVd7tCeSJOHfuGx8szcRUYm59d5HLgO6utnqP+c9Kn96OlhCJpNBpdEhPquk+lwnQ5zv5JWq6mxrYBdnrL1/CKwt2t8xYZULGUW4a8Xhesdvb6XAlN7emNHfDwNb+TOs00lIziurcQ4pfq9Xn9ddPb7iyubfA7o44+t7BrSr/TIAlKu0ePjH4/oSWw+ODMDDowKxvXL1xMnLBbXuP9jfBTP6+2JimHerlDxrqpIKDaIScuFmZ4Hefk4dYuK7sEyNHw4nY1SIOxPyiIhaGQP+hIIyFWLSi/FvbBZ+OnxZv0zR3EyG6X198eDIgOuWMCpTabBi3yUs35egrwMf5GGHFyZ2x5juog68JEm4lFOqrzEYmZCrv28Ve0sFxvfwxEuTQ+uc7DdGuUqLyZ/uR2JOKXr7OWLjwxEwb4dZOx2FTidh2xnRyC8lv7qR32OjgzA3vEubl0kqUqoRGZ8rGlFdzMaVvNonGrLKCaShAS64kleGAxdzUKTU1LqPlbkcQwNcMSLYHaNC3BDobmf0QMef5zPwym/n9Et0B/u74K0ZYbWWbzfG1dmCX93dH0Na0IyMiAzjTEoB7lgeBaVah+FBbli5YFCbfDdJkoTH15/C1tNpAEQ2+fMTQ9tVUCCjUImZX0UitaAcHvaW2PhwxHUnK0srNPjjXAY2nUxBZEIu6juSdbOzrNGEUvwMdLdrs2OCqjrPm06kYF9cdq0Si9087TFzgC/mhfu3ywloaltpBeVYuOaYvsnl5DBv3NzTE8OD3Jp1LNzRqDQ6bDudhm/2JSI2s1h/fR8/RwwLckNcpgjgXyu47GxjDjc7SyTlltZpUFrFQiGvXC1gjzA/J8zs72u0MidNEZNehLtWHEJ+mRpmchluCnHHjP5+GBvqYfT9R2GZunJSpXoSIDazuNbqg1kD/PC/23q129Kqaq0Oz2w4jS2nxPekTIZa3yn+rjaY0V+snmAiDRERdSQM+FMtxUo11h25jO8PJNVaOj+2uwceHBmAwV1dagVHtToJG45dwYd/xSGrWAQr3ews8eT4ENwx0O+a2foqjQ4nLudjX1w29l/MqVWn18PeEh/P7ouIILcmjf+1beex8mASLBRy/L5kOII82m+vhY6kQqPF2qhkfLY7HoXlagBi+fCzt3THlN7erRIwV6q1iM8qQXTlScSZlEKculKgXzlSxdvRSl+jcligG5xtq0sCaHUSTqcUYH9cDvZdzG7w8bf09ML9w7u2+YF8VrESS7eex+9nMwAAdpYKPD+xO+4a3LnZdfiPJ+dj0drj+mzBN27thTsHGzdbcP/FbKyJSoaygeXg9QnysMPIYHcMCTBe3VFqXUq1Fh/9FQe5XIbFY4JM9u+cUajErV8cQGZRBQLcbbH5kWFtmhlYptLgiZ9PYdd5UWLvpm7u+HROv3ZR07+wTI07lkchNrMY9lYK/LIoHKHeDk3aRnphOXady8C5NPFdcTGzBCpt/eULLczkCPKwQxdXG7jZWcLd3rLGTwv95eYG0XQ6CUeT8rCpnjrPbnYWuLWvL2b090UPbwejTzRT+1Km0uDpDaf1xwOACDz28nHUH+P07+x83RV/NRWWq3GhRiC2SKnGIH+XNuundT3FSjXWH7mC7w5cqnXOMbqbOxaNCsSQq845rn49MRlFiM0oRkU99cs9HSxrrfjp4W0Pf1fbdlm6pzGu5JXhyKU8jOrm3uja/Mai0epwKacU0elFcLezRHigq9Hfa9ej00l4Y0c0Vh5MAiB6FUzt44MZ/f3Qv7NTux8/ERFRfRjwp3qpNDpsPZ2Gb/YlIC6zRH99305OWDQyADf39MK+uGy8vTNGf7uNhRkeHBmAhSMCmtVIL7ekAn/HZOKt3y+gsFwNmQx4bHQQHh8b3KgD9MiEHNy14jAA4OXJoXhgRECTx0DXVlCmwhd74rE6MlkfUOnTyQkvTQptdt1ZSZKQXVlbtarM1IWMIiRkl9YJzgMiQ39IV1eMDHHHyGA3BHk0PkO/sFyNqASxQmBfXLZ+1QIglolPCvPGopGBCPNr3SWmkiRhw7EU/G9HtH4FwrhQD7wxvRe8HVtec/PqbMGZ/f0wP8IfvXzbNsiUX6rCGzuiselEarO3YWEmx0B/Z4wMcceIYDeEejmwKbEJKFaqsXDNMRxKzAMABLrb4vO7+jc52Nvelau0uGN5FM6mFsLR2hy/PTqsxfWVm0Onk/Dx33H4dLdoEhvobotv7x2ErkYYSxWlWot7vj2MY8n5sFDIsfa+wQZZkaTW6pCYXV2+sOq7Jaek4voPrmRvpYC7nSXc7C1hZ6lAY/c4sZnFtb5Xquo8z+zvh+HBblxxSNek00nYcioVu85nIDI+t9aEESCOs8MDXPXfh13dRNBep5NwuUa5lara69fKiPd1En2ORgS7Y3iQW5uWaswsUuL7g5fw06Haq4pvrVxVHHKdVcU1abQ6JOWWIjq9GHklFQj2tEd3L/sbYmUEGZYkSfgzWkyMjwpxN/rqCSIiopZiwJ+uSZIk/BubjeX7EvSBGUCUdSkoE5nechkwe1BnPDEuGB5NrPlfn9SCcvxn/UkcTRJNlAZ2ccYnc/pds/lQsVKNCR/vR2pBOQb7u2Ddg0PbVckCU3Mlrwzv7YrVl4kAgHGhnnh+YvdaZWgkSUJJhQbZxRXIKVFV/qzQ/0zJL0dMehFy66lNWsXH0UqfoTU0wBUD/Q1Tg7+qB8A/MZlYE5WMy3ll+tvCA1yxaFQARoW4GzxAnpxbihc2nUVkgqhP62Zngdem9cKkMC+DPleZSoNnNpzBjrPp+utEY24/TO/nY5CJhYZIkoStp9Pw+rZo/d82ItC10ZNCaq0Ox5PzcTw5v87SfDc7y8oghQhUtLd6sHR92cUVmL/yCM6nFUEmA8zlcqi0Olgo5HhlcijuGdqlTSemjiblYd2RyyhvoAdIS1zJL8O51CIo5DKsvX8IwgONW2Jr2+k0PL3hNCo0Ojham+PLu/tjWBNX0hmCRqvDQz8cx98xWZDLgK/uGYBbenq16nNmF1cgJl1kBKcXKpFdUoGc4grxs6RCf0xjCO2tzjN1PGqtDqevFGBfXDb2XczBmZQCXJ0D4edsDXd7S8RlFDfYw6hmzXsbCzMcjM9tuJ9WZSJFS/tpabQ65JWqkK0/3lPVOO4rw+4LWfrvdjtLBe4e0hkLhnWFl2PLzyGIiIiISGDAnxrt9JUCfLMvETvPpetPOsaFeuC5Cd2vW+O/qTRaHT795yI+2xMPSQIcrc2xbGZvTOhVf0Dg+Y1nsP7oFdhYmOGPx0eisytrLLaFMykFeHNHDA5fEpNBZnIZIgJdUazU6AP79S21ro+FQo4QTzuEejnUWIZtDycbi+s/uIW0Ogm7zmdg+d4EnE6pLi3V3cseC0cEYGofnyYto6+PRqvDdwcu4aO/46BUi9/JrAF+eGlyaKu9RkmSsO7IFfx0JBnnUqsbRcpkwLBAN8zo74tbeno1a0VOQ1ILyvHKlnPYfSELgPjsvjKlB2b2921yELe0QoPDl3Kxr7IkU2J2aZ37hHo74Jaenpg7tAsz+jqAK3llmPvdYSTllsHcTIaPZvdFgJsdHlt3Qv/3ndDTC8tm9m71jNOE7BK8s/MC/qrM6GtN78wIM3pprSpnUwqxcM0xZBQpYSaX4dWpPTC3DSdZJEnCcxvP4JdjKQDaz+9GpdEht7QCOcUqZJcoK39WoPSqLOtrcbQ2x8Re3jwGIYMrKFPhYHxu5QRANtILlXXuY2+lqNHIVvStCPG0r5UkUdVPq6qcZlRi/f20Bnd1gZ1V444NdJIYX1VQP7dUVW9fjZo8HSxx37CumDOkc7soL0ZERERkahjwpyZLzi3FttNpGOjvgqGt3BA0MiEH/1l/St8fYF54F7w4KbTWycvuC5m4b9UxAMCbt/XC3UO6tOqYqDZJkrD7Qhbe3nkB8VklDd7PTC6Di62FvkyCu50lPB0s0c1LnJQGuBm/tqokSTh8KQ/L9yZgT2y2/npvRyvcN6wr7hzcCfbNODE9l1qI5zed0QfdO7vY4K3bwjA8uO0ya2MzirHpZAq2nEzVNwcGRImACT29MKO/H8IDXZu9Mkank7D2UDLe/eOCPtNwSm9vvDq1p8Gy8FPyy/RNv69uyGypkOP2AX5YOCLAKCVT6PouZBRh3ndHkFVcARsLMyyfOwAjgt0BiBUpS7ee1weBfZ2s8emcvhjQpXmlwq4lu7gCn/wTh3VHrujLhg3yd0YfPyeDPxcADAlwxfgenq2y7ebKKlJi4drjOH2lAABw15DOeG1azzYpOfPuHxfw5b8JAICnbw7BY2OCW/05iUyJJElIyC7F/ovZKK3QoJuXCPD7Olk3eeJOpREr6vZfFBMJNZMDDMHGwkzfG8PNzgJudpYY0MUZU3q3PJGCiIiIiBrGgD+1e7klFXhqw2n8WxmA7e5lj8/v6o8gDzvkl6pw88f7kF1cgZEh7li9YBAbKxmJRqvDb6fSEJdZLE7s7C3gbmdV+dMSzjYWHar2elxmMb7Zl4jfTqXql57bWykwpbePWEZ/VcNHVzuLOsEypVqLj/++iBX7E6HVSZDLgAdGBOCJcSGwtjBObVCtTkJkQg42n0jFznMZKK/RSNfLwQoTw7wQ5uuIUG8HBHnYNSoAeDGzGM9vOovjyfn67fxvei+Ma8UgZ1VD5j0XsrDuyGXklIjSQTKZyBB/cGQA+nV2brXnb4/+OJeO6PRiTArzQnev9lUL/1hSHu5bdRRFSg2cbcyxcsFg9O3kVOd+v51KxUubz6GkQgMzuQxPjg/BQ6MCDVKirVylxbf7E/H13gT9pFSguy2enxiKcaEeN9x3h1KtxQubzmLzSdFjY0hXF3x1zwC42LbeqqrvD1zC69ujAQD3hnfB0mk9b7jfO1F7lltSgQPxOTh1paDePkr1kQFwtBFNr91rNL92s7M06ApCIiIiImo8BvypQ9DpJHx/8BKW/XEBaq0Ea3MzvHZrT+y/mINtp9PgYKXAn0+MYv1PMriMQiVWHryEHw9fRsl1Sjs425jrJwDc7CxxJqUASbmiN0CotwOWzQxD71bKIm6O0goN/jiXgU0nUxCZkFtnCb65mQxBHvYI9bavLBEg/lUFBFUaHb76NwFf7InXN3GeO7QLnp3QrVkrIZpLqdZi04lUrNifiEs51WV/Bnd1waKRARjdzcPok001G4km5ZZiSFdXg9Vz1+okvP17DL49cEl/XQ9vB8zo74tpfX3gYW/c/eLuC5l45McTUKp18Ha0wtr7ByPIo+EycEk5pVi87iTOporyWsOCXPHRHX2b3SNGq5Ow8XgKPvgrVr+6xc3OEk+MD8bsgZ2MvrLImCRJwtd7E/HurguQJKCTizW+nTcI3bwMW6YvObcU28+k471dsQDE6p9P7+xn9M8lERERERGRKWLAnzqU01cKsHjdyVoNVgHg49l9Mb2fr5FGRTeCIqUavxy9guPJ+cgpqW5Cd71JAAuFHI+PDcaDIwPapFxGc6UVlGPLqVQcTsxDTHqRvoxWfTwdLBHq7YDU/HJcrCzjFOhui3dm9sYgf8OXYGksrU7CX9GZWL4vAScvF+ivD/Kww4MjAnBrPx9YKlp/ZUVBmQrR6UWISS9GTHoRYtKLcDGzRD8pUuX+4V3x7IRuLRpTkVKNxT+dxN44sQLKzc4SOSXVfzszuQwjg90wo78fxvfwNEjD66bYfDIFT284A61OQqC7LdbePwQ+12jAXkWl0eG9XRewYr+YxHC1tcAHd/TBTd08Gv3ckiTh37hsvPP7BcRmFgMArM3NsHBkAB4cGQA7Zp7q/R2dicfXn0SpSgtbCzMsGRuMPp2cEOrt0Kyms8VKNSITckWZkLicWt/Zw4Pc8N38gW3yWSQiIiIiIroRMeBPHU6xUo2XNp/D1tNpAET5jq/u6c+yAGQU5SqtaFBc2aS4qmlddnEF5DIZFgzzR4C7nbGH2WQ5JRW4UCNgHZ1ehPisEmiuWuKvkMvwyE2BeGR0UJsHkxsiSRKOJedj+d5E/B1T3ZDVw94Sswb6wc/ZprqXhL2oK9zY4KMkSShVaWv9nXNKKpBeqERshvh91ddMsYqbnSUcrRVIqGxQG+briM/m9GtW34FLOaV4YPVR/baWjAnCf8aFIDq9CJtOpGLr6VR9qSNANGKcFOaNmQP8MLCLc6tnV3934BLeqCzf0qeTE1bOH9TkcjF7LmThqQ2nkVcqXsesAX7wbuRKruOX83EwPhcAIJcBdwzshCfGh8CzmSsFTF1sRjEeWHMUV/LKa13v62StbwBa9a+Li02t949WJ+FsaiH2VzYUPXG5bjkQTwdL3NzDC89N7M7JFiIiIiIiolbEgD91SJIkYevpNJxJKcSSMcFwtGm78iFENyqVRof4rBL9JECZWot54V3aXb34muKzirFi3yVsPplaJ8O+JgcrRa2eDG52lrC3UiC3VIWcYjGhUxXgV6ob3k4VM7kMQe52dQKl7vaW0OkkfL0vAR/8GQetToKthRnevC2sSauUDlzMwaM/nUBhuRqWCjnen9UHU/v41LqPWqvDgYs52HgiBX9GZ0KlqR63n7M1JoV5w8GqcYFXmUwGpxolq6p6WNQ3ySNJEt7/MxZf7BGNWUcEu+HrewY0u5ZzZpES/1l/ClGJuc16/Ohu7nh+YqjBy9SYorxSFd7bFYtjSXlIzCltsIa3jYWZvuF6YbkaB+NzUFCmrnUfS4UcQwJcMTLYDSOC3RHiaceJeSIiIiIiojbAgD8REZm8rCIlVkcl4WhSZUmm4goUKa9djul6ZDLA1VasEHC3t0RwZb+DUG8HBHvaXXfVwPHkfCxZdxKpBSKj+vYBfnj91p6wsWg4MC5JElZHJuGNHTHQ6iR4OVhhxbyBCPNzvOZzFZarsfNsOjadSMWRpLymv9gG2Fkq9KskqiZKsosrsPNcBgBgcm9vfHhHnxaXb9HqJKyKTML+i9l1ek00xNbSDPcM6YKIILcWPfeNSqnW4mJmiX6FT9VE37U+N9297DEi2A0jQ9wxyN+l3az6ISIiIiIiupEw4E9ERDckpVqL3FLRi0GfxV8jm79YqYGrrUWtrP+aP11sLWDWwrI4heVqPL/xjD5AHuBui8/n9EcPn7qrJlQaHV7deg7rjlwBAPTt5IRv5g5ocjPby7ll2HQyBceS8hvM4L6aVpKQX6pCTkkF8q/K5G7IPUM747VpvVr8O6L2Q5IkpBUqEZMmgv8XMophoZBjWJAbRgS7sVwSERERERFRO8CAPxERkRFJkoQfD1/G69ujodLoYKGQ4+XJoZg7tIu+BEpeqQoP/XAcRy6J7PwZ/Xzx1owwo2RQqzQ65FVNlFT1rqjRz6CwXI1xoZ6YF96FJVyIiIiIiIiI2hgD/kRERO3AhYwiPPbTScRnlQAAbu7hiXdv742MIiUeWH0MKfnlkMmA5yZ0x6KRAQymExEREREREVEdDPgTERG1E2UqDV7fFo31R0XZHm9HKxSVq1Gq0sLWwgyfzumHsaGeRh4lEREREREREbVXDPgTERG1M1tPp+HFTWdRUiEapHZ2scG39w5EiKe9kUdGRERERERERO0ZA/5ERETt0OXcMry69RysLczwv+lhcLG1MPaQiIiIiIiIiKidY8CfiIiIiIiIiIiIiMgEyI09ACIiIiIiIiIiIiIiajkG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJoABfyIiIiIiIiIiIiIiE8CAPxERERERERERERGRCWDAn4iIiIiIiIiIiIjIBDDgT0RERERERERERERkAhjwJ72UlBTIZDLIZDKkpKQYezhEtfD9Se0Z35/U3vE9Su0Z35/UnvH9Se0Z359ERFQfBvyJiIiIiIiIiIiIiEwAA/5ERERERERERERERCaAAX8iIiIiIiIiIiIiIhPAgD8RERERERERERERkQlgwJ+IiIiIiIiIiIiIyAQw4E9EREREREREREREZAIY8CciIiIiIiIiIiIiMgEM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITIBMkiTJ2IMgIiIiIiIiIiIiIqKWYYY/EREREREREREREZEJYMCfiIiIiIiIiIiIiMgEMOBPRERERERERERERGQCGPAnIiIiIiIiIiIiIjIBDPgTEREREREREREREZkABvyJiIiIiIiIiIiIiEwAA/5ERERERERERERERCaAAX8iIiIiIiIiIiIiIhPAgD8RERERERERERERkQlgwJ+IiIiIiIiIiIiIyAQw4E9EREREREREREREZAIY8CciIiIiIiIiIiIiMgEM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJoABfyIiIiIiIiIiIiIiE8CAPxERERERERERERGRCWDAn4iIiIiIiIiIiIjIBDDgT0RERERERERERERkAhjwJyIiIiIiIiIiIiIyAQz4ExERERERERERERGZAAb8iYiIiIiIiIiIiIhMAAP+REREREREREREREQmgAF/IiIiIiIiIiIiIiITwIA/EREREREREREREZEJYMCfiIiIiIiIiIiIiMgEMOBPRERERERERERERGQCGPAnIiIiIiIiIiIiIjIBDPhT0yXuBb4MB/5+DdDpjD0aIiIiIiIiImqpvETgp9nAV8OB+H+MPRoiImommSRJkrEHQR1I4l5xAKApF5fDZgG3fgkoLIw7LiIiIiIiIiJqOq0GOPQlsOet6nN9AOgzB7jlLcDGxXhjIyKiJmPAnxrv0n7gx1niAMDGFSjLFdcHjQPuWANY2Bp3fERERERERESmTFUKnFgLRG8BnLoAEY8BXmHN3176GWDrYiD9lLjs1FlsN2m/uGzjBkxcBvSaCchkLR09ERG1AQb8qXGSDgI/3g6oywC3EODe7cDZX4A/Xxa3+w0C7vqFM/9trTQXSNwDJOwGMs8DI58BQqcYe1Rk6vISgagvgbSTgE8/IGgs4D8csLQ39siIiIiIiExTSTZwZDlwZAWgLKh9W+AYIGIJEHBT44Py6nJg7zLg4KeApAVkcmDoI8DoFwFzG+D0OuCPF6qfK2QCMPkDwNHPgC+KiIhaAwP+dH3JkcAPtwPqUsA1CJi/A7D3Ered+gn47TFxgODeHbhnE+Doa9zxmjKNCkg5IgL88f8A6acB1PgIy8yAWSuBHrcabYhkwlKPixOCmK2AdFX/Drk50GkIEDhaTAB49QHkbBNDRERERNQiuQlA5Gfi3FtbIa4ztwV6zxLH5xlnq+/r1RsY9jjQYzpgpmh4m0kHgK1LgLwEcdmzFzDtU8B3QO37lWQBO58Dzm8Sly3sgHFLgYH381ifiKgdY8C/sSRJZLffaGVrLh8C1s4QwX6XQBHsd/CufZ/YncCG+YBGCTh2AuZuBtyCjTJckyNJIpu6KsCftB9QldS+j4U90HUkUJQiJgDkCmDWKiB0qlGGTCZGkoCLfwEHPwGSD1Rf7xIgTiTSTgDJUdUnH1VsXIGA0SLbKHBM3f0GERERERE17MpR4ODHwIUd0Cd52boDQxaJgLuNizhWT/xXHKsn7ql+rGNnIPxRoN89gKVd9fXlBcBf/wVOrBaXzSyBUc+KSQIz84bHErsT2P4kUJwmLncaAkz7DHDvZrjXS0REBsOAf2Od3wL88bxYwtZ9srFHc23l+cClfSJIXJYL9J4NdJsEyM2atp3Lh4EfZogAs0tAZbDfp/77JkcCP90JVBSKQN/dvwK+/Vv+Wm5UOh1w+Cvg8HKgIPmqG2Xidxs4BggcC/gNFAdn5QXA2ttEAFauEH0V2vt7ldovjQo496vI6M+Oqb7ed4A4Ieg+pXqfoioT+4CE3UDCP0D2hbrbcw8V+xE7j+p/th6AnSdg5y5+dsQJ1aJ04OwGMRk38H6g2wRjj4iIDEFZCPz9mvgZdrvoV3StQAg1T0488MdzQEVx4x/jEiCOgQJGi+8PIrpxaVRAaZbIQi/Jqvx/pih9U5IJlOcBnmFAnztFjfuOUH9epwMu7hIB/MtR1de7BgERi4HedwLmVvU/Nv2MWAlwbqNYgQ8AVk7AoAfEJMGVw8COp4GSDHFbl2HA1E8an6ynLAL+eQ04+q24bGYBjHgaGP4EoLAQ16nKKv8OlX+Dmn+fkkygNFvsv0e/0ORfDRERNR4D/o2h0wFfDAJy48XlHrcCE98D7D2NO64qWo0I8sb/IwJuqcfqlttwCRQHCH3mNHyAUNOVoyJ4rCoGnLuKYP/1SvVknBMTBCWZYqnfnT+KGoLUNCVZwOaHROC0ioOvKJUSOFb8ThvqlVBeAKydLmqry82B2WuBbhPbYNBkMpSFwPFVwKGvqzN4AFGzM2IJ0CXi+idLhamVwf/dItOoPL9xz21uWzkZ4Al0Giz2V549mv1SWo2qTGRanV4nXl/V/lYmB6Z8DAy416jDI6IWSjkG/Hpf7Ql3GzcR+O9zJ+Ddt2MEjdq7imJgxRggJ6752/DqXb2SrPNQQGFpuPERtQeSBJz8QRxTDV4ojsNuVMWZIhnl4p8i4aIks24d+2vx6Cn24WGz2u/K0/QzwMYHgJzY6us6DRHH4N0mNb6ETsFl4NBXwPHVYqU+IBLCdBrxf0sHYPzrQP97m1eWJzkK2Lakev/t2EkE/0uyRPzgekKnArN/aPrzEhFRozHg31iFqcDvTwOxv4vLVo7AzW+KJXLGOOnLT67Opk3cJzLrazK3EU005eaVY25gCWB9Uo6LoHFFEeDsXxnsb2RjnrxLYqIg/5L40p+xAug5vXmv8UaUsAfYvEgcwAIiG2PQQrFUsrHvs/J8YM2tleV9zMXBFLOOqTEOfQXseUt89gHx/uk9W0wWenRv3jZ1WiD9lDgxKE4XWT01M6/KclGrD8XVvHqLwH/Y7WIywFh0OlHS6PR6IPq32qW17DzFyqasaHF57Ksi04kBQaKORacDoj4D/nldBEXMbYHOQ4DEvdWZkoDoWdTnTiDsDvYtai5JAjbcK/anCitg5DPiuPF6dBqR1JC4t+Fj36oVkG7B3A9Tx6ZVA78/AxxfWX1dt8nA+NdunPKp6nJxLnt6vUhuq7kvvpqlY92VpBa2ojRlZo0a9zK5yDDvM0eshrawaf3X0RgVJcDXw4D8JAAyEeAftkRMZjZXeT5w9Duxarw0S1zXbTIw+f2GV+43lloJ7P8AOPBh9UTC1axdaq/mta3823j2AoLHtez5iYjomhjwbwpJAqK3iAOv0mxxXdeRYhmcS0DrP79WAxz8SBzwVK02qKmhLKfcBCDqc+Dkj7Wb/PSfB4Q/Ajh1rt5G6nFgzW3iJMqpiwj2O3Vq2jiLM4EfZlYeWMmAKR8CA+9r1ku+YWjVwL9vA/s/BCAB1s7ArV80vyRPWZ4I+mecESfQs38EQm426JDJxCTuBdZME/+3dAAGLgCGPNTyk4Hr0WqAspzaS7Hzk8W+tmZpIJmZKKnR505xAtSYlUqGkB0HnFkPnPkFKLxSfb3CGgidIsbT9SZAqxK9TC7uEreHPwaMf4PNzIg6iqtX13mFAbevAtyCxATluV/Fqp700zUeJAMCRlUGjabUrpHcXpUXAJnngcxz4p9OJ1ZSefYSr7mhZBBDi/wc+PMl8f/pXwF972ra4xuzutXBr7KERyP3w9ZO4ti4JcE1IkMpzQV+mVfdP8mps8jaBsQx0YD5wE3PGzcZorXodKKUzel1YlKwKhEFEMlrPWeI/VbN0pC2Htc+Nsw4K86hz26oTqwCxKr0HreK47kuw4173Lb9SeDYd+IY8/5dgHcfw21brQRitopzzKBxhp0MzY4V+2Irh+qAvp2H+FuxFB4RkdEw4N8cZXnAn68ApyqXoSmsRQ26oY8CZorWec7yArG8vGaZFzvP6gB/wE3XP+AryQaOfAMcXVFdYkNmBvSaIZYJ6jTAmumVwf7OlcH+ztfcZIOUhcC6OUDyQXE5YjEw/Mm2O5HsSAouA7/eD6QcEZc7RwAzVzR+VUVDyvKA1dPExIuZJXDnT8ykoPqpy4Evw8XKnC7DgDnrxUG7MUmSWBlw+mdxclaWU32bpaNYOdRnjgjMGPKkRacTn5mE3UDMNjEJWpP/CHFSGDqt7u9Iqwa2LhYnqIAY37TPeLJD1N5dvbpuyEOi1EF95WEyo6snAYvTq683txWT9ME3ixJ8tm5tM/aG6HRin55xVgT2MyoD/DUnLutj7wN49aqcAOglal+7Bja9D9S1JB0EVk8VmboDFgBTP275NssLgEt7xb47fjdQeLn52/IbLHrVNKV8BpEhZcUAP82uLCsmA8b+V6wcjNslmq1WlXuxsBPv1fBHO2YfpKvlJoig/Jn11ZMbgDiP6T5JHFcFjmnZcZVWIxrcnl4HXNgOaJTVtzl2EiVuhj7c9hO48f+I0riAKB085MG2fX4iIjI5DPi3RMIeYPt/KpfdQczCT/sc8O5t2OfJTRAHfbkXxeXwxyprW/dsXqBLVSpqQUZ9XvdgSlshDnbm7wCcu7Rs3OpyMUlRVQbJ3EZkTg19pOXbNhXRW4Gtj4kJEsiAUc8CI5813MRRaa7I2s48J/6+c9YBQWMNs20yHX+9Chz8WJRVeDhSBHfaE61anAidXif2J1pV9W3O/mJpsleYCE65datuGtZYxRlif17Vc6BqBVcV1yAR5O89+/qToDod8NcrYv8KiN4Ht69sP8vFqX3RacWKvaqgLCCa33WETHFT0JLVdTqtCDCf/llkTarLat/u3UeUlQkcI+ovN3W/1BxqJbDvPTGuzOjqus1Xk8kB12Cxz5SZifdeTlzDJRkU1oBHqJhgHfWs+D01V1E6sHykWM3l0x+47w/D192XJHHsnLAbKEpp/OOuHGl6g0wiQ4vdKWq4q0pEQH/mt7X7cWk1wMm1ogRjVYkWe29g9ItA37sNOznXFsrygPObRaC/KvmpSucIcfzV41axAsfQlEViBcHp9dUrKQCRVHfTC0C/ua2XzFdTeYFIvClOA7qOAuZu4WQjERG1GAP+LaUqA/59C4j6QiwllpmJWnujngPMrVu+/YTdokyEslCccN32FdDztpZvFxAHjNFbgMhPq5eoO/gB87cDLl0N9xwHPgIOfQmU54nrZGbiNQxbYtilih2JuhzY9ZJYtgmIA/UZK4CuIwz/XKW5IpMu67wI6M5ZL7IPiQAg7ZRomihpgXFLRQZZe1aeD5zfIk7Orhyqe7vcXPS88OwlJkWrMlTt3Kvvo1YClyMr+6DsqQ601uQWIoJ1YbcDvgOaNrkqSWIC5e+l4nLncPG5a42TVWqZ0hyR6XflMKCpaPzj6ixbrywrYOPScLClZimVqgB/Vkzt7EJAvN/u2gDYujb3VZkmSRIBsJrlv6r+X54nVsV5Vk782Xle/zNryNV1FSUi6H9hB3BpX+3yE4DI/u86onoCwDXQ8LXldVpREz9mW+3rrRwr94e9qjP3PULrHqNqKkQZtaqVAFWrAqqO3aq4BIr9mXtI08eoVQOrpoh9t7ULsGhf08tGtrYrR4HIT4CY7ajuf+Uhsm2v1f+KqKX0xw6vAZBEgsGcn0XpmvpUlACRn4nzuKoJR48eYnWSoUu2GJpGBcT/JRI54nZdlcjRVSS29b7DcOejjZGfLCZSor6snix17w6Mew0IuaV1f5+bHxK/Cwt74JGo9rdfJCKiDokBf0NJOwn8tri6IZBLgGjqGzKheTP0kiSa6+x6UQTiHHxFSRafvgYdtv65Lu0TGWED5je/jM+1qEpFD4GozyuXp1YKuEmUEwoc074PTA0pOxbYsEAE4AEg+BZRv7Y1gzulOZVB/2gR9L/rZ/G7pxubVgOsGC16PXiFAQv3dKzyM3mJwNlfRVZm5rna5TWuZucpAl2QgOTIukFWKyfxmagqk2aIk60Ta4Btj4vJYI+ewNxNgL1Xy7dLzadRiQBvVd3v9NO4ZtPoppLJRc1aW4/qBnXKQhE4vVaJERtXwD1UBEJ1GjHhdM+mG/OkX5LE3yb2d7H6piRLlNopza6bRd8QG7caZWnCxE+3kOos++jfRPmt1lhdp9WIevIJu8X7LO1E3dryjp1Fib2RzximT4okiRWnx1eJy0MfET2mPHuJCYzmHl9JktivZpwTx7kHPxZ/A0tH4Pbvm14m8I8XRAIIZGJ/GDimeeNqCznx4pj11E/X739F1FJqJbBtCXDmZ3G5y3DgjjWNOzcozhDZ/ifXVu9ruo4CpnzUvlZsSpLYH55eL47dak4mWjmKuvx95gCdBhv3nLAkS6z8Or66ukGw/wgxkeLb3/DPF7Md+Plu8f9bvwD63WP45yAiohsSA/6GpFWLTIt/36k+OXALqVwOPLvxS5Y1KuD3p4ETq8Vlv0Gi6aq9Z+uMuy1pNSIL7uAnoj53Fc8w8XvqNaNjBRwbS5JE2YYL24G974oTZrm5OHgc+nDbHNiWZAOrp4gMPoW1qJnbYzqXqd/IDn4iasHK5MDC3YBPP2OPqGVKc8Wka0aN7NTsC4BOXfe+MjNxUlkV4Pfp1zrL4GO2iSxibYVohD53c/s6Ab+aTguU5YoAa81M6vJ8EeDyDBPZhi2pFSxJQGFKZRbxeXGi32N67VUYhlKztEfCP8Cl/XXLnFg6iN4VNo2ddJVEtn5pVvXv6eoJpIbULKVSMxht7yW+B+L+FE0aNeVion/uZrFi5UagVYuyDgc/rU6eaJBM1Mi38xQTLFaOol591oXq46+ryc1Ftqadu3g/AK27uq5KWV7t2vI1S8w4+FX+jZuRLV/TnreAvcvE/296QTTybA0ZZ0V/psIr4r08/g1RO7wxxzBnfwU23i/+P+ZlMdnREZRkif5XR1YAygJxXVX/q9EvtW0GMgmairqrfEqyqv8+jSGTi32+foVW5T8bt8ZN/EmSmDAszb7q+zIbsLSvXl3YmHO34gxg/d1iohAQyVcT32t6GbCsGLGyMO4PcdnKEZi1yvgTawVXgLO/iEB/Tlz19XKF6HnS506R/NTezkeyY8Xvs6o0LQD0ul30UzBUadrSHOCLIaJPVchEUXr1RkmAIyKiVseAf2vITRBBtAvbq6+z8xRN4Abed+2yDqU54mS/qtlt7zuBqZ+0v4OglpIkIGm/OLGP/6v6egc/YOhDYoLkek2I27vyfCCx8iQ/YXftRnkuASI7rq0DrCVZYjl9VbMvfUbNnaLGMA8ybxy5CcBXESJQGbEYuPl/xh5R69CoxAlmVRkVrVpkvnYdId7/beHSfhEkUxWL4OQ9G41fziz1hMhyLs6oHTQpy6mbjVyHTOzDqgIaVcHr+jKJ1UogO6b2JEzmubqBGbkCCBoP9JktTnpb8p1Xs3lnwu7avWqqxu87QARBgsaK/7dkolmSgIriegI/lRMCCutrl1K52uVDwE93iGCStQtw96+A34Dmj6+9qygRq2EOfVn7e7LrKDEhYlu5UqJqxYSthwjU1ReU02pEv6OMc7Un/6qa8dbUFqvrriZJQM5FIP5vYO871X/je34V78PmOLJCJIkA4hhz8oet+11ekg38Mre61n3fu0Um8bWSWrIuiNJx6lLx+b7zp45Xn7qipLL/1RfVq3UU1sCYl4AhD7dNne8bSX6S2H9nx9bdpyoLW/GJZdUTAVWTAbZuleXEsqtXG5VkNTy5WJOte+0G2F6Vq42qvnPSTgLr7hK122VmwIR3gMELW/YZvrQP2PywmFyUmQG3vAUMWdT2x/hxu8QqmUv7UWslnU8/kcnfa6bxm5s3RtIB4M9XxOoEADCzAAY/CIx8umX9TCRJ7EtjtonvgUcOmUZyHxERtRsM+Lem7Dgg6jOR0VBVm9DCTmRuDH24bp3YzPPAujsrgxMyYPxrotyNqQdhM8+LlRFnN1Q3jJOZifqTfe4UjaoM0Q+htWk1QOpxkUWasFv8v84y/k5A6DRg9AsiA8gYijOBP54XE1J1amZWNiZlxpppkyTRzPnSPtH09uEoNpVtbWmngB9mioC6pYPI4vIf3vbjyLsE/PM6cH7T9e+rsK4Oelg6AHkJ1U3q62PlVFkrvIfIas48J4KbVUvir2ZuIwLgeZdqL+23dAR63Va5tL8RE5FajTgRryqhknqs7r7Xwbc6wN91VPuvw515Hlg7AyjJEGVE7vzB+FmahlacCRxZDhz9tjqAJ1eIDMqIxSIwZigl2dUTALkXAb/BomyCMY+vMs6JfYL+b/xj0/vrnN8sSgRCEscWs1a1TcNOTQWw40kRAAfE53T2D/UnaiiLRLA/96I4znjw347dz6Sq/9U/r1VPJvr0A6Z9JiaoqHkqikVguOoYOi+xcY+zcqr8nvIUk/iyRk4k6bTi+7hqMqGhBteNITOrnJj0ED9Ls8XqwprH2DWZWYiVW27dRN8PTbl4HXesNly5zeJM4Od7qnuU9J8HTPqgbZqHA+K87s+Xqy/b+4gJ/d53Ah7d22YMhqTTieOmmp97KydRDm7wouZN+J35Bdi0UPx/1irD9egjIiKqxIB/W2jwpHamCOh79RIHfJseFBkkFvbA7d+JBkE3ksIU4PDXYoKkNLv6ektHoOetIvjTOdy4J+iSJDL3ay4lLs4QmW7XbNQ3RjTra41Gfc1Vni+CBafXi4aVNXUOF8H/HtM79ok51e/EWmDrY+L/835jP4e2kpsArJ0uThYV1sDdG1q3lEhNZXnAvvdFaYqqEkdevUWgqipYos+krgzyW9jV3V8pi0QvkKqmsxnnxOXr1VZ38KtRxqYy09GlqwhOalQi4/n0OlGKoDETkQWXqwP8l/bWzfhUWIsJlaDKJqluIe1n39tY+cnA2tvERIvcHJjxjSgj0tHlXBTBoNPrGpcMYcryk4A100U5Irm5aBrc2KBP4l7gx9vF79B/hFgJ0parQSUJOPQV8OdLYoLNwU9MZHr3rn2fqgxWhTXwwF+mExRXlYpSSoe+FK9frgCGPS56QbTG36GhlUSStnbjcDt3EYhs7/s7nU6U9kz4B0jYI45Dq5J+qth5AZ0GidJb+rI7NVf7uDe+XOr1VJRUHtdXZfFn1S3Tc/V3ZNWYrF3qrljRqsW+rmaT9oxzYrtXcwsRjbANXe5PUwFs+w9w+idxuXMEMHtt62bVS5Iog3PwY3HZf4TIhPcf0TaTka1NUyFWVe17r3qloldvMeHXlD57RWnAl0PFsUuvmWLVNxERkYEx4N+WKopFoC3qi9o1XH0HimxwSCK4MWd9x8x+MBStWgRyTq8DLvxee8msU5fq4I+hDozrq8NZb2mGyn/11QOvybtPdYC/02DDnYy0ptwE0Sjs9Lra5S/MLIHuk4B+c2+sxsqmrDgT+GKQeM/3vQeY/oWxR3RjKUoXqyty4kSG+90bWjfTX60UQf7971cHxZ39gbGvisCiIT7TOq3I0q/KoM6+ICYK9eV+ejZ+2XtZXvVEZFVmYpXO4YBHDzG5mnux7mO9wqr3vZ2Hdox97/WUZAM/zqxsLiwDJr0nyj10JDqdCGhnnBUr+S7sgL68Q2PLHZqykizghxni9wMZMPkDYND9135M2ilg1WSRJOIVBszf0XYlyq4W/zew4T6golDs025bDvSYJm47+Cnw1yvi/9O/BvrOMc4YW1PKcdEAOuu8uOwaJEpxNme/XpgqJjDzkyqPQWsGn7NFJnhjmFnUbhxeFah26SqCi8ZaNavTAdGbRZPSxH9rr+wCxDFnl4jqiVqPHqZ33FmSVT0BkHleTBiMfKb1Pr+SJMrq/PkKAEk0DJ+zzrArqKpoNaJ5+Mm14nKv20XZtLZaVdCWyvOBve8Bh78SE34yMyDiMWDU89dfMStJYnVXwj/ic/nIofa/6pCIiDokBvyNoaHGdP4jgDvW8Eu/pvICsXT69PrqerFVOg0Buk9pfCkSnba67ubVQfzG1OG8mty8evmuR6gIMgXc1DqNJ9uKTgdcOSQC/+e31F6x4NmrsrHyTNNsrHyj+OVe8ZmydQcePcL9jTEUZ4hgXW68CJDds1EEOQxJpwPObRTle6rqTVs7i+zTQfd3jGB4QxORVWw9qpsuB47u+H1fGqIsAtbfJfreAKIp66jnGhcIUxaJoFJuvGi0XHM1h5Wj4YNpFcXi+a63AsQtRKxw7H1Hx3gvtjZloajjnXxAXB79kggC1vf3yU0Avr9FHM84+wP3/Wn8us85F4GfZovVKABw04tAl3CxekHSAgPvB6Z8aNQhtiqNCoj8BNj7bvWqlQHzgfGvXzuQqyoDkiOry9hkX2jc88nk4jNs6yEyy0uyxTHt1Rny9XHwFU2Te9/Ztn0UsuOAbUvqHsu7h1YG+EeL5ukdoYRnRxT3p2iaXVEkVh/PXAF0n2y47auVYvtV/esGPwhMWNbxenU0VdpJMeGXUXk+79xVTPgFjGr4Mce+B7Y/If5/1y833op+IiJqMwz4G5MkAYl7xBe/azAw+kUGUq8l75Kod3h6ncgWbA36OpxVy3brKXNRdZ21s+llHtWkLgdid4oavQn/VF/v4CfKLgy413h9CKh5LuwQgUMAuH2laZQH6aiK0kXQPy9BnHzfs1EEyAzh0j6RzZd+Slw2sxQN+0Y81TGzqPUTkevFZElVBqhHT9MPJlRRK4FND4jSKEDdYIokiazgmo2RM84CBckNb9PMsm5piqrvOEVjS5JIojRBVYD/mj0eHMWKxsELRcPcG+Vv11h1AmaLRAPPmr+n4kzg+5vF79nWHbj/T9FAuz0ozwc2zBeZ24AocaPTiGbEC3beGBM72XHAtseBy5Hisp2XWLEROkVcliTxOakqR3Y5qm6ddxtXsWqjvuPPqrI9Ni51y6PodKLESH2Nw6tWCiRHVq8S8AwDbn699XuDaFTAwU+AfTUmQ0KnAiETxHM7+LTu81O1rAuiV1zVOdSYV8RxQUvPZepMSr8oatub8jlSTVq1WEXx7zuARimu63cPcPP/6q5uzLsEfDVM9IzoNxe49fO2Hy8REd0wGPCnjkeSgCtHRE3K1OP6ygDXJZcDNm7VWfn1nURZOzMIUZ/M6MrGyr9UZ5BZOgKD7hPlGOy9jDu+jkxTIbL6cuPFKpRGkYna625BjX8eZSHwxRCgOB0ImSiWdN8oJ2PtVVFaZdA/UdQwv2cT0HlI87eXdQH467/AxV3V1/WeLbI5nTq3fLxkXDqtKJdwYo243G2SCJZlVJaGUBU38ECZ+PtrKkRWeENNlA1GJkru6fs1VP5z9OM+53quLokRNgu49UtREkNZCKycLFaGWtgDC3aIEoLtiVYjavof/lpctnEFFu27sfoy6HTA8ZXAX69Wfya7TxH7+ITddWu4yxVAp6FAUOVqJa8+rXccWpgK7HkTOPUT9AfPgWPFSoTWKPFSb7mjTwH/YYZ/Lmqcsjxgw70iMQAQZXdu/bz5KytKskR5mowzECXJ3gcGPWCw4XYouQliwq9q4sPWQ5Th63Gr+O7TaYFVU8SEoGNn4OGDgJWDccdMREQmjQF/Imq8wlRRr/LYquoTWTMLEVSMWAK4hxh1eO1ezdqtVVm4OXGNW4ZfH9+BoqdFr5nXL82z/Ung2HciUPToYcDRt3nPSYZVmCqC/vmXxN9m7ibR+6MpijNE88iTa0UtWQDoOhIY/0bTmshR+ydJokzTgQbKo1jYi54J+gbJYaLknIWtuF2nE3Wzry5rV5JZo3dNdtPK3Fm7NPx81HRXN70MGgfMWAH8Mk8EkswsRIPea5WMMLaTP4pyXKNfatkkZkdWmAr8/jQQ+3vd21wCq+vU+w9v+9WSGefE5LB+9aYM6Hs3MOYlw2Tcq0qB3f8TTZ0hVTY0/o8oU9WWjaWpflo18McLwNEV4rJPP1Fr37170yZl85MqG8snmlZj+ZaQJDEp/+croq8JAHSbLCZCzm0SE6IAcO82cZxGRETUihjwJ6KmUxYCx1aKLL7i9Orru00C+s8DHDs1vOy8KdTl1U2UK4pEgLujZMMoi4C4XSLrqSrAf3VmX022Ho3PsFKX196W3FzUAO0zBwi+uW6DtORIYOVE8f/JH9y42VftVWFKZdA/SQRs520B/AZe/3EVJWLlTeRnYnk4IOohj38dCB7PbGpTdmSFKAfoElA7k96pC1epmYrIz4A/Xxb/t7CvnGSXAbNWiobb1P5JkuiZc/gbwNa1uueIs7+xRyYk7Ab+/G91PzGFNRD+iAjON/dYK/5vUZ+8qu+KTz9g2mdiMpDal6PfATufrU46cexU/R4NGFW3HE1NmeeBtTOAkgxRlvDOH1q/PFRHUpQO7HymugyfpYNYZaetECujJy4z7viIiOiGwIA/ETWfpgI4u0EEJuprNlezsVxVX4Sa5ZQsbIHSnKsyTWtkntZsGgyIk9HQKSKrvetNgJmiLV5l02VGA+tm199o1MwCcO8m6ufWzIptSvNcSQJSjol+Fuc2irq9VaydxRLtPnMA3/7ib/T1cCD3oigbsGAnA4LtUcEVEfQvSBYnhnO3AH4D6r+vViOy+f99W2RkA6JW9OgXRZZme/1cEFHTnPoJ+O2x6jJMk94XPRCIDEWnFasxdv8PKEoV19m4iRrsXSLE8Zut2/WTN8ryRNb4mfXisrmNKCc35KGWJX5Q67q0D9i6pG5vNJlc9N8IHCPKPvkOqD62SI4Sx7jKQrHC6+5fGz5eudFFbwV+f0ZMjACirNWi/YCFjXHHRURENwQG/Imo5XQ6IP4vEfhPOVrdtMqQqhoAVrHzAsIqA9utUXu2uWL/EI0XVSXihLfTkMrAfmWA3y3EsM25NRViJcHp9aJ2e83fkWsQ4NxV/G3MLICHDojJBmqfCi5XBv0vix4Z87aISZsqkiT+1n/9F8iJFdeZ2wLD/wOEP8oyKkSmKPYPEYztO0d8zolag7ocOPQlsP+jevqByETQv2Zz75rJG6pSUVauLEfcPWA0MPXj9rOSga5NkoCci2LFR8JuUTpMXVb7PpYOogSNVxhw4GPR/NnBT5Qh5HHltZUXiFJ8KUfFaheWWiQiojbCgD8RGZYkARXFNepB18zar6wPXVUvuqK48qSx6iTSs/6GyrbuIpB9YYfIak/cU12rHBDB9D53igaH9p7Ge92Rn4lgLCRRWuOun0U967ZSmguc3yR+R6nHa982+iWRsUftW36yCPoXXgGsHIF5v4mSCKknxHurqhmczAwYcC9w0wvic0JERNRSpTnA3nfF6pIGG4E3wMoJmPC2SMRgSbmOS1MBXDkMxP8jJgAyztS9j1s3Eey/kRpyExERdTAM+BNRx1OULkoJnV4HZEVXXy8zE8uP+9wJdJvYdhnPmgrRFPfUD+Jyl2HAHWtFzV5jyY4TS+vPbwFcugJ3rqtb25/ap7xLwKopQFGKCKAEjAKif6u+vdskYNxSZtUREVHrqSi5qqF3Vj0Nv7NEaZeQW4Bb3uQEtCkqyQIS/xXB/0v7ANdAYNbqppWiJCIiojbHgD8RdVySBGScFeVszv4iTkqrmFmI+rNB44Cg8SI42hoZZ6U5wM/3AJejxOV+c4HJHzK4Ti2Tl1gZ9E+tvs6nP3DzG4D/cOONi4iIiIiIiIjaNQb8icg0aDUi++jMelH65+o+Ag5+QNBYIHg80HUUYOXQ8ues2ZxXJgdu/h8w9BEuZSfDyE0AfpoNQBKle3rOYMNlIiIiIiIiIromBvyJyPSoSoGkA8DFv0TD2vyk2rfLFaKZbtA48c8rrOlB+prNeS3sgVkrxWQCkSFJEieQiIiIiIiIiKjRGPAnItOXmwDE/y3+XdoPaMpr327pCHj2BLx6AZ69xE+PHoC5dd1tXd2c19kfmPMz4NG9LV4JERERERERERFRgxjwJ6Ibi7ocSI6sngDIiav/fjI54BpUPQHgGSaC+v8uq9GcdzhwxxrjNuclIiIiIiIiIiKqxIA/Ed3YCi4DaSeBjHNA5jnxs/Dy9R/Xfx4w6QM25yUiIiIiIiIionaDAX8ioqspC4HM85WTAGfFz6xo0QhYJgdufhMY+jBrqxMRERERERERUbvCgD8RUWPotKIXgLUTYOdh7NEQERERERERERHVwYA/EREREREREREREZEJkBt7AERERERERERERERE1HIM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJoABfyIiIiIiIiIiIiIiE8CAPxERERERERERERGRCWDAn4iIiIiIiIiIiIjIBDDgT0RERERERERERERkAhjwJyIiIiIiIiIiIiIyAQz4k15KSgpkMhlkMhlSUlKMPRyiWvj+pPaM709q7/gepfaM709qz/j+pPaM708iIqoPA/5ERERERERERERERCaAAX8iIiIiIiIiIiIiIhPAgD8RERERERERERERkQlgwJ+IiIiIiIiIiIiIyAQw4E9EREREREREREREZAIY8CciIiIiIiIiIiIiMgEM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJkAmSZJk7EEQEREREREREREREVHLMMOfiIiIiIiIiIiIiMgEMOBPRERERERERERERGQCGPAnIiIiIiIiIiIiIjIBDPgTEREREREREREREZkABvyJiIiIiIiIiIiIiEwAA/5ERERERERERERERCaAAX8iIiIiIiIiIiIiIhPAgD8RERERERERERERkQlgwJ+IiIiIiIiIiIiIyAQw4E9EREREREREREREZAIY8CciIiIiIiIiIiIiMgEM+BMRERERERERERERmQAG/ImIiIiIiIiIiIiITAAD/kREREREREREREREJoABfyIiIiIiIiIiIiIiE8CAPxERERERERERERGRCWDAn4iIiIiIiIiIiIjIBDDgT0RERERERERERERkAhjwJyIiIiIiIiIiIiIyAQz4ExERERERERERERGZAAb8qd04nnkcC/5YgHt33ovCikJjD4eIiIiIiIiIiIioQ2HAn4wuuSgZ/9nzH8z/Yz6OZR7DiawT+OzkZ8YeFhEREREB+CH6Bzz010M4mnHU2EMhIiIiIqLrkEmSJBl7EHRjKlAW4OszX+PnCz9DI2kAAJ3tO+Ny8WXIIMO6KevQ07WnkUdJREREdOM6nnkc8/+Yr798e8jteGLAE3CwcDDeoIiIiIiIqEEM+FObU2lVWHdhHZafWY5iVTEAwN/BH08MeAKj/EZhzo45iMmLQW+33lg7aS3kMi5EISIiImprFdoK3L71diQVJcHKzApKrRIA4G7tjpeGvISxXcYaeYRERERERHQ1BvypzUiShF3Ju/Dx8Y+RWpIKAHCydMJDfR7CHd3ugLncHABwJvsM7v79bgDA0vClmBky02hjJiIiIrpRfXbyM3xz5huYy82xYeoGHM88jo+Of4QSdQkAYHyX8Xhh8Atwt3E38kiJiIiIiKgKA/7UJk5lncL7x97H6ezTAABzuTnuDr0bC3svrHdJ+NLIpdh4cSOcLJ2wbfo2OFk5tfGIiYiIiG5ccflxmL1tNjSSBo/2fRQP9XkIAJBZmok3D7+JPVf2AADsLezx9MCncVvQbZDJZMYcMhERERERgQF/amUV2gq8GvkqdiTu0F83wX8CHu//OPzs/Rp8XL4yH1O3TEVhRSFmhczCf8P/2xbDJSIiIrrhaXVazN05F2dzziLIKQi/TPkF5mbm+tslScJfyX/hrcNvIVeZCwAY7DUYr4a/is4OnY01bCIiIiIiAsDi6NSqPjr+kT7Y38e9D36Y9APeG/XeNYP9AOBs5YzH+z8OAPg17lecyznX6mMlIiIiImDdhXU4m3MWMsiwNGJprWA/AMhkMtzsfzN+m/4bbgu6DQBwJOMIZmydge/PfQ+NTmOMYRMREREREZjhT63o3yv/YvHuxQCAR/s+ikW9FzVpqbdWp8U9v9+Dc7nn0NO1J36c9CPM5GatNFoiIiIiSi1JxW2/3YZyTTnuCb0Hzw1+7rqPOZR+CK9FvoaUkhQAQKhLKN4f9T6z/YmIiIiIjIAZ/tQqssqy8MrBVwAAET4ReLD3g02u62omN8PLQ1+GDDKczz2PjRc3tsZQiYiIiAiiVM8bUW+gXFMOb1tvLO63uFGPG+o9FJtu3YQFPRdALpMjJi8GC/9ciKyyrFYeMRERERERXY0BfzI4rU6LF/a/gIKKArhYueDN4W9CLmveW62nW0/MCpkFAPjkxCfIU+YZcqhEREREVGl74nYcTDsIAHhl6CuwMbdp9GOtFdZ4cuCTWDtxLezM7ZBWmoZFfy1CkaqotYZLRERERET1YMCfDG7l+ZU4knEEAPDm8DfhZu3Wou0t6b8ETpZOKFIV4ZMTnxhiiEREDcoqy8Jv8b/hq1NfIV+Zb+zhEBG1iTxlHt49+i4AYHLAZIzwG9Gs7fR2741Px3wKC7kF4gvisfifxVBqlIYcKhERERERXQNr+JNBnc4+jXt33gutpMW9Pe7F04OeNsh2N13chFcjXwUA/DDpB/Rx72OQ7danQFmA3y/9DgdLB4R7h8PV2rXVnouIjE+pUeJE5glEpkXiYNpBxBfE62/ztfPFp2M+RYhziBFHSETU+p7f/zx2JO6Ak6UTfpv+G1ysXFq0vX+S/8GTe5+ETtLhpk434aObPoJCrjDQaImIiIiIqCEM+JPBFKuKMWvbLKSWpKKHaw/8MPEHmJuZG2TbOkmHuTvn4kz2GYS6hGLd5HUGb+ArSRJ2XtqJZUeX1SodFOoSinCfcAzzGYa+Hn1hYWZh0OclorYlSRLiC+IRmRaJyLRIHM88jgptRa37OFo6Qq1Vo0xTBhuFDd4Z8Q5Gdx5tpBETEbWu/Sn78cg/jwAA3hr+FqYGTjXIdjfEbcDrUa8DAGYEz8DS8KVN7ulERERERERNw4A/GYQkSXh237P4I+kPWCussWHqBnRx6GLQ54jOjcacHXOgk3R4cciLmNN9jsG2nV6Sjv8d/h/2pewDANib2wMAitXFte5nrbDGQM+BGOY7DOE+4ejq0JUnrkQdxPmc81h3YR2i0qKQVV67kaRCpkBv994Y5jsMET4RCHUJRVJREhbvXowrxVcggwxL+i/B/b3u52eeiExKqboUt/12G9JL0zHMdxi+GvuVQfdzX5/+Gl+c+gIAsDBsIZb0X2KwbVPHIEkSkouScTzzODxsPDDMd1iz+3sRERER0fUx4E8GsfniZvw38r8ARN3+aYHTWuV53jz0JtbHroe9uT223batxeV2dJIO6y+sxycnPkGZpgwAMMF/Ap4b/BycLJ1wLuecPgv4bM5Z6CRdrcd723ojwicCPVx7wNXKFa7W4p+btRusFdYtGhsRGc6V4iuYuXUmyjXl+us623fWr94Z5DUIdhZ2dR5XoCzAU3uf0vclmdR1El6LeA1WCqs2GztRWylQFmBvyl4o5Ap0c+4Gf0d/lmC5Abxz5B38GPMjrBXW2HLrFvjY+Rh0+5Ik4a3Db2F97HoAwPODn8fdoXcb9DlaKj4/HtF50RjfZTyP3wykSFWEI+lHcDDtIKLSopBakqq/zd/BH/N7zseUwCmwNLM04iiJiIiITBMD/kag1CiRq8xFTnkOcstzkavMhbncHK5WIlDsau0KFyuXDnOSnViYiDu334lyTTkmB0zG28PfbrUM2CJVEaZunoo8ZR6mBU7Dm8PfbPa2EgoS8GrkqzidfRoA4GnjiZeHvoybOt1U7/0LKwpxJOMIDqYeRGRaJNJL06+5fRuFjf7v6WbtBhcrF7hZu6GvR18M9R7a7HETUdNIkoQH/3oQh9IPwcvWCwvDFiLcJxyd7Ds16vFqnRrLjizDz7E/AwB6ufbCJ2M+gYeNR2sOm66SWJCIQ+mHIKFxhy1mMjM4WzmL/XDl96utuS1XaFxFpVVhf8p+bE3Yin2p+6DRafS3WcgtEOgUiG4u3dDNuRu6uXRDiHMIHC0djThiMqTT2acx9/e5kCDhuUHP4Z4e97TK82h1Wjy3/znsStoFGWRYNnIZJnad2CrP1RSSJOGHmB/w4fEPodFp4GHjgcf6PoZpgdMMXjrS1Gl0GpzLOYeotCgcTDtYb6KMm7Ubcstz9ftxVytX3NPjHswKmXVD7VckScLxzOPQSBqeExAREVGrYMC/FRQoC7AvdR/SS9LrBPZzy3NRoi657jZkkMHJ0qlWxnhVwMLb1hshziHo4tDF6CcjFdoK3L3jbsTmx8LPzg8bpm6oN0vWkH6L/w0vH3wZALB6wmr09+zfpMertWp8e+5brDizAmqdGgAwu9ts/Kf/fxo99qqlyQfTDuJQ+iGkFKcgtzwX+RX5jXq8obPbytRl+PfKvyjVlDbq/jLIEOYWhm4u3Qw2BqL2quY+Y/m45YjwjWjWdn6+8DPePvI2tJIWHtYe+GTMJ+jl1suQQ6UGbInfgtejXtfvs5vL0sxS/33qYu2i/7+HjQfGdB4DN2s3A424fZMkCWdyzmBbwjb8kfQHCisK9bc5WDhAIVfU6mVzNS9bL3RzFsH/qsmATvadjH5MQk2j1qpxx/Y7EF8QjzC3MKyduLZV/4YqrQqP/PMIDqcfhkKuwBdjv0CET/P2x4aQr8zHKwdfwd6UvXVuC3EOwZMDnsQw32FGGFnHodFpsD1xO/al7MOh9EMoVtVfCjPCJwIRPhHo6tgVyUXJWB29Glvjt0KlU+nvNzN4Jub1mAdvO29jvJQ2odFpsCtpF1adX4ULeRcAAEvDl2JmyEwjj4xMmUanweWiy4griIO5zBwhziHwtfc1SFmt3PJcxObHokRVgjGdx3SYhEUiohsBA/4Gcq0MuWtxtHSEq5Ur1Do1cstz9WVlGsPSzBJBTkH6jLtuzt0Q4hICBwuH5r6MJlt2ZBl+iPkBCpkCayauQZh7WKs/pyRJmP/HfJzIOoFg52A8PfBpfdDG2cr5mgcvp7JO4bWo1xBfEA8A6OrYFUvDlzZ50qAhap0a+cp85JZXTvTUnPApz0VCYQLi8uMMmt1WpCrCwj8XIjo3usmPDXEOwbTAaZjUdRLcbdxbPBai9ianPAe3brkVRaqiFq8KAoAj6Ufw5N4nUVhRCEszS7we8TomBUwy0GjpalqdFh8d/wiro1cDADxsPBodlK/aH+cp8+pkmdbH3sIezwx8BtODppvsKoDUklRsT9iObYnbkFyUrL9eIVdgpO9ITAuchhF+I2AuN0dOeQ5i82MRmxeL2PxYxOXFIakoCVpJW++2rRXWCHYKRohLSK3VALbmtm318qgJdJIOn5/8HCvOroBCpsDPU39GiHNIqz9viaoE9+26DzF5MbBWWGPlLSvR061nqz/v1Y5mHMXz+57X93OZ3W027u1xL1acXYEt8Vv0Gejh3uF4auBTTJCoR7mmHE/vfVrf/6pKd5fu+nJ5/Tz6wcLMot7H55Tn4KeYn/Bz7M8oUhUBECuzJnSdgAU9F5jU77xMXYZNFzdhbfRapJWm1bpNIVNg+fjlGOw92Eij61gKKwpxKusUhvoMZTmoehSpihCXFye+t/PjEJsXi/iCeFRoK2rdz9bcFsFOwdVxBJduCHYKho25Tb3b1eg0SCpMEscFlccEsfmxyCnP0d9ndrfZeHnoy636+oiIqPEY8G+B62XIhTiH1CrpUrPGu6uV+GduZl5rm2XqMv1KgKpVAVUB45zyHOQoc3C56DIKKgoaHJePrY/+hLuXWy8M9x3eKrPte6/sxWO7HwMAPDngSSzotcDgz9GQ2LxYzN4+u07g4eoSDvoVElZuuFx8Gb/E/gIJEhQyBe4Pux8Ley9s04NFQ2e3FamKsOjPRTiXew4KmQL+jv6Nely5prxWLVW5TI5wn3BMC5iG0Z1Hs34tmYxn9z6LnUk74WLlgt9u/Q1OVk4t3uaVoit4bPdjSCxMBCCaUD7W7zE2IDSwYlUxnt33LA6kHgAAjOk0Bm+PeLvBk9GGaHVaFFQU1JmArXk5Ji9G/706xGsIXg1/FZ0cGlfyqb0rUZXgr+S/sDVhK45lHqt1W5hbGKYGTsUE/wlwtnK+7rYqtBWIL4hHXF6cCCRUTghUBevq42fnp18F0MO1BwZ4Dmj1lYDUsEuFl7AtYRu2J27XlyZc1HsRHuv3WJuNIac8B/N2zsOV4itwtnTGmolrGn380lIanQbfnPkGy88sh07Swd7CHq9FvIbxXcbr7xOXH4cPj3+Ig6kHAYhVkVMDp2Jxv8XwsvVqk3G2d4UVhVi8ezFOZp0EAEz0n4gRfiMQ7hPe5JVSZeoybI7fjDXn19QKhkf4RGBh2EIM9Bpo0LG3pfomNRQyBSZ0nYA7u9+Jtw6/hejcaDhYOOCnyT+hi0MXI4+4/UorScPa6LXYeHEjyjXlGO47HF+M/eKGPvaSJAmRaZE4mXVSH4S/ekKpJidLJ2h0mgarDcggQ2eHzvpEQhtzG/2kQUJBgn5FztXMZGb6c/LW7OVHRB3T3r17cdNNN+kvHzx4EBER146B/fvvvxg9enS9t1lbW8Pd3R39+vXDHXfcgTvuuAMKRf3xzvj4eBw9ehRHjhzBkSNHcPLkSZSXi55+K1euxPz585v1mjoKBvybobEZcg1ltLSUJEnIKsuqNXMfmx+L5KLkerMYfWx9MLfHXMwIntHkQElDssqycPvW25FfkY9w73B8Pf7rNj/gWhu9Fj/G/Iic8pw6WQvXEuYWhqURS9skk60+pepSLPhjQYuz24pVxVj01yKczTkLhUyB9296H2M7j23UYyVJQmx+LLYmbMWOxB21SjfYmtvi5i43Y2rgVAzwHHBDH0hTx1ZzUvLdke8atF50iaoEz+1/Tp/ZOLrTaLwe8bpBJhQISC5KxuLdi3Gp8BIA4MHeD+LRvo+22v6osKIQ7x97H1vitwAArMys8EjfRzC3x9wOuTxdo9PgUPohbE3Yit2Xd9f6jvS29caUgCmYGjgVXR27tvi5JElCRmlGrWOSuPw4JBcl19tvQSFToLd7bwzzHYYInwiEuoTeEKWAJElCqbpUv/pPqVGin0c/gx2XXUuBsgA7k3Zie8J2nMk5U+u2sZ3HYtnIZW2eKXul+Arm7ZyHnPIc+Nr54skBT8JM1rj3gZ+9H0KcQ5q8EiejNAPP738exzOPAwD6uPfBuyPfbbBJcVRaFD48/qG+9IqlmSXuCb0H94fdD3sL+yY9d2uIz49HiboEPd16wlxufv0HGEhWWRYe+vshXMy/CLlMjqXhS3Fb8G0t3q5Gp8GfSX9i5fmV+t85ACwbscygK+k0Og1OZp2EQq7Ql0s19OfwUuElrD6/GtsStumDpDYKG8wMmYm5oXP1ZYsySzNx1467kFWeBX8Hf/ww6YcbqpdBY1zIu4CV51ZiV9KuOolezwx8BvN6zjPSyIxLo9PgjUNvYNPFTXVuk8vk8Hfw16/+r1p1524tVnOnlabhQt4FfZZ+bF4sUkpSGvW8LlYu+gmBqtUBAY4BeHbfs/j78t+wNLPEj5N+NKkVOkTUMvfddx9Wrlypv7xo0SJ8/fXX13zMtQL+Vxs0aBC2bt0KL6/aSRlXTzRcjQF/0jNkhlxrKdeUI6EgQT8BEJsXi9PZp/UHRw4WDpjdbTbuCr2rRXWKy9RlWLJnCQ6nH4aLlQs2Ttto1LrHNU+i65TRqVwtUTUpMCN4Bu7qfpfRgwu55bmYt3MeLhdfblZ2W4mqBIv+WoQzOWdEsH/U+xjbpXHB/qtpdBpEpkViW8I27Lmyp1ZgyMfWB5MDJuszttys3WBnbmey5S7IdJSoSjD9t+nILMvESL+R+HzM5wZ/32p1Wnxy4hOsPC8OYBRyBUb5jRKTvr4j6qzgosaJSovC03ufRpGqCJZmlnhj2Btt1twzKi0Kr0W9pl8BFeoSitciXkOoa2ibPH9LxeZVT+TmKnP119sobHCz/82YFjitzSZyy9RliC+I1x+PxOXHITo3us4EvZOlE4Z6D0WETwTCfcI7bAZ1ZmkmzuacrXUscvVqkqtfu7XCGuM6j8PUwKkY7DXYoMcm1yo12cWhC6YGTMWUwCnwtfM12HM21YW8C1jwx4JG9ba6mpu1m/49E+4dDldr12vef8/lPXgl8hUUVhRCBhkeCHsAD/d9+LqBcp2kw47EHfj05KfIKM0AADhbOmNRn0WYGji1TctoAiLY/nvi79iauBUX8y8CEJ/vwd6DEeETgWE+w9DJvlOrHaclFyVj0V+LkFqSCgu5Bd4b9R7GdB5j0OeQJAmH0g/h0xOfihWscgW+GPNFs/vv1FSmLsNjux/D0Yyjta63VljrVwbX7JtWtSq7sd/nKq1KfzxdNeHpZu2Gu0PvbrAx8fnc85i/cz6UWiWGeg/Fl+O+bNMJnPZIkiREpUdh1blViEqP0l/va+eLuT3mIr4gHr/G/QqFXIEfJ/2IHq49jDjatlehrcCze5/F7iu7AQC93Xujl2sv/Wq6QKdAWCmsmrTNElUJLhZcrJ4EyI9FuaZclOqr0a/Hzdqt3v1LiaoEc3bMQVJREvzs/LB+ynpOXhERysvL4enpieLiYtjZ2aGkpATOzs5IT0+HpWXDySY1A/4PP/wwHnnkEf1tJSUlOHbsGD744AMkJSUBAAYPHoxDhw7V2j/V3IZcLkdoaChsbW1x5MgRAAz4Uw23b70dsfmx+suGzpBrLekl6Vgbsxa/xv2Kco1YumIht8C0oGm4t8e9jQoy6yQd4vLjEJkWicjUSJzIOqFvnPjl2C8xwm9Ea74Ek1Uzu83H1gdrJ62Fh43HdR9Xqi7For8W4XT2aZjJzPDeqPdqLUVviWJVsX5iqyoD7moWcovqk6DKE6GapauqGkoTGdObh97E+tj1sFHYYMutW1q1CeC2hG1YdnRZrbJuTpZOmOA/AdMCp6GXW69mBV8qtBVILEiEi5ULPG09DTnkVhWfHw87C7smB24lScK6C+vw7tF3RWNkGw98OvrTNq/vXaYuw1env8Ka6DXQSTqYycxwb8978XCfh5t8At0Wssuy8ful37E1YSvi8uP018tlcoR7h2Nq4FSM6TymXZRqU2qUOJF5ApFpkTiYdlDfT6emQMdAhPuEi/Ig3uEGD1wmFSbB0szSIPuEMnUZ/r78N7YmbMWR9CP1rmioj1wmh1wmrxWE97DxwJSAKZgWOA2BToHNHk90bjT+SPqj3lKTE7tOxLTAaQhzC2s3E/fHM4/jrcNvIbc89/p3BqCVtPWWtQx1CdXXje/r0Ve/ylalVeHD4x/ix5gfAYjg61vD30K4T3iTxqnUKPFjzI/49uy3+gkKM5kZwtzC9BMPvdx6tcqKoHJNOXZf3o1tCdsQlR513Z4kvna+GOYjVtAM9h5ssNUIMbkxeOjvh5CnzIOduR0+HfMpBnkNMsi263P1itjvb/kevdx6NXt75ZpyPPbPYziSIU70ZZA1+jPbHP4O/ljQawGmBEy57qrvP5P+xFN7nwJwY9dBV+vU+DPpz1pNjQHx+V7QawHGdxkPhVwBpUaJu36/CxfzL6KLQxf8MuWXNlkt1R6UqEqwZM8S/aTVo30fxaLei9rFPj0+Px53/X4XyjXlGOU3Cp+O+ZQrxYlucD/99BPuvvtuAMD333+P++67DwCwYcMG3H777Q0+rmaw/tVXX8XSpUvr3Cc/Px+DBw9GfLw4n9i6dSumTp2qv/3ixYv47bffMGjQIAwYMAB2dnZYtWoVFiwQpcgZ8Ce95aeX4/tz37d5hpyhFFYUYkPcBvwQ/YM+608GGUZ3Go0FvRagr0ffWvfPKc9BVFoUItMiEZUWVStTEBCZrI/2fRQPhD3QVi/BJNXMbgt2DsaqCauumS1Wqi7Fw38/jJNZJ2EmM8Oykctwi/8trTK2lOIUbE/cjt8v/d5guaj6yCDDg70fxEN9HuqQpTCo4zuZdRL37rwXEiS8MPgF3BV6V6s/p0qrwr6UfdiasBX7U/ZDI1UH8vwd/DEtcBqmBEypN8goSdI1G6RaK6zx9bivDdZcvLVc3WA30DEQEb4RiPCJwADPAdcMOKu1arx15C38GvcrALFy7pPRnxi1mfj5nPP4b+R/9UH0zvadsTRiaasGuBpLpVXh7+S/sTVxK6LSagcAg5yCcGvgrZgUMKlRk8jGlFWWJZIJ0iJxKO0Q8ivya90+LXAaXo943WCZ77/E/oI3Dr0BQHwuI3wiMMx3GAZ6Dmx0sEir0+JIxhFsS9iGvy//rU+mAETjZy9bL7hZ1d+/qeqyk6UTKrQVDU4W9HDtgWmB0zCx60S4WLnUGYMkSUgvTa/eX1SWUrpSfKXWdtqq1GRbSylO0R+fHk4/jGJ1ca3brRXWGOQ1CIO9BmNH4g7E5MUAAIb5DMObw9+87mqAa8lX5mP5meXYGLcRSq2y1m32Fvb61SoRPhENlgpqDJ2kw/HM49iasBV/Jf+FUnWp/jZXK1dMDpiMaYHT4GHjgcPph3Ew7SAi0yKRVZZVaztmMjP0du+NcJ9wDPcZ3uwJ6KMZR7F492KUqkvhauWKr8d/je4u3Zv9+hqrpStiq5RryrH4n8U4nHEYMsjwxrA3MDlgMgoqCmr1Squv10tueW6t7/Tr6ebcDfN6zMOoTqOadK74zZlv8NnJzwCgzY5d2osydRk2XtyItdFr9b1FAPGZnd9rPoZ4Danzvk0oSMCd2++EUqvErYG34n/D/9fWw25zOeU5eOTvRxCTFwMZZHhpyEuY3X22sYdVy85LO/HsvmcBAIv7LcaDvR808oiIyJgmTJiAXbt2oXfv3jh9+jS6d++O2NhYTJ06FVu3bm3wcY0J+ANiEuH+++8HADzyyCP44osvrjkeBvypXiWqEpjJzdpFhlxLVGgrsD1hO1adX4WkoiT99f08+mFG8AwkFiYiKi2qVlZFlaqT4wifCAzyGnTDZFK0tqMZR/HQXw9BpVOhv0d/LB+/vN4s0jJ1GR7++2GcyDoBuUyOZSOWYULXCW0yxppNL6tOivKUebVKJ+WU5yCrLEufedffoz+WjVzWYcszUMek0qowa9ssJBYmoo97H6yZuKbNJ2fzlfnYeWkntiVsw7ncc7VuG+w1GFMCpkAhV9QK1tXso1EfG4UNlo9fXmdytr0oVhXjuX3PYX/q/npvt5BboL9nf/13SM362/nKfDz575P6cnlTAqZgacTSNq8pXh+1To3V51fjq1Nf6eswzwyeiScGPGGUpeo6SYedl3bi0xOf1mrMVxUAnBo4Fd2cu7WLTL+m0kk6xOTFICotCvtT9uNE1gkAwPSg6Xgt4rUWf443xG3A61Gv13ubQq5Af4/++gzxbi7d6jxfQkECtiZsxfbE7bWCqtYKa4ztPBZTA6diiNeQZk1OZJRmYHvidmxL2KZvBg6IfgfDfYdjYteJUGqVtfYZxariBrfXXkpNtgWNToNzOef0Ae9zOefqJCgoZAo83v9xzOs5z2DfBxXaCpzMOqlf/VpzFXCVquPmpjSyVevU2J+yv1ZTZUD0DxjTeQymBkxFuE94vQkVkiQhoSBBjCk9EsczjteZlOhk3wlTA6diasBU+Nn7NWpM/yT/g2f3PQuVTgVfO1+sGL+iTZuaN3dFbBWlRonFuxfjUPohyCDD68Nex/Sg6a034GaSJAkvHngR2xO3Qy6T48uxX2KY77BWez61To288jzkKfPq1Ma/lk72nQz2/afRabA5fjO+PPUlcspzAIhJqoldJ2J+z/nXrQNfc7/+zoh3MDlgskHG1R6lFKdg0V+LcLn4MhRyBd4Z8U6rJX211LIjy/BDzA+QQYavx31tkHJcRNTxpKeno1OnTtBqtXj33XfxzDPP4H//+x9eeeUVmJubIzU1Fe7u9Sd3NTbgf+7cOYSFhQEAJk+ejO3bt19zTAz40w1BJ+mw98perDy/EiezTtZ7H3tzewz1GYpwn3BE+EQYtc6rqfs7+W88+e+TkCBhTKcx+OCmD2qdzF0d7H97+NsGbWBmKBqdBl+e+hLfnv0WEiQ4WDjgjWFvGLy+K1FDvjz1Jb46/RUUcgV+nfprs0tjGEpiYaK+yXtV/eeGWMgtEOQcVKsRmrOlM5bsWYIrxVdga26Lr8d93e6C/peLLmPx7sX6QOXCsIUY23msPnP7VNapOtmRVfW3+3r0xXdnv0NqSSpkkOHx/o/jvl73tbuAdVJhEpZGLdWXOrMzt8OsbrNwT+g9bZZFfzTjKN4/9j6ic6MBAOZyc33994YCgB2VJEn47ORnWHF2BQBgRvAMvBr+arODtRvjNmJp1FIAQIRPBJb0W4JD6YcQlRZVq0xhFRcrF/2xT7GqGFsTtup/74BYyTbYezCmBU7DuM7jDJYAIUkSonOjsTVhK3Ze2llnxcPVrBXWdZonhjiH3NAJGYUVhTicflisGkk/BGdLZ7w45EWEuYe16vPWXBkbmRZ53UncxhroOVC8z7qMa3JpngptBU5knkBUWhQOph2sVfILEIkZ0wKn4Wb/mxvc9sa4jXj90OvQSTqEOIfg63FfG2XlVWxeLOb/Mb/RK2KrVGgrsGT3EkSmRQIAXo943SANhltLhbYC9++6H6ezT8PO3A4/TPqhyccxOkmH+IJ4ZJVl1Vm5kFeep79cX2msxrA0s8Stgbfi3p73orND52ZtQ5Ik7EvZhw+Pf6g/drBWWOP2kNtrNTVuzHae2vsU/kr+C7bmttgwdQM62bfdZFRbicuPw0N/PYTs8mxYK6zxyehPmlyWrC2pdWrcv+t+nMw6CSdLJ/w85ecWrXgioo7p/fffxzPPPAO5XI7Lly/D19cXly5dQmBgICRJwieffIIlS5bU+9jGBvxjY2PRvbtYcThhwgTs3LnzmmNiwJ9uOKeyTmHV+VU4lH4IQU5BGOYzrFVrkVL9apYamBk8E6+GvwqZTIYydRke/edRHMs8BrlMjjeHv4kpAVOMPNprO5x+GM/vf16frTOn+xw8NfCpdpGxS6YrPj8es7bPgkanwSN9HsHDfR829pD0dJIOxzKOYWvCVuy+vBtWCiuEuFQG6iqDdV0cutS7z80ozcCCPxYgpSQFtua2WD5+Ofq49zHCq6jrUPohPPXvU9dssFuqLsXRjKM4mHoQUelRSC5KrrMdG4UNlo1chps63dRGI286naTDxosb8dHxj/TZ1Qq5ApO7Tsb8nvMR5BzUKs+bUJCAj45/hL0pe/XXTQmYgsX9Fpv0CbQkSfj05Kf49uy3AMT34n/D/9vkoP/mi5vx38j/AgDCvcPx6ZhPa62iK1OX4VjmMX2g9lLhpQa3FeAYgKmBUzElYEqrr15T69Q4mHoQWxO24kDqAThbOlfvMyqbJ/rZ+3Wo8pI3imv1vmoMfwd/TAmYYvCmyslFydiWsA3bErbVWiFkaWaJ0Z1GY2rgVET4REAhV0CSJHx37jt8cuITAGJy4LOxn7V5k+KaGrsitkqFtgKP73kcB1MPAgCWhi/FzJCZbTXcZsspz8FdO+5Cemk6/Oz88NPknxq1UiexMBHbErZhe+L26yYYGIIMMozrMg7ze85Hb/fejX7c+Zzz+OD4B/oa9GYyM8wMnomH+z7c6JUwNRVWFOL2bbcjozQDYW5hWD1xtUk1PT6ReQKP7X4MxapiOFs648txX7aol0VbyS7Lxqxts5CrzEVP155YPXE1zwOJbjB9+vTBmTNnMGbMGPzzzz/664cPH46DBw9iwIABOHbsWL2PbWzA/9dff8WsWbMAAPfddx++++67a46JAX8iMpqvTn+FL099CUBkyS7svVDfYEwGGd4c/iamBk69zlbah9zyXLx88GUcSD0AQNQ0fW/Ue+26yTV1XFqdFvN2zsOZnDMIdAzEL1N/MZl61YBowL5g1wKklqTCztwO34z/ptUzVq9FkiSsj12PZUeWiQa71h74dEzjGuxeXX/b1doVH930UasFzA2tRFWCX+N+xdqYtbVKu4z0G4kFPRdggOcAg6xQyC7LxhenvsDm+M36EiVDvIbgyYFPoodrjxZvvyOQJAkfnfgIK8+tBADMCpmFl4e+3Ogg95b4Lfjvwf9CgoSh3kPx2ZjPrtt4Ob0kvbqvQPohKOQKfQPuHq492t3qE2r/dJKu0X2QALR6so1O0uFE5glsS9yGXUm76vQHmBQwCSqtCj/H/gwAGOU3Cu+Neq9dlDX9O/lvPLX3KegkHUZ3Go0Pb/qw3t+XSqvCf/b8R19m7r/h/8WskFltPdxmi8uPw9zf56JMU4YBngOwYvwKmJvVDWJfq4SgtcIarlaVvUPq6SlSdZuLlUujj5dUWhV2XNqB1edX15q87+/RH/f1ug8j/EY0uH9OLUnFJyc+wc5L1dmXN3W6CU/0fwIBTgGNev6GnMg8gQW7FkAn6XB/r/vxnwH/adH22ot9Kfvw5L9PokJbAS9bLywfvxwBji37XbWlYxnH8MCfD0AraXF7yO14NfxVYw+JqEEarQ7ZJRXGHkabcLezhMKsdRNGTp06hX79+gEQdfarguwA8PXXX+Phh0Vi3vnz59GjR93zmsYE/DUaDUaMGIFDhw4BANasWYO5c+dec1wM+BOR0UiShDcPv6k/yeri0AXJRcn6BmO3Bt1q5BE2jU7SYW30Wnx8/GNoJA2sFdZ4achLmBY4jUETMqgfY37EO0fegQwyrJm4pt2VvTGEtJI03LfrPqSWpMLe3B4rbl7RqAC7oal1arx9+G1siNsAQNQL/3j0x80qbVN1CNIR9wdqrRo7k3Zi5bmViC+I118f5haG+T3nY2znsc2q516mLsOq86uw6vwqfUPYIKcgPDHgCYzwHdEhf1ctIUkSPjz+IVadXwUAmN1tNl4a8tJ1fw9bE7bi5QMvQ4KEIV5D8NnYz5ocsJQk6Yb7fdONpVxTjn+v/IutCVsRmRZZZ2JiWuA0LI1Y2q4ypmvWbZ8RPANLw5fW+pyqtCo88e8T2JeyDwDwytBXcEe3O4wy1pbYe2UvFu9eDAkSpgdNx+sRr0Mmk0GlVWFfyj5sTdiK/Sn7a5XM83fwx9TAqZgcMLlVS7FqdVr8e+VfrDy/EqezT+uvD3AMwPye8zE5YLJ+EqGwohArzqzATxd+0q906eXaC08OfBKDvAYZbExVSVMyyLB8/PJ2XfKmMbYlbMMrB1+BVtIiwPH/7N13fFPl98DxT9K996KDTcveGxRQFAcigogCKuBXBbcyXCjOn7IUBy5AAUVFRSjIEEUQEFSQPcpo6aJ7p83O/f0RCBQKdKST8369+oImufc+adPk3vOc55xmfDb4s3rZF23J4SXM2T0HgDf6vlEn+2cIAZBWoKX3/22u7WHUiJ0vDCLMp3on8Z999lnee+893NzcSE9Px9v7/ArB3NxcwsLCMBgMTJ8+nXfeeeeS7a8U8C8uLmb37t3MnDmTLVu2ANC4cWPi4uJwcbnySiIJ+AshapXZYmbqn1PZlLgJsC6Zfa3Pa3W65ujVHMo+xNStU0nRpADWchQv93oZDyePWh6ZaAjSNGkMWz0MrUnLvTH38mLPF2t7SNUmVZPK+A3jSStOw8v5bNA/oOaC/hc32L2t2W3M7D3zqlnTDZmiKGxP3c6Xh7+0lSgAa2PDB9o8wI2NbyxXxq6iKGxK2lSqeWGQWxCPdXqMYS2GXdMl9hRFYc7uOSw9shSA0dGjebHni5cNxq85tYaXtr+EgkKP0B58dMNHdSI7WYi6LKski3UJ61hzag1xeXGMbzuep7s+XSfLRn26/1M+3vcxYF0R+2QXaw1go9nIs1ueZUvKFgBe7Pki98bcW1vDrLILg6UPtn0QrUnL+oT1FBoKbY/xcfHhlia3cEfzO2gX2K7GJyn3Zu5l8aHFbEneYrstyC2IMa3H4Kh25PMDn9vGG+4ZzlNdnuLmJjfb/XVltpiZ+OtE9mTsIdAtkB+H/kiAW4Bdj1FTlh5eyuzdswHoENiBj2/4GF9X39odVCVd2GfBxcGFZbcso3VA69oelhCXkIC//ZhMJiIiIsjIyGDUqFF8//33lzxm+PDhrFq1ioiICBITE1GrS38mXBjwv5rg4GA2btxIp06drvpYCfgLIWrdueykv9P+5sWeL3JXy7tqe0hVVmQo4vWdr7Ph9AYAoryimHX9rBoNVoqGR1EUHvv9MbalbiPUI5RVw1Y1+ImklKIUxm8cT3pxOt7O3iy8aWGNXDydzDvJ45sftzXYfbLLk0xsN1EyoC9wOPswXx7+kk2JmypUwuNibo5uTGg3gfvb3H9NN2C9kKIozPp3Fl8f/RqA+2Lu4/kez1/y+vsl/hde3P4iFsVCt5BufHzDx/IzFKKCSowldfrvRlEU3v77bb6L+w6A53s8z6hWo3hu63P8kfyH7bYxrcfU5jCrTFEUZu6cycoTK0vd7qh25PqI6xnafCjXhV9XZrmfmhafH8+SI0tYc2rNJT0rvJ29eaTDI4yOGV2t5RbTi9MZETuCQkMh/cL78fENH9fJCauyKIrCv+n/8uXhL23lUPs26su8AfPq9N9ieRQbi7n3l3tJKEgg3DOc72//Hh8Xn9oelhClSEkf+/nll1+4/XZrz8nY2FiGDr20JPVPP/3EyJEjAfjtt9+44YYbSt1fnoB/06ZNGTlyJFOmTCE4uHwrzSXgL4SoM7QmbYPKSlQUhZ9P/sz//f1/6Mw6ALycvAhwC8Df1b/MOqMX/r8h1WQX9vFL/C88v+15AD6+4WOui7iulkdUM5ILkxm/cTwZJRn4uPiw8KaFxPjHVNvxtiRvYfqf0ykxldSLBru1LbkomaWHl7Lq5Crbe115VLV5YUOnKArv/vsu3xz9BoCxrccyrfs0W9B/fcJ6nt/2PBbFQpfgLnxy4yf1PlAihCib2WJm2p/T+DXxV1SoaBvQ1lbHfnr36YxtM7aWR2gfRrORx35/jJ1pO+kQ2IGhzYcypMmQOpvxnVWSxfJjy/n+2PfozDrGtB7DQ+0fqrEA7++Jv/P0lqcBmNZ9GuPaXLmec20zWUz8lvQbXx36isM5h22339L0Ft7q+1admMyxh/j8eO795V5KTCX0D+/PRzd8VG8mY4QQFXPPPfewYsUKAgICSEtLw8np0vcxvV5PaGgo+fn53H///SxZsqTU/RcG/CdNmsTkyZMBaxlYV1dXAgMD8fGp+OeKBPyFEKKanco/xdQ/p3Ii70S5t1GhItIrkmj/aFr5tSLaL5po/2jCPMIkw/gala3N5q7Vd5Gnz+OWprcw67pZtT2kGpVUmMT4jePJLMnEx8WHRTctIto/ukr7VBSFjJIMjucdJy43jri8OI7nHSehIAGwLsf/cNCHtPRraY+n0OBpDBqytFnlfryviy9+rn7VOKL67+LM3nFtxjG121Q2nt7I9G3TJdgvxDXEYDYw+bfJ/J3+t+22qd2mcn/b+2txVPZntpgpNBTWq88HnUmHwWLA29n76g+2szd3vcn3cd/jqHbkm1u/qZON7rUmLatOrmLJ4SWkalJtt/cM68n4tuPp06hPg7u+2Xh6I1O2TgHgsU6P8WjHR2t5REIIeysoKCA0NBSdrvwJT56enqSnp+PhcX6Vfnma9lbGtRbwv3YLwgohak1z3+asuH0Fx/OOk63NJlubTY42x/qvLsf2fY42hyJjEQAKCklFSSQVJdn6GwB4OXuVmgBo5deKFr4t7FpT3GgxsiFhA18f/ZoSYwmzr59drdnU4uosioWXd7xMnj4PXxdfpnefXttDqnFR3lEsvnkxEzZMIFObyUO/PsTCmxaWO+hvMBs4lX+KuLw44nKtgf24vDgK9AVlPr5bSDfmDZhXrwIOtc3T2RNPZ8/aHkaDolKpeLHniygofB/3PcuOLCO5KJltKduwKBY6BXViwY0LJNgvxDXA2cGZ9we+z8ObHuZQ9iGe6/Zcgwv2AzioHerdZ6+royuu1E5/nyndprAnYw8n808y/c/pfH/793XmMyFXl8u3x77lu2Pfka/PB0CtUnNz45t5sN2DdXJywl5ubnIzB7IOsPTIUnan78bc3oyD2qG2hyWEsKMVK1ZUKNgPoNFoWLlyJePG1e0VWfWRBPyFELXCUe1YrpNavVlPrjaX9JJ0TuSdKJV1rDVpKTIUsSdjD3sy9ti2UavUdA3pytBmQxnceHClA27FxmJ+Ov4Ty44uI7043Xb7+A3j+XDQh3QL7Vap/YqqW3ZkGTtSdwDwep/X621jtqpq7N2YRTcvYsLGCWRpsxi1dhTO6vKVvjJYDJetM+/q4EoL3xa2SbTWAa3pGNRRll+LOsEW9FcUVhxfYWsW2TGoI5/c+EmD7+MhhDjP09mTZbcsI0+fJ6XQBGCdbJh93WxG/zKa04WnmbBxAvdE31Ola4KqSipMYukRa6k/vdlaJ9zN0Y3hLYYzrs04IrwiamVcNe3prk8T6RXJyFYjJdgvRAO0dOlSAMLCwpg3b95VHz916lRSUlJYunSpBPyrgZT0EULUSxbFQkpRii07OS4vjuO5xzlTfKbU41wdXBkUNYg7mt9Bz7CeOKqvPs+ZVZLFN0e/YcXxFRQZrCsMHFWODGk6hD0Ze0grTsPFwYXZ181mYFT5usdXlaIoxOXFEXsqlj+S/qB3o95M7zEdFweXGjl+XXI4+zBj14/FZDFxb8y9vNjzxdoeUq1LKEhg4saJFSofc06IewjR/tFE+0XTyt+6WibKK0ouxESdZ1EsvLnrTX44/gMdgjrw2Y2fyYoKIYQQAPx4/Ede2/ma7XsXBxfbNUGvsF7luiaoKqPFyNzdc1l+dDkK1rCLv6s/98bcy+jo0XW2F4MQQlRUQkICzZs3R1EUHn/8cT788MOrbvP0008zf/581Go1SUlJhIeHA1LSx14kw18IUS+pVWqivKOI8o5icOPBttsLDYUcyjrEuoR1bErcRImphHUJ61iXsI4gtyBubXorQ5sPLbPsSXxBPEsOL2HNqTUYLUYAPJw8GNlyJGPbjCXUI5SM4gwe/e1RTuaf5JktzzCzz0zubHFntT3PzJJMfon/hTXxa0r1PPjh+A/E5cUxf+D8ayqjrdhYzLQ/p2GymGjp15Lnuj1X20OqE5r6NGXt8LUczD5ou6C8Gme1M818msnFpqi31Co1M3rNYFybcUR6RdZI8EYIIUT9MLLVSJr6NOXnEz/brgnWJ6xnfcJ6At0Cua3pbZe9JrCHfF0+z219jn/S/wEgyiuKB9o+wB3N77Br6VEhhKgLli5dyrl88pEjR5Zrm5EjRzJ//nwsFgtff/0106dfe2V6q5Nk+AshGqwSYwmbkzez5tQadqXtKlW+JNovmqHNh3Jbs9tIKkziy8Nf2spCAAS5BTGm9Rjujr77koZjBfoCHvv9MfZn7Qfg2a7PMr7d+Bobd8egjvx44kcsioUQ9xA+HPQhrQNa2+34ddlL218i9lQsrg6ufH/79zTzbVbbQxJCCCGEEHVYea8J7JVEcyr/FE9sfoLkomQAnuj8BBPbTZTVk0KIBqtFixacOnWK4OBg0tLSUKuvXgrWYrEQERFBWloabdu25dChQ4D9Mvx//PFHNBqN7fvt27ezaNEiACZOnEi/fv1s94WGhjJkyJBKHaeukoC/EOKakFGcwbqEdcSeiuVk/knb7SpUpTKim/k048G2D3Jbs9twdrh8LfQSYwnPbX2O7anbARjfdjzPdH0GlUpVqfFZFAu703cTeyrWloV0TllZSH+d+YspW6dQZCjC1cGVN/u9yc1Nbq7UsSuqQF/AooOL2JKy5bI14C/m4uDC2NZjGd5yeKWPu+bUGl7cbi3fM7P3TEa0GlHpfQkhhBBCiGtPZkkm6+LXsfrU6lLXBGqVmkGRg3iiyxM086l8QsmfKX8y7c9pFBuLcXN0453+7zAoapA9hi6EEHXSjh07bMHzRx55hE8//bTc2z722GMsWLAAgN27d9O1a1e7BfybNGlCYmJiuR57/fXXs2XLlkodp66SgL8Q4pqiKArHco8ReyqWdQnryNXlAtA1pCvj246nf0T/cjcmNVqMvLz9ZdYlrAPgzhZ38mrvVytUViK+IJ41p9awNn5tqcbA5ek9cLrgNE9sfoLThacBmNRxEo92fLTaGqsazAa+PfYtnx/4nEJDYaX2Mab1GKZ0m1Lh0hvJhcmMXDOSElMJNzW+iTnXz6n05IoQQgghhLi2Xdgfa138OnJ0OQA4qBwY0XIEkzpNqlDGv6IoLDm8hHl75qGgEO4ZzgeDPqCVX6vqegpCCFEnPPLII3z++ecA/PrrrwwePPgqW5y3efNmbrjhBgCefPJJ5s+fLwF/O5GAvxDimmW0GNmXuQ8vZy9i/GMqtQ+LYmHWv7P45ug3AAyMHMis62ZdsTZnni6P9QnrWXNqDYdyDpW6r3tod4Y2G8rgxoPL1Xyy0FDItK3T2HFmBwCDGw/mzb5v4u7kXqnnUxaLYmFDwgY+2PsBqZpUAHxcfLi/zf2EuIeUax9bU7ayKXETAL3DejP7+tn4uPiUa1uj2cj96+/nUM4hGnk04oc7frikzJIQQgghhBCVYbKY2Jq8lQ/2fkB8QTwA7o7ujG83nvvb3H/V82q9Wc/rO18n9lQsAF2Cu/DewPfwd/Wv9rELIYQQZZGAvxBCVJGiKHx+4HM+2vcRYF0t8OGgD/Fy9rI9xmA28GfKn8SeimVbyjZMisl2XxPvJgxtPpTbm91OI89GFT6+yWJi3p55LDuyDIAY/xg+GPgBYZ5hVXxm8G/6v8zdPZfDOYcBa6PXMa3HMLH9xHIH7MH6M/rswGd8vO9jABp7N+bDQR/S1KfpVbedt2ceXx76EgeVA18N+YpOwZ0q9VyEEEIIIYS4HJPFxKqTq/h438dka7MBa1+vxzo9xp0t7iyzBn+2Npun/niKA1kHABjRcgQv9XwJJwenGh27EEIIcSEJ+AshhJ2siFvBm7veREEh2i+aTwd/SqomlTWn1rA+YX2pMjg+Lj7c0uQW7mh+B+0C29mlPM3PJ37m9V2vY7KY8Hf1Z/7A+ZUOjsfnx/PenvfYkrLFdtttzW7jyc5PVmpS4pxNiZt4aftLaE1avJy8mH39bPqG973s4/9K/YtHfnsEgMc7Pc4jHR+p9LGFEEIIIYS4mhJjCUsOL+HLw1+iNWkBaOHbgme6PkP/8P628/YjOUd4cvOTZJRk4KByYGr3qdwXc5+UnRRCCFHrJOAvhBB2tPH0Rp7f9jwmiwkntRNGi9F2n6Pakesjrmdo86FcF35dtWT+/JfxH89seYZcXS5Oaide7f0qw1oMK/f22dpsFuxbwMoTKzErZgB6hvbk2W7P0iagjV3GeCz3GE9sfoL04nTUKjXPdX2OcW3GXXJxlKPNYUTsCHJ0OXQL6cbCmxaWmVklhBBCCCGEvWWVZLFgv/W82KJYgPPnxclFyby8/WV0Zh1ezl7MuX4OfRr1qeURCyGEEFYS8BdCCDvbeWYnT/3xlC0jqENgB4Y2H8qQJkPwdfWt9uOf0Zzhyc1PEpcXB0CvsF64O169pr8FC3+n/X3FTCZ7ydZm88wfz7Avax9gbXg8o9cMnB2crWNRLEz+fTI7Unfg4+LDj0N/JNQj1K5jEEIIIYQQ4mpO5Z/ivT3vsTVl6yX3NfFuwoeDPqSJT5OaH5gQQghxGRLwF0KIanAy7yR/nfmL/hH9y1Wn3t5KjCW8uP1Ffk/6vcLbnqtVOqzFMBzVjtUwOiuD2cAbu95g1clVAHQO7sx7A94jwC2ApYeXMnv3bADmD5zPoKhB1TYOIYQQQgghrubf9H+Zs3sOR3KOANC3UV9mXT8Lb2fvWh6ZEEIIUZoE/IUQooGyKBbWxq/lZP7Jcm8T4h7C8BbDcXe6+ooAe1AUhWVHljF3z1wsioUwjzAe6/QYM3fOxGQxMTp6NC/1eqlGxiKEEEIIIcSVWBQLm5M2k6fPY3iL4dWaHCOEEEJUlgT8hRBC1LrtqduZunUqGqPGdltLv5Ysv3U5ro6utTgyIYQQQgghhBBCiPpDAv5CCCHqhPiCeJ74/QmSipJwdXDlu9u/o7lv89oelhBCCCGEEEIIIUS9IQF/IYQQdUaBvoDlx5bTI7QHXUO61vZwhBBCCCGEEEIIIeoVCfgLIYQQQgghhBBCCCGEEA2AurYHIIQQQgghhBBCCCGEEEKIqpOAvxBCCCGEEEIIIYQQQgjRAEjAX9ikpKSgUqlQqVSkpKTU9nCEKEVen6Iuk9enqOvkNSrqMnl9irpMXp+iLpPXpxBCiLJIwF8IIYQQQgghhBBCCCGEaAAk4C+EEEIIIYQQQgghhBBCNAAS8BdCCCGEEEIIIYQQQgghGgAJ+AshhBBCCCGEEEIIIYQQDYAE/IUQQgghhBBCCCGEEEKIBkAC/kIIIYQQQgghhBBCCCFEAyABfyGEEEIIIYQQQgghhBCiAZCAvxBCCCGEEEIIIYQQQgi72bp1KyqVyvb1119/XXWbLVu2lNrmwi93d3caN27MnXfeyfLlyzGZTGXuw2g0smHDBp555hn69OlDYGAgTk5O+Pr60qVLF6ZOnUp8fLy9n26dIgF/IYQQQgghhBBCCCGEEHazZMmSUt8vXbq0SvvTarUkJSWxevVqxowZQ58+fUhPTy/1mKysLMLCwrjlllt4//332blzJzk5OZhMJgoKCti7dy9z5syhdevWzJ8/v0rjqctUiqIotT0IIYQQQgghhBBCCCGEEPWfVqslJCSEoqIiPD090Wg0+Pn5kZaWhouLy2W327JlCwMHDgRg0qRJTJ482XafRqNh9+7dzJ07l9OnTwPQo0cPdu3ahUqlAiAlJYXIyEgAOnXqxLBhw+jZsychISEUFBSwfv16PvzwQ3Q6HQCfffYZDz/8cHX8CGqVZPgLIYQQQgghhBBCCCGEsIuff/6ZoqIiAD744AMA8vLyWLNmTbn3ERwcTLt27WxfvXr14vHHH+e///6jRYsWAPzzzz+sXbvWto1KpWLw4MHs3LmTvXv3MnPmTG655Ra6dOnCwIEDmTVrFlu2bMHNzQ2AadOm2cbZkEjAXwghhBBCCCGEEEIIIYRdnCvf06FDB8aPH090dHSp26vCz8+PF154wfb9hg0bbP8PDw/n119/pVevXpfdvmfPnraVAwUFBWzatKnKY6prJOAvhBBCCCGEEEIIIYQQosrS0tL47bffABg7dmypfzds2EBWVlaVj9GjRw/b/xMTEyu8/bmyQQCnTp2q8njqGgn4CyGEEEIIIYQQQgghhKiyb775BrPZjFqt5r777gNgzJgxqFQqjEYj3377bZWP4eTkZPu/2Wyu8PZ6vd72fwcHhyqPp66RgL8QQgghhBBCCCGEEEKIKlu2bBkAAwYMIDw8HICmTZvSp08fwD5lfQ4ePGj7f6NGjSq8/datW23/b926dZXHU9c41vYAhBBCCCGEEEIIIYQQosaZTaDJqO1R1AzPEHCo3lDwvn37OHDgAHC+jM85Y8eOZceOHezZs4cjR47Qpk2bSh3DZDIxd+5c2/cDBgyo0PZpaWl8+eWXAAQFBZUq79NQSMBfCCGEEEIIIYQQQghx7dFkwHuVCzzXO88cAZ/waj3Euex9Nzc3RowYUeq+UaNG8dRTT2EwGFi6dCnvvPNOhfZdXFzM7t27mTlzJrt27QKgcePGjBo1qtz7UBSFRx55hKKiIgBmzJiBq6trhcZRH0hJHyGEEEIIIYQQQgghhBCVZjKZWL58OQBDhw7F29u71P3+/v7ceuutgLXOv8ViueL+XnvtNVQqle3L09OTAQMGsGXLFgCCg4NZtWoVLi4u5R7j22+/zZo1awBr497HHnus3NvWJ5LhL4QQQgghhBBCCCGEuPZ4hlgz368FniHVuvuNGzeSkWEtj3RxOZ9zxo4dy6pVq0hJSeGPP/7ghhtuqPBxmjZtysiRI5kyZQrBwcHl3u6bb75hxowZtn0sX74ctbph5sJLwF8IIYQQQgghhBBCCHHtcXCs9jI314pz5XwCAgIYMmRImY+5/fbb8fX1JT8/n6VLl14x4D9p0iQmT54MgEqlwtXVlcDAQHx8fCo8tl9++YXx48ejKAqhoaFs2rSJ0NDQCu+nvpCAvxBCCCGEEEIIIYQQQohKKSgoIDY2FoCcnBycnZ2vus3KlStZsGABHh4eZd4fHBxMu3btqjy2LVu2MHLkSIxGI35+fmzcuJHmzZtXeb91WcNctyCEEEIIIYQQQgghhBCi2q1YsQKdTlehbTQaDStXrqymEVn9888/DB06FJ1Oh6enJ+vXr6dDhw7Vesy6QDL8hRBCCCGEEEIIIYQQQlTKuXI+YWFhzJs376qPnzp1KikpKSxdupRx48ZVy5gOHDjAkCFD0Gg0uLq6smbNGnr27Fktx6prJOAvhBBCCCGEEEIIIYQQosISEhLYsWMHACNGjGD06NFX3WbXrl3Mnz+fzZs3k5qaSni4ffsoHD9+nJtuuom8vDycnJz46aefGDBggF2PUZdJSR8hhBBCCCGEEEIIIYQQFbZ06VIURQFg5MiR5drm3OMsFgtff/21XceTlJTEjTfeSEZGBg4ODixfvpxbb73Vrseo6yTDXwghhBBCCCGEEEIIIUSFLVu2DLA22e3fv3+5tunTpw9hYWGkpaWxbNkypk+fbpex5OTkcOONN5KcnAzAc889R0xMDIcOHbrsNn5+fnZfYVDbJOAvhBBCCCGEEEIIIYQQokJ27NjBqVOnABg+fDhqdfmKyajVaoYPH86CBQs4fPgwe/bsoWvXrlUez8GDBzlx4oTt+1mzZjFr1qwrbvPAAw/w1VdfVfnYdYmU9BFCCCGEEEIIIYQQQghRIeea9YK1fn9FXPj4C/cjqk6lnCuyJIQQQgghhBBCCCGEEEKIeksy/IUQQgghhBBCCCGEEEKIBkAC/kIIIYQQQgghhBBCCCFEAyABfyGEEEIIIYQQQgghhBCiAZCAvxBCCCGEEEIIIYQQQgjRAEjAXwghhBBCCCGEEEIIIYRoACTgL4QQQgghhBBCCCGEEEI0ABLwF0IIIYQQQgghhBBCCCEaAAn4CyGEEEIIIYQQQgghhBANgAT8hRBCCCGEqIOMZ86Q8c67aA8dru2hCCGEEEIIIeoJlaIoSm0PQoi6xJSXR87ChZgyMsu9jWu7tviNHo3a1bUaRyaEEEKIa4UxNZXE+x/AmJqKg78/zX5Zi6OfX20PSwghhBBCCFHHScBfiAtYDAaSHhyP9r//KrytY2goQU89hc+wO1CpZfGMEEIIISrHmJZmDfYnJ9tu87nzThq983+1OCohhBBCCCFEfSABfyHOUhSFtOdfoGD1alCr8R1xFyon56tuZ9FqKVy3DkWvB8AlJobgqVPw7Nu3uocshBBCiAbGmJFB4v33Y0xMQu3hge/IkeQuWQJA1OJFePTpU8sjFEIIIYQQQtRlEvAX4qychQvJnDMXgJAXnsf/gQfKva0xPZ2s+R9QsGoVnP2T8ujXj+CpU3CNjq6O4Qoh6gjd0aMU/fY7XjcNlr93IUSVGDMzSbr/AQynT6N2dydy4ULcOnciacIESnbuwikykmaxq1G7udX2UIUQQgghhBB1lAT8hQCKNm8m5bHHQVHwvXskoa+/jkqlqvB+dMeOkTl7DsU7dlhvUKnwGT6coKeexCkkxM6jFkLUFkVRKPn7H3IWLqR4+3brjY6OBDw0kcBJk1C7uNTuAIUQ9Y4pO5vE+x/AEB+Pys2NqC8+x71bNwAMSUnE3zEMRafDf+IEQqZOreXRCiEupBgMFKxZg7moCNfoaFxiYqTnhhBCCCFqjQT8xTVPFxdH4r33YSkpwb17d6IWLUTlfPVSPlei2b6DzNmz0cfFAaBydcX/wQcIeOghHDw97THsekWxWDAXFGDOzsaUk4MpKxtTTjYqtRrvoUPlgkjUG4rZTNHvv5PzxUJ0Bw/abld7emLRaABwbtaMsDffxL1L59oaphCinjHl5pL0wAPoT5xE5epK5Gef4dGzR6nH5CxaRObsOaBW0+SHFbi1bVtLoxVCXEh74ABpL72M/sSJUrc7BgfjEhONa3SM9d+YGJwbN0bl6FhLIxVCCCHEtUIC/uKaZsrJIeHuuzGdScMpMpImK763W/BZMZspiF1D1vz5mNLTAXDw98d//IO4d+mCS3QMDp4edjlWXWDR69Fs2Yru8GFM2daAvjnrbIA/JwdMpjK3U3t7E/joo/iNHYO6ihMtQlQXi8FAwerV5C5ajOH0advt7r17Efi//+HerRs5ixaRveATFKMRVCr8xo4l+OmnUHs0nL9zIYT9mfLySHrgQfTHj6NycSHy00/w6N37kscpJhMJo0ahP3IUlzatabpihQQOhahFFq2WrA8+tPbYsFjA0RGXpk3RJyRc9rxX5eKCS8uWuMRE49GjB9633YbKwaGGRy6EEEKIhk4C/namKAr6EyfQHT6CW8eOuDRrWttDEpdhMRhIenA82v/+Q+3pSZPvvsWlRQv7H0enI3fJUnI+/xxLcfH5O1QqnKOicGnTGtfWbXBt3RrX1jE4BgbafQzVRVEUdIcOUfDzzxT8sg5LQcHVN3JywjEgAMfAQIzJyZjPbuMUEUHwc8/iNWRIpcopCVEdzBoN+d9/T+5XSzBlZVlvVKnwuvlmAiZOxK19u1KP1588SdpLL6Pdvx8Ap/BwQl9/TZp424EuLg7doUM4N22Ga0w0anf3Ku/TlJeH7sgRjMnJeN1wA45BQXYYacOlGI3WSdzMTExZWZgyM1F7eePRpzeO/v61Pbx6yZyfT+L4CeiPHkXl7EzEggV49rv8+4X20GFOjxoFFgvBU6cSMHFCDY5WCHFO8a6/SZsxA2NyMgCubdsS9vZbuEZHoxgM6OPj0R07hv5YHLo467/mvLxL9uPWqRNhb72JS/PmNf0UGjxLSQlFv2/GvUtnnMLDa3s41zxTTg66I0fRHTuKS4sWeA0cWNtDEkKIBk0C/nZgLiqi+K+dFG/fhmbbdls2Nw4O+N49kqAnnsAxIKB2B2lHisFA8b//4tqmTb0txaIoCmnPv0DB6tWgVhP56Sd4XnddtR7TlJtLzmefo9m2DUNCgq2578Ucg4LOTgK0xr1rVzz69atzAXBjZiaFa9aQ//PPGE6est2ucnLCvXt3HENDrUH9oEAcAgJwDAzCMdAa5Fd7e9uej7mwkOzPPiNv6TJrVjTWC5/g6dNw7yzlUETtMeXlkfvlV+R9+y2WoiLA+vr2GT6cgAnjcW7S5LLbKmYzed98Q+Z776NotQD43HUXIdOn4eDjUxPDb1AUs5mczz8n68OPrBmUYJ0wbdLEOlHapjUurVtf8TNJURSMqWfQHztqvdg8av2yfV5jLcXU5LtvcfD2romnVWdp9+9He/jwBUH9LFtw35yXV/Znl0qFa9u2ePTvh2f/63Dr0L7SmecWvR79yZNYNMW4d+5U5RJ7dZm5oICk8RPQHTmCysmJiI8/Kte5SMas2eQuXozK1ZVma2Jxjoys1PH18fEoRhOu0a0qtb09KGYzxTt34eDjg0vLFqhdXWttLEKUh7moiMzZc8hfsQKwZuwHPfkE/g88cMX3PUVRMGVmoY87hu5YHLqDByn67TdQFFROTgQ+NpmAiRNROTnV1FNpsBSzmYJVq8h6fz6mrCwcg4NptiZWzsFqiPWcKxXdkSPojh5Ff/a8y5SZaXuM9+23Ez5ndi2OUgghGj4J+FeCYrGgO3qU4m3b0WzfhnbvPjCbSz3mwnrOag8PAh5+GP8H7q/XFzLmoiLyV6wgd8lSa1afjw8h06bhc9fwOheQvpqchQvJnDMXgJAXnsf/gQdq9PiWkhJrturRo+iPHkV39Bj648dRDIZLHus7+h5CX3211n/GFr0ezebN5P/8M8Xbd5wPvAGu7dvjc+cwvG+9tVKTQIaUFLLmzaNw3XrbbV63DCH42WcrHcgQdYdiMKDdvx/Xdu1Qu7nV9nCuSnf0KMmTH8OUlgZY38/97h2N37hxOAUHl3s/huRk0l55hZKduwBwCAok9JVX8B48uFrG3RCZsrJInTbt/M/Qx8e2KqgsjqGhZ1dLtcapURj6k6eswf1jxy6/AulccMVoxKNvXyI/+/SaLZOS+/U3ZLz5Zrke6+Djg2NwEMb0DNuk2DlqHx88+vTGs19/PPr1wymk7L8bU1YWumNxtgCYPu4Y+vgE2zmVa/v2hM+b2yA/B8xFRSRNmGjtBeLkRMT8+XgNKl+2o0WrJX7oHRhTUvDo05vIRYsqdI5w8SRawEMTCXrqqRoPNFr0es5MmULRpt+sN6jVODdtamt46hoTjUt0DI7BQbV+DiQEQNHmP0ifOdMWuHTv1o2wN9+4YhLAlZT89x9pL71sTQQCXKKjCXvrLdzaXVv9Ocz5+ejijuPWuVOVy3sW//UXGbNmoz92rNTtPsPuoNG771Zp33WFxWA43xftCmVTy+Lg749Lq2i7lZVVDAb0CQnnr2mPnD3nuui84ByVkxMuLVviOXAgQU88bpcxCCGEKJsE/MvJlJdH8V9/UfznNjQ7dmDOzi51v8rVFY+ePfHo3x/P/v1wCg8n/8efyPrwQ8w5OQA4Ngoj+JlnrLUa1eraeBqVYkxPJ3fpMvK//750SZqz3Hv3Iuz11+vNBXnR5s2kPPY4KAq+d48k9PXX68SFpGI0oo9PQHf0CPqjR9HuP4B23z4A/O67l5AZM2plnNrDh8n/8UcKf1mHpbDQdrtDUCA+d9yB75134tKypX2OtW8fGe/OQrt3L2A9KfQbO5bASY9e81m39VXJ3r2kzZiB4eQpa3mb1167YrmK2lb466+cmf48ilaL2tOTwEcfwfeee3Dw8qrU/hRFoWDlSjLeedd28eM1ZAihL79k9/Jdprw89MdP4ODni2NQEA4+PlX6rFGMRky5eZiys7BoinFr17ZG+xFoduzgzLTpts9Q/4kTCH76aSx6A/rjcWcz9c9mj504CWdXCV2J2t3duhrg3Feb1rg0b07R5s2kPv0MAH7jxhH60ovV+tzqIs32HSQ//DBYLDhFRuLcuDGOwcE4BgVZv4Kt/zoFB+MQFGQLyihGI9oDB9Bs20bxn9vQHTlyyb5dYmLw7N8P56bN0J88if7YMXRxcbbf7ZWoPTwIff01fG67ze7PubaYNRqSJz5kLf3l6EjE++/hdeONFdqHZscOkic+BEDY//0fvsPvLNd2xoxMzkybRsnff5e63bVjB8LnzsU5IqJC46gss0ZDymOPXzKOsjj4+eESHW2bCPDo0+eyk0hCVAdTbi4Zb71N4S+/ANb3peCpU/AdNarK13QWvZ7sBZ+Qs3ChdbLTwYGACeMJfOyxak8UUxQF/fHjOEdE1Eq/IUVRKIyNJeP/3sGcn4+Djw/et92Kz7BhuHboUKHrHv3Jk2TMnk3x1j+tN6hU+Iy4C5emTa3NzoGIjz6s8HttTVMUhZJ//sWYkowpOwdTdjbmnGxM5/qiZWeXuh6rLKfISNukqvXfaJwiIq74Mzfl5p79/D5u+xzXnzp12fMvtacnrjEx58vXtmmNS7NmsopFCCFqiAT8yynh7lHWLKwLODdvjmf//nj074d7t26oXVwu2c6s0ZDzxUJyv/oKRa8HwLVdO0KmT8O9e/caGXtl6Y4fJ3fxlxT88ovtg1zt5YXf6HvwueMOchYtpmDVKsA64RH05JP43z+uTmdG6uLiSLz3PiwlJbh3707UooV1tlyAoihkvvOutREY4DdmDCEvv1RjQf+LlyyDNQDvecMN+A6/E4++favld60oCkUbfyVz7lxbXVQHHx8CH3sMv3tHy0liPWHWFJP13nvkLV9+SQkQnzvvJHj6tDpVEkxRFLI/+YTsDz4EwLlxYyI++cRufViMGZmkv/46mt9/B6wZVo3efQfP/v3tsv/C9etJm/GKbWUZAI6OOPr743C2nJZjQKD138AAHAIDcfD0xJSXZ80SO3tRacrJtn1/ca1htY8PfveOxn/s2GrtNaKYTGR9+BE5n38OioKDr6/1Z3X99ZffxmBAf+pU6XI9aWk4N2tmC+y7tm6NU1TUZYMzWR9/TPaHHwEQOnMmfqPvqZbnVxfpT53i9D2jsWg0uHXqRNSSr8o8pykPU3Y2mu3bKd62neLt26+4IgNA5eyMS4sWpTK6XaNboY+PJ/W5KbaVNj4jRxD64ot26d1Qmyx6PckP/Y+Sf/8FBwfC583D++abKrWvM9Ofp2D1ahx8fGi27perlo/UbN3KmedfsP1t+0+cgNrdneyPF4DFgtrTk7A3Xsf7llsqNZ7yMuXkkPy/h62TQyoVITNexuf229HHxVlLnZytd64/ccJ27nwhlZsbwU8/hd/YsdLsVFQrRVEoXPsLGW+9hTk/HwDP668ndOarOIWF2fVYuqNHOfPSS+iPHAWs5yFhb75RbdeLisVCxptvkbd8OU6NGhHxyQJco6Or5VhlMaSkkj5zJsXbt5d5v3OTJvjcOQyfoUOvWH/flJND1ocfkv/Dj7bVYR59+hA8fZq1n4KikDJpMpotW3AICKDZ2jV16vzzQoqikPbSyxSsXFnubdSenqjK+3mtKJcvzYd1IsslOtr2Wax2d7cmWByLQ3/s2PleVmW4sCSta4z1vMspIqJeJTkKIarH1q1bGTBggO37HTt20KdPnytus2XLFgZeps+Hm5sbQUFBdO7cmVGjRjFq1Cgcy4hLJSYm8uuvv/LPP/+wf/9+MjIyyMrKQlEUAgMD6dy5M3fffTejR4/GqYHGmCTgX06Z8+eTt2Qp7meXqJ/L4i8vY1oame+9R2HsGtttnjfeQMiUKZVeBlodzmUV5CxedD5DAmuZBP8HHsD37pE4eHrabtfs2EH6K69iTE0FzjasevMNXFu3rvGxX40pJ4eEu+/GdCYNp8hImqz4vs6e8J2jKAoZ//d/5C1dBlgzT0NefKHag/5Fv/1G+muv207sXFq3xvfukfjceisOvr7VeuxzLAYDed8sJ/uTT2yZLDWdgSgqR7N1K2kzX7MF6lw7diDoscfI+fLL86VZAgIIfelFvG65pdZX2Fi0Ws688CJFGzYA4NGnN+HvvWf3Wq/WyayNpL/2+vmA24QJBD/9VKUnHi1aLRlv/x/5P/xgz6FeSqWyXSCqnJ3xufNO/Mc/iEtT+zamN6alkTplKto9ewBw69aV8DlzcAoNtetxyqIoCmeee85aWszRkaiFC/Ho1bPaj1vbTHl5nB51D8bkZBwbhdF0xQq7TegoZjO6Q4fQbNuOZtufmDKzcGnevFRWoXPTppedPDbn55M2Y4at5Itz8+aEz5tXqzXnq0Ixm0l9+mnr81GpCJ87B+9bb630/kx5ecTfehvmvLwr1kNWDAYy33uf3C+/BC6dcCzZvZvUKVNtPS18776bkBdfqJYSbIaUVJImTsCYmAROToS/+85lfwaKyYQhKcmaSXp2IkC3/4At8OraoQNhb7xRb18Pom5TFIWsee+R88UXADj4+hLy0kt4335btZ23KEYjOV9+RfZHH9nKfPreO5rg554rdf1V5eMYDJx5/vlSpTRV7u40evedai87qJjN5H39NZnvz7f1OfK+YyiBj06ieNdOClavRrf/QKlt3Lt3x+fOYXjdfLPt52DR6chdspSczz+3rUB3admC4GnTLul/ZszMJH7oHVgKCvC6+WbC33+v1s89y5L33Xekz3wNsGbgOwYHW3uiBQaeT964oC+aQ0BAhSfnLSUl6E+cuKicXlyZq/jL5OSES7NmpVcHxMTg6O9f0acrhLhGTJgwgS/PnoMCPPLII3z66adX3OZKAf+Lde/endjYWEIvul58+eWXeeutt666ffv27Vm9ejVN7XxdWxdIwL+czBoNamfnKmeDaw8eIvPddynZvdt6g6MjfvfeS+DkSXYPPlu0WvSn4i87i38xQ1IiuV8tKbWSwaVVKwImTsD7llsu+9wtJSVkffAhuUuXWuu6OzgQMHEigZMn1ZmeBRadjqQJE9H+9x9qT0+afPctLi1a1PawykVRFDLeepu8r78GwP+B+wl+/vlqOVE1ZWWR/sabFP36K2DNGgmeMgXfUXfXWoaGKS+P7E8+Ie/rb2o0A1FU3MVL3lXu7gQ//TR+Y+5D5eBwtrzNz2TMmmWrp+45YIA1U64GArplMaalkfzYY7aMOr9x4wiZPq1aVypdXFKjsnXKdcePk/rss7bG2Z6DBhH21puo1Grrsu+ss8vAL8jeN2VnYz77vUWjwcHPr/SFZEDgBc22z64ICAhAMRrJ+/Y7cr/++nxJO5UKrxtvwH/CBLs02S7a/AdpL7xgzQhXqQic9CiBkyfX6Koxi05H4thx6A4dQu3jQ9MV3+PcuHGNHb+mKQYDSRMmUrJ7N2p3dxp/+22dC54qikLet9+S+c67KAYDKmdnQl54Ht/Ro+tkwOZyFEUh/dWZtlVzoTNfxW/06Crvt2DNWs5MnQpA5OefXdL015CUROqzz6E7dAiwlmFs9O67l/QjMeXlkfbSy2g2bwasgbPwefPsVrIPrO9ZyRMfwpSVhcrdnYgPPqhwiTdLcTGZ78+3nhMpCjg6EvC/hwh89NFKr0qpboaUFJxCQhrsCkXjmTM4BAZWufZ6XaIoClnvzyfns88A8Bo8mNCZr151FY296OMTSJsxwzb57RgWRtjMV6+40q28LMXFpDzxJMV//QVYy4Zqtu/AmJQEQNBTTxLw6KPV8v6qiztO2owZ6A5YA/qOjcIImznzkvctfXwCBbGrKYiNxXQmzXa7ysUFrxtvxK1De3KWLLHd5xAQQNCTT+I74q7LnjMU/PILZ56bAkCjuXPqXJk47f79nB47DoxGvO8YSqN3362xzzjFYrE22T1mXV11bpWVRafDtVVLXFpF4xITbS3P06xZnV0dL4Soe7RaLSEhIRQVFeHp6YlGo8HPz4+0tDRcrnDedmHAf9KkSUyePNl2n0ajYffu3cydO5fTp08D0KNHD3bt2lXqffOVV14hNjaWfv360alTJ8LCwmxjOXXqFF9++SV/nf0sbNasGQcOHMCjFsrbVScJ+NcCRVHQbN5M5uw5GM6+QFXu7viOHEHAAw9UaOVAWUw5OeR98w153yy/6lL6y3Hv1YuAiRMuyZC4Eu3Bg6S9PAN9XBxgXYoa+sbrePToUakxVIWiKBgSTlO8YwfF27dT/O+/KCUloFYT+dmndiujUVMURSHjjTfIW/4tAP4PPkjw9Gl2OxFUFIWCn34iY9ZsWza956BBhL76Ck4hIXY5RlXVZAaiqJiLa7ACePTvT9jMV8t8PzNlZZH+9tsUrbdm1Ks9PAh67ln8Ro+u0Ykl7b59JD/+hDWA7ehI6Csz8Bs1qkaOfXHTTLWnJ2Gvv1aubF9FUchf8QMZb7+NotejcnIieNo0/MaOqfaLQ4teT0FsLLmLFts+vwDcunQh4KGJeA4YUOHfoWIwkDl3nq18mUNQIOGzZuHRu7c9h15uxoxMTt99N6bMTJybNaPJd982yB4iiqKQ9vLLFPy0ElQqIhZ8jFc5M2lqg+7YMVKfedbW3NJr8GDC3nzD7itxqkvWBx+SvWABAIGPP07Q44/ZZb+KopD88CMUb9uGY6Mwmq9ZY6vFXbD2F9JffdWauengQNCTTxLw0MTLlsFRFIW8r78hc9YsFKMRlYsLIS++aJ30r+J7S8l/e0l+9FEshYU4+PgQ+flnuHXsWOn9afftI23GDGv/DsC5WTPC3ngd965dqzROe9IdO0bm7DkU79iBc5Mm1vHV8XKeFaGYTGS8O4u8ZctwCAzEf+xY/O4dXW/+Ji9HURSyPviAnE+s2Yc+d91F2Jtv1Hjii2KxkPftt2TNnYelpAQA76FDCXnh+UpnU5vy8kh+5FFbwD3khefxf+ABTHl5pD7zLCW7rKswvW+9lbC33rTbObbFYCD7k0/I+WKhtcGsSoXf2LEEP/3UFXsHKBYLJf/upmD1aoo2bLD9HM5RubjgP/5BAh7631Wb0CqKQuozz1K0YQMOPj40XRN7ycRnbTHl5pJw1whM6em4tGpFk++/k+sbIUSDsHz5csaMGQPA4sWLmTBhAgA//PADI0eOvOx2Fwb8X331VWbOnHnJY/Ly8ujRowcnT1rPBWNjYxk6dKjtfpPJVGapnws9/fTTzJ8/H4D58+fz5JNPlv/J1QMS8K9FitFI3nffk/3xx7YgGQ4OeN9yCwETJ1S4LI4hMZGcL7+k4OdVZdY8vSpHR7xvGoz/hIm4tWtb8e05uxR10WKyFyw4vxR11CiCpzxX7QETc0EBxbv+tgb4d+zAeOZM6Qc4OhL68kt2yairDYqikP766+R/+x1wtoHllClVvgg3JCaS9sqrtmxjh8BAQl9+Ga+bb6pz2ZOmvDzSXp5hq4Pu3OJseYdWdSsjtTJMeXk4+PrWuZ/51Vxcg9W65P1FvG+//arPpWjzZmvpqIwMwBo0DnvjdVyaN6/2ceevWkX6jFdQjEYc/PyI+GB+rQRiSvbssU5knS1/5Hv3SEJefPGyF3rmwkLSXnnVVn7IuUkTwufNxbVNmxobM1gvwjV//EHOosVo//vPdrtzs2b4j38Q967doBwvZYtGQ/rrb9hWlnn06UOjWe9Wa4+A8tAeOkzi2LEoOh0e/foR+eknlVppYNHrrRM6dfDCPWfRYjJnW0vABE+bRsCE8bU8oquzlJSQ/tZb1kkKrNmh4XPm4t6l6itMqlPu8uVkvP4GAL6j7yH01Vft+l5vSEklfuhQFK0Wv/vHEfz001X6OemOHCH12edsk3peQ4YQ9vprlT6P02zdSspTT6PodDiGhhK1aKFd3ucVg4HshQvJ+eRTlLO9pvzuu5egZ5+1a/mTijKmp5P1/nwKVq++ZJWt7+h7rOVZKtkI/kIWnQ7FZL5qoLM6mAsKSH3mWVuW+Dn2TGCqLVkffkT2xx8D1p5DYW+/Vat1yI2pqaS9etF51osv4D10aIXeR4xpaSRNfAhDfDw4ONDo7bfwGTbMdr9iNJLxf+9Yey9hLdMaseDjKif+lOzZQ9qMV6zHxbp6KOyNN3Dr1KlC+7FotRT99ru15M+hQ3hefx1BTz9doV4Kprw84m8fijknB88BA4j4ZEGtn3crZjPJ//sfxX/tRO3lRdMff2jQKwuFENeWIUOGsHHjRjp06MD+/fuJiYkhLi6OoUOHEhsbe9ntyhPwB+skwsSJEwGYPHkyH5/9/C6v9PR0ws5+jowcOZIfqrtMbg2TgH8dYCkpIf+nleR+9ZWtFj5Y60j7T5yIR58+VzwZ0e7fT86ixRRt2mS7sHAICMB/3Fh877mn/Bc9arXdmp/p4xNIe2UG2t3WpajV0exRMZvRHjhA8fYdFO/YgfbAAWtJoQs4hoXh2a8vHn374tGrV43Vn68uisVC+szXbCUBAv73EEHPPlupk1XFZCL3q6/I+vAj2wSRz4i7CJk6tU7/nBRFIe+b5WS+++75DMQXXsD3nlG1ftJeGebCQtJefZWi9Rtw69KF4KlT7FIepbopZjN533xjrcFahcwzc1ERmfPm2SayVE5OBEx6lMCHHqqWJcOK2UzmvHnkLloMWMuWRSxYgHNE7QUmzPn5nHn5ZTS/nZ3Iukydcu2+faQ+N8X2OeFz552Eznj5itlxNaHkv73kLF6E5vfN5S4hd4lz2cf/e6jONHgr3LCB1KefAaylnkJferHc2xqSk8n98ivyV64EsxnPQYPwGTYMz/796kRZj6LNm0l57HFQFHxGjiDsjTfq1ftnwZq11sz1khLra+eJJ6yvnTrYwLVw/XpSn30OFAWvm24i/L151TLO3CVLyPi/d0Clwiky0laew2vwjYS9+WaFs64txcWkv/EmBatWAeAUHk6jObMr/PlUEBvLmRdfApMJ56ZNiVq0EKdGjSq0j6vRnzxJ2oxX0O7dC4BjSAihr76K16CaXbFi1mjI+fwLcpcssZ1XubRuTcCE8eR9+51tctQxOJjQV1/B64YbKnUcY3o6uUuXkf/996AohL76SqnAbXXTxyeQMmkShsREAAImPQpA3vJvbeX6qpLAdI6lpATFbLbL5Eh5ZX30MdkfWZu3+wy7g7C3364T7yuKolC4Zg0Zb/9fuVZSXkwfH0/SxIcwpaWhcnUl/P338LqggeKF8r77nvQ33wSTCYegQCI/+qhSq3HMGg1Z8+bZVidX9/ldeRX99hspjz8BQNjbb+N71/BaGwtA5nvv20pHRSz4GK9Bg2p1PEIIYS9paWlERkZiNpuZNWsWU6dO5c0332TGjBk4OTmRmppKUFBQmduWN+B/6NAh2rdvD8Btt93G2rVrKzTG4uJiPM/GS2+//XbWrFlzlS3qFwn41yGKyUThxo3kLlqM7sgR2+3Wi4UJeA+52RYoUCwWNFu3krto8fl+AFizPf3Hj8fnzmG1XstUsVjIX/EDmXPmYNFoAPs0e9TFHacgdjWFsWtsTWXPUbm54d6jO559++HRr6+1GWA9CmKUh2KxkP7qq+T/8CMAAQ8/TNAzT1foeWoPH7YuhT9bt9wpMpKw11+rtRIalaE7etRa3sFOGYi14eIA7jleN99M8LPP1LkMH2N6urVM1o4dFO/4y1Yy7HI1WCuiZPduawbY2XIdTuHh1kbhI0egdne3y/jNGg1nnpuCZutWADxvuIFG775bK9mRF1MUhbzly8l8d5a1TrmLi7VO+T33gKKQs2gRWfM/AJMJlbs7YTUc4CkPfXwCuV9+ScHq1bYVXuXhFB5Oo1nv1qlSHOdkffwx2R9agz+hr72G3z1XLvmkPXiInMWLKNr46yUT0GBtlup92234DBuGa9s2tfL5pIuL4/S996GUlODevTtRixbWy3q8hsREa236w4cB8L71FhrNnl0ngnPnFO/cSdLDj4DRiHuPHkR+8Xm1nZspZjOnR99rWy1jr14HBatXk/ba67aJXYeAAFyjrU0azzVtdGnWtMyJLNskBNZeJZGff2b3flXnlFX+xOuWIQQ//XS5P0NUrq6VCi4rRiN536+wrtg925DdMSyMoKeexOeOO1Cp1dZz4u+/J3POXFtzTK8hQwh96UUcL3OxezHd8ePkLv6SgrVrrWVRLuAzbBihr8yo9glgzbbtpD77LJaiIlRubjR65x28b74JsE4S2RKYLlhl69GnD/4TJ1w2gUlRFExpaaWbiB47hiEpCRQFx7Cws6+5szXEo6NxbtzY7pPD2Z98Yv2cxZrA0Oid/6tT7ydwtlfS2/9H4dmAxsW9ksqiPXCA5IcfwZyfj9rbm8hPP8G9S5crHqf4739IffJJzAUFqJydCXvrTXwuKJNQFkVR0J84QfGOvyjevp2S3bttE19unTtbV3DWkf5pZ6ZPp2B1LGpPT5qtia3QKgF7Kvr9d+vkOxDwyCMEP/N0rYxDCCGqw5w5c5g6dSpqtZqkpCTCw8NJSEigefPmKIpyxRI65Q34x8XFERMTA1hXE6xfv77Mx13OokWLeOihhwCYMmUKs8+ufm4oJOBfBymKQsnff5OzcJFt+SZYg2oBDzyA2tOTnMVfYjh1ynafW6dO+E+cgNegQXXu5NRcUEDed9+Tu2xZpZs9mrKzKVi7loLVseiPHi11n0vr1rYsfrcuXRpU07DLUSwW0mbMsC3XD3j0EYKeeuqSCynFZMKQmHhJEyZTZqb1AWo1/uMfJOjxx+tkyYmrKSsDMXzunAotE7bo9agcHWv070axWC4J4AZNnkTR75ttGYo4OuI3ejSBj02utgDJ1Vi0Wkp276Z4+3Y0O3bYmsPaqNX4jRlz1Rqs5T6eXk/2p5+er/EKOPj44HvfvdbVQZVolqcoCvqjRylYvZqCNWsx5+YC1guroKeerDPZ5OdcUqf8ppuwFBdTvGMHAC5tWhM+d26lJ0xrgkWvv6TO7pU4+PjUud/DOYqicOa55yhctx4cHYlauBCPXj0veUzxtm3kLFpsK40G4BQVRcD4B3Hw9aVgdSyabdvAbLbd79yiOT7DhuEzdGiNNa02ZWeTMGoUpjNpOEVF0eT772rt/cUeLu7/4HfffYTMeLlOTPRrDx8madz9WEpKcGndmsbLllZ7mRld3HGSxo/HMTCQRrNn4RodbZf9Gk6fJvW5KbbJlYupnJxwbtGiVFC2+K+d5Hz+OWAN+EZ8+EGNrEYypqWRPvM128RuRTmGhl4yoeHcOKrMcwRFUSjatImsufNs2e5qT08CHnkY/3HjULu6lj2+115Hs2WL9fE+PoRMm4bPXcMvGwwv+edfchYtpPjPbaXG6X///WgPHDhf4q1xY8Lfm1ctJd4URSFv6VIy3p0FFguOYWFELvi4zOz9cwlMOYsW2RJL4HwCk3PTpqUC+7q4OFv/qPJSubnh0qolrtEx5ycCWkVXegI/+9PPyHr/fQC8b7+dRu++U+eupy6k2bqVtJmv2coBunbsQNgbb1xS4lKzYwcpTzyJUlKCY1AQkQsXlrsxuyE5mZTJk219MgL+9xBBTz9d6udiysuzBvjPJoPYri/OUnt4EPTsM/jde2+d+pw3FxQQf8cwTBkZePTpTeSiRTX+uWFITCRhxEgsGo11DF98Uadfc0IIUVEdO3bkwIEDDBo0iN/PlmQG6NevHzt27KBr167sviB5+ULlDfj/+OOP3H333QBMmDCBRYsWXXVceXl5nD59mmXLlvHRRx9hNBpxdnbm6NGjNGvWrILPsm6TgH8dp4uLI3fxYgp+WXdJNg9YG6sGPDTxqpkadYGt2ePiL23BLAC3rl0JmDjhkmaPFp0OzebN5K9eTfH2HaUCJS4tW+AzbBjet99eY4GSukaxWEh76WUKfv4ZsAb9Pfv2RXdBYF9/4sRl+zm4tG5traFZyX4NdUlBbCzpM1+zBhkdHa1ZdbfdhiknB1NWNqacbMzZ2Ziyc6y3ZWdhzs7BlJ2NRaNB7e2NR69eePTti2e/vtVad9aUnc2ZadNtdW8vDOBeNnjw8MP431928MCeFEVBf/y4rQ9Gye49l2RqO/j54dGnDx79+uHRpw9OIfZveGZMTSV36VLyfvjRllWqcnHB5847CRj/IM5Nmlx9HxkZFK5ZY50kPHHCdrvK1ZWwN97AZ+jtdh+3vVhKSkh/8y0KVq4sdbv/A/cT9Nxz18SkZl1i0elIHDsO3aFDqH18aLrie5wbN0YxGChYt47cxV+iP37c9njX9u0JmDgRr8E3lg6M5ORQ+MsvFKxaXWoVHyoV7r16Wj/TBg+utqCoRa8n6f4H0O7fj9rLiybff4dLAzmpvbAkQtBTTxI4aVKtjseQmMjp+8ZgzsnBKTKSJsu/KXcWd1UpBkP1lEOzWNCfPIk+Lu6CJIK484kcl+F1yxAavftujb5vKYpC4bp1ZLz1tm2StypUbm64tGxZakJDMZvJeu/90pP0995L4ORJV51EUxSFog0bSH/zLcw5OQC49+5F2Guv4RwVZX2M2UzRpk3kLFyE7tAh27YurVoR8NBEvG+5BZWTk7WJ+w8/kPHWBU3cp07Fb9xYuwUwLQYD6a+9ZksycevcmYgPP7hqiU5FUSjZtYucRYtLJTBdjsrdHdeWLUtNtqicncs/OeDoiOd111nLpw0cUO7XXPbnX5A1bx5gbVbbaNa7lerZUtPMmmKy5s8n7+uvreX0nJwI/N9DBDz6KGpnZ2s5sWnTwWjEqXEUUYsW4RwRUcFjaDgzdRqaP/4AwHPAAPwfuN/WM0135MglpfycoqLw6NsHz379cO/Zs1b7aVyJZts2kv/3MAChr76C37331tixLVotp+8Zjf74cRzDwmj604+VbsQshLAPk8VEtvbK5zQNRaBbII7q6v2c27dvH53PJvYuXryY8ePP9wr79NNPmXT2XP3w4cO0KSNRoTwBf5PJRP/+/dl1tuH80qVLGTduXJnjefDBB1lyNkHoYu7u7ixbtoy77rqr/E+wnpCAfz1hTEsjd8lS8lesQDEa8blzGP7jx9fLi/UrNXsMmDAep6goCtesoXD9BlspILCWQvAZejs+w4bh0rp1ncjgq22K2Uzaiy9ZG8NdgYOvr/UCqlTWWnSdyrapKsPp09byDhcG0irJuUkTa9+Hfn3x6NHDbgE4zY4dnJn+vC1AcrkArmI0krdiBdkfXb48gD3pExIoiI2lcHVsmc2u3Tt3tgb4+/bFtU3rGnvdmPPzz68OOhsUsa4OupGAiRMuWclhKSmh6LffKFi1muKdO0tdhLq0bo3PsDvwuf32Wm8IW14Fa9aSPnMmKicnwt5+u8brUYvzjBmZnL77bkyZmTg3a4bviLvIXfY1pvR022M8r78e/4kTcO/e/aqfT7rjxymMjaUgdk2pjEgHHx8iFy7ErX07u45fURTOTJ1mLQPh4EDk55/h2bevXY9RmxRFIf2VV2yl7spTfqm6mLKyOH3vfRhTUnAICKDJt8ttQdyGyJSdjS4urtQqQn18PJhM+N13LyEvvVRrWauKwYDxoozjKzEXFKCPO14qwHyudN2VVLYMnzk/n4x3Z9kSN1SurgQ98QQqN1dyv/wKY3Ky7bHuvXoRMHEiHv36lvn+oj9xgtRnn7VlY3sOHEjY229VeQWPKSeHlCeetJ2v+9x1F6EzX63wBI7u2DFyFi+2rpYymXBsFHY+Oz/ael7qFBV11fMLRVEwpadbJ53i4s6X/0lMLPWZr/b2xvvWW/AZNgy3Tp0u+56cs3AhmXPmAtbJqfDZs+tFsP9CJXv3kjZjhm0VpnOzZnjdeCM5X3wBioJLm9ZEff55pc99FLOZrPfnW/dXBrWHB+69etlWW9en97u0V14lf8UKVO7uNFv1c42MXVEUzkyfTmHsGlROTjT+5mvcOnSo9uMKIa4svTidwT8Oru1h1IhNIzcR6lG9SbPPPvss7733Hm5ubqSnp+N9Qdnl3NxcwsLCMBgMTJ8+nXfeeeeS7a8U8C8uLmb37t3MnDmTLWdXTDZu3Ji4uDhcLlM683IB/9GjRzNr1iwiIyOr8GzrLgn41zMWgwEslmrP9K0pV2v2qHJ2xvOGs80O+/atE80O65pSQX+1GuemTc8H9qNb4RITg2Nw8DUxQWIxGMiaO5fcJUttt6m9vXEMDMQxIACHwAAcA4NwDAjAMSgQh4AAHAMCMCQkULxjB5odf12arejkhHunTlUKeCtGI1kffGi7WHLw9S1XANes0ZDzxUJyv/rqfAPAmBiCp06pcrDOnJ9P4fr1FKxajXb//lL32SY8+vbFvUePWq9xb9HrKVi92ro66GzPBgC3bl0JmDARtbsbBatWU/jrr7YVAQCOQUF43zEUnzuGlXsJe11jKSkBtbrBvOfXZ9pDh0kcOxZFpzt/o5MTPrffTsCE8bi0bFnhfSpmM8W7dlEYG0vhr5tQtFocg4Jo8sMKu65eu7A2dciMl/EfM8Zu+64rFJOJlKeeRvP776BWE/7+e3jfdFONjsFcVETiuPvRHzuG2sODxsuWVkt5lbrOYjBgzsvDKSSktodSJYqiYMrIKF0W8ej54LJbly6ETJtaoTKCZSn+6y/SXnkVY0pK6TvUaryH3Iz/hInlWo1p0WrJeOddazNfrGV/wmfPwr1790qNS3fsGMmTJ2M6kwZqNcFTp+L/4ANVOp80FxWBxVLhJtJXYykpoXjnTgpWraZoyxYwGm33OTWOwueOO/AZNqxUhnvO4i/JnDULsE7ahM+ZXW+vMxSDgewvviD7089KPXf37t2JWPCxXRofF8TGkjbjFRSDAdf27W1Z/G4dOtTbn5tZU0zCsGEYU1Nx69aVxkuXXvEc31xQQPHOnbZeVhaDAe+bbsLnzmG4tm9frr+N3OXLyXj9DQBCZ76K3+jRdns+QojKk4C//ZhMJiIiIsjIyGDUqFF8f/a85ELDhw9n1apVREREkJiYiPqi994LA/5XExwczMaNG+l0hfOx1NRU8s4mUhYWFnLgwAG++OIL/vvvP/r168fixYtpWYlrubpOAv6iTrA1e1y1CsVoxK1rV3yG3YH3kCH1qglrbVEUBWNyMo7BwRIYxJpxqBgMOAQGVigLTbFYbCVtNDt2oN29B+WCCycAtZfXpQ0LW7a47M/dkJLKmeeeswXV3bt1o9Gc2RUK5hnT08ma/4G1V8HZt2ynyEjb8V1jrONxCg+/4sWGYjCg+fNPClavpmjL1ksviIcNw+f22+tsdpZisaDZvJmchYvQ7ttX5mNUrq54DR6Mz7BhePTuJfVQhV0VbthI6nPPoXZ1xXf0Pfjff7/dgpqGpCRO3z0Kc0EBrm3a0PjrZXZpWF0QG8uZadMBa4370FdmVHmfdZVFpyPpoYfQ7t6DytmZyIVf4NGjR80cW68n+aH/UfLvv6icnIj84nM8evWqkWOLmmXRajHn5eEYFma/sjklJWR9+BG5S5agcnbGd8QI/B98AOdKZJwVbthA2oxXsBQVgVpN4GOTCXz00Qp9HhZu2sSZadNRtFrUnp6Ez5uL53XXVXgstcGcn0/hhg3WhIaLzhXcunXFZ9gwzPn5ZM21lvHxGjyY8Hlz623Q+kL6kydJe3kG2n378Bp8I43mzLFro3BTXh4qlQoHX1+77bO2Ff/9D0kPPABA8PPTCXjwQdt9ismE9sABirfvQLNjO7qDh8BiKXM/zk2bWs+j7xiKU6NGZT5Gu28fp8fdD0YjPnfeSdj/vX1NJGQJUR9ISR/7+eWXX7j9dmv53NjYWIaW0fT9p59+YuTIkQD89ttv3HDDDaXuL0/Av2nTpowcOZIpU6YQHFzxMsNms5nHHnuMzz77DD8/P/744w86duxY4f3UZRLwF3WKubAQRa+vsVq3QlyJRaul5N9/rdn/23eUapRdysUrK84G4rVnl1nbLronTyZwUsUuui+ki4sjc/acy9bCVXt64hIdXarOsEuLFuhPnrRmwK9bhzk///zjy7nkvS4q+e8/chYttmbzqlS49+iBz7BheN10U62vSBANmzEjEwdPj2qptV/8zz8kTXwIjEZrEGr++1UqoVWw9hfOTJsGFgseffsS+dmn9a5cRUWZCwtJHDsO/fHjqD09afz1MlxjYqr1mMa0NNJeeoniv3aCSkX4e+/hPeTmaj2maJiM6emo3d2rnOxiSEkh9bnn0O0/AFgzvRvNmY2Dpyem7Oyr9jgypqYC1mSAyAULcGnevMrPrTYYTp+mIDaWgtWxtud0Ia/BNxI+b16DCPafo1gsGM+cuWoSiDgv/e23yVu6zDpR/OknGJKSrFn8O3eVKi8L1l4THj164NGvH2CdVNcdOFDqMe49e15yTmrKySHhrhGYMjJwiYmhybfLUbu51cwTFEKIGnTPPfewYsUKAgICSEtLw6mMz1i9Xk9oaCj5+fncf//9l5TbuTDgP2nSJCZPngyASqXC1dWVwMBAfOywWtBgMNCiRQuSk5Pp3bs3f53ts9hQSMBfCCHKyZiWhnb/AVudYl3cMetS96twDAkhfM7sSi+rv5juyBG0Bw+drzMcF4eluLh8G1eyqV1dZczIBBU4VWJWX4i6KP/HH0l72ZqFH/DIIwQ/83Sl9lO4bh2pU6aCxYJb165Eff5ZtTUErmuMGZkk3nsvxjNncAgKpMny5ZXKlL4axWIh79tvyZo7z1p+Cwh5ZQb+991n92MJUVEXlxNEpSqzfOblePTpTfi8eQ0im1uxWNDu2UP+6tUUrd+ApbgYzxtuIOK9edXS5FrULxatloQ7h1vLdZXBtW1bW28v906dLnnN6OPjKVgdS0FsLKa089cFKldXvG68EZ9hd5CzaDElu3ah9vam6Y8/1NnVtEIIURUFBQWEhoaiu7AE6lV4enqSnp6OxwXXKeVp2msvDz/8MF+cPVdKSUkhPDy82o5V0yTgL4QQVWAuKLi0YeGJEygGA2C/xnlXolgsGFNTS9cZPhZXqh6wa/v2+Awbhvett+Do719tYxFCVF3Gu7PI/fJLABq9+w4+w4ZVaPvCDRtIfW4KmM24delC5OefX3MrX/QJCSTeN8ZaS75xFE2WL8cxIMB++z95krQZr6Dduxew1ksPffUVvMpZb1SImqLZvoMz06djzsk5f6NKhYO/v63HkbWvUaD1+8AAnBo1wq1z5wZZFs+i1aI/eQrXtm2qtIJKNCwle/eSeP8DYDTiGBR0NsDfD48+vct93qxYLJT886+1dObGjbaJ4AtFfLJAPieEEA3WF198wcMPP1zh7ZYuXcq4ceNs39dkwP+ll17i7bffBuCvv/6id+/e1XasmiYBfyGEsDPFZMJw+jSK0YhLTEytLak2FxWhP3ESBz9fXJo2rZUxCCEqTjGbSXnscTRbtqByciJqyRLcu3Qu17aFG38l9dlnrcH+Tp2IXLjwmgv2n6M9eJDEBx5EKSnBtW1bopYsqfLP4lxzzJxPP7P1ePG77z6Cnn0GB09PewxbCLszFxWhO3wEB18fHAMCcPDza/DlvYSoqHPn7s4tWlT53N1SUkLR779TsGo1xTt3gsVC4ORJBD35pJ1GK4QQdU///v3Zvn07YWFhzJs376qPnzp1KikpKdx4441s2rTJdntNBvwffPBBW0mhAwcO0L59+2o7Vk2TgL8QQgghRB1j1hSTeN996I8fx8HfnyYrVuAcceUlpoW//krqs8+ByYRbx45ELlp4zQehNdt3kDxpEhiNuPfuReRnn1W6lJl23z7SZsxAf+IkAM7NmhH25hu4d+lizyELIYRoQIwZGRhTU62rZqSvghCigUpISKB58+YoisLjjz/Ohx9+eNVtnn76aebPn49arSYpKclWTqemAv7FxcU0a9aMzMxM3NzcyMnJwa0B9VeRdYxCCCGEEHWMg6cHkZ8swCEgAHNuLimTJmG+qHnghYp++80W7Hft0IHIhV9c88F+AM9+fWn0f/8HQMnOXZyZPh3FYqnQPizFxaS/9Tan773PGux3dCRw8iSa/rxSgv1CCCGuyCkkBPcuXSTYL4Ro0JYuXcq5fPKRI0eWa5tzj7NYLHz99dd2G0t2djY//fTTFR+j0+mYMGECmZmZtrE0pGA/SIa/EEIIIUSdVbJ3L0kPPIhiMOB5/fVELPj4krraRZs3k/LU02A04tquHVGLF+Hg7V07A66jcpcuI+NsfU7X9u1xbtzYVq/cITAQx4BAHIOs9cwd/P1tP2PNn3+SNnOmrUG7a8cOhL3+Bq7RrWrtuQghhBBCCFGXtGjRglOnThEcHExaWhrqcvTJsVgsREREkJaWRtu2bTl06BBQ9Qz/06dP07RpU1q0aMGIESPo0aMH4eHhuLi4kJ2dzT///MOiRYuIj48HIDw8nH///ZewsLCKPek6Too3CiGEEELUUe6dOxP21pucmToNzdatZM6eQ8jz0233F/3xx/lgf9u2RC1aKMH+MvjfPw5TdjY5n3+O7uBBdAcPXv7BajUOfn44eHtjSEgAQOXmRvAzT+M3ZkyDbGQqhBBCCCFEZezYsYNTp04BMHz48HIF+wHUajXDhw9nwYIFHD58mD179tC1a1e7jevkyZO8++67V3xM7969+frrrxtcsB8k4C+EEEIIUaf5DB2KPj6enE8+Jferr3Bu3gy/u+9Gs3UrqU8+ZQ32t2ljzez38ant4dZZQc88jVunTuiOHMGUnYU5JwdTVjamnBxM2dkoWq31gRYL5pwczDk5AHj060fozJlX7aEghBBCCCHEtWbp0qW2/48YMaJC244YMYIFCxbY9mOPgH9UVBTbtm3j119/5Z9//iExMZGMjAyKiorw9PQkKiqKbt26cffdd3PzzTc32JJrUtJHCCGEEKKOUywWUp95lqKNG6015Cc9Ss6nn6EYjbi0bk3jLxfj4Otb28Os1yzFxbbg/7kv54gIPPr3b7AXAkIIIYQQQoiGRwL+QgghhBD1gEWrJXHsOHSHD9tuc4mJIerLxTj6+dXiyIQQQgghhBBC1BUS8BdCCCGEqCeMGRmcvnsUpsxMXFq1ImrJVxLsF0IIIYQQQghhIwF/IYQQQoh6xJCSimbzZnzuGCplfIQQQgghhBBClCIBfyGEEEIIIYQQQgghhBCiAVDX9gCEEEIIIYQQQgghhBBCCFF1EvAXQgghhBBCCCGEEEIIIRoACfgLIYQQQgghhBBCCCGEEA2ABPyFEEIIIYQQQgghhBBCiAZAAv5CCCGEEEIIIYQQQgghRAMgAX8hhBBCCCGEEEIIIYQQogGQgL8QQgghhBBCCCGEEEII0QBIwF8IIYQQQgghhBBCCCGEaAAk4C9sUlJSUKlUqFQqUlJSans4QpQir09Rl8nrU9R18hoVdZm8PkVdJq9PUZfJ61MIIURZJOAvhBBCCCGEEEIIIYQQQjQAEvAXQgghhBBCCCGEEEIIIRoACfgLIYQQQgghhBBCCCGEEA2ABPyFEEIIIYQQQgghhBBCiAZAAv5CCCGEEEIIIYQQQgghRAMgAX8hhBBCCCGEEEIIIYQQogGQgL8QQgghhBBCCCGEEEII0QBIwF8IIYQQQgghhBBCCCGE3WzduhWVSmX7+uuvv666zZYtW0ptc+GXu7s7jRs35s4772T58uWYTKYKjcdisdC7d+9S+2yoJOAvhBBCCCGEEEIIIYQQwm6WLFlS6vulS5dWaX9arZakpCRWr17NmDFj6NOnD+np6eXefsGCBezatatKY6gvVIqiKLU9CCGEEEIIIYQQQgghhBD1n1arJSQkhKKiIjw9PdFoNPj5+ZGWloaLi8tlt9uyZQsDBw4EYNKkSUyePNl2n0ajYffu3cydO5fTp08D0KNHD3bt2nXVbP3U1FRat26NRqMhICCA7OxsABpqWFwy/IUQQgghhBBCCCGEEELYxc8//0xRUREAH3zwAQB5eXmsWbOm3PsIDg6mXbt2tq9evXrx+OOP899//9GiRQsA/vnnH9auXXvVfT3++OMUFRUxfvx42rZtW4lnVL9IwF8IIYQQQgghhBBCCCGEXZwr39OhQwfGjx9PdHR0qdurws/PjxdeeMH2/YYNG674+JUrV7Jq1SoCAwOZNWtWlY9fH0jAXwghhBBCCCGEEEIIIUSVpaWl8dtvvwEwduzYUv9u2LCBrKysKh+jR48etv8nJiZe9nGFhYU88cQTAMyePZuAgIAqH7s+kIC/EEIIIYQQQgghhBBCiCr75ptvMJvNqNVq7rvvPgDGjBmDSqXCaDTy7bffVvkYTk5Otv+bzebLPu7555/nzJkzXHfddTz44INVPm59IQF/IYQQQgghhBBCCCGEEFW2bNkyAAYMGEB4eDgATZs2pU+fPoB9yvocPHjQ9v9GjRqV+ZidO3fy6aef4uTkxCeffFLlY9YnjrU9ACGEEEIIIYQQQgghhKhpismEKTu7todRIxwDA1E5Vm8oeN++fRw4cAA4X8bnnLFjx7Jjxw727NnDkSNHaNOmTaWOYTKZmDt3ru37AQMGXPIYo9HI//73PxRFYcqUKZU+Vn0lAX8hhBBCCCGEEEIIIcQ1x5SdzckBA2t7GDWixZY/cAoNrdZjnMved3NzY8SIEaXuGzVqFE899RQGg4GlS5fyzjvvVGjfxcXF7N69m5kzZ7Jr1y4AGjduzKhRoy557Lvvvsvhw4dp2rQpM2bMqOSzqb+kpI8QQgghhBBCCCGEEEKISjOZTCxfvhyAoUOH4u3tXep+f39/br31VsBa599isVxxf6+99hoqlcr25enpyYABA9iyZQsAwcHBrFq1ChcXl1LbnThxgrfeeguAjz76CDc3N3s8vXpFMvyFEEIIIYQQQgghhBDXHMfAQFps+aO2h1EjHAMDq3X/GzduJCMjA7i0nM85Y8eOZdWqVaSkpPDHH39www03VPg4TZs2ZeTIkUyZMoXg4OBL7n/kkUfQ6XSMGDHCNsFwrZGAvxBCCCGEEEIIIYQQ4pqjcnSs9jI314pz5XwCAgIYMmRImY+5/fbb8fX1JT8/n6VLl14x4D9p0iQmT54MgEqlwtXVlcDAQHx8fC67zeLFi/njjz/w8vJi/vz5VXg29ZsE/IUQQgghhBBCCCGEEEJUSkFBAbGxsQDk5OTg7Ox81W1WrlzJggUL8PDwKPP+4OBg2rVrV6FxvPvuuwBcf/31bNu2rczHZGZm2v7/3XffAeDh4cHQoUMrdKy6TAL+QgghhBBCCCGEEEIIISplxYoV6HS6Cm2j0WhYuXIl48aNs9s49Ho9AGvXrmXt2rVXffy9994LWJv/SsBfCCGEEEIIIYQQQgghxDXvXDmfsLAw5s2bd9XHT506lZSUFJYuXWrXgL+wkoC/EEIIIYQQQgghhBBCiApLSEhgx44dAIwYMYLRo0dfdZtdu3Yxf/58Nm/eTGpqKuHh4XYZy+nTp6/6mAEDBrB161YAFEWxy3HrGnVtD0AIIYQQQgghhBBCCCFE/bN06VJb4HzkyJHl2ubc4ywWC19//XW1je1aJQF/IYQQQgghhBBCCCGEEBW2bNkywNpkt3///uXapk+fPoSFhZXaXtiPBPyFEEIIIYQQQgghhBBCVMiOHTs4deoUAMOHD0etLl+oWa1WM3z4cAAOHz7Mnj17qm2M1yIJ+AshhBBCCCGEEEIIIYSokHPNesFav78iLnz8hfsRVadSGmp3AiGEEEIIIYQQQgghhBDiGiIZ/kIIIYQQQgghhBBCCCFEAyABfyGEEEIIIYQQQgghhBCiAZCAvxBCCCGEEEIIIYQQQgjRAEjAXwghhBBCCCGEEEIIIYRoACTgL4QQQgghhBBCCCGEEEI0ABLwF0IIIYQQQgghhBBCCCEaAAn4CyGEEEIIIYQQQgghhBANgAT8hRBCCCGEEEIIIYQQQogGQAL+QgghhBBCCCGEEKLaKYpS20MQQogGz7G2ByCEEEIIIYQQon7QFhnITtGQnaKhIEtLSBNvWnUPwcFJcsmEEGVTFIXkI7ns3ZREu+vCad4luLaHJIQQDZpKkenVBivpcA5ppwroMDACNy/n2h6OEEIIIYQQop6wmC3kZZSQcza4f+7fkkLDJY9193Gm46BI2l4Xjoub5JQJIazMZgsnd2ey99ckclI1AAQ38Wbk9K6oVKpaHp0QQjRcEvBvgBRFYfe60/yzJgGwnoAPntCWiGi/Wh6ZEEIIIYQQoi4qLtCTfDSXM8fzyU7RkHumGLPJUuZj1Q4q/MI88PRzIfloLhaT9ZLSydWBtv3D6TgoAk8/15ocvhDXFIPOxMEtKQQ38SYyxr+2h3MJg87Eke1n2P97Mpo8ve32qLYBdL4pivBWvhLwF0KIaiQB/wbGaDCzeclRTu7JBEClAkUBVNDtliZ0v60JagdZbiuEEEIIIURF5aRqSDiQTUyvMDz9XGp7OFViMppJO1lA8pFcko7k2rJvL+bm5URAuCeBEdavgAgv/ELdcXC0XlMUF+g5sDmFQ3+mYtCaAFCrVbTqEUKnwVEEhHvW2HMS4lpg0JlY++F+0k4VANBxUCS9hze3S1ktRVFI2J9NTqoGv1APAiM88Q5yQ60uX3D+cu8HLXuE0FneD4QQosZIwL8B0eTpWPfJQbKSigDoMCiCDgMj+f2rI7aTgbAWPgye0BYv/7qXcaMvMXJqbxYqFcT0DpMZfyGEEEIIUSeYjGZ2rzvN3o1JWCwKnn4uDH2yE/5hHrU9tHJTFIW8tBKSj+aSdCSHM8fzMRlLZ/C7uDsSEe1HcBNvAs4G+N29nct1Xn6ljN4uN0XRSDJ6hagyg87E2o/2k3ayoNTtQVFe3DSxLb4h7pXed2G2lq3L40g6klvqdkdnNQHhnraJv4AITwLDPXG+oHxXXnoxezclEfd3eukVP/0a0WFQZJ2MPwghREMmAf8GIj2+gHWfHkRbaEDtoOL6e6Np068RYK2/+c/aBPZsSATFeiI/6P7WNOsUVMujttb0Sz6cy7Fd6Zw+kG1bNhzTK5SB42JkNUI5lRQaOLkng8btAvAJqvxJXk1KTyggK7GImN5hOLk41PZwhBBCCCHKdOZEHn98HUd+Rkmp2108HLn98Y6ENvWppZFdnaIopMTlceKfDJKP5pYKxAOo1CpCmngT1dafyNb+BDfxLncm7+Wcr9mdSE5qse324MZedBgUSbPOQTg5y7mfEBVl1JtZ+9F+zpzIR6WCGx5sQ3G+nr9Xx2OxKDi5OHD9fdFE9wyt0H4tFoWDf6Swa/UpTAbr9XhgpCdFOTr0JabLbucd6EpAuCcWs0LioRzb7baeHv0b4eLuVLknK4QQokok4N8AHNuVxh9fH8NiUnD1dOKWR9rRqOWl9fpTjuWyafERW6Ot9gMi6DOiOY5O5T/hViwKWclFpMcX4OrpRGC4F74hbhUKzCuKQnayhmO70jjxbwbaIqPtPkcntS3TqEmHQG5+qC2OckFwRTqNkZVz9pCXXoLaQUW768PpdmsT3DzrZqPm/IwSdq06xam9WQAERHhy66T2eAe41fLIhBBCiGuDxWzh9IEcinJ1uHk54e7tjJu3Mx7eLri4O6KqYsC3OmiLDJw+mI2jswMRMX41cp6j15rY+fMpDv+ZCoDaUUX3W5vQuF0gv3y8n+ICA44uDtzySDui2gRU+3gqwmK2cPI/a6PM7OTSpXq8AlyJauNPVJsAwqN9qy0gpygKyUdy+e/XJFLj8my3O7k60LxLMDE9Q2nU0rdOvt7EtUNfYiQnVUNuWgn+YR40aulb20Mqk9Fg5peP9pN6/Hyw/1xgPz2+gF8XHaYoRwdYk+f6j26Fs+vVG2jnpGrYvOwYmacLAfD0d2HAmBgatw1AURQ0eXpbw+7sFA05qRryM0ugjCiSX5gHnQdH0qp7qF3KCwkhhKg8CfjXYxaLwq6fT7F3UxIAAeEe3DqpA96Blw+clhQa+H3JUZIOW2fgAyI8ufmhtviFXn45cnG+nqQjuSQftX7pNMZS9zs4qvFv5GFb2ndumZ+rR+mLB02enuP/pBP3dzq5Z85n+6jUKqLa+BPdK5SmHQLZ93syf6+OB6wliG6b3EEyAy7DqDez+v29ZCQUlrrd2c2RrkMa02FgRJ2ZMNFqDPz7y2kOb03FYin9tuPm5cQtj7QnrIVv7QxOCCGEuAYY9WaO7LCWXDkXGLqYWq3CzdsZ97Nf5/4fGO5J867BVc7+rgiz0cLpg9kc25VO0qGc8+cPKgiO8iKyjT9RbfwJaeaDg51XhSbsz2Lrt8cpzrdmxIe18GHg2BjbOXNhtpbYD/ZRkKlF7aDixvFtaNktxK5jqAyDzsTRHWnW33Hu+d9xRIwfzToFEdnaH59gtxovrZOZWMj+35M5tTcL8wVlhDz9XYjuGUp0z9ArXo8IUVWKRaEgW1s6eJ2iKfV3AtDuunD6jmxRZ66h4Gyw/+MD1okzFdz4QGuie4WVeoy+xMgfX8dx6j9rLz/fEHdueqgtQZFeZe7TbLSwe/1p/tuQaH1vVUGHgRH0vKPZVScKjHozOWc0tp+lvsREq+4hNG4XIBN4QghRR0jAv54yaE38uvgwiQetgfumHQO5cXybcs3iKxaFfb8ns+vnU1gsCo7Oaq4bHU1M71BUKhUmg5kzJ/OtQf4juaWC8+f4BLuhLzFdEvy/kKefC4ERnvg38iQrqZDkY3mlMgECIz2J6RVGy+4huHuXztI6vC2VrcvjUBQICPdk6JMd8fCp343R7M1strBuwUGSDuegUqsY8nA7NHl6/v0lwfZ78fRzodewZrTqEVprJ18mg5n9m5P5b0MiBp0ZsL5++gxvgZuXE+s/O4i2yIjaQcWAMdG07tOoVsYphLg26UuMnD6QTVgL3ytOmAtRn5UUGji4JYWDW1Js5RlUahUB4R7oNEZKigy2mstX0rZ/I66/L7pag8WKopAeX0jcrjRO7sksVU7Cxd0Ri1nBqDeX2sbJxYHwaD+i2vgT2cYfn6DKB7SLC/Rs+/6ELWjm5OpAn+HNads//JJzqZJCA2s/2m/tn6WC6+5pRfsBEZU6blWVFBo48Ecyh7amlvodt+weTOfBUQRGlB30q2kGrYmT/2UStyudMyfyS90X0tSb6J6htOwWgqunJPuIqtFqDCTszyYzsYiclCJyUosvee84R6UCd29nigusK+EDwj246aF2daJHh8lg5pcFB0g5Zg3233B/a2J6h5X5WEVROLL9DNtWnMBstKB2VNF3RAvaD4go9Z545mQ+W74+Rl66tUyZfyMPBo6NIbRZ3S1PJoQQomIk4F8PFWSV8MuCg+SlWQPxXYc0pucdzSoc0M04XcivCw9RmG3NamjSIRCz0cyZEwW2WvrnuHg4EtnaWtszqo0/nn6uKIpCSaHBlh1xLlMiP6MExVL2y8rdx5noHqFE9wolINzziuM79V8mvy4+jMWk4B3oyh1Pdao39emrm2JR+H3JUeL+TgfghgfOn/jptSb+25jI/t+TbRlUgZGe9BnRgsgY/xodY9zf6fwdG2+rF+vm5UT325rSpn8jWyZeYY6WdZ8cJCfFuty8442R9LmrRY1mEAohrj1mk4VDW1P5d10C+mITKhU072oNjAU39q7t4Yl6pihXR25aMZGt/evU51d+Rgn7fkvi2M5027mdo4sDbfs2osMNEbZyeoqioC8xoS0yUFJgoKTIQEmh9UtbaKAgS2sLzna7rQk9hzaz+1gLsrQc/yedY7vSKczS2m5XO6ho0j6Q6F6hNG4XACrIiC8k6UgOyUdyyUwquqS0hHegK5FtAght5o2Ht4ttlYKrp9Nlfz+KonD0rzT++umkLWDepEMg19/bCk+/yzebNGhNrPv0AKlx+QB0v60J3W9vWmMZ9PkZJez9LYm4C37HTi4OtOnXiI431O1GmYXZ53/nBZmlf+eN2wXQomswQVFe+AS716m/K1F3mY0WTh/KJm5XOomHcrCYL70mdXZ1ONuQ2su2Mt2/kQeOTmoObE7hr5UnsZgVHJ3U9B/ditZ9wmqt2bTJYGbdJwdIPmoN9g8aF1Ou5KicVA0bFx62xQuadAjkhvtbo3ZQsXPVKQ5tPV+mrNstTehyc2McHKUEjxBCNCQS8K9HFMXaDOe3r46gLzbh4KRm0LgYWvWoWFOeCxm0JrZ8c4wTuzNL3a5Wqwhp5k1UmwAi2/gTFOVV7hNtk9FM7pli20RAbloxHj4utOoZQkRMxS6EU47lsu6Tgxj1Zty8nRn6RMfLLku8kuICPemnCvAKcMU/zKNOLdGsjB0/nWTf2VJOve9qTpebGl/ymKJcHf/ExnPs73TbhXBU2wD63NX8qpMtVZV8JJcdK0/agvgOTmo63RBJl5sb4+x26SoUg87E70uOEn+2rn9UW39ueqgdLmU8VgghqkJRFE7uyWTXqlO2CW9UlAoYhkf70vmmxkS18a+1i3xRfxRkafnx3d3oNEZCmnozcFwMAY2q93P2atLjC9j7axLx+7Nsr203b2c6DIyg3XXhl5RdvBpFUdi6PI7D284AcN1o+2Sym80W4nalc2xnGmknC0rdV95sb53GSPIx66rUpCO5thI8ZVGpwM3rXL8C51KlixIP5VgzaLEmKPS/pxUtugaX6z3AZDSzafER23lMu+vD6X9Pqwqd8xq0Js6cyEdXcvnVsxdSLHD6QPYlv+OOgyJo27/iv+PapCgKGacLiduVzol/My5pEuroZC0fei44GxjhSUC4p5T8bCCKC/Rkni7EO9AN31D3CpfnUhSFjISzr5/dGZesCgqP9rO9ZgIjPPEKcL3i33VmYiG/LjxMwdmJx5bdgrl+TEyNX5eYjGbWfXKQ5CO5AAwcF0ObvuVfCW00mNm+4gRHtlvftz39XFAUbO+Roc2sZcr8G9X+KgYhhBD2JwH/eiA/s4S4v9M5/ne6LTjh7uPMrZM6ENKk6lmIiqJwbGc6J/5NxyfYncjW/kRE+5UZmK0NmYmFrP1oP9oiI86uDtz2WIcymxJfzGgwk7A/i7hd6SQfyeXcK12lstY0PH/RYM3ucPdxrheBnb2/JvHXypOANRu+74gWVxx3VnIRO1eetGaGYH3+Mb3D6HVn80tKKVVV7plidvx4gqSzJ6aorE2jet7R7IrZcWBdEfDPLwns/uU0AH6h7tw6qQO+IbKqo66wWBRr6YezGZ9mk4XQZj71Ztl9Ua4OXbGxUpOGomE4czKfv346aet7onZU0X5ABF1vbkzq8Xz2/ppIZmKR7fEB4R50GhxFy24hkvlWB1ksCvkZJRRkaWnU0rdWJon1WhM/zdpjy6IEa3Zy1yGN6TqkSY00LTTqzZQU6ikpNFKYreXwttRSwXPfEHc63RhJdK9QHJ0qn/BgsShs/OKQNaitgpsfakeLrsGV3p9OY2TDFwdtmfEAXv6uRPey1nOvzOe/oijkpZWQfNQa/M9LL6ak0FCqZvzVxPQOpe/IlhUOmFss1kmRc8G1Ft2CufHBNpd977BYFLISi6wrFY7mkh5feNkVslfjG+JO58FRtOoZUqXfcV1gNlpIPJRD3N/Wkj+64stPgHj5u9omAIKbeBPV1t/uvRxE9VEsCof+TGXnz6dspXbUjir8wzwIDD8/uRMY4VXmuebVVojE9AqjcbuASr0PG3Qmti6P4/g/GYB11dBND7Wzy7V3eZiMZtZ/epCkw9ZrqgFjomnbP7xS+zqxO4MtXx+zlVZ1cnGg9/DmtLvu0jJlQghhb1u3bmXAgAG273fs2EGfPn2uuM2WLVsYOHBgmfe5ubkRFBRE586dGTVqFKNGjcLR8dJrgCvt42KvvvoqM2fOLNdj6xMJ+NdRumIjJ/dY61umx5fOeIqI8eOGB9rg6Xft1LTPzyghdv4+inJ1ODipufmhtjTtGHTJ4xSLwpmT+cTtSufkf5kYdefrNDo6qzEZLn/B5+rpVCpzKKpNgN0D4lV1bFcav391FIBWPUO48YE25T5RSzqcw18rT5KTag1K+AS5MXJ6N7sFa3NSNfw0e4/tZx7Vxp/ed7UgMKJiWY4ndmeweclRTEYLLu6O3Py/dkS2rrlSRNcaxaKgKzGeL+FQYCizpENJoQFdkYFLPjFKNU4MIKSZd5272DabLPy3MZHd609jMSkMntCmSiujRP2Tl17Mzp9PkbA/23Zby27B9Lqzeam6/YqicOZEPns3Jdl65IA1K67DoEja9mtUZybDrzX6EiM5qaUbLeacKbYFcv0beTDs6c41+rltMVv4ZcEBkg7n4uCopv89Ldm/OcUW/PcLdWfguNaENa98TWSTwUzq8XyKcnWl35sveI82XaYmdWgzHzrfFEXTDoF2C+qYwYZUQQABAABJREFUjGbWfrif1OP5qB1VDH28IxGVKBeYe6aYXz45YCvdE9MrlJg+YTRq4Wv3AJSiKBh15lKfZyWF5z7r9JQUWSeyHRxVdL+1KZFtKn/OoSgKf6+OZ8+GRAAiW/sx5JH2th5bRbk662TE4VxSjuVeksnu4KTG07f85/deAa50GBhBk/b2+x3XJYqiUJxvIDulyPb3n3OufGgZV7Ce/i50uiGK1n3DytXXTNSe3LRi/lh2zHadq3ZQlVl+5xwPXxfbdZq7lzPx+7Iu6QER3MSbmF6htOgWjJtn1T8LFEUhblc6W7+Nw2SwoFar6HVnczrdGFmtf29mo4X1nx0k8ZD1POT6+6Jpd13lgv3nFGZr2fb9cWuw/64WdbrUlxCiYZkwYQJffvml7ftHHnmETz/99IrbVCRY3717d2JjYwkNLX19LwF/CfjXKWazhaSzGS0JB7JLNU/zDnQlulcY0T1Drtk69po8PWs+3EfumWJUahUDx8bQuo+1bn1+hnUVRNyudIpydbZtHJzUNOsYSHSvMCJb+2HUm68YMLiQg5OamF6hdLoxqk5kmZ8+mM26Tw6iWBSi2vpz6+QOFQ6sWiwKcbvS+PP7E5j0ZsJb+TL0yU5VzlwtKTTw4zu7KcrV4envwsCxMUS1Caj0/jITC1n3yUGK8/Wo1Cr63X1psylRPoU5WjLiCy8IclizQEsK9WgLDZQUGSuVUejopAYVl0yiObk6EN7qfONE3+Da/dtJjy/gj6+PlWo+7uisZuT0btVe2qqhMJstZCdrCIz0rHOTOVdTUmjg37UJHN5+xvY6b9TSlz53tSCk6ZWz9HLOaNi3KYnj/2TYghDObo607d+IjoMi8ahAUO5aZzZbyE8vsfVzKY8LP69zUjSlPtsvx7+RB3c+0xk3r5oJ+m9bcZwDm1MAuGliW1p2D8FstLBnYyJ71p+2vm5U0P66cHoNb17uAKRiUUg7VWBrWmvQlR3QL4urpxONWvjS6cZIwlr4VuZpXZVea+Lnuf+Rk6LBydWB4c92ISiq/CunTh/M5tdFhzHqzDi6ODB4fBuadbo0iaM+2/97Mtt/OAFYg5ChzbxJPpJra5B5oYBwj7M9sgIIa+FT78tO1gSjwVo+9HwPsSIy4guxnH2fd3F3pN114bQfGIGHj7xX1yUXJ2GAtQRW7zubYzJayE4pKtUfLj+9xPZ7LYunvwvRPa2rgvxCq6c0TV56MRsXHraVKo1q688ND7Splglmk9HMhs8P2ZIO7FU+TQghaoNWqyUkJISioiI8PT3RaDT4+fmRlpaGi8vlP58vDNZPmjSJyZMn2+7TaDTs3r2buXPncvr0aQB69OjBrl27SsWLLtzH4sWL6d69+2WPFxwcTHBw5Vet1lUS8K8liqJYl2AXGNDk64nfl8WJfzPQac4vW3V2c6RFt2BieoYS2txHgp1YVz788vF+0uOt5Rja9m9EdorGVp7hnEYtfYnuFUrzLsFXXeJvMVvIz9SWajyccboAffHZrCsVNOsUROfBUYQ2q3yWXlWkxxew+r29mIwWgpt4c+cznXFyqfwFYfy+LNZ/dhAUaNM3jAFjYyr9+jIZzax+bx/p8QU4uzowYlo3u9SCLC7Qs/7Tg7bfbZt+jbhudCspq1EBZ07ksXr+vlKTh1fi4KjGzdsJd28XW03jc19uXs64+zjj7mX93snVAYtFISO+gKQjuVdtnBjZ2g+fIPerNk20F4POxN+r4zmwJQUUa1+SzjdFcXJPJgVZWnyC3bj7he7SJ+IKFEUhYX82O38+RX5GCeGtfLn9iY71olyErtjIoa0p/LcxyVYmwC/Und7Dm9OkQ2CF3u80eXoObE7m8LZUW+BV7aCiVc9QOt8Y1aBq31rMFnJSi1EUxfZ3X9H3XJ3GWDpgk2rt5VPe96Erubgkn7Uesxe5aRrWLTiI2WQhINyDYc90tkt255Uc+jOVrcvjgLKb2Oac0fDHsmO2zzBPPxeuvy+aJu0DL7vPsko4grXEhfX98+z7s5dzme/Vrl5ONTYpV1ygZ+XsPRRm63DzcuKuqV2vOsGrKAp7NyWx8+dToFjLsdw6uUOFVwLWF3F/p7N5ydFLgpWunk5nA/z+RLb2l8lDOynK1bH/92SObD9TqjxMTK8wOt0YWW3BYFF+Fydh+IW6M2BsDI2uMDlpNlrITSu+4DOliKIcHY1a+RHTM5RGLe2/KqgsJqOZv1ae4uAf1kled29nbniwNZGt7dPrR1ds5PC2VA5sTqGk0ABA/3ta0WGgBPuFEPXX8uXLGTNmDGANuk+YMAGAH374gZEjR152uwuD9ZfLvs/Ly6NHjx6cPGktdx0bG8vQoUPL3Mcff/xRqqzQtUIC/uWUl15cKhh/NYpivegtuXC5cIHeuny40LoU21RGVrlKraJxW3+ie4XRpENAvQis1DSjwcyGzw6RdDin1O0+wW7E9AqlVY/QUiUaKsNkNBO3K519vyWTn3E+GyushQ+db2pMk3YBNbZ0OvdMMSvn7EFfYsI3xJ27pnaxSyDjv42J1otuoO/IFnS6MarC+1AUhd+/Okrc3+moVHDb4x1p3Lbymf0XMxnNbPk6jri/0wFo3TeMQeNa223/DVlxgZ4Vb/1LSaEBF3dHvAPdSgXs3S4K6Lt7O+Ps5lilixatxkDK0TySjuaSfDiH4gJDmY+7UtPEc1+Xq9daHomHctiy/BiaXGs2cUhTbwaOjSEg3JOcVA0/vrMbk9FC046B3PJoe5lMLUNGQiE7fjpxSRPNZp2DuPl/7ap9wqaizGYLGQmFtqadmYmF55tYejnRY2gz2vQNQ12FYKhea7JejP+eXOq13aR9AJ1vakxYi/o5MV+UqyPpsLWGeMqxvEtKjLh4OFrfN2zvHy6lgs0GnalUNuaVGqY6uTiU+7PTwVGFX6jHBTWcPfEP87hs9nPS4RzWfXIu6O/Jnc90rrb+IsnHclnzwX4Ui0KLrsHcNLFtmc/LYlE4tDWVXavO16du2T2Efne3tGWGni/hmGZLZjgnrIUP0T1DadE1uE42J83PLGHl7D1oi4x4B7py19Sul82mvvjzPKyFD7c80r7GVmPUltMHs9n2/XG8/F1tpe8CIzwbZPmduqKswCkqaNohkM6Do6pt5Yu4PIPOxN+x8Rz443wSRpchjel6S+N6d60bvy+LzUuP2j4r/Rt5EN3Tev1ZmXK7l5uo6jeypWT2CyHqvSFDhrBx40Y6dOjA/v37iYmJIS4ujqFDhxIbG3vZ7coT8AfrJMLEiRMBmDx5Mh9//HGZ+5CAv7iijQsPcXJ3ZvXsXAVBkV5E9wqlZbeQOlc3vi4ymy38+d1xEg/m0LRDING9Qglp6m33YItiUUg4kM3eX5NK9VLwC3Wn0+AoonuEVmtDvqJcHStn70GTp8fD14UR07rareaioihsXnKUY7vSQQW3Te5wxczDsuzZcJpdq+IB6DeqJR0HRdplbBePc/e60/yzJgE4O84OFRunvRi0JnQlRrz8Xet0YM9strD6vb2knSzA1cOJUS91r/FanYqikJtWTPLZ7P8zJ/Ov2EPjEqV6A/gT0sznqpmr2iID2384YWuw5uisptew5rQfGFEqQB33dzq/fXkEgN7Dm9Pl5sYVf4INVEGWll2rT5X6vGvaMZDASC/+XWv9G2zTvxED7ouu9b+BgiwtyUdySDqSS2pc3iVlT5xcHeg4KJLON0XZtZaz2WTh+D8Z7PstqVSpqJCm3tZ66R2D6tyEyIUMOhNnTuTbVuZcOKltL2q1Cr8wd2uwPtzrfN3laj6/STyUw7pPD2AxKQRGejLs6c4Vbrx6NXnpxfw0yzoJH9zYi+HPdblqCZaiXB1bvomzJSq4eDjS5abGZJ4uJOHgRSUcg84nL/gEVS15oSZkJRXx89z/MOrNBEZ6cuezXS5ZOXXJir2+YVx3b7Ss2BPVymy0EPdPOvs2JZUqpXSut0XjdgHyGqwBiYdz2PLN+SSM4CbeDBoXU6/LKhbl6vh9yZFSDcdRQWSMH9G9wmjWKeiqK7GzUzTs3ZTIyX8zpRSVEKJBSktLIzIyErPZzKxZs5g6dSpvvvkmM2bMwMnJidTUVIKCyi7pWN6A/6FDh2jfvj0At912G2vXri1zHxLwF1f068JDnNhT/oC/CnDxcCq7HMYF/7p5OePm6VSlrENRM9JOWhs5JhzItmWOuvs402FgBO2uC7d79p1OY2TlnD3kpZfg4u7I8Oe62P3k2Gy0sHq+NTDs5OLAiGldy32MU3sz2fDZIQDaXhfO9fe2qrYAoKIorP1oP0mHc3H3dubeV3pWW+bm5RTmaPl5zn9o8vTWMjVn6+2Gx/jVubIwO348wb7fkkEFQx/vSJQdV11UlqIoGHRma9+AUl/newlYV0NZb7+4/MeVegMoisLxfzLY/sMJ20qsqDb+XH9f9GVX+/z5bRwHt6aiUsEdT3WqVNPJhkSnMbJ73WkObk2x1asPaepNn7ta0KilLwB/r4ln9y+ngbJLmFQ3o8FsnUA6as3iP9fs80JB5yaJWvsT2tynWoM5ikUh8XAOe39NKtU40CfIjU6Do4jpFVpttbgtFoWCzJIrNji8kFFvJvV4HslHc0k7WXDJdm5eTrafW0Rrf1zcHG1/i5f+zVpvKz77r4OTulTD+8AIT/xCPKp1MvxKTh/MZv1nB6sl6K8rNvLju7spyNTi4evC3S90K3dQRlEUTuzOYNv3Jy5ZMeri7kiLrsFE9wojtJn9kxeqW/KxXNZ+tB+LSbmk9FdWUhHrPjmAJk+PSgV9725Jh4HSk0fUHMWicPpgNns3JZVatebk4kB4tJ+ttJJPsJu8Lu1IqzGwfcXVkzDqs5xUDXG70on7J52SC1b+Obo40KJzEK16hRLeys/2fBVFITUuj72/JpF0JNf2eGk2LYRoiObMmcPUqVNRq9UkJSURHh5OQkICzZs3R1EU5s+fz5NPPlnmtuUN+MfFxRETEwNYVxOsX7++zH1IwF8IUS556cXs+y2ZY7vSbEFJN29nBj/Yhsg29gka5pzRsPGLw+SlFePgpGbYU52qbQmyVmNtuFuYrcPL35WRz3e7ahZmVlIRK+fswWSwEBHjx+1PdKz2usGaPD3fvfE3+hITLbuHcNPEttV6vAvpNEZ+mr2nzExYlVpFaFNvIs8GooMbe1foQkZRFAxaE2aTYpfs15N7Mtn4hXUipsfQpnS/rWmV91nTzGYLGfGFJB3JuWpvgPBWvhzbmW7LnHX1cKLfqJa06hFyxQt3s8nCz3P/IyOhEDcvJ0a92B1Pv5pZBaErNlaoRJxXoGu1/X2ZjGYO/JHCnvWJGLTW5enega70urM5LboGl/oZKorC1uVxHN52BqjZRnJpJ/P5dfFhW4bgOe4+zkS19ieyrT+RMf61Vh4kI6GQvZsSid+bhXJBKaH2AyJof32E3SYoFUUh8VAOf608RV5a8dU3uAy1o4qw5r62CbTA8IZVYuT0gbNBf7NCUJQXdzzVqcpBf7PZwpoP9pMal4ejs5q7pnStUKPac7QaAzt+PMmpPZlEtPYnumdogyjheHJPJhsXHgIFmncO4qb/tePUf5lsXnIUk9GCi7sjNz/Uzm7nSUJURnp8AXs3JRG/L6vs84o6msyh/D979x0eVZk9cPw7k0nvPSGBJHQCBEITkQ4iKggI4iprd1dhLbv+xN7Xtq5lXcu669rQtSIgoPRepIQQQggQII2Q3pOZTL+/PyYMxARIzyScz/PkCZm59847YTJz73nPe45VobrcgKuHplMEhPMzKljz0WF7ELx7bAATL5KE0dlZrQo5x0o5vief9INFdcr2evm70ndUGH6hHhzemkNRdpX9vsBIL4ZN60Gv4SHt1n9FCCHay5AhQ0hOTmby5Mls2rTJfvvYsWPZtWsXw4cPJyEhocF9GxvwX7p0KTfddBMAd999N5988kmDxxgzZgw5OTnk5+fj4eFBdHQ0EydOZOHChfTt27c1nq5DkoC/EM2krTBweEsOh7edsQfKhl3Tg1E39Gz2SZuiKKTuzGXH9yewmKyoNSqm/3EwMW1cwqY0V8uPbyRg1FsI6+nLrL8MvWDwQVtu4IfXE9CWG/AL9WDuY8NbvWTChZxfiuWaPwyi9/C276RuMlj46R8HKcioROOsZsqdsWjLDWSnlpCbVl6vF4erh4bI/rVlaGJ8MNSY0VUYz/XvqJfdbsJith2j9/AQJt8+oNkNmcvytfzwegImvYUeAwOZ8ae4LhHEq6k2knOszF6C5EI1wvuMDGXc/D6NDvpWl+n5/tX91FSZCI3xYc7/DWvTjHCr1VaeKuGXTBRr4z96fYLcmP3IsFYty6RYFdL2F7D3p3SqSm3NQV09NYy8LoZB4yMumJ1ttSqs+ziF9INFoIJr7m3bv0OrVSFxbRb7VmegWBWcNGq69fWzN7wM6ObpUBmZ5YU6Dm08zdFf87DUvjdoXNQMuKobQ6d0b1GwozCrkt3LTtYtIdAE/mEetonJAQFE9PVvUeP3ziDjUBFr/5OC1aIQEmUL+jd3JZ6iKGz9+jiptZNd1943mJ7xDS9BbsoxHem12xoOb81h+7dpgK1sR2GmrYSPX6gH1y+Kwy/04k19hWgvZ88rzvZ9+e15RZ1kjgEBhEQ3LZmjNf220a3G1QkP73N9VBrqg+Tp59rupRzPOr43ny1fHsNitk30jZvfh75XhHW597sLMerNnEos4vjevAt+Xkf292fYtCgiB/hfNr8XIRyd1WI91/eli/PwcWnzCiNJSUnEx8cDtjr7d911l/2+jz76iIULFwJw5MgRYmNj6+3fmIC/2Wxm3Lhx7NmzB4AlS5Zw2223NXiMC1Gr1Tz77LM8//zzXfL9WAL+QrRQdZmeDZ+m2ks6hMb4MO2egU0O7BhqzGz96hgna0tH+Ya4c829g5qVQdgcWUdK+Pn9QygK9L0ilKl3xtZ70zMZLax4K5HCrCpcPTTMe3xEu17AK4rC2n+nkJ5UhJuXM7c8d0Wb1oS2WKys+egwWYdLUKlVXLdwcJ0+B2aThbyTFfYLxpIz1S1+zOAe3ly3cHCTs81NBgtL/5ZAaa4W7wA35j89st0mYtrTb3sDnDlRjqefK+Pm92lyDwqAnONlrPzHQRQFBk+IYPwt/dpg1PXfJ5oqMNKLGx8d1iqZfVarwvr/pnAqsQgAJ42auMmRDJ8e1aiAqNlkYfV7hziTVo5ao2LmA0PapCSSttzAhs9SOXO8DICQKG+m3TsQ32DHDxrWVBlJ3ppDytYz6LW21RwqtYrew4KJnxbVpPf1yuIa9vyUzon9BfbbouOCGD2rJ96BjXufUKlVOLdReSFHlp5UxLr/pGC1KoRE+9iC/s3I2j206TQ7fzgBwOjZPRk+PbqVR9p17F2ZTsIvmfafe8QGMO3egQ7ZdFgIsJ1XlOXpbKsKj5Y2mMzh6edKvytC6XdFOAHdPNtlXL9tdNtUkf39GTO3N8Hd2+c6QrEq7PkpncR1WYCtme11C+M6RS+StlJZUkPavgKO78mnsriGXsNCiL+6R7td2wkhGq+6TM8XT+7u6GG0izteG9PmK9sfeeQR3nnnHdzd3cnPz8fHx8d+X2lpKeHh4RiNRh5//HFef/31evtfLOCv1WpJSEjghRdeYOvWrQBERUVx/PhxXF1d6xzj1ltv5cYbb2Ts2LH07NkTjUZDdnY2q1evZsmSJZhMtuu0J598kldffbUNfhMdSwL+QrQCe+buzxkoCri4a5j0+/6NznzNz6hg/X+PUFViy7TtNzqM8b/r2+7Ldg9tPs3O721BjStm9WTEtdH2+xSrwrr/HuFUYiFqtYqZDw8lsp9/u44PQFdp5JuX9qKvNhEzJIhr7x/cJrOxiqKw+ctjHNudB8Dk2/szYEy3i+6jrTBw+mipvc54TZUJlQrcvH+TfXVeD4+zPT3y0yvY/m0aVouttM91C+MIjfG56OOdP9YNn6ZyYn8Bao2KuYuHExLVuH07O8WqtHgVQ+K6LH5dfgqAqXfF0u+KsNYYml1mcjGbvjhqD/wOu6YHQ6f2aNTrtuh0la02tkWxvd7vG9yi5/vbsjx9R4Vyxaye+AQ2fYJy+VuJlORU4+zmxJxHhrXqBWxWSgkbP0+1lz4aenUPRs/q2ekaLJqMFo7tziNpYzaVxXr77ZH9/Ym/ugfdYwMu+DrQa00cWJtF8pbT9vJxIVHejLmxNxEd8N7bWaUfLGLdx7agf2iMDzc8NBSXJgT9s1JK+PkD22R4v9FhTLljQJfMAGotiqKw84cTpGw7w+BJkYyZ00v6VIlO5VLJHME9vOk3Oow+I0LbLOmkoUa34+b3wclZfeHeKlVGdBVG+7kGACrod0UYV9zQs00z/o16Mxs+TSUzuRiwTUpffVdsk95ru7Kz4Rb57BDCcUnAv/WYzWYiIyMpKChg/vz5fPfdd/W2mTNnDitWrCAyMpKsrCzU6rrnio3Jzj8rJCSEdevWMXTo0Dq3a7VaXFxccHZuOOlk3759TJs2jYqKClQqFQcPHmTIkCGNe5KdhAT8hWhFuSfKWP9Jqn1p8MBx3Rh7U58LNm5UrAoHN2Sz96d0rFYFjasTE27pS//R4e057HPjURS2fZPGke1nAJh+3yB6xdsmLc5v2DlxQT8GjovokDFC3Tr1U+8cQL82+H39uuIUiWttWUrNyehUrAoGnRkXD02jl4HnnihjzUcp6LUmnJzVTL69P31HXjr4fH4ZhY7+v+mMzl85onFWM/fxEQRFtrxBtsVkZffykyRvzgFsNd2n3hVLj9imNVE+ujuPzUuOAjBsehRXzu7V7DHtW53B/tUZAIy4Lporbmh+411thYFlfz9AZbEed29nblw8vE4z5eawmK3sWXHK1nQacPNyZuqdsUQN6vjG0y1htVg5dbCIpA3ZFGadV783wov4aT3oPeJc/V6LycrhbTkk/JKJQWcrF+cd6Mbo2T3pMzy0S5Tpam+nEgtZ998jKFaFsJ4+XLcwDk0jShqVF+hY/lYiJr2F8F6+zPpzfIc1I+5sLCar/K5El1BVqidtXz7H9+RTln+ul5NaraLHoMBW7cPRGo1uLRYruWnl7F52kuLTtskKJ2c1QyZ3Z9j0qFbvTVBRVMMv/0q2lxwadk0UV8zq2WUa8wohLg9S0qf1/Pzzz8yYMQOAlStXMnPmzHrb/Pjjj8ybNw+AjRs3MmXKlDr3NybgHxMTw7x583j00UcJCWleidmvvvrKXgbo3nvv5eOPP27WcRyVBPyFaGX6ahOblhy1Z7kEdPNk2r0DCexWN4CoqzSy8fNUTqeWAhDU3Ytr7h3U4TVuLRYrq987RM6xc40Jywq0bPjEVjt/yJTujL2pT4eOEWD9J0c4sb8AF3cNtzw3qlVnqZO3nGbHd7aVDoMnRTJufp92y8qpKKrh5w+T7Q05R1wXzagZMRcM8uWnV7D8rUSsFoX+V4Yx+XbJPm0OQ42Zpa8nUF6gwzfYnZueHNGiEhTlBTrWf3LE3pyt+wB/ptwZi6ev6yX2bNjuH09ycEM20PxVCCnbz7Dt6+MAxI7txsQF/Vr8Wikv1LHs7weoqTLhE+TGjYuHN/s5VhTpWP/fI/aAeEQ/f66+KxZPv+YdzxEpikJuWjmJ67PtjabB1tRvyJTuePi4sHdlun01gKuHhuHXRhM3MVKCpy108kAh6z850qT+GWd5B7px0xMjOqwptBCi4ymKQlF2Fcf25HNiX0GdTHoXdw29R4TQ/4owwnr5NvmzVVEU0vYVsPOHE/aVbS1tdHu2V8+en07ZVwq4eToz4vpoW6+eVlgxdyatjLX/rk1U0aiZdFv/Vl8lKYQQonO5+eab+f777wkMDCQvL6/BDHuDwUBYWBjl5eXcfvvtfPHFF3XuPz/gv3DhQhYtWgTYVkq5ubkRFBSEr69vi8dqNpsJDAyksrKSPn36kJaW1uJjOhIJ+AvRBhRFIXlLDruXncRqVtA4qxl3c18GXBWOSqXi9NFSNnyWSk3tLHLc5EjGzOntMAEdvdbEj28coLxAh4ePCwadGYvZStSgQK5bFOcQWTt6rYlvXtyLrtJIj9gAZjw4pFUC3ScSClj/yRFQbE10p90zsN0zao01ZtZ/coSsFFtAsFd8MFPujK3XZLOmysj3r+6nusxAYKQXcx8bflnW6W4tJbnVLH09AbPR2qLyOcf35rPt6+OYDBZUahWjZ/Uk/uoeLXodWa0Ka/6VTObhEtQaFXMeGUZYz8af5KQnFbH234dRFIgZEsT0Pw5qtcyOouwqWxa0wUJQdy9mPzKsyRmEafvz2fq/45j0tt/ZqBkxDJse5RDvNW2l5Ew1Bzdkc2JfAdbfBKHVGhVxEyMZfm10l+zF0VFOJBSw8fNUe4mkxnDzcmb2X+IJjGj5qh8hRNdgMVvJPlLC8T35ZBwurvOe4ubpTGCkF0G1X4GRXgSEeV7wHL+ypIZtX6fZJ4FdPTWMu6n1Gt2aTRaSN+dwYG0WxhrbqjHfYHdGz+5Fr2HBzX6MlO1n2PFtGlarrRTltQsHExbT8uCLEEKIzquiooKwsDD0ev2lN67l5eVFfn4+np7neuQ0pmlvaxk5ciQJCQl4eHig1Wrb7HE6ggT8hWhDRdlVrPtvChWFNYAtgOwT5Ebi+mxQbCf1U24fQMyQ4A4eaX3lBTqW/i3BXlIioJsncxcPd6h6nJmHi/n5g2SgdUrZ5BwrZdX7h7CaFSL6+TPzgSEdNgljtSrsXnaSQ7WlTYK6e3H9ojj7SgarVWHVP5PIOVaGi7uG+U+N6BTNTB1d2v58+2qWppZyMurN7Pg2jWN78gHwDnBj2r0DmxSYv9Txf3zjAKW5Wty9nbnpyZGNqsmbe7Kcle8mYTFZCe/tyw0PDb1gmbHmOn2s1NZrwKwQ0dePGQ8OaVR5A5PBwo7v0jha2yvDy9+VafcMJLy3X6uOz5FVl+k5tDmHIzvOYNJb6DMylNGzejY7q1NcnL7aRHV54y9CfIM96k22CiHEWXqtiZMHCjm+J4/89MoGt1GrVfiHe9gmAiK8CYr0IiDCk5MHCtnzUzpmgwWAPiNDGXtTnzbpDaCvNrH/lwxStp3BarFd/of19GHM3D6E92r8eYrFYmXX9yc4vM1W/jO4hzfXLRzc5g0ghRBCOL6PP/6YP/7xj03eb8mSJfbSOtC+Af9Ro0axf/9+CfgLIZrOqDez/Zs0ju/Nr3N7tz5+XH13rEOfIOccL2P1+4dw9dAwd/FwhwxAbV5ylKO783B2deJ3z45q9hiLsqtY/ratVnNQdy/mPDLMISY3Unflsu3r4/ZmvmczqPauTCfhl0wArls42CEnjTqrHd+lkbwlB1TgG+Rub7bs7lO3+fL5P5fl28rRlBfY6vv2GhbMpN/3b1FZoIZUFtew9G8J1FSZCIz04sZHh120uXfJmWqWv5WIQWcmoJsnc/5vWJtljJ88UMi6/6aAAk4aNapGzJVZrYo9M7Ln0GAm3db/ss1oN+rN6LWmJjdQFkII4Rgqi2soyKykOKeakpxqinOq7X29LsbL35UJt/YjenBQm4+xokjHr8vTOZVYaL/N08/1guc3538pCqz7OIWcY2UA9BkRwuTbB7R6EoEQQojOady4cezcuZPw8HDefvvtS26/ePFicnJymDp1Khs2bLDf3l4Bf7PZTFBQEBUVFfTu3ZsTJ060yeN0lI6PZgnRxbm4aZh6VyyRA/zZ9k0aFqOFEdfHMOK6aIcvVxHZz587Xh2DxsXJYTMcx97Uh9PHSqkuNbDpi6PM/kt8k0unVBTVsOr9Q5j0FnyC3JjxwBCHCPYDxF7VDb8Qd9Z8lIKu0siKtw4yaEIEhzbZMv+HTY+SYH8rGzO3N8U51eSeKKeiqIaKoppG7+vkrGbc/D7Eju3WJr0UfILcmX7fYH565yAlOdVs/Cz1gqWHqkr1rHrvEAadGS9/V2Y+OKRNg+m9h4dQU9WX7d+mYTFbG72fk0bNVfN6M2hCxGXdf8LFTXPRyRshhBCOzSfIHZ8gd/qMCLXfpq82UZxTdW4S4Ew1pXla22S3CgZPjGT0rJ7t9v7vG+zB9D8OIj+jgt0/niTvZAXackOjJibOd8UNPRl+bdRl/bkthBDinIyMDHbt2gXA3Llz+d3vfnfJffbs2cO7777L5s2bOXPmDBERLavY0FTfffcdFRUVAEyYMKFdH7s9SIa/EO1IV2nEZLDgGywZnK3p9LFSVv4jCYCx8/swZHL3Ru+rqzSy7O8HqCiqwd3bmRsfHd7hjZMb8ttmvmBranrDQ0NarRa7OMdqsXLmeDnV5QZqqozoKozoqozoKg3oKk3oKg0YtOY6+/iHe3LNvQPbpdb30d15bF5yFLBN+lw5u1ed+/VaE8v+foCyfB2uHhpuXDycgHDPhg7V6soLdVSVNL5kSkC4Z5dqzCuEEEJcjMVipTxfh4u7plGl+dqKoigUZlZRWVyDrtJo+6o957Gd+xioqTLV6TOjcXXi6jtj6RkvySZCCCHOefHFF+2Z+Fu3bm1UAH3nzp2MGzcOgNdff53HH3/cvn9LMvzLyso4dOgQEydOvOA2+/bt45prrqG8vByVSsX+/fsZPnx4kx7H0UkqmRDtqC1qcgro3j+AwRMiOLztDHuWnyJqYOAFg/YWs5WyfC3FtUutsw6XUFFUg8bViRkPDHHIYD/YGqzNe2y4vZmvp68L0+4ZKMH+NqJ2UtM9NuCi21jMVtsFcaURs9FKaLRPu/V8GDAmnLI8LQc3ZJO4NouAcE/6XREGgMlo4ecPDlGWr0PjrOb6Pw1pt2A/gF+IB34hjvl3JIQQQnQ0Jye1QzQCV6lUhMb4EBrjc8FtFKuCXmdCV2mkpspEQLinXM8IIYSo58svvwQgJCTEHsS/lDFjxhAeHk5eXh5ffvmlPeDfUhUVFUyaNIm4uDhmz57N8OHDCQ8Px8nJiezsbFavXs2XX36J0WgE4NFHH+1ywX6QgL8Qoou48sbeZKWWUllUw8bPU7lx8XD01SZ7DdXiM1WU5Ggpy9fam5WdpVaruPa+QYREXfiCxxG4uGu4blEcp1NLCe7hLRdcHcxJo8bL363D+nCMntOLsnwtmYdL2PzlUXyD3QmJ8mb9xynkp1eiUquY9odBTWrGJ4QQQghxlkqtwt3LBXcvOecUQgjRsF27dnHq1CkA5syZg1rduCQ4tVrNnDlz+PDDDzly5AgHDhxo1cB7cnIyycnJF7zfycmJZ599lueee67VHtORSMBfCNElOLs6MeWOASx/K5GCjEo+fXQHBp35gtt7+roQGOlNUKQXvYYFO3yw/yy1WkXUoMCOHoZwAGq1iqvvGciPbxygNFfLL/9KJqKfP5mHSwCYuKAfMXFt3wBQCCGEEEIIIcTlacmSJfZ/z507t0n7zp07lw8//NB+nNYI+Hfr1o0ffviBX3/9lX379nHmzBmKi4vR6/X4+vrSr18/Jk6cyL333kt0dHSLH89RSQ1/IUSXsuvHkyRtyLb/rHZS4R/uSVCkF0GRXgTWfpdMJdFVVBbXsPRvCdRUmey3XXFDT0ZcF91xgxJCCCGEEEIIIUSHkIC/EKJLsVisHNudh5OzmqBIb/zDPHDSSJ170bXlniznp3cOYrUoDJ4Qwbjf9UWlUnX0sIQQQgghhBBCCNHOJOAvhBBCdAGFWZWU5evoMzIUtVqC/UIIIYQQQgghxOVIAv5CCCGEEEIIIYQQQgghRBcgdS6EEEIIIYQQQgghhBBCiC5AAv5CCCGEEEIIIYQQQgghRBcgAX8hhBBCCCGEEEIIIYQQoguQgL8QQgghhBBCCCGEEEII0QVIwF8IIYQQQgghhBBCCCGE6AIk4C+EEEIIIYQQQgghhBBCdAES8BdCCCGEEEIIIYQQQgghugAJ+AshhBBCCCGEEEIIIYQQXYAE/IUQQgghhBBCCCGEEEKILkAC/kIIIYQQQgghhBBCCCFEFyABf2GXk5ODSqVCpVKRk5PT0cMRog55fQpHJq9P4ejkNSocmbw+hSOT16dwZPL6FEII0RAJ+AshhBBCCCGEEEIIIYQQXYAE/IUQQgghhBBCCCGEEEKILkAC/kIIIYQQQgghhBBCCCFEFyABfyGEEEIIIYQQQgghhBCiC5CAvxBCCCGEEEIIIYQQQgjRBUjAXwghhBBCCCGEEEIIIUSr2bZtGyqVyv61e/fuS+6zdevWOvuc/+Xh4UFUVBSzZ8/m66+/xmw2N2oc+/btY9GiRQwYMAAfHx+8vLzo1asX119/PW+//TZFRUUtfaoOR9PRAxBCCCGEEEIIIYQQQgjRdXzxxRd1fl6yZAljxoxp9vFqamrIzs4mOzubn376iX/84x+sXLmSsLCwBrc3GAw88MADfPLJJyiKUue+9PR00tPT+eWXX+jZsyezZ89u9rgckQT8hRBCCCGEEEIIIYQQQrSKmpoali5dCoCXlxfV1dV8//33vPvuu7i6ujbqGAsXLmTRokX2n6urq0lISOCtt94iMzOT/fv3M2vWLPbs2YNKpaqzr9FoZM6cOaxZswaAyZMns2DBAvr374+bmxu5ubns3r3bPsauRgL+QgghhBBCCCGEEEIIIVrF8uXLqaqqAuCf//wnd999N2VlZaxatYp58+Y16hghISEMGjSozm2jR49mwYIFjBo1ipMnT7Jv3z5Wr17NzJkz62z38ssvs2bNGlQqFR9++CH3339/nfuHDRvGjBkzePXVVzGZTC14po5JavgLu8jISBRFQVEUIiMjO3o4QtQhr0/hyOT1KRydvEaFI5PXp3Bk8voUjkxen0IIR7VkyRIA4uLiuOuuu+jXr1+d21vC39+fJ5980v7z2rVr69yfnp7O66+/DsCiRYvqBft/y9nZucVjcjQS8BdCCCGEEEIIIYQQQgjRYnl5eWzcuBGA3//+93W+r127tlWa5I4aNcr+76ysrDr3/ec//8FkMqFWq+tMDFxOJOAvhBBCCCGEEEIIIYQQosX+97//YbFYUKvV3HrrrQAsWLAAlUqFyWTim2++afFjnJ+Vb7FY6tz3ww8/ALayPREREQAoikJeXh7p6elotdoWP76jk4C/EEIIIYQQQgghhBBCiBb78ssvAZg4caI94B4TE8OYMWOA1inrc/jwYfu/u3XrZv93UVER6enpAAwePBij0ciLL75It27d6NatG7169cLHx4cxY8awbNmyFo/DUUnAXwghhBBCCCGEEEIIIUSLJCUlkZycDJwr43PW2Z8PHDhAampqsx/DbDbz1ltv2X+eOHGi/d/nH9fDw4MJEybwwgsvkJ+fb7/darXy66+/MnfuXBYtWtTscTgyTUcPQAghhBBCCCGEEEIIIdqb1WJBW17W0cNoF55+/qidnNr0Mc5m77u7uzN37tw6982fP5+HH34Yo9HIkiVL7I11G0ur1ZKQkMALL7zAnj17AIiKimL+/Pn2bUpLS+3//uSTT9Dr9YwaNYrXX3+d0aNHYzAYWLNmDY8++ii5ubn861//on///jz00EPNfcoOSaUoitLRgxBCCCGEEEIIIYQQQoj2VFVSzH8W3dnRw2gXf/zwc7wDg9rs+GazmcjISAoKCpg/fz7fffddvW3mzJnDihUriIyMJCsrC7W6bvGZrVu3MmnSpEY9XkhICOvWrWPo0KH227766ituu+02+8+DBg1i7969eHh41Nn3xIkTxMfHo9VqCQgI4PTp0/W26cykpI8QQgghhBBCCCGEEEKIZlu3bh0FBQVA/XI+Z529PScnhy1btjTrcWJiYli8eDGHDx+uE+wHcHNzq/PzSy+91GAgv0+fPixcuBCwrQrYuHFjs8biqKSkjxBCCCGEEEIIIYQQ4rLj6efPHz/8vKOH0S48/fzb9Phny/kEBgYyffr0BreZMWMGfn5+lJeXs2TJEqZMmXLB4y1cuNBeY1+lUuHm5kZQUBC+vr4X3Mfb29v+b5VKxdSpUy+47TXXXMObb74JwP79+7nhhhsu/OQ6GQn4CyGEEEIIIYQQQgghLjtqJ6c2LXNzuaioqGDlypUAlJSU4OLicsl9li1bxocffoinp2eD94eEhDBo0KAmjaN79+72f/v5+dWZALjYtkVFRU16HEcnJX2EEEIIIYQQQgghhBBCNMv333+PXq9v0j7V1dUsW7asVcfRp08fnJ2dAbBYLBfd9vz7NZqulRPftZ6NEEIIIYQQQgghhBBCiHZztpxPeHg4b7/99iW3X7x4MTk5OSxZsqROk92WcnZ25sorr2T79u1UVlZSXFxMUFDDKzhOnTpl/3dERESrjcERSMBfCCGEEEIIIYQQQgghRJNlZGSwa9cuAObOncvvfve7S+6zZ88e3n33XTZv3syZM2daNeA+d+5ctm/fDsCKFSu49957G9zu/NUF48aNa7XHdwRS0kcIIYQQQgghhBBCCCFEky1ZsgRFUQCYN29eo/Y5u53VauWrr75q1fHcfffdhISEAPD888+Tm5tbb5tt27bx5ZdfAjBo0CCuuuqqVh1DR5OAvxBCCCGEEEIIIYQQQogmOxs4DwkJaXSm/JgxYwgPD6+zf2vx8vLin//8JyqVitzcXEaOHMn777/P/v372blzJ8888wzXXnstFosFjUbDRx99hEqlatUxdDQp6SOEEEIIIYQQQgghhBCiSXbt2mWvhT9nzhzU6sbllqvVaubMmcOHH37IkSNHOHDgAMOHD2+1cd18880UFxfzyCOPkJuby4MPPlhvGy8vL7766qsul90PkuEvhBBCCCGEEEIIIYQQoonONusFW+38pjh/+/OP01r+9Kc/kZiYyMKFC+nduzfu7u54eXkRFxfHY489RlpaGrNmzWr1x3UEKuVskSUhhBBCCCGEEEIIIYQQQnRakuEvhBBCCCGEEEIIIYQQQnQBEvAXQgghhBBCCCGEEEIIIboACfgLIYQQQgghhBBCCCGEEF2ABPyFEEIIIYQQQgghhBBCiC5AAv5CCCGEEEIIIYQQQgghRBcgAX8hhBBCCCGEEEIIIYQQoguQgL8QQgghhBBCCCGEEEII0QVIwF8IIYQQQgghhBBCCCGE6AIk4C+EEEIIIYQQQgghhBBCdAGajh5AV5SZdIC1//oHEf1imXTnH/EKCOzoIQkhhBBCCNHllebmkLp9C8d2bUWlUjN90V+I6B/b0cMSQgghhBCi3agURVE6ehBdSXlBPl89+TAGrRYAF3cPJvz+bgZPnoZKLQsqhBBCCCGEaE01VZUc272do9u3kHfyeJ37VGo1Y25awKjZ81CrnTpohEIIIYQQQrQfCfi3IpPRwDfPLqYoMx1P/wBQFLTlZQBExg7i6j88SEC3iA4epRBCCCGEEJ2b2WQi4+B+UrdvJj0xAavFbL/PP7wb/a+aSMbB/eSfOgFAj0FxXPun/5OVtx0k42AC2//3Gb6hYVz7p0dw9fDs6CEJIYQQQnRZEvBvJYqisO5f/+DItk2onTTc/MLrBEREsv1/n3F40zoAnJyduXLerYyYMQcnjVRTak9J639h/8qlBEfFEB03jKgh8fiHdevoYQkhhBBCtCurxULa3l0cXLsaXUUZQd2jCI6Kqf3qiW9IKCqVqqOH2SBFUcg7cZzUHVs4vns7+uoq+31unl70u2oCA8dPJqx3X1QqFRaziZ3ffknCqmUAuHv7cO2fHiEmfkRHPYXLjq6ygi2f/4dju7bZbwuO7sncJ1/E08+/A0cmhBBCCNF1ScC/lRzasIaN//0AgCl3L2ToNdfb78tOSWbDx+9Rnp8H2E5yr7nvIUJ79u6QsV5OFEVh9w//Y8+P39a7zzc0jOi4eKLi4ukxaIhkGgkhRAudOrCP3d//j+CoaMYvuAsPX7+OHpIQopZJrydl6wYO/LyCisKCC27n4u5OUA/bBEBI7URAUPconN3c2nG0tnO4yqICCrMyKM7KpCgrg4KMk1QWFdq3UTtp6DlsBLHjJxMTPxKNs3ODx8pIOsCaD96mprICgOEz5jDulttx0jS8vWg5RVE4unMrW774GH1VJQDd+sWSfzINq8WMX2g4c5/+K36hYR08UiFESySuWcXhzevoN3osQ665Hncv744ekhBCCCTg3yryT6bx7fOPYTGbGTBuEtf+6ZF6mVEmo4Ffl35DwqplKFYrKpWa4TNmM+amW3F2bd8LqMuF1Wph86cfcWjDGgB6Dh+Fh48vmYcSqS4tqbOtSq0mvE9/ouPiiR4yjNBevVGrnbCYTegqKtCWl6GrKK/zXVtRjq72u8VkbPS4PP386X/VBPqPGS/BMCFEl6CrKGfz5//h+O7t9tvcvH2YdPu9DBg3yWGzhYW4HOgqKzi4djVJ61bbM+JVajV9R48lcsAgik9nUZSVQXF2BsaamoYPolIRFNmDfleOY8C4SfiGhLbqGE0GvX0c574yMdboGtw+rHdfYsdPpt+V4/Dw8W3UY1SXlbLm/bfITjkEQGjPPsx4+DH8wsJb7XkIm8qiQjZ8/D6ZhxKB2s+DO/7AgLETyT58iJ/efBmTQY+nnz9zn3qJ4KiYDh6xEKI5slOS+eHlp6E2pKRxdWXw5GkMv252q39OCCGEaBoJ+LeQrrKCr574M1UlRQT1iObWl9+8aAC/IOMU6//9TwozTgG2LPOr//AAUYOHttOILw9mk4k1771J2t5dAAy5+lom330/arUTiqJQeuY0mYcSyUw+SE5qCmajoc7+rh6eqFQq9NrqNhuj2smJ6KHDiR03mV7DR6FxcWmzxxJCiLagKAqp2zezdcl/7YHE7gPjKMrOtGd0RsXFc/UfHpALPyHaWVl+LgdWr+DI1o2YaxMTLhaMUaxWKooKKcpKp6g2o74oO4OKgvx6x46MHUTs+Mn0vWIsrh4eTR6bsUbH6dTDZB46SHbKIcpyz6Ao1ga3dXZzJ7hHNMFR0QRHxRAZO5jAiO5NfkywJYPs/+lHdn3/FYrViou7O1f/4QH6XzWhWccTdVmtFpLWrmbnt19iMugB6H/VBCbd+cc6EzP5J9NY9voL1FRV4urhyezHnyOy/8COGrYQohlqqipZ8tiDVJeW4B8eQU1VZZ1J5X5XjmPEzBsJjenVwSMVQojLkwT8W8BqtfDjq8+TfTgJVw9PFrz2TqPqwlstFg788hO7v/+fPdAcN2U6k+6674JLkUXjGWt0/PTmK/YMrtFzf8eYmxZcMMPUbDRy5lgqmcmJZB1KpCg7s8HtXD088fD1w9PPv853D1+/xi9zVxTyTh7n2M5t1NQGw84eu9+V44gdP5lu/QZINqwQwuFVFOaz4eMPyEo+CNhqY0+66z76jxlPTVUlW5f8l6M7tgC2IOPYm28n/toZqNVOHTlsIbq8vJPHSVi5jLR9u+1Zlx6+fsRfM4Mh067D3dunSccz6HQUZ2eSkXSA1B2bqSoust+ncXah96griR0/majBQ1E7Nfz3rVitFGam1yZbJJJ7/FidJrtn+QSH2vsJnC0n5BsSikqtbtKYL+XM8aP8/M837M9l0KRpTL7zj61atqiyuIijO7eSmXSAAWMnEjd1eqsd2xEVZ2ey/t/vkXfyOADegcFM/cMiesaPbHD7kjOn+fGV56gqKULj7MKMvzxBr+Gj2nPIQohmUhSFn958hVMJe3D18OT2N97D3duHlK0bSFi9gsqic2XjegweysiZNxIVFy/XuEII0Y4k4N8CO7/9kr3LvwNg1uJn6T3iiibtX56fx4aP3yM7JRmAiP6x3PDIU1LmpQV0lRUse+0FCtJPADDpzj8y7NobmnSM6rJSco+notY443leYL81M/AtZjOZhw6Qum0zpw7sxWI+d9HrFxrOgHGTiB0/WeqaCiEcjtVq4eCaVez87kvMBtukdez4yUy47Z56pTUykg6w4eP37UG1sN59mXbfQwT3iG7vYQvRJZmMBkpzTlOYlU5RVgZ5J46TfzLNfr9/eDdGzLiRAeMn4ezi2uLHU6xWco6mcGT7ZtL27MKkP1cCyNPPn/5jJzJw/GSCo2KoLi0h63ASmYcSyUo+WCfRAcDJ2ZmI/gOJjosnvE8/gqNi2rWfkr66mvX//icn9u0GbL+rAWMn1Snt2FRGfQ0n9u4mdftmso8k2ydcACbdeR/Drp3ZauN3FGaTib3Lv2Pfih+wWiygUhE/fQZjb74NF/eLr/6oKilm6SvPUnrmNCq1mmvuf5iBE6a008iFEM2VtP4XNn3yIQAz/vw4/a4cZ7/vbGP4hFXLKEg/ab89OCqGkTNvpO+V43DSaNp9zEIIcbmRgH8znUzYy09//ysAo2bfxLhb7mjWcRRF4cDPK9j+1WcoihWf4BBmP/acBEOaobK4kKWvPEdZbg5qJyemL/oLA8ZO7OhhXZK+uprjv+4gdftmctOO1rkvov9AJtx2N+G9+3XQ6IQQl1KQcYodX39erzTYhanoPjCOETPmNKsURkcqyspg/b//Sf4p26SqT3AIV9/7J6KHDr/gPkZ9DTu/XcLBtatBUVA7OTFq1jyumHOzlDITopEURUFbVkpRVgaF59W5L8s7g2KtXwonvE8/Rt4wl14jrmizVTUmg56TCXtJ3baJrOSkOiV5PP0D0JaV1tsnMLIH0UPiiYobRuSAgR3ex0pRFA5tWMPWJR9jMZnst7t5etFj8FCians7+QQFX/AYVquF0ymHSd2+ibR9u+0ToQBeAYF4BQTaJ2Gm3L2Qoddc33ZPqB2YjAZKsrMoyraVfcpISqA8Pw+w/f9Ou+9BuvUd0Ojj1VRVsvz1F+0rAybcdg8jZsxpk7GL9mExm/l16ddUFhcxatY8grpHdfSQRCsqzs7kf089gtlkZNCkq7nm/ocb3E5RFE4fSWb/qmVkJh2w3+4dFMyI62cTf+0NkvEvhBBtSAL+zVCWn8v/nvwLBp2WHoOHMvepF1t8MZVxMIHV7/4NY00Nzm7uXP/Qo/Qa3rQVA+3BoNORtncnGYkJRMUNJW7K9FZfZt0cJTnZLH3lWapLS9C4unLDI08Rc5EAlKMqyztD6o6tpG7fbF8KqVKpGXb9LK6av6DDL4yFEHUZdFqWPPZQnaXLjeXu48uYebcyeMo1Dp/pZDYa2bPsO/avXGrP4Bx27Q1cdfPvcXFzb9QxctOOsf7f/6QkJxuAgG6RXH3fg1K3WdRRWVzI0R1bKUg/ydBrZtBjUFxHD6nDWC0WTuzbTcqWDRSkn6yXIX8+76Bgexmc6CHD2708YHVZKcd2buXI9s0Un1ca0c3Lm6jBQ4keMoyouHi8A4PabUxNUZJzmpStG8hKPkhRVka9+wO6RRI1xBb87z5gMM5ubpTkZHNk+2aO7thCdWmJfVuNqyt9R40hdvwUug8ajNViZdXbr5KeuB+Aq//wQKco76MoCtVlJbbJpczzJ5ly6/VbUDtpGH3jzYyaPQ8nTdPLkxr1Nax861V7ibhRs+Yx9pY7JBjYCdVUVbLq7dc4nXoYsF3HDJo0lTE3LcArILCDRydaymQ08PVTj1B8Ogv/8Ahue/3dRpVCK8rKIGHVMo7t3o7VYqHnsJHMefz5dhixEEJcviTg30Qmg55vnnmUouxMvAOD+f3r/6hXwqC5ik9nseKNl6goLACVivG33smImTd2+Mmu1WIh63ASqds3c3Lfr/bGb2ArQzTtvocI6BbZYePLTTvG8r+9iL66CjdPL+Y88XyTMosckWK1knPsCNu+/NRensg3NIxpf3zosg5+COFIFEXh53/+neO7t+Ps6sYVN96MuhEToDVVlRzasAZjjQ4A//AIxt16B71HXtnh7/cNKUg/yc/vvUlZbg4AQd2jmHbfQ4T3afrKI4vZxL6flrJ32Xf2UmY9h43EJzgET19/PPx+2yfFX3rbXAaMNTrSasugnD6SXOe+uCnTGf/7u9q11EtHMxn0pGzdyIGfV9RrmKtxdiGwe5S9zn1wVDTBPWJw8/LqoNHWV5iZTv7JNEKiexLSs1en69uhLS8jK/mgrRTR4SR0FeV17nfSaPAJDqEsL/fcjSoVPQbGETt+Mn2uGFNvItRsNPLTmy+TeSgRgGn3P8TgSdPa+qk0y+nUw+xd/j0FGafszdcb4hMcYnsN9oim/9iJzW6kfJbFbGLNB+9wfPd2AAZPnsbUe/90wb4QwvGU5JxmxRsvUV6QByoVviGh9vcwjasrI2bMYeTMGy9Z6kk4rk2f/oukdT/jpNFwy8tvNbkhb2VxEYlrVtJn5JVE9I9to1EKIRzJtm3bmDhxov3nXbt2MWbMmIvus3XrViZNmtTgfe7u7gQHBxMfH8/8+fOZP38+mgaS55pzXd3VwuMS8G8CRVFY+8HbpO7YgtpJw+9e/FuzAh4Xo6usYNXbr5FzNAWAgROmMvUPf+qQgEdRVgZHtm/m2M6taMvL7Lc7u7kT3ruvvSmuk7MzV867lZEzb2z3k/KMpAOsfPtVzAYDXgGBzH3qpS61bNTe4Pm7r+wTLZdj8EMIR5SydSPr/vUPAKYv+kuT6g7rKivY8+O3HNrwiy1jHtsE6vgFd9Otb/+2GG6zHP91J2s/fAez0YCTRsPoubcw8oYbm5XBeb6SnGzW//u9emXMGuLq6YmHrz+efn74BofRY1AcUXHxePr5t2gMomNZrRayk5NI3bGFE/t+rVMSyyswCE9ff/uEt1dAIFPv/VOXb+ipq6wgad1qDq772R5oVanU9B19Fb1HjiY4qif+4d0kANqOFKuVouzM2j4EiZw5llqn71JARHcGTpjCgLETL7l6wWQ0sOKNv5J9OAlUKqYv/LPD1as/tOEXNn36UZ0yUb+dZAqJiiEoKho3z9afZFKsVjZ//h+S1q0GIKxXH7wCGrcqxNXDgz5XjCF6yHCHXzXXFWUmHWDVP/6GsUaHs6sb1z34KD2Hj+TItk3s/u4rqmtLfHn4+jHmplsZPPkaeS/rZM4vaTzx9nsZfv3sjh2QEKJTuPvuu/nss8/sP99333189NFHF93nYgH/3xo5ciQrV64kLKxu/8umBvz79u3L8ePHm7SPo5OAfxOc35xm6r2LGHL1dW3yOBaziU2f/IvDm9cDTW/mq1itFGScIjPpAGX5ubj7+NZpPnv2u7uPT72sK215GUd32krKnL+kWaVSExU3lNjxk+k9cjTOrm6cTj3M+n//0163MySmF9fc/zAh0T1b5xfRAKvFQlneGQoz0ylIP8HBtauxWiz4h0cw7+m/4hMc0maP3ZHK8s6w/t/v2SeCvPwDmPqHPzlk2SchLgeluWf46omHMRn09L9qAtc9+GizsgjK8s6w45svOLF3t/22vqPHMu6WO/ALC2/NITeJoijs+fFbdv/wP8C2CmHWo08TGNmj9R7DauXYrm3knzqBtrwMXUW5/bteW33J/YOjYuxlQiL6D5SVAJ1EUXYmqds3c3Tn1jo13p1d3eg7+ipix0+me+xgAJI3rWX7/z7DWGNrDNv/qglMuvOPrbay0lGU5+eR8PMKjmzdaJ/40Li4MmjS1YyYMRvfkLBLHEG0F5Nez+mjhynJOU2PgXGExPRq0nu/yaBn+d9esq1kUam47k+PMGBc4y5o25LVYmHLFx/bA+2hPfswYsbsDplk+u3nT1N5+PoxYOxEBk6YQnBUTCuPTvyWoigcXLuKrV/8F0Wx4h0UzOzFz9a5HjTp9Rz45Sf2/bTU3ug7oFsk4xbcRa/hoxxydaOoq6q0mCWPPYS+qpLoocO58fHnHaKsrxDCsdXU1BAaGkpVVRVeXl5UV1fj7+9PXl4erq6uF9zv/ID/woULWbRokf2+6upqEhISeOutt8jMzARg1KhR7Nmzp87nSUpKyiXH98UXX/Dmm28C8Morr/DUU08152k6LAn4N1Ju2jG+e+EJrBYzseMnM33RX9r05ERRFBJ/Wcm2Lz9pVDNfXWUFWckHyUg6QOahRGoqKy75GCqVGncfH/sEgGK1cPpISp26nEHdo4idMIUBV01osO6iyaBn9w9fc2D1ChTFikqtZtSseYy+8Xctbsaor66mKPtczdCirAyKT2fVaaoGENqzNzc++WKXCwD8lmK1XjbBDyEcmcVs4ptnF1OQfhKf4FBuf+OfLV5xc+b4UbZ99Ql5accAWz3kodOu44obb273v2+T0cC6f71rL6sQFRfPjIcfb9eSIWaTCV1FObryMrRnJwLKyyjKyiArJQmDVltne42LK91jBxEVN4zoIcMIiIiUAIKDObF3N78u+5aizPRzN6pURA22JRP0GXllg3WAK4uL2Pjx+2TUNvxz9/Zh0l330X/M+E7/f5x/Mo39q5ZxYu9u+7mXu48v8dNnMHTa9bh7+3TwCEVbMOn1LHv9BXKOpqBSqbnuoUfpP2Z8h41HX13N6nf/Zq+f3+/KcVyz6M84u1z4Qrw9pB/cz+kjhxu9femZ02QkHaizOiEkuhcDJ06h/1UT5Fy5DVjMZjZ/+hHJm9YCEN63P7P+7+kLrsDTVZSze+k3JG9cY/9/ihwwiAm/v5uw3n3bbdyiaaxWCz++8izZKcl4+Ppx+xvvySpLIUSjfP311yxYsACATz/9lLvvvhuAH374gXnz5l1wv/MD/s8//zwvvPBCvW3KysoYNWoUJ0+eBGDlypXMnDmzSeO74oor2LdvHyqViszMTHr0aL3kNkcgAf9GsFotfP7IQsrycgmOiuGWv/693ZqnXqiZr9VqIf9kGhlJiWQmJZCffhJ+818ZGNmDsF59Meiqz8ueLK+zbL4hZzNjYsdPJjgqplEX1PmnTrDuo3ftjdoCukUy7f6Hieh36Vr6iqJQWVRAYUY6hVnpFGamU5SVQVVx0QX3cffxJTgqhm59BzBy5pzLqhZkZXERG//7ARkHEwBw8/Zh8p1/pP9VEzp98EOIzmDbV5+SsGoZKrWa3734RquV4FEUhRP7drPj68/tK6dcPTwZes0Meo0YRVjPPm2eTVVdWsJPb75M/ilbKZWh18xg0h1/cKhl91aLhfxTJ2pLbBwk78Txeg0kvQODiYkfzpibFshFqQNI2bqRdR+9az9PCYzswcAJU+g/dgLejSjXoSgKx3ZuZfMXH9tL3fQcNpKp9/7JYZvAXkxu2jF2fvOFvaklgF9YOCNmzCF2wpQOD7SKtmfU1/Djq8+TezwVlVrNjIcfo+/ose0+jrK8Myz/20uU5Z0BYMz8BYy+8Xed9nzy7ErlI1s3Unw6y3672klDz2EjGThxKjFDpeRPa/htc97YcZO4+o8PNirhqzQ3hx1ff87J/Xvst/UeOZqQmF54+gXgFRBg++4f0OCKdNG+9q74gZ3ffAHA3CdfJHro8A4ekRCis5g+fTrr1q0jLi6OQ4cO0b9/f44fP87MmTNZuXLlBfdrTMAfbJMI99xzDwCLFi3igw8+aPTYjh8/Tv/+tuv4SZMmsXnz5kbv21lIwL+RCjPTWffRu8z88xPtXmahJCeb5W+8ZGt6pFIRPWQY+SeO1yt54OLuQdTgoUQPHU70kGH4BAXXO5aiKJj0NWhrsybPZk/qKsox1tQQFTeU6LhhzQruWMwm9v/0I3uWfWurb6pSEX/NDMbecru9eZnVYqHkzGkKM05RlJVuD/L/NlvzLJVaTUC3yPOa09m+PP38O+3FSGu4UPBjwm33EtAtooNHJ0TXlXkokR9ffQ6Aq26+jdE33tzqj2Exmzi0YS2//vhNnYaJ7t4+RMXFE1P7Ht/YMm+NVZB+khVvvER1WSkqtZopd9/fZqXrWpNeW83plGQykxPJPHSQyqIC+30B3SKZ//xrl3XQv7K4iOzDSYTE9GrTknsXkrpjC2s+eBsUhe6xg5lw+72ERPds1me4rqKczZ//x776xMXdgwm/v5vBk6d1itICJr2end8uIXHtKvvkR1jvvoy8YS69R46WoNZlxqDT8eOrz5J34jhqJydm/OUJ+oy8st0ePzvlEKvefg29thqNiyvX/ukvHTLp0BYURaEw4xRHtm3i6M6t6Kur7Pe5+/jWKflzOV9PNNdvm/OOu+UORt4wt8m/y5xjR9j+5afknbxwzWSVWm0rTesfiKe/P15+AXgFBBIY2Z3gqBj8QsM7xft/YxVmppN5KBHreb1CWpN3UDBRg4c2uHK/IXknj/Ptc49htVgYfv1sJt5+b5uMSwjR9eTl5dG9e3csFgtvvPEGixcv5uWXX+bZZ5/F2dmZM2fOEBxcP2YJjQ/4p6SkMHiwrRTo9ddfz+rVqxs9vqeffppXX30VgM8//5w77rijCc+uc5CAfxMoitJhJ4W6ygpWvfMaOal161AFR/ckZuhwYoYMJ7xvf4fIWCnJyWbdR++Sd8J28uYTHELU4KEUZmZQfDqzXkmes1zcPQiJ7klw9NmmYD0JjOzR4tJAXdlvgx+oVPQecQUjb5hLt76XXl0hhGg8XUU5Xyx+AF1FOd1jBzPv2ZfbNEBn0Gk58PNPnNi327566nyhPXvXBv+HE96nX4uy8M9vzuvm6cWMvzxB1OChzR98B1EUhfL8XNITE9j57RLMRgOBkT2Y/9yrrT5B4uiKsjLYv2oZx3dvtzeGjoqLZ8TMG4kaPLRdzmeO7trGmvfeQlGsdI8dzJwnnm+VFZInE/ay6b8f2JtAdo8dzPRFf3HoPj5ZyUms/8979gmp8N79GL/gLiIGDJSA42XMoNOy9OVnyD91ArWThhv+78l26c+UtP4XNn9ma87rFRDI7MXPEtqzd5s/bkcwm0xkJO7nyPZNpCfur1PyJ6hHNLHjJ1+wdKmor6HmvL1Hjm728RRF4cTeXZzY9yvaslKqy8vQlpXYy5deirOrG0E9zjaV7mn73iOqU63+ri4r5djZHnoNnO+1haDuUUQNGUZ0XDwRAwY2uLLMoNPx5RMPUVGQT0h0L255+U3plySEaLQ333yTxYsXo1aryc7OJiIigoyMDHr16oWiKLz77rs89NBDDe7b2ID/+Vn606dPZ82aNY0am6IoREdHk52djaenJ/n5+Xi1Y/na9iIB/07EYjax+4evqSouosfgoUQPGYaXf0BHD6tBVquFpLWr2fHtEsyG+iWEPP38CYnuac84DInuhW9IaJfK0GhPJxP2sv1/n1GWm2O/rVu/WEbeMJdew0bK71WIFlIUheV/e5GMgwm4eXlz+xvvtWspkarSYjIPJZJ58ABZh5Mw6OquinL19CRqcDxRg4cSEt2TwB5RjSoLUq85b7dI5jz2LP7hnX+lUNbhJFb87SXMJiNBPaK56dlXunwNZ0VRyE45RMKqZWQeSrTf7uzmbm+UCLZkgZEzb6Tv6LFtlihw/Ncd/Pzu31EUKxH9B3Ljky/YV/u1Br22mu3/+4zDm9YB4B/ejQWvvtPifhqtTV9dzbavPiFlywYANK6ujL35duKvnSEZ/QKwvZaXvvwMBekncdJomPlI2wX9bc15/0PSup8BCOvVh1mPPnPZBLu15WUc27WNI1s31gmsqlRqegwewsDxk+l9gX4inYVBpyVt7y5Men2rH7u6tISEVcsv2Jy3NRn1NWjLStGWlVFdVoK2vIzqslK0ZaVUFhdRnJ1Z71zofH6h4faV4RH9Y+nWL9ahgtUmg56TCXtJ3b6ZrEMH65QmDIjojpd/669MVKwKRdmZdVa8AGicXYgYMJDo2gmAwO5RqFQqfnn/LY7u2ILG1ZXbXn+XgG6RrT4mIUTXNWTIEJKTk5k8eTKbNm2y3z527Fh27drF8OHDSUhIaHDfxgb8ly5dyk033QTA3XffzSeffNKosW3ZsoXJkycDcNttt7FkyZLGPq1ORQL+ok2VF+SzZ9m3mGpqzgX3Y3pd1uUV2opitXLqwD72r1pG7vFU++0B3SIZMfNGBoyb5FAnukJ0Jom//MSWLz4G4IZHn27Xsgu/ZbVYyD1xjMykRDIPHaAg/WS9bVQqNf7h3eqVQ/MKCLRnEzfYnPfPj+Pm2XWyGzIPJbLi73/FYjIRHBXDTc+9iruXd0cPq9VZLRbS9uxk/6plFGacst9+fmD/zLEj7F/5Y52JAO+gYEZcP5tBk6e1ajA+be8uVv/jbyhWK936DmDuUy+2WbZlVnISK/7+V8xGA71HXskN//dUq2XM5508jq6inMgBg5o1kXBi3242ffIvtOVlAPQYNISr//ggfqFhrTI+0XXUVFfxw1+ftje1HnL1tYy79c5WncCq15x3zHiuWfjwZdszojAzndQdWzi2c6v9bxRsE6R9r7iK2PGT6R47qFMlzVQWF/HjK89Sel4CUFvo1ncAN/zfUx16PacoClXFRRRmZVCUZev/VpSVQXlBfr2+dmCbbO0eO5jouHii4oYREBHZ7qurFKuVnKMpHNm+mRN7d9VZxdCcHnrNYbVaKEw/ZUsiST5I3olj9lWAZ3n5BxAS04v0xP0ATLv/IQZPmtYm4xFCdE1JSUnEx8cDtjr7d911l/2+jz76iIULFwJw5MgRYmNj6+3fmIC/2Wxm3Lhx7Nlj6wezZMkSbrvttkaN76677uLzzz8HYMOGDUydOrXRz60zkYC/EF3QmeNHSVj1IycT9tpPej39/ImfPpMhV1+HWxdcrtTZWMxmdJXl6MrL0VaUYaiuxjc0jKAe0a0aeOtszCYTWcmJWK1WW81WP388fP3arVF6Qwoz0/n66UewmM0Mufpapt77pw4bS0O05WVkJR8kI+kAuWnH6tSw/y03L2978D/3eKpDN+dtLRkHE/jpzZexmM2ExPTipmde6TLvgSa9nsNb1nPg55/q/L9frHRPYWY6CauX1yn14+bpxZBp1xM/fUaLAzgn9+9h1TuvYbVYCO/dj7lP/xVXj7YtrZC6Ywtr3n8LgHG33smoWfNafMyT+/ew8q1XURQrKrWa8D79iR4ST3TcMEJ79b5odr62vIzNn/2btD07AVvz7Qm33cOgSVdL+R5xQbrKCla+9Spnjh0BwCsgkCn3LKL3iJZn+xefzmLlW692mea8rclqsZB1OInU7Zs5uX8PZuO5lcneQcHEjpvE4MnT8A1x7Im6kjOn+fGV56gqKULj7EJg96g2eZzuAwdz1fzfO2zJVaO+huLsLPsEQEHGSQpOnayTQQ/gHRhMVFw80UOG0WPwkDZNBijNPUPq9s2k7thMVXGR/XaNswu9Ro5m4PjJRMXFd8g5mEGn4/SRZDKTD5J1KNHWl+E8fa8cx4yHH5P3CtHlKRYFS7Wxo4fRLpy8XFA5te3f9COPPMI777yDu7s7+fn5+Pj42O8rLS0lPDwco9HI448/zuuvv15v/4sF/LVaLQkJCbzwwgts3boVgKioKI4fP46r66WTGHQ6HWFhYVRVVREZGUlWVhbqTjS53xQS8BeiCyvNzSFh9XJSt2+2905wdnMnbso0Rt4wr8ustFAUBYNOi66iHG15GcYaXbMzMltrPKVnTpN/6gTa8jJ0FWVoy8vt37UV5XWasdahUuEfFk5wj9qs7NqeFt6BwV36ZNug03JowxoOrllpr8t9Phd3dzx8/fDw9cfT79x3T19/AiIiCe/TNj1MTHo9Xz35Z0pzcwiM7MGCV9/u0MmHxjDotPYL3bNfxaez6wQxzupMzXlb4tSBfax861WsFjOhPfsw75m/dtqVDGf7FKRu30zS+l/sS/NVajX9rhzHiJk3EhrT65LHqSwuIvGXn0jetM5e7sfJ2ZnY8ZMZNn0mQT2imzy2jvw9b/r0XySt+xmVSs28Z/5Kj0FDmn2snKMp/PjKc5hNDV/4uXl60WPwUHuwyCfI1nBMURRSt29m6xcfo9dWA9BrxGim3rPwsimZIlpGsVo5tHEtO77+zJ7923f0WCbfdV+zztly046yf+UyTibsAUXpcs15W5tBp+PE3l2kbt/M6dTD9ttVKjV9Rl/FyJk3EtarTweOsGF5J4+z7PUX0VdV4urpyZzHnieif/2MycuVXltNdsohsg4dJDM5kcqiwrobqFSE9epD9JBhRMXFE967X4vPKWuqKjm+ewep2zfXa0ocOWAQseMn03f0VQ5Xhq48P4+swwfJPHQQlVrFtPse6rTnS0I0hbnCQP5r+zp6GO0i7MlRaHzbbnWf2WwmMjKSgoIC5s+fz3fffVdvmzlz5rBixYoLBtzPD/hfSkhICOvWrWPo0KGN2v7rr79mwYIFADzxxBO89tprjdqvM5KAvxCXAW15GQfXriZp/WoMWlu9Sy//AOY+/VeC2igDqCGKoqDXVqMrtwW+DbUBkcawWi3oKits+9YG9nXnff9tM2ivwCBufu41/MLCW/tpNKimqpKsw0lkHkokK/kg1aUljd7Xxd0dF3ePi+7j5ulFUFS0PTu7z8gxXSJLuaqkmMQ1K0neuMYe3HDSaHBx96DmQpMiDXBxd6f7wDii44YRNSQe/7BurTK+9f95j8Ob1uHk7MyCV98huBlBUEdgtVooy8utMwlgMRm5Ys7NLQqMdiYdkXneWvTaak6nJNuX4J+fze/s6sbgydMYfv3sZjWt1Wur7ZNt55e1CInpxcDxk+l/1YRGNTzOSDrAT3//q20lRXQvbnq2fVdSWMwmvnvhCfJOHMfdx5fbXn+3WX02irIy+O6FJzDotARG9mDeMy9TcjqbzOREsg4lNthQMaBbJFFD4inLyyUz6QAA7j6+TLn7fvqOHtulJ2tF26gsLmLTJx/aS2q4etauEpl46VUiitXKqcT9JKz6kTPH6pZ4vO7BR7tsc97WVllUSOqOLaRs3UBFQb799u4D4xg580aihw53iL/tzOSDrHzzFUwGPZ7+Acx96qVOe67SHhRFsb1XH0okKzmR00cOYzLU7Xfg4u5Bj0FxtRMAwxpdhs1iNpF+MIHUbZtJT9yP1WK23+cXFk7s+MnEjpvk8KtFhLgcScC/9fz888/MmDEDgJUrVzJz5sx62/z444/Mm2dbkbtx40amTJlS5/7GBPxjYmKYN28ejz76KCEhjb8Gmj59OuvW2XqAHT161N70tyuSgL8QlxGjvoaUzev5dek36LXVuHl6MeeJ5+nWd0CrHL+qtJjc40frBeO1tUF6XXl5nZPftqBSq1Gp1FgtZrwDg5n//GttUi/ZYjaTd+IYmYcOkpWcSH76yXo1Q70Cg/AJDLaXpTn73aM2M92WqX6uXI2xRkeRfRmyrR5pcXZWvQsRAJ/gUG556Y1OmzValJ1JwqplHNu1zV5WxNXDkyHTriN++ky8/AOwmM3UVFbUvnYanuipLiu1lSj4ze/eNzTMVqd1yDB6DIxrVgZV2p6drHrHtsRw8t33E3/NjJY/cdGh2rO2fEtYLRbyT6WRWZuNmH8ircFyBHFTpzNk2nWtUorAbDJxdMcWDvy8gpKcbPvtKrWamKHDiR0/hV7DRzVYxiEz+SAr3njpXK+EZ1/B3dun3nZtraqkmC+feJiaygrC+/Tj5hdex0nT+N41FYUFfPPcYrRlpXgHBnPLX/9eb9KguqyUrOSDtmDR4SRqKivqHWfAuElMuuMPHfI7EF2Hoiik7dnJ5s/+ja6iHIAeg+K4+g8PNpjMcPZvOGHVsjo13Lv1i2XkzBvpNXxUp6pH7yisVgsn9/3K/pU/2svgAQT1iGbEjDn0v2p8k95nwNZDp+R0NhoXlxYl3hz/dQe/vPcWVosZv7Bw5j39Mr4hoc0+3uXIbDKRl3aUzNr39fP74JzlFxpOVG1D2+4D4+okCyiKQv6pNFK3b+bYru11GuK6eXrRb8x4YsdPJrxPP4eYIBJCNExK+rSem2++me+//57AwEDy8vJwbqCPpMFgICwsjPLycm6//Xa++OKLOvefH/BfuHAhixYtAkClUuHm5kZQUBC+vr5NHlteXh7du3fHYrEwcuRI9u3r2pM8EvAX4jJUkpPN0lefo7qkGI2rKzc88hQxQ4c3+3iKopCyZQObP/t3g2VDGqJ20uDm5dXok1+VSoW7tw8efv54+vrZv9uC6LXBcz9/3L28KcxM54eXn8ag1eIdFMzNz7/eKhdA1WWlnNz3K5nJiZw+klyn2RbYyiX1GNS6WeaK1Up5QZ49K7swK4PTKcmYDHqCekRz8wuvd8hSW311NcWnM3Hz8sbTzx83T69LBhIUReH0kcMkrPqRjNosWLAFLodfP4vBk6c1K/iqq6wgO+XQBVdXqNRquvXtT1RcPGG9+l609vZZZpOBNR+8jUGrpdeIK5j16DNyodZFHP91Bz+/+3cUxUpE/4HMffJFnN06rkyT2Wi0TWJVlFGUlUHmoUSyUw7ZV2OdpXFxJTJ2ENFxw4geEk9ARPc2eU0qikJhximObN/EsZ3b6qy0cfXwpN+V4xgwfhIR/WJRqVRkpxxi+esvYjYZCeoRzU3PvoKHT9NPwFtLdsohlr78LIpiZeg11zPl7oWN2k9XWcG3zz1GWd4Z3Lx9+N2LfyMwovtF91GsVgoz0+21jy1mM1fcOJ+e8SNb46kIAdhWEG778lOObNsI2N4Lxtx0K8Ovn43ayanhVToqFb1HXMGImXOJ6Nc6SR2XO0VRyDmaQsKqZfaVF2BL7hh+7Q0MnjK93qoxRVGoLiuxncNlnlthV5aXa5/Ejegfy4iZc+k1bGSTJmSS1v3Mps8+AkUhJLoXc596sVGrscTF6SrKyTqcZJvYTT6I9jdlJtVOTrU9XYYBth4yZedNsKmdnIiJH8nA8ZOJGTYSTQOBLiGE6KoqKioICwtDr6+fsHghXl5e5Ofn4+l5LkGvMU17m+PNN99k8eLFALz33ns88MADrXJcRyUBfyEuU5XFhSx95TnKcnNQOzkxfdFfGDB2YpOPY9Dp2PDx+xzfvR2wLTv3DQ6rU2fdw9e/blb72QBxGwZQ80+dYOnLz2DQafEJDuHm519vVrmLs47u2sbGj9+vG+RXqQiN6U10bdZPeN+2qSP/W9kpySx77TksZrMtYPn0Szi7tN2yvLMsZjOZhw6Qum0zpw7sxWI+t1pD7eRUW2Pfr4EJGT8sZjMH166mIP1cdlxwj2hG3DCXfleOa7Xfm6IolORk2zNwc1JTLliHuzG8/AO47Y33OjSAKVrf0Z1bWfP+2yiKle6xg5nzxPNt0puhorCAkpzsBlY7nftu0GkvuH9wVIy9TnxEv9h2b5Jo/5vfvoVTCXvq/M37hobRe8QVHNqwFrPRQGBkD+Y/96pDBJz2/bSUHV9/DsB1D/wfA8ZdfEmwsUbH9y89TUH6CTSursx/9lXC+/Rrh5EK0XiZyQfZ+PH7VBTaSnqFxPQion8sKVs21uvDMWLGHAK6RXbkcLu04tNZJKxaztGdW+0rV109PImbOp2AiO7nyudlZ164Z9NvBHSLZMTMGxkwbtJFg8SKovDr0m/4denXAHSPHcysxc92mhJ1nYmiKBSfziKrtpxeztGUeiVEzwrr1YfY8ZPpN2a8nDMKIS5bH3/8MX/84x+bvN+SJUu47bbb7D+3VcB/yJAhJCcn4+LiQm5uLoGBnbNaQmNJwF+Iy5iusoJlr71gD8JOuvOPDLv2hkbvn38yjdX/fMNe23TA2IlMvXeRw5TIyD+Zxg8vP4OxRodPcCg3v/AaPkFNC/qb9Ho2f/5vUrZsAGx1mXsOG0l0XDw9Bg/tsJP6tL27bOVmFIXeI0cz8y9Pona6dOZ6U9XJ9t21vcHyFU3VY9AQRs68kaghw9o8a95sNJJz7Ih9AqC8IK/R+7q6ezDj4ceJjB3UhiMUHSV1+2bWfPgOKAo9Bg1h1uJncHFzb/Fx9dXVHP91B6k7tpB7PPXSO5zH08+fHoOG2BsHOlJjdX11NWl7dnJk++Z6z8u/WyQ3P/+aw4xXURRWvvUqJ/f/isbFlVtffpPgqJgGt7WYTSz/20tkJR9E7eTE7Meea9GKNyHakkmvZ9cP/yPx55/qlPly9fRk6LTriZ8+02H+Di8HVaXFJP6ykuSNazHW6C64ncbFlaDuPex9mM5+FZ/OJmHVj5xM2GsvTejp50/8tTcw5Opr663gVKxWNn/+H5LWrQag98gruf6hxe0+GXy5MhkNnElNsa3qSj6IxWym7+irGDBu0iVXhAkhxOVg3Lhx7Ny5k/DwcN5+++1Lbr948WJycnKYOnUqGzZssN/eFgH/pKQk4uPjAZg9ezbLly9v8TEdnQT8hbjMGWt0/PTmK2SnHAJg9I03M2b+7y8aiFWsVg78vIId33yB1WJB4+rK1HsWETt+ssOVPck7cZylrzyDsaYG35BQ5j//Oj5BwY3atygrg9X/+Ju9Fm7vkVdyzf0PO0yz3EMbfmHjfz8EYPDkaVz9xwdb7fdfVVLM0Z1bSd2++YL1vHsOH4nFaEJbUVYnY7lerf3yMoz6GmKGjmDkDXOlYaBwGClbNrDuo3cBW2ZsRP+B9hU7QT2iG/33dLHVLy7u7nj6BdTp42FfBVO78snDzw8PH79OE7Qpy8/l6I4tHNu1HRd3D2Yvfsbh+okYdFr+99RfKMvLxS8snAWvvtNg8OyX99/i2K5tQONWAwjhCPJPnWDTJx+ir64mfvoMBk2e1ioTlqJ5DDotyRvXcmjjGnsvk/O//MO7XbScYGluDgmrl5O6fbM9g9zZzZ24KdMYdt0sfIJCsJhNrPngHfuK2kGTpnH1H/7UJskeQgghRFNlZGTQq1cvFEXhgQce4L333rvkPn/+85959913UavVZGdnExERAbRNwP+RRx7hnXfeAWD58uXMnj27xcd0dBLwF0JgNplY896bpO3dBUDc1OlMuWdhgxcnuopy1n74jr0Ge3BUDDP+/LhDLx3PTTvKj68+h7GmBr/QcOY//1q9RoznUxSFQ+t/YeuX/8ViMuHk7MzE2//AkKuvdbgJjd0/fG1f1j36xpu56ubbLrHHhZn0etL27iJ1+2ayjyTXaYQbEtOLgeMn0/+qCQ5RskOI1nJ4y3o2ffKvesv0Pf387eV0ogYPrfe6v9jqF1cPT/peOZbY8ZPtte5F+yvOzuR/z/wfZoOBXiNGM+v/nrLXyFYUhS1f/IeDa1YBMPH2exl+/ewOHK0Q4nKnLS/j4NpVJK3/2d7HRe3kRL8x42215ZMPAjBq1jzG3nKHfLYIIYRwGC+++KI9ML9161YmTJhwyX127tzJuHHjAHj99dd5/PHH7fu3ZsDfYrEQERFBQUHBRZsJdzUS8BdCAGC1Wtj86Ucc2rAGgL5XXMW1Dz5ap45odsohfnn/LXsDq6HXzGDC7+/uFFmpZ47bgv4mfQ1+YbVB/4D6QX99dTXrPnqXk/t/BWw1VWf8+fELloPoaIqisOnTjzi0/mcAJt15H8OundmkY1jMZpI3reXXpd/UCVp6+QcwYNwkYsdNIqhHdGsOWwiHYqzRkX3kMFnJibbST/n1Sz+FRPciekg83QfGUZiZfpHVL5PpOXxUu/TVEJd2dNc2fvnn3wEY+7vbuWLOfAD2Lv+end8uAWDkDXMZv+CuDhujEEKcz6ivIWXzehJ+XkFVcVGd+ybcdg8jZszpoJEJIYQQDevduzenTp0iJCSEvLw81I1oRG+1WomMjCQvL4+BAweSkpICtH7A/5dffuH6668HaPTqg66g7btLCiE6BbXaiSn3LMLdx5c9P35L2t5d6LXVzHr0aTQuruz+4Wv2rvgeFAU3Ty+mLXyYPiOv7OhhN1pEvwHc+OQLLHv1ecrz8/jhpaeY/9xrdcpQnDmWys/v/d1+cTVo0tVMvvM+nN1av5lna1GpVEy+64/UVJSTtncXW774Dx6+vvQfM/6S+yqKwsn9v7Lj6y8oyzsDgMbVlT6jxhA7fjI9BsVddAm6EF2Fi7sHvUdcQe8RVwBQXpBfG/w/SHbKIYw1OgozT1GYeYp9Py2ts29IdC9ix0+m/1XjpXa2Axpw1QTy0o5xcO0qdn33FWG9+1JZVGgP9g+cMJVxt97ZsYMUQojzuLi5M+y6WQyZdj1pe3ayf9UyyvLOMPWeRQycMKWjhyeEEELUsWvXLk6dOgXAnDlzGhXsB1Cr1cyZM4cPP/yQI0eOcODAAYYPb/1eWkuWLLH/+/bbb2/14zsqyfAXQtSTuGYVWz7/NwChPXvj5Oxib9IY0T+W6x58tMnNbx1FztEUlr32AiaDHv/wCOY//xoevr7s/+lHdn3/FYrViou7O1P/8AADrrr0MjRHYTaZWPba85w+kozaScONT7xAVNzQC26fm3aMbV99av9/VTs5MeTq6xg993cd1ohYCEdktVjIO3Hc1qTvUCL5p07g4efHgLETiR0/mWBZ/eLwLGYT37/4FLlpR3H19MSoq0FRrPQcNpJZjz4jNbCFEA7ParHIe5UQQgiHdN999/Gf//wHgPXr13P11Vc3et/NmzczZYptMvuhhx7i3XffbdUM/8rKSsLCwqipqWHAgAGkpqY2+1idjQT8hRANOrprG2s/eBurxWK7QaVi9I03c+XcWzr9Bcfp1MMse/0FzAYD/t0i8Q4ItDctDu3ZhxkPP4ZfWHgHj7LpDDod37/4JIWZp3B2c2f+c68S1qtPnW3K8nPZ+fUX9n4NAH2uGMO4W+7APzyivYcsRKdjNplwcnKy14IXnUNVaTFfPfFndBXlAHTrO4B5z/wVZ1fHXcElhBBCCCGEEM0hAX8hxAVlJB1g9T9ex8XNnWsfeJQeg+I6ekit5vSRZJa9/iJmo8F+2/AZcxh3y+04aTpvAxdteRnfPvcY5QV5uPv4cstLb+AfHoGusoI9y77l0Po1WC1mAML79mfC7+8hot+ADh61EEK0vdOph1nxxl/xD+/G3Kf/iruXd0cPSQghhBBCCCFanQT8hRAXZdTX4KRxxknT9Vp+ZKccYsXfX0bj7Mz0P/2FnvEjO3pIraI8P49vnluMrqIcn+BQBk2ayoHVKzDotAD4hYUz7tY76TNqDCqVqoNHK4QQ7ceor8HZ1U3e+4QQQgghhBBdlgT8hRCXNYNOi5OzCxrnzpvV35CCjFN8/+ITGGtq7Le5e/tw5bxbiJt6bZecwBFCCCGEEEIIIYS43EnAXwghuqjslGSWv/4CAMOun8WoWfNw9fDs2EEJIYQQQgghhBBCiDYjAX8hhOjCtOVlqDUaqVUthBBCCCGEEEIIcRmQgL8QQgghhBBCCCGEEEII0QWoO3oAQgghhBBCCCGEEEIIIYRoOQn4CyGEEEIIIYQQQgghhBBdgAT8hRBCCCGEEEIIIYQQQoguQAL+QgghhBBCCCGEEEIIIUQXIAF/IYQQQgghhBBCCCGEEKILkIC/EEIIIYQQQgghhBBCCNEFSMBfCCGEEEIIIYQQQgghhOgCJOAvhBBCCCGEEEIIIYQQQnQBEvAXdjk5OahUKlQqFTk5OR09HCHqkNencGTy+hSOTl6jwpHJ61M4Mnl9Ckcmr08hhBANkYC/EEIIIYQQQgghhBBCCNEFSMBfCCGEEEIIIYQQQgghhOgCJOAvhBBCCCGEEEIIIYQQQnQBEvAXQgghhBBCCCGEEEIIIboACfgLIYQQQgghhBBCCCGEEF2ABPyFEEIIIYQQQgghhBBCtJpt27ahUqnsX7t3777kPlu3bq2zz/lfHh4eREVFMXv2bL7++mvMZvNFj1VYWMhLL73EmDFjCAgIwNnZGT8/P4YPH85jjz1GZmZmKz1TxyMBfyGEEEIIIYQQQgghhBCt5osvvqjz85IlS1p0vJqaGrKzs/npp59YsGABY8aMIT8/v8Ft169fT//+/Xn++ef59ddfKSsrw2w2U1FRQWJiIn//+9+JjY3lyy+/bNGYHJUE/IUQQgghhBBCCCGEEEK0ipqaGpYuXQqAl5cXAN9//z0Gg6HRx1i4cCGHDx+2f/3666+89957REdHA7B//35mzZqFoih19ktPT2f27NmUlZUBMGvWLJYuXcq+fftYsWIFd955JyqVipqaGu6880527drVCs/YsUjAXwghhBBCCCGEEEIIIUSrWL58OVVVVQD885//BKCsrIxVq1Y1+hghISEMGjTI/jV69GgeeOABEhMT6d27NwD79u1j9erVdfZ7++23qampAWDx4sWsWLGCuXPnMnLkSGbNmsVnn33Gu+++C4DVauW1115r8fN1NBLwF3aRkZEoioKiKERGRnb0cISoQ16fwpHJ61M4OnmNCkcmr0/hyOT1KRyZvD6FEI7qbPmeuLg47rrrLvr161fn9pbw9/fnySeftP+8du3aOvef7RWgUql45plnGjzGAw88QEBAAAC//vpri8fkaCTgL4QQQgghhBBCCCGEEKLF8vLy2LhxIwC///3v63xfu3YtRUVFLX6MUaNG2f+dlZVV5z6j0QhAYGAgPj4+De6vUqno2bNnne27Egn4CyGEEEIIIYQQQgghhGix//3vf1gsFtRqNbfeeisACxYsQKVSYTKZ+Oabb1r8GM7OzvZ/WyyWOvedXU1QUlJCZWXlBY+Rnp5eZ/uuRAL+QgghhBBCCCGEEEIIIVrsyy+/BGDixIlEREQAEBMTw5gxY4DWKetz+PBh+7+7detW5777778fAEVRePXVVxvc/4MPPqC0tLTO9l2JBPyFEEIIIYQQQgghhBBCtEhSUhLJycnAuTI+Z539+cCBA6Smpjb7McxmM2+99Zb954kTJ9a5/+qrr+bpp58G4G9/+xtz585l2bJlJCQksGrVKu655x4eeughAO644w7uuuuuZo/FUWk6egBCCCGEEEIIIYQQQgjR3iwWC9XV1R09jHbh5eWFk5NTmz7G2ex9d3d35s6dW+e++fPn8/DDD2M0GlmyZAmvv/56k46t1WpJSEjghRdeYM+ePQBERUUxf/78etu+/PLLTJw4kVdffZVly5axbNmyOvfHx8fz9NNP1xtjV6FSFEXp6EEIIYQQQgghhBBCCCFEe6qoqOCdd97p6GG0i7/85S/4+vq22fHNZjORkZEUFBQwf/58vvvuu3rbzJkzhxUrVhAZGUlWVhZqdd3iM1u3bmXSpEmNeryQkBDWrVvH0KFD692Xm5vL4sWLWbZsGXq9vt79Tk5OXHvttfztb38jNja2cU+wE5GSPkIIIYQQQgghhBBCCCGabd26dRQUFAD1y/mcdfb2nJwctmzZ0qzHiYmJYfHixRw+fLjBYP/Ro0cZNWoUX3/9NZ6ennz44YecPn0ao9FIfn4+S5YsISIigtWrV3PllVeybdu2Zo3DkUmGvxBCCCGEEEIIIYQQ4rIjJX1az80338z3339PYGAgeXl5ODs719vGYDAQFhZGeXk5t99+O1988UWd+8/P8F+4cCGLFi0CQKVS4ebmRlBQ0CVXKYwcOZKEhAQ8PDxISEhgwIAB9bbJy8sjPj6egoICunXrRnp6Oq6urs196g5HavgLIYQQQgghhBBCCCEuO05OTm1a5uZyUVFRwcqVKwEoKSnBxcXlkvssW7aMDz/8EE9PzwbvDwkJYdCgQU0ax6FDh0hISABgwYIFDQb7AcLDw3nwwQd55plnyM3NZe3atcyaNatJj+XIpKSPEEIIIYQQQgghhBBCiGb5/vvvG6yVfzHV1dX1mum21NGjR+3/HjZs2EW3HT58uP3fx44da9VxdDTJ8BdCCCGEEEIIIYQQQgjRLEuWLAFsmfNvv/32JbdfvHgxOTk5LFmyhNtuu63VxqHRnAt1m83mi25rMpka3K8r6FrPRgghhBBCCCGEEEIIIUS7yMjIYNeuXQDMnTuX3/3ud5fcZ8+ePbz77rts3ryZM2fOEBER0SpjiYmJsf97x44dPPDAAxfc9vxmvefv1xVISR8hhBBCCCGEEEIIIYQQTbZkyRIURQFg3rx5jdrn7HZWq5Wvvvqq1cYSHx9vnzz48ccf2bRpU4PbJSYm8tFHHwHg4eHB5MmTW20MjkAC/kIIIYQQQgghhBBCCCGa7MsvvwRsTXbHjRvXqH3GjBlDeHh4nf1bg1qt5rXXXgPAYrFw7bXX8uCDD7J+/XqSkpLYvHkzTzzxBOPGjUOr1QLw5JNP4ufn12pjcARS0kcIIYQQQgghhBBCCCFEk+zatYtTp04BMGfOHNTqxuWWq9Vq5syZw4cffsiRI0c4cOBAnSa6LXHbbbdRUFDAU089hclk4v333+f999+vt51KpeLPf/4zTz/9dKs8riORDH8hhBBCCCGEEEIIIYQQTXK2WS/Y6vc3xfnbn3+c1vDoo49y+PBhHnnkEYYPH46vry9OTk54e3szaNAg7r//fvbv38/bb7+NSqVq1cd2BCrlbJElIYQQQgghhBBCCCGEEEJ0WpLhL4QQQgghhBBCCCGEEEJ0ARLwF0IIIYQQQgghhBBCCCG6AAn4CyGEEEIIIYQQQgghhBBdgAT8hRBCCCGEEEIIIYQQQoguQAL+QgghhBBCCCGEEEIIIUQXIAF/IYQQQgghhBBCCCGEEKILkIC/EEIIIYQQQgghhBBCCNEFSMBfCCGEEEIIIYQQQgghhOgCJOAvLhuKonT0EIQQQgghhBBCCCGEEKLNaDp6AEK0hGJRsGqNWKpMWKqNWO3fjViqTbXfjVirTVj1ZjQB7jiHe5735YWTrwsqlaqjn4oQQgghhBBCCCGEEEK0iEqRtGfRCSkWhfKVJ9Huy4cWvoLVHhqcw+pOAjiHeKBylgUwQgghhBBCCCGEEEKIzkMC/qLTUawKpd8fpyapqM7tKhcn1N7OOHm54OTljNr7/O8uqFzVmItqMOVpMeZpMedrUUzWhh9ErcJ9UCC+06LRBLm3w7MSQgghhBCidSkmC+Ur0zFkVOA3sydu/QI6ekhCCCGEEKKNScBfdCqKVaHshzR0BwsB8J7cHc/hoai9XVC7ODX5WOYS2wTAua9qLBXGcxs5qfC6IhzvKT1w8nRuzacihBBCCCFEm7FUGCj+MhVTTrXtBhX4XtcTr7HdpJylEEIIIUQXJgF/0WkoVoWypWnoEm3Bfp+pPfCZGtXqj2PRmjCcLKNyfRbmEj0AKjcnvCd2x/uqbqicmzax4EisejPavXnoDhbhPigQ7yk95IJPCCGEEJe1yk3Z1BwrxWdiJO4Dgzp6OK3CeLqK4iWpWKuMoFahCXbHXKADwGN4KP5zeqPSSPlKIYQQQoiuSAL+olNQrAplP55Ad6AAAO8pPfC9uvWD/XUe02xFuzePyk3ZWHVmAJx8XfG5JgqPoSGo1G0TKFcsCvoTZegSCzCX6nHrF4BnfEiLSguZKwxU7zyDdl8+isFiv91nejQ+E7u3xrCFEEIIITqdmmOllHx+xP6z++Ag/G7ohZO3SweOqmV0SYWULk0Ds4LaQ0PAggG4RvlQtvyk/VzaJcqHwN8P6NTPUwghhBBCNEwC/sLhKVaFsmUn0CXUBvsnd8fn6qh2y0y36s1Ubc2haucZMNtq/jt388T3uhjcevu3ymMoioIpT4susRBdUiHWalO9bVx6eOMxLBSPuCDUHo0rL2TK11K1PQddUhFYbX/qKjcnnEM9MWZVAuA/rw+eI8Ja5XkIIYQQQnQWFq2Jgn8cwFplQu2hsSd4qNw0+F0fg8eI0E61ElKxKlSuz6Rqaw4AmhAPgu6IRRNoSxpRFIXqnblU/JIOii2RJfCOWFy6eXXksDsFxapg1ZmwVpuwVBmxVJuw1vluxFptQhPsjtfYCFx7+HT0kIUQQghxGZOAv3BoilWhfPlJtPvzAfCe1B2fae0X7D+fudxA5fpMW/+A2r8a177++F0Xg3OYZ7OOaak0oEsqQpdYgClfd+4OFbj19cc5zBPd4WIspfpz9zmpcB8QgMewUNz6+aNyqrscW1EUDOkVVG/PQX+87Nxuvi54jY3Ac1QYKo2akiWptvvVEPj7WNxjA5v1HIQQQgghOqOSb45Rc6gIlZuGsL8Mw5BVSfnKU/bEC9devvjP6dOiVZbtxWowU/rtcfRHSwFw6x9AwO/6oXbT1NtWn1ZGyddHUfQWVM5qAm7uh/ugrlHKqDWZCnWUrzyFqUCHVWsEa+P3dYn2wXt8JG79A9psVbAjUSxWzEU1GGt7opnytKCAa09f2zVNN6/L4vcghBBCOAoJ+AuHpVgVylecRLuvNtg/IRKf6dEdnmllzK2mYk0GhhPlthtU4BLti5OPC07eLqi9nHHycsHJ2xm1V+1tns6onGzjthot6I+UoE0swHCy3D55AOAc7onHsBA8hoTg5GNbYq0oCsasSlv2f3IRiv5cSR61pwaPISF4DAvBOdyLmiPFVG3POdecDXAO88BrQnc84oLqTA5YjRaK/3sYY3YVaNQE/2EwrlGSjSSEEEKIrk+XXETp18cACLi5Hx7xIQBYdSbKf86wl75Bo8b36ii8xkbYz+UcjblUT/EXR+w1+r0nROJzTfRFA6ymIh0lX6RiLq4BwOfqKLwnd+/w82xHYS43UPSvJCwVxvp3alQ4ebmg9nbBycvZfv6vdtdQk1JiX0ULoAl2x3t8JB7xIV2mZ4JFa6oN6uvswX1ToQ4sFw4rqD00uPbxx62PH259/HHydW3HEQtHYjWYUbvWn4gUQgjRuiTgLxySotQG+/fagv1e4yPxvbbjg/3n06eVUfFLet3M/AtR2U501V4uWMoMKMbzgvbezngMDcEjPuSSS6oVk5WaoyXoEgvRp5XWyTRSuTjVOa5rbz+8x0fi2sfvgr83i9ZE0b8PYS6sQeWuIeT+OJxDm7daQYj2oFgVzCU1tovLPC2mAh2aADd8JndvdKkr0TT6U+VUb8/Bel7/j9bkHOKB9+TuaPzc2uT4HcFcpkd/ogzDiXIsVQ0Eiy5A7a7BPS4Y94GBqF06b4N4IRydpcpIwTsHsOrMuA8MJOD3A+qdK+lPlFG2/KR9laVzN0/85/bFJcKxyt8Y0ssp+eqorRyRRoX/3L541k5eXIpVZ6Lk62O2BBTAPS4I/3l9L/v3H4vWRNFHhzAX2c6P/Wb2ROPnWhvgd0Hl5nTRaxJDZgVV28+gP1piT+xRezvjdVUEXleEo3Z3jGCn/mQZ1btysdaYG7eDYvt8s1Ze+HNN7e2Mc7gXzuGeUNuX7OxE1Pk0oR649fHHra8/rjE+qJwv79fc5UJ/qpzSr4/hP68P7gNkdbkQQrQlCfgLh6MoCuU/nUK7Jw8Ar3ER+F4X41DB/rMUq0LNkRLMBdo6tTwt1UasVUYU4wXW/mrUuA8MxHNYCK69/ZuVMWapNtrKAR0sxHSmNqNfBe5xwXiPj2z0Ben5GUxOPi4ELxrSpQJvovOy6s2Y8rXngvt5Wkz5WhRT/b8rtZczfjf0wn1wkEO+V3RGikWhclMWVVtO11mJ1CY0KryvisB7UvcGy084OqvBgiGjAkNamS24UVTTouOpXNS4DwrCY1gorj19pQyCEK1IURRKvkhFf6wUtaczoX8ZhpNXw41rrUYLlRuzqN5xxvY+qAavcZH4Tu3hEAHK6r15lP90CqwKam9nAm+LbXLteMWiUPFzOtW7cwFwjvAi8PZYNJdpBrbVaKH448MYT1ehclYTdG/zV8CainRU7ziD9kCBPftd5eKE56gwvMZGoPHrmN+xKV9LxZqMOqU/m0ytwjnE3R7cP/vV0N+SucKA4UQZ+hPlGE6U2Xtl2GnUuPbwxsnXtd6qCfvqCQ9n+Szs5Kr35FK+Mh2sCppgd0L/PNxhV00JIURXIAF/4VAURaF85Sm0v9YG+8dG4Hu9Ywb7G8NqsGCtPq+hV5URlZsG9wEBrRrUMuVrMeZU4drTD01A04P1pgIthR8lo9SY0QS7E3z/EJw8JVtatK+z/Se0e/Mw5lTX7V3xGyp3DS7hnmiC3NElF6PobRePbgMC8Jvd+7INVLQWc7me0m+O28sSuET54B4b0OqPo5gVtPvzsZQbANtKKO/JPfAaHd4upQ+sejM1h4vRp5Wh0qjrBhq8ne0lG9TumjqBBsVqa7SuP1GGIa0MQ1ZlvVIGai9n3Pr4own1oLEfYcY8LfojJXUmtZx8XfGIry3dFuLRKs9bCHOpnuo9uVirTDiHediDdk7eDQe+uxJtQj5lS08AEHjbANwHXrp2vTGnirIfT9jqkgNOgW4E/q4/Lt2923SsF9IWQfrqfXmUr6idPPByxmdqFB5xQZfV6jnFYq3b4+q22FbJQrZUGanenUv1r3n28xXUKjziQ/CdHt1uf3eWSgMV67Ns5arO9iPr7YdbH79GH0Pt5WIL7od4NOtzWrEqmHKr0ddOkBuzqsDaiHCEGtSetZ/Rvq54DA/FfVBgp71GvJwoFivlq9LtyXzOkV4E3RYrZZ2EuExs27aNiRMn2n/etWsXY8aMueg+W7duZdKkSQ3e5+7uTnBwMPHx8cyfP5/58+ej0Vw4tlZQUMB7773HmjVrOHXqFAaDgbCwMMaPH8/999/PlVde2azn1RlIwF84DFO+lqptObamuIDXVd3wndFTTuTaiSGrkuL/HkYxWXHp7k3QHwY3aUm3qUCLLqkIxWjBfVAQLlE+kokjGkWxKA32nwBABZpA9zrZY87hXjj5utjfGyxVRspXnqLmcLFtF1cnfK+NxnNUuLwGm6EmpZjSH0+g1JhBVdssfUpUm2VhKSYr1btzqdySbe9R4hTohu810W2yYkOxKOhPlqFLLKTmSAmYG9GFUa2q7c9iyzI05WvtTT3tnFS4RvvYyhP0sTVdb87rz6o3U5NSgi6xAEN6RZ37nCO98BwWivuQ4HqTslajBet5K8zOX3WmGC22Ru+9/Zo8HtG1GHOqqNqeY3u/bOAKQO3lXOe91iXcE02we50eQJ2ZuUxPwT8SUQwWPIaFEDC/X6P3VSxWqnacoXJjFpgV0KgImNcXj6GNK5/TWtqyDI8hvYKS/6Vi1dYGpZ1UuMcG4hEfgls//y7zOmiIYlUo+yHNfh3iP68vniNCW/UxrAYz2v0FVO88Y5/oVrlr8Lu+Jx7DQ9rsmsdqMFO1LYfqHWfsE8rOYR74XhuDa1//Dr3WsurNGNIrMOZU2T7D6nx+GW1/axfg0sMb3+t7Sg8yB2bRmij931H7+Yz7kGAC5vVxiBVSQoj2cffdd/PZZ5/Zf77vvvv46KOPLrrPxQL+vzVy5EhWrlxJWFhYvftWrlzJbbfdRmVlZQN7gkql4vHHH+e1115r1GN1NhLwbwJFUST43MosVbVlaRIL7FlTAJ5XhuN3Qy/5fbezmmOllCw5AlZw6+dP4O2xF724s1Qb0R0qQpd4XlmhWk7+Z7NSQ3EOcm/roYtOyGq0oDtQQNWOM3Wy+V17+eIeF4xLNy80oR6NDmLUHCmm7KdT9tqyLtE++N/YR7KiG0kxWSn/Jd2+wkrt7ULAzf3aLUhs0Zqo2pxN9Z48e7a8Sw9vfK+LwTXat8XHN+ZW25qfJxXWCdarXJxwHxiISqPGUm1biXU26HCxBoQAmhB33PrYAvyuPX1bve61uUyPLqkQ3YFCe2NNANQqXGN8UCzKuaD+pXosqMD3uhhb41H5bL2sKIqCIa2Mqu05GE6dm0RyCnDDNcoHU4GtH8oFX+9OKpxDPHCJ9sH36qhOm/GtWBWKPzmM4VQFTr4uhP55eLNqqZuKdJR8eRRzYW2D3ImR+Ey7eIPc1mIq1FHyxRHMJbbPzLZotGsu01O15TS65CL7JCyA2lODx5Da1UYRXl3ufaT8l3Sqt58BwPfaaLwndG+zx1IsVnRJRVT8koFVa/s8cu3th/+c3mgCW++cWbFY0e7Pp3Jjtv1zT+3jgu+0KDyGhTp8UoSiKCgGi+1zuerchLYho4KalBL7du4DA/G5NqbZ1xuKomA6U43ucDEqwLWPH65Rvqicu+4EV3swFWgpXpKK5ez71TVReE+UxuBCXE5qamoIDQ2lqqoKLy8vqqur8ff3Jy8vD1fXC6/yOT/gv3DhQhYtWmS/r7q6moSEBN566y0yMzMBGDVqFHv27Knz/rJjxw6mTJmCyWTC1dWVBx98kOuvvx5vb2+OHTvGO++8w4EDBwB44403WLx4cRv8BjqWBPwbyZBeQfkv6fjf2OeSjVXFxSkmCzWppegSC9CfKKvTeFYT6oHXFeF4XhkuJwMdRHuggLIf0gDwiA/B/6a+dUtZmKzUHKttHHy8rM4yXE2wO2oPZ3sZkLNcenjjMSz0slsaLhpmqTZS/Wse2l9zz9VxVYH74CBb/4nI5pdIsOrNVKzJsDf8xkmFz+QeeE+IbJcSMZ2VqVBH6dfHMOXbJl7d+vnjf1PfC9a1bkvmkhoq1mVSk1xsv81tYCC+06NxDm7a5I2l0mgLmCcW2p8bACpw7eOP57AQ3GIbbpCrKAqKvjbQUFuazVJlxKo1ofFzw7WvX7v1O1EUBVNONdrEAmoOFdWvf/wbZ5vEO3k5o/Z2wVxcY5+U9Rgeiv+c3vL3cBlQLFZ0h4qo3p6DKf9c00znSC+8x0fiPijI/vmuWKyYi2wN0Y15Wkx51Zjy6q9k0YR6EHz3oE5ZiqF6dy7lK08BEHT3INz6+jf7WFa9mdJvj6M/VgrYyskF/K4fate260FSc7yU0q+PoRgsqJzVBNzcD/dBly5H1FyKyUrN0drzvbTSuufrIe6287qhIR1Wh741VW3PoeKXDKB9y4latCYqfk5Hl2hbVaByVuNzdRReV0W0aFWdoijoU0upWJth7ymjcnXCe0IkXmMjukRTZkN2JRU/Z5y75lCr8LwiDJ8pPRp97mIuN9SeIxRgLqzbe0flrMa1py+utY2FNcHucm3aBDXHSin9pvb9yqX2/aoR5dOEEF3L119/zYIFCwD49NNPufvuuwH44YcfmDdv3gX3Oz/g//zzz/PCCy/U26asrIxRo0Zx8uRJwJbNP3PmTMD2ORgXF0dKSgpOTk6sW7eOKVOm1NnfaDQyY8YMNmzYgJubG2lpaXTv3naT/R1BAv6NoFgVCv5xwHYioFbhPSESn8k9HHrWX1EUalKKMeVp8bqyW4fXZFWsCsbMSluw4nBxnUxEtaczHkODbZng3TzlZMoBVG3LoWJN7YVPbdNkY1YluoOF6A6dq5cOtsCSx9C6GV/mkhp0BwvRHiy0Z3UAtqXh/QNspSX6+UvA6TJjLqmhascZtAkF9jIqKmc1HiNC8R4X2az+ExdiSK+gbNkJe1a0c5gH/nP7tmq9ZWuNubaZcDXmCgOeo8I73WoWRVHQHSik/KeTtmX+Tip8p0fbgg0dnPlnyK6k4pcMjJlnL+bBfVBQo/ufmMv0tpIX553laEI98BweisfQYJx8OmeQSjFb0R8vxZBVhdpdYw/q23sPeDrXe29VzFbKlp+01W3G1pMh8PcDOvzcQFyY1WDGlK+zvb8U1qByUdsmcc5rZOnk5YzKXVPvvMmqN6Pdl0/1rjNYKoz22936+eM1PtLWCLqR51qWKqNtEuB0FZVbssGs4OTnStA9g5o8AdeRTMU1FL6biGKy4jk6HP/ZvVt8TMWqULEuk+ptOYDt/SXo9thWzdAG2/t09c4ztoC0Ak5+rgTeHtuuCUiW6toVuQd/s6JTBa49fXHp7l37+nS2TzY6ebs0+Pp0NJdKdGkP+rQyypafwFJmK/PjHOnVrCQzS5URfVoZ2v35dT47PUeF4zO18YHwzsI2sVFCxZpM+/meytUJ74nd8R7brcGyMVbDb8rmnXeO4BzhhUqjxphdWa/kmZOviz3479rLT3qdXYCiKFRvP0PF2vPer+4YiEu4Z0cPTQjRAaZPn866deuIi4vj0KFD9O/fn+PHjzNz5kxWrlx5wf0aE/AH2yTCPffcA8CiRYv44IMPAEhISGDkyJEALFiwgK+++qrB/U+cOEHfvn0B+L//+z/efPPNZj1PRyUB/0Yynq6i7Mc0e4aUJsgd/xv74Nqz5WUGWpsho4LyXzIwna4CWr82pLlMj3Z/fp1lvhejWKzo08rsJ7EAaGprgg4Lxa2PX5euCdpZlf+cTvUO29JmtY+LvUwKYAvcD6gN3Pe9cOBeURSM2VXoEgsanChwHxyES3cfW63g0OY1/xKOz1SgpXJjNjUp52pGqz2d8RrTDc/R4W120aSYrFRuzqZqW45tJYoK28RiqEfdAGltXfYLXeArVgVLqb5O1qspT2uvv3uWc5gnIQ/Fd3igvLGsBjPly0+iSyoCbOU9Am/puCaUDWkoS7Gp1F7O5yYlwy/fSWVb0DCXil/SbRfhvq4E3tH8oKFVb0Z3sBCr1oRzmK3mu5O/W6d5/TsKRVGwlBns7y3Gs+8vF2laXoeTqra5dG2TaTcnao6VnjtHc1LhMTQE7/EROIe2LOBiSC+n+ItUFIMFtaczQXcNbNGKrPaiWBWKPjqEMbsKpwA3Qh8ehtq19TKctQcLKfsxDcwKag8Ngb8fgGtPv1Y5dr3JuujayboODNyaCrS28mgHC7Gcf27YECeVbVLyvMkq1xhfPOJDHOK94vxSlq59/Qm64+KlLNuS1Wihcn0W1bvO2M6VGpFkppisGDIr0J8ox5BWVnclG81fHdfZKBYr2n21pYtqSyQ5+brgc3U0HsNsPTYMp8ptvXtSiu19DACcfFzwGBaCR3yI/T3SWmPGcKrc1lg4raze+R4qcI70xn1AAF5jujU6EaGrU0xWypadsPfBcIT3KyFEx8nLy6N79+5YLBZ7yZyXX36ZZ599FmdnZ86cOUNwcHCD+zY24J+SksLgwYMBuP7661m9ejUAH330EQsXLgTgq6++sq8yaEjv3r05deoU0dHRZGRkNPfpOiQJ+DeBYrFStT2Hyk3Z9gZCnleE4XttjEN80JuKdFSsyUSfeq6mocrVyZ5N39LakNYaM5VbTlO9+8xFGyhdjEu0j+2kanBws+qmivbz2+Zl0LLSPBcrBQSAWoUm2B2X2kaBZ5sGSgZq52WpNFCxPssWqKj979YEuuE1LhLP4SHt1rDLmFtN2bIT9RsCn09tm4SwBc5qM2c1akz5Wkz5OhTjBSY4VbYJYHNxDSjgN6c3XleEt80TaUXGM9WUfn3UXgfafUgw/nN6O8RnWUMUixXdgUIMWZXQyNMWlbMat9hA3Hr7t1nD4c5If7yUkhaUBbFUGqjalYt2T169vgEqVyd78N/+FebZJcpHtBarzoT+ZDmGjAr75OEF+y/UNi3XhHqA2VqnEXO9z9Df7urqhOcV4Xhf1a1Vy+8Yc6sp/jQFa7UJlasTgbfH4tbLr9WO3xYqt56mcm0mqCD4vrhW6QnyW4bsSkq+TMVaZQK1Cr9ZvVr8WWCpMlLy1VF7yRKPEaH4z3acclyKVcFwqpyalGIs5YYmvT41obaGsW79Oq5hrCGrkuL/HkYxWXHu7k3wvYNbdSKouS6WZKYoCuZCHfq0cvQnyjBmVNQJXgOo3DS49fHD66pubfJad2RWfW1z4p3nmhNrQj2w1pjrJC6pXNS4DwrCY1gIrj39Ljr5pCgK5hI9hrQy9CfKMJwqRzGe+52rPTX4TInC84qwyzqBzVJlpOTLVIzZtoRDz5Fh+M3q5TDvV0KI9vfmm2+yePFi1Go12dnZREREkJGRQa9evVAUhXfffZeHHnqowX0bG/A/fvw4/fv3B2yrCdasWQPAK6+8wjPPPAPAhg0bmDp16gXHedVVV7F7924AsrKy6NGjR7OeryOSgH8zmIp0lP14wr5UUu3jgv+sXh1Wl85SZaRyUzbafXn2+pouMT74XdcTpwC3FteGVMxWqvfkUbU521432MnPFZcon0aP0TnYHY/4kFZf5izalmKxUrXlNADuQ0NarVzJ2Wa/hhPlmPKq65Qc+C21lzPO4Z64RHjheUU4Gv/2qZktms9qqL3g2lH3gstnag/cBwZ1SFafYlHQ7stDn1Zma8habcRSZbKXFmoMldu5YKZL7aTU2abCZctPoN2bj9pTQ9ijIx16QlOXXETZD2koJisqZzV+s3rhMTz0ss18vxw1p/GnqUBL1fYz6JIK7c1dzwb4TfmXDlqfDf47h3vi3M0TJ1/Xy+I1p1gUjKcr0aeVYThRjjGnql6pCGjaZIliVWwBrNr3sbPfLdW2htPOYR54jgxrswk8c0kNRZ+k2FYhOKkIvKV/m9aSbwlTvpaC9w6CRcFrfAR+1/Vss8cyVxgoWZJqL3njeWU4fjN6NWvC0XimmpIlqVgqDLaG29f3xOuqbp3ib+ZCr09rtRFzSQ01R0rsfwOuvXzxva4nLhHt2x/NVKCl8KNklBozmmB3gu8f4lAlWhpKMnPt64+5QFv/nFkNLt19cOvjh2tff1wivR1i9URHMlcYqFyfhS7xXMIJKnDt5YfHsBDcBwY1e3JHMVsxZldSc7yszsS3Jsgd3+nRuA0M7BR/p61FsSjoT5RRvvyE7bWpAt8ZPfEa0zner4QQbWfIkCEkJyczefJkNm3aZL997Nix7Nq1i+HDh5OQkNDgvo0N+C9dupSbbroJgLvvvptPPvkEgHfffZc///nP9m3mzp17wXEOGjSII0eOALBmzRqmT5/epOfpyCTg30yKVUG7P5+KXzLsH/Tug4Pwu6FXozOSLVqTbQl3vg61i1PtxZ1Ho7NerUYL1TvOULUtx559qgl2t2XMDAio8yGrP1FG2bKm1YZUFIWaw8VUrM20Ly1XuWnwmdwdryu7OXQPA9G52P4WtPZ66KY8LaZCnT2odJbKzQn/uX3wGNzw0i/RsRSL7X2xcmOWvdGj2scF36ujbAFlB7sAVRQFxXC2Kaup3ner0YJzsLt9xYmT/4UDlJZqI/lvJqDoLXiNjcBvRtsFlZpLsSpUbsyiarNtEk8T7E7gbbE4h3Ttpf6iYVadiZKvj9n6HADucUH4z+tbJ8CsKArGjEqqtufYm5OC7e/ae2wEnqNsQeXmlKVRuWtwDvOsXdVV+xXq2SXOLcylelspiBNlGE6W118J4aLGNcYX50hv+/PvbOWQLJVGij9NsZUQUdWubhrlWKubFLOVwg+SMOVp0YR4EPpgfJu/vqxGC2VL0+xNx117+xF4a/8mrYrUHS6m7PvjtklZNycCbx3QogbDjsZUoLWtSD7vPcUjPgSfa6Ka1QjdqreVXzm/MfVFKbZzFUuFEScfF4IXDWm3BuxN9dsks7OcAtxw6+OHWx9bPXlHTjLoSMY8LbqEfNTeLrbEs1ZuNm7RmqjalE31njz7qhaXKB98r4vBtQmJcWednUwwnqnGydfVllgS6O6Qnw3GPK2tZGtSoW1lE7Y4QeCC/rj16TrvV+LyYbWaMRqLOnoY7cLFJRi1um0/N5KSkoiPjwdsdfbvuusu+33nl9s5cuQIsbGx9fZvTMDfbDYzbtw49uzZA8CSJUu47bbbAFi/fj3XXHMNAA8++CD//Oc/GxxnYWEh/8/efYdHdZ5pA7/PjGbURr13UENCINHBEmCMwbGNjWkmdox7i7PZZLPr1C+7m91kNz2bnrglNsUkphr34IoppiMJhEC9j8qM2vRyzvfHSMcaJEBlpJGG+3ddupCmnPOOdJg553mf93kSExPhdLrO1Z977jk89dRTo3nJkxID/mPk7Laic38lLBddJ61CgB/C10xH0ILPsyUlUYKjw+xW+9nWYnSvid6vrzyEakBZE3VCMBSharftmU63ovtgnbwNhUaF0NVpCF4Qf9VMopHUhrTWdqP7rRrY+voAQClAc1MiQm5JmVQZMOS7JKcIR7tZrptuOtcuH+/Bi+MRflf6hJWEGW9Oox2WMh0CsiM8WnphokiSBMtFPbrf+bzOuqBWImRFMjRLk26Ych69nzah+61qQCEg7hvzJlXNXNHmROffL7kyK+HKFIz6Us6kLeFDE0NySuh+qxqGo80AXA0Lox6aCWWIGuYLOvQeapT7AQGulTohy5MRVBAzrGX6osXhKovVMuBLaxxUgkKmAPyig1znPqkh0CxOmDLlAGyNvTCeboW1oktuHjmQKknjysDNioB/WuiUeV3XIpod6HjlghyMDP1CGkJWXHulyESR7KKroe7hJkAhIPYrBRPWb0CSJPR+2ICeg3UAXKXsghbGYzi/FkenFcbPWlzPiw5E1MMzJ9VniSdZqrrQ/XbN502A/QRoipIQuiLlmgFsSZRga+yFtcJVY93W0COvcB4JIcAPsV/Ohyp+cjcT7b/us9b2QJ2sQUBWBJRRAZPi/xm5ODrM6H6vFubSDvm2wFlRCL19+jVXR0uSK0ZgrejqKxfUPaiEpKBSDF79lRAMhf/En785e2wwnWuD6Uybe78IAfDPikD43ek++35Fvs9iacGRo0u9PYwJUVR4GAEB45uk8a//+q/4v//7PwQGBkKr1SI09PNJUL1ej4SEBNhsNnz729/GT37yk0HPv1bA32g04tSpU/jBD36Ajz/+GACQlpaGS5cuwd/fFUsxmUxITk5GZ2cnNBoNzpw5g6ysrEH7efrpp/H888/LP//iF7/Av/3bv3niVzApMODvAZIkwXy+A12vV8lZrf7pYVBGBsj1n69aNqKvbrlkc7o3tb3yYUF+8vLugVksgkoBzfJkhCxPGvYH/7VqQw7VByCwIAZhX5gGv8jJmf1CNwan0Y7OXZfljDC/uCBEfSlnzE0Ivc1S1QX93y5B7LVB8Fci7I7pCF4UPymzeYZia+hF19vVsNX0ZZ8pgOBFCQhdlXrDNemSHCJaf30Gjg4zAnIiEf1InreHBMDVaF23tQz2FtfFmWZZEsLumD5ljjEaf4YTLejaXwWIkquJtb9SLvcDuM5pNMuTPVJvWxIlOHRm90mAFqOrdMkVgubGIvKLM8a0v/EmWp3oea8WhmPNbqV6FCEqBGRFICA7Av6Z4T77fijanNC/Wi5/NmuKEhG2Jt07pdskCba6HldD2ZJ2uXFx6KpUhK5Km/DxmM93QP/aJbd638PlnxWOqPtHtjJgKpJECebidnS/Vys3RlUE+SFkZSo0Sz6f8HN0WeUa6pbKLkhmh9t2BJUCqiTNsCfSFP5KhNySMiWaTtPUYa3rQffbNXLfDSgEaJYkIOTWVDlhzq0hcEXn4Ot/AfCLDYKzxzboOB9IGRkgJwYG5EaNW1ks0eaEpUwH45k2WCs63T7n/OKCEDwvDkFzYqZkwhLRQAz4e47D4UBycjJaW1uxefNm/P3vfx/0mPXr12P//v1ITk5GXV0dFAr3z++BAf/riY2NxXvvvYc5c+a43f7LX/4Szz77LAAgISEBP/3pT3HnnXciJCQE5eXl+NnPfoYdO3ZArVbDZnMllv7whz+Ua//7Agb8PUg02dH1dg1Mp1qHvF8O2g9oSKqKDZJPTkWLw+3i19ZigKPVNHQmnAAEL4hH6OpUKENH/gE7ZG3IjDBYa7oH9QFQp/BkmCYHSZJgONqM7rdrAKfkqj9+dwaCFk69+uOSU0LPB3WuHglXvAurp4UiYmPWpM6ScXRb0f12DczFny99DJgZhbA7pk3qcY83c7keupddNQCjH5vl9TIM1tpu6LZfdE1GKwVErM9C8II4r46JJidrdTd0O8ogGvsCDAIQOCsaIcuTJ+Q8QDTZ5VJAtroeOVMy+tE8BMyIHPf9j4blkh6d+yrlQKUqMRhBc2LhnxXhKtE4xT6XRktyiujcUyH3iwqaG4uITVkT1sDSoTPDdLYNxjNt7mWklAKC58UhfF2G15pp2poN6Hm/HqLJPuznBGSGI+SW1Buq2bhkF2E41oyeDxsgWfr6hUUGICA7AtaqLnn14ECq+GD4Z0e4Vs5MC/OJcmA09UmSBMsFHbrfrZVXewn+SgTNjYW92eBaPX/Feb8yTA3/vgnigMxwKIJUrlJ53Ta3CgH2FiMcOvOQfWD8M8MRsjwZ/lnhHpmYt9V2w3imDebSDreydAqNCkFzYhE0LxaqhOAb5nOOfB9L+njOW2+9hbvuugsAcODAAdx9992DHrNnzx5s2rQJAPD+++/j1ltvdbt/OAH/6dOnY9OmTXj22WcRGxs76H5JkvDUU0/hxRdfvOY2HnjgAfzoRz8CAPz617/G17/+9Wu/wCmEAf9xYKnshOFwMwS14qpleYbr83JAny+FVwS4slI8kdk8VG3Iq/UBIJosbE0G6F+9KGegBuZHI2JD1riWJ5EkCfZGAyS7E+ppYWPKXnR0WaD/2yX5/506LRTh6zJhPNYM4wmt60FKAaG3piJkefKkK/3g0JnR/nyJ3DhOnRLiqlc6PczLI/M+SZLQ8dcLsF7udNWM/vo8rwVtjKe06NxXCThdWdtRD84cVU1ZunE49BZ0v1UNZZg/NEWJ8IvyTKP2kZIkCR1/OQ9rRReU4f6I+8Z8twaLkiR59fzEabSj+40qmM65LgwFlQKhX5jmalJ4g66ckUQJ3e/UwPBpEwBX2bCg/OE28hWgCPKDQqOCMkQNpUZ93eCtaHbAVNIO05m2z7Np+6jTQhE0LxZBs6N9PkPe1ziNdvR+1OBaMXNFHydFsEouixWQFQFlqG+umiHfIDlFGE/09bUyDl6R4p8eJgf5/WICh/2ZJtqcbqXybLU9buV1VPHB0NycjKD86BFPdNrbTTCddZXs6Z/IBgD4CQicGYWgeXEIyIq4oSYjiWjkvvjFL+K1115DVFQUWlpaoFINPhezWq2Ij49HV1cXHnroIbzyyitu9w8M+D/zzDP4yle+AgAQBAEBAQGIjo5GWNjwYg+7d+/G//3f/+H48eNyrf6wsDBs2bIFP/rRj/Dcc8/hO9/5DgDglVdewUMPPTTq1z7ZMOBPcgNi07l2BBXEIHjh1fsAEE0WotWBrv1VMJ11ZRQqIwMQdX+OxzNRHXqLqynV2TZ5gsEvOhCaZUkInhc74j4C5gsd0O+ucC3TFYCQFSkIXZUm/5+zVnehc2+lnBWkig9CxMbsSbPSxhXsL4Wz2woh0A8R6zMRODuak4MD2FuNaP3NGUAEwtdmQFOYOKH7l0QJ3W/XuGpXA1AlBCPq4ZmTtikh0VAcegta/+80JLsITVEiwu/OkO/zVsBfkiSYz7Wj680qOYDjnxWOiPVZLHuIvlV4hxrR/U7tmLclBCih1KihCFFBqVFDGaJ2lZsK8oO1qhvmizp5hSrgOgcImhuL4Lmx8LtGzWyaGhw6M3o+aoCzxwb/9DAEZEW4solv0Ak1mrpEiwO9hxphq+/t6+USAf9pnuvjIkkSrNXdMBxqhOVSp3y7MswfmqVJCF4Ud82yv6LJ/vnkaX2v233qaaEInheHwNnRbAxNRMPS3d2N+Ph4WCyW6z+4j0ajgVarRXDw5wnNw2naO1ImkwlarRZ+fn5ISkqCUumK4zzxxBN46aWXAACnTp3C/Pnzx7yvyYIBfyKa0oynW9H1eqWrRq5CQNgXpkGzLGlMF4WixQFzSQeMZ1rdVr8AAATIS2kVGhU0NyVCc1PCdbMIJbuIrrerYTzmasanCFEh8os5CMgMH+KxTvR80IDeQw2uElsCXI3sbkvzagNch97iyuzvskII8EPMk7PHrWboVNd1oAqGo81QBPkh/tkFE5ZlKloc0L1aDutl10Vf4KwoRGyeccM0TibfIjfCFoCYZwrgn+q9FSqOTgu69lfKARVFkB/C7kpH0NxYTnhewXi2DYZDjZCu1r/qSpIr6CSarl6veiiCvxJBBTEImhcLdVoo/w5EdEOza43oPdToWn0mui5WhAA/aJYkQFOUCGWIa1WM5BBhuaSH8Uybq//KgNU0flEBCJoXh6C5sZzIJqIRe+GFF/DUU0+N+Hlbt27Fgw8+KP88HgH/q5k7dy7OnTuHgIAA9PT0DLkiYapiwJ+Ipjx7uwn6V8vlpqT+2REIXZnSlxGodisFcTWSU4KlohOmM60wl+ndGm0rI/wRNDcWQfPiIADoPdwE46lW+TGCWoHgBfHQLE0a8uT4yvEFzIhAxL3Z123iaGs2oHNPBexNBnkcEeuzvFIXflCw/4lZbHZ3DaLJDu0vTkE0OaApTET42ozrP2kMJIcIW5MBnbsvy7WOQ25NReitqcyIpClLEiW0/fEc7I0GqOKDEPvVuRNe4kwSJVdt8fdq5eargXNiEH5Xus824vUWySHCabRD7LXBaej/1wax1w6nwQZnrx2iwQa/qEAEzYtFYG7kiFfZERH5OkeXFYYjTTCe0H5ef18puCaoVQqYi9vdJliFAD8EFUQjaF4c1KkhnDwlolFbtmwZDh8+jISEBPzqV7+67uO/+c1vorGxEatWrcLBgwfl2ycq4F9ZWYmsrCwAwP33349XX311XPbjLQz4E5FPkOyiq37w0eZB9wlqBRQaNZQaFRQhrn/lyYBgFWx1PTCda3M1Nu1/jr8SgbOjETwvDuppoYOCpk6DDYZjLTAea/78pFkBBM6OcTW5TNJAkiSYzrS5r0C4fRo0S4e/AkFySjAcbULPP+rkBt5B82IRcksK/KICJySY6+iyoP25Ejg7rRAClIh5fPakKTE0mRmONqPrQBWgAOL+ZT5UsZ5pZuzstfXVbjXITU4d7Sa54bqgUiDi3mwE5cd4ZH9E3mRrMaLtd2cBUULo6jSE3po6Yfu2txpdfY76yhwow/wRvj4TgTmTs4kwERFRP9HsgOF4CwxHmiD2XtE4XCEgYEYEgubFuSZPJ1m/MCKaempqapCRkQFJkvDVr34Vv/vd7677nH/5l3/Bb37zGygUCtTX1yMpKQnAxAX8v/SlL2Hnzp0AgMOHD6OoqGhc9uMtLMZGRD5BUCkQvjYD/hnh6Hq7Gk69RS69I9lEOPUW123X3AgQkB2BoHmxCMiNumYZFKVGjbDVaQi5ORmmU63oPdwEp94Cc3E7zMXt8M8MhyLID+aSDtfjR9ljQFAKCFmWjMCZUejcVwlrZRdMZ1wNtQSVAqr4YKgSBnzFB3u0ebGjy+qq2d9pheDPYP9IBC+Oh+GzZjjazOh6sxoxj80a8TYcegustd1uDdoGTkxdyS8uCJGbZ7DUEvkMdUIwQm5ORu9HDej5sB6Bs6M9Nnl2LabiNuh3VbhWcgmA5qZEhH4h7Zq1kImIiLytv8+NItAPITcnI2RpEkxn22A8oQUEIKggBoEFMVylRkQetXXrVvTnk2/atGlYz9m0aRN+85vfQBRFbN++Hd/+9rc9Np7e3l4IggCNZujr4p/+9KdysP+hhx7yuWA/wAx/IvJRklOCaLLD2WuDaOj/11USwGlwv00Z1leyZ06sXN9yNPszn+9A76FGuQRPv8CCGESszxxzIF6SJJhOt6H7vVqIvbarPk4ZGSBPBKgTgqFOCx3V63J0W12Z/XoLBH8loh+f5dUa2lOR5XInOv5yHgAQ9UjesDODnb029Bysg/GkVp64cqMUoIoLgipBI0/2qBOCJ6xXANFEkuwiWn9zBo4OM9TTQhHzVP64rW6SRAk9B+vQ+1EDAFeT9oh7s+Gfxvc+IiKanPpDOoIgeK2xPRHd2DIzM1FVVYXY2Fi0tLRAobj+yiFRFJGcnIyWlhbk5eXh/HnXdbMnMvxPnTqF1atXY9OmTVi1ahXS09PhdDpRXl6Ov/71rzh06BAAYP78+fjggw8QFhY24n1MdkxTIiKfJCgFKEPUow7gj2Z/QQUxCMyPhrWq2xX4bzEg7LZpCFoQ55ETb0EQELwgDkHzY+HstsLe3Jf13Zf97dCZAQnyagZLma7viX0rF+bGImDmtVcu9HN2W101+/UWCGoloh9jsH80ArIjEJATCUu5Ht1vVSMgKxyC8uonP6LVCcOnjeg91CjXC1cEq6BK0shBfVV8MPxiAq+5HSJfIqgUiNiQhfbnS2Cr7YHxhBaaJQke349odUD/98vye2fAjAhE3p/j0VVTREREnjIwd7P/WoPBfiKaaEeOHEFVVRUAYP369cMK9gOAQqHA+vXr8cc//hEXLlzA6dOnMX/+fI+Nq6urCy+++CJefPHFIe+/++678corr/hksB9gwJ+IyKMEQUBAZjgCMsPHdR9+4QHwCw9A4Mwo+XbR5nQr/dL/JdmcsFzqhOVS54DeBLFQTwsbMkvW2WNF+wulcOr6g/15zG4dg7A102G53AlHuxmGYy0IWZo06DGSU4LxtBY9B+vkOquKEBVCV6cheH48BCUv3ujG5p8ehuDF8TAe16L7nRoE5EbCL8zfY9t36C3Qbb0Au9YEANAsT0bY7dPY9JqIiCYtBveJaDLYunWr/P3GjRtH9NyNGzfij3/8o7wdTwX8Z8yYgd///vf44IMPUFpaitbWVjidTsTHx6OoqAhbtmzBbbfd5pF9TVYs6UNE5MMkpwhLRRdMZ1phLtMBjs/f8pXh/giaF4ugubFQxbhqYjt7bGh/vgSODjMEtcKV2T/NN2e8J1LXm9UwHG6CEOCH+G8ugDLYVXpHkiRX9v87tXC0uQKNglqBkOXJ0CxLhsL/+qsxiG4UosUB7a9OQ+yxISA3ElEPzfRIsMNa3Q3djjKIRgegFBCxIQvB8+M8MGIiIiIiIqKJx4A/EdENQjQ7YC7tgPFMK2y1PW73qVNDEFQQA8NnLXC0myGoFIh+dBb80xns9wTR7ID2FychGh0IXpKAiHWZsDX2ovvtGliru10PUgDBC+MRuiptwkpREU015gs66LaVAQAiv5SDoPyYMW3PcKIFXfurAFGCQqNC1IMzuaKJiIiIiIimNAb8iYhuQA6dGaazbTCdbYNDZ3G7zxXsz4N/erh3BuejDJ+1oGt/paunwswoWC7o5PsCciMRdsd0qGKDvDhCoqlBt+MizKUdUGhUiP/X+aNqVi05JXS/VQ3D0WYAgCoxGFEP5cEv3HNlgoiIiIiIiLyBAX8iohuYJEmw1ffCdKYVpuIOQJIQ9dBMBGSEe3toPkdySmj73Rm5RjgAqJI1CL9zOidXiEbA2WuD9penIVkcCFoQh8hN2SN6vmiyQ7ezHNaKLgBA4OxoRNybPayG5kRERERERJMdA/5ERATAVe9fckoMeo0ja003Ov5yHgqNCmG3T0Pg7Bg2BSUaBeNJLTr3VAAAop+YhYDMiGE9z95mgm5rGRwdZgBA6KpUhNyaysaHRERERETkMxjwJyIimkCi1QlBpWCgn2gMJElCxwulsFZ3QxkZgJin8iFZHHD22iAa7HD22uA02CH22uA02CD22l3/Gu2A5CpdFrF5BoJmR3v7pRAREREREXkUA/5ERERENOU4OszQ/voM4BBH9DxlmD+iHp4JdaJmnEZGRERERETkPQz4ExEREdGU1PtpI7rfqvn8Bj8BSo0aihA1lBpV3/fu/6qTNRBULF1GRERERES+iQF/IiIiIpqy7FojoHQF+oUAJevxExERERHRDY0BfyIiIiIiIiIiIiIiH6Dw9gCIiIiIiIiIiIiIiGjsGPAnIiIiIiIiIiIiIvIBDPgTEREREREREREREfkABvyJiIiIiIiIiIiIiHwAA/5ERERERERERERERD6AAX+SNTY2QhAECIKAxsZGbw+HyA2PT5rMeHzSZMdjlCYzHp80mfH4pMmMxycREQ2FAX8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8CciIiIiIiIiIiIi8gEM+BMRERERERERERGRx3zyyScQBEH+Onr06HWf8/HHH7s9Z+BXUFAQ0tLSsG7dOrz66qtwOBxX3U5lZSV27tyJb3zjGygqKkJQUJC8nZdffnlEr8PhcODPf/4zli1bhpiYGAQGBiIjIwNPP/00Lly4MKJtTRQ/bw+AiIiIiIiIiIiIiHzHK6+84vbz1q1bUVhYOOrtmc1m1NfXo76+Hq+//jp+/etf48CBA4iPj3d73CeffIIVK1aMej8DdXR04M4778TJkyfdbq+ursbzzz+PV155Bb///e/xxBNPeGR/nsIMfyIiIiIiIiIiIiLyCLPZjN27dwMANBoNAOC1116D1Wod9jaeeeYZlJaWyl/Hjh3D7373O0ybNg0AcPLkSdxzzz2QJMnteQN/VigUyMvLw6JFi0b8GpxOJ9avXy8H+zds2IB33nkHx48fx29/+1vExsbCarXi6aefxjvvvDPi7Y8nBvyJiIiIiIiIiIiIyCP27duH3t5eAMBvf/tbAEBnZyfeeOONYW8jNjYWs2bNkr+WLFmCr371qzhz5gwyMzMBACdOnMCbb77p9rykpCT8/Oc/x8cff4zu7m6cP38ezzzzzIhfwyuvvILDhw8DAL7yla9gz549uP3227Fo0SL88z//M44cOYLQ0FCIooivfe1r1ywxNNEY8CdZcnIyJEmCJElITk729nCI3PD4pMmMxydNdjxGaTLj8UmTGY9Pmsx4fBLRZLV161YAQH5+Ph599FHMmDHD7faxiIiIwHe/+13553fffdft/qysLDz77LO4+eab5dUFo/GLX/wCABAZGYmf//zng+7PzMyUx1FZWYl9+/aNel+exoA/EREREREREREREY1ZS0sL3n//fQDAli1b3P5999130d7ePuZ9DCzRU1dXN+btXeny5cu4ePEiAGDz5s0ICgoa8nGPPPKI/D0D/kRERERERERERETkU3bs2AGn0wmFQoEvfelLAIAHHngAgiDAbrdj586dY96HSqWSv3c6nWPe3pX6S/kAwM0333zVx8XHxyM7OxsAcOTIEY+PY7QY8CciIiIiIiIiIiKiMdu2bRsAYMWKFUhKSgIATJ8+HYWFhQA8U9antLRU/j4xMXHM27tSWVmZ/H1OTs41H9t/f0NDA4xGo8fHMhp+3h4AERERERERERER0URziBLabHZvD2NCxKpV8FMI47qPc+fOoaSkBMDnZXz6bdmyBUeOHMHp06dRVlaGmTNnjmofDocDv/zlL+WfV6xYMerxXk1jY6P8/fV6pKSkpAAAJElCY2Oj3K/AmxjwJyIiIiIiIiIiohtOm82OecfKrv9AH3DmpplIDFCP6z76s/cDAwOxceNGt/s2b96Mr3/967DZbNi6dSt+8pOfjGjbRqMRp06dwg9+8AN89tlnAIC0tDRs3rzZM4MfoLe3V/7+eo1/g4OD5e8NBoPHxzIaLOlDRERERERERERERKPmcDjw6quvAgDuvvtuhIaGut0fGRmJO++8E4Crzr8oitfc3n/9139BEAT5S6PRYMWKFfj4448BALGxsdi/fz/8/f09/losFov8vVp97UmSgfs3m80eH8toMMOfiIiIiIiIiIiIbjixahXO3DS60jJTTaxadf0HjcF7772H1tZWAIPL+fTbsmUL9u/fj8bGRnz00Ue49dZbR7yf6dOnY9OmTXj22WcRGxs7pjFfTUBAgPy9zWZz+/lKVqtV/j4wMHBcxjNSDPgTERERERERERHRDcdPIYx7mZsbRX85n6ioKNx+++1DPuauu+5CeHg4urq6sHXr1msG/J955hl85StfAQAIgoCAgABER0cjLCzM84O/QkhIiPy9wWC4ZsB/YKPe65X/mSgM+BMRERERERERERHRqHR3d+PAgQMAAJ1Od90yOACwd+9e/PGPf3SrgT9QbGwsZs2a5dFxDtfARr2NjY2Ijo6+6mMbGhoAuCYlrtfgd6Kwhj8RERERERERERERjcprr73mVvd+OAwGA/bu3TtOIxqbmTM/L/NUXl5+zcf235+SknLVyYuJxgx/IiIiIiIiIiIiIhqV/nI+CQkJ+NWvfnXdx3/zm99EY2Mjtm7digcffHC8hzdiS5culb//5JNPcN999w35OK1Wi8uXLwMAioqKJmRsw8GAPxERERERERERERGNWE1NDY4cOQIA2Lhx41WD4wN99tln+M1vfoMPP/wQTU1NSEpKGu9hjkh2djZyc3Nx8eJFvPbaa/jlL3+JoKCgQY97+eWX5e/Xr18/gSO8Npb0ISIiIiIiIiIiIqIR27p1KyRJAgBs2rRpWM/pf5woiti+ffu4jW0snn32WQCAXq/Ht771rUH3V1VV4cc//jEAIDMzc1IF/JnhT0REREREREREREQjtm3bNgCuJrvLli0b1nMKCwuRkJCAlpYWbNu2Dd/+9rc9Oqbdu3fDYDDIPx8+fHjI7wEgPj4et99++6BtPPzww/jLX/6CI0eO4A9/+AO0Wi2efPJJRERE4MSJE/jhD3+Inp4eKBQK/Pa3v4Wf3+QJs0+ekRARERERERERERHRlHDkyBFUVVUBcJW0USiGV0xGoVBg/fr1+OMf/4gLFy7g9OnTmD9/vsfG9eyzz6Kurm7I+1566SW89NJL8s8333zzkAF/pVKJ/fv3484778TJkyexZ88e7Nmzx+0x/v7++P3vf4877rjDY2P3BJb0ISIiIiIiIiIiIqIR6W/WC7jq94/EwMcP3M5kEh0djaNHj+KPf/wjli5diqioKAQEBCA9PR1PPvkkTp8+jSeeeMLbwxxEkPqLLBERERERERERERER0ZTFDH8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8CciIiIiIiIiIiIi8gEM+BMRERERERERERER+QAG/ImIiIiIiIiIiIiIfAAD/kREREREREREREREPoABfyIiIiIPczgcqK2tRVtbm7eHQkRERERERDcQP28PgIiIiGiqkyQJHR0dqKqqQlVVFWpra2G326FQKPDggw9i+vTp3h4iERERERER3QAESZIkbw+CaLwZjUa0tbUhLCwMEREREATB20MiIqJJQBRFNDc3Q5IkaDQaaDQaqFSqYT3XZDKhpqYGVVVVqKysRE9Pz5CPCwwMxBNPPIGoqChPDp2IyCdJkoT29nYIgoCYmBhvD4eIiIhoymHAn3ySw+FAY2OjnGnZ3Nws36dWqxEXF4f4+Hj539jYWKjVai+OmIiIJprZbMbu3btRVVXldru/vz+Cg4PlCYCB3wcGBkKr1cqfLVeeRoWFhSEzMxMZGRmIjo7G1q1bYTAYEB0djccffxyBgYET+RKJiKYEg8GA6upq+dzdYDAAANLS0lBYWIisrCwoFKxGS0RERDQcDPiTT5AkCXq9Xr5IqKmpgc1mG9E2oqKi5AmA+Ph4TJ8+fdhZnsNlsVhgt9sREhLi0e0SEdHIdHR0YOfOndDpdGPajkqlwvTp05GRkYGMjAxERUW5rSJramrCX//6VzgcDqSnp+OBBx6AUqkc6/CJiKY0h8OBhoYGeYWUVqu95uOjo6NRVFSE2bNnw8+PVWmJiIiIroUBf5qyLBYLampqUFlZiaqqKnR1dQ16TGJiIjIyMpCZmYmkpCT09PSgtbUVWq1W/neo5wFAbGwstmzZgtDQUI+Mt6GhAa+++iqsVivuuOMOLFy40CPbJSKikamqqsKuXbtgsVjg5+eH9evXY8aMGTCZTDAYDPKX0Wgc9L3RaER4eLgc4E9JSblu8OnChQvYtWsXAGDhwoVYs2bNRLxMIqJJpbOzE5cvX0ZlZaXc52Qgf39/pKeny++vvb29OHLkCC5duiQ/RqPRYMmSJZg/fz5XTI2Bw+GA0WiExWJBVFQUJ1GIiIh8DAP+NGWIooimpiY5i7+xsXFQKYWQkBC5lEJ6ejqCgoKuu12LxYLW1la3iYCWlhaIooiwsDA89NBDY667XFFRgddee83twmbhwoW4/fbbmelJRDRBJEnC8ePH8d5770GSJISGhuK+++5DYmLiuO/7k08+wUcffQQAuPPOO7Fo0aJx3ycR0WRRUlKC/fv3QxRF+TZBEJCUlCQH+JOSkoY8L25vb8fRo0dRUlICp9MJwFWic/78+ViyZAnCwsIm7HVMdv39D7q7u685eW02m+XnhIeH46677kJmZqYXR05ERESexIA/TWpdXV1ygL+6uhoWi8Xtfj8/P0ybNk2+UIiJifFIQ97a2lrs3LkTVqsVQUFB2LJly6gDQgMvcPrLBpWVlQEApk2bhs2bNw9rYoKI6EbmcDhgtVoRHBw86ue//fbbOHPmDAAgOTkZX/ziFyesxJokSdi7dy9KS0shCAIeeOABBld8iNPphMViGfXxSeTLPvvsM7z77rsAXMk5WVlZcnLOSLL0e3t7cfz4cZw8eRJWqxUAoFAoMHv2bBQWFiIuLm5cxj9VGAwG7N+/H5WVlaN6fkFBAb7whS/wuoSIiMgHMOBPk4rNZkNtba0c5O/o6Bj0mLi4ODnAn5qa6vE6+/1aWlqwfft2GI1GqNVq3H///Zg+ffqItjHwAicxMREPPPAAgoKCcPjwYXzwwQcAgIiICNx///2IjY31+GsgIroaq9UKf39/bw9jWBobG7F79250dXVh2rRpKCgoQG5uLgICAob1fKPRiL///e+or68H4Apq3HXXXeP2+XE1drsdr7zyChobG+Hv748nnngCMTExEzoG8ryWlhbs3r0bOp0OOTk5KCwsRGpqqreHReR1kiThww8/xKeffgoASE9Pxxe/+MUxf/ZYrVacOXMGx44dQ09Pj3x7UlISCgoKMGvWrBsuaF1dXY29e/fKzY7VavWgpvND/dw/GV5dXQ0ACAoKwh133IFZs2Z5JImKiIiIvIMB/2GSJAnl5eXIycnhyY+HiaKI2tpaFBcXo6ysbFA9z6CgILkOf3p6+oQ2vNXr9di6dSu6urqgVCqxceNGzJw587rPkyQJH330EQ4dOgQAmD59Ou677z63C5zy8nLs2bMHdrsdarUamzZtQnZ29ri9FiIiwJXpvmfPHly8eBGLFi3CbbfdNmlr94qiiKNHj+LDDz90KwMBuFZ45eTkoKCgAOnp6Vctj6bVarFz5050d3cDAFavXo3CwkKvfZYbDAY8//zz6OnpQUREBJ588skbLjDlK/pLRB08eFAuM9IvJSUFRUVFyM7OhkKh8NIIaTKw2WxQqVQef89xOp1wOp1Qq9Ue3a4kSfK56ViIooi33noLp0+fBgDk5eVh/fr1Hv28cTqduHDhAo4cOYLW1lb5doVCgezsbBQUFCArK2vSfsZ5gtPpxMcffyxPqgQGBuKee+5BTk7OsLchSRKKi4vx7rvvyqups7OzsWbNGpZLIiIimqIY8B8Gp9OJ/fv3o7S0FCtXrsTy5cu9PSSf0N7ejuLiYpSUlLhl5yiVSqSmpspZ/HFxcV69WO7t7cX27dvR2toKQRBw1113Yf78+Vd9/JUXODNnzsSGDRuGvNhobW3Fzp075cbB3g5EEZFvczgceO2113D58mX5tvj4eGzatAnR0dFeHNlgBoMB+/btQ1VVFQDXOJctW4aKigqUlZXBZrPJj9VoNJg9ezYKCgoQHx8v3z5ZJ1a1Wi1eeukl2O12pKWl4cEHH/TpgJQvMplM2L9/v/x/KSYmBoWFhTh79qy8kgQAoqKiUFhYiPz8/AlfUULe1R+IPXz4MMLCwlBQUID8/Pwx9YWSJAn19fUoLi7GhQsXYLVaERERgfj4eMTFxcn/hoeHD+tc0mazoa2tza2PVWtrK6xWK7Kzs7F69epRrUJyOBzYu3evXMJywYIFuPPOO8ftfF6SJDQ1NaG4uBilpaVuJUADAwMxa9Ys5OfnIzk52afOsbu6urBnzx40NDQAAFJTU7Fx48ZRB+kNBgPeeecdXLhwAYBrlcCqVauwYMECTlwSERFNMQz4D4MkSXjrrbdw6tQpAMDmzZuHleVNgxmNRpw/fx7FxcVobm52u280ZRomitlsxs6dO+WL+FtvvRVLly4ddNEwmgucyVJqgoh8m8PhwK5du3Dp0iUArsnI8vJyiKIIlUqFNWvWYM6cOd4dZJ+qqirs3bsXRqMRALB48WKsXr1aDorbbDaUl5ejuLgY1dXVbg3c4+LiUFBQAJvNho8//hjA5CyddunSJezcuRMAMHfuXKxdu9anAlG+rLa2Fnv27EFvby8AYP78+bj99tvlz+2GhgYcPXoUFy9elJ8THByMJUuWYMGCBSOqWU5TU1dXF3bv3o3GxsZB96WkpKCgoAB5eXnDPhZ0Oh1KSkpQXFwsJ4lci7+/P+Li4twmAYKDgwcF9/V6Pa51KSgIAubNm4cVK1YMe4Wt1WrF3/72N9TU1AAAbr75ZqxYsWLC3t8cDgcqKipQXFyMy5cvu60Oi4yMlCdeIiIiJmQ846WsrAwHDhyQJzduvvlmLF++/Kqr3Ubi0qVLeOutt+SErJSUFKxdu5Yl6IiIiKYQBvyHyel0YseOHaiuroafnx8ee+yxUTdxnUiSJI3LCbYoite8QBjI6XSisrISxcXFqKiocDvxjoqKwpw5czB79myEh4d7fJyeZLfbsWvXLjmbb8mSJbjtttvkYP5YLnC83UySiHyb0+nErl27UF5eDgD4whe+gJtuusmtNj4A5OfnY82aNV6r7e90OvHRRx/h8OHDAIZXmqCnpwelpaUoLi5GW1vboPsnc3P0I0eO4ODBgwCA2267DYWFhV4eEV2LKIo4dOgQPvnkE0iSBH9/f6xduxZ5eXlDPr6jowPHjh3DuXPn5JI/KpUK8+fPx5IlSyb9eQ+NzpWB2GXLlkGhUAwK1iuVSsyYMQMFBQXIzMwcFKg1m824cOECiouL5Qzufv2TBrGxsWhra3PLzh+4+mm4IiIi3CYI+ktTtre3A3Adt0VFRbjpppuu+flgNBqxfft2tLS0AADuuOMOLF68eMTj8RSj0Sj/Dpuamtzuy87ORlFREVJTUz12rSRJ0qDyc9eiUChGvG+73Y733ntPTkQLCQnBhg0bRtxn7HosFgs++OADnDx5EoDreF2+fDmKioq4Io2IiGgKYMB/BMxmM1588UXodDqEhITgySefRGhoqLeHNSS9Xo+33noLjY2NmDNnDpYsWeKRTBadToejR4+iuLgYDodjVNsIDAyUSy8kJiZOqYxGp9OJAwcOoLi4GIArOHbPPffAYrGM+QJHkiScOHEC7777LiRJQmhoKO6//34kJCR4/HUQ0Y3D6XRi9+7dcrbxlYFli8WCN954Q17CHxkZiU2bNk34pHZnZyf27NkjZ8SOtDSBJEnQarVySQej0YiFCxfi9ttv90jG43iQJAmvv/46zp07BwC4//77MWPGDO8OiobU3d2NvXv3oq6uDoCrOeimTZuGdW5lMBhw4sQJnDhxQg4CKxQK3HbbbViyZMm4jpsmzvUCsUOV4+kXFBQkl50xGo0oLi7GpUuX3HpDREREyNnpkZGRQ45BFEV0dXW5TQBotVp5okGlUiE2NtatBFBsbOyQK2udTifOnTuHjz76SG4Eq9FocMstt2DOnDmD3le7urqwbds26HQ6KBQKrF+/HrNnzx79L9TD2tvb5VUSVzb6LSoqQk5OzqjK1kiShMbGRvnvajabh/3cK/8e/V9XW+nc3t6OXbt2yZPbWVlZWLduHYKDg0c87uGqq6vDG2+8gY6ODgCuY2Bgb7Xx3DdNft3d3Xj33XdRWVmJ8PDwQeXFmLxGROQ9DPiPkE6nwwsvvACLxYKEhAQ8+uijHm+WNRZOpxOfffYZPvroI7eAvCAIyMvLQ1FR0agCyA0NDThy5IicHTpSCoXCLYtpKmeGiKKIgwcP4tixYwCAzMxMdHZ2euwCp6qqCrt27YLFYoGfnx/uvfdeBoCIaFScTif27NkjlxlbvXo1ioqKBj1OkiScOXMG77zzDhwOB5RKJVavXo3FixdPyKTshQsXcODAAVitVgiCgOXLl4+pNIHT6YTRaJy0k/IDORwObNu2DXV1dVCr1Xj00Uc50TvJXLp0Cfv375cDeUVFRVi5cuWIj0+r1YqzZ8/i2LFjchPpZcuWYeXKlVMq+YEGG2kg1m634/Lly/Lq16tdjvn7+2PWrFkoKChASkrKqI8Ti8UCs9mMsLCwEQe1rVYrjh07hiNHjsButwNw9axYvXo1srKyIAgC2trasG3bNvT29kKlUuGLX/wiMjMzRzXW8SaKIioqKnD06FF5Ag9wTXbfdNNNmDNnzrDKanZ2dsoTCHq93qNjHCpwWltbi3feeQd2ux0KhQKrV6/GkiVLJuS9w26349NPP8Xhw4cHrWBISEiQ+66lpKRM6Ws8Gj5RFHH69GkcPHjwmquKgoOD3Y7juLg4xMTETNpEDCIiX8KA/yjU1NRg27ZtEEURM2fOxKZNmyZFI6OWlhYcOHBAzjIPDw/HnDlzcO7cObclxOnp6SgsLERGRsY1TxJFUcTly5dx9OjRIRvQDWyMeD2RkZE+V7P28OHDeP/99+WfVSoVNm/ejKysrDFvu6OjAzt37oROp4MgCLjnnnsmTW1t8iyTyYRPPvkEFy9eRGRkpJw15e1m1TT1OZ1O7N27V87cX7VqFZYuXXrN57S1tWHXrl1yGYfs7Gzcc88945bBN1GlCSY7o9GIF198EZ2dnQgODsbjjz9+1QxemjgOhwMHDx7E8ePHAbgCF+vXrx9zINPhcGDfvn3y/8358+djzZo1fM+fgiRJwtmzZ/H222/D4XCMKhBrMBjk/lYtLS0QBAFZWVkoKChAdnb2pOnp1Nvbi48//hhnzpyRJyimTZuGOXPm4N1334XFYkFgYCAeeOABJCcne3m0w9PY2IijR4/Kk+KAa7XF4sWLsXDhwkGl4CwWC8rKylBcXOw2WQC4VgoUFBQgKSlp2Ps3GAxuPRV0Ot11nxMREYF7773XK6Vlu7q6UFFRgaqqKlRXVw8K9KpUKkyfPl2eAIiKiuJkpg9qb2/HG2+8IccHQkJCcMstt8Bms8nHcltbm9sKpYEUCgXy8vKwcePGiRw2EdENhwH/UTp9+jTeeOMNAMDy5cuxcuVKr43Fbrfj448/xtGjR+Wa/TfddBNWrFgBtVoNp9OJixcv4siRI/JkAOBqbFhUVIS8vDy3WXaHw4GSkhIcPXpUXr4JuOqFFhUVITs7mxelfc6cOYM33ngD/v7+eOCBB5CSkuKxbZtMJrz66qtyeQvWd/Ytdrsdx48fx6effuq2rL9fcHAw0tPT5YumybQktv8CuaamZkS1aodLEASkpqaisLAQaWlpvFgcBafTiX379uH8+fMAXI3Gly1bNqznDhWE37hxI6ZNm+ax8XV3d6OkpARnzpxBZ2cngPGfXJjsdDodXnrpJZhMJkREROCxxx6bVP/vbzQmkwnbt29Hc3MzAFeyxPr16z32NxFFEW+//bb8/yw3NxcbN25kduwUYrFY8Oabb8rvs54oh9bV1QW1Wj0pe470a29vx8GDB+WeVv1CQ0OxZcuWSdUcfbh0Op3cb6N/hbRKpcLcuXOxePFi6PV6FBcXo7y83G0FdWhoqFxmyRMNbW0226DGyq2trfJ54uzZs7FmzZqrlvyZSE6nE42NjaiqqkJVVdWgHgmA61rzvvvum/INksei/5y5ubkZCxcuxKJFiybNJN5IORwOHDlyBIcOHZKD+QsWLMCqVasGHZNOpxM6nU4+jvv/7S8PNnfuXNxzzz0T/hqIiG4kDPiPwbvvvovPPvsMALBhwwbk5+dP+BhqamrwxhtvyEtJ4+LisHbt2iGzSyRJQm1tLY4cOYLKykr59rCwMCxZsgQzZ85ESUkJjh8/Ln8YA0BOTg4KCwuRmpo6/i9oCuru7oZarR6XFQw2mw2vvfaa/PcqKirCqlWrGACdwkRRRGlpKT788EO5pENgYCBuuukmGI1GVFVVuU209YuLi5OD/6mpqRN+sSCKIiorK3HkyJFBWW3jKSkpCYWFhcjNzeVE4zCJooh9+/ahtLQUALBy5UosX758xNu5ssxOVlbWmLL2rFYrLl68iOLiYrm5OfB5LfOJKh80mTU3N+Pll1+GzWZDfHw8HnnkkUkR2LnRmEwmbN26FVqtFoIg4NZbb0VhYaHH34MkScLHH3+MTz75BAAwffp03HfffV5rmu2rHA4HDAYDjEYjDAaD/DXwZ6PRCLvdjqCgIGg0Gmg0GgQHB8vfD/w5MDAQzc3N2L17tzxhOXv2bNx111031N+upqYGBw8eRHNzM6KiovDggw9O+UbURqNR7rdxtVr8arUaM2fOREFBAdLS0sb93ESSJHR1dUEURURGRk7az0mTyYSamhpUVlaiqqpK7pMQFhaGRx555IYK+veXjTpy5IjbKnnA9fu49dZbMWvWrCl1XtvY2IgDBw7IZcuioqJw9913jzgZpH9VS2BgoFdWqRAR3UgY8B8DURSxc+dOVFRUQKlU4pFHHvFohve1mM1mHDx4EGfOnAEAKJVKrFixAoWFhcOqiafVanH06FGcP39+yAxdpVKJgoICFBYWIjo62uPjp+FzOp3Yv3+/HLybO3cu7rrrLtY+nIKqq6vxj3/8A1qtFgDg5+eHJUuWYOnSpW5Bva6uLjljqrq6Wm7y2M/Pz29E2X9hYWFyoDYxMXFEx47D4UBpaSmOHj0ql3kBXIH4RYsWjUsWosViwenTp1FbWyvfFhERgcLCwmHX1r1RiaKI/fv3o6SkBACwYsUKrFixYtTbu7KRbr/w8HD5mJo+ffpVJzxFUURNTQ2Ki4tx8eJFuf4z4Fo5kJ+fj7lz5/JzZoCqqirs2LEDoihi2rRpeOCBB3jMTyCz2YytW7eipaUFCoUCX/ziF8e9j87x48fxzjvvAHDVw37ggQeg0WjGbX/9E7jHjx+H0WhEbGysW43l8dz3ROgvu1JSUgKtVjvoM3SsFAoFJEmCJElQqVRYs2YNCgoKJm0gdjyJooiWlhbExMRMqp5mY2Wz2eR+G11dXRAEAenp6SgoKEBOTo5PvdbxIEkS6urqsHPnTlitVoSHh+ORRx6Z8hNC13O1VfLJyclISEjAmTNn5Mz4hIQE3HbbbZO+hKHNZsOHH36I48ePQ5IkKBQKFBUVYfny5Tw3ISKa5BjwHyOLxYK//OUvaGtrQ3BwMJ588slxP5kpKyvD22+/LWfhp6Wl4e677x5VwKS7uxufffYZTp8+DZvNhoCAAHm5IUsJTB6iKOK9996T6wjn5ORg48aNPNGaIlpbW3Hw4EG3lTUFBQW45ZZbrvt+IYoimpub5YypxsbGqzb3G46AgABMnz4dmZmZyMjIuOr++4Pun332GXp7e+Xbs7OzUVRUhNTU1HEPbjQ1Ncm1dftfc1BQEBYtWoSFCxfesKVfrkYURbz++usoLi4GANx888245ZZbxrxdp9OJ8vLyQVl7/QRBQFJSknxMJSYmoqOjAyUlJSgpKXE7flQqFXJzc1FQUIDp06dPqey2iXT+/Hns3r0bACZVryBfZzabsW3bNjQ3N0OhUGDz5s3IycmZkH2XlpZi3759EEVx3LKlrzaBeyWNRuM2ARAfH4+oqKhJnWjgdDpRXV09ZNmVgQICAq6aua9SqeSs/6FWA1yZIBMXF4d7772XE5Y+zOl0oqWlBaGhoVOiCfxk09jYiG3btvl80N9sNsvnzANXyc+YMUNeJS8IArq6uvDBBx/ISVyA67x61apVk7IUVmVlJd588025F2BiYiLWrl07oj5+RETkPQz4e0BnZydeeOEFmEwmxMbG4vHHH/f4kl673Y7Lly/jzJkzqKqqAgD4+/vjtttuw9y5c8ccCDCbzWhra0N8fPwNtRx5KpEkCYcOHcJHH30EwDXRc//994+o3ENPTw9KSkpw+fJl+Pv7u13MR0ZGMqDkYT09Pfjoo49w7tw5OWCdnp6O1atXIyEhYVTbNJvNaGhoGNQo7WokSYJWq0VlZSVaW1sH3R8VFSU3Ck5LS4PVapUnAftrxioUChQUFOCmm27yygWJXq/HsWPHcPbsWTmI4+fnh7lz5+Kmm266YZqb2my2a5al6OzslP/Gy5cvxy233OLxSRlJktDR0YGqqipUVlaitrZ2UGBNpVK5ZfIDcMuM5GfM8AzM+l6wYAHWrFlzQ2YQTxSLxYJt27ahqakJCoUC9957L3Jzcyd0DJWVlfj73/8Ou92OkJAQPPjggx55z7VYLDh16hSOHz8+aAI3LS0NbW1t0Gq1aG9vv2pfFqVSiYSEBCxcuBCzZs2aNMF/rVaL4uJilJSUwGg0yrer1Wrk5eUhOzsbISEhcmB/tIkSoijCYrHI77v9K3DYc4Ho2hoaGrBt2zbYbDZERETgkUceQVhYmLeH5RFXJs4BrvfK/Px8FBYWXrWvQ3NzMw4ePCiXNxQEAfPmzcOKFSuum3BnMpnc+ju0tbUNOufyhP7zPcB1Xrdy5UosXryY14pERFMIA/4eUl9fj1deeQVOpxPZ2dm47777xvyBKEkSGhoaUFxcjPPnz7s19szJycGdd97JbJMb0MmTJ/HWW28BAOLj47Fly5ZrLr+32Wxy3ezq6uqrPk6lUg1a1h8XF+fV+tE2mw21tbWoqqpCc3Mz1Gr1kFl5/d8HBgZOihNRURRx7NgxfPzxx/JJeGxsLFavXo3MzEyvBe16e3tRXV0tlwsaGBwBIP/u+gM+/v7+WLBgARYvXjwp3muMRiNOnjyJEydOwGQyAXBdJOXn5+P2228flz4a3tTV1YX3338fTU1NMBqNw57kWbZsGVauXDkhx5nD4UB9fb18TPWXqwKA6OhozJkzB7Nnz/aZi/uJ9uGHH+LQoUMAxl6eia5uMgT7+zU2NmLHjh0wm80ICAjAAw88MOpykd3d3Th+/DhOnTo1KBg11ASuw+FAR0eHW4NFrVYrv9/2Cw0NxZIlSzB//nyvTOD19PSgtLQUxcXFcj1pwPV5kJGRgYKCAsyYMYNlV4gmiSuD/o8++uikOK8cLafTiX/84x84efKk2znzwoULsXjx4mGtkpckCRUVFTh48KC84kqlUqGwsBCFhYVQqVTQ6XSD3o8HTtpOhPT0dNx99903VA8GIiJfwYC/BxUXF2Pfvn0AgMLCQtx2222j2o5er0dJSQmKi4vlZmCA6yItOzsb8+bNQ1ZWlkfGTFPThQsXsGfPHoiiiIiICDz44INuWc6iKKK2thbFxcUoKytzy/zQaDSYPXu2nPnd2tp61cZkgKtWd1RU1KDg+sDAu6cC7aIoorW1Vc4erq+vv2q24VAUCoU8toSEBGRkZCA9PX1CA8G9vb3Yt2+fPLkSEhKCW265BXPmzJkUkxH9Bv6uq6qqUF9fL9cV7Q/mzJs3b1I2DLXZbCguLsbRo0fl98jw8HBs3LjRI31URFHEiRMnUFlZiaysLMyaNWtCywf17/+DDz64atZWUFDQkGUpEhISkJ6e7tVJpYaGBoSHhyMhIYEZ6WMkSRLefPNNnD59GgCwZs0aLFy40MujGhmj0ShPNHZ1dbk1RR1q4naiM6YtFgu2b9+OxsZGCIKAe++9FzNnzpzQMVypra0N27dvR09PD1QqFTZv3jyi877W1lYcPXoUpaWlHpnA7e3thVarxfnz5wdtcyQBrrHq6urC22+/jYqKCrfSdnFxcSgoKMDs2bNZjpJokqqvr8f27dths9kQGRmJRx55ZEoG/e12O3bt2oXLly8DGPsEqNPpxLlz5/DRRx/J5YACAgLgcDiuWppMoVAgOjpaTs4ar+uc/h5gPJcjIpqaGPD3sPfffx+HDx8GAGRlZSE8PPyatUL7mc1mlJWVobi4GPX19W7bTE5ORkFBAfLy8salQSZNTVVVVfjb3/4Gu90OjUaDLVu2QKFQyHWzB9bZ7q+bnZ+fj/T0dLfAsyRJ6OnpGZRBotfrh10rXhAE+bi+2vE+cHJg4Iljf9Z5ZWUlqqurh8w6T01NxbRp0+B0OgeVMelfWn+tsSUlJckNRpOSksatFEFlZSX27dsnv4bFixfj1ltvnRJZhjabDXV1dRBFERkZGVOiTIEoijh37hzeeecd2O12KBQKrFy5EoWFhaOeXGltbcWBAwfQ1NQk36ZQKJCVlYWCggJkZ2eP6+/myv2HhoZi2bJlbp8lwcHBk6acBo0/URTx2muvoby8HACwefNmrwekr8XhcKCxsVHu+dDS0jKi5wcEBECj0SA8PBzLly9HamrqOI0UsFqt2L59OxoaGiAIAjZt2oS8vLxx299IdHV1Ydu2bdDpdFAoFEhJSRlW0MVms6G5uVn+2dMTuNdaNXCtEhZjVVZWhgMHDsgNePuTFwoKClhPmmiKqKurw/bt22G32xEVFYWHH354SgX9zWYzdu7cKV+rr1ixAsuWLfPIOZnNZsOxY8dw+PBht2SPwMBAtxKscXFxiImJmRLn6URE5F0M+HvYlRfm1+Lv7y8HQFtaWuTsWsCVrZqfn4+CggJERUWN55BpCmtqasKOHTtgMpmgUCgGBb6nT5+OgoIC5ObmjjjrxGazoa2tDa2treju7h6ydvjAY3a4BmbhO51Ot+X4/aKiouQGoGlpadccuyRJMJvNbmPr6elBbW0tamtrB2VI+/v7Iz09XZ4A8MQSVafTiQ8//BBHjhwB4Do5X7duHWbMmDHmbdP1dXR0YPfu3XI5mfT0dGzYsOGapa6uZLfb8emnn+Lw4cPy/6Ps7Gw0NDS4rYAJCAhAXl4eCgoKhh2AGw6Hw4FDhw657X/RokW49dZbWfOeYLfbsX37dtTV1UGpVGLLli2YPn26t4cFwPUerNfr5QB/bW3toPJTarUa6enpiIuLg9lsHjRxO7Bk4UCCIMgBFU+vkLJardixYwfq6+shCAI2btyIWbNmeXQfY2U0GrFjxw63AP5wxcbGoqioaNzq7V+tL8CVTSrHym6347333sOpU6cAuFbNrVmzBllZWZz4JJqCamtrsWPHDjno/8gjj0yJlTm9vb3Yvn07WltbIQgC7rrrLsyfP39c9lNRUQGNRoP4+HiEhIQww56IiEaFAf9xYLfbUVxcjI6OjkEXtdcqneLv74+8vDzk5+cjNTV1UpX/oMmro6MD27ZtQ3d3NwBXsLy/bnZ4ePi47VeSJFit1iEz7of6+VpZ+AEBAW5BeE+N+1r1xftFRUUhOzt71FmCnZ2d2L17t5yRnZaWhg0bNrBm+QRzOBx4//338dlnnwEAgoODsWHDBmRkZFz3uXV1dXjjjTfk5mSxsbFYu3YtkpOT4XA4UFlZieLiYly6dMntOI6IiEBBQQHy8/PH1Di4vr4eBw4ckPcfExODtWvXeqQ8EfkOs9mMl19+Ga2trVCr1Xj00UdH3fzbEyRJwqeffoozZ86gq6tr0P0DV1YlJydfMzhrt9sHfW6cOXNGDnRPmzYNGzZs8Fgm6JXB/g0bNmD27Nke2banWa1WlJaWDqqjfy2JiYkTVobB4XCgtLQUR48eletQA67VqUVFRZgxY8aoz2fb29uxa9cuOTEgKysL69atm9ASa0TkeQOD/tHR0Xj44YcnddBfr9dj27Zt6OzshFKpxMaNGyf1SjsiIiKAAf8J53A4YDQa3S5qjUYjIiIiMGPGDLcyP0TD1dvbi9LSUqSlpSExMXHSZYJIkgSLxTJoQsDpdCI1NRVJSUkTMsFlMBjk4P9QTWtHWgf4woULOHDgAKxWKwRBwM0334zly5dzss6LLl26hP3798uTq0VFRVi5cuWQwUaLxYL3339fzhxVKpVYvnw5ioqKhlwqbTKZcOHCBRQXF6OxsdHtvv6yU/1LriMiIq57HFgsFnzwwQc4efIkANfql+XLl2Pp0qVcqk1D6u3txUsvvYSuri4EBwfjkUceGbcSKtdz+vRpvPHGG/LPoaGhcoA/PT19zCUIHQ4HPvzwQxw9ehSAq2/FunXrkJ2dPabt2mw27NixA3V1dRAEAevXr0d+fv6YtkmuFa6VlZU4cuQI6urq5NsjIyNRWFiIgoKCYZ/jSpKEs2fP4u2334bD4YBCocDq1auxZMmSSXd+Q0SjU1NTgx07dsDhcCAmJgYPP/yw28pMh8MxZBJR/3X0SMqOpqWlYc6cOaMqsdnS0oLt27fDaDRCrVbjvvvuQ3p6+oi3Q0RENNEY8CeiG5Ioimhra0NFRQVKS0vdSgsJgoCMjAzk5+cjJydn0AWCzWbDe++9JzfSDAkJwcaNGzFt2rSJfAl0Fd3d3di7d68cdEpOTsbGjRvdyjddunQJb775plyKIiUlBWvXrh128FSn06G4uBjFxcXy6pqBVCqV3Eytv+ZqXFycXJ7n0qVLeOutt+ReG8nJyVi7di1iY2PH9NrJ9+l0Orz00kswmUzw9/fHvffei8zMzAkdQ2dnJ/70pz/BZrMhNzcXK1euRHR09LgEYysqKrBv3z45w/2mm27CrbfeOuJJMUmS0NDQgPfff1+uv7x+/XoUFBR4fMw3usbGRhw9ehRlZWXybcHBwVi0aBEWLlx4zckgi8WCN998E+fPnwfgmjDYtGkTEhMTx33cRDSxqqur8eqrr8LhcCA8PBxhYWFyYP9qpd5GKzAwEIsWLcKiRYuGvUqotrYWO3fuhNVqRVBQELZs2cL3IiIimjIY8CciAqDValFcXIySkhK3zH+1Wo2ZM2eioKAAaWlp6OjowK5du+TSBdnZ2Vi3bh0bak8yoiji0KFD+OSTTyBJEvz9/bF27VqkpaXhnXfewYULFwC4/r6rV6/G/PnzR7UyQxRF1NfX4+LFi9BqtdBqtde8SI2IiIBGo0FDQ4O8/1WrVmHBggVcGULDptVq8eqrr6KnpweCIOALX/gCFi9ePCHZz6Io4pVXXkFdXR3CwsLwzDPPeKQZ7LX09vZi7969qKmpAeAqWbNp06ZhldLS6/UoKSlBcXExOjs75dvXrVuHOXPmjNeQCa7JqWPHjuHcuXNwOBwAXJOh8+bNw5IlSwb10GlqasLu3bvlv9Ps2bNx1113sY8JkQ+rqqrCzp075feIofQ3c9doNAgODkZwcPCwz5ksFgsuXLgg9/Ty8/PD3LlzcdNNN13zM6S8vBy7d++Gw+FAWFgYHnzwQURHR4/sxREREXkRA/5ERAM4nU5UV1ejuLgY5eXlbhcgYWFhMBqNcDgcUCqVWL169YQF2Wh0amtrsWfPHjmTX6VSyRd92dnZWLNmjUf7LUiShO7ubmi1WrS2tsr/6vX6QY/NysrCmjVrxrXXBvmu3t5e/P3vf5fLS82dOxdr1qwZ93JQx44dw3vvvQcAeOihhyastIEoijh8+DA++ugjSJIEtVqNu+++e8ja+2azGWVlZSguLpaz+fslJydj6dKlyMnJmZBxk6v58IkTJ3DixAm53JogCMjLy0NRURHi4uLw2Wef4f3334coilCpVFizZg0KCgr4+Up0A2hubsaFCxfg7++P4OBgObjfH+Af6+eayWTCyZMncfz4cXm1mCAIyM3NRVFREZKSktwef/bsWRw4cACSJCEmJgYPPvigx3rIEBERTRQG/ImIrsJischBoytrEt97771ebZhJw2cymbB//35cvnwZgKsW+J133om8vLwJCyZZrVa0tbWhtbUVOp0OKSkpyM3NZTCLxsThcOCNN95AcXExAFcvic2bN7vVQfak9vZ2PPfcc3A4HFi0aBHuvPPOcdnPtdTX12PPnj1yKa25c+fijjvugFKpRFVVlTxZ63Q65eeEh4cjPz8fBQUFiIqKmvAxk4vNZsPZs2dx7Ngxt0bP4eHh8s9xcXG49957mUlLRB5nt9tx7tw5HDt2zC0RIy0tDUVFRcjKysLRo0dx8OBBAK5yj/fffz9X8RIR0ZTEgD8R0TB0dnaitLQUdrsdS5cuZYmBKaa/CWRnZyduuukmXryRz5AkCceOHcPBgwchSRLCwsJw//33Iz4+3qP7cTqd+Mtf/oKmpiZERkbiy1/+8qgaIHqC2WzG66+/jvLycgCuUlk2m21QOba8vDwUFBQgNTWVJbMmEafTiYsXL+LIkSNoaWmRb1+0aBFWr1497Oa+RESjIYoiysvLceTIETQ1Ncm3h4aGyr2VMjMzsXnzZq99zhEREY0VA/5EREREU1xFRQV2794Nq9UKlUqFDRs2IDc312PbP3ToED788EMIgoDHHnsMKSkpHtv2aEiShFOnTuHdd9+Vs/kFQUBmZqbccJ2B48lNkiTU1taitLQUM2bMwIwZM7w9JCK6gUiShLq6Ohw9elReBQq4+oesW7cOSqXSi6MjIiIaGwb8iYiIiHxAe3s7Xn31Vbnp6cqVK7Fs2bIxl45qaWnBCy+8AFEUsXTpUqxatcoTw/UIrVaLY8eOIS4uDrNnz0ZISIi3h0RERFNMW1sbTp06hdDQUBQWFnJVGBERTXkM+BMRERH5CJPJhF27dqGmpgYAMGvWLNxzzz2jznZ3OBx4/vnn0dbWhtjYWDz11FPj3hiYiIiIiIiIRo9T10REREQ+IigoCFu2bMHChQsBAOfPn8df//pXtyapI/Hxxx+jra0NCoUC69evZ7CfiIiIiIhokmOGPxEREZEPOnXqFN5++22Iogg/Pz8sWbIES5cuRUBAwLCe39DQgL/85S+QJAkrV67E8uXLx3nERERERERENFYM+BMRERH5qNraWuzbtw/d3d0AgMDAQNx8881YsGDBNbP1bTYb/vznP0Ov1yMpKQmPPfYYGxgSERERERFNAQz4ExEREfkwu92OEydO4NChQ7BarQCAyMhI3HrrrZg5c+aQTX3ffvttnDhxAn5+fnj66acRExMz0cMmIiIiIiKiUWDAn4iIiOgGYDKZcOjQIZw4cQKiKAIAkpOTcdtttyE1NVV+XHV1NbZu3QoA+MIXvoCbbrrJK+MlIiIiIiKikWPAn4iIiOgGotfr8cEHH+DChQvybTk5OVi1ahU0Gg3+9Kc/obu7G2lpaXj44YehUCi8OFoiIiIiIiIaCQb8iYiIiG5AjY2N+Mc//oH6+noAgCAIiImJQVtbG9RqNZ555hlERER4eZREREREREQ0Egz4ExEREd2gJEnCpUuXcPDgQeh0Ovn2u+++G/Pnz/fiyIiIiIiIiGg0GPAnIiIiusE5nU6cOXMGx44dQ1paGtauXTtkM18iIiIiIiKa3BjwJyIiIiIiIiIiIiLyAezCRkRERERERERERETkAxjwJyIiIiIiIiIiIiLyAQz4ExERERERERERERH5AAb8iYiIiIiIiIiIiIh8AAP+JGtsbIQgCBAEAY2Njd4eDpEbHp80mfH4pMmOxyhNZjw+aTLj8UmTGY9PIiIaCgP+REREREREREREREQ+gAF/IiIiIiIiIiIiIiIfwIA/EREREREREREREZEPYMCfiIiIiIiIiIiIiMgHMOBPREREREREREREROQDGPAnIiIiIiIiIiIiIvIBDPgTEREREREREREREfkABvyJiIiIiIiIiIiIiHwAA/5ERERERERERERERD5AkCRJ8vYgiIiIiIiIiIiIiIhobJjhT0RERERERERERETkAxjwJyIiIiIiIiIiIiLyAQz4ExERERERERERERH5AAb8iYiIiIiIiIiIiIh8AAP+REREREREREREREQ+gAF/IiIiIiIiIiIiIiIfwIA/EREREREREREREZEPYMCfiIiIiIiIiIiIiMgHMOBPREREREREREREROQDGPAnIiIiIiIiIiIiIvIBDPgTEREREREREREREfkABvyJiIiIiIiIiIiIiHwAA/5ERERERERERERERD6AAX8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8CciIiIiIiIiIiIi8gEM+BMRERERERERERER+QAG/ImIiIiIiIiIiIiIfAAD/kREREREREREREREPoABfyIiIiIiIiIiIiIiH8CAPxERERERERERERGRD2DAn4iIiIiIiIiIiIjIBzDgT0RERERERERERETkAxjwJyIiIiIiIiIiIiLyAQz4ExERERERERERERH5AAb8iYiIiIiIiIiIiIh8AAP+REREREREREREREQ+gAF/IiIiIiIiIiIiIiIf4OftARARERERERFNVQ6HAQ0NL8PPT4OEhE3w89N4e0hERER0AxMkSZK8PQgiIiIiIiKiqaZD9zEulf87LNZmAICfXwiSkh5ASvLD8PeP9fLoiIiI6EbEgD8RERERERHRCNhsOlyu+BFaWw8AAJTKIAAKOJ0GAIAgqJEQvw6pqU8gODjDiyMlIiKiGw0D/kRERERERETDIEkStK2vo6LiR7DbOwEAUVE3Y0b2D6FShaKpaScaGl6G1dYqPyc6ehXSUp9EWNh8CILgraETERHRDYIB/wkmijbYbDrYbB0DvnTw949FZORSLvskIiIiIiKP6e0tQ3f3GcTH3wM/vxBvD2dKM5sbUX7p+9DrPwUAqFSRyM76d8TF3e0WyBdFG7StB1Bf/yKMxgr59tDQuUhLexIx0asgCMoJHz8RERHdGBjwHwcOhxEt2j0wm+tdAX1rO2x2HazWdjgcXdd8rkaTg8jIpYiMXIbwsIVQKv0nZtAks9n06NB9iMCAZISHL4IgKLw9JCIiIiKiEWtp2YuL5f8PkmSDShWJ6dO/hqTE+6BQqLw9tClFkpxoaNyK6upfwek0AQDi49YhK+v/Qa2OvMbzROh0n6Cu/gV0dR2Xbw8MnIZpaV9GQsImZvwTERGRxzHg72G9vRdx/sLXYDJVX/exSqUG/v4xUKkiYDRWweHodrtfofBHePgiREUuR2TkUgQHZ/GEcByZzY2ob3gRzc27IIoWAECAfyLi49chPn49goPTvTxC8iSn0wKj8TIMhstQq6MQGbmUF79ERETkEyTJiaqqX6Ku/rlB9wUFpSMz8zuIjlrJa4thMBgu4WL599DTcw6A6/ogJ+dHiIq6eUTb6e4pRn3dC2hrfw+ACACIiroFM3N/ds1JAyIiIqKRYsDfQyRJQlPzTlRU/BCiaINC4Y+oqJuhVsdCrY6GvzoaanU01OqYvn+joVQGDHi+Ez09pdDrP4VOfxg9PWchSU63ffj7xyMycilCNDOBccg6VyoDERvzBa8t9ZUkCV1dJ2E210GtjpJ/T2p1NBQK9bjtt9dQjvq659Ha9qb8O1cqNXLDrX6hoXOQEL8ecXFroFJFjNt4yLMkSYLV1gpD70UYDOXoNbj+NZlq0H+xBbiWZMfHr0NC/AaEhOR6b8BEREREY+BwGHCh7N/Q0fE+AFf9+Oysf0d9w0toanoVkuQAAESEL0Fm1ncRGjLLm8OdtETRhpraP6Cu7s99vzMBKckPIz39X+HnFzzq7ZpMtait+xNaWnYDcF3j5eX9GhHhCz00ciIiIrrRMeDvAXZ7D8rLv4e29ncAAEFBmZg967fQaGaMepsORy86O49Bp/8UOt2nsFgaPDXcawoISMasWb9FWGjBhOwPcE12tLW9i7r659Hbe37Ix/j5hfVNlkTBX540iYG/fxw0IbkIDsoYUXZ2/+RCXf1z0Ok+lm8PCEhGauoTSEzYBJtNB612P1q0+2A218qPEQQVoqNvQUL8ekRFrRjXyQgaOUlyoq39PXR3n4WhL7jf31BtKP7+CbDZ2twm2DSamUhI2ID4uLVQq6MmYthEREREY2Y2N6Gk5EkYjJcAAGlpX0ZG+r/JJSpNphpUVP5EngwABMTHr0NG+r8hICDBS6OefOz2TpSU/pNchic4OAu5OT9GWNhcj+2jre1dXCz/DhyOXgAKpKf/C6alfZm1/YmIiGjMGPAfo56eEpSe/5ockE9I2IQZ2f8JpTLIo/sxmWqh1x+GTv8prJYWj267n9FUDVE0QxD8kJnxLaSkPDauy3ydTitatHtQX/8izOY6+faAgGQ4HN19J7/DIwhqaDRZCNHkQRMyEyEhMxGiyR30d5AkER0dH6C27jn09JyVb9docpGW+hRiY++EQuF3xXMk9PScQ4t2H1pb33QrveTnF474uLuRmHgvQkLyRvorIA9zOHpx/sK/uE3i9FMoAqAJzoZGkwNNSC40mlyEaHLg5xcCq60DrdoDaGnZLV8gA4Ag+CE66hYkJGzsm9xhyR8iIiKanLq6T6Ok5BnY7ToIghq5Of+LhIT1Qz62s/M4Kir/B729FwC4zpNSUx9HWupT8PPTTOSwJx2jsRLFJU/CbK4HIGD6tK9i2rSvjEuSj9ncgPMXvo6enmIAQGREEWbO/CX8/WM8vi9fYDY3obf3PAICEqHRZEOhYL87IiKioTDgP0qSJKGh4S+orPo5JMkOpTIIM2b8EAnx67w9tFEzGqtx/sLXYDBcBABER63EzJk/83j5Gru9B01NO9DQ+DJsto6+WxWIjb0D09KelgPnTqcFNpsONlu7q/mx/K8O1r7vLeYGWG2tV9mTgKCg6QjRuCYAlMpgNDRug8lUKT8iPHwxpqU9jcjI5cOa3BBFKzo6PoZWuw8duo8hSXb5vsiIpUhLewoREYWsh+oFZnM9ikuegtFYAQCIjFyGkJBZCNHkQKPJRVDQtOtmTEmSBIOhDM0te9DaesBtZYBKFYn4uLUjCvyr1FHQBGeN/kUREY2RKDpgMJRBofCHWh0FlSqSzeiJfJB7c94o5Of/CeFh86/5HEkSoW09gKqqn8Nq1QIA1OpoTJ/+dYSHL4S/OgZ+fmE31HmtTvcJSs9/DU6nAUplMPJm/goxMavGdZ+iaENV9S9RX/8iAEClisKsvP9DZGTRuO53KnA6rejqOgGd/hB0uk9gMlXJ9wmCH4KDMxGimelK+NLkISQk12vlaYmIiCYTBvxHwW7vRFnZt9Ch+xCAKzt8Vt5vfaKpq9NpRUXl/6KpaTsAz9aUtFpbUd/wVzQ17ZTr4ysU/khI2ITUlMcRFJQ2qu3abB3o7b2IXkMZensvwGAog8lUC+Bqh7aAmJjVSEt9GmFhc0a1T9d+9WhtewstLbvk7CgACAmZhbS0LyM25jYuyZ0gnZ0nUHr+K7DbO6FQqJGb81PEx68d0zZF0YYO3UdoadkLne5jud7tSCUnP4zsrO8zwEY0SUmSBKOpEoEBSR5fnect/ZOXLdr90Gpfh92uk+8TBCVUqsghy+T1980JDS0YU31quja7vRNWaxuCgzN5njBJ2O1dsFpbERg4DUrl1MoYdjXn/QXq6p8HAGg0Ocif/TwCA5OGvQ2n04KGhr+gtu7PcDqNbvcJgmpAb63P3ycG9icLCkqf8hnpkiShofFlVFT8LwARAf6JyC94ASGanAkbQ0fHRyi7+M2+hBMB09KewfTpXx+0+tjXmUy10Ok+gU5/CJ2dn0EULW73K5XBg47TgQIDU6HpS/gKCclDRPgSt955RERENwIG/Eeoq+sUzl/4upwFk5S0BVmZ35tyFwfX09r2Di5e/E5fYH5sNSWNxkrU17+EFu1+SJINAODnF4rkpAeQnPII/NXRHh69q1mZq0FrGXp7y2DoLYPF2oLo6FuRlvokgoMzPLYvSZLQ2XkMdfXPQ6//VL49MHAa0lKfQHz8Bp87PiaT5ubXUH7pPyBJdqjVMcif/ecxTeQMxWbrgLb1DbS07IXRWHn9JwAAJHkFSFzcWszM/Sn7PRBNMk6nGWUXv422trcgCGqEh81DZNRyREUuhUaTO+Um6qzWVmi1r6NFuw9G4+VRb0etjkXezF8iMrLQg6O78UiSEyZTLQyGi+g1lMt9ZfrPIf3VcYiLX4uE+PVj6vtEIyeKdvT0FEOn/xR6/afo6SkBIEEQlAgKSneV/+sr/afR5EKtjpmUWe5DNefNm/mrUU/YWW0dqKn+NVq0eyGK1hE9V6WKQogmF5qQ/t9dLoKC0qdEOURRtOHS5R+gufnvAICwsHnIn/0nqMfhGuV6LJYWXLjwDXR1n+wbywLMyvu1T/dXcDotrt51uk+g03/SV0rpc4Lgh7CweYiKvBlRUcuh0eTC4ehGb28Zeg2u67xeQxmMxioA4qDtBwakYtas3yA0NH+CXhEREZH3MeA/TJLkRG3dn1FT8xtIkhNKpQa5uT9BXOwd3h7auBltTcmBDYf1usMwWz4/afNXxyEl9TEkJd7nk/VBe3svoLbuObS1vYP+E061OgYpKY8iOelLXGLqQZLkRGXlT1Hf8BIAIESTh/z85ybNBZEkSaiq+jnq6p8DAERFLsfs2X/wmQziqcjhMMBm64BaHQ2lMnhSBm/GwuEwAhD5PjNMFksLSkq/fNVm8SpVFKIilyIychkiI5dO2uxVp9OE9vaDaNHug15/BAODHRpNLhLi1yMu7m4olYGw2TpgHVgiz9pfKq+j77522GztfSuaBEyb9hVMn/a1Gy67dDRE0Y7unnOuoH6vK7BvMF4elJl6NSGaPMQnuP5W45EIQa7SfzqdK8Cv7zwmrzYdDpUq0hXM1uRAo8lBcHDWsGuHC4ICgYEpHq81bjY3oKTk6as25x0LSZLgcHTLJTTdvqztsNn7v++Aza676ipIQVD3lVxxTQJoNDkIC5szqc6FrmzOGx+/Hrk5/+PV2vCi6EBN7e9QW/sHABL8/MKRN/PniI5e6bUxeZokiejqPg1ty160tr096P+jv388oqJuRlTUzYiMKBzWuY3TaYbBcGnAqu+L6O29CEmyQRD8kJHxTaSmPDblJvM9xfV/WD/sx6tU4fD3jx3HERER0XhiwH8YJMmJc8WPy9nboaEFmJX3GwQGpnh5ZONPFG2oqvqFHFRVq6ORN/NXbjUlJcmJnt7z0OsOQac/jJ6es5Akp9t2goIykJb6JOLj194QzZVMpjrUN7yElpZdEEXXqgalUoPkpC8hMfE+BAQkMNt7DK5szhsTczvyZv58Ul1A9qurfxGVlT8GAISFzkVBwYtQqcK9O6gbhCQ50dt7ATrdIej1h9Hdc1YOSigUAXJpgoFlCfpLFaj9o6Hyixj2RaEgKOHvHz+hmYySJKK393xfhuphdHefASAhMWEzpk//+qQNUE8G3d3nUFL6Zdhs7RAEP2Rn/TsCApLkbF+TqXrQczSaHERGLkNU5DKEhy/06nu4JIno7DoObcs+tLW/61baQK2OQXzcWsTHr0dISO6It22xNOP8hW+gu/sUACAsbH5fdmmix8bvayyWFpwrfuyqqypUqohBGeN+fiFobXsbWu0+ufcM4HoviYxcjoT49YiOXsUVgmNgt3f31f4+DL3+0KCsYcBVhrH//3VwcAaMxiq3FRlG42X5PG4sFIpAREQskScRg4LSRzzpLIoO9PScg15/GDp5VYJ43ea8400UHTCZql2TXIaL6O1byWKztQ/5eJUqCjOy/xOxsXd6feL9yua8mRnfRGrqU14fVz+9/ggulP2r3PMsO+s/kJLysJdHNTYmUy202v1o0e6HxdIg3y4IKoSHL3QF+SOXIzg4yyN/hyt71EVF3YyZuT/zyuqNieZ0WtHVfdI1yak/DIOhfMTbCArK7HvfWoqIiMVjvtbqX/kmCH6jLudLRETDw4D/MFVV/QK1dX9CasrjyMh49oYL1nZ0fIgLZd+Ew9EFQEBa2pcRFJjaFxw5Aoej2+3xCoU/wsMXIaovMzI4OHvSnDxPJKutA40NL6OxaTscjl63+/z8wq8INg4IOPq7fg7wT4RaHeml0U9OVzbnnTbtq0if/vVJna3T0rIHF8u/C0lyIjg4C3PmvIwA/3hvD8snWSwtfcGQQ9Drj/a9Z00MQVBDE5zlCuyFuDIZQzQ5Hm18brFqodcd7qtre9StsfRASmUQUlOfQlrq4x6ZCHM4en1m5UCLdj/Ky78LUbRBpYrA7Fl/QETEYrfHmM1N0Hcehl73KfSdR+Bw9Ljdr1bHICX5ESQlfQkqVehEDh96/VFUVv3ErXeMQhGAmJjbkBC/HhERhWPOyB+cXRqG3NwfIzbmC2Mcve8xGqtx7tzDsFibASgQFJT+eTZzSA5CNLlQq2Oveg4kSRJ6e8+jRbsPra1vwG7/PPvSzy8EsbF3Ij5uHQIDk8dl/ApFAFSqcK99hoqiDXZ7F/z8NKN+r5IkEWZznVvZJEPvxb6/iTu1OlY+N42MLIJaHXWd8TlgMtd8vmqjbzLAZmsb1Vj7BfgnusYQtRyREYVQqcKGfJzZ3CBPROr1RwdnQavjMHv27xEWNm9M4xkPNlvH53+T3r4JFFOVPPEeHX0rZmT/l9dWZnqjOe9oWG0duHDhX9DZeQwAkJ39A6QkP+jlUY2M3d7lmuBs2YvunrNu94WFLUBC/HrExt45bp+nTqcVlVU/QWPjVgC+W7ZOkiQYjRXyeXBX14kRl+a6FkFQIzx8ft976DJoNDnX/OxwOHoHvAe4r3xLSvoScmb80GNjIyKiwRjwHyZRdKC7+/SgoMCN5MqaklfSBM+QL17CwxawOdIADkcvmpr/hob6v8Jqax3Rc8PDFyMhfgNiY7/gsYCbw2EYdpkBwJWdOBkaC3Z2Hkfp+X/yaHPeidLe8QHOn/9niKIVAf6JmDPnFZ9o9O1tTqcZnV3HXRc3uk9hMg3usRAcnD3g4iQbNnvngFImQ5U06egLpHvm49HfP35Qdu/VgjtXcjVfvSgHfAZmAn/++rIQFbkckZFLYbE0o7rm13JmpVodg/Tp/4KEhE0jDgLbbB1obX0TLdp96O09j9iYOzBz5s8m5Uqa4biysWVwcDYK8p+/7mo9SXKip6dEzhLu6SmWV7EplcFITPwiUlMeHfcMeIPhEiqrfgqd7hP5tvH4fBhI33kMFy78qxzcTE56EJmZ3x1V1rkkOeF0mqBUanwmAaCnpwTnih+H3a6Hn18oCvJfQHj4glFvTxTt0OkPQavdj/b29+W+R+NNEPygVkV9nnCgiobaf8CKJ3U0/NUx8PMLG/bfTpQcsNt0A95Xde6lpOw6WK3tbpOySmVwX3NY90bS7quwomC1tckB5F5DOYzGS3A6TUOOoz8BJTJyaV8Wv2cSUJxO06DVrFd9rGhFd9cp10S07tMhJiIUCA0tkLNo7fYuOYvfbK4dtL2QkDxERrp6jYSFzZtSSUhWazsuV/w32treBuBa/ZqZ8S0kJd0/YZNOk6E570iJohWlpV9Fh+5DAMCM7P9GcvIDXh7VtYmiDTrdIbRo96Gj40O397PAgFTEJ6xHfNw9E5rl3d5+EGUXv92XqOYbTZHt9s6+8xPXV3+PmH6CoERo6Bz5PHgkfexM5jo5yaS7+4zcm6yfWh2NyIiliIxahhBN7oCeNa7gvsXSeNVtR0Yuw9w5L4/otRIR0cgw4E8j4sr6+y3q61+AUqlBZGSRnCnl7x/n7eFNeqLogNWqHRRotMoBx89vG1iiARhbBqco2tDdfUYOGg7MDB0OTfAMzJ//d69m+Lqa8/47JMnhas6b/xzCQgu8Np7R6Ow6iZKSJ+Fw9EKlisScgpfYQGwUJMmJzs7P0KLdi/b2fwwK9KhUkYiMLJIDPKN5bxJFe9+qnOF9RIqiDUZjpZxd2mu4CJOp+qp1jcdCpYpAZESRq7Z81NJBq0UcDiPqG15Cff0L8u8mODgLmRnfRlTUimsGu5xOKzp0H0Kr3Qed7pNB49docpE/+zkEBiZ5/HWNJ1cZsG9Ap/sIgCuz1NXYcuS9ZKzWdjQ2voLGph1y5r8g+CEu9i6kpj3p8aCR1dqK6upfo7llN/rr80dGFCEz89sICcnz6L6GYrPpUHbxm/JEg0aTg1l5vx1W0MBiaZYDl/0rbgRB3RfUdQWRXYHcIYK8/nGjbjw6EfT6IygpfQZOpxFqdSzmzPmrR//2dns32treRot2H7q7T3tsu77Mzy9UrhPvqrc/A8HBMyZVWSRJkmAy1UCv/xQ6/afo7PwMomi+5nNcqxL6+4lcf1XCVNDefhCXLv2nnAQTFrYAuTn/O6Jg5EhJkgSd7mPU1b8g1+v3ZnPekRJFK0pKvyKXs5wx44dITvrSmLcrSSIAwSMTYSZTnduxPXBFimvF0hokxK9HWNh8r038+krZOlG0oqb2j6ire25QID4gIAVRUX0rmYbZ/+B6HA4jurqODyh9WDPMZyoQFDQdGs2Mvvdl13u0v3+8z0z+ExFNVgz406iIogOCoJjUZVSmOqfTjO7us9Bq9w9RozkW8XF3Iz5hw5ABBkmSYDbXyrXLO7s+u2r223DFxNyG2bP+OO4nZ4SMtkcAAG8qSURBVKLogNlcK2eH9C8F778oDAnJQ/7sydOcd6R6ey/iXPGjsNnaoVQGI3/2n9x6YtDVGYwV0Lbsg7b1dbcMJkHwQ1jYfDkgEhKSNynem0TRCqOxcsCx7Pq6Whmeq3G9vnnyBIbr9V1/xY3V2o6amt+gqfnv6A8UR4QvQWbWdxEaMkt+nCRJ6O45A23LPrS2veVWvkalikBc3F0I8E9EVfWvIEl2qFRRyJ/9xzFlMo+WJEkjfg+6sgxYWtozyEj/1zEfIw6HAc0tu9BQ/xe3jN3IyGVIS30KERE3jen90uEwoK7+BdTXvyQHBIODs5GV+R1ERi6f0AtlSRLR0PBXVFb9HJJkh0IRiBkzfoCE+I1u4xjOipvhEgQ/pKY8jvT0b0xob4zhaG17Bxcu/CskyYbAwFTMnbN1XPs62e2dcDqHvypvJJxOk1vCwVAJCDZbx6gnL5XKoMFlC/sy9fsnfFSqCDidxhGsBhAQGJj2eRPdkFyEaHLh758w5QJIomhFV/eZvuxcV0KGQqFGeNgiREYt8+iqhMnG4ehFZdXP0NT0KgBXuZDp0/4JaWlPeXTVgija0Nr6BurqX3Trs5EQvwE5OT+aUr3FnE4rSku/DJ3+EAAgZ8b/ICnpvlFtSxStqK17DvX1L0IQ/OSG1P3/r4KDs687WeZw9KKz85grw1z3KcwW9z4ZgqBEVOTNiE9Yj+ioWyfN5NvgsnWhyM39yZQpW9fVdQoXy78Hk6kKgGt1VETETXISXlDQtHEfg9ncKE/od3YegcPRC6VS4zp+QvpXteYiODgLSmXguI+HiIgGY8CfaApwOk1obz+IFu0+6PVH0B+8A1wZt67mfithMFySMy8slqYrtqJAaGh+X93apfBXxw5r352dR1F+6fsAgMyMbyEt7WkPvSrAbu/5PKjflxXtapA3dL3J2Ng7MTP3p1O2pEg/s7keZ889DLO5HoKgRl7erxAXe8e47Gu83+LHOwhhs+nQ2vqGXFZmwJ4REb4Y8QnrERszPuVMxoMkSbDZ2uF0XjujcyC1OnpMmc4GYwWqKn8mlwIAgPi4e5CcvAU6/RFotXvdmlkKghrR0SuREL8eUVHL5cBLV9cplJQ+A7tdD0FQIWfGj5CYuGnU4xoOu70Tev2RvuXqn8Jm0yM4OHNAppjrovJqvU70ncdQWvpVOBxdfWXAfoL4+Hs8OkZRtKOt7R3U1T8vNwUEXJOTqalPIjbmjhGuyHKgueU1VFf/Gna7DoCrTnd6+jeQkLDBq+XVenpKcP781+WgTlzcWqSkPIKuTlfWX1fXqUFlaAauuAnRzITd3ukW0LVeEVi22XQY+BkXGjoXs/L+b1wD6iPR2PQqLl36DwASNJqZmDPnr/CfAtnBYyFJIhyObtjtPdd/cB9BUEKlivDoKg1RtMFm18NPGTKpV3+Mhd3eA4VCfUOVxezsOony8u/KGcOa4BnIyf3xmFdxyuU0G152SxKIjlqJ1NQnERGxaEzb9xan04qS0qeh138KAMjN+TESEzePaBvd3Wdwsfx7Q5YJ7CcISgQGTnfrSaLR5MBqbYVedwg6/WH09JwdVNrKXx0nX2tERi6d1L3Irixbl5S0BVmZ35s0ExNXck2S/QJNTdsBuBodT5v2T5iW9pRXJ65E0QG7vRNqdbRPTk4SEU1VDPgTTTEWqxat2gNo0e695ok64KodHhW5HJFRy/qawoWPap+XLv0AjU3bACgwd+5WREbcNKrt9BNFBy5d+nc0t7x21ceoVJFumUYhIXk+leVmtbbjXPGjfQFCATkzfoikpPs9vI82nDn7pREsux0ZhcIf4WELXMdX5DJogmd4qDby1cvKBAWlIyF+A+Lj75lyy6+9rbPzM1RU/viKiZPPhYXORXzCBsTF3nnV9wqzuQklpU/Lge3UlMeRmfltjwWhRdGO7p5zrgaVuk/R01uK4ZRV8lfHyRll/e8bnV0ncPnyf/WVAYtFfv6fx7UMmCRJ0HceQX3dC9B3HpZvVyj8B2Q2u9dEv/K2zs5jqKz6GUymagCurL201KeQmvrYpJnodDh6UX7p39Ha+saQ93++4saVaTjSFTeS5ITd3onGxh2oqf09ABF+fiHIyflfxMXe6aFXMXKSJKG29g+orvk/AK7+CQX5z02ZyUaiyczptKK29veoq3++7zNfQErKI0if/o0RT+5Yra1oaHgZjU2vyiVlBEGF+Ph1SE19HJrgrHF4BRPL6bSgpOTpvs8aAbk5PxnWBLzDYUBV9S/R2LgNgARBUCEt7WloNDM+X4l4lYbXV9PfJ6P/PX+qnau7ytZ9Sy6VFBSUgazM7163BOJE6+j4EOWX/l2evAoLm4ecnP/1ieOZiIjGBwP+RFOUq5lnGVq0+6DVHoDdroNCEYiIiMV9pT+WIygo3SMnq6Jow+kzX0JPz1moVJFYtPDAqEvqSJITZWXfhLb19b5bFAgKSnfLIArR5EKtjp1UJ9rjweHoRXHJU+jqOgEAyM76d6SkPOKRbYuiHWfOPjChtZ/V6hj52IuMLBxWTVyn0wSD4ZJ7CSdDuVsJqv6yMgnxGxASMtvnj4vxJEkiWlvfRFX1L2CxNCEgIBnx8euQEL8OQUHTh7UNh8OIsovPor39HwCAqMjlmDXrt6MOfF6r5i/w+VL1yMilCApMhcF4WQ5MGI2V1y01EhIyG/n5fx7U62A89fZeQF39i2hre2vYjT0HEgQlEhPvw/TpX5uU2eOSJKGlZQ8uXf4BRNGMoKDp8v/98PBFo+qNMJTOzuO4UPavcoAjKfF+ZGV9f8KznyVJxOWKH6Gx8RUAQHT0KszK++2kzQIlmqp6DeUov/hd9PSWAAAUikD4+8cNPUnqHzPg9iiYTHWor38R2tYDck1zP78QJCV+CSkpD/tcrzGn04zikqfQ2XkUgICZuT9FQsLGqz6+o+OjvoBxCwAgNHQOcnP+FxrNjEGPtdu75XOy3r5/XStwXSu4NMEzXBn8UcsRHrZgyq9IcZWtexmVVT+Tj52I8CXIzPwOQkNne3VsVlsHLl/+b7S1vQXAdU6UkfFNJCc9MCnKVxIR0eTFgD+RDxBFO8zmOgQGpozbkk6LpQUnTq6F3a5HaOhczJ/36ohrrEqSE2UXvwWtdj8AYPq0f0Za2pen/IXCWDidFpy/8HV0dLwPQEBB/vOIjl455u1ervgRGhr+CtdF4M+GHcwdCZutHXr9Uej0h2A21w26P0ST15f9vxThYfNgtXb0BfT7LyDL+543+GNIEFQDysrc7NF6vuSaxLNa2xEQkDCqC0ZJElFd8xvU1v4egCsjriD/uWEdZ9er+QsICAmZ1deTYTnCwuZc9e/vapZc5VYWzNUnQQ8AiIu9C7m5P/Xae4zV2gqDsaKvDnlfPXKbTq6RbrV19I318/8DMdGrkZHxLQQHp3tlzCPhdJpgd/SM62SKzabHxYvflktSBQdnYVbeb6HRZI/bPgcSRRvKLn4bra0HAAAJCfciZ8aPRlSmiYiGT5KcaGh4BVXVv7puQ+Or8fePR0rKo0hK/KJPr8JxOs0oLn4CnV2fwXW+93MkJKx3e4zNpsPlih/Kq7KUyiBkpD+L5OQtI1qd5+qxVQ8/Pw38/YdXFnSqMRorUVn1M3R0fCDfFhe3Fhnp/4bAwOQJHYskSWjR7kFFxf/C4egGAERFrUDOjB9yhSsREQ0LA/5ENGx6/VGcPfcwABHJyQ9iRvYPhv1cSXLi4sXvoEW7F4Ar2J+e/i/jMs6pRhStOHv2YXR1n4RSGYwF83cNmXE1XNrWN3Dhwr8AADLS/w3Tpn3FQyO9OrO5Xq6zrtcfHZSlDQi4VmmWwMDUvnIsuQjR5CA8fOGoS1DRxGltfRNlF78FUbTCzy8Ms2f9blATaklyoqf3PPQ6Vxb/VWv+9k0ORUYUjanmr6tPQhucTgsCA1Mn/YqQ/tq3rkbegeMyOTfVSZKExsZXUFH5U0iSDQpFALKz/h2JiV8c17+v02lCaek/yQ0y01KfRkbGNyf9MUXkC6y2DvT2lF6z50d/ILRfcHA20lKfRFzcXTdMooDTacK54ifQ1XUcgIC8mb9EfPw9kCQJWu1+VFT+D+z2TgCuFXkzZvwIgYFJ3h30JNfZebyvBGIpAFdvo5SUhzAt7StQqcLGff9mcz3Ky78PfecRAK4yp9nZ/4G42Lv4+UNERMPGgD8RjUht3XOoqvoZACBv5q+G1QBTkkRcLP8uWlp2AwCmTfsnpE//Bk9aB7DZ9Dh5agMslgYEBCRh4YK9wyqJcyWD4TJOnd4Ip9OE6OhbkT/7zxO+5FcUHejpOQe9/nBfgLcE/U04lcogaIJnQBOSC01wjqvuevAMj5UAoYnX01OKktIvw2rVQhCUyMr6PmKiV8l/f73+KByOLrfnTPWav+QdPb3nXU2DzbUAXI3cc3P+d1wyeI3GKpSVPSuXFsnM/C7SUp/w+H6IaPRE0SqvmgJww5b9cwX9H+8rEalAVtb3oNN9Ijf2VakikJ3174iLW3tD/n5G4/MSiL+ExdIIAPDzC8P0aV9FcvID47aiuqPjI5Se/2d5dUt8/HpkZ/0/qFQR47I/IiLyXQz4E9GISJKE0vNfQXv7P6BQBGDhgr3XzEaXJBHl5f9PbtA7Le0ZpKf/Gy84hmAwVuDUqU1wOg0IC5uHuXO2j6hGtMPRi5On1sNkqkFgYCoWLngdKlXoOI54eOz2LvT2liEgILEv45o1R32N1dqGktJn0NNz7qqP8bWav+QdDocBly7/p1waLiAgGbPyfoOwsDke2b4o2lBX9zxqav8ASbJBEJTIzfnxNWtjExF5m8NhxLnix9Ddfcrt9vi4dcjK+h7U6igvjWxqE0UrGhu3o6b2D/KKkoCAFGRmPIvY2DUevZ6xWJpx/MQaOBw9CAhIQs6MHyEqarnHtk9ERDcWBvyJaMQcjl6cOLkOZnMtAgPTsGjh60NmWEqSiPJL30dz898BAGlpX0ZG+rMM9l+DTvcJzhU/AUBEfNw6zJz5i2H9vlwTMf+E9vb3oFAEYMH83QgJyR3/ARP1cTqtKL/0PTkQq1JF9jVyXYrIyKU+1zCRvKulZS8uXf5POJ0mCIIfkpMfQmrKY6NuKA8A3d3ncLH8uzAaLwMAgoLSkZvzY4SHL/DUsImIxo3DYegL+p9GgH8icnJ+hKiom709LJ9gt3ejtvYPaGjcBklyNS8OC5uHgvznPZJ9L4oOnDn7ALq7T0GtjsXiRW9ykoaIiMaEAX8iGhWD4RJOntoIUTQjOnoV8mf/yS1zW5JEXLr0H2hq3gkASE19EpkZ32awfxgaGl7B5Yr/BjD8Gvx19S+gsvInAICZub8Y1LSNaCJIkoTOzmPw8wtBSEgeV3PQuDKZalB6/mswGMoAAILgh7i4u5GW+uSI+qA4HEZUV/8KDY2vAJAgCH5IS3sa09L+aUSrrIiIvM3ptKKr6wTCwubBzy/Y28PxOWZzA6qqfyk3QQ4PX4y5c14ec8+I6upfo6b2dwAEzJ2zFZGRhR4YLRER3cgY8CeiUdNqD+BC2TcAABnp38S0aV8G4Ar6Xbr8n2hq2gEASE15HJmZ32Wwf5hcv7//QFPTqwCA2bP+gNjY26/6+M7Oz3Dm7IMARCQlPYCcGf89QSMlIvIuV7mFHahv+Aus1hb59qiom5Ga+iQiwpdc87NHpzuE8kvfh8XSBAAIDS1Abs6Px9Q4nYiIfFtb+3soLf0nABISEzYjJ+d/R32d09l5HGfObgEgYlraM8jIeNajYyUiohsTA/5ENCaXLv8XGhu3AlBg7pyXERFRiMsV/4XGxm0AgJSUx5CV+T0G+0dIFO04V/wYOjuPQqEIwPz5f0doyKxBj7NYtThxYi3sdh1CQ+dg/rxXx62RGBHRZCWKdrS2vYX6+hdgMJTLt4eEzEJa6lOIifkCFAo/+XabTY+Kyv+RS1ApFIHIyPg3pCQ/BEFQTvTwiYhoiqmrew6VVT8DAGRlfg+pqY+PeBt2eyeOn7gLVqsWYaFzMW/eTigUKk8PlYiIbkAM+BPRmIiiDWfOfAndPWehUkUiOvpWtLTsAgCkJD+CrKzvM9g/SnZ7N06d3giTqQb+6jgsXLjPrQ66KNr66n2egUoViUULX0dAQKIXR0xE5F2SJEGv/xR19S+gs/OofHtAQApSUx9HYsImtLcfxOWKH8Ju1wMAIiOXIWfGjxAYmOytYRMR0RQjSRIuln8HLS27AQgoyH8e0dErR/T80tJn0N5xEEqlBosXvcXPISIi8hgG/IlozAZmmfdLTn4Q2Vn/yWD/GJlMNTh5aiMcjm6EhMzC/Hl/g1IZCGDw6orIyCLvDpaIaBLp6T2P+roX0Nr2NgARAKBQBEAULQAAP79wZGd9H/Hx6/hZRUREIyaKVpw9+zC6uk9CqQzGgvm7hl0SrrFxBy5d/g8AwKy83yAu7q7xHCoREd1gGPAnIo/o7PwMZ889BElyIilpC2Zk/4ABFA/Rdx7DuXOPQJIciI25A7Nm/RatrW8O6J/wLKZNe8bLoyQimpzM5gbUN/wFzc27IIpmAEBc3N3Izvo+1OpoL4+OiIimMptNj5OnNsBiaUBAQBIWLth73c8Wg+ESTp5aB1G0ITFhM3JzfzxBoyUiohsFA/5E5DFdXadgsbYgLvYuBvs9rKnpbyi/9P8AAAnxG9Ha9jZE0Yzo6FXIn/0nCILCyyMkIprc7PZOaLWvIzg4iyuiiIjIYwzGCpw6tQlOpwFhoXMxd+4OKJVD99RyOs04eWo9jMYKBAWlY9HC16FUBk3wiImIyNcx4E9ENEVcrvgfNDT8Rf45MDANixa+Dj+/EC+OioiIiIjoxqbTfYJzxU8AEBEftw4zZ/5iyASo8vLvo6l5JwRBjYUL9iAkZObED5aIiHweU0KJiKaIrMzvICpqBQBXHerZs//IYD8RERERkZdFRd2M7CzXalxt637U1f1p0GPa2t5FU/NOAEBW5rcZ7CcionHDDH8ioinE4TCiqWk7wiOWICy0wNvDISIiIiIiAJIk4dLl/0BT06sAgNmz/oDY2NsBABZLM46fWAOHowfRUSuRn/88S6ASEdG4YcCfiIiIiIiIiGiMRNGOc8WPobPzKBSKAMyf9zdoNLk4c/YBdHefglodi8WL3oJaHentoRIRkQ9jwJ+IiIiIiIiIyAPs9m6cOr0RJlMN/NVxiIm5DY1N2wAImDtnKyIjC709RCIi8nEM+BMREREREREReYjJVIOTpzbC4eiWb5uW9gwyMp714qiIiOhGwaa9REREREREREQeEhQ0HbNn/wGC4AcACA2di+nTv+7lURER0Y2CGf5ERERERERERB7W1vYeWtveQlbmdxAQkOjt4RAR0Q2CAX8iIiIiIiIiIiIiIh/Akj4ka2xshCAIEAQBjY2N3h4OkRsenzSZ8fikyY7HKE1mPD5pMuPxSZMZj08iIhoKA/5ERERERERERERERD6AAX8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8CciIiIiIiIiIiIi8gEM+BMRERERERERERER+QAG/ImIiIiIiIiIiIiIfAAD/kREREREREREREREPkCQJEny9iCIiIiIiIiIiIiIiGhsmOFPREREREREREREROQDGPAnIiIiIiIiIiIiIvIBDPgTEREREREREREREfkABvyJiIiIiIiIiIiIiHwAA/5ERERERERERERERD6AAX8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8CciIiIiIiIiIiIi8gEM+BMRERERERERERER+QAG/ImIiIiIiIiIiIiIfAAD/kREREREREREREREPoABfyIiIiIiIiIiIiIiH8CAPxERERERERERERGRD2DAn4iIiIiIiIiIiIjIBzDgT0RERERERERERETkAxjwJyIiIiIiIiIiIiLyAQz4ExERERERERERERH5AAb8iYiIiIiIiIiIiIh8AAP+REREREREREREREQ+gAF/IiIiIiIiIiIiIiIfwIA/EREREREREREREZEPYMCfiIiIiIiIiIiIiMgHMOBPREREREREREREROQDGPAnIiIiIiIiIiIiIvIBDPgTEREREREREREREfkABvyJiIiIiIiIiIiIiHwAA/5ERERERERERERERD6AAX8iIiIiIiIiIiIiIh/AgD8RERERERERERERkQ9gwJ+IiIiIiIiIiIiIyAcw4E9ERERERERERERE5AMY8Ceia6ozW9FgsXl7GERERERERERERHQdDPhPIU5JQoXRgjqz1dtDoRvEex3dKDx+EQuPleGeMxXY3qxDt93h7WEREZEPc0oSLhstECXJ20MhmrT0dgdarXZvD4OIaNjsooQ/1rfBKoreHgoRkc8TJIlXU5NRt92BMqMFFwxmlBnMuGAw45LRAovo+nPNCQnCvfERWBcbgSi135j3Z3GKqDRZEOKnRIxahSAl54JudP+/vfsOb6ps/wD+Tdok3W3SvRcb2QgOFByAojjBn4oCKiqivu69B+7X14XiBH1VeEFxiwsBWcqUTVtK90ybtE3TNPP5/ZH22JSOtKQr/X6uq5ex5+SM8uTJOfd5nvv+s6oWV+7NltpcI5VchukRoZgdrcYUTQgUclkPHSERkffQWW2oszuQ4Kfs6UPpUUIILDiYix+01RgZ5I/HB8Rhkjq4pw+r3xJCoMZmR7nFBoPN7vb7/HzkGBroB5mM1wieZnMIvF+oxUs5JXAA+HREGs7Q8DNCRL2bEAJ3HinA/0p1mBQWhJWj0uHL+0gioi7DgH8vUFRvwZ6aOmdw3+gM7hfWuzdix1cGnBMegtnRGkyNCIFK7l6gXgiBjLp6bNQZsEFnwLaqWpfAbpCPHFFKBSKVvohQ+kqvG/8bqfTFgAA/hPj6dOqcWzumcosNvjKZRx5iUOcdrjXhkj1HUW2zY3CgH55Ij8P32ip8W16FWvs/IzIiFL64LFqN2TFqnBTk32U39ia7A6VmK1L8lQweEPWAnDozVHIZIpS+ULr5PeNJRrsdFRYbFDIZ4rwkIG5xOLCrpg4bdAZs0NVgn8EEAFg8MB7XJ0T28NH1nA8LtXgkq8jld+eGh+DR9FgMCfTvoaPyTtVWGw4b61FusUFrsaLCYkO5xQqtxSb9TmuxwdLJW4XbkqLwaHqch4+6b2m8ttUofD0yQOKAoQ53ZxRI/QUABPrI8dWYARgZHHDC2yci6irPZhfjrfxyAMAjabG4PTm6h4+IiMi7MeDfQ6qtNnynrcbqUh3+qja2uI4cQHqACsOD/DE8yB/DGv5bbLZgdakeX5fpoW8y2irM1wcXRYXhihgNxoUEHBcYrbTYsEnvDPBv1BtQ4oFpwIl+SgwL8sOwQH/pOJP9lZC3E5S1OBzINNbjYG09DjV50KGz2uEvl2PlqDRMDAs64eOjjiuot2DmriyUWqyIVynw3diBUoDNZHfg54pqrCrVYYPOgKaTMYcE+mF2jAbnRYQgVqXs1CwRIQRKLVapXTTOcMmuM8MB4MLIUCwZluz2gy0iOnEvHivBf/LKpP9X+/q0+iA4suG1n7sPnwEYG0YPa61WlJtt0Fr/CTQ2Bh+NTR40jg8JwOwYDS6KCoNa0XceDgshkGOyYIOuBhv1BmzW17qcV1P3pETj3pSYfveA82CtCTN2ZcLsELgwMhRVVjs2V9UCcF4TXRWrwf2psYhWKXr2QPs4hxD4uLgSi7OLXR7id4UPhqfgwqiwLt1Hb1RUb8GaMj1WleqQVWdGrEqBBQmRuDYuvFODZUx2B17NLcXbBeWwC+fn4fqECPxSUYP8egsiFL74buxApAaoPH8yRJ1gsjtgcTgQ2oPf00IIaBseuHEkec96t6AcTxwtBgDcmBCBpwfE97trHCKi7saAfzeyOgQ26GqwukyPnyuqYW4yoj7EV+4SNB8W5I/BgX7wbyNoanE4sK6yBqtL9fi1sgbWJv+Uqf5KzI7RYGxIAP6sMmJ9w+jB5v/YSX5KTNEEY4omGBNDg2B2OKC12lButkJrtTUb7dU4+suG6jamdQc2TOMe1uRc6uwOl/REWXX1sLXR8kJ9ffD1mAEYGsTRfN2pwmLDxbuzkG0yQ+3rg2/HDsTAQL8W1y03W7GmTI/VZTocrK0/bnmQj1wKBkY0BAKjGoKCUUoFIhsuvg83De4bnQ992jIpLAjLR6QiyIOzS4ioZatKdfjX4fyePowWKWUyTI1wznA7Ozy4R2YetMdgs0sP2jfoDMhvVgBdBmBUcACmaIJxhjoIHxVV4AdtNQDguvgILB4Y3+4DdG9htNtx3s5MZNWZMTBAhZ/HD4a/XIZ1OgOeyS5GhtH5PeMvl+OWpEjcmhiFQH4PdFimsR73ZhRge8NgEznQ8B39z/d143d089+FKXzgTmt0CODa/cewXmdAkI8ca8cNavVawpsYbXb8UOEczLNZX3vcNTfgvDaaGxeBGxMjEKtyb7bSVn0t7s0owLGGGl7DAv3w7yFJGBMSgJw6M2buzkKF1YZkPyW+GzsQUXwgRj2s2mrDjF1ZyDGZcaY6GLNj1DgvMhSBPl3fZ9c0fO9u1BmwXmdAQb0Fk9XB+HxUGnz6yfdpb/NlqQ63NlxLXhoVhiXDkvvNtQ0RUU9iwL+LCSGwv9aE1aU6fFVWhYomBU+DfeS4KCoMs2M0mBAaeEJffDqrDd+UV2F1qQ67a+paXS/QR45J6iBMVgfjLE1Ip1Ok1NkdyDC6jsI+ZDShxtaxkWKxKgWGBvpJDzriVArccigPRWYrYpQKfDduIBK9JH1Db2e02XH539n421AHf7kcX45Ox9jQQLfee6ihjX9Zpke55cSL+vrLZRgc6I/hQf88ONpnqMPjDSNDRgb74/OR6Yhg6ieiLrO9qhaz/s6GRQhMjwjBMwPiUWFxjsBvKe1HS6Px3dV81sBxwceG/xbUW7C6VIdvyqtcHjxrFD64JEqN2TEajA7uuvRi7iqot+C9gnJ8VqJDXbO/R6xKgcnq4IYgf7BLCju7EHggoxCfllQCAC6OCsObQ5N65cMMT7v3SAE+LamESi7D2nGDMKzJA3+bQ2BVqQ4v5pSgrOE7JlLpi/tSYnB1bDhHbrrB4nDgrfxyvJZbJqXomRcXjkfS4zyanrGR3mrDtJ2ZKKi3YGCACj+NG+SVD2jsQmCLvharSnX4QVsNU5NClLEqBS6PVmNaeAh+qazBJ8UV0nWyQibDpdFhuCUxqtXBLdVWG549VoL/Fjv7A5VchruTY7AoKcolPdA+Qx0u23MUtXYHhgf54asxA7vk35TIHUII3HQwD99pq1x+H+gjx4WRYZgdo8ZpYUEeC/jahcDfUno8A3YbjLC3EN24PzUGd6fEeGSf5L7fK2swd/8x2AQwRR2MT0am9otrGiKi3oAB/y5SYrbgy1I9VpfppVFpAOAjA87ShGB2jBrTwkPbHMHfWUfr6vFFqR6rS3UoNlsxMtgfZ2lCMFkTjPEhgV1WZFUIgUKzVXoI0PggINdkgUImw6BAPwwL+ie4PzTQv8Vc/ZnGely8Owt6mx0DAlT4ZsxA5vTvYhaHA3P35WCD3gBfGfDJiDScHR7S4e04hEBZQ9DPdVbI8cHBqoZgXaxK0TC75Z/gflqAqsVROF+V6XH74TzYBJDur8LK0el8IETUBfJNZpy/KwuVVhuGB/nh2zED3Q7WGe122BzuX1r4+8g7fPNXb3fgt8oarC7TYV1ljcuMsYEBKsyO0eCyaHW3F8A9YKjD2wVafFOulwIO/nIZTgkLwhRNMCZrgjE4oO1CpkIIvJBTitcb0ihNUQfjw5NSvDJY2ujb8ircdDAXAPBcGzUMjHY73i3QYkl+ufRgaWCACo+lx2FqeEiPP+jprXZXG3F3RgGONFyPDghQ4d+DE7s8deI+Qx1m7s6C2SFwcVQYlg5L9pp/oyNGE74o1ePLMr1Likx/uRwXRIbiihgNTlcHuVzLGGx2fFpcifcLtShu8p5zNCFYlBSJ08KCpL/Pj9oqPJRZKD3gOiU0EK8MScSAgJZnSmzWG3D13mOwCIHTwoLw+cg0+HXBPQZRez4rrsQ9GQUAgLuSo5FXb8FabRVMTa4L4lUKzIrRYFa0usOzfxxCoLDegk36WqzX1WCTvva4meeN37tnaYKRXWfGx8WVkAP4eswATGDK2G6zu9qIy//OhsnhwOjgAHw5Ot2rr2WIiHobBvw9zGi34+WcUrxfqHUZXTAiyB+zY9S4NFqNSGX3TLUVQsAiRI/nO6+zO6CQyTr0oGFXtRGz/j4Kk0NgTHAAvuAFQpdxCIHbDudjTZkeAPDW0CTMitF0+X7NDgcsDoHgDv67/l5ZgxsO5MLkcCBGqcDK0Wks5EjkQQabHRfuzkKGsR6RSl+sHTeo2wPnHVFhseHrcudD7r1NClnKAMyOUePB1NguLfQrhMAf+lq8nV+OjXqD9PtEPyVuTozEVTGaTn1/vVdQLs1qGhMcgE9Hpnnlw++CegvO2XEENTYHpkeEYPlJqe0GhbUWK17JKcWnJZXStdYlUWF4o5/MhnCX0WbHCzkl+KCwAgKArwy4PSkadyRHd1sw+POSStx9xBn8e3pAHG5KjOqW/Xparc2OLVW1WK8zYKOuBjmmf9JzyQBMUgdhdowGF0SEtvt5tzgc+Lq8Cm/nl0sPYQBgdHAAFiREYG1FtZTaK9hHjsfS43BNXHi7I6K/La/CzQdzIQBcEBmK94andEsKE4cQTM9BAJyDtqbvzIDJITA7Ro03hyYDcF5XfK+twupSPbY21GVpNDo4wDkQLiIUdXbHcbMGy5sMJNJarKiw2locwT88yA+T1SE4SxOMk0MDpT7O6hC4aHcW9hjqEK9SYN3JgxHWh+r/9FVZxnpcvCcLOqsd6f4qfDN2IGdmExF1Mwb8PegPnQH3ZhRIOXqjlb64PFqD2TFq5qLvhN8qazBv/zHYBXCWJhgfj+h/UwCFEF06Gk4IgSeOFuO9Qi0A4Mn0OCxM6v0347uqjbhm3zHobXaE+frg05FpGO9m+iEiap1dCMzdl4N1uhqo5DKsGT0A4/rQZyvTWI8vSnX4okwvjaD1k8twU0Ikbk+O7vADxrbYHALfap1BuwO1/zxoGBnkj0VJUbgwMuyEU818UarDnUfyYRPOkewrR6Ujvhc/fOkom0Pg0j1HsaPGiNiGQIymA4GYLGM9Fh8rxk8VNQCAyepgfNRHZkN09ff775U1uD+zAIX1zs/BmOAAvDoksUeuR+85ko/PSnTwlQFfjh7Q5TMLPMEuBPYZTNioq8EGnQE7a4zH1Z4aGKDCFTEaXB6t7tRDRSEE1usMWJJfji3NgqAAcF5ECJ4flOB2rn8AWFZUgYcyCwEAc+PC8eKghC5rZ2aHA6/llmFpgRZnhwfj9SFJPVZfqfF21ltmkLSkq/uME1Vvd2DGrkwcMtYj1V+JX8cPbrE9FNRb8GWpDqtL9chuqEvRGeEKX6kO3Znq4DaLueeZzDhnRwZq7Q5cEBmKD4an9Oq/ZV9XXG/BzN1ZUoreb8cOQJI/C4oTEXU3Bvw9QG+14cmjxfhfqQ6AcxrhfamxuCkhknllT1DTgpGXR6vx5tCkfjGKqMJiw70Z+dhWZcTtSVFYmBjVJW3pzbwyLD5WAgC4NSkKj6XHeXwfXSXDWI8r92ajxGyFv1yOD09K6VQaIiL6xxNZRXi34QHgO8OScWm0uoePqHPsQuDLMj1ePFaCoobAv0bhg3tSYjA3LuKEUtsZbXZ8XqLDu4XlUjAVcD6YXpQYhUnqII8GEn6rrMGNB3JgcgjEqxRYOSrdawqgvnisBP/JK4MMwBej03G6OrhT23m/QIvHjhYB6N2zIYQQ2FL1z2yQIB8fRCl9XetXKBSIVPkiUuGLKJWzeG6E0tftAQ+VFhueOFqELxpm7fnL5XgoLQY3JET2WMHKersDF+3Jwj6DCVFKX/w6fnCbwbmeUlxvwcaGItub9AborK5pQvzkMpwSGoTJDUHGIYFtp+fqiL9r6vB2QTm+L69CuNIXiwcmYGZkaKe2/1JOCV7NdaYEuyclGvelxnrkGJv6q8pZSDir7p+A7eBAP3wyIhXJHgzstTfi+5/XVijlctyRHO11918VFhvuzyjAzhoj3h6WjEmd7Ce72iOZhfiwqAIKmQzfjxuIUcEBba4vhMCemjqsLtPj6zI99A1peRQy2XH9YvOaPtFKBVL8lR26J/yqTI9bDuUBAF4ZnIhr4sI7f7JeLM9kxupSPdaU6VFts2NGZChmR6txcmigW/1RldWGi/ccRYaxHiG+cnwzZiAHPhIR9RAG/E+AEALflFfh0awiqRjvpLAgvDIkESl8iu0xb+eX4+lsZ1qDmxMi8eSAOK8elbFZb8Cth/KkvK2AMyXUq0MSMaKdi+eOWFFSibsaptlfEaPG60OS+tzftaDegiv/zka2yQxfGfDG0GRc1kcDlEQ97dPiStzbkHf37pRo3N8FQaLuZrI78EGhFm/klcHQkPM9zV+FR9JjMSPC/WBansksFQTcpDegtmFbvjLgkig1bkmKwvAuvKHdXlWLa/fnoNpmh0bhnNU0NqTvzLxoyRa9AbP+zoaAM8/zA2kn1t5682wIm0Pgh4oqLMkvx74maae62hR1MF4anNArRlbmm8yYvjMTepsdp4QGYvXoAV1WU6qjKiw23JORj58bZoo0NSTQTxpFPDE0qEtqbzU/lkAf+QntRwiB+zMLpWK/LwxKwPz4CI8cn8Fmx+JjJVheVAHAGZy9PFqNr8r1MDsENAoffDA8FaepT2wWx56aOjyYWeCSps1dI4P98ergRJzkwWvmntL8nkCj8MGv4wf3mr6t0c8V1Zi3PwcA8ER6HG7p4Gxhi8OBonor1AofhPr6dNn9yB2H8/G/Uh385TL8NH4wBnvJw/MTVW214TttNVaX6vBXtbHFdVL8lZjVkLmgtYd6dXYHrtybje3VRvjJZVg5Kh2n9IEZXURE3ooB/04qrrfgwcxC/FLpvDkI9fXBkwPicGWMps8FTfuCp44W4Z0C56jTR9NicVtydA8fkefZHAL/zi3Fa3llEHC2qfMiQrG6VAcHnAWfFyZG4d6UmBO+4fylohrXHciBXQDnhodg2UmpvebGu6MqLDbM2Zct3RQ+OzAeC1op+EhELdusN+DKvdmwCWBmZBjeHZ7sVbOpKi02/CevFMuLKqS0HCeHBOKJAXEtpgMz2OzYoq/FBr0BG3Q1yG2SrxsAAn3kuCYuHDclRHZb4OVwrQlX7s1GmcWGAB85lp2UinEhAdLo1nKLDVqrDeVmZ47jpqNga2x2/Cs5Grf2kpRtOqsN5+zIQInZivEhAfh6zECPjMjtbbMhjHY7Vpbo8G6BVkr3CABnqINwXXwEfGUyqZh906L2jSOXGx8sdZTa1wdPD4zHrGh1r7omXV9Zg6v3HYMAcHNiJJ4aEN/Th9RiQHWyOrhhFH8IYnrhTAR32IXATQdz8YO2GjIA7w5PwUVRYSe0zV8qqvFgZqGULu3kEGch4cGBfthdbcT8Azkot9jgKwOeH5SAa+M6/pDBaLfjpZxSvF+gRfPWr1H4IFKpQJTSF5HSjJh/ZsJs0Buk9/nIgEWJUbjbA9fMPaGlewIfGaCz2jE2JABfjRnQ4zXaGpWYLTh7ewb0NjvO0gTjs5Fpvfb6wWizY+rOTBwzmTE00A8/jhvUJ9uHJ1gdAht0NVhdpsfPFdUwNymqnOinxKxoNaJUCqwp1WNHjetDgImhgZgdo8HMyFCENqThszkErjuQg18rayAH8NFJqTgvMrQ7T4mIiJphwL+DHELg4+JKLM4ulm7EZkaGYfHAeET10ZuCvsAhBO44ko/Vpc4p6q8NScSVsd4zFbOo3oJFh/KkURUnhwTi7eHJSPRTYq+hDncfycfBWmdhtxR/JV4ZnNjhKb1CCPxtMGF1qQ6fl1Si3iEwPiQAq0YPQEAfv9ittdlx3YEcbNI7c+DelRyN+1NjelWgg6i3OlZnxoxdmaiy2TEq2B9fjRnY5/uE1uTUmbH4WDG+byiICTiLWz6UFguDzYENuhpsbCVfd4xSIaXyOFsTLN3kdqd8kxlX7j2GY53Me/zfEamYGtGzN+BCOIMCP1XUIMRXjt/GD/boCPTeMBuiwmLDR0VaLC+qkNLCyAFcFBWGRUlRGOnmyOPGdCaVrRSpbIkMztQqnqxX4Umv5pbipZxSAMB7HghCd1bzgGqYrw9eHpyICyJDe22wsqPq7Q5ctS8b26qMUMpk+HxUWqfSwWgtVjyaVYRvyqsAOB94PpIWi/nxES5/q+J6C+YfyJFmsVwfH4GnB8S7/TBvo86A+5rUQhsZ7I/H0+MwIMAP4Qpftwam7Kmpwz1H8nGooRhymr8KrwxOPOEZB92p+T3B+JAAvDM8BfkmM67Ymw27AObFhePFwYk9fKTOB0uz/87G1qpaRCh8sX7CYEQqe/f98D5DHS7YlQWrELguPgLPD0ro6UPqNkIIHKg1SSl7GjMUAM4C4RdFhWF2jAYTQgNdPtvH6sz4osxZd6GgycNrlVyG6RGhmBWtxo/aaqxsSG/878GJmMOUSUREPY4B/w7IMtbjnowCbG+4AItRKvDCoAQ+ve4mVofA/P3OYpI+MmDZSamY1krgwmR3IMNYj0O1Jhxs+NFabLgoKgy3JkX1WFGxlvykrcadR/JRZbNDBuCO5GjcmxLjcoNkdQgsLSjHK7ml0giMq2M1eDw9DmHtBJ0K6y1YU6bH6lKdS67VQQF++GbsAKh7IGjVFcwOB249lCcF8ubEavD8oIR+V+iZqCOqrDZcsCsL2SYzYlUKrB03qM+OaO2IndVGPHW0+LhRa011Zb7uE6G1WDFn7zHsa1IoWAZnAUOXka9N8h1/XqLD1qpahPr64JfxgzyaY7ujmhYV7aqAb0uzISZruj7vdU6dGUsLyvG/Uh3qG76r/eVyXB2rwU2JkT36d+8tHEJg7v4c/FZZgwAfOX4aNwiDunkWRmFDQLXxen5CaCDeHpaMhF6WJsUTamx2XLonCwdr6+Evl+PUsEAMD/LH8CB/DAvyR3qAqtXaDkIIrCrV44mjRahqyK9+bngIXhyU0OrMpjq7A3cdyZceDpyhDsJ7w1PavNbUWW148mgRVpU21p2Q4f7UWNzYyVz8VofA2/nleDXvn2vma2LD8Vh6bI88qO2I5vcE/2q4J2h82LEkvxzPNKQ5fXNoEmbHaHrwaIHXckvxQsMDvJWj0jBF0zdqab1bUI4njjr/jsu9fCS60W7Hn1VGbNQZ8LuuBkeb3Av6yIAp6hDMjlFjekRou7MdHEJge7URq0t1+La8SkqV2NRDqbG4I8X7ZuITEfVFDPi7wSEEXs8rw39yy2Bp+HPNjQvHo+lxCOlFgeP+wGi344q/s7Grpg7+chn+NyodSf4qHKw1uQT3s+vMx00FbhSh8MW9qTGYExveo2ls6u0OPJ1djI8a8qBGKX3bLcZ1rM6MexqK+Ta+57mBCbiwWcCk1mbH99oqrC7VY2tVLZp+yEcF+2N2jAb/F6PptSMAO8suBB7KLMQnDXlrTw0LxAfDU3tl8ca+zCEEXs0tw88V1bgmLhxzYsN7vECezSFQaT2+mF+FS6E/G/x8ZJgZGYbLo9WI6+XBHa3FinuOFMDPR46XByV4PFBhdQhcvS8bm/S18JfL8c3YAW6PPPYGQgj8WFGNxdkl0oj57s7X3VlWh8BeQx38feSIVPhCo/Bt8zOotVgxbWcmSsxWnBTkj+/GDuyRcztca8J5uzJhdghcExuOV4Z03QjVfJMZ/7c3GzkmCxQyGd4aloSLozpX48UuBHRWW7P0O64FQ8stNmQZ66Vrj3CFLxYkRGBefAQ0vTzI2N2qrDZM25mJ/HoLBgaosHbcoG4biLFWW4W7jhRIAdU7k6NxT7NBFt6mzGzFzN1ZLmmlGvnJZRgc6Cc9ABge5I9hgX6ostlxf0YhNuoNAJztefHAeFwcFdbug08hBF7LK8OLDYHgVH8lPhmRdlx6rZZqoZ2pDsLLgxM98nDsaF097j1SgD8bHuxEK33x/KAEzIgMO+Fte1pL9wRvDU3Gmc0eVAohsKAhVZO/XIbvxw3q0voxbdlRbcQle7JgF870SY8PiOuR4+gMhxC4Zt8x/K4zQO3rg3UnD+7114TuEkLgkLEe6ytrsFFvwF9VRil+0WhEkD9mxahxaZS60xkKTHYHfq6oxupSPTboa2AXwIKECDwzIL5XDI4gIiIG/N0ihMD8Azn4uaIG6f4q/HtIIgvQ9CCd1YaLd2chq84MGYC2GnCCn6Lh5sV5Mfx+oVZKxTQgQIVH0mJxXgcKN3rK0bp6LDyYhwMNIzTP1gTj9aFJbk2DdQiBFSU6PJVdhBqb81xmRITimYHxyKqrx+pSPX7UVsHUJBdjrEqBWdFqzIrReH2BKiEEluSXY/GxEggASX5KfDwiFUN76IbI29Ta7Lj1cJ5LccOBASo8mh6HaeEhXf5ZqrLacLDWhMPGeulBX2G9FTqrrc2+oDkZnCMPZ8doMCMiFIG97OFXnsmMKxuClQAwPMgPK0ameyx1nBACDzR5OPbhSSm4oBcGQbpDY/A8wU/p1bMbdlUbccmeo7AK0SOF2uvsDpy3MxOZdfUYGKDCz+MHd3nqKK3Fiqv3HsP+WhNkAJ4blIDr2ihearDZpcEDh2rrcchoQkG9BZUWW6uDCJpL81dhYWIkZsdoeu0Do95gv6EOM3dnod4hcGFkKN4fntKl7bF5QDVa6Ysl7Qyy8CY1NjvWaqv/ad9Gk5RuqiU+MkhppGbHqPHUgPgOP7j6UVuF2w7no87uQLCPHEuHp+CccOcI8Oa10MIaaqH9n4droTmEwGcllXj6aLE0GvmCyFA8NzAB0b2kv29+T3CWJhhvtHFPYLDZcd7OTGSbzEjxV+LncYO6feZCtdWGc3ZmoLDeilHBzofIfW1GrdZixdk7MqC12HBqWCC+GD2g1dkuvZ3WYsVGnQEbdAZs1BugtdhclitkMpwcGoizNME4NzzE4/dE5WYr8ustGBcSwGA/EVEvwoC/m4rrLfi0pBL/SoqGH2/gelxRvQUzd2dJhcNaG6HU/AJYa7Hi1dwy/Lf4n8KNp4QG4vH0OIxtoXBjV1hVqsODmYWoszvgKwMeSYvDzYmRHc4ZW2q24pGsQvzQJBd1UwE+clwQGYorojU4TR3UZy9iO+uXimrccigPRrsDgT5yvD0sGdN7OHd1X5dnMmPe/hwcaciNe6Y6CFuqaqWgwCmhgXhiQDzGhJz4KHG7EMg1mXGwtr5JAM6EoobPfFsCfeQNxfwUiFL5IkLxT2qTXJMzxVWp5Z/t9LbPyqGGdCTlDelIbA4BixBI9lPif6PTkXKCIx8bZ2i8kuscfflwWiz+5YWF0Ol4HxVq8XBWEQDgpUEJmNtG8PtEWR0CR+saP7/12FJlwF6DCSq5DD9246hUg82OeftzsLXKWePl3pQY3J0SjYJ6izQr8FCt8wFiSyOgm/OXyxvSJR2fPinFX4VJvaAP6StWllTiziMFAJwDF86PDMVkdbDHa2JlGeux8FCuVAvpbE0w3hiajIh+PPtPCIFSi/W479imM2QT/ZR4eXDCCaVpOVhrwtx9x1BktkIO4PH0OKh85C610C6OCsOzA+O7NPd7idmChzIL8VPDYIVgHzlGBAc0fI6dn9+IJmnQopQKt+sGnIjm9wQPp8VhoRv3BEeMJpy/MwsmhwPTwkOwfERqt9WeEELgpoN5+E5bhUAfZx2W1IC+ma5so86A/9ubDQB4IDUGd6XE9PARuU8IgZ8ravCfvFLsNZiOWz4gQCUVID89LKjXDWwhIqKux4A/9VllZit21RgxIMAPaf6qDk3Hzq6rx3PHSlyC5RdFheHhtNh2g2nN6wMcNtaj1tb6KKmmzEIgoyFYmuynxNLhKSccHP1BW4WHMwtRZrH1+lHL3e2I0YR5+3KQV2+BDM7A5m1JURx90glb9bVYcDAHOqsdKrkM/x6ciFkxGhytq8fi7BKsrfjns3Rxw2epI1PybQ6B3TVGrNcZsFlfiwO1JpgcLY+p9ZEB6f5+GB7kh2FB/kgLUCFKqUCU0hcRSl8E+rTd7u1CYLO+FqtLdfhBW+2ynziVApf34GyYv6pqce3+Y6ixOaBR+OCzkekw2p0BS6PdgUilL1aOSu90sFRrseL2Q/nY0JCmYVa0Gm8O7d6R3tRzhBC4/XA+vijTQymT4ZuxAz3ygE7fMPOmMbh/qNaEDGP9cWkEAGDxwHjckBB5wvvsiHq7A4sO5eHHhn7KXy5vtX+RwTlK3zl4wA/pAX6IahIIDPSR8/PiQfdnFEgzjRoND/LDZHUIztIE4+TQwE4PtBFC4H+lOjyUWQSTwwGFTIZH0mJxUycGWfQXdQ3XuJVW56jn9r5P3aG1WLHgQK5UhLZRrMpZC627BmMIIfCDthoPZxWivNkI6NZoFD6IUiqQHqDCsMDG2gd+SPRTdrgfsDkEsk1m6f5hV41RStGZ7KfEO8OTO1Rg/OsyPRYeygPQvXnTPy+uxN0Zzgd1bw1NwqweriNwop7JLsaS/HL4yICvRg/AhD4wi393tRFPZxdL6aoAINTXB5PUQThLE4Iz1UFIYs0YIqJ+jwF/6te2V9Xi6exi7KypA+Cc8jg/Phx3pcRA7euDMoutQ/UB3HVJVBheHpzosRz61VYbNugNODkk0GtyUHpKpcWGGw/mSqM7L49W45XBiV2aasHmEPiwSIsftdWwu9nF+spkOEMdjFkx6l5X2PG/xc4imzbhzCu7/KTU42bE/NnwWdrd5LN0fXwE7kyJbrVYX57J7Jx+rDNgk97QYvGvUF8fDAtynb0zOMDPYzOtam12/KCtxupSHba0UO9iQUIkLolSd0u9j18qqnHTwVzUOwTiVQqsHJUu5Tzea6jD1XuPodJqQ7CPHJ+MTMOpHbwp3agz4LbDedJU7xsTIvBYelyfm4ZPJ6bO7sAFuzJx2FiPeJUCv4wf3Kk6J1qLFc8dK8FGnUGabdeSCIWvFCQ7Qx2Ms8N7pqijzSFwf2YBPi/RSb8L8pG7zgwM8sPgQD+PBDnJPXYh8EWpHr9WVmOTvhbVzQZQ+MtlODUsCFM0wZisCcGgAJUUaG2ttoK2obZCnsksXd95apAFdY7Z4cCDmYVY0fD5mx8fgUfSYnukllS11YYfK6pRYra2WO+ntoVrkeZCfOUYFti07/DHkEA/6dqySnoI+k/6wYy6eqmIcFMXN9wTdKYu3GNZhXi/sAIyACtHpXd5cfJMYz2m78yEyeHArGg13hqW3KX76w4WhwMX7T6Kvw11iFcp8PvJg3ttcedckxnPHSvBtw1FsQFniqqFiVEYExzg1bVIiIio4xjwp35PCIHvtdVYfKwYuQ35soN95FDIZW3mN21aHyCyA8GStIYplhwh2H2sDoFHsv7JVz46OADLR6R2Sb7u/YY63HOkAPtqj59e665TQgMxO0aDmVFhPVoY3OYQePxokZTzeGSQP5aPSG31oZIQAt9pq7E4uxh5DakxQn19cEdyNK6Pj4BNCGypqsUGnQEbdDVSfvqmRgT5Y7ImGBNCAzEsyB/xKkW3fVYK653pflaX6pBVZ5Z+H6dS4KaESFwTF95lhSVXlepw15F82IWzJsLKUemIb/Z3zq6rx//tzUZhvRV+chneHZ7i1shIq0PgpZwSvJVfDgHniMXXhiRhGlNc9Vs5dWZM35WBGpsDZ6qDsGJUuttpaIQQWFmqw1NHi1HVJDjrIwMGBjR9OOd83ZVpOjqqMQWCgMCwIH8kdWKULnUduxD4u6au4TvCgN0Go5QyrlGcSoEwXx9orTa3aytcGhWGlzw4yII6RwiBDToDIpS+GNGLC8TX2R3SQyOtxYoSs7VhZq+zroexlQcCcjiv8U12R5vpB8MVvtIMxdPDgnDuCdQ/sjoELv/7KLZXG6FR+OCX8YOR0EUDf3ZXG3FXRgEyjPVI9Vfi1/GDu63YdlfLNZlx7o4M1NodGB7kh1HBAVKap8hmqZ6Ce2CWl85qw39yS7G8qBLWhtDN+JAAPJ4e1ydmJBARUc9gwJ+ogcXhwCfFlXg1t9Ql0O9ufQDq/ZYVVeDRrELYBRCjVGD5iFSM9tBoP5PdgX/nluKdgnLYhfPGb258BFLcvPGqtNrwdXkVCprkkPaTyzA9IhSzYzSYog7u1pE7eqsNNx3MxSa9c2bERVFheG1IkltFNi0OBz4ucn6W9A0BQY3CBzU2u1Q7o1GU0heTNcE4SxOCM9RBvSI4KITA3wYTlhVp8VVZlXRzFeIrx9y4CNyYEOnRYn9L88vxZHYxAGBMcAA+G5XWanHEErMFV+49hgxjPXxkwL8HJ+LK2PBWt51vMuOWQ3nY1TDK9ZTQQLw9LJkzgQg/V1Rj3v4cAMCdydF4MC223ffkmcy4N6NA6hfCFb64JyUaJ4cGYlCgH1ScLUIeVG21SQ+J1+sMLt+PzfnLZYhsSO3WtLbC6OCAEwqoEjXlEAL5LvU/nGnMWmqbzdMPDm/4iVL6erQ9lpqtmLrTWXx2dHAAvhk7wGN9sUMI/FZZg7fzy6X0MQqZDN+NHeix6+feYk2ZHosaUiS1RSWXSXWiUvyVOEMTjCnq4C65rqq3O/BBoRZv5JehxuZ80JTir8QjaXG4MDKU/RoREbWJAX+iZmpsdnxfXoUAH7kzP3gH6wNQ77ZJZ8CNB3NRZbPDTy7Da0OScEm0+oS2uVlvwH0ZBdKI9eFBfnh1SBJGdXAEm0MIbK82YnWpDt+WV7mkuIlQ+DbkllfjpCD/Lr3IzzLWY+7+Y9L5PJAagzuTozu8z2qrDW/kl+ODQq00jV0ll+GU0KCGIH8whgT69eobluJ6C94v1OK/xZXSNH+lTIbLY9S4JTEKg04gz78QAs8dK8Gb+eUAgCnqYHx4Ukq7tTf0Vhuu3XdMSlXxWHocbk2KOm6978qrcE9GPmpsDsgB3J0Sg7tSollQlCTPZRfjjYb29/GI1FZnjNgcAu8XavFSTglMDZ/l/4vR4IkBca0+nCLyJCEEck0WbNIbYBPCZcQtaytQT6ux2XGooa6XSi7zePrB9myrqsWsv4/CLoC5ceF4aXDiCW3P7HDgyzI93skvd5nxOD4kAA+mxWKSumtTB/WU3ytrsLWq9rhUTxVW23GzjZobGKDCWZoQTNYE49SwILcGyLTGIQTWlOnx/LESabaIRuGDu1NiMDcunKkYiYjILQz4E1G/k1Nnxtz9x6SbmGtiw3FhVCgmhgZ1KLd/ldWGZ7KL8VlDTlqVXIZ7U2KwMDHqhHO+m+wO/FxRjdWlemzQ17jcaAwJ9MPsGA0uj1Z7PC3RusoaLDyYC4PdAX+5HG8NS8IFkWEntM3Cegt+qahGqr8KE0/wJqin1Njs+KSoAh8UVqDU8s9U/WnhIViUFIWJoYEdCjbZHAIPZBZIbefiqDC8OTTJ7Zs4o92OGw/k4neds/juosQoPJYeC5lMBpPdgSeOFkkprGJVCiwZmozT1Jz2Ta7sQuCqvdn4Q1+LEF85fh43GKkBrjVEDhjqcHdGAfYZnGnKkvyUeHlwYpfniiYiIvc1nS342pC2Z/+1ptpqwyfFlfigUIuyJoWNp0eE4NbEqH6bPsYhBHRWu0uqpzKLDQdqTdigqzkuBaxSJsPEsEBMVgfjrPAQDGthcEu93QGt1dZkm//UkdheXYuDtfUAnLN9b0yIxO3J0T2a5pOIiPoeBvyJqF+qsdmx8OA/AVPAeVHdOPp8Sjujz78vr8LDWYUob7ghOjUsEP8enIS0AM8X3C03W/FVuR6rS/U40KQ2gBzAmepgzI5R47zI0E4XmrQ5BHbXGPFjRTXeK9DCASBepcAnI9MwPMjfMyfhJcwOB9aU6fFOvhaZdfXS78eGBGB8SKCURiKyyejTcIWvywOgersDiw7l4ceKagDAdfERWDwwHvIOjk61OgTuOJKPNWV6AMCVMRrclBiJRYfycMToPLap4SF4bUhSp4qyUv9QYbFh+s4MFJmtGBboh+/HDUKAjxwmuwP/yS3FkiZpym5MjMT9qTEsaktE1MsIIXDjwVx8r62Gn1yGuXERUoqrqCa56DUK3+NmLhfXW/BeoRafNpvNODtGjYWJURh4ArMZvZ1DiIbAv7P2yI5qo5QKslGk0hdjggNQY7OjwuoM7Dem6GmNDMCsGDUeTI09rqYTERGROxjwJ6J+yy4ElhVV4PvyKuysMR6XXz7aJb98MCKUvig1W/FwZqEUrA3xlePx9HhcHavpcMC2Mw7VmrC6VIc1ZXqX0VeBPnJcGBmG2TFqnBYW1O6x5JnM2KAzYKPOgE16g0v6oImhgfjgpJRekU+/t3IIgXWVNVjSJK9tWzQKH+mmW2e1SSO37k2JwT0pHU+X1PQ4Hj9ahA8KK1x+r5TJ8PiAONwQH8E0F9Su3TVGXLL7KCxCYFa0GlfHhuPejAIcMzlnQQ0L9MO/hyRhjJflbCYi8ia1NjvO35XpkoanORmc9VcaBygo5XJs0NVI18AhvnLMj4vADR6uV9RfGG12bKmqxcaGBwDZptb/LRqF+fpIg0WilL6IVikwO1qNk3pxcWsiIur9GPAnIgJgsNmxRV+LDXoDNuhqkGtyLcAmAzAiyB85JrMUHJ8REYrnBiV4PK2OO+xCYJPegNWlevyorZLyagPO0fmzYjSYFa2WRmXVNtyArNcZsFFXI+Xnb2pksD/OjwjFoqQoFt/sgN3VRqwp16PE/M9U73KLDUZ766O3ZACeG5SA6+IjTnj/Qgi8lleGF3NKAQBp/iosHZ6MkbxRpA74uKgCD2QWuvxOJZfh7uQYLEo68TRlRETU9YrrLXi3QIuCeouUJqbcYoPJ0faI8niVAjclRmJObDiCmDrGY/JNZvyhr0WWsR5qhQ+ilApENKk/EqH05TU3ERF1CQb8iYhakNtsBHxtk+BtlNIXzw9KOOHc9p5isNnxg7YKq0v12FJV67JsdHAA/OQyt2cwkOcY7XZUNMvLWm6xotpmx7TwUJzp4RzoP2qrkGGsx40JkbxZpw4TQuBfR/KxutSZIuqU0EC8MiQRAwKYyoGIqK8z2uzQWm0oN1sbcsc7r0n0VjvGhwTgoig1H+wSERF5EQb8iYjaYW3Icb9Rb4BSJsP8+AiEKXpncLyg3oI1pXqsLtPhaLMp3aomNQrOaqdGARH1Pya7A0vyy5Hop8TsGHW3pCkjIiIiIiIiz2LAn4jICwkhsMdQh2/LqwAAk9XBmBgWhAAfThsmIiIiIiIiIvJWDPgTEfUTQgiO6CciIiIiIiIi8mIc6klE1E8w2E9ERERERERE5N0Y8CciIiIiIiIiIiIi8gIM+BMREREREREREREReQEG/ImIiIiIiIiIiIiIvAAD/kREREREREREREREXoABfyIiIiIiIiIiIiIiL8CAPxERERERERERERGRF2DAn4iIiIiIiIiIiIjICzDgT0RERERERERERETkBRjwJ0lhYSFkMhlkMhkKCwt7+nCIXLB9Um/G9km9Hdso9WZsn9SbsX1Sb8b2SURELWHAn4iIiIiIiIiIiIjICzDgT0RERERERERERETkBRjwJyIiIiIiIiIiIiLyAgz4ExERERERERERERF5AQb8iYiIiIiIiIiIiIi8AAP+RERERERERERERERegAF/IiIiIiIiIiIiIiIvwIA/EREREREREREREZEXYMCfiIiIiIiIiIiIiMgLyIQQoqcPgoiIiIiIiIiIiIiITgxH+BMREREREREREREReQEG/ImIiIiIiIiIiIiIvAAD/kREREREREREREREXoABfyIiIiIiIiIiIiIiL8CAPxERERERERERERGRF2DAn4iIiIiIiIiIiIjICzDgT0RERERERERERETkBRjwJyIiIiIiIiIiIiLyAgz4ExERERERERERERF5AQb8iYiIiIiIiIiIiIi8AAP+RERERERERERERERegAH/LlZeXo7vv/8ejz/+OM4//3xERERAJpNBJpNh/vz5HtuPzWbDnj178O6772LBggUYOXIkfH19pX3l5ua6tZ2UlBTpPW39pKSktLut8vJyPP300zjttNOg0WigUCgQFhaGcePG4f7773f7mGw2G5YuXYozzjgDkZGR8Pf3R3p6Om6++WYcPHjQrW1Qy9g+O98+58+f79axdOT8yFV/bp9lZWV49NFHMW7cOISFhcHf3x+pqamYN28etm3b1qHzW7FiBaZNm4aYmBj4+fkhOTkZ11xzTYe3Q67YPjvfPp988km3+88NGza4dX7kqq+1z6YqKirw0ksv4fTTT0dMTAxUKhXi4uIwceJE3HfffW61sa1bt+Kaa65BcnIy/Pz8EBMTg+nTp2PFihUdOhb2n12D7bPz7ZP9Z9frr+3z6NGjWLFiBe666y6cfvrpCAgIkI5l+fLlHT433r8TEfUwQV0KQKs/8+bN89h+nnzyyTb3lZOT49Z2kpOT29xO409ycnKb2/n555+FWq1ucxv+/v7ik08+aXM7Wq1WnHzyya1uQ6VSiffff9/NvxI1x/bZ+fY5b948t46lI+dHrvpr+/zmm29ESEhIq++XyWTiwQcfbPd46urqxIwZM1rdjlwuF08++aRb50bHY/vsfPt84okn3O4/169f794filz0tfbZaNWqVSI8PLzNbV588cVtbuOJJ54Qcrm81fdfcMEFwmQytbkN9p9di+2z8+2T/WfX64/tc8OGDW2+b9myZW4fB+/fiYh6B19Qt0lKSsKQIUPwyy+/eHzbQgjptZ+fH0aPHg2tVovs7OxObe/iiy/Gs88+2+pypVLZ6rJjx47hkksugclkkrZ17bXXIikpCcXFxfj666/x8ccfw2QyYf78+UhLS8Ppp59+3HbsdjsuvfRS7NixAwBw2WWX4cYbb4RGo8Fff/2FZ599FuXl5bj55psRHx+P888/v1PnSk5snx1rn43i4uLw888/t3m88fHx7ZwRtae/tM9NmzZh1qxZsFqtUKlUuP3223HBBRcgODgYR44cwX/+8x/s2rULL7zwAjQaDe67775Wt3X99dfjxx9/BACcddZZuOOOOxAXF4f9+/fjueeeQ3Z2Np588knExsbipptu6tS5khPbZ8fbZ6P9+/e3uTw1NbXdbVDb+kr7/OSTT3DdddfB4XAgLi4OCxcuxGmnnYbw8HBUV1dj//79+Oabb6BQKFrdxrvvvounnnoKAJCeno6HH34YI0aMQHFxMV5//XWsX78eP/zwA66//np8/vnnrW6H/Wf3YfvsePtsxP6z6/WX9tn0WORyOYYOHYrAwEBs3769Q8fB+3ciol6k55419A+PP/64+O6770RpaakQQoicnJwuGSHw008/iaVLl4rdu3cLq9UqhHAdgdzREYAncmy33nqrtN/77ruvxXXeeOMNl5EsLfnwww+ldRYtWnTc8qysLGmU4YABA6TzJvexfXa+fTYef3ujYanz+lv7dDgc4qSTThIAhI+Pj/jtt9+OW8dsNoupU6cKAMLPz0/k5+e3uK1169ZJxz9z5kxhs9lclmu1WpGUlCQAiLCwMKHT6Tp1zP0Z22fn22fTEarUNfpa+zx06JBQqVQCgJg6daowGAytrms2m1v8fWVlpQgNDRUARFJSktBqtS7LbTabmDlzZrujn9l/dj22z863T/afXa8/ts/MzEzx8ssviw0bNkjvX7ZsWYdH+PP+nYio9+CVQjfrqguGlvRUQHXMmDECcE7rr66ubnEdh8MhNBqNACA0Gk2L6wwdOlRabjQaW1zn+eefl85x1apVnT5mcmL7dHKnfTLg3/28vX3u2LFD2uecOXNaXS8zM1Na75577mlxnfPPP18AEL6+vqKgoKDFdVasWCFt56WXXurUMdM/2D6d3GmfDFh1v97ePs855xwBQMTFxbX63dyeF198UdrvihUrWlynoKBA+Pj4CABixowZLa7D/rP7sX06udM+2X92v/7QPlvSmYA/79+JiHoPFu0lj7NYLACA8PBwhISEtLiOTCZDWlqay/pNZWZm4vDhwwCAK664AgEBAS1up2nhpK+++upEDpv6CU+0T6KusHPnTul1W1OcBw4ciPT0dADAl19+edxyg8GAdevWAQDOPfdcJCQktLidyy67TPoMsP+k9niqfRI1d+TIEanPuu2221r9bm7P119/DQAICQnBZZdd1uI6CQkJOPfccwEA69atg8FgcFnO/pOa603tk6g5T7VPT+D9OxFR78KAP3nc4MGDAQCVlZWoqalpdb1jx465rN/U5s2bpdeTJ09udRsxMTEYNGgQAGDLli2dOl7qXzzRPom6QmVlpfQ6Ojq6zXUbl+fm5iI/P99l2Y4dO6QHVW31n0qlEqeccor0HqvV2qnjpv7BU+2TqLnVq1dLry+66CLpdU1NDbKysqDVatvdhsVikXJNn3rqqW3WomjsF81ms8uDLID9Jx2vN7VPouY80T49hffvRES9CwP+1KI//vgDo0ePRnBwMAICApCamor/+7//w9dff+1S1KclCxcuBAAIIfDcc8+1uM6SJUug0+lc1m/q0KFD0ushQ4a0ub/G5QUFBTAajW2uS96hp9tnU5WVlZg8eTLCw8OhUqkQGxuL6dOn46233kJdXV0nzo76us62z6CgIOl1dXV1m/tourxpf9n8/93tP202G7Kystpcl7xDT7fP5qZNm4aoqCgolUpERUVhypQpeOGFF6DX6908I+rr/vzzTwCAQqHAkCFD8PPPP+O0005DaGgoBg0ahKioKCQlJeGRRx5p9UF9ZmYm7HY7APf7PQDSaNRG7D+pud7UPptj/0meaJ+ewvt3IqLehQF/alFOTg727t2L2tpamEwm5ObmYtWqVbj00ktxxhlnoKioqNX3Tp06FY888ggA4MUXX8Tll1+ONWvWYOfOnfjuu+9www034F//+hcAYN68ebjuuuuO20ZhYaH0urXp1I0SExMBOAO4Td9H3qun22dTtbW1+OOPP6DT6WCxWFBaWopffvkFt99+OwYNGoStW7d67sSpT+hs+xw6dKj0euPGja1uv7y8HEeOHJH+v/kI6s70n4Dzpou8X0+3z+Z+/fVXaLVaWK1WaLVabNy4EQ899BDS0tLwzTffdPDsqC9qDBKFhYXh9ddfx3nnnYdt27a5rFNQUIDnnnsOEyZMaLFNearfY/9JzfWm9tkc+0/yRPv0FN6/ExH1Lgz4kwulUomLLroIb731FjZs2IA9e/Zg/fr1eO6556Qv5i1btmDq1KltjvB79tln8euvv+Kss87CmjVrcPnll+Pkk0/GRRddhI8++gijRo3CF198geXLl8PHx+e49zfNWdl0VGFLAgMDpde1tbUdPWXqQ3pL+wScef5POeUULF68GGvXrsXu3buxdetWvPvuu5gwYQIAoKioCNOmTcOePXs8/8egXudE2+ekSZOgVqsBAMuWLWt1xOhjjz0mjRQE0GIO6kbsP6lRb2mfjUaMGIHHHnsM3333HXbt2oU///wTH3/8MaZNmwYAqKqqwuWXX461a9ee0HlT79c4o666uhr33nsvQkJC8NZbb6GsrAz19fXYuXMnLrjgAgBARkYGZs2a5dLGAM/1e+w/qbne1D4bsf+kRp5on57C/pOIqJfpuXrB/VNOTo5UlX7evHlduq958+ZJ+8rJyXHrPXq9vtVlNTU1Ytq0adI277rrrlbXLSoqEldffbXw8/OT1m/64+PjIy688EJx8ODBFt9/9tlnS+va7fY2j/mxxx6T1t20aZNb50ktY/t0r322dywOh0M8/PDD0vbGjh0rHA6HO6dIbegP7fOVV16R1omNjRWffPKJqKioEGazWezdu1fMmTNHABBKpVJa75lnnnHZxvXXXy8ty87ObvOYP/zwQ2nd//73v26dJ7WM7dO99tnesQghxNKlS6X3x8XFCZPJ5NY5Uut6c/v08fGR1pfL5WLDhg3HrWO328X5558vrbdy5UqX5Z988om07MMPP2xzf9nZ2dK6N9xwg8sy9p89g+3zH221TyHYf/YEb2+frVm2bJn0nmXLlrW7Pu/fiYh6F47wJxdhYWGtLgsODsaqVaug0WgAAO+9955U2Kypw4cPY8KECfj8888RGBiIt99+GwUFBVK6k08++QTx8fH4/vvvceqpp7aYGsDPz0963dI+mjKbzdJrf3//9k6R+rDe0j7bOxaZTIbFixfjnHPOAQBp9D95N0+0z7vvvhsLFiwAAJSUlGDu3LmIiIiASqXCqFGj8NlnnyE1NRX333+/y7abYv9JLekt7bO9YwGAm2++GTfccAMAoLi4GF9++WV7p0d9WNM+68ILL2yx2KNcLsfLL78s/f///ve/VrdxIv0e+09qrje1T4D9J7nyRPvsimNh/0lE1PMY8KcOCQ0NxZVXXgkAMBqN2Llz53HrzJ07F0VFRQgICMCmTZtwyy23ICEhAQqFAtHR0bj22mvx559/Ijo6GjU1Nbj66qtdvvQB1wBBe9P8mhb6aW/6IHm37mqf7rr55pul123lvKb+wZ32KZPJ8P7772P16tU47bTTXFJKhYaG4tZbb8Xu3btd+rrGNCuN2H9SZ3RX+3QX+8/+o2mf1ZiSpCXDhw9HfHw8AGDHjh2tbuNE+j32n9Rcb2qf7mL/2X94on12xbGw/yQi6nkM+FOHDRs2THrdvLjf3r17pSDBnDlzXIr8NRUbG4vbb78dgHP0yU8//eSyvGmhn/YK+TQWtJLJZO0WCCLv1x3t0xPHQv2Tu21i1qxZ2LJlC2pqapCdnY28vDxUVlbirbfeQlhYmEv+9OHDh7u8tzP9J+BaKJD6p+5on54+Fur7mvY97fVDjcu1Wq3L7z3V77H/pOZ6U/t0F/vP/sMT7dNTeP9ORNS7MOBPHSaTyVpddvjwYen12LFj29zOuHHjpNdHjhxxWdb0QrX5suYalycmJroUAKL+qTvapyeOhfqnjraJgIAApKWlISkpyWU09a5duwA4p0+PHDnS5T2d6T99fX0xcODADh0beZ/uaJ9ddSzUdzV9KNReMcnG5b6+vi6/HzRokNQG3e33ABz34J/9JzXXm9qnu9h/9h+eaJ+ewvt3IqLehQF/6rBDhw5Jr+Pi4lyWNb2AsNlsbW7HarW2+D4AmDRpkvS6ramopaWlyMzMBACcfvrpbe6P+ofuaJ+eOBbqnzzRJo4ePYq///4bAHDppZdCoVC4LD/55JOhVCoBtN1/WiwW/Pnnn9J7mm+H+p/uaJ/deSzUN5x55pnS62PHjrW5buPyxtQUjZRKJSZMmAAA2LZtW5v5oxv7RZVKhfHjx7ssY/9JzfWm9uku9p/9hyfap6fw/p2IqHdhwJ86pLq6GitXrgTgHNnX/EI0NTVVer1p06Y2t9X0QqDp+wDnSJjGUS2rVq1CXV1di9tYvny59PrSSy9t/wTIq3VX+3TXu+++K71uqYgW9S/ttU93Pf7449LrW2+99bjlwcHBUsHo3377rdVp1WvWrEFNTQ0A9p/Ufe3TXew/+4+LLrpICph/9dVXra63ceNGVFZWAgDOOOOM45ZfcsklAICamhqsWbOmxW0UFhbit99+AwCcc845xxWVZv9JzfWm9uku9p/9h6fapyfw/p2IqHdhwL8PWL58OWQyGWQyGZ588sku289PP/0Ek8nU6vLa2lpcccUV0sXCDTfcAJVK5bLOmDFjpFEDX375JdatW9fitnbv3o2lS5cCcAYWzj777OPWuffeewEAOp0O999//3HLs7Oz8fzzzwMABgwYwAuGHtIf2+eff/6JkpKSVo9FCIFHH31UumkbNWoUR7D0kL7UPgHAYDC0WejsxRdfxIoVKwA4C1C31q4a+0+bzYZbb731uGneFRUVeOCBBwAAYWFhWLBgQRtnR12lP7bP/fv34+jRo20e73vvvYcPPvgAABATE8Pv9x7SXe0zPDxc6oO2bNniEgxqVFtbizvvvFP6/4ULFx63zoIFCxAaGgoAePDBB6X23Mhut2PRokVSf3jfffe1eDzsP/uG/tg+2X/2HX2tfXoK79+JiHqPrkngRpLNmze7XJhVVFRIr48ePXrcl/L8+fM7tZ/a2lp88cUXLr9rut8vvvgCERER0v+PHj0ao0ePdln/hRdewJw5c3DZZZdh0qRJSE9PR1BQEKqrq7F161YsXboU+fn5AIDBgwe3ePEil8vx/PPPY+7cubDb7Tj//PNx8803Y+bMmYiKioJOp8Mvv/yCN998U3rq/9BDDyEsLOy4bc2bNw8fffQRtmzZgiVLlqC0tBQ33ngj1Go1tm/fjmeeeQY1NTWQy+V44403uiwfoTdj++xc+/zpp5/wwgsv4LzzzsPUqVMxbNgwhIWFwWw2Y9++ffjoo4/w119/AXA+MHj//feZT7UT+lv7BICMjAxMnToVs2bNwrnnnou0tDTY7XYcOXIEy5Ytwx9//AHAWWPijTfeaPWczj77bFx55ZVYuXIlvv32W0ydOhV33nkn4uLisH//fixevFg6nhdffBFqtdrtvxc5sX12rn3u2rULCxYswFlnnYXzzz8fI0aMQHh4OGw2G44cOYLPPvsMv/zyCwDAx8cH7733HvP7dkJfap8A8NRTT+GHH35Afn4+FixYgO3bt2PWrFkIDQ3FgQMH8OKLL0p1eG655ZYWZ6BoNBq8+OKLWLhwIfLy8jBx4kQ88sgjGDFiBIqLi/Haa69h/fr1AICrrroKU6ZMafGc2H92PbbPzrVP9p/doz+2z8b9NX2ov3nz5hZfA86HSeedd95x2+D9OxFRLyKoS82bN08AcPunJcuWLZOWP/HEEy2uk5OT06H9tLSdyZMnu/XeyZMni8LCwjbP++WXXxYKhaLN7chkMnHXXXcJh8PR6na0Wq04+eSTW92GSqUS77//fpvHQq1j++xc+3ziiSfcOpakpCSxefPmdv8dqGX9sX3u2LGj3W3MnDlT6HS6dv9+dXV1YsaMGa1uRy6Xt/o3ofaxfXaufTY957Z+wsPDxddff93mvwG1ri+1z0aHDh0S6enpbb7/+uuvFxaLpc1zf/zxx4VMJmt1GzNmzBAmk6nNbbD/7Fpsn51rn+w/u0d/bZ/JycluH8vkyZNb3Q7v34mIegc+UiXJK6+8gnXr1mHbtm3IyMhARUUFqqqqEBAQgLi4OEycOBFXXXUVpk2b1u5o5XvvvRczZ87Ee++9h40bN+Lo0aOora1FQEAAkpOTMWnSJCxYsADjxo1rczsRERHYunUr3n//fXz++ec4fPgwjEYj4uLicM455+COO+7A8OHDPflnoF6qN7XP6667DtHR0di2bRv27duH8vJyVFZWwtfXFxERERg7dixmzpyJq6++Gn5+fl3x56BexlPtc/DgwXjrrbewbt067N+/H2VlZbDb7YiJicHpp5+Oa665BtOmTXPrmPz9/fHDDz/g888/x/Lly7F3715UVVUhOjoaZ5xxBm677TaceuqpnvoTUC/Wm9rnjBkz8OGHH2Lbtm3Ys2cPysrKUFlZCSEENBoNRo0ahfPOOw/z589HSEiIp/8U1IsNHToUe/fuxTvvvIMvvvgCWVlZqK2tRVRUFE4//XTcfPPNOOuss9rdzlNPPYXp06djyZIl2LRpE8rKyhAWFoZRo0bhuuuuw1VXXdXuNth/UnO9oX2y/6TWeKp9egLv34mIegeZEEL09EEQEREREREREREREdGJYdFeIiIiIiIiIiIiIiIvwIA/EREREREREREREZEXYMCfiIiIiIiIiIiIiMgLMOBPREREREREREREROQFGPAnIiIiIiIiIiIiIvICDPgTEREREREREREREXkBBvyJiIiIiIiIiIiIiLwAA/5ERERERERERERERF6AAX8iIiIiIiIiIiIiIi/AgD8RERERERERERERkRdgwJ+IiIiIiIiIiIiIyAsw4E9ERERERERERERE5AUY8CciIiIiIiIiIiIi8gIM+BMREREREREREREReQEG/ImIiIiIiIiIiIiIvAAD/kREREREREREREREXoABfyIiIqIOWr58OWQyGWQyGXJzc3v6cLpdRkYGlEol/Pz8UFRU5LHt3nrrrZDJZJg3b57HtklERERERNSfMOBPRERE/UZubq4UqD+Rn/7u7rvvhtVqxQ033ID4+HiPbfeBBx6AUqnEf//7X+zatctj2yUiIiIiIuovGPAnIiIiIrdt3boVP/74I5RKJR588EGPbjspKQnz5s2DEAKPPfaYR7dNRERERETUH8iEEKKnD4KIiIioO1itVmRkZLS6fMSIEQCA8ePHY9myZa2ud9JJJ3n82PqKGTNmYO3atZgzZw4+/fRTj28/IyMDQ4YMAQDs3LkT48aN8/g+iIiIiIiIvBUD/kREREQNGtP1TJ48GRs2bOjZg+mFMjIyMHToUAghsHbtWpx33nldsp9x48Zh9+7dmDdvHpYvX94l+yAiIiIiIvJGTOlDRERERG5ZtmwZhBCIiorCueee22X7mTNnDgBg9erVMBgMXbYfIiIiIiIib8OAPxEREVEHLV++XCrgm5ube9zyKVOmQCaTYcqUKQCAo0ePYuHChUhLS4O/vz9SUlJwww03IC8vz+V9Bw4cwHXXXYe0tDT4+fkhMTERt9xyC8rLy906rq+//hqzZ89GUlIS/Pz8EBYWhvHjx+Opp56CXq8/0dPGqlWrAAAXX3wxfH1921z3q6++wiWXXIKEhASoVCoEBwcjLS0NZ5xxBh577DFs37691fdefvnlAIC6ujp88803J3zcRERERERE/UXbd2pEREREdEJ+++03XHbZZS4j1fPy8vDRRx/h+++/x8aNGzFkyBCsWLEC8+fPh8VikdYrLCzE0qVLsXbtWmzduhVxcXEt7kOv12PWrFn4/fffXX5vNpuxa9cu7Nq1C2+//Ta++eYbnHLKKZ06j7y8POTk5ABAm9uw2+246qqrsHr1apffWywW1NbWIicnB5s3b8batWuxc+fOFreRnJyMmJgYlJaWYu3atbjmmms6dcxERERERET9DUf4ExEREXWR4uJiXHHFFQgLC8Obb76Jv/76C5s2bcKdd94JmUyG8vJyLFiwADt27MDcuXORnp6ODz74ANu3b8f69etx7bXXAnAG2+++++4W92E2m3Huuefi999/h4+PD6699lqsWLECf/75JzZt2oTFixcjPDwc5eXlmDFjxnGzCty1adMm6fXJJ5/c6nrvvPOOFOyfNGkSli9fjk2bNmH37t349ddf8e9//xtTp06Fj49Pm/ubMGECAGDjxo2dOl4iIiIiIqL+iCP8iYiIiLpIVlYWBg4ciC1btiAyMlL6/aRJk+Dr64tXXnkFW7ZswQUXXIAJEybg119/RUBAgLTelClTUF9fj9WrV+PLL7+EVqt12Q4APP3009i9ezfCwsLw22+/Ydy4cS7LJ02ahDlz5uDUU09FSUkJHn74YXz22WcdPpetW7cCAJRKJYYNG9bqeo1pfyZOnIj169cfl/rn3HPPxd133w2dTtfm/saNG4dvv/0WRUVFKCsrQ3R0dIePmYiIiIiIqL/hCH8iIiKiLvTGG28cF6QHgEWLFkmvKyoq8MEHH7gE+xvdcsstAACbzYZt27a5LKutrcWSJUsAAM8888xxwf5GycnJeOyxxwA4C+EajcYOn0dhYSEAIDw8vM3R+aWlpQCA0047rc08/xqNps39RUVFSa+PHTvWkUMlIiIiIiLqtxjwJyIiIuoiYWFhmD59eovLUlNTERwcDAAYOXIkhg4d2uJ6o0aNkl43D3xv3LgR1dXVAIBZs2a1eSxnnnkmAMBqtWLXrl3unUATWq0WAKBWq9tcLzY2FgDw3XffoaKiosP7adT0gUDjQwQiIiIiIiJqGwP+RERERF1k4MCBkMlkrS4PCwsDAAwaNKjddQC4FP4F4FL0NjY2FjKZrNWfk046SVq3MwH0xhQ87QX8582bBwA4evQoBgwYgOuvvx4rVqyQZgi4q+l+OjMjgYiIiIiIqD9iwJ+IiIioi7SUoqcpuVze7nqN6wCA3W53WVZeXt6p46qrq+vwe/z8/AAAJpOpzfWuv/56PPzww/D19UV1dTWWLVuGq6++GomJiRgwYADuuecet1L0NN2PQqHo8PESERERERH1RyzaS0RERNRHNX0AsHv3brcD4wkJCR3eV2MdgvaK7QLA4sWLcdNNN+Gzzz7DunXr8Oeff6Kurg7Z2dl49dVX8eabb+KNN97AwoULW91G0/00neVARERERERErWPAn4iIiKiPCg8Pl15HRkZ2KpDvrsaAv16vd2v95ORkPPzww3j44YdhtVqxY8cOrFq1Cu+++y7q6+uxaNEiTJw4EWPGjGnx/U33k5SUdOInQERERERE1A8wpQ8RERFRH9U0WL5ly5Yu3deIESMAANXV1R1OJaRQKHDaaafhtddew+effw4AEELgiy++aPU9mZmZAACVSoUBAwZ08qiJiIiIiIj6Fwb8iYiIiPqoc889V8r//8Ybb0AI0WX7OuOMM6TXO3bs6PR2zjnnHOl1RUVFq+s17mPMmDHM4U9EREREROQmBvyJiIiI+qiwsDDcdtttAICtW7firrvugsPhaHX9srIyfPDBB53a14QJE6BSqQAA27dvb3W9Tz/9FDabrdXlv/zyi/Q6NTW1xXXMZjP27dsHAJg2bVpnDpeIiIiIiKhfYsCfiIiIqA97+umnMXHiRADA66+/jrFjx2LJkiXYsmUL/v77b6xfvx5vvfUWLrnkEiQlJWHp0qWd2o9KpcL06dMBAOvWrWt1vWuvvRYJCQlYtGgRPv30U2zbtg179uzBTz/9hHvuuQdz584FAAQFBWHOnDktbuOPP/6A1WoFAFx66aWdOl4iIiIiIqL+iEV7iYiIiPowlUqFX3/9FfPnz8eaNWuwd+9eadR/S0JCQjq9rxtvvBHffvsttm7diry8PCQnJ7e4XllZGd555x288847LS4PDQ3FypUrkZiY2OLyxjz/w4cPx+jRozt9vERERERERP0NA/5EREREfVxwcDC+/PJLbN68GR9//DE2bdqE4uJimEwmhISEID09HRMmTMAFF1xwQilyzj//fCQkJKCwsBArVqzAgw8+eNw6Bw4cwA8//IDNmzcjOzsbZWVlqKqqQnBwMIYMGYLp06fjlltuQXR0dIv7qK+vx5o1awAAixYt6vSxEhERERER9Ucy0ZXV3YiIiIjIq7z00kt44IEHMGjQIBw+fBhyuWczRH766ae49tprER4ejtzcXAQFBXl0+0RERERERN6MOfyJiIiIyG2333474uPjkZmZiVWrVnl02w6HA8899xwA4L777mOwn4iIiIiIqIMY8CciIiIit/n7++Opp54CADz77LPw5GTR1atX4/Dhw0hKSsK//vUvj22XiIiIiIiov2AOfyIiIiLqkPnz56OsrAwWiwUlJSWIi4vzyHbtdjueeOIJnH322fD39/fINomIiIiIiPoT5vAnIiIiIiIiIiIiIvICTOlDREREREREREREROQFGPAnIiIiIiIiIiIiIvICDPgTEREREREREREREXkBBvyJiIiIiIiIiIiIiLwAA/5ERERERERERERERF6AAX8iIiIiIiIiIiIiIi/AgD8RERERERERERERkRdgwJ+IiIiIiIiIiIiIyAsw4E9ERERERERERERE5AUY8CciIiIiIiIiIiIi8gIM+BMREREREREREREReQEG/ImIiIiIiIiIiIiIvAAD/kREREREREREREREXoABfyIiIiIiIiIiIiIiL8CAPxERERERERERERGRF2DAn4iIiIiIiIiIiIjICzDgT0RERERERERERETkBRjwJyIiIiIiIiIiIiLyAgz4ExERERERERERERF5AQb8iYiIiIiIiIiIiIi8wP8DPnDAXmlFfC0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from matplotlib import pyplot as plt\n", + "\n", + "# Prepare data for plotting\n", + "data = electrical_series.data[:1000, :10]\n", + "timestamps = electrical_series.get_timestamps()[:1000]\n", + "df = pd.DataFrame(data)\n", + "df[\"Time (s)\"] = timestamps\n", + "df.set_index(\"Time (s)\", inplace=True)\n", + "df.columns.name = \"electrodes\"\n", + "channel_name_mapper = dict(zip(df.columns, electrical_series.electrodes[\"channel_name\"][:]))\n", + "df.rename(channel_name_mapper, axis=1, inplace=True)\n", + "\n", + "fig, axes = plt.subplots(nrows=len(df.columns), sharex=True, sharey=True, dpi=200)\n", + "lines = df.plot(subplots=True, ax=axes, legend=False, linewidth=0.8)\n", + "\n", + "# Hide y-axis labels\n", + "for ax in axes:\n", + " ax.yaxis.set_visible(False)\n", + "\n", + "# Remove box around the plots\n", + "for ax in axes:\n", + " ax.set_frame_on(False)\n", + "\n", + "# Get handles and labels for all lines\n", + "handles, labels = [], []\n", + "for line in lines:\n", + " h, l = line.get_legend_handles_labels()\n", + " handles.extend(h)\n", + " labels.extend(l)\n", + "\n", + "# Create a single legend box\n", + "fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(1.2, 0.8), frameon=False)\n", + "plt.xlabel('Time (s)')\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f4cdef31-3032-4abd-8c31-107653a6b54a", + "metadata": {}, + "source": [ + "The electrodes table describe the electrodes that generated this data. Extracellular electrodes are stored in an \"electrodes\" table, which is a [DynamicTable](https://hdmf.readthedocs.io/en/stable/hdmf.common.table.html#hdmf.common.table.DynamicTable) and can be can be converted to a pandas DataFrame for convenient analysis using `nwbfile.electrodes.to_dataframe()`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "53e37829-e7ea-4ac6-a47a-cf6ac70f205b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
locationgroupgroup_namechannel_namechannel_depth_um
id
0unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at...ElectrodeGroupAP1NaN
1unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at...ElectrodeGroupAP2NaN
2unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at...ElectrodeGroupAP3NaN
3unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at...ElectrodeGroupAP4NaN
4unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at...ElectrodeGroupAP5NaN
\n", + "
" + ], + "text/plain": [ + " location group \\\n", + "id \n", + "0 unknown ElectrodeGroup pynwb.ecephys.ElectrodeGroup at... \n", + "1 unknown ElectrodeGroup pynwb.ecephys.ElectrodeGroup at... \n", + "2 unknown ElectrodeGroup pynwb.ecephys.ElectrodeGroup at... \n", + "3 unknown ElectrodeGroup pynwb.ecephys.ElectrodeGroup at... \n", + "4 unknown ElectrodeGroup pynwb.ecephys.ElectrodeGroup at... \n", + "\n", + " group_name channel_name channel_depth_um \n", + "id \n", + "0 ElectrodeGroup AP1 NaN \n", + "1 ElectrodeGroup AP2 NaN \n", + "2 ElectrodeGroup AP3 NaN \n", + "3 ElectrodeGroup AP4 NaN \n", + "4 ElectrodeGroup AP5 NaN " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.electrodes.to_dataframe().head()" + ] + }, + { + "cell_type": "markdown", + "id": "a9f114f1-5e02-4382-96ef-53a9a5189260", + "metadata": {}, + "source": [ + "## Filtered ElectricalSeries\n", + "\n", + "\n", + "The processed ecephys data is stored in \"processing/ecephys\" which can be accessed as `nwbfile.processing[\"ecephys\"]`.\n", + "Within this processing module we can access the container of filtered traces as `nwbfile.processing[\"ecephys\"][\"LFP\"]` which can hold multiple processed `ElectricalSeries` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "281be40d-1a73-4b97-ad78-cf6ddbb8e0e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

ecephys (ProcessingModule)

description: Intermediate data from extracellular electrophysiology recordings, e.g., LFP.
data_interfaces
LFP
electrical_series
ElectricalSeries
starting_time: 1.1578276308196287
rate: 2500.0
resolution: -1.0
comments: no comments
description: Acquisition traces for the ElectricalSeries.
conversion: 1.949999928474426e-07
offset: 0.0
unit: volts
data
starting_time_unit: seconds
electrodes
description: electrode_table_region
table
description: metadata about extracellular electrodes
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
locationgroupgroup_namechannel_namechannel_depth_um
id
0unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5093309664\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x5082001440\\nFields:\\n description: no description\\n\\n location: unknown\\nElectrodeGroupAP1NaN
1unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5093309664\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x5082001440\\nFields:\\n description: no description\\n\\n location: unknown\\nElectrodeGroupAP2NaN
2unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5093309664\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x5082001440\\nFields:\\n description: no description\\n\\n location: unknown\\nElectrodeGroupAP3NaN
3unknownElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5093309664\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x5082001440\\nFields:\\n description: no description\\n\\n location: unknown\\nElectrodeGroupAP4NaN

... and 764 more rows.

units
description: Autogenerated by neuroconv.
waveform_unit: volts
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
spike_timesunit_nameoriginal_cluster_idchchannel_depth_um
id
0[1.229560964152963, 1.3083609641529605, 1.4348276308196297, 1.4672942974862941, 1.4885942974862942, 1.5085276308196285, 1.5370609641529605, 1.9147276308196304, 2.9152609641529637, 3.4175942974862963, 3.556427630819627, 3.7128942974862937, 6.825294297486295, 8.262494297486299, 8.427660964152963, 9.064727630819633]0243723890
1[1.2434276308196281, 1.25942763081963, 1.289860964152961, 1.3444276308196272, 1.4091276308196292, 1.4391942974862957, 1.4915942974862944, 1.5288276308196274, 1.5398942974862955, 1.5534276308196304, 1.560760964152962, 1.570360964152961, 1.587760964152963, 1.647494297486297, 1.687094297486297, 1.7204276308196285, 1.784694297486297, 1.8675609641529611, 1.897660964152962, 1.9601276308196276, 1.9868609641529602, 2.0486276308196274, 2.0730276308196274, 2.0811609641529607, 2.1615609641529616, 2.200594297486294, 2.2463276308196285, 2.335027630819628, 2.47732763081963, 2.7047276308196295, 2.733760964152964, 2.765194297486296, 2.7775942974862957, 2.79912763081963, 2.816094297486295, 2.894660964152962, 2.9151609641529603, 2.916060964152962, 2.9419276308196274, 2.9548276308196293, 2.9864276308196303, 3.003494297486295, 3.0837609641529617, 3.1048942974862968, 3.139594297486294, 3.1760609641529634, 3.204294297486296, 3.212060964152961, 3.2399942974862945, 3.284960964152962, 3.3018609641529615, 3.3212609641529625, 3.3363942974862937, 3.3583942974862957, 3.3937276308196296, 3.460694297486299, 3.4811276308196284, 3.525027630819629, 3.5486609641529583, 3.5714276308196276, 3.631994297486294, 3.7373609641529626, 3.7551276308196293, 3.7964609641529634, 3.8401609641529646, 3.903260964152963, 4.00472763081963, 4.020827630819632, 4.048127630819629, 4.07676096415296, 4.112960964152961, 4.19276096415296, 4.245194297486293, 4.260094297486297, 4.279060964152961, 4.284560964152959, 4.293727630819632, 4.3014276308196315, 4.314594297486295, 4.329460964152965, 4.340994297486297, 4.357760964152959, 4.367760964152964, 4.373960964152964, 4.38122763081963, 4.402727630819626, 4.4131276308196306, 4.4190276308196275, 4.434427630819627, 4.449994297486299, 4.4625609641529635, 4.475760964152961, 4.49156096415296, 4.501160964152959, 4.513527630819631, 4.5315942974862935, 4.539627630819631, 4.567527630819626, 4.579594297486295, 4.604627630819628, ...]1253763930
2[9.347527630819627, 9.576494297486292, 9.643327630819627, 9.664194297486297, 9.73236096415296, 9.79486096415296, 9.851260964152964, 9.883660964152966, 9.914327630819628, 9.971094297486296, 10.01576096415296, 10.061594297486295, 10.092560964152966, 10.16482763081963]2403403570
3[1.1631609641529614, 1.2562942974862956, 1.3536609641529616, 1.4228942974862946, 1.45302763081963, 1.5162609641529627, 1.5994276308196298, 1.6373276308196303, 1.6566609641529624, 1.6681276308196296, 1.6862942974862953, 1.719760964152961, 1.7319942974862954, 1.7612942974862946, 1.801827630819627, 1.949960964152961, 2.0402609641529637, 2.05522763081963, 2.1212276308196287, 2.248760964152961, 2.294460964152961, 2.3602276308196295, 2.586527630819628, 2.7032609641529604, 2.7758276308196272, 2.8612609641529616, 2.9922276308196274, 3.030494297486296, 5.580494297486297, 5.812894297486295, 5.901427630819626, 5.978294297486293, 6.024360964152962, 6.08412763081963, 8.198860964152964, 8.352594297486291, 8.45966096415296, 8.746694297486293, 8.806794297486292, 8.846260964152961, 9.109560964152962, 9.155527630819627, 9.25336096415296]3423673830

... and 1 more row.

" + ], + "text/plain": [ + "ecephys pynwb.base.ProcessingModule at 0x5037041344\n", + "Fields:\n", + " data_interfaces: {\n", + " LFP ,\n", + " units \n", + " }\n", + " description: Intermediate data from extracellular electrophysiology recordings, e.g., LFP." + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.processing[\"ecephys\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7ab8c6d2-06ca-4c31-93b8-fb5556e07c60", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

ElectricalSeries

starting_time: 29.74
rate: 2500.0
resolution: -1.0
comments: no comments
description: Acquisition traces for the ElectricalSeries.
conversion: 1.949999928474426e-07
offset: 0.0
unit: volts
data
starting_time_unit: seconds
electrodes
description: electrode_table_region
table
description: metadata about extracellular electrodes
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
locationgroupgroup_namechannel_namerel_xinter_sample_shiftrel_ychannel_depth_umwidthcontact_shapes
id
0unknown0 pynwb.ecephys.ElectrodeGroup at 0x6075195872\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x6075383104\\nFields:\\n description: no description\\n\\n location: unknown\\n0AP127.00.0000003840.0NaN12.0square
1unknown0 pynwb.ecephys.ElectrodeGroup at 0x6075195872\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x6075383104\\nFields:\\n description: no description\\n\\n location: unknown\\n0AP259.00.0000003840.0NaN12.0square
2unknown0 pynwb.ecephys.ElectrodeGroup at 0x6075195872\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x6075383104\\nFields:\\n description: no description\\n\\n location: unknown\\n0AP311.00.0769233860.0NaN12.0square
3unknown0 pynwb.ecephys.ElectrodeGroup at 0x6075195872\\nFields:\\n description: no description\\n device: DeviceEcephys pynwb.device.Device at 0x6075383104\\nFields:\\n description: no description\\n\\n location: unknown\\n0AP443.00.0769233860.0NaN12.0square

... and 764 more rows.

" + ], + "text/plain": [ + "ElectricalSeries pynwb.ecephys.ElectricalSeries at 0x6085278896\n", + "Fields:\n", + " comments: no comments\n", + " conversion: 1.949999928474426e-07\n", + " data: \n", + " description: Acquisition traces for the ElectricalSeries.\n", + " electrodes: electrodes \n", + " offset: 0.0\n", + " rate: 2500.0\n", + " resolution: -1.0\n", + " starting_time: 29.74\n", + " starting_time_unit: seconds\n", + " unit: volts" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " processed_ecephys = nwbfile.processing[\"ecephys\"][\"LFP\"]\n", + "\n", + "filtered_electrical_series = processed_ecephys[\"ElectricalSeries\"]\n", + "filtered_electrical_series" + ] + }, + { + "cell_type": "markdown", + "id": "462de2e0-d78f-409f-9527-ed386778e0c1", + "metadata": {}, + "source": [ + "# Access Units\n", + "\n", + "Spike times are stored in the `Units` table, which is a DynamicTable and can be can be converted to a pandas DataFrame for convenient analysis using `nwbfile.units.to_dataframe()`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "fecc7acc-9288-4c07-abd2-f9391a3f89e3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
spike_timesunit_namechshampn_spikesqualityoriginal_cluster_idAmplitudefrdepthKSLabelContamPct
id
0[20.509433333333334, 20.5924, 20.8509, 20.936,...074066.992470691nan02031.30.1038131600.0mua335.4
1[5.534833333333333, 11.725933333333334, 14.853...1105075.3823701748nan1940.90.2626121900.0mua152.4
2[20.592466666666667, 20.935966666666666, 21.27...2105082.178314278nan25098.00.0417651900.0mua495.3
3[175.66426666666666, 237.11613333333332, 423.7...3125059.80370334nan3680.20.0051082100.0muainf
4[1.5859, 3.782366666666667, 4.171866666666666,...4133036.70638717856nan4476.22.6826062180.0mua99.4
\n", + "
" + ], + "text/plain": [ + " spike_times unit_name ch sh \\\n", + "id \n", + "0 [20.509433333333334, 20.5924, 20.8509, 20.936,... 0 74 0 \n", + "1 [5.534833333333333, 11.725933333333334, 14.853... 1 105 0 \n", + "2 [20.592466666666667, 20.935966666666666, 21.27... 2 105 0 \n", + "3 [175.66426666666666, 237.11613333333332, 423.7... 3 125 0 \n", + "4 [1.5859, 3.782366666666667, 4.171866666666666,... 4 133 0 \n", + "\n", + " amp n_spikes quality original_cluster_id Amplitude fr \\\n", + "id \n", + "0 66.992470 691 nan 0 2031.3 0.103813 \n", + "1 75.382370 1748 nan 1 940.9 0.262612 \n", + "2 82.178314 278 nan 2 5098.0 0.041765 \n", + "3 59.803703 34 nan 3 680.2 0.005108 \n", + "4 36.706387 17856 nan 4 476.2 2.682606 \n", + "\n", + " depth KSLabel ContamPct \n", + "id \n", + "0 1600.0 mua 335.4 \n", + "1 1900.0 mua 152.4 \n", + "2 1900.0 mua 495.3 \n", + "3 2100.0 mua inf \n", + "4 2180.0 mua 99.4 " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.units[:].head()" + ] + }, + { + "cell_type": "markdown", + "id": "b1c15222-a974-4453-af2b-19bc93b414d3", + "metadata": {}, + "source": [ + "# Access raw behavior data\n", + "\n", + "This section demonstrates how to access the Bpod data in the NWBFile.\n", + "\n", + "## Accessing the task metadata\n", + "\n", + "The task-related general metadata is stored in a `Task` object which can be accessed as `nwbfile.lab_meta_data[\"task\"]`.\n", + "\n", + "The `EventTypesTable` is a column-based table to store the type of events that occur during the task (e.g. port poke from the animal), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].event_types`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e3dc8745-ee19-43ad-924b-7e4ac2d89f71", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_name
id
0state_timer
1left_port_poke
2center_port_poke
3right_port_poke
\n", + "
" + ], + "text/plain": [ + " event_name\n", + "id \n", + "0 state_timer\n", + "1 left_port_poke\n", + "2 center_port_poke\n", + "3 right_port_poke" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].event_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "e2b6be4b-26b5-45e1-b498-8367209cf0dd", + "metadata": {}, + "source": [ + "The `ActionTypesTable` is a column-based table to store the type of actions that occur during the task (e.g. sound output from the acquisition system), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].action_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "be87f496-6e1c-41c2-836d-2834eea6734d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
action_name
id
0sound_output
\n", + "
" + ], + "text/plain": [ + " action_name\n", + "id \n", + "0 sound_output" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].action_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "e4e00955-134e-4ff6-9c7d-a2fbfba7a015", + "metadata": {}, + "source": [ + "The `StateTypesTable` is a column-based table to store the type of states that occur during the task (e.g. while the animal is waiting for reward), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].state_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "18e31ed3-7e60-4381-b0eb-9f83ecc273a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
state_name
id
0go_cue
1nose_in_center
2announce_reward
3wait_for_poke
4stop_sound
5wait_for_side_poke
6opt_out
7reward
8punish_violation
\n", + "
" + ], + "text/plain": [ + " state_name\n", + "id \n", + "0 go_cue\n", + "1 nose_in_center\n", + "2 announce_reward\n", + "3 wait_for_poke\n", + "4 stop_sound\n", + "5 wait_for_side_poke\n", + "6 opt_out\n", + "7 reward\n", + "8 punish_violation" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].state_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "d599112f-80f4-44c5-9815-e2b81919ee26", + "metadata": {}, + "source": [ + "The arguments for the task is stored in a `TaskArgumentsTable` which can be accessed as `nwbfile.lab_meta_data[\"task\"].task_arguments`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0cb976d4-ba8e-4f4f-90c2-637f66999dc4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
argument_nameargument_descriptionexpressionexpression_typeoutput_type
id
0reward_volume_ulThe volume of reward in microliters.5integernumeric
1nose_in_centerThe time in seconds when the animal is require...1.0953925215757918doublenumeric
2time_increment_for_nose_in_centerThe time increment for nose in center in seconds.0doublenumeric
3target_duration_for_nose_in_centerThe goal for how long the animal must poke cen...1doublenumeric
4training_stageThe stage of the training.9integernumeric
5reward_delayThe delay in seconds to receive reward, drawn ...100doublenumeric
6target_reward_delayThe target delay in seconds to receive reward.1.5doublenumeric
7time_increment_for_reward_delayThe time increment during monotonic increase o...0.025doublenumeric
8violation_time_outThe time-out if nose is center is not satisfie...1doublenumeric
9block_typeThe block type (High, Low or Test). High and L...Mixedstringstring
10num_trials_in_test_blocksThe number of trials in each mixed blocks.40integernumeric
11num_trials_in_adaptation_blocksThe number of trials in each high reward (20, ...40integernumeric
12punish_sound_enabledWhether to play a white noise pulse on error.Truebooleanboolean
13catch_percentageThe percentage of catch trials.0.25doublenumeric
14is_catchWhether the trial is a catch trial.Falsebooleanboolean
15current_trialThe current trial number.0integernumeric
16cumulative_reward_volume_ulThe cumulative volume received during session ...0doublenumeric
17is_warm_upWhether the trial is warm-up.Falsebooleanboolean
18override_nose_in_centerWhether the required time for maintaining cent...Falsebooleanboolean
19trials_in_stageThe cumulative number of trials in the stages.129054integernumeric
20min_reward_volume_ulThe minimum volume of reward in microliters. (...5doublenumeric
21auto_change_catch_probabilityWhether to change the probability automaticall...Falsebooleanboolean
22previous_was_violationWhether the previous trial was a violation.Falsebooleanboolean
23changedWhether a block transition occurred for the tr...Falsebooleanboolean
24num_trials_in_stage_3Determines how many trials occur in stage 3 be...400integernumeric
25num_trials_in_stage_8Determines how many trials occur in stage 8 be...250integernumeric
26center_port_cueTask parameter.Falsebooleanboolean
27cycle_blocksTask parameter.Truebooleanboolean
\n", + "
" + ], + "text/plain": [ + " argument_name \\\n", + "id \n", + "0 reward_volume_ul \n", + "1 nose_in_center \n", + "2 time_increment_for_nose_in_center \n", + "3 target_duration_for_nose_in_center \n", + "4 training_stage \n", + "5 reward_delay \n", + "6 target_reward_delay \n", + "7 time_increment_for_reward_delay \n", + "8 violation_time_out \n", + "9 block_type \n", + "10 num_trials_in_test_blocks \n", + "11 num_trials_in_adaptation_blocks \n", + "12 punish_sound_enabled \n", + "13 catch_percentage \n", + "14 is_catch \n", + "15 current_trial \n", + "16 cumulative_reward_volume_ul \n", + "17 is_warm_up \n", + "18 override_nose_in_center \n", + "19 trials_in_stage \n", + "20 min_reward_volume_ul \n", + "21 auto_change_catch_probability \n", + "22 previous_was_violation \n", + "23 changed \n", + "24 num_trials_in_stage_3 \n", + "25 num_trials_in_stage_8 \n", + "26 center_port_cue \n", + "27 cycle_blocks \n", + "\n", + " argument_description expression \\\n", + "id \n", + "0 The volume of reward in microliters. 5 \n", + "1 The time in seconds when the animal is require... 1.0953925215757918 \n", + "2 The time increment for nose in center in seconds. 0 \n", + "3 The goal for how long the animal must poke cen... 1 \n", + "4 The stage of the training. 9 \n", + "5 The delay in seconds to receive reward, drawn ... 100 \n", + "6 The target delay in seconds to receive reward. 1.5 \n", + "7 The time increment during monotonic increase o... 0.025 \n", + "8 The time-out if nose is center is not satisfie... 1 \n", + "9 The block type (High, Low or Test). High and L... Mixed \n", + "10 The number of trials in each mixed blocks. 40 \n", + "11 The number of trials in each high reward (20, ... 40 \n", + "12 Whether to play a white noise pulse on error. True \n", + "13 The percentage of catch trials. 0.25 \n", + "14 Whether the trial is a catch trial. False \n", + "15 The current trial number. 0 \n", + "16 The cumulative volume received during session ... 0 \n", + "17 Whether the trial is warm-up. False \n", + "18 Whether the required time for maintaining cent... False \n", + "19 The cumulative number of trials in the stages. 129054 \n", + "20 The minimum volume of reward in microliters. (... 5 \n", + "21 Whether to change the probability automaticall... False \n", + "22 Whether the previous trial was a violation. False \n", + "23 Whether a block transition occurred for the tr... False \n", + "24 Determines how many trials occur in stage 3 be... 400 \n", + "25 Determines how many trials occur in stage 8 be... 250 \n", + "26 Task parameter. False \n", + "27 Task parameter. True \n", + "\n", + " expression_type output_type \n", + "id \n", + "0 integer numeric \n", + "1 double numeric \n", + "2 double numeric \n", + "3 double numeric \n", + "4 integer numeric \n", + "5 double numeric \n", + "6 double numeric \n", + "7 double numeric \n", + "8 double numeric \n", + "9 string string \n", + "10 integer numeric \n", + "11 integer numeric \n", + "12 boolean boolean \n", + "13 double numeric \n", + "14 boolean boolean \n", + "15 integer numeric \n", + "16 double numeric \n", + "17 boolean boolean \n", + "18 boolean boolean \n", + "19 integer numeric \n", + "20 double numeric \n", + "21 boolean boolean \n", + "22 boolean boolean \n", + "23 boolean boolean \n", + "24 integer numeric \n", + "25 integer numeric \n", + "26 boolean boolean \n", + "27 boolean boolean " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].task_arguments[:]" + ] + }, + { + "cell_type": "markdown", + "id": "d052694b-7783-4929-8ae2-f948810d61ba", + "metadata": {}, + "source": [ + "The `TaskRecording` object stores the data for events, states, and actions that occured during the task. The `TaskRecording` is added as acquisition which can be accessed as `nwbfile.acquisition[\"task_recording\"]`.\n", + "\n", + "The `EventsTable` is a column-based table to store the information about the events (e.g. poke times), one event per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].events`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "7a007082-90eb-4949-9253-7a050965c030", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampevent_typevalueevent_name
038.54422Incenter_port_poke
138.62372Outcenter_port_poke
239.62370Expiredstate_timer
339.88221Inleft_port_poke
440.03151Inleft_port_poke
...............
86826313.55142Outcenter_port_poke
86836314.37400Expiredstate_timer
86846315.03742Incenter_port_poke
86856315.40972Outcenter_port_poke
86866316.40970Expiredstate_timer
\n", + "

8687 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " timestamp event_type value event_name\n", + "0 38.5442 2 In center_port_poke\n", + "1 38.6237 2 Out center_port_poke\n", + "2 39.6237 0 Expired state_timer\n", + "3 39.8822 1 In left_port_poke\n", + "4 40.0315 1 In left_port_poke\n", + "... ... ... ... ...\n", + "8682 6313.5514 2 Out center_port_poke\n", + "8683 6314.3740 0 Expired state_timer\n", + "8684 6315.0374 2 In center_port_poke\n", + "8685 6315.4097 2 Out center_port_poke\n", + "8686 6316.4097 0 Expired state_timer\n", + "\n", + "[8687 rows x 4 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].events[:],\n", + " nwbfile.lab_meta_data[\"task\"].event_types[:],\n", + " left_on=\"event_type\",\n", + " right_on=\"id\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "bcef31e2-52b9-4772-8ca5-c5ffcf6545b5", + "metadata": {}, + "source": [ + "The `ActionsTable` is a column-based table to store the information about the actions (e.g. sound onset times), one action per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].actions`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "405d4add-b42d-49c8-93a5-1d47f7f7a2b9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampaction_typevalueaction_name
019.98810Onsound_output
120.17820Onsound_output
238.54430Onsound_output
338.62380Onsound_output
439.12400Onsound_output
\n", + "
" + ], + "text/plain": [ + " timestamp action_type value action_name\n", + "0 19.9881 0 On sound_output\n", + "1 20.1782 0 On sound_output\n", + "2 38.5443 0 On sound_output\n", + "3 38.6238 0 On sound_output\n", + "4 39.1240 0 On sound_output" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].actions[:],\n", + " nwbfile.lab_meta_data[\"task\"].action_types[:],\n", + " left_on=\"action_type\",\n", + " right_on=\"id\",\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "id": "04ecb784-f7ba-4de6-8da5-2e824bb7e28e", + "metadata": {}, + "source": [ + "The `StatesTable` is a column-based table to store the information about the states (e.g. the duration while nose is in center port). This table can be accessed as `nwbfile.acquisition[\"task_recording\"].states`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "cf25d54a-9e06-4127-af67-429c2ae6c48b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestate_typestate_name
019.988038.54423wait_for_poke
138.544238.62371nose_in_center
238.623739.62378punish_violation
339.715442.24513wait_for_poke
442.245142.54301nose_in_center
\n", + "
" + ], + "text/plain": [ + " start_time stop_time state_type state_name\n", + "0 19.9880 38.5442 3 wait_for_poke\n", + "1 38.5442 38.6237 1 nose_in_center\n", + "2 38.6237 39.6237 8 punish_violation\n", + "3 39.7154 42.2451 3 wait_for_poke\n", + "4 42.2451 42.5430 1 nose_in_center" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].states[:],\n", + " nwbfile.lab_meta_data[\"task\"].state_types[:],\n", + " left_on=\"state_type\",\n", + " right_on=\"id\",\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "id": "536cc673-a323-4fde-80a4-dbd52c1573bd", + "metadata": {}, + "source": [ + "### Plot the events, actions, and states\n", + "\n", + "The ``plot_events``, ``plot_actions``, and ``plot_states`` functions can consume both the raw table as well as a subset of the table as a pandas DataFrame created through slicing, e.g., via ``events[:100]`` will plot only the first 100 rows from the events table." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5e0b1ea3-bf38-405e-935d-6159a8de81e6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAAGiCAYAAAC7/hjYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhQUlEQVR4nOzdd3RV1drv8e9OT0iHkEhogh6kV9GDAgHpYAEEpEg7ShMFERQUTEAEbBQFRAEp0qUdFJAeQJpGkSZwRCDUBEJ6b/v+kbv3m5DeKb/PGGvcZM32zLV25Nz9vHNOg9FoNCIiIiIiIiIiIiIiIiLyELAo7QBERERERERERERERERESoqSYyIiIiIiIiIiIiIiIvLQUHJMREREREREREREREREHhpKjomIiIiIiIiIiIiIiMhDQ8kxEREREREREREREREReWgoOSYiIiIiIiIiIiIiIiIPDSXHRERERERERERERERE5KGh5JiIiIiIiIiIiIiIiIg8NJQcExERERERERERERERkYeGkmMiIiIiIiIiIiIiIiLy0FByTERERERERKSY+Pn5YTAY8nw9CGbPno2fnx9//vlnaYciIiIiIpIlq9IOQERERERERORh4OnpWdohlIjZs2cTGBhI1apVadCgQWmHIyIiIiKSiZJjIiIiIiIiIiUgKCiotEMQERERERG0raKIiIiIiIiIiIiIiIg8RJQcExEREREREbmHHD9+3HwG2cmTJ3Os279/fwwGA88991yW5Vu3bqV79+54e3tja2uLm5sbLVq04OuvvyYxMTHLNj4+PhgMBvz8/DAajSxcuJCnnnoKZ2dnnJyc+Pe//82KFSsytTOdrxYYGAjAoEGDcjxTLSwsjA8//JBGjRrh7OyMjY0NXl5e1KtXj2HDhrFnz568PC4RERERkXzTtooiIiIiIiIi95CGDRtSu3Ztzpw5w/fff89nn32WZb2YmBg2btwIpCXJ0ouLi6N///6sX7/efM/Z2ZmIiAgOHjzIwYMHWb58Odu2bcPNzS3L/lNSUujatSv//e9/sbKywsHBgaioKI4ePcrRo0f5+++/mTx5srm+o6Mjnp6e3L59m9TUVJydnbG3t8+y72vXrvHMM89w5coVACwsLHBxcSEkJITg4GBOnTrFuXPnsk36iYiIiIgUhlaOiYiIiIiIiNxjTMmuVatWkZqammWdTZs2ERMTQ5kyZejevXuGsiFDhrB+/XqqVavGypUriYiIICIigtjYWP773/9SrVo1jh49yuDBg7ONYd68efj7+7N06VIiIyOJiIjg6tWrPP/88wBMnTqVv//+21x/7NixBAUFUalSJQDmzJlDUFBQhsvEz8+PK1euULVqVXbv3k1iYiKhoaEkJCRw+fJlvv76a55++umCPTwRERERkVwoOSYiIiIiIiJSAry8vHK8Ro0aZa7bt29fLCwsuHHjBrt3786yv++//x6Arl274ujoaL5/8OBBVqxYQfny5fH396dPnz44OzsDYGdnxwsvvMD+/fspU6YMmzdv5s8//8yy/7CwMDZt2sSAAQPMK8AqVqzIDz/8QIUKFUhNTWXdunUFehaHDx8GYNq0aTz33HNYWloCYGlpSZUqVRg2bBgzZswoUN8iIiIiIrlRckxERERERESkBAQHB+d4RUREmOt6e3vTunVr4P+SYOndvHnTfCbXq6++mqFs8eLFQFqCzbSK624VK1akVatWAOzYsSPLOs8884y5Tnq2tra0b98eINcz0bLj6uoKpM1DRERERKSk6cwxERERERERkRJgNBrzVb9///7s3r07w/aJJqtWrSIlJYUKFSrQpk2bDO0OHToEpCXJVq1alW3/pmRcYGBgluVPPfVUtm0rVKgAQGhoaN4mc5cuXbpw5MgRxo8fz7lz5+jWrRvNmjUzr3ATERERESlOWjkmIiIiIiIicg/q1q0bjo6OxMTEsHHjxgxlptVkpu0X07tx4wYAkZGROa5Ui4+PByA2NjbL8Z2cnLKNzcoq7f/WNikpqUBzGzduHD179iQpKYmFCxfSsWNHXF1dqVu3LuPGjeP8+fMF6ldEREREJC+UHBMRERERERG5B5UpU4Zu3boBsHz5cvP9U6dOceLECSDzlooAKSkpAHz99dcYjcZcr6VLlxb/ZO5ibW3N2rVr+fPPP/nwww9p3bo1Dg4OnD59ms8//5zatWvzxRdflHhcIiIiIvJwUHJMRERERERE5B5lSn7t3buX69evA/+3aqxBgwbUrVs3UxsvLy8g++0S7yX169dn8uTJ7Nmzh/DwcHbv3k2LFi1ISUlh3Lhx5iSgiIiIiEhRUnJMRERERERE5B7VunVrKlasSGpqKqtWrTL/v5B2JllWnnnmGQB++umnEoszPdM2j/k9Y83KyornnnuOrVu3Ymtri9FoZPfu3cURooiIiIg85JQcExEREREREblHWVhY0LdvXyBtxZhpBZmlpSV9+vTJss2QIUMAOH36NF9//XWO/cfExJCYmFikMTs7OwMQHh6ebZ2EhIRsy2xtbbG0tATIdJ6aiIiIiEhR0P/KFBEREREREbmHmbZWPHXqFBMmTACgXbt2eHp6Zlm/ZcuWDBo0CIA33niDt99+m4sXL5rLExISOHr0KO+++y5VqlTh1q1bRRpvnTp1AFi/fj1hYWFZ1qlSpQoTJkzg6NGjGRJlFy5coG/fvsTGxmJhYUH79u2LNDYREREREQCr0g5ARERERERE5GFgOgssJxs3bqRZs2YZ7tWuXZtGjRrxxx9/EBAQAGS/paLJggULsLS0ZNGiRcyePZvZs2fj6OiItbU1ERERpKammusaDIYCzCZ7Q4YMYdWqVRw+fBgPDw/Kly+PjY0NAJcvXwYgODiYGTNmMGPGDCwsLHBxcSEuLo74+HhzTF988QW1atUq0thEREREREDJMREREREREZESERwcnGud7LY47N+/P3/88QeQtm3hiy++mGM/NjY2LFy4kMGDB/Ptt99y8OBBbty4QUJCAuXLl+eJJ56gRYsWvPzyy3h7e+d/Mjlo0aIFW7duZebMmRw/fpzg4OAMyTiAnTt3sm/fPn755ReuXLlifjaPPfYYzZs354033qBx48ZFGpeIiIiIiInBmN8TckVERERERERERERERETuUzpzTERERERERERERERERB4aSo6JiIiIiIiIiIiIiIjIQ0PJMREREREREREREREREXloKDkmIiIiIiIiIiIiIiIiDw0lx0REREREREREREREROShoeSYiIiIiIiIiIiIiIiIPDSsSjsAEZF7XWpqKjdu3MDJyQmDwVDa4YiIiIiIiIiIiIhIFoxGI1FRUVSoUAELi+zXhyk5JiKSixs3blCpUqXSDkNERERERERERERE8uDq1atUrFgx23Ilx0REcuHk5ASk/QfV2dm5lKMREREREZGHUWxiMk0/3gPArx88h4ONVZ7uAZnq5Ke/7OoW1f3s6ub1GRSnwjzLgtwvaFlx3y/quO6FNvlV0DHuRMfT8rP9AOwf15KyjnZFPv6DqqD/zSutz1JBy4vrc11UdUTuR5GRkVSqVMn8nW529IkXEcmFaStFZ2dnJcdERERERKRUWCUmY2HrAKT9/00cbKzydA/IVCc//WVXt6juZ1c3r8+gOBXmWRbkfkHLivt+Ucd1L7TJr4KOkWhhYy5zcnbGuYDJsZL+7N8LCvrfvNL6LBW0vLg+10VVR+R+ltvxONlvuCgiIiIiIiIiIiIiIiLygFFyTERERERERERERERERB4aSo7d4wYOHIjBYGDgwIFF3vfBgwfp3LkzHh4eWFpaYjAYeOmll4p8HLk3VK1aFYPBwNKlS0tl/H79+mEwGFi7dm2JjtuhQwcMBgN79+4t0XFFRERERERERERE5N6k5NhD6ujRo7Ru3Zpt27Zx584d3N3d8fT0xM3NDQA/Pz/8/Py4fPly6QZaCi5fvmyevxSNgIAAVq1aRZ06dejZs2emclPirjiSwKb3OHbsWFJTU4u8fxERERERERERERG5v+iUvYfU7NmzSU5O5plnnmHLli24u7tnKJ88eTIAPj4+VK1atRQiLD2XL182z18JsqLxzjvvYDQa8fX1zfUgxKL29NNP0759e3bs2MGKFSvo379/iY4vIiIiIiIiIiIiIvcWrRx7SJ06dQqAV155JVNiTKQoHT16lAMHDuDl5UXXrl1LJYZhw4YB8Omnn5bK+CIiIiIiIiIiIiJy71By7CEVGxsLgKOjYylHIg+6BQsWAGmJWEtLy1KJoVOnTri7u3PmzBkOHTpUKjGIiIiIiIiIiIiIyL1BybH73OXLlxk9ejS1a9fG0dERBwcHnnjiCUaNGsWVK1cy1TcYDBgMBvNZYoMGDTLfM535lH7bu1atWmUoL+wWiz4+PhgMBvz8/EhMTGTGjBnUq1ePMmXK4ObmRtu2bdm+fXuu/WzcuJEuXbrg6emJjY0Nnp6edOnShU2bNmXbxjS3gQMHYjQaWbRoEc8++yxly5bFYDCwdOlSqlatSqtWrcxt0s+9KM7EMvXj7+9PUFAQI0eO5NFHH8XOzg4vLy/69u3LuXPncuwjPj6e2bNn06xZM9zc3LCzs6NKlSr079+fP//8s8CxffzxxxgMBiwtLc0JLZPU1FRWrlxJp06dzM/cw8ODdu3asXr1aoxGY5Z9RkZGsm7dOgD69OlToLjSvzeA9evX4+Pjg7u7Ow4ODjRo0IA5c+bkeJ6YjY0N3bt3B+Dbb78tUBwiIiIiIiIiIiIi8mDQmWP3sZUrV/Kf//yHhIQEAGxtbbGwsOD8+fOcP3+eJUuWsH79etq1a2du4+npCcDt27dJTU3F2dkZe3t7c7mlpSWenp4EBwcD4Obmho2Njbncw8OjSGJPTEykTZs2HDx4ECsrKxwdHQkPD2f37t3s3r0bX1/fLM/7SkxMpH///qxduxYACwsLXFxcCAkJYevWrWzdupXevXuzbNkyrK2tsxzbaDTSo0cPNmzYYG5vYWFhnl9kZCRhYWHA/z0vExcXlyKZ/6VLl+jduzdBQUHY29tjbW1NcHAwq1atYuPGjWzatIkOHTpkanf9+nU6dOjA6dOnAbC2tsbBwYErV67w/fffs3LlSmbPns2bb76Z51hSU1N56623mDdvHnZ2dqxatSrD9oehoaF07dqVAwcOmO+ZnvmuXbvYtWsXa9as4YcffsjwWQHYv38/cXFxlClThkaNGuX3MWUycuRI5s2bh4WFBc7OzsTFxXHixAlGjx7NH3/8wbJly7Jt26JFCxYuXMiOHTsKHYeIiIiIiIiIiIiI3L+0cuw+tWvXLvr3709KSgrvvvsuly5dIi4ujpiYGM6dO0ePHj2IioqiR48eGVaQBQUFERQURKVKlQCYM2eO+V5QUBCLFy8mKCjIXH/jxo0Zyn/77bciiX/+/Pn8+uuvLFiwgKioKMLCwrhy5Qovv/wyAJMnT2bLli2Z2r3//vusXbsWg8HApEmTuHPnDqGhoYSEhPD+++8DsHr1aiZNmpTt2Bs3buS///0vn3/+OWFhYYSGhhIREUH79u357bff2LhxY6bnZbrmzJlTJPN/++23sbGxYefOncTExBAVFcWxY8eoW7cu8fHx9OrVi2vXrmVok5KSQvfu3Tl9+jQuLi6sWLGC6OhowsPD+eeff+jSpQupqamMGjUqT6vvABISEujZsyfz5s3D1dWVnTt3ZkiMpaSk0K1bNw4cOECDBg348ccfiYmJITw8nOjoaJYtW0b58uXZsmUL7733Xqb+TQm1Ro0aFXpLxS1btrBw4UJmzpxJWFgYYWFhhISE8NprrwGwfPly9u7dm237p556CoDg4OBcV+eJiIiIiIiIiIiIyINLybH7UGpqKm+88QapqanMmzePTz75hKpVq5q37KtRowbr1q3jhRdeIDIykpkzZ5Z2yJlEREQwf/58hg4dip2dHQCVKlVi7dq1tGjRAsCc7DK5fv26OTk1fvx4pkyZgqurK5C2wu3jjz9mzJgxAMycOZObN29mOXZ0dDQzZ87knXfewdnZGUg7e+2RRx4p8nlmJy4ujp9//pm2bduat7Fs2rQpu3fvxt3dncjISKZPn56hzfr16zl27BgA69ato2/fvuaVWtWqVWPTpk089dRTGI1G3n333VxjMCUEN2zYgLe3NwcPHqR58+YZ6qxatYr9+/fzxBNP4O/vT5cuXXBwcACgTJky9O/fn23btmEwGJg/fz63bt3K0N4Ub/369QvwlDIKCwvjm2++4e233za/t7Jly7Jw4UIaN24MpCVGs/P444+bz9g7cuRIjmMlJCQQGRmZ4RIRERERERERERGRB4OSY/ehAwcO8Pfff1OuXDnzqpms9O/fH+Ce3EauUqVKDBo0KNN9CwsLJk6cCMCZM2c4deqUuWzDhg0kJydjZ2fH+PHjs+x34sSJ2NrakpSUxPr167Os4+bmxtChQ4tgFgXXo0cPatasmel++fLlGTZsGIB560gT0+///ve/M2yVaWJlZYWvry8Ap0+fzvDs7nbjxg2aN29uTnwdPnyYOnXqZKq3ePFiAIYPH57tlpKNGzemdu3aJCYmsm/fvkzjQNFsx1mpUiUGDBiQZdkLL7wAwMmTJ3Pso2zZshniys706dNxcXExX6aVliIiIiIiIiIiIiJy/1Ny7D506NAhIG3lT4UKFfDy8sryev311wEIDAwszXCz5OPjY14xdbfmzZtjZZV2HF5AQID5vunnJ5980rxy6G5ubm40adIkU9v0nnzyyUxnY5W01q1b51p2584dLl26ZL5vmk+bNm2ybduqVSvz9oXZzf/cuXM0a9aMU6dO8e9//5tDhw5RuXLlTPVSUlI4evQoAH5+ftl+zry8vDh//jyQ+bN2+/ZtANzd3bONOa+efPLJbD8zFSpUANLOR8uJKQ5TXNmZMGECERER5uvq1asFiFhERERERERERERE7kVWpR2A5J9p1UtSUhLBwcG51o+LiyvukPLN29s72zI7OzvKli1LcHBwhm36TD/n1BagYsWKGerfrXz58vkNt8jlNIf0Zbdu3eLRRx81/5xbWzs7O8qVK5fp2aX3ySefAODp6cnOnTvNWw3eLTQ0lISEBCBtS8O8iI2NzfB7fHw8ALa2tnlqnxMnJ6dsy0zJ1KSkpBz7sLe3zxBXdmxtbYskZhERERERERERERG592jl2H0oJSUFwHy+VF4u+T+mlVUPqx49emBjY0NwcDDDhw83f57ulv7+9u3b8/Q58/Pzy9CHaRvDvCbXiptpZZkpLhERERERERERERF5+Cg5dh/y8vIC7s3tEvPq+vXr2ZYlJCRw584dIOMqL9PP165dy7FvU/m9sEIsOznNP31ZfucfHx+f5bNLr1OnTmzatAlbW1tWrFjBq6++mmWCrGzZsuYVWQX9rJnOGsttu8OSYoqjKM5AExEREREREREREZH7k5Jj96FnnnkGgKCgoGzPlSos09lOxbXqbP/+/dn2ffDgQZKTkwHM54el/zkgIICIiIgs24aHh2c4m6wgLCz+78+iuOa/b9++XMvc3d3NWyrC/81/z5492bb19/c3P7uc5t+pUyf++9//Ymdnx+rVq+nTp4+5nYm1tTVNmzYF4Mcff8xlRlmrVasWABcvXixQ+6IUFRVFSEgIADVr1izlaERERERERERERESktCg5dh9q1aoVjz32GABvv/02iYmJOdYvyKodZ2dnIC3ZVByuXLnCsmXLMt1PTU1l2rRpQFpipW7duuay7t27Y2VlRXx8vPncrLtNmzaNhIQErK2t6d69e4FiM80dim/+P/zwA+fPn890PyQkhG+++QaAXr16ZSh75ZVXADhy5Ag7d+7M1DY5OZkpU6YAUKdOHerUqZNjDO3bt2fLli3Y29uzbt06XnnllUxndg0ZMgSAbdu2sW3bthz7y+pz1qJFCwB+/fXXHNuWhICAAFJTU7GysjInmEVERERERERERETk4aPk2H3IysqKBQsWYGVlxS+//EKLFi3Ys2dPhsTGxYsXWbBgAU8++STz58/P9ximxMrKlSuJjY0tsthNXFxcGD58OAsXLiQ+Ph6Aq1ev0rt3b/PKqalTp2Zo4+3tzahRowCYMWMGvr6+5uRVeHg4kyZN4rPPPgNgzJgxPPLIIwWK7V//+hc2NjYALFq0qFhWj9nZ2dGhQwd2795t7v+3336jTZs2hISE4OTkxPjx4zO06d69O0899RQAPXv2ZNWqVeZ3funSJbp3786RI0cA+PTTT/MUR9u2bfnpp59wcHBgw4YN9OzZM0OytV+/frRp0waj0UjXrl2ZOnUqN27cMJfHxMSwb98+3njjDapVq5apfx8fHyBtW8bg4OA8Pp3icezYMQAaNWqEo6NjqcYiIiIiIiIiIiIiIqVHybH71HPPPccPP/yAk5MTx44do02bNpQpU4Zy5cphZ2dH9erVGT58OAEBAeYtEvNj2LBhAGzYsAFXV1cqVqxI1apVefbZZ4sk/hEjRtCkSROGDBmCs7Mz7u7uVK5cmXXr1gEwceJEunbtmqndtGnT6NmzJ0ajkSlTplC2bFnc3d0pW7asOZnWu3dvPvroowLH5uDgwKuvvgrAu+++i6OjI1WqVKFq1aqMHTu2wP2mN2vWLOLj42nbti2Ojo44OTnRtGlTTpw4ga2tLatXr6Zy5coZ2lhaWrJhwwZq165NREQEffv2xdHRETc3N6pVq8aWLVuwsLBgzpw5dOzYMc+xtG7dmm3btlGmTBk2b95M9+7dzQky05hdunQhMTGRSZMm4e3tjYuLC25ubjg5OdG6dWvmz59PTExMpr5r1qxJ/fr1AdiyZUshnljhmcbv06dPqcYhIiIiIiIiIiIiIqVLybH72EsvvcSFCxfw9fWladOmODo6Eh4ejq2tLfXr1+e1115j06ZNjBs3Lt999+vXj++//55nn30WBwcHbt68SWBgINeuXSuS2G1sbNizZw/Tpk2jRo0aJCQk4OLiwnPPPcfWrVuzTW7Z2Niwdu1a1q9fT8eOHSlbtixRUVGULVuWjh07snHjRlatWoW1tXWh4ps3bx5+fn7mbR2vXLlCYGCg+cyqwnr00Uc5fvw4b7zxBh4eHiQmJlK+fHl69+7N8ePH6dy5c5btvL29CQgIYObMmTz99NPY29sTGxtLpUqVePXVV/n9999566238h1Py5Yt+fnnn3FycuKnn37ipZdeIiEhAUjbZvLHH39k27Zt9OrVi8qVK5OQkEBsbCze3t60a9eO6dOnZ7lNJMDQoUOBtFWIpeXixYscOXIEe3t7+vfvX2pxiIiIiIiIiIiIiEjpsyrtACRnS5cuZenSpdmWly9fHj8/P/z8/PLV7+XLl3Ot069fP/r165evfvPDxsaGCRMmMGHChHy37d69e77PFMvtWaZna2uLr68vvr6++Y4tr7y8vJg7dy5z587NVzs7Ozvefvtt3n777Xy1y+2dP/vss0RGRmZb3rFjx3ytSDPp168f48eP58CBAwQGBlKlSpV8xZaX9zZw4EAGDhyYbfmKFSuAtHPb3Nzc8hK2iIiIiIiIiIiIiDygtHJMRIqV6fw0o9HIJ598UuLjx8TE8NVXX5kTniIiIiIiIiIiIiLycFNyTESK3dtvv02lSpVYvHgxV69eLdGx586dS0hICG+99VaWq9ZERERERERERERE5OGibRVFpNjZ2dmxfPly/P39uXLlCpUqVSqxscuUKYOfnx+jR48usTFFRERERERERERE5N6l5JjkW7du3Th8+HC+2mzcuJFmzZoVU0Qly8vLK99tgoKCiiGS+4uPjw8+Pj4lPu7IkSNLfEwRERERERERERERuXcpOSb5FhoaSnBwcL7aJCYmAuDv718MEZWs/M49PaPRWISRiIiIiIiIiIiIiIhIfhmM+rZeRCRHkZGRuLi4EBERgbOzc2mHIyIiIiIiIiIiIiJZyOt3uRYlGJOIiIiIiIiIiIiIiIhIqVJyTERERERERERERERERB4aSo6JiIiIiIiIiIiIiIjIQ0PJMREREREREREREREREXloKDkmIiIiIiIiIiIiIiIiDw0lx0REREREREREREREROShoeSYiIiIiIiIiIiIiIiIPDSUHBMREXkAxCYmU3X8VqqO30psYnKm30VERERERERERCSNkmMiIiIiIiIiIiIiIiLy0FByTERERERERERERERERB4aSo6JiIiIiIiIiIiIiIjIQ0PJMREREREREREREREREXloKDkmIiIiIiIiIiIiIiIiDw0lx0REREREREREREREROShoeRYLvz9/TEYDBgMhiLv28/PD4PBgI+PT5H3Lfen0v5M7NmzB4PBQMeOHUtl/KI2Y8YMDAYDkyZNKu1QREREREREREREROQeoeTYfWzz5s34+fmxefPm0g6lVMyePRs/Pz/+/PPP0g7lgZCamso777wDwOTJk3OsGx8fzzfffEOXLl2oXLky9vb2uLi4ULNmTYYMGcK+ffuKNdbLly/j5+eHn59fjvVGjhxJuXLlmDlzJtevXy/WmERERERERERERETk/qDkWC4cHByoUaMGNWrUKO1QMtm8eTOTJ09+qJNjkydPVnKsiCxbtowTJ07QuXNnmjZtmm29Xbt28fjjjzNs2DC2bt3K1atXsbGxISEhgXPnzrFw4UJat25Np06duHPnTrHEevnyZSZPnpxrEs/R0ZF33nmH2NhYrR4TEREREREREREREUDJsVw1bdqUc+fOce7cudIORaRYffrppwAMHz482zpr166lU6dOXLt2DW9vbxYtWkRoaCgRERHEx8dz9uxZRo8ejZWVFdu3b+fpp5/m1q1bJTWFLL322mtYWVnx/fffc/PmzVKNRURERERERERERERKn5JjIoK/vz/nzp3Dw8OD9u3bZ1nn7NmzDB48mOTkZOrWrcvx48f5z3/+g5ubm7nOE088waxZs/jvf/+LjY0NFy5coE+fPiU1jSyVK1eO9u3bk5yczHfffVeqsYiIiIiIiIiIiIhI6Xuok2M+Pj4YDAb8/PxISkriiy++oEmTJri6umIwGPD398ff3x+DwYDBYMi2n1OnTtGrVy+8vLyws7OjWrVqvPnmm9y6dStP7U327NlD586d8fDwwM7Ojpo1azJ58mTi4+Mz1DP1uWzZMiBtOzzTGKbL39+/wM9l6dKlGAwGqlatCqRto9exY0c8PDywt7endu3aTJ06NVNcd/vnn38YPnw4jz/+OPb29jg7O9OoUSOmTJlCZGRklm3ufl7Hjx+nb9++VKxYEWtra3x8fPDz88NgMBAYGAjAoEGDMs2/MAYOHIjBYGDgwIEYjUYWLFhA06ZNcXZ2xtnZmWeffZZVq1bl2o+/vz89evTA29sbW1tbypUrx3PPPceSJUtISUkpUGzHjx/Hy8sLg8FA+/btiY6OzlB++vRphgwZwuOPP46DgwOOjo7Uq1ePDz74gJCQkGz7XbhwIQA9evTAysoqyzoTJ04kNjYWW1tbfvjhBzw8PLLtr1OnTkycOBFI+1xv3bo1Q3le/y6y+jxXrVqVVq1aZapjugYOHJipH1OCzjRPEREREREREREREXl4PdTJMZP4+Hh8fHwYO3YsJ06cwMLCIs8Jlk2bNtG4cWPWrVtHcHAw1tbW3Lx5k7lz59KgQQMuX76cp34+++wz2rZty/bt20lOTiYxMZFz587h5+dHp06dMiRTbGxs8PT0xM7ODgA7Ozs8PT0zXDY2Nvl+DlmZP38+7du35+effyY5OZnk5GT++usvJk2aRLNmzQgLC8uy3bp166hduzYLFizgwoULWFtbk5iYyPHjx/H19aVOnTqcPXs2x7E3bNjAU089xapVq4iKijInbRwdHfH09MTCIu3j6+zsnGn+RaV3794MHz6c33//HSsrK6Kjozl06BB9+/Zl8ODBGI3GLNuNGTOGVq1asX79em7evImDgwPh4eHs3buXwYMH065dO6KiovIVy+7du2nZsiXBwcH069ePn376CUdHR3P5p59+Sv369Vm4cCEXLlzAYDCQlJTEqVOnmDZtGvXq1eP48eOZ+jUajezYsQOA5s2bZzn2zZs3zWfb9e7dO09n8L399ts4OTkBMG/evHzNNSceHh4ZVqvd/e5dXFwytWnRogUAgYGBuX7uREREREREREREROTBpuQYaV/cnzx5kiVLlhAZGUloaCi3b9+mXr16Oba7ePEi/fr1IykpiUaNGhEQEEBUVBSxsbHs2rULGxsbxowZk+v4J06cYPz48YwfP55bt24RFhZGeHg4H374IQD79u0zrxIDaNasGUFBQfTq1QuAXr16ERQUlOFq1qxZIZ5Imtu3bzN69Ghefvllrly5QlhYGJGRkXz99dfY2tqat9W72x9//EG/fv1ISEjgmWee4eTJk0RGRhIbG8uWLVt45JFHuHr1Ks8//3ymlU/pDRw4kLZt23L27FkiIiKIi4tj4cKFjB07lqCgICpVqgTAnDlzMs2/KGzevJl169bx0UcfERYWRmhoKMHBwYwcORKAJUuW8NVXX2VqN3fuXGbNmgXAkCFDuHHjBmFhYURERDBr1iysrKzYu3cvr7/+ep5jWb16NZ07dyYqKop33nmH5cuXY21tbS5fvHgx7733Hg4ODnz88cfcvHmTmJgYYmNjCQgIoHXr1ty8eZMXXngh0zP/66+/uHPnDpB2xl5W/P39SU1NBaB79+55itnR0ZF27doBcPDgQZKTk/M835z89ttvbNy40fz73e9+zpw5mdpUrFiRChUqALB///4iiUNERERERERERERE7k9KjgHR0dGsWrWKgQMHYm9vD0DZsmVxd3fPsd20adOIjY2lfPny7Nq1i8aNGwNp27y1adOGHTt2EBsbm+v44eHhTJo0iWnTplGuXDkgbTXU5MmT6datG5CWHClpsbGxNGvWjDVr1pgTUfb29gwbNsy8EmjTpk389ttvGdp98MEHJCUl8dhjj7Fz507q1q0LgIWFBc8//zxbt27FysqKf/75hwULFmQ7fq1atdiyZQtPPPGE+d7jjz9e1NPMVkREBBMnTmTixIk4OzsDaauWvvrqK/r16weQadvLuLg4fH19gbQVVt988w1eXl4AlClThtGjRzNz5kwA1q5dy++//55rHDNnzqRv377mrT8///zzDCsbo6KiGDt2LADr16/n/fffN49paWlJ48aN2bFjB40bN+batWssWrQoQ//Hjh0DwMnJiWrVqmUZw5kzZ8w/N2zYMNeYTRo0aACk/Y2ZtsEsLaa4jxw5kmvdhIQEIiMjM1wiIiIiIiIiIiIi8mBQcgyoXbs2zz//fL7aGI1GNmzYAMDw4cOzTKTVqFGDnj175tqXra2tOblxtxdffBGAkydP5iu+ojJx4kTz9oXpDRo0iIoVKwKwZs0a8/3w8HDzFn3jxo3DwcEhU9uGDRvmKek3btw4LC0tCxV/Ydjb22f7Xkyr+kJDQ9m1a5f5/q5duwgNDQXAz88vy7YjRozgkUceAcjx7DKj0ci4ceN45513sLKyYsWKFVmuRNywYQPh4eE0bNiQ9u3bZ9mXlZUVvXv3BjC/H5MbN24AmBOzWTGtLIO0xHFepe8zfR+lwRSLab45mT59Oi4uLubLlBwWERERERERERERkfufkmPAM888k+82Fy9eJDw8HICWLVtmW8/HxyfXvmrXrp3h7Kj0TFvBmRIuJcnKyirbM6gsLCzMcwsICDDf/+OPP8zncLVp0ybbvtu2bQukJf2SkpKyrFOQ91KUmjRpYl4xdrfHH3/cnBxMP3/Tz5UqVeJf//pXlm0tLS1p3bp1prbpJSUl0b9/fz7//HMcHR3ZunUrffr0ybLuoUOHADh79ixeXl7ZXlOmTAHItILr9u3bALmulLzfmeZnmm9OJkyYQEREhPm6evVqcYcnIiIiIiIiIiIiIiXEqrQDuBeUL18+323Sf8FuSmBlxdvbO9e+nJycsi2zskp7RUV1XlN+lCtXDltb22zLTXO7deuW+V76n3OauymxlJycTGhoKJ6enpnqFOS9FKXc3p23tzfXrl3Lcv65tTXNP33b9A4fPszhw4eBtLPNTMnErJhWQsXHx2fY4jE7d2/1aWqT07tOv1rszp07efpcA4SEhGTZR2kwbZmal2dka2ub4/MQERERERERERERkfuXVo5BobfuS3/+kxSd0txSsbTVrVuXevXqATBmzBj++eefbOumpKQA0KtXL4xGY67X5cuXM7Q3Ja3CwsKyHaNWrVrmn//44488z+P48eMAODo6UqVKlTy3Kw6m1ZelnaQTERERERERERERkdKl5FgBeXh4mH/O6Qyj69evl0Q4xSIkJITExMRsy01zS7/CK/3P165dy7atqczKyuqe3c4vt3eX0/xzmnv68uxWx7m7u7N3714aNGjA1atXadmyJf/73/+yrOvl5QVk3i4xr0yf5Zy27mzVqpX57DnTWXu5iY6ONp/H1rx5c/MqSCDDz9mt5IqIiMjTOHllml/6v10RERERERERERERefgoOVZA1apVw9XVFQB/f/9s6+VUVlimZIXpjK+ilpyczMGDB7MsMxqN7N+/H0g7m8ukUaNG5rj27NmTbd+7d+8GoH79+lhbWxcovuKef0BAANHR0VmWXbhwwZzgSj9/08/Xrl3LNpmVkpLCvn37AHjyySezHb9s2bLs2bOHRo0acf36dXx8fDh//nymeqaz2X7//Xdu3ryZh5llZFoVdvv27Wzn+8gjj/Diiy8CsGbNmizjuNusWbOIiooCYMSIERnK3NzczD9nd57XsWPHsu3b9O4h7+//0qVLANSsWTNP9UVERERERERERETkwaTkWAEZDAa6desGwIIFC7Lcku7vv/9m3bp1xRaDs7MzAOHh4cU2xscff0xqamqm+8uWLTMnNXr16mW+7+rqSvv27QH47LPPMp1vBXDixAnz6qPevXsXOLbinn9cXByff/55lmVTp04F0lZ4pT8PrG3btuZt+/z8/LJs+80335hXG+Y2f3d3d/bs2cOTTz7JzZs38fHx4ezZsxnq9OjRA1dXV5KSkhgzZkyOyaLU1NRMz6tZs2ZYWlqSmppKQEBAtm0/+ugj7O3tSUhIoEePHhnOE7vb9u3bzc+oVatWdO7cOUP5v/71L/MZYFmtREtNTWX69OnZ9m9695C395+QkMCJEycAaNmyZa71RUREREREREREROTBpeRYIUyYMAF7e3uCg4Np166d+Xwlo9HI3r17ad++PQ4ODsU2fp06dQA4ePAg586dK/L+HRwc+OWXX+jTp495lVR8fDzffvstw4cPB+DFF1+kadOmGdpNnToVa2trLly4QPv27Tl16hSQlvDYtm0bnTp1Ijk5merVqzN06NACx2ea//r163M8L6ugXFxc+Oijj5g+fbp5BVRISAijRo1i2bJlAEyaNAk7OztzG3t7e3NSbPXq1QwbNozg4GAAYmNj+fLLLxk9ejSQllRs3LhxrnG4urqya9cunn76aYKCgvDx8eH06dMZymfPng2krerq3Lkzx44dMyc1U1NTOXv2LF988QW1a9fmp59+ytC/k5OTOY6cVmvVrl2bRYsWYWlpyalTp2jYsCHfffddhuTU//73P8aMGcMLL7xAYmIi1apVY9WqVZnO5bO2tqZ79+4ATJs2jXXr1pm38Dx//jxdu3bl5MmT2cbyr3/9CxsbGwAWLVqU6+qx48ePk5iYiJWVlXmlnYiIiIiIiIiIiIg8nJQcK4THHnuM5cuXY2VlRUBAAI0aNcLZ2RlHR0eee+45EhMTmTlzJgC2trZFPn737t3x8PAgLCyMmjVr4uHhQdWqValatSpHjx4tdP8eHh7MmjWLdevWUalSJdzd3XF2dmbo0KHEx8dTv359Fi9enKldo0aN+P7777GxseGXX36hXr16uLi4UKZMGTp37syNGzeoVKkSP/74I46OjgWOb8iQIRgMBg4fPoyHhwcVKlQwz78ovPTSS/To0YP3338fNzc33N3dKV++PF9++SUA/fv356233srUbuTIkbz99ttA2iqxRx55BHd3d1xcXBg1ahRJSUm0atWKhQsX5jkWFxcXdu7cSbNmzbh16xatWrXKkDwaMGAAX3/9NTY2Nmzfvp2nn34aBwcHypUrh52dHbVq1WLs2LGcO3cuU6IK/m8F25YtW3KMo0+fPvz0009UqFCBa9eu8Z///Ac3NzdcXV2xt7enRo0azJo1i+TkZNq1a8fRo0fNZ6Ldbfr06VSoUIGoqCh69eqFo6MjLi4uPPHEE+zbt4+NGzdmG4eDgwOvvvoqAO+++y6Ojo5UqVKFqlWrMnbs2Ez1TfPq0qULTk5OOc5RRERERERERERERB5sSo4V0ssvv0xAQAA9evTAw8ODhIQEPD09GTVqFMePH8fFxQXAfD5ZUXJzc+PAgQO88soreHt7ExERQWBgIIGBgcTHxxfJGG+88QY7duygQ4cOWFhYYGFhwRNPPMGUKVM4cuSIeQvBu/Xq1YszZ84wdOhQqlevTkJCAlZWVjRo0IDJkydz+vTpQp/91KJFC7Zu3UqbNm1wdXUlODjYPP+isnr1aubPn0/Dhg1JTk6mTJky/Pvf/2b58uUsW7Ysw9lX6c2cOZO9e/fSvXt3PD09iY6OxsnJiVatWvHdd9+xa9eufCdpnJyc2LFjB82bNyckJITWrVubVysCDBs2jPPnzzN27Fjq16+Pra0t4eHhODo60qRJE95880127dqV5VaOAwYMwM7OjsOHD5vP5spOhw4duHDhAvPnz6dTp054e3sTHx+PtbU1//rXv/jPf/7D7t272bFjBx4eHtn2U7FiRY4dO8Zrr72Gt7c3AI6OjvTv358//vgj1+0P582bh5+fH3Xr1gXgypUrBAYGZtru0Wg0smrVKoBCrVQUERERERERERERkQeDwZjbfmRSKB988AHTpk2jdevW7Nmzp7TDyZOlS5cyaNAgqlSpwuXLl0s7nBI3cOBAli1bxoABA1i6dGlph1NiBg8ezJIlS5g8eTIffvhhaYdTZA4cOEDLli2pXr06f//9d5Yr53ITGRmJi4sLERERGc47E7mXxCYmU+vDHQD8NSXt7Mf0vzvYWJVabCIiIiIiIiIiIiUhr9/lauVYMbp9+zaLFi0C0lbbiNzLPvzwQ2xtbZk7dy4xMTGlHU6RmT59OpB2Fl5BEmMiIiIiIiIiIiIi8mBRcqyQvvzyS2bMmMGFCxdITk4GICEhgW3bttGiRQtu3bqFh4cHgwcPLuVIRXJWtWpV3nzzTW7fvs28efNKO5wicezYMX7++WeaNm1Kr169SjscEREREREREREREbkHaI+lQrp48SJz5sxhwoQJWFpa4uLiQmRkpDlR5uLiwrp167I9m0vkXvLBBx/g6OhImTJlSjuUInH79m18fX3p2rWrVo2JiIiIiIiIiIiICKDkWKENGDAAS0tLDhw4wPXr17lz5w729vY8+uijtG/fnlGjRuHt7V3ica1du5ZRo0blq02vXr2YM2dOMUVUskaNGsXatWvz1WbOnDkP/eoiV1dXfH19SzuMItOlSxe6dOlS2mGIiIiIiIiIiIiIyD1EybFCatiwIQ0bNiztMDKJi4sjODg4X20iIiIAGDhwIAMHDiyGqEpOREREvucfFxcHwNKlS1m6dGkxRCUiIiIiIiIiIiIiIqXNYDQajaUdhIjIvSwyMhIXFxciIiJwdnYu7XBEREREREREREREJAt5/S7XogRjEhERERERERERERERESlVSo6JiIiIiIiIiIiIiIjIQ0PJMREREREREREREREREXloKDkmIiIiIiIiIiIiIiIiDw0lx0REREREREREREREROShoeSYiIiIiIiIiIiIiIiIPDSUHBMREREREREREREREZGHhpJjIiIi97nYxGSqjt9K1fFbCYmON/8cm5hc2qGJiIiIiIiIiIjcc5QcExERERERERERERERkYeGkmMiIiIiIiIiIiIiIiLy0FByTERERERERERERERERB4aSo6JiIiIiIiIiIiIiIjIQ0PJMREREREREREREREREXloKDkmIiIiIiIiIiIiIiIiDw0lx0qJv78/BoMBg8FQ5H37+flhMBjw8fEp8r7l/lTan4k9e/ZgMBjo2LFjiY67Zs0aDAYDr776aomOKyIiIiIiIiIiIiL3LiXHJJPNmzfj5+fH5s2bSzuUUjF79mz8/Pz4888/SzuUB0JqairvvPMOAJMnT85UbkrcFUeiuGfPntSqVYuVK1fyxx9/FHn/IiIiIiIiIiIiInL/UXKslDg4OFCjRg1q1KhR2qFksnnzZiZPnvxQJ8cmT56s5FgRWbZsGSdOnKBz5840bdq0RMe2sLBg0qRJGI1Gxo4dW6Jji4iIiIiIiIiIiMi9ScmxUtK0aVPOnTvHuXPnSjsUkWL16aefAjB8+PBSGf/ll1+mXLly7Nu3j4CAgFKJQURERERERERERETuHYVOjl27do0xY8ZQu3ZtHB0dsbKyylAeFhbGtGnTmD59OsnJyYUdTkTuI/7+/pw7dw4PDw/at29fKjFYWVnRq1cvAL755ptSiUFERERERERERERE7h2FSo7t2rWLunXrMmfOHM6ePUtsbCxGozFDHTc3NzZv3szEiRPZtm1boYK9X/j4+GAwGPDz8yMpKYkvvviCJk2a4OrqisFgwN/fH39//1zPWTp16hS9evXCy8sLOzs7qlWrxptvvsmtW7fy1N5kz549dO7cGQ8PD+zs7KhZsyaTJ08mPj4+Qz1Tn8uWLQPStsMzjWG6/P39C/xcli5disFgoGrVqkDa56djx454eHhgb29P7dq1mTp1aqa47vbPP/8wfPhwHn/8cezt7XF2dqZRo0ZMmTKFyMjILNvc/byOHz9O3759qVixItbW1vj4+JjPvgoMDARg0KBBmeZfGAMHDsRgMDBw4ECMRiMLFiygadOmODs74+zszLPPPsuqVaty7cff358ePXrg7e2Nra0t5cqV47nnnmPJkiWkpKQUKLbjx4/j5eWFwWCgffv2REdHZyg/ffo0Q4YM4fHHH8fBwQFHR0fq1avHBx98QEhISLb9Lly4EIAePXpkSpznxd3v7cKFCwwePJhKlSpha2tLxYoVef3117l+/XqO/fTp0weA1atXZ5qbiIiIiIiIiIiIiDxcCpwcu3r1Ki+//DIRERE8//zzrF+/Hjc3tyzrDh48GKPRyNatWwsc6P0oPj4eHx8fxo4dy4kTJ7CwsMhzgmXTpk00btyYdevWERwcjLW1NTdv3mTu3Lk0aNCAy5cv56mfzz77jLZt27J9+3aSk5NJTEzk3Llz+Pn50alTpwzJFBsbGzw9PbGzswPAzs4OT0/PDJeNjU2+n0NW5s+fT/v27fn5559JTk4mOTmZv/76i0mTJtGsWTPCwsKybLdu3Tpq167NggULuHDhAtbW1iQmJnL8+HF8fX2pU6cOZ8+ezXHsDRs28NRTT7Fq1SqioqLMSRtHR0c8PT2xsEj7s3B2ds40/6LSu3dvhg8fzu+//46VlRXR0dEcOnSIvn37mv9esjJmzBhatWrF+vXruXnzJg4ODoSHh7N3714GDx5Mu3btiIqKylcsu3fvpmXLlgQHB9OvXz9++uknHB0dzeWffvop9evXZ+HChVy4cAGDwUBSUhKnTp1i2rRp1KtXj+PHj2fq12g0smPHDgCaN2+er5iysm/fPho2bMiSJUuIiIggNTWV69evs2jRIpo2bZpjguzJJ5/Ezs6OmJgYDh48WOhYREREREREREREROT+VeDk2BdffEFUVBQ9e/Zk8+bNdOvWLdvEiWk7td9++62gw92X5s2bx8mTJ1myZAmRkZGEhoZy+/Zt6tWrl2O7ixcv0q9fP5KSkmjUqBEBAQFERUURGxvLrl27sLGxYcyYMbmOf+LECcaPH8/48eO5desWYWFhhIeH8+GHHwJpyQbTKjGAZs2aERQUZN6CrlevXgQFBWW4mjVrVognkub27duMHj2al19+mStXrhAWFkZkZCRff/01tra2HD9+nP/85z+Z2v3xxx/069ePhIQEnnnmGU6ePElkZCSxsbFs2bKFRx55hKtXr/L888/nuDpo4MCBtG3blrNnzxIREUFcXBwLFy5k7NixBAUFUalSJQDmzJmTaf5FYfPmzaxbt46PPvqIsLAwQkNDCQ4OZuTIkQAsWbKEr776KlO7uXPnMmvWLACGDBnCjRs3CAsLIyIiglmzZmFlZcXevXt5/fXX8xzL6tWr6dy5M1FRUbzzzjssX74ca2trc/nixYt57733cHBw4OOPP+bmzZvExMQQGxtLQEAArVu35ubNm7zwwguZnvlff/3FnTt3gLQz9gqre/futG7dmrNnzxIZGUlMTAxr167FycmJGzduMGHChGzbWltb06hRIwD2799f6FhERERERERERERE5P5V4OTYjh07MBgMfPTRR7nWffTRR7G1teXSpUsFHe6+FB0dzapVqxg4cCD29vYAlC1bFnd39xzbTZs2jdjYWMqXL8+uXbto3LgxAAaDgTZt2rBjxw5iY2NzHT88PJxJkyYxbdo0ypUrB6Sthpo8eTLdunUD0pIjJS02NpZmzZqxZs0acyLK3t6eYcOGMW/ePCBt5dzdydQPPviApKQkHnvsMXbu3EndunUBsLCw4Pnnn2fr1q1YWVnxzz//sGDBgmzHr1WrFlu2bOGJJ54w33v88ceLeprZioiIYOLEiUycOBFnZ2cAPDw8+Oqrr+jXrx9Apm0v4+Li8PX1BdJWnX3zzTd4eXkBUKZMGUaPHs3MmTMBWLt2Lb///nuuccycOZO+ffuat/78/PPPM6xsjIqKYuzYsQCsX7+e999/3zympaUljRs3ZseOHTRu3Jhr166xaNGiDP0fO3YMACcnJ6pVq5b/B3WXBg0asGnTJvN7s7GxoWfPnnz88cfmGHM617Bhw4YAHDlyJNexEhISiIyMzHCJiIiIiIiIiIiIyIOhwMmxK1euYG9vn+ekgqOjIzExMQUd7r5Uu3Ztnn/++Xy1MRqNbNiwAYDhw4dnmUirUaMGPXv2zLUvW1tbc3Ljbi+++CIAJ0+ezFd8RWXixInm7QvTGzRoEBUrVgRgzZo15vvh4eHmLfrGjRuHg4NDprYNGzbMU9Jv3LhxWFpaFir+wrC3t8/2vZhW9YWGhrJr1y7z/V27dhEaGgqAn59flm1HjBjBI488ApDj2WVGo5Fx48bxzjvvYGVlxYoVK7JcibhhwwbCw8Np2LChefXn3aysrOjduzeA+f2Y3LhxA8CcmC2s999/P8vPjOmzHBcXx99//51te1McprhyMn36dFxcXMyXKYkrIiIiIiIiIiIiIve/AifHLCwsSE1NzVPd5ORkIiMjzatkHhbPPPNMvttcvHiR8PBwAFq2bJltPR8fn1z7ql27doazo9KrUKECgDnhUpKsrKyyPYPKwsLCPLeAgADz/T/++MN8DlebNm2y7btt27ZAWtIvKSkpyzoFeS9FqUmTJtn+LTz++OPm5GD6+Zt+rlSpEv/617+ybGtpaUnr1q0ztU0vKSmJ/v378/nnn+Po6MjWrVvp06dPlnUPHToEwNmzZ/Hy8sr2mjJlCgCBgYEZ2t++fRsg15WSefXUU09led/0WYacP8+mOExx5WTChAlERESYr6tXr+YzWhERERERERERERG5V1kVtGGVKlU4e/YsV65coXLlyjnWPXDgAElJSSW6dd29oHz58vluk/6L+/Rf+t/N29s7176cnJyyLbOySnv1OW1DV1zKlSuHra1ttuWmud26dct8L/3POc3dlFhKTk4mNDQUT0/PTHUK8l6KUm7vztvbm2vXrmU5/9zamuafvm16hw8f5vDhw0Da2WamZGJWTCus4uPjM2zxmJ27t/o0tcnpXedHdp9n02cZyDYhCpi3Ns3LXGxtbYssbhERERERERERERG5txR45Zhp9U5OZztB2pfVH3zwAQaDgY4dOxZ0uPtSYbfuS3/+kxSd0txSsbTVrVuXevXqATBmzBj++eefbOumpKQA0KtXL4xGY67X5cuXM7QvW7YsAGFhYcUzmXwyrSozxSUiIiIiIiIiIiIiD6cCJ8fefvttbGxs+OKLL1i8eHGWdf744w/atGnDsWPHcHJyYsSIEQUO9GHh4eFh/jmns5GuX79eEuEUi5CQEBITE7MtN80t/Qqv9D9fu3Yt27amMisrqyLbzq+o5fbucpp/TnNPX57d6jh3d3f27t1LgwYNuHr1Ki1btuR///tflnW9vLyAzNsl5pXps1waW3dmxRRH+r8xEREREREREREREXn4FDg5VqVKFRYtWkRKSgpDhgzB09PTvEKkWbNmeHt78+STT3Lw4EGsrKxYvnw55cqVK7LAH1TVqlXD1dUVAH9//2zr5VRWWBYWaR8L0xlfRS05OZmDBw9mWWY0Gtm/fz+QdjaXSaNGjcxx7dmzJ9u+d+/eDUD9+vWxtrYuUHzFPf+AgACio6OzLLtw4YI5wZV+/qafr127lm0yKyUlhX379gHw5JNPZjt+2bJl2bNnD40aNeL69ev4+Phw/vz5TPVMZ7P9/vvv3Lx5Mw8zy6hWrVpA2lah2c23JF26dAmAmjVrlnIkIiIiIiIiIiIiIlKaCpwcA+jbty/bt2+nevXq3L59m8TERIxGI0ePHuXmzZsYjUYee+wxfv75Z1544YWiivmBZjAY6NatG5C2ZWVWW9L9/fffrFu3rthicHZ2BiA8PLzYxvj4449JTU3NdH/ZsmVcvXoVSNvOz8TV1ZX27dsD8Nlnn2U63wrgxIkTbNiwAYDevXsXOLbinn9cXByff/55lmVTp04F0lZ4pT8PrG3btubtAP38/LJs+80335hXG+Y2f3d3d/bs2cOTTz7JzZs38fHx4ezZsxnq9OjRA1dXV5KSkhgzZkyOycLU1NRMz6tZs2ZYWlqSmppKQEBAjvGUhGPHjgHQsmXLUo5EREREREREREREREpToZJjkPal/fnz59m3bx9Tp05lxIgRDB06FF9fX3bu3MnZs2dp3bp1UcT60JgwYQL29vYEBwfTrl07jh8/DqStZNq7dy/t27fHwcGh2MavU6cOAAcPHuTcuXNF3r+DgwO//PILffr0Ma+Sio+P59tvv2X48OEAvPjiizRt2jRDu6lTp2Jtbc2FCxdo3749p06dAtISM9u2baNTp04kJydTvXp1hg4dWuD4TPNfv359sZyX5eLiwkcffcT06dOJiooC0raaHDVqFMuWLQNg0qRJ2NnZmdvY29ubk2KrV69m2LBhBAcHAxAbG8uXX37J6NGjgbSkYuPGjXONw9XVlV27dvH0008TFBSEj48Pp0+fzlA+e/ZsANasWUPnzp05duyYOamZmprK2bNn+eKLL6hduzY//fRThv6dnJzMcZgSU6UlKCiIK1euAEqOiYiIiIiIiIiIiDzsrIqiE4PBQMuWLfWlcxF57LHHWL58Ob179yYgIIBGjRrh5ORESkoKsbGxeHt7M3PmTAYNGoStrW2Rj9+9e3fef/99bt++Tc2aNSlXrhxlypQB0pIkTz/9dKH69/DwYNy4cbz55pusXbsWNzc3oqOjSUpKAtK2RMzqHLtGjRrx/fff079/f3755Rfq1auHs7MziYmJxMfHA1CpUiV+/PFHHB0dCxzfkCFDWLVqFYcPH8bDw4Py5ctjY2MDwOXLlwvcr8lLL71EfHw877//PpMmTcLZ2Znw8HDzyqz+/fvz1ltvZWo3cuRILl68yKxZs/jmm2/49ttvcXV1JSoqiuTkZABatWrFwoUL8xyLi4sLO3fupEOHDhw+fJhWrVqxZ88e6tWrB8CAAQOIi4tj1KhRbN++ne3bt2Nra4ujoyORkZHmdwZp/x24W+/evfn111/ZsmUL7733Xr6eU1HasmULAA0aNNC2iiIiIiIiIiIiIiIPuUKvHJPi8fLLLxMQEECPHj3w8PAgISEBT09PRo0axfHjx3FxcQEwn09WlNzc3Dhw4ACvvPIK3t7eREREEBgYSGBgoDkJVVhvvPEGO3bsoEOHDlhYWGBhYcETTzzBlClTOHLkiHkLwbv16tWLM2fOMHToUKpXr05CQgJWVlY0aNCAyZMnc/r06UInP1q0aMHWrVtp06YNrq6uBAcHm+dfVFavXs38+fNp2LAhycnJlClThn//+98sX76cZcuWmc89u9vMmTPZu3cv3bt3x9PTk+joaJycnGjVqhXfffcdu3btwsnJKV+xODk5sWPHDpo3b05ISAitW7c2r1YEGDZsGOfPn2fs2LHUr18fW1tbwsPDcXR0pEmTJrz55pvs2rUry60cBwwYgJ2dHYcPHzaf+VUaVq5cCVCoFYUiIiIiIiIiIiIi8mAwGHM6SCiPEhMT2bVrFwEBAdy6dQuA8uXL06RJE9q2bWtedSNF54MPPmDatGm0bt2aPXv2lHY4ebJ06VIGDRpElSpVimQF1v1m4MCBLFu2jAEDBrB06dLSDqfEDB48mCVLljB58mQ+/PDDEh//8uXLVKtWDScnJ65du5bv5CFAZGQkLi4uREREmM+kE7mXxCYmU+vDHQAETHyOJlPT/l34a0p7HGyKZJG4iIiIiIiIiIjIPS+v3+UW+huzuXPnMnnyZEJDQ7Msd3d358MPP+TNN98s7FDy/92+fZtFixYB0KFDh1KORiRnH374IatWrWLu3Lm888475i06S8onn3yC0WhkwoQJBUqMiYiIiIiIiIiIiMiDpVDbKr722muMGjWKO3fuYDQa8fb2pmnTpjRt2hRvb2+MRiN37txh9OjRDB48uKhifih8+eWXzJgxgwsXLpjPk0pISGDbtm20aNGCW7du4eHhoecq97yqVavy5ptvcvv2bebNm1eiY1+9epXvvvuOypUrM3r06BIdW0RERERERERERETuTQVeObZ69Wq+++47APr168eHH37IY489lqHOP//8w0cffWQ+R6lNmzb06dOncBE/JC5evMicOXOYMGEClpaWuLi4EBkZaU6Uubi4sG7dumzP5hK5l3zwwQc4OjqW+KqxwMBAJkyYQKtWrbCzsyvRsUVERERERERERETk3lTg5Nj8+fMxGAyMHDmSOXPmZFmnevXqLF26FBcXF7766ivmz5+v5FgeDRgwAEtLSw4cOMD169e5c+cO9vb2PProo7Rv355Ro0bh7e1d4nGtXbuWUaNG5atNr169sv2M3G9GjRrF2rVr89Vmzpw59OrVq5giuj+4urri6+tb4uM+++yzPPvssyU+roiIiIiIiIiIiIjcuwqcHDt58iQGg4EPP/ww17offvghc+fO5dSpUwUd7qHTsGFDGjZsWNphZBIXF0dwcHC+2kRERAAwcOBABg4cWAxRlZyIiIh8zz8uLg6ApUuXsnTp0mKISkRERERERERERERE8spgNBqNBWno4uKCtbU1ISEheapftmxZUlJSCA8PL8hwIiKlJjIyEhcXFyIiInB2di7tcEREREREREREREQkC3n9LteioAPUqFGDiIgIoqOjc60bHR1NZGQkNWrUKOhwIiIiIiIiIiIiIiIiIoVW4OTY4MGDSUlJ4auvvsq17ty5c0lJSWHw4MEFHU5ERERERERERERERESk0Ap85tiwYcPYv38/kyZNIjExkXfeeQdHR8cMdWJjY/n888/56KOPeOWVVxg6dGihAxYREREREREREREREREpqAKfOWZaBbZp0yYiIyOxt7enSZMmeHt7A3D9+nUCAgKIi4vDxcWFl156KesADAYWL15csOhFREqAzhwTERERERERERERuffl9bvcAifHLCwsMBgM5LX53XVNvxsMBlJSUgoSgohIiVByTEREREREREREROTel9fvcgu8rWL//v0xGAwFbS4iIiIiIiIiIiIiIiJS4gqcHFu6dGkRhiEiIiIiIiIiIiIiIiJS/CxKOwAREZH7XWxiMlXHb6Xq+K3EJiaXdjhSQHqPIiLyING/a8UvJDre/IxDouNLOxwRERER/e+TfChwcuzAgQNFGYeIiIiIiIiIiIiIiIhIsStwcszHx4datWoxe/ZsQkNDizImERERERERERERERERkWJRqG0Vz507xzvvvEPFihV59dVXtZpMRERERERERERERERE7mkFTo79/fffvPvuu5QvX574+HhWrVpFq1attJpMRERERERERERERERE7lkFTo5Vr16dGTNmcPXqVdavX0/btm0xGAxaTSYiIiIiIiIiIiIiIiL3rEJtqwhgZWVFt27d+Pnnn7l48SIffPABFSpUID4+npUrV2o1mYiIiIiIiIiIiIiIiNwzCp0cS69y5cp89NFHBAYG8t///pfnn38eCwuLTKvJDh06VJTDyj3q8uXLGAwGDAYDly9fLu1wil1iYiLVq1fH1taWq1evlnY4RcbHxweDwYCfn19ph5ItPz8/DAYDPj4+mco6dOiAwWBg7969JR+YiIiIiIiIiIiIiNxzijQ5Zu7UwoLnn3+e4cOH89RTT2EwGDAajebVZC1atOCZZ57ht99+K47hS8zmzZvx8/Nj8+bN9/UYBeHn54efn99DkfTKq6+++oqLFy/y2muvUalSpQxl6ROFebmWLl1aOpN4AJmSemPHjiU1NbV0gxERERERERERERGRUlfkybGbN28ydepUqlWrRufOnTl8+DBGo5Fnn32WOXPm0LlzZwwGA0eOHOHZZ5/F39+/qEMoMZs3b2by5MnFnhwr7jEKYvLkyUyePDnH5Ji1tTU1atSgRo0aWFtbl1xwpSA0NJSpU6dia2vLhAkTcqzr7OyMp6dnjpe9vX0JRZ67ypUrU6NGDcqVK1faoRTI008/Tfv27Tl+/DgrVqwo7XBEREREREREREREpJRZFUUnRqORbdu2sXDhQrZt20ZKSgpGoxFnZ2deffVVhg0bRu3atQF48803uXjxIsOHD2fXrl1MmjSJgwcPFkUYco/x9vbm3LlzpR1Gifj2228JDw/n5ZdfpmLFijnWnTNnDgMHDiyZwIrA8uXLSzuEQhs2bBg7duzg008/pX///qUdjoiIiIiIiIiIiIiUokIlx65du8bixYv57rvvuHbtGkajEYBGjRoxbNgw+vTpg4ODQ6Z21apV44cffqB8+fKcPHmyMCGIlDqj0ci3334LQL9+/Uo5GslKp06dcHd358yZMxw6dIhnnnmmtEMSERERERERERERkVJS4G0Vu3TpwqOPPsqUKVO4evUq9vb2DBo0iGPHjhEQEMBrr72WZWLMxNnZGS8vL6KjowsaQrFYu3YtHTt2xNPTE2tra1xdXXn88cd54YUXmDdvHvHx8fj7+2MwGFi2bBkAy5Yty3RmVPrtIoOCgvjqq6948cUXqVmzJi4uLtjb2/PYY4/x2muvcebMmUxx5HcMk9OnTzNkyBAef/xxHBwccHR0pF69enzwwQeEhIQU+vkMHDgQg8Fg/r1Vq1YZYqpataq5LP05W3dvv2ian6mvkydP0rt3bypUqIC9vT01a9bk888/Jzk52dzm0KFDvPTSSzzyyCPY2dlRp04d5s2bZ07KZqcgz8TPzw+DwYCPjw8AGzZsoF27dpQvXx4LCwvzOVYAu3fv5tKlS7i6utKpU6c8PMX8OXz4MFZWVhgMBmbNmpVlnWvXrlG2bFkMBgOvv/56hjIfHx8MBgN+fn4kJiYyY8YM6tWrR5kyZXBzc6Nt27Zs37492/HTt79b1apVzWekRUdH8+GHH1K3bl2cnJyyfO+HDh2iX79+VKlSBTs7O1xcXGjatCmffPJJrv8t2L59O23btsXV1RVHR0fq16/Pp59+SlJSUo7tAGxsbOjevTuAOZEpIiIiIiIiIiIiIg+nAq8c27ZtGwA1a9Zk6NChDBgwABcXl3z18fLLL3Pnzp2ChlDkBg8ezJIlS8y/Ozo6kpSUxIULF7hw4QI//vgjnTt3xsbGBk9PTyIiIoiPjzd/yZ+ejY2N+efx48ebk1xWVlY4OzsTGxvLP//8wz///MOKFStYuXKl+ct7U/v8jAHw6aefMmHCBFJTUwFwcHAgKSmJU6dOcerUKZYsWcLWrVtp2LBhgZ+Ri4sLnp6eBAcHA+Dm5pYhDg8Pj3z3uX37drp160Z8fDwuLi4kJCRw7tw5xo0bx++//87q1atZtGgRw4YNIzU1FWdnZxISEjhz5gwjR47k6tWrzJgxI8u+i+KZvPPOO8ycORODwYCrqysWFhlzyj///DMATz31VLGcrdasWTN8fX358MMPGT9+PD4+PhniTU1NpV+/foSGhlKzZk3mzJmTZT+JiYm0adOGgwcPYmVlhaOjI+Hh4ezevZvdu3fj6+ubZQIsL+7cuUPjxo353//+h42NTabEeGpqKm+//TZffvml+Z6joyMxMTH89ttv/PbbbyxZsoQdO3ZQpUqVTP37+fkxefJk8++urq789ddfvPfee2zdujVPK8FatGjBwoUL2bFjR4HmKCIiIiIiIiIiIiIPhgKvHOvVqxf79u3jzJkzvPXWW/lOjAF8/vnnGZJRpemXX35hyZIlWFhY8Mknn3Dnzh2ioqKIiYkhJCSEHTt2MGDAAGxsbGjWrBlBQUH06tULSHsWQUFBGa5mzZqZ+37sscf47LPPOHXqFHFxcdy5c4eEhAROnz5N3759SUhIYMCAAdy4ccPcJr9jLF68mPfeew8HBwc+/vhjbt68SUxMDLGxsQQEBNC6dWtu3rzJCy+8UKjVenPmzCEoKMj8+8aNGzPE9Ntvv+W7zz59+vDiiy8SGBhIeHg4ERERTJgwAYA1a9YwY8YMRowYwYgRIwgKCiI8PJzQ0FDzuV2fffYZ//vf/zL1WxTP5Pfff2fmzJm89957BAcHExoaSkxMDIMGDTLXOXDgAABNmzbN99zz6oMPPsDHx4fExEReeeUVYmJizGVTp05l//792Nrasnr16mxXbM6fP59ff/2VBQsWEBUVRVhYGFeuXOHll18GYPLkyWzZsqVA8fn5+REZGcmmTZuIjo4mLCyMq1evUr58eQB8fX358ssvKV++PPPmzTP/fcXFxbFv3z4aNmzI+fPn6datmzmRabJlyxZzYqxHjx5cuXKFsLAwIiMjmTdvHkePHuXrr7/ONcannnoKgODg4IfmLDwRERERERERERERyazAybHVq1fTsmXLooylVB0+fBiANm3a8O677+Lu7m4uK1u2LO3atWPp0qVUqFAh331PnDiRsWPHUqdOHays0hbrWVhYULt2bVasWEHnzp2JiYnhu+++K1DsUVFRjB07FoD169fz/vvv4+XlBYClpSWNGzdmx44dNG7cmGvXrrFo0aICjVNcnnzySVavXk3lypUBcHJyYtq0aTRv3hyACRMmMGDAAHNyBdJWrC1atIhHH32U1NRU1q1bl6HPonom0dHRjBkzhhkzZphXxdna2ppXNyUmJnL8+HEA6tevn6f5jho1Ci8vrxyvu1lYWLBixQrKli3L//73P0aOHAmkbVM4ZcoUIG2VXE4xREREMH/+fIYOHYqdnR0AlSpVYu3atbRo0QKA999/P09zuFtcXBzbtm3jpZdeMq+eq1ixIg4ODly+fJnp06djb2/Pzp07GTFihPnvy9raGh8fH/bv30/FihX5448/MiXoTInSli1bsmbNGipVqgSAvb09I0aM4MsvvyQ8PDzXGB9//HEcHR0BOHLkSI51ExISiIyMzHCJiIiIiIiIiIiIyIOhwMmx1q1b06NHjzzX7927N88991xBhyt2rq6uANy+fZuUlJQSHbtz585A2uq1gtiwYQPh4eE0bNiQ9u3bZ1nHysqK3r17A9xz28q99957Gc4xM0k/F1OCJD1LS0vzZ+rkyZMZyorqmVhYWPDee+9lG/utW7fMn5e8bikZGRlJcHBwjldWvL29zQnUpUuX8vXXX9OnTx9SUlLo0qULb731Vo7jVqpUKcOKt/RznDhxIgBnzpzh1KlTeZpHeh06dMh2a8qlS5eSkpJChw4dsk3eOTk58dJLLwEZ38XJkyf566+/gLQk891bWgK8/vrreHt75ynOsmXLAmRYpZmV6dOn4+LiYr5MCTkRERERERERERERuf8V+Mwxf3//LFe4ZOfo0aNcuXKloMMVu+eeew47OzuOHz9O8+bN+c9//kPr1q159NFHi6T/EydO8M033/DLL79w+fJloqOjMRqNGepcu3atQH0fOnQIgLNnz+b4TuLi4gAIDAws0DjFJbvtCD09PQFwd3enWrVqOdYJCwvLcL+onsljjz1mXq2Wldu3b5t/Tr/aMCdLliwxbwmZXy+88AIjR45k7ty5jBgxAoBHHnkkT9uT+vj4ZJmEBGjevDlWVlYkJycTEBBA3bp18xVXTmd+md7Fzp07c3wXpq0t07+LgIAAIC2RaVpJeDcLCwt8fHxYuXJlrnG6u7sTGBiY4b1lZcKECYwZM8b8e2RkpBJkIiIiIiIiIiIiIg+IAifH8is1NTXbL+bvBdWrV2fRokUMGzaMI0eOmLdd8/DwoFWrVvTp04cXXnihQHOYO3cuo0aNMp+lZDAYcHFxwdbWFkhL0ERGRmY4Ryo/TKtg4uPjiY+Pz7V+bGxsgcYpLk5OTlneN21BmV15+jpJSUkZ7hfVM8kpMWbq38T0Povb559/zqZNm7h+/ToA3333HeXKlcu1XU6rq+zs7ChbtizBwcHcunUr3zHl9JxM7yImJiZPn/H078IUS7ly5XJ8vhUrVsxTnPb29gC5fiZsbW1L7H2KiIiIiIiIiIiISMkq8LaK+ZGSksKtW7coU6ZMSQxXYH379iUwMJAFCxbQq1cvKlWqxO3bt1m3bh0vvfQSLVu2zPfZQ2fPnmX06NGkpqbSo0cPfv31V+Lj4wkLCyMoKIigoCBmzpwJkGklWV6ZtvXr1asXRqMx1+vy5csFGud+UlTPxNLSMsdxTNv0QebVa8Vl69at5sQYwP79+0tk3Jzk9JxM7+K9997L07vw9/cvtjhDQ0OBjO9NRERERERERERERB4ueV45FhkZSXh4eIZ7KSkpXL16NdukjtFoJDw8nCVLlpCQkEC9evUKFWxJcHd3Z+jQoQwdOhSAf/75h0WLFvHJJ59w8OBB/Pz8zMmsvFi/fj0pKSnUrFmTNWvWZHlmUlBQUKFiNm1Vd69tl1iaSuqZpD9nzJR4KU5Xr17ltddeA6BevXqcPHmSTz/9lLZt29K6desc26ZPqN0tISGBO3fuALmvlssvLy8vzp8/X6B3YYolJCSExMREbGxssqyX09zSM72jvJ4PJyIiIiIiIiIiIiIPnjyvHJs1axaPPvqo+YK0L6yrVq2a4X76q1q1ajRq1IivvvoKg8HAq6++WmwTKS7Vq1dn+vTp9OnTB4Bdu3aZy0yJrpxWfF29ehWA+vXrZ5kYA9i9e3e27fMyhum8p99//52bN29mW68ombaXLOhqt+JWUs/Ezc3NnIi7ePFisY0Dacnovn37EhYWRq1atTh69Chdu3YlNTWVV1991Zzcys7+/fuzfV8HDx4kOTkZgCZNmhRp3KZ3sXv37jxtcZmeKZbk5GQOHjyYZZ3U1NQ8rTaLiooiJCQEgJo1a+YrDhERERERERERERF5cORrW8X0W58ZDIY8bZFmNBqpUKECU6ZMYeTIkcU1j0JLSEjIsdx0VlH6BJezszNAphV16bm4uABw6tSpLBMT27dvz/GL/byM0aNHD1xdXUlKSmLMmDE5JqxSU1Nz7Cuv8hJXaSrJZ9KiRQsAfv311wL3kRdTp07l4MGD2NrasmbNGuzt7Vm0aBEVK1bkxo0bDBo0KMf2V65cYdmyZZnup6amMm3aNABq1apF3bp1izTuwYMHY2VlRUhICL6+vjnWTUxMJDo62vx7vXr1zImsjz/+2HxuX3rfffcd165dyzWOgIAAUlNTsbKyMifsREREREREREREROThk+fk2OjRo7l06RKXLl3i4sWLGI1GPDw8zPeyugIDAwkLC+Pq1at88MEHxTmPQhs5ciQ9e/Zkw4YN3Lp1y3w/OjqaBQsWsHz5cgA6d+5sLqtTpw6Qturm3LlzWfbboUMHAM6cOcMbb7xh3tYtJiaGb775hpdffjnH84/yMoarqyuzZ88GYM2aNXTu3Jljx46ZEwmpqamcPXuWL774gtq1a/PTTz/l+jxyY4pr5cqVxMbGFrq/olaSz8THxweAY8eOFTbsbB06dIiPPvoIgM8++8ycwHJ3d2fFihVYWFjw448/Mnfu3Gz7cHFxYfjw4SxcuNC8guvq1av07t2bffv2AWkJuKJWvXp1Jk2aBMCnn35K//79OX36tLk8OTmZP//8kylTpvDYY4/x559/Zmj/8ccfA7Bv3z769OljToTFx8ezYMECRo4ciaura65xmN5Po0aNcHR0LIKZiYiIiIiIiIiIiMj9KM/JMRcXF6pUqUKVKlWoWrUqLVq0oHnz5uZ7WV2VKlUyr5y61yUlJfHDDz/w8ssv4+npiZOTE25ubjg5OTF8+HASExN59tlnMyT5unfvjoeHB2FhYdSsWRMPDw+qVq1K1apVOXr0KADPPfccr7zyCgBff/01ZcuWxc3NDRcXF4YNG0bNmjXx8/PLNq68jAEwYMAAvv76a2xsbNi+fTtPP/00Dg4OlCtXDjs7O2rVqsXYsWM5d+6ceUvEwhg2bBgAGzZswNXVlYoVK1K1alWeffbZQvddVErqmXTv3h1ra2vOnTvH33//nWv9UaNG4eXlleM1atQoc/3w8HD69OlDSkoKXbp04c0338zQX8uWLc2fy3HjxnHq1Kksxx0xYgRNmjRhyJAhODs74+7uTuXKlVm3bh0AEydOpGvXrgV9DDmaNGkSkyZNwmAw8P3331O3bt0M76Jhw4b4+vpy9erVTO+ia9eu5vmtXbuWSpUq4e7ubv7bbNq0KcOHD881hi1btgCYt0gVERERERERERERkYdTvrZVTM/f35/169cXZSylatKkSXz55Zd07dqVJ554AisrK6Kjoylfvjxt27blu+++w9/fnzJlypjbuLm5ceDAAV555RW8vb2JiIggMDCQwMDADGcrrVy5ktmzZ1OvXj1sbW1JSUmhbt26TJ8+nUOHDuW4iiWvY0Bawur8+fOMHTuW+vXrY2trS3h4OI6OjjRp0oQ333yTXbt20bt370I/r379+vH999/z7LPP4uDgwM2bNwkMDMzT9nYlqSSeSfny5c1JpZUrV+ZaPzIykuDg4ByviIgIc/3XX3+dK1eu4OXlxXfffZdln76+vjRr1oz4+HheeeUV4uLiMtWxsbFhz549TJs2jRo1apCQkICLiwvPPfccW7duNa9MKw4Gg4EpU6Zw8uRJRowYQc2aNbG0tCQiIgI3NzeaNWvGuHHjOHz4cJZbHk6dOpWffvqJ1q1b4+zsTEJCAjVr1mTGjBns2bMHGxubHMe/ePEiR44cwd7env79+xfXNEVERERERERERETkPmAw5nQYk4jkyYEDB2jZsiXVq1fn77//LpLVeUXFx8eH/fv34+vrm+MqxQfZlClT8PX1ZdCgQdkmGHMSGRmJi4sLERER5vP2RNKLTUym1oc7APhrSnscbKxKOSIpCL1HERF5kOjfteIXEh1Pk6l7AAiY+BzlHO1KOSIRERF52Ol/n+T9u9wCrxwTkf/TokUL2rVrxz///MMPP/xQ2uFIOjExMXz11VfY2tri6+tb2uGIiIiIiIiIiIiISClTckykiHz++edYWFgwZcoUUlNTSzsc+f/mzp1LSEgIb731FlWqVCntcERERERERERERESklGlfBZEiUrduXRYvXszly5e5efMm3t7epR2SAGXKlMHPz4/Ro0eXdigiIiIiIiIiIiIicg9Qcuwh5uXlle82QUFBxRDJg2PgwIGlHYLcZeTIkaUdgoiIiIiIiIiIiIjcQ5Qce4gFBweXdghSAvz9/Us7BBERERERERERERGRe4bBaDQaSzsIEZF7WWRkJC4uLkRERODs7Fza4YiIiIiIiIiIiIhIFvL6Xa5FCcYkIiIiIiIiIiIiIiIiUqoKnByzsLDA29s7z/UfffRRrKy0i6OIiIiIiIiIiIiIiIiUnkKtHMvvjozawVFERERERERERERERERKU4ltq5iYmIiFhXZxFBERERERERERERERkdJTItmq8PBwbt26hZubW0kMJyIiIiIiIiIiIiIiIpKlPB8CdvLkSf78888M9+Li4li+fHm2bYxGI+Hh4axfv57U1FQaNmxY4EBFRERERERERERERERECivPybFNmzYxZcqUDPciIyMZNGhQrm2NRiMGg4ExY8bkP0IRERERERERERERERGRIpLn5JirqyuVK1c2/x4YGIiFhQUVK1bMto2FhQXOzs7UqVOHIUOG0Lx588JFKyIiD7TYxGRqfbgDgL+mtMfBJvd/pgrSRvKnJJ6x3qOIiNyPsvr3S/+mFR89WxEREREpKnn+X5KjRo1i1KhR5t8tLCzw8PDg0qVLxRKYiIiIiIiIiIiIiIiISFEr8P+Zla+vL46OjkUZi4iIiIiIiIiIiIiIiEixKlRyTEREREREREREREREROR+YlHaAYiIiIiIiIiIiIiIiIiUlEKfXvvPP/+wbt06Tp48SWhoKElJSdnWNRgM7Nmzp7BDioiIiIiIiIiIiIiIiBRIoZJjkydPZurUqaSmpmI0GnOtbzAYCjOciIiIiIiIiIiIiIiISKEUODm2cuVKJk+eDECFChVo3749FSpUwMqq0IvRRKQYVK1alcDAQJYsWcLAgQNLfPx+/fqxcuVK1qxZQ69evUps3A4dOrBjxw727NlD69atS2xcEREREREREREREbk3FTiTNW/ePABeeOEF1q1bh42NTZEFJdlbunQply9fxsfHBx8fn9IO54F0+fJlli5dCoCfn1+pxvKgCAgIYNWqVdSpU4eePXtmKjcl7gYMGGB+9kXFz8+PHTt2MHbsWAICArCw0FGLIiIiIiIiIiIiIg+zAn9LfPr0aQwGA/Pnz1dirAQtXbqUyZMn4+/vX9qhPLAuX77M5MmTzSsjpfDeeecdjEYjvr6+Jb696tNPP0379u05fvw4K1asKNGxRUREREREREREROTeU+DkmMFgwNnZmQoVKhRlPCLygDl69CgHDhzAy8uLrl27lkoMw4YNA+DTTz8tlfFFRERERERERERE5N5R4OTYE088QWxsLAkJCUUZj4g8YBYsWADAK6+8gqWlZanE0KlTJ9zd3Tlz5gyHDh0qlRhERERERERERERE5N5Q4OTYa6+9RlJSEj/88ENRxlNqrl69yrvvvkuDBg1wcXHB3t6e6tWr8+KLL7J8+XLi4+MztTl06BD9+vWjSpUq2NnZ4eLiQtOmTfnkk0+Ijo7OcpyBAwdiMBgYOHAgAOvXr8fHxwd3d3ccHBxo0KABc+bMITU1NUO7pUuXYjAY2L9/PwCTJ0/GYDBkuC5fvlzkMRqNRhYtWsSzzz5L2bJlMRgMhToTysfHB4PBgJ+fH4mJicyYMYN69epRpkwZ3NzcaNu2Ldu3b8+1n40bN9KlSxc8PT2xsbHB09OTLl26sGnTpmzb5GVeVatWpVWrVuY2dz9j03srKFM//v7+BAUFMXLkSB599FHs7Ozw8vKib9++nDt3Lsc+4uPjmT17Ns2aNcPNzQ07OzuqVKlC//79+fPPPwsc28cff4zBYMDS0tKc0DJJTU1l5cqVdOrUyfzMPTw8aNeuHatXr8ZoNGbZZ2RkJOvWrQOgT58+BYqroH8z6dnY2NC9e3cAvv322wLFISIiIiIiIiIiIiIPBquCNnz99dfZunUrb731FpUrV6ZFixZFGVeJ+v777xkyZIg5AWZjY4OTkxNXrlzh4sWLbNmyhXr16tGgQQMgLVHw9ttv8+WXX5r7cHR0JCYmht9++43ffvuNJUuWsGPHDqpUqZLtuCNHjmTevHlYWFjg7OxMXFwcJ06cYPTo0fzxxx8sW7bMXNfe3h5PT09CQ0NJSkqiTJkyODo6Zugv/aqcoojRaDTSo0cPNmzYgIWFBS4uLlhYFDifmkFiYiJt2rTh4MGDWFlZ4ejoSHh4OLt372b37t34+vri5+eXZbv+/fuzdu1aAHNcISEhbN26la1bt9K7d2+WLVuGtbV1vufl4eFBZGQkYWFhAHh6emZo6+LiUiTzv3TpEr179yYoKAh7e3usra0JDg5m1apVbNy4kU2bNtGhQ4dM7a5fv06HDh04ffo0ANbW1jg4OHDlyhW+//57Vq5cyezZs3nzzTfzHEtqaipvvfUW8+bNw87OjlWrVmXY/jA0NJSuXbty4MAB8z3TM9+1axe7du1izZo1/PDDD5nOH9y/fz9xcXGUKVOGRo0a5fcxZZKfv5m7tWjRgoULF7Jjx45CxyEiIiIiIiIiIiIi968CZzqmTJlC/fr1MRgMtGrVihYtWjBu3DimTJmS43Wv2bp1KwMGDCA+Pp5nnnmGgwcPEhcXR0hICDExMRw8eJDXX389w5f+vr6+fPnll5QvX5558+Zx584doqKiiIuLY9++fTRs2JDz58/TrVu3bFezbNmyhYULFzJz5kzCwsIICwsjJCSE1157DYDly5ezd+9ec/1evXoRFBREs2bNABg7dixBQUEZrkqVKhVpjBs3buS///0vn3/+OWFhYYSGhhIREUH79u0L/dznz5/Pr7/+yoIFC4iKiiIsLIwrV67w8ssvA2kr47Zs2ZKp3fvvv8/atWsxGAxMmjSJO3fuEBoaSkhICO+//z4Aq1evZtKkSdmOndO8fvvtNzZu3Giue/cznjNnTqHnDvD2229jY2PDzp07iYmJISoqimPHjlG3bl3i4+Pp1asX165dy9AmJSWF7t27c/r0aVxcXFixYgXR0dGEh4fzzz//0KVLF1JTUxk1alSeVt8BJCQk0LNnT+bNm4erqys7d+7MkBhLSUmhW7duHDhwgAYNGvDjjz8SExNDeHg40dHRLFu2jPLly7Nlyxbee++9TP2bEmqNGjUq9JaK+f2budtTTz0FQHBwcK6r80RERERERERERETkAWYsIIPBYLSwsDBaWFgYDQZDht9zuu4lSUlJxkcffdQIGJ999lljQkJCrm0uXbpktLS0NNrb2xv//PPPLOtERkYaK1asaASMmzZtylA2YMAAI2AEjEuWLMmyfePGjY2A8bXXXstU1rJlSyNg9PX1LZEYv/zyy2zHKQhT/IBx8eLFmcpTUlKMLVq0MALG2rVrZyi7du2a0crKyggYJ0yYkGX/Y8aMMQJGa2tr440bNzKU5XVe+/btM9craqZ+bWxsjH/99Vem8uDgYKO7u7sRMI4YMSJD2Zo1a8ztd+zYkaltUlKS8amnnjICxjp16mQqr1KlSobPXXh4uPl9eHt7G0+dOpWpzfLly42A8YknnjCGh4dnOaeAgACjwWAw2tjYGIODgzOUNW/e3AgYR44cme0zSR/bgAEDMpUV9m8mPUdHRyNg/O6773KsFx8fb4yIiDBfV69eNQLGiIiIHNtJ4cUkJBmrvPeTscp7PxljEpKKrY3kT0k8Y71HERG5H2X175f+TSs+erYiIiIikpuIiIg8fZdb4JVjLVq0MF8tW7akZcuWGe5ld91L9u3bx6VLlwCYNWtWpi3hsrJ06VJSUlLo0KED9evXz7KOk5MTL730EkC2W7hVqlSJAQMGZFn2wgsvAHDy5Mlc4ynOGN3c3Bg6dGiBYshNpUqVGDRoUKb7FhYWTJw4EYAzZ85w6tQpc9mGDRtITk7Gzs6O8ePHZ9nvxIkTsbW1JSkpifXr12dZpzjnlVc9evSgZs2ame6XL1+eYcOGAZi3jjQx/f7vf/+bdu3aZWprZWWFr68vAKdPn87w7O5248YNmjdvzv79+3niiSc4fPgwderUyVRv8eLFAAwfPjzbLSUbN25M7dq1SUxMZN++fZnGgbTtKgurKP5mypYtmyGu7EyfPh0XFxfzlX5VpoiIiIiIiIiIiIjc3wp85pi/v38RhlE6Dh8+DICXlxdNmjTJU5tDhw4BsHPnTry8vLKtFx0dDUBgYGCW5U8++SQGgyHLsgoVKgBpZz0VRFHGmJeEYUH4+PhkO//mzZtjZWVFcnIyAQEB1K1bF4CAgABzXM7Ozlm2dXNzo0mTJhw6dMhc/27FOa+8at26dY5l06ZN486dO1y6dIlHH30U+L/5t2nTJtu2rVq1wtLSkpSUlAzPLr1z587h5+dHYGAg//73v/npp59wd3fPVC8lJYWjR48C4Ofnx7Rp07Id1/RZvfuzdPv2bYAs+8+vovibcXd3JzAw0BxXdiZMmMCYMWPMv0dGRipBJiIiIiIiIiIiIvKAKHBy7EEQFBQEQJUqVfLcxrTiJCYmhpiYmFzrx8bGZnnfyckp2zZWVmmvJSkpKc9xpVdUMZYvX75A4+eFt7d3tmV2dnaULVuW4OBgbt26Zb5v+jmntgAVK1bMUP9uxTmvvMppDunLbt26ZU6O5WX+dnZ2lCtXLtOzS++TTz4BwNPTk507d+Lo6JhlvdDQUBISEgAICwvLYTb/5+7PUnx8PAC2trZ5ap+Tovibsbe3zxBXdmxtbYskZhERERERERERERG59xR4W8UHQXarUHKSkpICwHvvvYfRaMz1Ko0VdkUVo6WlZQlGXXIe1HnlVY8ePbCxsSE4OJjhw4ebPy93S39/+/btefos+fn5ZejDtI1hXpNrxc20sswUl4iIiIiIiIiIiIg8fIokOXby5Ek+++wzRo4cyX/+858MZUlJSdy4cYObN28WxVBFyrTlYHbbChZVm5J2P8R4/fr1bMsSEhK4c+cOkHGVl+nna9eu5di3qfxeWCGWnZzmn74sv/OPj4/P8tml16lTJzZt2oStrS0rVqzg1VdfzTJBVrZsWfOKrIJ+lkxnjRV0i9CiZoqjKM5AExEREREREREREZH7U6GSYxEREXTv3p2GDRsyfvx45s+fz9KlSzPUSUpKon79+lSqVIkzZ84UZrgi16xZMyBte8Xszqe62zPPPAPA7t27c92arThYWKS9MqPRmG2d0o4xL/bv35/tHA4ePEhycjJAhrPgTD8HBAQQERGRZdvw8PAMZ5MVhOkZQ87PuTD27duXa5m7u7t5S0X4v/nv2bMn27b+/v7mZ5fT/Dt16sR///tf7OzsWL16NX369DG3M7G2tqZp06YA/Pjjj7nMKGu1atUC4OLFiwVqX5SioqIICQkBoGbNmqUcjYiIiIiIiIiIiIiUlgInx5KSkujYsSObN2/GwcGBzp07Y2dnl6meg4MDgwYNIjU1lfXr1xcq2KLWqlUrqlWrBsDbb79NYmJirm0GDx6MlZUVISEh+Pr65lg3MTGR6OjoIonVxNnZGUhLAmWntGPMiytXrrBs2bJM91NTU5k2bRqQllipW7euuax79+5YWVkRHx9vPjfrbtOmTSMhIQFra2u6d+9eoNhMzxhyfs6F8cMPP3D+/PlM90NCQvjmm28A6NWrV4ayV155BYAjR46wc+fOTG2Tk5OZMmUKAHXq1KFOnTo5xtC+fXu2bNmCvb0969at45VXXsl0ZteQIUMA2LZtG9u2bcuxv6xWh7Vo0QKAX3/9Nce2JSEgIIDU1FSsrKzMCWQRERERERERERERefgUODm2ePFijh49SrVq1Th//jxbtmzBxcUly7qmJMWBAwcKOlyxsLS0ZO7cuRgMBn755Reee+45fvnlF1JTU4G0xJG/vz/9+vXjr7/+AqB69epMmjQJgE8//ZT+/ftz+vRpc5/Jycn8+eefTJkyhccee4w///yzSGM2JTy2bduW7dZ8pR1jXri4uDB8+HAWLlxoXt129epVevfubV45NXXq1AxtvL29GTVqFAAzZszA19fXnLwKDw9n0qRJfPbZZwCMGTOGRx55pECx/etf/8LGxgaARYsWFcvqMTs7Ozp06MDu3bvN/f/222+0adOGkJAQnJycGD9+fIY23bt356mnngKgZ8+erFq1ypzMunTpEt27d+fIkSNA2nvPi7Zt2/LTTz/h4ODAhg0b6NmzZ4Ykcb9+/WjTpg1Go5GuXbsydepUbty4YS6PiYlh3759vPHGG+ZEc3o+Pj5A2raMwcHBeXw6xePYsWMANGrUCEdHx1KNRURERERERERERERKT4GTY6tXr8ZgMDBr1iwqVKiQY92GDRtiYWHBuXPnCjpcsenYsSNLly7F1taWX375hebNm+Pg4EC5cuUoU6YMrVq1YuXKlRkSBpMmTWLSpEkYDAa+//576tata25jZ2dHw4YN8fX15erVqxgMhiKNd8CAAdjZ2XHhwgUqV66Ml5cXVatWpWrVqhnOoirNGPNixIgRNGnShCFDhuDs7Iy7uzuVK1dm3bp1AEycOJGuXbtmajdt2jR69uyJ0WhkypQplC1bFnd3d8qWLWtOpvXu3ZuPPvqowLE5ODjw6quvAvDuu+/i6OhIlSpVqFq1KmPHji1wv+nNmjWL+Ph42rZti6OjI05OTjRt2pQTJ05ga2vL6tWrqVy5coY2lpaWbNiwgdq1axMREUHfvn1xdHTEzc2NatWqsWXLFiwsLJgzZw4dO3bMcyytW7dm27ZtlClThs2bN9O9e3fz5900ZpcuXUhMTGTSpEl4e3vj4uKCm5sbTk5OtG7dmvnz5xMTE5Op75o1a1K/fn0AtmzZUognVnim8fv06VOqcYiIiIiIiIiIiIhI6SpwcuzUqVMYDAbatWuXa10bGxtcXFy4c+dOQYcrVv379+fcuXOMHj2aWrVqYWVlRVxcHFWqVOGll17i+++/z3BGkcFgYMqUKZw8eZIRI0ZQs2ZNLC0tiYiIwM3NjWbNmjFu3DgOHz5c5Nu3Pf744+zbt48XXngBDw8P7ty5Q2BgIIGBgRnOjCrNGPPCxsaGPXv2MG3aNGrUqEFCQgIuLi4899xzbN26Ndvklo2NDWvXrmX9+vV07NiRsmXLEhUVRdmyZenYsSMbN25k1apVWFtbFyq+efPm4efnZ97W8cqVKwQGBprPrCqsRx99lOPHj/PGG2/g4eFBYmIi5cuXp3fv3hw/fpzOnTtn2c7b25uAgABmzpzJ008/jb29PbGxsVSqVIlXX32V33//nbfeeivf8bRs2ZKff/4ZJycnfvrpJ1566SUSEhKAtG0mf/zxR7Zt20avXr2oXLkyCQkJxMbG4u3tTbt27Zg+fXqW20QCDB06FICVK1fmO66icvHiRY4cOYK9vT39+/cvtThEREREREREREREpPQZjAXcM87Ozg57e3vCwsLM9x555BFu3bpFSkpKpvrOzs6kpqaWyvlWcu/w8fFh//79+Pr64ufnV9rhlDjTKr19+/aZtxx80EVFRVGxYkWioqK4dOkSVapUKfEYpkyZgq+vL4MGDeK7777Ld/vIyEhcXFyIiIjIcCadFL3YxGRqfbgDgL+mtMfBxqpY2kj+lMQz1nsUEZH7UVb/funftOKjZysiIiIiucnrd7kFXjlWrlw5IiMj85TsunTpEtHR0bluvygiDx7T+WlGo5FPPvmkxMePiYnhq6++wtbWFl9f3xIfX0RERERERERERETuLQVOjj311FMAbN26Nde6X331FQDNmzcv6HAich97++23qVSpEosXL+bq1aslOvbcuXMJCQnhrbfeKpVVayIiIiIiIiIiIiJybylwcmzw4MEYjUYmTZrEjRs3sq33zTffMGfOHAwGA0OGDCnocCJyH7Ozs2P58uVMmDCBK1eulOjYZcqUwc/Pjw8++KBExxURERERERERERGRe1OBN+ju3Lkz3bt3Z8OGDTRp0oQ+ffoQFxcHwLfffktgYCA//fQTp0+fxmg08vrrr5tXm8n9rVu3bhw+fDhfbTZu3EizZs2KKaKS5eXlle82QUFBxRDJ/cXHx6dUzlkbOXJkiY8pIiIiIiIiIiIiIveuQp1e+/3332NnZ8fKlSuZNWuW+f7w4cMBMBqNQNoqs3nz5hVmKLmHhIaGEhwcnK82iYmJAPj7+xdDRCUrv3NPz/Q3ISIiIiIiIiIiIiIipcNgLIJv63/55RcWLVrE4cOHuXHjBikpKXh5efHMM88wZMgQWrRoURSxioiUisjISFxcXIiIiMDZ2bm0wxERERERERERERGRLOT1u9wiSY6JiDzIlBwTERERERERERERuffl9btcixKMSURERERERERERERERKRUFTg51rZtW1asWEFsbGxRxiMiIiIiIiIiIiIiIiJSbAqcHNuzZw8DBgzAy8uLgQMHsnv37qKMS0RERERERERERERERKTIFTg51q9fPxwcHIiOjub777+nffv2VKpUiQkTJnDmzJmijFFERERERERERERERESkSBiMRqOxoI1jY2PZtGkTy5cvZ+/evaSkpGAwGABo0KABAwYMoHfv3nh4eBRZwCIiJS2vhziKiIiIiIiIiIiISOnJ63e5hUqOpRcUFMTKlStZsWIFJ06cSOvcYMDS0pL27dvz6quv8uKLL2Jra1sUw4mIlBglx0RERERERERERETufSWeHEvv9OnTLF++nNWrV3P9+vW0gQwGXFxcCA0NLerhRESKlZJj96bYxGRqfbgDgL+mtMfBxuq+6l/S5Pac/197dx5nY/n/cfx1Zj0zZjEzGBnD2LInSYvsiSyVCFlCCmnXIooMSVQ/3zalxRdJsktZI2ONUiqEEjOWmmHMvi/n/v0xj3N/Z8ycMTNmDOb9fDzO43Hc93Vd9+e6zzW3Yz6u69LnICIiVxNHf2/p77OKQ5+1iIiISPkq6u9yS7znWGGaNWvGm2++ycmTJ/nuu++4+eabMQyD+Pj4sriciIiIiIiIiIiIiIiISJGU2X9h+vfff/nyyy9ZuHAhBw4cKKvLiIiIiIiIiIiIiIiIiBRZqSbHUlNTWblyJZ9//jnff/89NpsN+6qNN910E0OHDi3Ny4mIiIiIiIiIiIiIiIgUS6kkxzZv3szChQtZtWoVycnJZkKsZs2aDB48mIceeogmTZqUxqVERERERERERERERERESqzEybGDBw+ycOFCvvzyS/755x8ADMPAy8uLPn368NBDD9G5c2csFkupBSsiIiIiIiIiIiIiIiJyKUqcHLvhhhuwWCwYhoGTkxOdO3dm6NCh9OnTB09Pz9KMUURERERERERERERERKRUOF1K5SZNmjBz5kxOnjzJpk2bGDJkiBJjIpcoJCQEi8XC/Pnzy+X6Q4YMwWKxsGTJknK5fmmy2Ww0bdoUV1dXjh49Wt7hiIiIiIiIiIiIiMgVoMQzx3755RduvPHGUgzl2jJ//nzCw8Pp2LEjHTt2LO9wrknh4eFmAik0NLRcY7lW7Nu3jy+//JJmzZrRv3//QsseO3aMuXPnsnnzZsLDw4mPj8ff35969erRtWtXRo4cSY0aNcos1tWrV/Prr79y44030rt37wLLODk5MWnSJAYOHMi4ceP4+uuvyyweEREREREREREREbk6lHjmmBJjhZs/fz5TpkwhLCysvEO5ZoWHhzNlyhSmTJlS3qFcM55//nkMw2Dy5MkO9wvMzs7mxRdfpHHjxsyYMYN9+/YRGxuLl5cX586dY/fu3YSGhtKgQQPefvvtMot19erVTJkyhdWrVxdarn///jRp0oQ1a9awffv2MotHRERERERERERERK4Ol7SsYnHs2bNHv5gWuYLZf0arV6/O/fffX2AZm81G3759efvtt8nKyuLuu+9m27ZtpKenExMTQ2pqKhs2bKBNmzakpKTw4osv8vTTT1/mnuTl5OTEyJEjAXjzzTfLNRYRERERERERERERKX9FTo45OTkRFBRU4LmxY8fyyCOPFFr//vvvp3PnzsWLTkQumzlz5gDw4IMP4uzsXGCZadOmmUsTjh8/nvXr19O+fXuzvJubG926dWPHjh0MHToUgPfff5+FCxdehh44NnDgQJydnVm/fj0nT54s11hEREREREREREREpHwVa+aYYRgFHv/qq6/MvZ9KUr84Tp06xbhx47jxxhvx9fXFw8ODevXqcd999/H555+TlpaWr86uXbsYMmQItWvXxmq14uvryy233MLMmTNJSkoq8DrDhw/HYrEwfPhwAJYvX07Hjh3x9/fH09OTG2+8kXfffRebzZan3vz587FYLGzbtg2AKVOmYLFY8rzCw8NLPUbDMPjss89o27YtAQEBWCyWIn0mjnTs2BGLxUJoaCgZGRnMmDGDG264gUqVKuHn58ddd93F+vXrL9rOypUr6dWrF4GBgbi5uREYGEivXr1YtWqVwzpF6VdISAidOnUy61x4j+2fW0nZ2wkLCyMyMpInn3ySOnXqYLVaqV69OoMHD+bIkSOFtpGWlsY777xDmzZt8PPzw2q1Urt2bYYOHcqvv/5a4thef/11LBYLzs7OZkLLzmazsWjRInr06GHe86pVq9K1a1cWL17s8GcwISGBpUuXAjBo0KACy5w9e5YZM2YA0KlTJ6ZPn+4wRicnJz755BMaN24MwIQJE8jIyMhT5sKfsYLYf55CQkLMY2FhYVgsFhYsWADAggUL8n3+Fy5nGhgYSOfOnbHZbMydO9fh9URERERERERERETk2nfZllUsDQsXLuT666/nrbfe4rfffiMtLY1KlSpx8uRJ1qxZw7Bhw/IkLGw2G8888wxt27Zl0aJFnDx5EldXV5KTk/npp58YP348N998MxEREYVe98knn6Rfv37s2LEDwzBITU3lt99+49lnn+Xhhx/OU9bDw4PAwEBcXV0BqFSpEoGBgXleuWfllEaMhmHQr18/Ro4cyQ8//IBhGDg5lc5Hm5GRQZcuXZgwYQKHDx/Gzc2NuLg4Nm/eTI8ePQgNDXVY78EHH6Rv376sXbuW6OhovLy8iI6OZu3atfTp04dBgwaRmZlZon5VrVoVPz8/s+yF99jX17dU+n/ixAlatmzJ7NmziYqKwtXVlaioKL788ktatmzJhg0bCqx35swZWrduzdixY/nhhx9ITk7GarVy8uRJFi5cSKtWrXj//feLFYvNZuPJJ59k4sSJWK1Wli9fzmOPPWaej4mJoVOnTgwZMoT169dz9uxZPD09iY6O5rvvvmPQoEH07t07X5IKYNu2baSmplKpUiVuuummAq8/b948UlNTAQrdk8zO3d2d8ePHm/fjYnuDFZU9yWq1WgGwWq35Pn83N7d89dq3bw/g8DMTERERERERERERkYrhqkmOrV27lmHDhpGWlsYdd9zBjh07SE1NJTo6muTkZHbs2MHIkSPz/FJ88uTJvPfee1SrVo3Zs2dz/vx5EhMTSU1NZevWrbRs2ZKjR4/Sp0+ffDPA7NasWcOnn37KrFmziI2NJTY2lujoaB599FEAPv/8c77//nuz/IABA4iMjKRNmzYAvPDCC0RGRuZ5BQcHl2qMK1eu5Ouvv+btt98mNjaWmJgY4uPj6dat2yXf9w8//JAff/yROXPmkJiYSGxsLCdPnuSBBx4AcmbGrVmzJl+9l19+mSVLlmCxWJg0aRLnz58nJiaG6OhoXn75ZQAWL17MpEmTHF67sH799NNPrFy50ix74T1+9913L7nvkLNkqJubG5s2bSI5OZnExET27t1L8+bNSUtLY8CAAZw+fTpPnezsbPr27cvBgwfx9fXliy++ICkpibi4OP7++2969eplJkWLMvsOID09nf79+zN79mwqV67Mpk2b8uwLlp2dTZ8+fdi+fTs33ngj33zzDcnJycTFxZGUlMSCBQuoVq0aa9as4aWXXsrXvn0/wJtuusnhkor2cR4QEECHDh2KFHfv3r3NJNrWrVuLVOdi2rRpQ2RkJAMGDAD+9zOX+2X/+cvt1ltvBeCXX35xOBtTRERERERERERERK59V0VyLCsri6eeegrDMGjbti3ff/89bdu2NWcRubm50bZtWz755BOaNGkCQHh4OG+88QYeHh5s2rSJxx9/HH9/fwBcXV3p2LEj27Zto2bNmvzyyy8FJngAYmNj+fjjjxk7diw+Pj5ATnLg008/pVWrVkBOkqckSivGpKQkZs2axfPPP2/G6OXlxXXXXVeiuHKLj4/nww8/ZPTo0eZMneDgYJYsWWLOxLEnu+zOnDljJqfGjx/P1KlTqVy5MgB+fn68/vrrPPfccwDMmjWLf//997L3q6hSU1PZsGEDd911l5nkueWWW9i8eTP+/v4kJCTwxhtv5KmzfPly9u7dC8DSpUsZPHiwmbStW7cuq1at4tZbb8UwDMaNG3fRGOwJwRUrVhAUFMSOHTto165dnjJffvkl27Zto1GjRoSFhdGrVy88PT2BnNmLQ4cOZd26dVgsFj788EPOnj2bp7493hYtWjiM49ChQwC0bNnyojHb+fj4ULduXQAOHjxY5HplwR53VlYWP/30U6Fl09PTSUhIyPMSERERERERERERkWvDVZEc27p1KydOnADgP//5T4FLpl1o/vz5ZGdnc/fddzv8hb+3tze9e/cGYOPGjQWWCQ4OZtiwYQWeu/feewH4/fffLxpPWcbo5+fH6NGjSxTDxQQHB+dbOhJy9pSaOHEikJM0OXDggHluxYoVZGVlYbVazWX1LjRx4kTc3d3JzMxk+fLlBZYpy34VVb9+/cx9s3KrVq2auaThkiVL8pyz//n222+na9eu+eq6uLgwefJkICdhlPveXeiff/6hXbt2ZuJr9+7dNGvWLF85+z5aY8aMcbikZKtWrWjatCkZGRn5ZnH9888/QM5ylY6cP38eyEkOF0eVKlXy1C8v/v7+ZkLd3l9H3njjDXx9fc1X7tmeIiIiIiIiIiIiInJ1cynvAIpi9+7dAFSvXp2bb765SHV27doFwKZNm6hevbrDcvbl1Rzt6dW6dWuHeyvVqFEDyNnrqSRKM8aiJAxLomPHjg77365dO1xcXMjKymLfvn00b94cgH379plx2Wd8XcjPz4+bb76ZXbt2meUvVJb9KqrOnTsXem769OmcP3+eEydOUKdOHeB//e/SpYvDup06dcLZ2Zns7Ow89y63I0eOEBoaSkREBLfffjvffvutObMwt+zsbPbs2QNAaGgo06dPd3hd+1i9cCydO3cOoMD2rxVOTk74+voSGxtr9teRCRMmmLMbARISEpQgExEREREREREREblGXBXJscjISABq165d5Dr2mSHJyckkJydftHxKSkqBx729vR3WcXHJuX2ZmZlFjiu30oqxWrVqJbp+UQQFBTk8Z7VaCQgIICoqKs8yffb3hdUFqFmzZp7yFyrLfhVVYX3Ife7s2bNmcqwo/bdarVSpUiXfvctt5syZAAQGBrJp0ya8vLwKLBcTE0N6ejqQswxoUVw4ltLS0gBwd3d3WCcgIIAzZ84UewZYdHS0Wb+8eXh4EBsba/bXEXd390LvhYiIiIiIiIiIiIhcva6KZRUdzVwqTHZ2NgAvvfQShmFc9BUWFlbKUV++GJ2dnS9j1JfPtdqvourXrx9ubm5ERUUxZswYc7xcKPfx9evXF2kshYaG5mnDnrgqLLlm389v//79Re5DQkICx48fB6Bp06ZFrldW7DPnroREnYiIiIiIiIiIiIiUj2Ilx6KionB2ds73ss98Keic/RUVFVXiIO1LDjpaVrC06lxuV0OMZ86ccXguPT3dnEWUe5aX/f3p06cLbdt+/kqYIeZIYf3Pfa64/U9LSyvw3uXWo0cPVq1ahbu7O1988QUPPfRQgQmygIAAcxZjSceSfa+xwpYIvfPOO4GcvcOKmkxetWoVhmEA+ZeotMdc2Cyu+Pj4Il2nKFJTU81rFba3moiIiIiIiIiIiIhc24qVHCvKjBRHr0vRpk0bIGd5RUf7U13ojjvuAGDz5s0XXUKtLDg55dzawvpe3jEWxbZt2xz2YceOHWRlZQHk2QvO/n7fvn0OkxtxcXF59iYrCfs9hsLv86XYunXrRc/5+/ubSyrC//q/ZcsWh3XDwsLMe1dY/3v06MHXX3+N1Wpl8eLFDBo0yKxn5+rqyi233ALAN998c5EeFcw+K8w+y6sgw4cPx2q1AjB16tSL3vP09HRzacgaNWrQu3fvPOf9/PwAOHXqlMM29u7d6/BcUX7Gcjtx4oT5vnHjxkWqIyIiIiIiIiIiIiLXniLvOTZ58uSyjKNQnTp1om7duhw/fpyxY8eyZcsW3NzcCq0zYsQI3nzzTaKjo5k8ebL5S/qCZGRkkJGR4XBPp5Lw8fEBcpJAV2qMRXHy5EkWLFjA8OHD8xy32WxMnz4dyEmsNG/e3DzXt29fnn/+edLS0pg5c6ZZLrfp06eTnp6Oq6srffv2LVFs9nsMOffZnmwpTcuWLWPixIk0bNgwz/Ho6Gg+/vhjAAYMGJDn3IMPPsiqVav44Ycf2LRpE127ds1zPisri6lTpwLQrFkzmjVrVmgM3bp1Y82aNdx3330sXbqU7OxsFi9ejKurq1lm1KhR7N69m3Xr1rFu3Tp69OjhsL2YmBj8/f3zHGvfvj1fffUVP/74o8N6gYGBjBs3jqlTp7J161ZeeeWVAj9byBkfo0eP5vDhw0DO533hz2yLFi0A+Omnnzh16hTBwcF5zh8+fJiVK1c6jKcoP2O52RNtgYGB+T5PEREREREREREREalAjKvEunXrDIvFYgBG27ZtjR07dhjZ2dmGYRhGenq6sXXrVmPw4MHGoUOHzDpTpkwxAAMwHnroIePAgQPmuczMTGP//v3GlClTjODgYGPHjh15rjds2DADMIYNG+Ywpnnz5hmAUbt27XznXnnlFQMw6tevb5w+fdphG2UdY0l16NDBAAxfX1/DarUan3zyiZGammoYhmGcPHnS6N+/vxn3ypUr89V//vnnDcCwWCzGq6++asTGxhqGYRixsbHGxIkTzbovvfRSvrpF7VdycrLh5uZmAMabb75p2Gy2S+63nT0+X19fIyQkxPjuu+/M9n/88UejRYsWBmB4e3sbEREReepmZWUZt956q1l/0aJFRkZGhmEYhnH8+HHj3nvvNdtft25dvmvXrl3bAIx58+blOb5lyxbD09PTAIzevXsb6enpea7ZpUsXAzDc3NyM1157zThz5ox5Pikpyfj++++Nxx9/3PD19c13zT/++MOMKTIy0uF9yc7ONnr16mWW7d69u7F9+3YjKyvLMAzDyMjIMDZu3GjccccdZpnHH3+8wLbi4uIMLy8vAzBuu+0248iRI2Ybq1evNmrUqGH4+/s7/Bn79NNPDcDw8/MzDh8+7DBmu9GjRxuA0b9//4uWvVB8fLwBGPHx8cWuK2UnOT3TqP3St0btl741ktMzr7r2JcfF7rM+BxERuZo4+ntLf59VHPqsRURERMpXUX+XW6xlFctT9+7dmT9/Pu7u7uzcuZN27drh6elJlSpVqFSpEp06dWLRokVkZGSYdSZNmsSkSZOwWCwsXLiQ5s2bm3WsVistW7Zk8uTJnDp1CovFUqrxDhs2DKvVyrFjx6hVqxbVq1cnJCSEkJCQPHtRlWeMRfH4449z8803M2rUKHx8fPD396dWrVosXboUgIkTJ3L//ffnqzd9+nT69++PYRhMnTqVgIAA/P39CQgIYNq0aQAMHDiQ1157rcSxeXp68tBDDwEwbtw4vLy8qF27NiEhIbzwwgslbje3//znP6SlpXHXXXfh5eWFt7c3t9xyC7/99hvu7u4sXryYWrVq5anj7OzMihUraNq0KfHx8QwePBgvLy/8/PyoW7cua9aswcnJiXfffZfu3bsXOZbOnTuzbt06KlWqxOrVq+nbt6853u3X7NWrFxkZGUyaNImgoCB8fX3x8/PD29ubzp078+GHH5KcnJyv7caNG5szudasWeMwBicnJ1atWsXYsWNxcXFh/fr1tG/fHnd3dwICArBarXTr1o1du3ZhtVqZMWMGs2fPLrAtX19f3nnnHSwWC3v27KFRo0b4+Pjg5eVF7969qVWrljnDriB9+/alatWqxMbG0rhxY6pWrWr+jO3ZsydPWZvNxtq1awEYNGhQ4TdaRERERERERERERK5pV01yDGDo0KEcOXKEZ599liZNmuDi4kJqaiq1a9emd+/eLFy4MM9eQhaLhalTp/L777/z+OOP07hxY5ydnYmPj8fPz482bdrw4osvsnv3bnP/r9LSoEEDtm7dyr333kvVqlU5f/48ERERRERE5NkzqjxjLAo3Nze2bNnC9OnTadiwIenp6fj6+nLnnXeydu1ah8ktNzc3lixZwvLly+nevTsBAQEkJiYSEBBA9+7dWblyJV9++WWepQFLYvbs2YSGhprLOp48eZKIiAiio6MvqV27OnXqsH//fp544gmqVq1KRkYG1apVY+DAgezfv5+ePXsWWC8oKIh9+/Yxa9YsbrvtNjw8PEhJSSE4OJiHHnqIn3/+maeffrrY8XTo0IENGzbg7e3Nt99+S+/evUlPTwdylhn85ptvWLduHQMGDKBWrVqkp6eTkpJCUFAQXbt25Y033uDo0aMFtj169GgAFi1aVGgMLi4uzJo1iz/++INx48bRqlUrKleubH6+t99+O5MnT+bYsWO89NJLhbb1yCOPsHbtWjp37oyPjw9ZWVlcf/31zJgxg23btlGpUiWHdf38/Ni+fTsPPvggQUFBxMfHmz9jF+7ht23bNk6fPk1QUBC9evUqNCYRERERERERERERubZZDMMwyjsIufJ07NiRbdu2MXnyZEJDQ8s7nMvOPktv69atdOzYsXyDuUwSExOpWbMmiYmJnDhxgtq1a5d3SKVmxIgRzJs3jylTpvDqq68Wu35CQgK+vr7Ex8fn2etOyldKRhZNXt0IwB9Tu+HpVuRtNK+I9iXHxe6zPgcREbmaOPp7S3+fVRz6rEVERETKV1F/l3tVzRwTkbLj7e3N+PHjMQyDmTNnlnc4pebUqVMsWrSIqlWr8uyzz5Z3OCIiIiIiIiIiIiJSzpQcExHT2LFjCQ4OZu7cuZw6daq8wykV06dPJyMjg9DQUM36EhERERERERERERE0v19ETFarlc8//5ywsDBOnjxJcHBweYd0SWw2G7Vq1WLatGmMGjWqvMMRERERERERERERkSuAkmPXsD59+rB79+5i1Vm5ciVt2rQpo4gur+rVqxe7TmRkZBlEcnXp2LHjNbPPmpOTExMmTCjvMERERERERERERETkCqLk2DUsJiaGqKioYtXJyMgAICwsrAwiuryK2/fcDMMoxUhERERERERERERERORKYTGUBRARKVRCQgK+vr7Ex8dr3zIRERERERERERGRK1RRf5frdBljEhERERERERERERERESlXSo6JiIiIiIiIiIiIiIhIhaHkmIiIiIiIiIiIiIiIiFQYSo6JiIiIiIiIiIiIiIhIhaHkmIiIiIiIiIiIiIiIiFQYSo6JiIiIiIiIiIiIiIhIhaHkmIiIiIiIiIiIiIiIiFQYSo6JiEiBUjKyCBm/lpDxa0nJyCrvcEREREREKryCvqMX9ZiIiIiI/I+SYyIiIiIiIiIiIiIiIlJhKDkmIiIiIiIiIiIiIiIiFYaSYyIiIiIiIiIiIiIiIlJhKDkmIiIiIiIiIiIiIiIiFYaSYyIiIiIiIiIiIiIiIlJhKDkmIiIiIiIiIiIiIiIiFYaSY6Vk+PDhWCwWhg8fXupt79ixg549e1K1alWcnZ2xWCz07t271K8jV4aQkBAsFgvz588vl+sPGTIEi8XCkiVLyuX6pclms9G0aVNcXV05evRoeYcjIiIiIiIiIiIiIlcAl/IOQAq3Z88eOnfuTFZWFhaLhYCAAJydnfHz8wMgNDQUyEnOhYSElF+g5SA8PNxMINnvg1yaffv28eWXX9KsWTP69+9faNljx44xd+5cNm/eTHh4OPHx8fj7+1OvXj26du3KyJEjqVGjRpnFunr1an799VduvPFGh8liJycnJk2axMCBAxk3bhxff/11mcUjIiIiIiIiIiIiIlcHzRy7wr3zzjtkZWVxxx13EB0dzblz54iMjGTevHkATJkyhSlTphAeHl6+gZaD8PBws/9SOp5//nkMw2Dy5MlYLJYCy2RnZ/Piiy/SuHFjZsyYwb59+4iNjcXLy4tz586xe/duQkNDadCgAW+//XaZxbp69WqmTJnC6tWrCy3Xv39/mjRpwpo1a9i+fXuZxSMiIiIiIiIiIiIiVwclx65wBw4cAODBBx/E39+/nKORa9mePXvYvn071atX5/777y+wjM1mo2/fvrz99ttkZWVx9913s23bNtLT04mJiSE1NZUNGzbQpk0bUlJSePHFF3n66acvc0/ycnJyYuTIkQC8+eab5RqLiIiIiIiIiIiIiJQ/JceucCkpKQB4eXmVcyRyrZszZw6Qk4h1dnYusMy0adPMpQnHjx/P+vXrad++vVnezc2Nbt26sWPHDoYOHQrA+++/z8KFCy9DDxwbOHAgzs7OrF+/npMnT5ZrLCIiIiIiIiIiIiJSvpQcu0zCw8N59tlnadq0KV5eXnh6etKoUSOeeeaZAn9Zb7FYsFgs5nKJDz/8sHnMYrEwfPjwPMvederUKc/5S91/rGPHjlgsFkJDQ8nIyGDGjBnccMMNVKpUCT8/P+666y7Wr19/0XZWrlxJr169CAwMxM3NjcDAQHr16sWqVasc1rH3bfjw4RiGwWeffUbbtm0JCAjAYrEwf/58QkJC6NSpk1knd9/tdS+FvZ2wsDAiIyN58sknqVOnDlarlerVqzN48GCOHDlSaBtpaWm88847tGnTBj8/P6xWK7Vr12bo0KH8+uuvJY7t9ddfx2Kx4OzsbCa07Gw2G4sWLaJHjx7mPa9atSpdu3Zl8eLFGIZRYJsJCQksXboUgEGDBhVY5uzZs8yYMQPIGW/Tp093GKOTkxOffPIJjRs3BmDChAlkZGTkKZP7c3Zk/vz5+cZzWFgYFouFBQsWALBgwYJ8n39YWFiedgIDA+ncuTM2m425c+c6vJ6IiIiIiIiIiIiIXPuUHLsMFi1aRKNGjXj33Xf5448/yMrKAuDo0aO89957NGvWjE2bNuWpExgYSGBgIE5OOR+Rj4+PeSwwMBBnZ2cCAwPN8n5+fnnOV61atVRiz8jIoEuXLkyYMIHDhw/j5uZGXFwcmzdvpkePHoSGhjqs9+CDD9K3b1/Wrl1LdHQ0Xl5eREdHs3btWvr06cOgQYPIzMx0eG3DMOjXrx8jR47khx9+wDAM835UrVoVPz8/s2zuvgcGBuLr61sq/T9x4gQtW7Zk9uzZREVF4erqSlRUFF9++SUtW7Zkw4YNBdY7c+YMrVu3ZuzYsfzwww8kJydjtVo5efIkCxcupFWrVrz//vvFisVms/Hkk08yceJErFYry5cv57HHHjPPx8TE0KlTJ4YMGcL69es5e/Ysnp6eREdH89133zFo0CB69+6dL0kFsG3bNlJTU6lUqRI33XRTgdefN28eqampAIXuSWbn7u7O+PHjzftxsb3BisqeZLVarQBYrdZ8n7+bm1u+eu3btwdw+JmJiIiIiIiIiIiISMWg5FgZ++677xg6dCjZ2dmMGzeOEydOkJqaSnJyMkeOHKFfv34kJibSr1+/PDPIIiMjiYyMJDg4GIB3333XPBYZGcncuXOJjIw0y69cuTLP+Z9++qlU4v/www/58ccfmTNnDomJicTGxnLy5EkeeOABAKZMmcKaNWvy1Xv55ZdZsmQJFouFSZMmcf78eWJiYoiOjubll18GYPHixUyaNMnhtVeuXMnXX3/N22+/TWxsLDExMcTHx9OtWzd++uknVq5cme9+2V/vvvtuqfR/7NixuLm5sWnTJpKTk0lMTGTv3r00b96ctLQ0BgwYwOnTp/PUyc7Opm/fvhw8eBBfX1+++OILkpKSiIuL4++//6ZXr17YbDaeeeaZIs2+A0hPT6d///7Mnj2bypUrs2nTpjz7gmVnZ9OnTx+2b9/OjTfeyDfffENycjJxcXEkJSWxYMECqlWrxpo1a3jppZfytb99+3YAbrrpJodLKn7//fcABAQE0KFDhyLF3bt3bzOJtnXr1iLVuZg2bdoQGRnJgAEDABgwYEC+z79Nmzb56t16660A/PLLLyQlJZVKLCIiIiIiIiIiIiJy9VFyrAzZbDaeeOIJbDYbs2fPZubMmYSEhJhLvzVs2JClS5dy7733kpCQwKxZs8o75Hzi4+P58MMPGT16tDlTJzg4mCVLlpgzcezJLrszZ86Yyanx48czdepUKleuDOTMcHv99dd57rnnAJg1axb//vtvgddOSkpi1qxZPP/88/j4+AA5e69dd911pd5PR1JTU9mwYQN33XWXmeS55ZZb2Lx5M/7+/iQkJPDGG2/kqbN8+XL27t0LwNKlSxk8eLA5k6lu3bqsWrWKW2+9FcMwGDdu3EVjsCcEV6xYQVBQEDt27KBdu3Z5ynz55Zds27aNRo0aERYWRq9evfD09ASgUqVKDB06lHXr1mGxWPjwww85e/Zsnvr2eFu0aOEwjkOHDgHQsmXLi8Zs5+PjQ926dQE4ePBgkeuVBXvcWVlZF00ep6enk5CQkOclIiIiIiIiIiIiItcGJcfK0Pbt2/nrr7+oUqUKjz76qMNyQ4cOBWDjxo2XK7QiCw4O5uGHH8533MnJiYkTJwI5SZMDBw6Y51asWEFWVhZWq9VcVu9CEydOxN3dnczMTJYvX15gGT8/P0aPHl0KvSi5fv36mftm5VatWjVzScMlS5bkOWf/8+23307Xrl3z1XVxcWHy5MlATsIo97270D///EO7du3MxNfu3btp1qxZvnL2fbTGjBnjcEnJVq1a0bRpUzIyMvLN4vrnn38ACl2O8/z580DOzLHiqFKlSp765cXf399cltPeX0feeOMNfH19zZd9BqeIiIiIiIiIiIiIXP2UHCtDu3btAnJm/tSoUYPq1asX+Bo5ciQAERER5RlugTp27Ohwb6l27drh4uICwL59+8zj9vetW7c2Z3xdyM/Pj5tvvjlf3dxat25d4N5Rl1Pnzp0veu78+fOcOHHCPG7vT5cuXRzW7dSpk7l8oaP+HzlyhDZt2nDgwAFuv/12du3aRa1atfKVy87OZs+ePQCEhoY6HGfVq1fn6NGjQP6xdu7cOSAngXStcnJyMhOH9v46MmHCBOLj483XqVOnLkeIIiIiIiIiIiIiInIZuJR3ANcy++yUzMxMoqKiLlo+NTW1rEMqtqCgIIfnrFYrAQEBREVF5Vmmz/6+sLoANWvWzFP+QtWqVStuuKWusD7kPnf27Fnq1Kljvr9YXavVSpUqVfLdu9xmzpwJQGBgIJs2bcLLy6vAcjExMaSnpwMQGxtbSG/+JyUlJc+f09LSAHB3d3dYJyAggDNnzhR7Blh0dLRZv7x5eHgQGxtr9tcRd3f3Qu+FiIiIiIiIiIiIiFy9NHOsDGVnZwOY+0sV5SX/Y59ZVVH169cPNzc3oqKiGDNmjDmeLpT7+Pr164s0zkJDQ/O0YU9cFZZca9KkCQD79+8vch8SEhI4fvw4AE2bNi1yvbISExMDXBmJOhEREREREREREREpH0qOlaHq1asDV+ZyiUV15swZh+fS09PNWUS5Z3nZ358+fbrQtu3nr4QZYo4U1v/c54rb/7S0tALvXW49evRg1apVuLu788UXX/DQQw8VmCALCAgwl7cs6Viz7zVmTx4V5M477wRylpEMCwsrUrurVq0yk74XLlFpj7mwWVzx8fFFuk5RpKammtcqbG81EREREREREREREbm2KTlWhu644w4AIiMjHe4rdans+4GV1ayzbdu2OWx7x44dZGVlAZj7h+V+v2/fPofJjbi4uDx7k5WEk9P/hm9Z9X/r1q0XPefv728uqQj/6/+WLVsc1g0LCzPvXWH979GjB19//TVWq5XFixczaNAgs56dq6srt9xyCwDffPPNRXpUMPusMPssr4IMHz4cq9UKwNSpUy96z9PT082lIWvUqEHv3r3znPfz8wModD+vvXv3Ojxn//yL+tnn3heucePGRaojIiIiIiIiIiIiItceJcfKUKdOnahfvz4AY8eOJSMjo9Dyhc3accTHxwfISTaVhZMnT7JgwYJ8x202G9OnTwdyEivNmzc3z/Xt2xcXFxfS0tLM5MiFpk+fTnp6Oq6urvTt27dEsdn7DmXX/2XLlnH06NF8x6Ojo/n4448BGDBgQJ5zDz74IAA//PADmzZtylc3KyuLqVOnAtCsWTOaNWtWaAzdunVjzZo1eHh4sHTpUh588EEyMzPzlBk1ahQA69atY926dYW2V9A4a9++PQA//vijw3qBgYGMGzcOyEkMvvLKKw7L2mw2Ro8ezeHDh4Gcz9vNzS1PmRYtWgDw008/FZggO3z4MCtXrnR4jeKOfXuiLTAwkIYNGxapjoiIiIiIiIiIiIhce5QcK0MuLi7MmTMHFxcXdu7cSfv27dmyZUuexMbx48eZM2cOrVu35sMPPyz2NeyJlUWLFpGSklJqsdv5+voyZswYPv30U3NJulOnTjFw4EBz5tS0adPy1AkKCuKZZ54BYMaMGUyePNlMYMTFxTFp0iTeeustAJ577jmuu+66EsV2/fXXmwmXzz77rExmj1mtVu6++242b95stv/TTz/RpUsXoqOj8fb2Zvz48Xnq9O3bl1tvvRWA/v378+WXX5qf+YkTJ+jbty8//PADAG+++WaR4rjrrrv49ttv8fT0ZMWKFfTv3z9PsnXIkCF06dIFwzC4//77mTZtGv/88495Pjk5ma1bt/LEE09Qt27dfO137NgRyFmWMSoqymEckydPplevXgC88cYb9OjRgx07dpjLPWZmZrJp0ybat29vJlUff/xxhg0blq+te+65By8vLzIzM+nfv7+ZhMzMzOTrr7+mS5cuVKpUyWEs9rG/Y8cOjhw54rCcnT051qFDh4uWFREREREREREREZFrl5JjZezOO+9k2bJleHt7s3fvXvMX/lWqVMFqtVKvXj3GjBnDvn37zCUSi+Oxxx4DYMWKFVSuXJmaNWsSEhJC27ZtSyX+xx9/nJtvvplRo0bh4+ODv78/tWrVYunSpQBMnDiR+++/P1+96dOn079/fwzDYOrUqQQEBODv709AQICZTBs4cCCvvfZaiWPz9PTkoYceAmDcuHF4eXlRu3ZtQkJCeOGFF0rcbm7/+c9/SEtL46677sLLywtvb29uueUWfvvtN9zd3Vm8eDG1atXKU8fZ2ZkVK1bQtGlT4uPjGTx4MF5eXvj5+VG3bl3WrFmDk5MT7777Lt27dy9yLJ07d2bdunVUqlSJ1atX07dvXzNBZr9mr169yMjIYNKkSQQFBeHr64ufnx/e3t507tyZDz/8kOTk5HxtN27c2JzJtWbNGocxODk5sWrVKsaOHYuLiwvr16+nffv2uLu7ExAQgNVqpVu3buzatQur1cqMGTOYPXt2gW35+vryzjvvYLFY2LNnD40aNcLHxwcvLy969+5NrVq1zBl2Benbty9Vq1YlNjaWxo0bU7VqVUJCQggJCWHPnj15ytpsNtauXQvAoEGDCr/RIiIiIiIiIiIiInJNU3LsMujduzfHjh1j8uTJ3HLLLXh5eREXF4e7uzstWrTg0UcfZdWqVbz44ovFbnvIkCEsXLiQtm3b4unpyb///ktERASnT58uldjd3NzYsmUL06dPp2HDhqSnp+Pr68udd97J2rVrHSa33NzcWLJkCcuXL6d79+4EBASQmJhIQEAA3bt3Z+XKlXz55Ze4urpeUnyzZ88mNDTUXNbx5MmTREREEB0dfUnt2tWpU4f9+/fzxBNPULVqVTIyMqhWrRoDBw5k//799OzZs8B6QUFB7Nu3j1mzZnHbbbfh4eFBSkoKwcHBPPTQQ/z88888/fTTxY6nQ4cObNiwAW9vb7799lt69+5Neno6kLPM4DfffMO6desYMGAAtWrVIj09nZSUFIKCgujatStvvPFGgctEAowePRrImYVYGBcXF2bNmsUff/zBuHHjaNWqFZUrVzY/39tvv53Jkydz7NgxXnrppULbeuSRR1i7di2dO3fGx8eHrKwsrr/+embMmMG2bdsKnTnm5+fH9u3befDBBwkKCiI+Pp6IiAgiIiLMWY5227Zt4/Tp0wQFBZkz30RERERERERERESkYrIYZbEWnVz1OnbsyLZt25g8eTKhoaHlHc5lZ5/Ft3XrVnPJwWtdYmIiNWvWJDExkRMnTlC7du3yDqnUjBgxgnnz5jFlyhReffXVYtdPSEjA19eX+Pj4PHvdXetSMrJo8upGAP6Y2g1PN5dyjkhEREREpGIr6Dt6UY+JiIiIVARF/V2uZo6JCIC5f5phGMycObO8wyk1p06dYtGiRVStWpVnn322vMMRERERERERERERkXKm5JiImMaOHUtwcDBz587l1KlT5R1OqZg+fToZGRmEhoZWqFlfIiIiIiIiIiIiIlIwzasXEZPVauXzzz8nLCyMkydPEhwcXN4hXRKbzUatWrWYNm0ao0aNKu9wREREREREREREROQKoOTYNaxPnz7s3r27WHVWrlxJmzZtyiiiy6t69erFrhMZGVkGkVxdOnbseM3ss+bk5MSECRPKOwwRERERERERERERuYIoOXYNi4mJISoqqlh1MjIyAAgLCyuDiC6v4vY9N8MwSjESERERERERERERERG5UlgMZQFERAqVkJCAr68v8fHx2rdMRERERERERERE5ApV1N/lOl3GmERERERERERERERERETKlZJjIiIiIiIiIiIiIiIiUmEoOSYiIiIiIiIiIiIiIiIVhpJjIiIiIiIiIiIiIiIiUmEoOSYiIiIiIiIiIiIiIiIVhpJjIiIiIiIiIiIiIiIiUmEoOSYiIiIiIiIiIiIiIiIVhpJjIiIiIiIiIiLFlJKRRcj4tYSMX0tKRlZ5hyMiIiIixaDkmIiIiIiIiIiIiIiIiFQYSo6JiIiIiIiIiIiIiIhIhaHkmIiIiIiIiIiIiIiIiFQYSo6JiIiIiIiIiIiIiIhIhaHkmIiIiIiIiIiIiIiIiFQYSo6JiIiIiIiIiIiIiIhIhaHkmEgpCA8Px2KxYLFYCA8PL+9wylxGRgb16tXD3d2dU6dOlXc4DtlsNpo2bYqrqytHjx4t73BERERERERERERE5Aqg5JgUyerVqwkNDWX16tVX9TVKIjQ0lNDQ0AqR9Cqq999/n+PHj/Poo48SHBxcaNlt27YxevRoGjduTOXKlbFarQQHB9OzZ08++ugjUlNTyyxOJycnJk2aRFZWFuPGjSuz64iIiIiIiIiIiIjI1UPJMSmS1atXM2XKlDJPjpX1NUpiypQpTJkypdDkmKurKw0bNqRhw4a4urpevuDKQUxMDNOmTcPd3Z0JEyY4LHf+/Hl69uxJx44d+eSTTzhy5AhpaWlYrVZOnz7NunXrePzxx2nQoAHfffddmcXbv39/mjRpwpo1a9i+fXuZXUdERERERERERERErg5KjomUgqCgII4cOcKRI0cICgoq73DK1CeffEJcXBz33HMPNWvWLLBMVFQUt912G+vWrcPZ2ZmnnnqKQ4cOkZaWRlxcHLGxscybN4/g4GDOnDlDjx49WLp0aZnE6+TkxMiRIwF48803y+QaIiIiIiIiIiIiInL1UHJMRIrMMAw++eQTAIYMGeKwzKBBgzh27Biurq6sWrWK9957jyZNmphlKleuzPDhw9m/fz8tWrQgKyuLESNGcOTIkTKJe+DAgTg7O7N+/XpOnjxZJtcQERERERERERERkauDkmMV2JIlS+jevTuBgYG4urpSuXJlGjRowL333svs2bNJS0sjLCwMi8XCggULAFiwYAEWiyXPKywszGwzMjKS999/n/vuu4/GjRvj6+uLh4cH9evX59FHH+XQoUP54ijuNewOHjzIqFGjaNCgAZ6ennh5eXHDDTfwyiuvEB0dfcn3Z/jw4VgsFvPPnTp1yhNTSEiIeS48PNw8fuHyi/b+2dv6/fffGThwIDVq1MDDw4PGjRvz9ttvk5WVZdbZtWsXvXv35rrrrsNqtdKsWTNmz56NYRiFxlySexIaGorFYqFjx44ArFixgq5du1KtWjWcnJwIDQ01y27evJkTJ05QuXJlevToUWB73377Ld9//z0Ar7zyCvfcc4/DeAMCAli2bBlWq5Xk5GQmTZqUr0zHjh2xWCyEhoZiGAaffvopt956Kz4+Pnh7e3P77bfzxRdfFHpfAgMD6dy5Mzabjblz5xZaVkRERERERERERESubS7lHYCUjxEjRjBv3jzzz15eXmRmZnLs2DGOHTvGN998Q8+ePXFzcyMwMJD4+HhzvyhfX988bbm5uZnvx48fbya5XFxc8PHxISUlhb///pu///6bL774gkWLFtG3b9889YtzDchZHm/ChAnYbDYAPD09yczM5MCBAxw4cIB58+axdu1aWrZsWeJ75OvrS2BgIFFRUQD4+fnliaNq1arFbnP9+vX06dOHtLQ0fH19SU9P58iRI7z44ov8/PPPLF68mM8++4zHHnsMm82Gj48P6enpHDp0iCeffJJTp04xY8aMAtsujXvy/PPPM2vWLCwWC5UrV8bJKW/+fMOGDQDceuutDvdW+/DDDwHw9vbm+eefv+g9adCgAQMHDmTevHmsXLmSyMhIqlevnq9cdnY2999/P19//TUuLi54enqSmJjInj172LNnD3/99RdTpkxxeJ327dvz3XffsWHDhkLLiYiIiIiIiIiIiMi1TTPHKqCdO3cyb948nJycmDlzJufPnycxMZHk5GSio6PZuHEjw4YNw83NjTZt2hAZGcmAAQMAGDBgAJGRkXlebdq0MduuX78+b731FgcOHCA1NZXz58+Tnp7OwYMHGTx4MOnp6QwbNox//vnHrFPca8ydO5eXXnoJT09PXn/9df7991+Sk5NJSUlh3759dO7cmX///Zd7772XpKSkEt+nd999l8jISPPP9sSN/fXTTz8Vu81BgwZx3333ERERQVxcHPHx8UyYMAGAr776ihkzZvD444/z+OOPExkZSVxcHDExMQwfPhyAt956iz///DNfu6VxT37++WdmzZrFSy+9RFRUFDExMSQnJ/Pwww+bZbZv3w7ALbfcUmAbWVlZ7NixA4CuXbvi5eVVpPvSp08fAGw2G9u2bSuwzOzZswkLC2P+/PkkJCQQHx/PqVOnzJlp06ZN46+//nJ4jVtvvRWAX3755ZLGhYiIiIiIiIiIiIhc3ZQcq4B2794NQJcuXRg3bhz+/v7muYCAALp27cr8+fOpUaNGsdueOHEiL7zwAs2aNcPFJWdiopOTE02bNuWLL76gZ8+eJCcn89///rdEsScmJvLCCy8AsHz5cl5++WVzlpGzszOtWrVi48aNtGrVitOnT/PZZ5+V6DplpXXr1ixevJhatWoBObOrpk+fTrt27QCYMGECw4YN47333qNatWpAzoy1zz77jDp16mCz2Vi6dGmeNkvrniQlJfHcc88xY8YMc1acu7s7tWvXBiAjI4P9+/cD0KJFiwLbCA8PJzk5GaBYs/ZuvPFG8/3BgwcLLBMbG8uqVasYNmwYHh4eANSsWZNly5ZRo0aNAu9NbvZ4srKyLprYTE9PJyEhIc9LRERERERERERERK4NSo5VQJUrVwbg3LlzZGdnX9Zr9+zZE8iZvVYSK1asIC4ujpYtW9KtW7cCy7i4uDBw4EAANm7cWLJAy8hLL72UZx8zu9x9sc8ky83Z2Zk777wTyNmzLLfSuidOTk689NJLDmM/e/asOV4cLSl5/vx5831AQIDDti5UpUqVAtvI7Y477qBTp075jru7u5v9vvDe5Obv728uE5l75mJB3njjDXx9fc1XcHDwRfsgIiIiIiIiIiIiIlcH7TlWAd15551YrVb2799Pu3bteOSRR+jcuTN16tQplfZ/++03Pv74Y3bu3El4eDhJSUkYhpGnzOnTp0vU9q5duwA4fPhwgftS2aWmpgIQERFRouuUFUfLEQYGBgI5CZy6desWWiY2NjbP8dK6J/Xr1zdnqxXk3Llz5vvcsw0vF/uyiAWxz3KMiYlxWMbJyQlfX19iY2Pz9KUgEyZM4LnnnjP/nJCQoASZiIiIiIiIiIiIyDVCybEKqF69enz22Wc89thj/PDDD/zwww9AzmygTp06MWjQIO69994CZzhdzAcffMAzzzyDzWYDwGKx4Ovri7u7O5CToElISDCX3isu+4yftLQ00tLSLlo+JSWlRNcpK97e3gUety9B6eh87jKZmZl5jpfWPSksMWZv387+eV4o92wxRzPAChIdHV1gG7mV5N5cyMPDg9jY2IveJ3d3d4d9FBEREREREREREZGrm5ZVrKAGDx5MREQEc+bMYcCAAQQHB3Pu3DmWLl1K79696dChQ7H3WTp8+DDPPvssNpuNfv368eOPP5KWlkZsbCyRkZFERkYya9YsgHwzyYrKvqzfgAEDMAzjoq/w8PASXedqUlr3xNnZudDr5E5aXTh7za527dpUqlQJgF9++aXIfbDvZQbQtGnTItcrLvvMsuIs+SgiIiIiIiIiIiIi1xYlxyowf39/Ro8ezVdffcXJkyc5duwY48ePx2KxsGPHDkJDQ4vV3vLly8nOzqZx48Z89dVXtG7dGjc3tzxlIiMjLylm+7KBV9pyieXpct2T3PuMOVq+0NXVlXbt2gGwadMmEhMTi9T2ypUrgZylDzt27HhpgTqQmppqzhhztGeaiIiIiIiIiIiIiFz7lBwTU7169XjjjTcYNGgQAN999515zskpZ6gUNuPr1KlTALRo0cIsf6HNmzc7rF+Ua9xxxx0A/Pzzz/z7778Oy5Um+/KSJZ3tVtYu1z3x8/MzE3HHjx93WG7MmDEAJCUlmTMFC/PXX3/x1VdfAXD//fcXum/apThx4oT5vnHjxmVyDRERERERERERERG58ik5VgGlp6cXet7DwwMgT4LLx8cHgLi4OIf1fH19AThw4ECBiaT169cTFhbmsH5RrtGvXz8qV65MZmYmzz33XKEJK5vNVmhbRVWUuMrT5bwn7du3B+DHH390WOaee+4xZ3+9/vrrfPvttw7Lnj9/nn79+pGWloanpyevvfZaiWO7mL179wIQGBhIw4YNy+w6IiIiIiIiIiIiInJlU3KsAnryySfp378/K1as4OzZs+bxpKQk5syZw+effw5Az549zXPNmjUDYMeOHRw5cqTAdu+++24ADh06xBNPPGEuvZecnMzHH3/MAw88UOheT0W5RuXKlXnnnXcA+Oqrr+jZsyd79+7FZrMBOcmfw4cP83//9380bdq00MRMUdnjWrRoESkpKZfcXmm7nPfEnvSyJ5oKYrFYWLx4MXXr1iUzM5P777+fZ555hsOHD5tl4uPjWbBgATfddBO//fYbzs7OfPbZZ2U6o8sec4cOHcrsGiIiIiIiIiIiIiJy5VNyrALKzMxk2bJlPPDAAwQGBuLt7Y2fnx/e3t6MGTOGjIwM2rZtyyuvvGLW6du3L1WrViU2NpbGjRtTtWpVQkJCCAkJYc+ePQDceeedPPjggwB89NFHBAQE4Ofnh6+vL4899hiNGzcudB+zolwDYNiwYXz00Ue4ubmxfv16brvtNjw9PalSpQpWq5UmTZrwwgsvcOTIEXNJxEvx2GOPAbBixQoqV65MzZo1CQkJoW3btpfcdmm5XPekb9++uLq6cuTIEf766y+H5apXr86ePXvo1q0bWVlZvPfeezRp0gQPDw/8/PyoXLkyw4cP5+TJk1x33XV8++23DBw4sMRxXYzNZmPt2rUA5rKhIiIiIiIiIiIiIlIxKTlWAU2aNIn33nuP+++/n0aNGuHi4kJSUhLVqlXjrrvu4r///S9hYWFUqlTJrOPn58f27dt58MEHCQoKIj4+noiICCIiIkhLSzPLLVq0iHfeeYcbbrgBd3d3srOzad68OW+88Qa7du3Cy8vLYVxFvQbkJKyOHj3KCy+8QIsWLXB3dycuLg4vLy9uvvlmnnrqKb777rtSSbgMGTKEhQsX0rZtWzw9Pfn333+JiIjg9OnTl9x2aboc96RatWrcf//9QM5nXZiqVauyYcMGvv/+ex599FEaNmyIm5sbqampBAUF0b17d2bPns2xY8fMWYdlZdu2bZw+fZqgoCB69epVptcSERERERERERERkSubxShsgyIRkQts376dDh06UK9ePf76669SmZ1X1kaMGMG8efOYMmUKr776arHrJyQk4OvrS3x8vLkHnYiIiIiIVGwpGVk0eXUjAH9M7Yanm0s5RyQiIiIiRf1drmaOiUixtG/fnq5du/L333+zbNmy8g7nok6dOsWiRYuoWrUqzz77bHmHIyIiIiIiIiIiIiLlTMkxESm2t99+GycnJ6ZOnYrNZivvcAo1ffp0MjIyCA0N1awvEREREREREREREUFz/kWk2Jo3b87cuXMJDw/n33//JSgoqLxDKpDNZqNWrVpMmzaNUaNGlbgd++qzCQkJpRWaiIiIiIhc5VIysrClpwA5/1bI0rKKIiIiIuXO/jvci+0opj3HpEKoXr16setERkaWQSRyNTp9+jTBwcHlHYaIiIiIiIiIiIiIFMGpU6eoWbOmw/NKjkmFYLFYil1HPxpiZ7PZ+Oeff/D29i7WWEpISCA4OJhTp05pSUe5qmjsytVKY1euVhq7crXS2JWrkcatXK00duVqpbErl5thGCQmJlKjRg2cnBzvLKY5/1IhKNEll8LJyanQ/2VwMT4+PvrLX65KGrtytdLYlauVxq5crTR25WqkcStXK41duVpp7Mrl5Ovre9EyjtNmIiIiIiIiIiIiIiIiItcYJcdERERERERERERERESkwlByTESkjLi7uzN58mTc3d3LOxSRYtHYlauVxq5crTR25WqlsStXI41buVpp7MrVSmNXrlQWQ5sxiYiIiIiIiIiIiIiISAWhmWMiIiIiIiIiIiIiIiJSYSg5JiIiIiIiIiIiIiIiIhWGkmMiIiIiIiIiIiIiIiJSYSg5JiIiIiIiIiIiIiIiIhWGkmMiIpdgxowZWCwW81WYxMREQkNDad68OV5eXvj6+tK6dWv+7//+j4yMjMsUsUiOoozd+fPn5ynj6LV58+bLHL1UFKUxBv/++29Gjx5NnTp1sFqtVK1alW7durFixYrL2BOpaC5l7A4fPrxIdbOyssqhZ1JRJCQkMHPmTNq0aUPVqlVxd3enZs2adOrUidDQUOLi4gqsp++7Ut6KO3b1fVfKU1HGnv3VqVMnh+1ERUXx/PPP07BhQzw8PPD396ddu3Z89tlnGIZxGXskFcWljt3Q0NAi1T127Fg59E4qEpfyDkBE5Gp19OhRpkyZUqSyERERdOzYkfDwcAA8PT1JT09n37597Nu3j0WLFrFlyxb8/PzKMGKRHMUZuwBOTk5UrVrV4Xl3d/fSCEvEoZKOwXXr1tGvXz9SUlIA8PHxISYmhk2bNrFp0yYefvhh5s6de9H/3CBSUpfy/LRarfj6+jo8r3ErZWXr1q0MHDiQqKgoANzc3PD09OTMmTOcOXOGsLAwevfuzY033pinnr7vSnkr6dgFfd+V8hEYGFjo+czMTGJiYgBo3bp1gWV+/vlnunXrxvnz5wHw8vIiMTGRnTt3snPnTpYvX86aNWtwc3Mr3eClQiuNsQvg6uqKv7+/w/MuLkpdSNnSzDERkRKw2WyMGDGCtLQ0br/99kLLZmVlcc899xAeHs51113Hd999R3JyMikpKXz11Vd4e3uzf/9+hgwZcpmil4qsOGPXLjg4mMjISIevdu3alXHUUtGVZAyeOHGC/v37k5KSwh133MHRo0eJj48nPj6eV199FYB58+bx1ltvXe7uSAVyKc/PAQMGFFrX2dn5MvZEKopdu3bRs2dPoqKi6NOnDz/99BNpaWnExsaSnJzMjz/+yCuvvJIvcavvu1LeSjp27fR9V8pDYWMuMjKSl19+2Sz7yCOP5KsfHx9Pr169OH/+PI0aNeKnn34iMTGR5ORkPvjgA1xdXdm4cSPPPvvsZeyVVASXOnbt2rRpU2g7ISEhl6E3UpEpOSYiUgLvv/8+u3fvZvDgwXTt2rXQsgsWLODAgQMArFixgi5dugA5/ztxwIABfPzxx0DODIctW7aUbeBS4RVn7IpczV599VWSk5OpXr063377Lddffz2Q879pp0yZwqhRowB4/fXXiY2NLc9QRUSuCCkpKQwdOpTU1FSeeuopVqxYwc0332zOUvT09KR169ZMmzaNOnXq5Kmr77tSni5l7IpcyebOnQtA27ZtadiwYb7zb7/9NpGRkXh4eLBu3TpuvvlmIGfW5BNPPGGuFvLJJ5/w559/Xr7ApcK72NgVuVIoOSYiUkwnTpzglVdeISAggP/85z8XLb9gwQIAOnXqVOBMnQcffND8R9rnn39eusGK5FLcsStytUpOTjb3FBszZgyVK1fOV2bChAlAzt4kq1evvozRiYhcmRYuXMjx48epXr06b775ZrHq6vuulKdLGbsiV6rdu3dz+PBhAB599NECy9ifp7mfsbk99dRTeHl5kZ2dzaJFi8ouWJFcijJ2Ra4USo6JiBTTyJEjSU5OZtasWYWuSw85/4tx165dAHTv3r3AMhaLhbvvvhuATZs2lW6wIrkUZ+yKXM127txJamoq4PjZGxISQuPGjQE9e0VE4H+/ZO3Xrx9Wq7XI9fR9V8pbSceuyJXMPvPG19eXfv365Tt/9OhRTp48CTh+9np5eZlLgurZK5fLxcauyJVEyTERkWL49NNP2bJlC126dGHo0KEXLX/48GFsNhsAzZo1c1jOfi4yMtLctFSkNBV37OZ27tw5WrVqhZeXFx4eHtStW5chQ4YQFhZWNsGKXKC4Y/DgwYPm+6I8ew8dOlSq8YrYXcrzc8uWLVx//fVYrVZ8fHxo3rw5zz77LH/99VfZBy4VTnp6Ovv27QOgVatWnDx5klGjRhEcHIybmxuBgYHcc889rF27Nl9dfd+V8nQpYzc3fd+VK0lSUhJLly4FYODAgXh6euYrU9zvu3/88UcpRymSX1HGbm6HDh2iWbNmeHp64uXlRcOGDRk5ciT79++/HOGKKDkmIlJUZ86c4cUXX8TDw8PcN+Fi/vnnH/N9UFCQw3K5z+WuI1IaSjJ2c0tJSeGXX37Bzc0Nm83GiRMnWLRoEZ06dWLEiBFkZWWVQdQi/1PcMWh/jvr5+eHh4eGwXfuzV89dKSuX8vw8ffo0x48fx9PTk5SUFA4ePMi7775Ls2bN+Oijjy5jL6QiCA8PJyMjA4Djx4/TrFkzPv30U86ePUulSpU4e/Ys3377Lb169WLkyJEYhmHW1fddKU+XMnZz0/dduZJ89dVXJCUlAY6XpSvuszchIcFsU6SsFGXs5hYdHc3hw4fx8PAgPT2dP//8k88++4xWrVoxceLEsg5XRMkxEZGiGj16NPHx8YSGhlK3bt0i1UlMTDTfF/Y/ZnKfy11HpDSUZOwC1KhRg8mTJ/Pbb7+RlpZGTEyMuXRSly5dAJg3bx5jx44tq9ClgivpGLQ/Ry/2PxXt5/XcldJ2Kc/Pm266iQ8++IDw8HDS09OJiYkhISGBFStWUK9ePTIyMnj88cfNffVESkNsbKz5ftq0abi6urJs2TKSkpKIjY0lIiLCXBrps88+y7N3qb7vSnm6lLEL+r4rV6bPPvsMgBYtWtCqVasCy+jZK1eiooxdgAYNGvDmm29y9OhR0tLSOH/+PMnJyWzcuJFWrVphGAavv/46//d//3e5QpeKyhARkYtauHChARg33nijkZmZmefc5MmTDcAo6JG6aNEi89xff/3lsP1NmzaZ5Xbv3l3q8UvFVdKxezHZ2dnGfffdZwCGk5OT8eeff5ZWyCJFUtgYHDlypAEYQUFBhbbx8ssvG4Dh5uZW1uGKmC7l+RkdHW3UqVPHAIzatWsbNputDCOVimTXrl3mdwLAWLVqVb4y2dnZRosWLQzACAgIML9X6PuulKdLGbsXo++7Uh4OHjxojuf333/fYbnXX3/dLFfYmP7kk0/Mcv/8809ZhCxiGEbRx+7FpKamGq1btzYAw8vLy4iLiyvFKEXy0swxEZGLiIqK4tlnn8XZ2ZlPP/0UFxeXItf19vY236ekpDgsl/tc7joil+JSxu7FODk58fbbbwNgs9n45ptvSq1tkaIobAzan6OFPXdzn9dzVy6nS3l+BgQE8PLLLwMQERGh/Rik1OR+DjZo0IDevXvnK+Pk5MQLL7wAwPnz5/n555/z1dX3XbncLmXsXoy+70p5sM+8sVqtDBkyxGE5PXvlSlPUsXsxVquV6dOnAzl7mG3ZsqVU4hMpiJJjIiIXMX78eM6fP8+oUaNo1KgRSUlJeV72Ne6BfMdq1Khhnjtz5ozDa+Q+l7uOyKW4lLFbFPXr16dKlSpAzh4PIpebozFof47GxsaSmprqsL792avnrlxul/L8vP322833evZKacm9X02jRo0clmvSpIn5PiIiAtD3XSlflzJ2i0Lfd+VyysjI4IsvvgCgb9++VK5c2WHZ4j57fXx88PLyKp1ARS5QnLFbFPq+K5eLkmMiIhdx4sQJAD766CO8vb3zvd544w2zrP3YuHHjAGjcuDFOTjmP2oMHDzq8hv1c9erV8ff3L6uuSAVzKWNX5GrWrFkz831Rnr1NmzYt85hERK5k/v7+eZIMjhiGYb63WCyAvu9K+bqUsStypfn666+Jjo4G4NFHHy20bHG/7+ZOEIuUtuKMXZEriZJjIiJlyNPTkzvuuAOADRs2FFjGMAw2btwIQNeuXS9bbCKX6u+//za/ANepU6eco5GKyNEYbNu2LR4eHoDjZ29ERASHDx8G9OyVy+9Snp979uwx3+vZK6XJ/iy0PxsL8scff5jv7eNP33elvJV07BaFvu/K5WRflq5+/fp06NCh0LLXX389tWrVAhw/e5OTk9mxYwegZ6+UreKM3aLQ9125XJQcExG5iLCwMAzDcPiaPHmyWdZ+7J133jGPDRs2DICtW7eyd+/efO0vW7bMnCY+dOjQsu2MVCiXMnZz/+/aghiGwYsvvgjk7MfQq1evMuuHVEyXMgYrVapE3759gZyZk/Hx8fnqz5w5E8iZNVnQ/iQiJXUpY/didWNiYsw9GIKDg2nZsuUlRivyPw8//DAAx44dY/Xq1fnO22w2c/+loKAgbrrpJvOcvu9KeSrp2NX3XbmSnDx5ks2bNwMwYsSIi85wtFgs5vP0q6++Ijw8PF+Z2bNnk5SUhLOzM4MHDy71mEWg+GP3Ys/e9PR0XnnlFSDn33V33nln6QQqUgAlx0REytiwYcNo3rw5hmHQt29fczNRm83GsmXLGDlyJADdu3fXX/pyxYiIiOCWW27h448/5vjx4+YXWJvNxp49e+jevTurVq0CYPTo0TRs2LA8w5Vr0KWOwalTp1KpUiX+/fdf7rnnHv766y8g53/QTp06lTlz5gAwceJE/Pz8LmPP5Fp3KWP3iy++oE+fPqxYsYKzZ8+ax1NTU1m9ejW33367mWB46623zKXsREpDu3bteOCBB4CcJZFWrFhBVlYWkPOLr4EDB/L7778D8Prrr+cZf/q+K+WppGNX33flSvLf//4Xm82Gi4sLw4cPL1KdF154gerVq5OSkkLPnj35+eefgZz9nz766CMmTZoEwKhRo7j++uvLKnSp4Io7drdv306XLl1YuHAhp0+fNo9nZmayZcsW2rVrZ/5Hm1dfffWS9y8TKZQhIiKXZPLkyQZgFPZIPXHihBESEmKW8/T0NKxWq/nnli1bGjExMZcxapHCx+6JEyfMc4Dh7u5uVKlSxXB3d89z/OGHHzYyMzPLIXq51pXGGFy7dq3h6elplvX19TWcnZ3z1LXZbJe5Z3Ktu5SxO2/evDxlKlWqZAQEBOQZt+7u7sbs2bPLqXdyrUtKSjLat2+fZ7z5+fnlGZeTJ08usK6+70p5KsnY1fdduVJkZ2cbtWrVMgDj3nvvLVbdffv2GQEBAeZ49fb2NlxdXc0/d+3a1UhLSyujyKWiK8nY3bp1a55nrIeHh1GlSpU849bJycl4+eWXyzh6EcOwGMZF5jKKiEihQkNDmTJlClD49PDExETefvttVq5cyYkTJ3BycuL6669n4MCBPPXUU7i5uV2ukEWAwsduamoqc+fO5YcffuDXX3/l3LlzxMbGYrVaqVmzJm3atGHEiBHmHiMipa20xuDff//NzJkz+e677/j333/x9vamZcuWjB492lx6UaQ0XcrYjYiIYNGiRfzwww8cPnyY8+fPk5SUhLe3N/Xr16dz586MHj1aey9ImbLZbPz3v/9l4cKFHDx4kMTERKpVq0a7du146qmnaNOmjcO6+r4r5am4Y1ffd+VKsWnTJrp16wbAmjVruOeee4pVPyoqipkzZ/Ltt99y6tQprFYrzZo1Y9iwYYwYMUIzzaXMlGTsnj9/nvnz5/PDDz9w4MABoqOjSUhIwNPTkzp16tCuXTtGjRpF8+bNyzp8EZQcExERERERERERERERkQpD/3VAREREREREREREREREKgwlx0RERERERERERERERKTCUHJMREREREREREREREREKgwlx0RERERERERERERERKTCUHJMREREREREREREREREKgwlx0RERERERERERERERKTCUHJMREREREREREREREREKgwlx0RERERERERERERERKTCUHJMREREREREREREREREKgwlx0RERERERERERERERKTCUHJMREREREREyoTFYsFisRAWFlbeoZSqsLAws29y9Sqv8ZmRkUG9evVwd3fn1KlTl9zenj17sFgstG/fvhSiExEREakYlBwTERERERGRfOyJg5K85s+fX97hi1yx3n//fY4fP86jjz5KcHDwJbd322230a1bN3bs2MGqVatKIUIRERGRa59LeQcgIiIiIiIiV57AwMACjyclJZGcnFxoGQ8PDwAaNmwIgKenZxlEWH48PT3NvokUR0xMDNOmTcPd3Z0JEyaUWruhoaFs3LiR8ePHc8899+Diol/3iIiIiBRG35ZEREREREQkn8jIyAKPh4aGMmXKlELL2B05cqTU47oS3HLLLdds36RsffLJJ8TFxfHAAw9Qs2bNUmv3tttuo0WLFvz222+sXr2aBx54oNTaFhEREbkWaVlFEREREREREZEyZhgGn3zyCQBDhgwp9fbtbX788cel3raIiIjItUbJMRERERERESkT9j3IwsLC8hwPDw83z4WHhxMREcHIkSOpVasWVquVevXqMXHiRHP5RoCDBw8yZMgQgoODsVqtNGjQgGnTppGZmVloDOHh4Tz77LM0bdoULy8vPD09adSoEc888wwnT54sUb/CwsLM+C80f/58LBYLISEhAPz888/079+f6667Dnd3d+rWrctzzz1HbGxsia4NsHfvXgYPHkydOnWwWq1UqlSJ2rVr06FDB1577TVOnz5dYL2MjAw+/PBDOnXqRJUqVXBzc6N69ercd999rF+/vkjXffjhh6lfvz6enp74+PjQpEkTRowYwcaNGwusEx8fz9SpU7npppvw8fHBw8ODBg0aMGbMGI4fP+7wWrnHTmJiIhMnTqRRo0Z4eHgQEBBAr1692Lt3b6HxxsbG8uKLL1KvXj2sVivXXXcd/fr14+eff75oX0+fPs3YsWNp2rQplSpVwt3dnRo1atCqVSvGjh3LTz/9dNE2LrR582ZOnDhB5cqV6dGjh8NyR44cYdSoUVx//fV4enpitVoJDg7mtttu4+WXX3Y4a3HQoEEAbNmypdB7KyIiIiKAISIiIiIiIlJEkydPNgCjKP+ctJfbunVrnuMnTpwwz61YscKoXLmyARg+Pj6Gs7Ozea5du3ZGRkaG8e233xqenp4GYPj6+hoWi8UsM2DAAIfX/+KLLwx3d3ezrLu7u+Hh4WH+2dvb29i4cWOx78HWrVsd3oN58+YZgFG7dm1j0aJFhqurqxm3k5OTWa9p06ZGYmJisa89f/78PP13d3c3fHx8zD8Dxrx58/LVCw8PN5o2bWqWsVgshq+vb556jz32WIHXzMrKMp5++uk8ZStVqmT4+fmZsfj6+uard/DgQaNmzZpmHavVanh7e+eJffny5QVe017myy+/NOrXr2/Wt48DwHBzc3P4+Z04ccKoXbt2nrL2++Tm5mZ8/fXXDsfnr7/+avj5+ZnnnZ2d8/QVMIYNG1bYx1Sg5557zgCMbt26OSyzadOmPGPW1dXV/PmwvyZPnuywfr169QzA+PDDD4sdn4iIiEhFopljIiIiIiIiUm4eeeQRWrVqxaFDh4iPjycxMZH33nsPZ2dnduzYwdSpUxk8eDD33HMP4eHhxMXFkZCQwCuvvALAkiVL2Lx5c752v/vuO4YOHUp2djbjxo3jxIkTpKamkpyczJEjR+jXrx+JiYn069evxDPICnPu3DlGjBjBsGHDOHnyJHFxcSQmJvLBBx/g6urKoUOHePPNN4vVZkpKCk899RSGYTBkyBCOHTtGWloa8fHxJCUlsW/fPl588UWqVauWp15ycjJ33303hw4domPHjoSFhZGamkpcXBxxcXHMmjULLy8v5syZw7vvvpvvui+//DLvvfceACNGjODo0aMkJSURExNDbGwsq1ev5u67785TJzExkXvuuYfTp08TFBTE2rVrSU5OJiEhgV9//ZXbbruN9PR0Bg8ezG+//eawz0888QRubm58//33JCcnk5SUxI8//kjDhg3JyMhg1KhR2Gy2PHWys7Pp168fERER+Pn5sXTpUpKTk4mPj+fQoUPceuutDBs2zOE1n3/+eWJjY7npppv44YcfyMzMJCYmhrS0NP7880/efvttmjZtetHP60Lbt28Hcvasc2TMmDGkp6fTtWtXDhw4QEZGBrGxsaSmpnLw4EGmTJlizkosyK233grAtm3bih2fiIiISIVS3tk5ERERERERuXqU9syxpk2bGmlpafnqPvTQQ2aZu+66y7DZbPnKtGvXzgCMRx55JM/x7Oxso0GDBgZgfPzxxw7ju/feew3AeOaZZy7al9yKMnOMQmYX2WcQ1a9fv1jX3bt3rzlrKzMzs8j1pk6dagBGhw4djIyMjALLrFy50gCMKlWq5Gn76NGj5oy3cePGFfmaM2bMMGc+HThwIN/5hIQEIyQkxACMnj175jtvv4dVq1Y1oqKi8p3//fffzTI7d+7Mc27JkiXmuc2bN+erm5ycbM6wKmh82mcX7t69u8j9vZj09HRzVqSj2XJRUVFmTP/880+JrvPWW28ZgFGrVq1LCVdERETkmqeZYyIiIiIiIlJuxo4di7u7e77j3bp1M9+PHz++wP297GV+//33PMe3b9/OX3/9RZUqVXj00UcdXnvo0KEADvfLulQTJ04s8Ph9990HwLFjx0hJSSlye5UrVwZy9g47f/58kevNnTsXgOeeew5XV9cCy/Tu3RsfHx+io6Pz7Mm1YMECbDYbAQEBTJkypcjXXLJkCQAPPPAAzZo1y3fe29ubcePGAbB+/Xri4+MLbGfUqFH5ZsIBNG/enDp16gD5P/+vvvoKgDvuuIM777wzX11PT0/z2gWx3+d///3XYZniOnv2LNnZ2QBUrVq1wDLe3t44OTld0rWrVKlySfVFREREKgolx0RERERERKTcOFpiLjAw0HzfunXrQsvExsbmOb5r1y4A4uPjqVGjBtWrVy/wNXLkSAAiIiIuuR8X8vf3p379+gWeq1Gjhvn+wtgLU69ePRo1akRmZia33norM2fO5NdffzWTLgU5c+aM2b9HHnnE4b247rrrSEpKAvLej927dwNw1113YbVaixRnRkaGmbDq0qWLw3J33XUXADabjV9++aXAMvZlAgtiv48xMTF5ju/btw+Azp07O6xb2LlevXoBMGzYMJ5//nm2bdtWrCRmQc6dO2e+9/f3L7CMh4eHmcy7++67efXVV9m7dy8ZGRlFvo697czMTOLi4koesIiIiMg1TskxERERERERKTfe3t4FHndxcSlymczMzDzH//nnH/N4VFSUw5c9MZWamnrJ/biQo5hzx11Q7IVxdnbmq6++ok6dOkRERDB+/HhatmyJj48Pd911Fx999FG+JI79XgBER0cXej/se3flbiMyMhKA2rVrFznOmJgYM2EXFBTksFzNmjXN92fPni2wTFHu44X30N5WUa99oTfffJNOnTqRlJTErFmz6NixIz4+Ptx8881MnjyZM2fOOKzrSFpamvm+oJmSdp999hktWrTg3LlzvPbaa9x22214e3vTtm1b3nrrrXyJwAt5eHgUeE0RERERyUvJMREREREREbmm2BMzt956K4ZhFOl1tWjRogVHjhxhxYoVjBo1imbNmpGamsrmzZt5/PHHadSoEQcOHDDL555Vdvjw4SLdi+HDh5t1ClrO8lpXuXJlvv/+e3bs2MG4ceO44447cHFx4eeff2bq1Kk0aNCAxYsXF6vNgIAA831hswVr1arFL7/8woYNG3j66adp1aoVNpuNXbt2MW7cOOrXr8/333/vsH7u5Fnua4qIiIhIXkqOiYiIiIiIyDWlevXqQNksl3glcHNzo0+fPnz88cccOHCAc+fOMWfOHPz9/Tl16hTDhg0zy9rvBZTsfpTkXvr7++Ps7AzA6dOnHZbLfa6gfcVKyt5WYTO8ijL7q23btsycOZOdO3cSFxfH119/TfPmzUlNTWXEiBFERUUVOabc+4xdbPaXk5MT3bp1491332Xfvn3ExMSwaNEiatWqRWxsLIMGDXK41KK9bV9fX4f7y4mIiIiIkmMiIiIiIiJyjbnjjjuAnCUB7ftPXcsCAgIYPXo0M2fOBGD//v2cP38egJCQEHN5wW+++abYbbdp0waA7777rsjL9Lm5uXHDDTcAsGXLFoflNm/eDOQkg2666aZix+bIzTffDMDWrVsdlils9lVBrFYr9957LytXrgRylizcuXNnkev7+fmZicbjx48X69re3t4MGjSIuXPnAhAVFZVndmBuJ06cAKBx48bFuoaIiIhIRaPkmIiIiIiIiFxTOnXqRP369QEYO3asw1k2dhebyXOlSE9PL/R87v2mnJz+98/9kSNHAjB37lz2799faBsX3ovhw4fj7OzM+fPnmTx5cpFjffDBBwFYvnw5Bw8ezHc+KSmJN998E4AePXrg6+tb5LYvZsCAAQDs3LmTsLCwfOdTU1N56623CqyblZVl7r1WEEf3uCjat28PwI8//ljg+YuN06Jce+/evQB06NChWLGJiIiIVDRKjomIiIiIiMg1xcXFhTlz5uDi4sLOnTtp3749W7ZsITMz0yxz/Phx5syZQ+vWrfnwww/LMdqi++qrr7jjjjv4+OOP88w+ys7OZuPGjYwfPx6A22+/HT8/P/P8888/T/PmzUlLS6NTp0588MEH5swygLi4ONavX8/QoUNp165dnmvWr1+fF198EYA333yTRx99lL/++ss8n5CQwJIlS7j//vvz1BszZgx16tQhMzOT7t27s379ejPpdODAAbp168aJEydwd3dn2rRppXSHcvTt29ecida3b19WrFhh7r12+PBhunfvzrlz5wqse/r0aRo0aMC0adPYv38/WVlZ5rnff/+dIUOGAFCpUqViJ6A6duwI/C+BdaHdu3dzww038J///IfDhw+b98swDHbv3s2YMWMAqFmzpjkzL7fs7Gx+/vlnQMkxERERkYtxKe8ARERERERERErbnXfeybJlyxg6dCh79+6lS5cuuLq64uPjQ1JSUp5ZWL179y6/QIvBniTZvXs3AO7u7nh5eREbG2smUmrUqMF///vfPPW8vLzYsGEDffv2Zc+ePTz11FM8/fTT+Pr6YrPZSEhIMMvaZ9zlNm3aNBITE5k9ezZz585l7ty5eHl54erqSlxcHIZh5Jv55e3tzZo1a7j77rs5ffo0PXr0wGq14ubmZl7P3d2dL774ghYtWpTqfXJxcWHZsmV07NiRU6dO8cADD+Du7o7VaiU+Ph43NzeWLVvGfffdV2D948ePM2nSJCZNmoSzszO+vr4kJSWZM7vc3NyYP38+/v7+xYqrb9++PPPMMxw5coS//vqLBg0a5Ctz4MABnnvuOZ577jlzvMbHx5tJOh8fH7788ktzT7fctmzZQnJyMtWqVaNLly7Fik1ERESkotHMMREREREREbkm9e7dm2PHjjF58mRuueUWvLy8iIuLw93dnRYtWvDoo4+yatUqc2bUle7ee+/l888/5+GHH6ZFixb4+voSHx+Pt7c3t9xyC6+99hqHDh2iUaNG+erWqFGDnTt3snjxYu69916uu+46UlJSyMjIICQkhHvuuYd33nmH7du356vr7OzMBx98wM6dOxk8eDC1atUiMzMTwzBo0qQJjzzyCCtWrMhXr1mzZhw6dIjQ0FBuvPFGXFxcSE9Pp169ejz22GMcOnSIBx54oEzuVd26dfn111957rnnqFOnDoZhYLVaeeCBB9i9ezf33ntvgfWCgoJYs2YNY8eO5bbbbuO6664jKSkJFxcXmjRpwhNPPMHBgwdLFHe1atXMGXaLFi3Kd75169YsXbqUMWPG0KpVK6pUqUJCQgJWq5Ubb7yRcePGcfjw4Xyz++zsbT788MO4uroWOz4RERGRisRiGIZR3kGIiIiIiIiIiFzrtm/fTocOHahXrx5//fUXFoulVNpNTk42E55//vkndevWLZV2RURERK5VmjkmIiIiIiIiInIZtG/fnq5du/L333+zbNmyUmv3gw8+IDExkUcffVSJMREREZEi0MwxEREREREREZHL5MCBA9x44400btyY33//HSenS/t/y0lJSdSpU4e0tDSOHTtGYGBgKUUqIiIicu1yKe8AREREREREREQqiubNmzN37lzCw8P5999/CQoKuqT2wsPDeeKJJ2jZsqUSYyIiIiJFpJljIiIiIiIiIiIiIiIiUmFozzERERERERERERERERGpMJQcExERERERERERERERkQpDyTERERERERERERERERGpMJQcExERERERERERERERkQpDyTERERERERERERERERGpMJQcExERERERERERERERkQpDyTERERERERERERERERGpMJQcExERERERERERERERkQpDyTERERERERERERERERGpMP4f8lFtsbqquyIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "from ndx_structured_behavior.plot import plot_events, plot_actions, plot_states, plot_trials\n", + "\n", + "# Get the events from file\n", + "events = nwbfile.get_acquisition(\"task_recording\").events\n", + "event_types = nwbfile.get_lab_meta_data(\"task\").event_types\n", + "\n", + "# Plot the data\n", + "fig = plot_events(\n", + " events=events[20:100],\n", + " event_types=event_types,\n", + " show_event_values=True,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Events\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3133c5a4-163b-4f1c-b3f1-0596c98f1e55", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpAAAAGiCAYAAADgNoXpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgoklEQVR4nO3dd3gU5f7+8XvTe6OXkIQiXRQUOSBNRYogKFVAOipH8RzgC2IlIMcj6BG7gHQF6aKiiIJUERQEKQLCAUITiJDey/z+4Ld7GLIbkk2FvF/XtZebneeZ57OTGWazt8+MxTAMQwAAAAAAAAAAAMD/51LSBQAAAAAAAAAAAKB0IUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAEBSZGSkLBaL2rVrV9KlAAAAACWOAAkAAAAAUGJiYmLk7e0ti8Uii8WiY8eOFfoY+/btU2RkpN5+++1CXzcAAABwqyJAAgAAAACUmMWLFys1NdX287x58wp9jH379mny5Mk3DJDKly+vunXrqkaNGoVeAwAAAHCzIUACAAAAAJSYuXPnSpJGjx4tSVq4cKGysrJKpJZnnnlGR44c0aJFi0pkfAAAAKA0IUACAAAAAJSIX3/9Vfv27VNQUJCmT5+uiIgI/fnnn/rmm29KujQAAACgzCNAAgAAAACUCOvso759+8rLy0uDBg2SlLfL2H333Xfq16+fwsLC5O3trZCQEN1+++0aPXq0fvrpJ1s7i8WioUOHSpKioqJs91qyPiIjI21tIyMjZbFY1K5dO4fj7t27V4MGDVJYWJi8vLwUHBysli1b6u2331ZaWprdPgsWLJDFYlF4eLgkac+ePerTp4+qVKkiT09P1axZU2PHjlVMTIzDcXft2qUBAwYoIiJCXl5e8vX1VVhYmNq2batXX31VZ8+eveE2AwAAAPLDraQLAAAAAACUPampqVqyZIkk2YKjQYMGacqUKVq7dq0uXryoSpUq5eiXnJysIUOGaMWKFbbX/P39lZ2drQMHDujAgQPatm2b9u3bJ0mqVKmSUlJSFB8fLxcXF1WoUMG0Pj8/vzzXPGPGDI0bN06GYUiSAgMDlZSUpJ9++kk//fST5s+fr2+//VZVqlRxuI4lS5ZoyJAhysjIUGBgoDIzM3Xy5EnNmDFD3333nXbu3JmjpoULF2ro0KG2cT09PeXm5qbTp0/r9OnT2rp1q0JDQzVkyJA8vxcAAADgRpiBBAAAAAAodqtWrVJsbKxq166tli1bSpJq1qype++9V5mZmQ7vQzR06FCtWLFCLi4ueu6553TmzBnFx8crNjZW0dHRWrx4sf72t7/Z2l+4cEHvvPOOJCk0NFQXLlwwPf7v//4vT/WuXbtWY8eOlWEY6t69u06cOKHY2FglJiZq0aJF8vf31/79+9WrVy+H93CKjo7WsGHDNHjwYJ0+fVqxsbFKSEjQ+++/L3d3dx06dEjTp0839UlOTtbo0aNlGIYGDhyo48ePKzU1VXFxcUpMTNTu3bs1fvx4VaxYMU/vAwAAAMgrAiQAAAAAQLGzXr7OOvvIKrfL2G3cuFHLly+XJL3//vt6/fXXVb16ddvy8uXLq3///vroo48Kvd4JEyZIklq3bq1Vq1YpIiJCkuTh4aHHH39cixcvliTt2LFDn3/+ud11JCcnq1+/fvr4448VGhoqSfLx8dHTTz+t0aNHS5I+++wzU5+DBw8qISFBvr6+mj9/vmrVqmVb5uvrq2bNmmn69Onq0qVL4b5hAAAAlHkESAAAAACAYnXixAlt3rxZFotFjz/+uGlZnz595O3trSNHjmjHjh2mZdZQqVGjRho1alSx1bt//34dPnxYkvTSSy/J1dU1R5tu3bqpefPmknKGQNd66aWX7L7evXt3SdLx48eVnJxsez0oKEiSlJ6ersuXLztVPwAAAOAMAiQAAAAAQLGaP3++DMNQ69atFR4ebloWEBCgHj16SPrfLCUra6DUtWvX4ijTZvfu3ZIkNzc3tW3b1mG7Dh06mNpfLyQkRLVr17a7rGrVqrbnMTExtue1atVSvXr1lJGRoXvuuUfTpk3Tvn37HF4mDwAAACgsBEgAAAAAgGKTnZ2tBQsWSMp5+TqrwYMHS5KWL1+uxMRE2+sXLlyQJIWFhRVtkde5dOmSpKuXyPP09HTYzno5PWv76/n7+zvs6+bmZnuekZFhe+7q6qqlS5cqIiJCUVFRmjhxou68804FBASoQ4cO+uijj0wzlgAAAIDCQoAEAAAAACg269ev19mzZyVJI0aMkMViyfHo1KmTJCkxMdF2zyNJslgsJVJzSWvSpImOHDmiVatW6YknnlCjRo2UkpKiDRs26O9//7vq1aunAwcOlHSZAAAAuMUQIAEAAAAAis31l6XLT/vKlStLkqKiogq1phupWLGiJOmvv/5SWlqaw3bWYMzavjB5eHjo0Ucf1axZs3TgwAFFR0dr5syZCgkJ0ZkzZ2yztgAAAIDCQoAEAAAAACgW0dHR+vLLLyVJK1euVEJCgsPHzz//LOnqfY+OHj0qSWrZsqUk6auvvsrXuC4uV//0NQzDqbrvuusuSVJmZqa2bNnisN2GDRskSXfffbdT4+RHuXLl9OSTT2ratGmSpL179+ry5ctFPi4AAADKDgIkAAAAAECx+OSTT5SRkaHAwEB169ZNfn5+Dh9333236tWrJ+l/s5CGDx8uSTp06JA++uijPI8bEBAgSYqNjXWq7ttvv10NGjSQJE2dOlVZWVk52nzzzTfatWuXJOmxxx5zahx7cpvxJEne3t6259agDAAAACgMfLoEAAAAABQLaxDUvXt3eXh43LB97969JUmLFi1SZmam2rdvr379+kmSnnnmGT3//PO2y8ZJVy8xN2fOHFvQZNWoUSNJUnx8vOmeSvlhnemzbds29erVSydPnpQkZWRkaPHixbbQqGXLlurRo4dTY9izdOlStWrVSrNmzdKJEydsr2dlZWn9+vWaOHGiJOlvf/ubgoODC21cAAAAgAAJAAAAAFDkdu7cqd9//13S/4KhG7G2u3jxor7++mtJV0OoRx99VNnZ2Xr99dcVGhqqwMBABQUFqUKFCho5cqT27NljWk/t2rV1//33S5L69u2rgIAAhYeHKzw8XG+//XaeaunataveeustWSwWrVmzRjVr1lRwcLD8/Pw0cOBAxcfHq3HjxlqxYoVcXV3ztM68MAxDO3bs0FNPPaVatWrJy8tL5cuXl4eHhzp16qSzZ8+qatWqmjdvXqGNCQAAAEgESAAAAACAYmCdfRQYGKgHH3wwT30aN26s+vXrm/r7+Pho1apVWrt2rR555BFVrVpVqampcnNz0+23365nn31Ws2fPzrGulStXasyYMbrtttuUkZGhqKgoRUVF5euydmPGjNHu3bs1cOBAhYaGKjk5Wd7e3mrRooVmzJihX375RVWrVs3z+vLi4Ycf1qJFizR06FA1adJEgYGBiouLk7+/v5o3b65XX31Vhw4dsl3uDwAAACgsFsPZu4gCAAAAAAAAAADglsQMJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATNxKugAAN7/s7GydP39e/v7+slgsJV0OAAAAAAAAAMAOwzCUkJCgqlWrysUl9zlGBEgACuz8+fMKDQ0t6TIAAAAAAAAAAHlw5swZVa9ePdc2BEgACszf31/S1X90AgICSrgaAAAAAAAAAIA98fHxCg0NtX2nmxsCJAAFZr1sXUBAAAESAAAAAAAAAJRyebkVSe4XuAMAAAAAAAAAAECZQ4AEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAE7fCWMn+/fu1fv16RUVFKSUlRXPnzrUty8jIUHR0tCwWi6pUqVIYwwEAAAAAAAAAAKAIFShAiouL07Bhw7RmzRpJkmEYslgsOQKkJk2aKCYmRr/99psaNmxYoIIBAAAAAAAAAABQtJy+hF1GRoY6d+6sNWvWyMfHRw899JC8vLxytPPx8dHQoUOVnZ2tlStXFqhYAAAAAAAAAAAAFD2nA6S5c+dq586dqlmzpo4ePaovv/xSgYGBdtv27NlTkrR161ZnhwMAAAAAAAAAAEAxcTpA+uyzz2SxWDRjxgxVrVo117Z33nmnXFxcdOTIEWeHAwAAAAAAAAAAQDFxOkA6cOCALBaLHnzwwRu29fDwUGBgoC5fvuzscAAAAAAAAAAAACgmTgdIycnJ8vf3l4eHR57aZ2RkyM3NzdnhAAAAAAAAAAAAUEycDpDKly+v+Ph4JSYm3rDtyZMnlZiYeMNL3QEAAAAAAAAAAKDkOR0g3XPPPZKkr7/++oZt33vvPUlS69atnR0OAAAAAAAAAAAAxcTpAGnYsGEyDEMvv/yyzp8/77DdrFmz9M4778hiseiJJ55wdjgAAAAAAAAAAAAUE6dvSvTQQw+pZ8+eWrVqle666y71799fKSkpkqTZs2crKipKa9eu1cGDB2UYhkaOHGmbtQQAAAAAAAAAAIDSy2IYhuFs59TUVI0cOVKLFy+WxWLJsdy66mHDhmnmzJlyc3M6rwJQisXHxyswMFBxcXEKCAgo6XIAAAAAAAAAAHbk57tcpy9hJ0leXl765JNPtHXrVj3++OOqVauWvL295eHhoRo1aqh///7avHmz5syZQ3gEAAAAAAAAAABwkyjQDCQAkJiBBAAAAAAAAAA3g2KbgQQAAAAAAAAAAIBbT6FeVy4qKkqXLl2SJFWsWFFhYWGFuXoAAAAAAAAAAAAUgwLPQDp//rxGjx6tihUrqmbNmmrRooVatGihmjVrqkKFCho9erTOnj1bGLUCAAAAAAAAAACgGBToHkjfffed+vbtq/j4eDlajcVikb+/v5YuXapOnTo5XSiA0ot7IAEAAAAAAABA6Zef73KdvoTd0aNH1aNHD6WmpiokJERPPfWU7rvvPlWrVk2SdO7cOW3atEmzZs3SX3/9pUcffVR79+5V3bp1nR0SAAAAAAAAAAAAxcDpGUgDBw7UkiVLdPvtt+v7779XhQoV7Lb766+/9MADD+jAgQPq37+/PvnkkwIVDKD0YQYSAAAAAAAAAJR++fku1+l7IG3cuFEWi0Vz5sxxGB5JUvny5fXxxx/LMAxt2LDB2eEAAAAAAAAAAABQTJwOkGJjY+Xn56e77rrrhm3vvvtu+fn5KTY21tnhAAAAAAAAAAAAUEycDpCqVKmirKysPLfPzs5WlSpVnB0OAAAAAAAAAAAAxcTpAKlLly5KSUnRDz/8cMO2GzduVHJysrp27erscAAAAAAAAAAAACgmFsMwDGc6Xrx4UXfccYe8vLy0fv163XbbbXbbHTt2TB07dlRaWpr27t2rihUrFqhgAKVPfm68BgAAAAAAAAAoGfn5LtfpAGnr1q06ceKExowZo9TUVPXu3Vv33XefqlWrJkk6d+6cNm3apBUrVsjLy0szZsxQRESE3XW1adPGmRIAlBIESAAAAAAAAABQ+hVLgOTi4iKLxeJUgaYCLBZlZmYWeD0ASg4BEgAAAAAAAACUfvn5LtetIAM5mT0V+joAAAAAAAAAAABQeJwOkLKzswuzDgAAAAAAAAAAAJQSLiVdAAAAAAAAAAAAAEoXAiQAAAAAAAAAAACYOB0g1a5dW9OmTdOlS5cKsx4AAAAAAAAAAACUMKcDpBMnTuiFF15QaGio+vTpow0bNhRmXQAAAAAAAAAAACghTgdIL774oqpWraqMjAytXLlSHTt2VO3atTV9+nRmJQEAAAAAAAAAANzELIZhGM52zs7O1jfffKNZs2bp22+/VVZWliwWi9zc3NSjRw+NHDlSDzzwQGHWC6AUio+PV2BgoOLi4hQQEFDS5QAAAAAAAAAA7MjPd7kFCpCudf78ec2dO1fz5s1TVFTU1ZVbLIqIiNATTzyhIUOGqGLFioUxFIBShgAJAAAAAAAAAEq/EgmQrAzD0HfffafZs2dr7dq1ysjIYFYScIsjQAIAAAAAAACA0q9EA6RrnT9/Xv3799fWrVuvDmaxSJJq166tcePGafjw4XJ1dS2q4QEUEwIkAAAAAAAAACj98vNdrktRFHD69GlNmjRJ99xzj7Zt2ybpanh0xx13yNXVVceOHdOoUaPUokULRUdHF0UJAAAAAAAAAAAAcFKhBUhZWVlas2aNunTpolq1amnq1Kk6d+6cQkJCNG7cOP3xxx/as2ePzpw5o1deeUW+vr769ddf9fzzzxdWCQAAAAAAAAAAACgEBb6E3alTp/Txxx9rwYIFunDhgqyra9mypUaNGqXevXvLw8MjR7/du3erefPmqlKlis6dO1eQEgCUMC5hBwAAAAAAAAClX36+y3VzdpCVK1dq9uzZ+uGHH2QYhgzDkL+/vwYOHKhRo0apUaNGufa/6667VLlyZV24cMHZEgAAAAAAAAAAAFAEnA6Q+vTpY3t+xx13aNSoUerfv798fX3zvA57M5MAAAAAAAAAAABQspwOkLy8vNS3b1+NGjVKzZs3d2odp06dcnZ4AAAAAAAAAAAAFBGnA6Tz588rKCioEEsBAAAAAAAAAABAaeDibMcvv/xSK1asyHP71atXa9GiRc4OBwAAAAAAAAAAgGJiMQzDcKaji4uLqlSponPnzuWpfUREhM6cOaPMzExnhgNQisXHxyswMFBxcXEKCAgo6XIAAAAAAAAAAHbk57tcp2cgSVJ+sycnsyoAAAAAAAAAAAAUowIFSPkRHx8vDw+P4hoOAAAAAAAAAAAATiqWAOmnn35STEyMqlWrVhzDAQAAAAAAAAAAoADc8tpw4cKFWrhwoem1K1eu6L777nPYxzAMxcbG6tChQ7JYLLr//vudrxQAAAAAAAAAAADFIs8B0qlTp7R582bTa+np6Tlec6Ru3bqKjIzMR2kAAAAAAAAAAAAoCXkOkNq1a2f6efLkyfLz89O4ceMc9nFxcVFAQIAaNWqkdu3aydXV1elCAQAAAAAAAAAAUDwshmEYznR0cXFR5cqVdf78+cKuCcBNJj4+XoGBgYqLi1NAQEBJl1OsktMz1eCV9ZKk3S/dr7umbpQk/T6lo3w88pzROzVeYYxx7fokaduEdgoN8S3QOgGgNHD072Ve/t125t/2/P777GiM3GoprPGvbyvJdC6w17+463D2HOfsOp2t+3r5/d0X1bZMTs90uE8VZBxJ+isx1bTua13fv6iOi/w4cyVJradvlsTnnIKy9/ssiuMYuFVdf/4ojs8VxX0cFvVnqML+N6ew/76+/hy5+6X7Vd7PK9/ryW07Svw764y8nMNutePxZlRc/05yLOXvu1ynt8zJkyeZUQQAAAAAAAAAAHALcjpACgsLK8w6AAAAAAAAAAAAUEq4lHQBAAAAAAAAAAAAKF0IkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECDdpCIjI2WxWNSuXbuSLgUODBw4UBaLRcuWLSvpUnL11FNPyWKxaO7cuSVdCgAAAAAAAACglCBAQomKjY1VZGSkIiMjFRsbW9LlOLRmzRpFRkZqzZo1eWq/e/duLVmyRI0aNVKfPn1ybXv8+HE9//zzuvvuu1WhQgV5eHiocuXKatWqlSZPnqzz588Xwjtw7IUXXpCHh4deeeUVJScnF+lYAAAAAAAAAICbAwESSlRsbKwmT56syZMnl/oAafLkyXkOkMaNGyfDMDRp0iRZLBa7bbKysjR+/HjVr19fr7/+unbv3q2YmBj5+fkpOjpaO3bsUGRkpOrUqaM333yzEN+NWY0aNTR06FCdP3++SMcBAAAAAAAAANw8CJCAQrZz505t3bpVlStX1iOPPGK3TXZ2tnr27Kk333xTmZmZ6tSpk7Zs2aK0tDRduXJFKSkp+vbbb9WyZUslJydr/PjxevbZZ4us5qeeekqS9O677yotLa3IxgEAAAAAAAAA3BwKLUBKTU3Vn3/+qdOnT+f6AG51M2fOlCT169dPrq6udttMnTpVX3zxhSRp4sSJWrdundq0aWNr7+HhoY4dO2rbtm0aNGiQJOm9997TJ598UiQ133HHHWrYsKEuX76slStXFskYAAAAAAAAAICbR4ECpOTkZEVGRqpu3bry9fVV9erVFRER4fBRs2bNAhW7bNkyde7cWZUqVZK7u7uCgoJUp04dPfzww/rggw+Umpqao8/evXs1aNAghYWFycvLS8HBwWrZsqXefvtthzMtIiMjZbFY1K5dO4e1bN68WRaLxe7lya7vv3HjRj300EOqUKGCvLy8VL9+fU2ePNluvddat26dOnTooKCgIPn5+alJkyaaPn26MjIycu3nrLi4OE2ZMkVNmzZVQECAvL29VadOHY0aNUonTpyw2+fUqVO27XDq1CmH6w4PD5fFYtGCBQtsr7Vr104RERG2nyMiImzrun77L1iwQBaLReHh4ZKk77//Xp07d1aFChXk7e2thg0baurUqQ636ZAhQ2SxWDRkyBCHNV4/hvS/3/PChQslSQsXLjTVaLFYtHnzZlv7+Ph4LV++XJLUv39/u+NcunRJr7/+uiSpffv2eu211xzW5OLiotmzZ6t+/fqSpOeff17p6emmNoW1v1nrnT17dq7tAAAAAAAAAAC3PqcDpNjYWLVo0UKvvvqqjh07JsMwbvjIzs52utBhw4apX79++vbbb3Xp0iV5eXkpIyNDx48f11dffaVnnnlGFy5cMPWZMWOGmjVrpk8++USnT5+Wl5eXkpKS9NNPP2nMmDFq3ry5/vzzT6dryos33nhDHTp00Lp165SZman09HQdOXJEkZGR6tKli7Kysuz2sy7fsGGD4uLi5O7urt9//13PPfecHnjggRwhQkEdOnRIjRo10qRJk7R3715lZGTI3d1dx48f18yZM9WgQQOtWrWqUMcMCQlR+fLlbT+XL19elSpVsj1CQkLs9vvwww/VsWNHffvtt8rMzFRmZqZ+//13vfzyy2rZsqViYmIKrUYPDw9VqlRJXl5ekiQvLy9TjZUqVZKHh4et/ZYtW5SSkiJfX181bdrU7jrnz5+vlJQUScr1HklWnp6emjhxoiTp3Llzud6Hydn9TZLatGkjSfrxxx+VkJCQa00AAAAAAAAAgFub0wHSq6++qoMHD8rNzU1jx47Vli1bdOzYMZ08eTLXhzO2b9+u+fPny8XFRdOmTdPly5eVkJCgpKQk/fXXX1q/fr0GDx5s+iJ/7dq1Gjt2rAzDUPfu3XXixAnFxsYqMTFRixYtkr+/v/bv369evXrl+qV6Qfz222+aOHGiJk6cqEuXLikmJkaxsbF65ZVXJEmbNm2yzWy51pdffqnJkydLknr37q3Tp08rJiZG8fHx+uCDD7Rz50599NFHhVZnQkKCunXrprNnz6patWr6+uuvlZSUpPj4eO3bt08tWrRQWlqaBgwYoN9++63Qxl29erV++eUX28+//PKLLly4YHusXr06R5/o6Gj985//VK9evUzb5aOPPpKnp6f27t2r4cOHF1qNLVu21IULF9S3b19JUt++fU01XrhwQS1btrS137p1qySpadOmDi9f98MPP0iSypUrp7Zt2+apjh49etiCpk2bNtlt4+z+ZtWsWTO5ubkpKytLP/74Y57qAgAAAAAAAADcmpwOkNasWSOLxaK3335bb775plq3bq1atWopLCws14czduzYIUl64IEHNGHCBNPMlHLlyunBBx/UggULVLVqVdvrEyZMkCS1bt1aq1atsl0qzcPDQ48//rgWL15sW/fnn3/uVF03Ehsbq5dfflmvvfaabaZNQECAJk+erEcffVSS9Nlnn+Xo9/zzz0uS2rZtq6VLlyo0NFSS5O3trb///e969913FRsbW2h1fvjhhzp58qTc3d317bffqkuXLnJxubprNGnSRN99953Cw8OVlpamF198sdDGdUZycrJatmyZY7s89dRT+uCDDyRJn3/+uSmYKk67du2SdHW7OXLo0CFJ0p133pnn9QYEBNguAXnw4EG7bZzd36y8vb1Vt25dSdJPP/2Uaz1paWmKj483PQAAAAAAAAAAtw6nA6Rz587JxcVFQ4cOLcx67AoKCpJ0dfZJXmYL7d+/X4cPH5YkvfTSS3ZngnTr1k3NmzeXlPuX6gXh6emp//u//7O7rHv37rZar7V//379/vvvkq7Wbg1yrjVy5EhVq1at0OpctmyZJKlXr15q1KhRjuX+/v62QG7dunWKi4srtLGd4Wi7DB06VNWrV5ckLV26tLjLkiSdP39eklShQgWHbS5fvizpaviZH9ZQyNr/es7sb47GsL4PR/79738rMDDQ9rCGeQAAAAAAAACAW4PTAVJISIj8/f1t94YpSvfff7+8vLy0d+9etW7dWnPnzs31cni7d++WJLm5ueV6ibAOHTqY2he2hg0bys/Pz+4y62ypK1eumF6/tvbWrVvb7evi4qJ27doVSo3p6em2UOGBBx5w2M66rbKzs/Xrr78WytjOyOt2Karf6Y1ER0dLksP7NxUlZ/a361nrtr4PR55//nnFxcXZHmfOnHGiYgAAAAAAAABAaeV0gHTvvfcqLi5O586dK8x67KpVq5bmzJkjPz8//fTTTxoxYoRq1qypihUrqm/fvvriiy9kGIat/aVLlyRdnU3h6enpcL3W2SrW9oXN39/f4TI3NzdJUmZmpun1/NZeUFeuXLHN6sptVtO14xXV9sqLG20X63soqRpTU1MlKdcarTOPHM0kcuSvv/4y9b+eM/vb9by9vSX973044unpqYCAANMDAAAAAAAAAHDrcDpAeu655+Tm5qZXX321MOtxaMCAAYqKitLMmTPVt29fhYaGKjo6WsuXL1ePHj3Utm1b7sOCEmcNd2JiYhy2adCggSRp7969eV5vfHy8Tpw4IenqTKOiYp2hlN/L6wEAAAAAAAAAbi1OB0jNmjXTggULtHDhQg0fPtz25XZRCgkJ0ZNPPqmlS5fq9OnTOn78uCZOnCiLxaJt27YpMjJSklSxYkVJV2dspKWlOVzf2bNnTe2trLM1cpuFUVT3Abq29vT0dIftCmvmV0hIiO0eUdbtYc+1y67dXtZtJRXP9srrdimp36n13ke5XSru/vvvl3R1BtLmzZvztN7PP//cNsvuvvvuK1iRubDWnds9nAAAAAAAAAAAtz6nA6SaNWvqxRdflKurqxYsWKA6deqoQoUKqlmzpsNHrVq1CrN21apVS//+97/Vv39/SdL3338vSbrrrrskXb1c15YtWxz237BhgyTp7rvvNr0eHBwsSbne12XXrl3OF56La2vftm2b3TbZ2dl5Dh5uxMPDQ7fffrskaePGjQ7bWbeVi4uLmjZtanvduq0kx9vrjz/+UGxsrN1lLi7/2wWvvQyhI7ltF8MwbL9v63a8vk5nf6fWOm9Uo3V2UW6B6pAhQ2z3DpsyZcoN15mWlqZp06ZJunovox49euTaviCs9xarX79+kY0BAAAAAAAAACj9nA6QTp06pVOnTik5OVmGYcgwDF2+fNn2uqOHM3KbRST9774t1i/5b7/9dtsX+VOnTrXd4+da33zzjS0weOyxx0zLmjRpIkk6f/683VDh0qVL+vjjj/P5LvLm9ttvt315/69//UvZ2dk52sybNy/X2UL51a9fP0nSypUrdfDgwRzLExMTNX36dElSly5dFBgYaFvm6+trCwZXrVpld/3/+te/HI597b1zHIVM9tZnb7ssXLjQFhD17dvXtMz6O/3ll1/shkiHDx/W6tWrb1jnjWps06aNJOnnn3922KZSpUqaMGGCJGnTpk168cUXHbbNzs7Wk08+qcOHD0uSXnvtNXl4eORag7NOnjyp6OhoSVLbtm2LZAwAAAAAAAAAwM3B6QBp/vz5+X7MmzfPqbGeeeYZ9enTR6tWrdKlS5dsrycmJmrmzJlatGiRJOmhhx6yLbPO2Ni2bZt69eplm1mRkZGhxYsX20Kjli1b5pjR0bJlS4WFhUmSBg8erN27d8swDNvMn3bt2tkNMAqLNXDZtGmT+vfvbwuLUlNTNXPmTD3zzDMKCgoqtPFGjRqliIgIZWRkqHPnzlq3bp3t/R04cEAdO3bUyZMn5enpqalTp+bob92W8+bN04cffqiUlBRJV2f7jBgxQsuWLZOPj4/dsYOCglStWjVJV/epzMzMXGv18fHR9u3bc2yX2bNna9SoUZKk7t27q3nz5qZ+3bp1k5+fnzIyMtSnTx8dPXpU0tX94YsvvtADDzwgX19fh+M2atRI0tX96ciRIw7btWvXTpIUFRWlixcvOmw3adIkde3aVZL073//W126dNG2bdtsYWdGRoa+++47tWnTRgsXLpQk/f3vf9fgwYMdrrOgrGFppUqVVK9evSIbBwAAAAAAAABQ+rnduIl9RflF9vUyMjK0YsUKrVixQpLk5+cnNzc302yQe++91zSTo2vXrnrrrbc0btw4rVmzRmvWrFFQUJCSk5Nt99Bp3LixVqxYYbsHkJWLi4tmzZqlbt266ejRo7r77rvl4+Oj7Oxspaamqk6dOvrggw9yzFwqLI888ohefPFF/etf/9KyZcu0bNkyBQcHKyEhQZmZmWrdurXuvfde/fvf/y6U8fz9/fXll1+qU6dOOnv2rLp06SIvLy95eHgoPj5ekuTp6alPP/3UNpPnWs8995xWr16t33//XU8//bRGjx6tgIAAxcbGyt3dXYsWLdLEiRMVFRVld/ynnnpKL7/8st577z3Nnj1bFStWlIuLi1q0aKGlS5ea2laoUEHjx4/X6NGjbdslMTFRGRkZkq7ONJo7d26OMQIDA/X2229r5MiR2rlzp+rVqyd/f3+lpaUpPT1dLVq00MCBA/XMM8/YrbFnz5564YUXFB0drfr166t8+fK2wGnp0qVq0aKFpKuXfmvSpIl+++03ffnllxo5cqTd9bm4uOjzzz/XhAkT9N5772ndunVat26dXF1dFRgYqNjYWFuI5+XlpcjISD333HN211VYvvzyS0k5Z+QBAAAAAAAAAMoep2cgFaeXX35Z7777rh555BHVq1dPbm5uSkxMVMWKFdWhQwfNmzdPmzdvzjGDZMyYMdq9e7cGDhyo0NBQJScny9vbWy1atNCMGTP0yy+/qGrVqnbH7Nixo7Zt26auXbsqODhYWVlZCg0N1cSJE7Vnzx5Vrly5SN/z1KlTtXbtWt13330KCAhQWlqa6tevr9dff10bN24s9MuYNWrUSIcOHVJkZKTuuOMOubm5KS0tTbVq1dJTTz2lQ4cOqVevXnb7+vn5afv27Ro7dqwiIiLk5uYmd3d39ezZUz/99JPtEnmOvPDCC3rnnXd01113yd3dXWfPnlVUVJQuXLhgt/3TTz+t9evXq1OnTnJxcZGLi4vq1aunKVOm6KefflK5cuXs9hs+fLi+/vpr2zbNzMzUbbfdptdff11btmzJdQZScHCwtm7dqn79+qlatWqKi4tTVFSUoqKilJqaamr75JNPSpIWL16c6/t2c3PTW2+9pd9//10TJkxQs2bNFBQUpISEBJUrV05/+9vfNGnSJB0/frzIw6PExER98cUXpvoBAAAAAAAAAGWX0zOQilOtWrU0evRojR49Ot99mzZtqk8++cSpce+55x599dVXdpe1a9dOhmHYXRYZGanIyMhc151bf6uHHnrIdFm+/I6RX4GBgZo0aZImTZqU777BwcH6z3/+o//85z92l+d2/ysXFxc9++yzevbZZ/M8XocOHdShQ4f8lqnOnTurc+fOdpcNGTJEQ4YMcdi3Xr16+uyzz244xsCBAzVx4kRt3bpVUVFRtsshOlKnTh3bJRedURj72+rVq5WcnKz27dtz+ToAAAAAAAAAQMFnIBmGodWrV6t3796KiIiQr6+vfH19FRERoT59+mjNmjU3DEqAW4m/v78mTpwowzAKFAwVl+zsbE2fPl2S9Nprr5VwNQAAAAAAAACA0qBAAdLFixfVpk0b9e7dW6tXr1ZUVJRSUlKUkpKiqKgorVq1Sj179lTbtm0dXo4MuBWNGTNGoaGhmjt3rs6cOVPS5eRqxYoVOnTokHr37m27lxMAAAAAAAAAoGxz+hJ26enp6tixow4cOCDDMNS8eXN16NBB1atXlySdPXtWGzZs0K5du/Tjjz+qc+fO+vnnn+Xu7l5oxQOllZeXlxYtWqTNmzfr9OnTCg0NLemSHMrIyNCkSZM0dOjQki4FAAAAAAAAAFBKOB0gffTRR9q/f78CAgL06aefqmvXrjnavPrqq/rmm2/Uv39/7d+/XzNnznTqPka4sR07dujRRx/NV5+WLVtq9erVRVQR2rVrp3bt2pV0GTc0cODAki4BAAAAAAAAAFDKOH0Ju+XLl8tiseiDDz6wGx5ZdenSRR988IEMw9DSpUudHQ43kJ6erosXL+brceXKlZIuO8+GDBkiwzB06tSpki4FAAAAAAAAAIBbnsUwDMOZjiEhIUpOTlZiYqLc3HKfyJSZmSk/Pz/5+PjcVKEFgLyJj49XYGCg4uLiFBAQUNLlAAAAAAAAAADsyM93uU7PQEpJSZGPj88NwyNJcnNzk4+Pj1JSUpwdDgAAAAAAAAAAAMXE6QCpUqVKiouL0+nTp2/Y9tSpU4qNjVWlSpWcHQ4AAAAAAAAAAADFxOkAqU2bNjIMQ2PGjFFuV8EzDENjx46VxWJR27ZtnR0OAAAAAAAAAAAAxcTpAMkaCq1Zs0b33XefNm7cqIyMDNvyjIwMbdiwQe3bt9eaNWtksVg0ZsyYQikaAAAAAAAAAAAARcdi5DZ96AZmzJihcePGyWKxSLp6r6Py5ctLkv766y9lZmbaZie99dZb+uc//1nwigGUOvm58RoAAAAAAAAAoGTk57tcp2cgSdKYMWP05Zdfqm7dujIMQxkZGfrzzz/1559/KiMjQ4ZhqEGDBvrqq68IjwAAAAAAAAAAAG4SBZqBdK0DBw5o9+7dunTpkiSpYsWKuuuuu9S4cePCWD2AUowZSAAAAAAAAABQ+uXnu1y3whq0cePGhEUAAAAAAAAAAAC3gAJdwg4AAAAAAAAAAAC3HgIkAAAAAAAAAAAAmOTpEnb33XefJCksLEzz5883vZYfFotFGzduzHc/AAAAAAAAAAAAFJ88BUibN2+WJNWrVy/Ha/lhsVjy3QcAAAAAAAAAAADFK08B0qRJkyRJ5cuXz/EaAAAAAAAAAAAAbi0WwzCMki4CwM0tPj5egYGBiouLU0BAQEmXAwAAAAAAAACwIz/f5boUU00AAAAAAAAAAAC4STgdIE2ZMkVvvfVWntu/++67mjJlirPDAQAAAAAAAAAAoJg4fQk7FxcXVa5cWefPn89T+4iICJ0+fVpZWVnODAegFOMSdgAAAAAAAABQ+nEJOwAAAAAAAAAAADit2AKkK1euyMvLq7iGAwAAAAAAAAAAgJOKJUBasWKFEhISVKNGjeIYDgAAAAAAAAAAAAXglteG77zzjt555x3Ta9HR0apZs6bDPoZhKDY2VvHx8bJYLHrooYecrxQAAAAAAAAAAADFIs8BUmxsrE6dOmV6LSsrK8drjtx///165ZVX8lMbAAAAAAAAAAAASkCeA6QePXooPDxc0tWZRcOGDVNgYKDefvtth31cXFwUEBCgRo0aqVatWgWtFQAAAAAAAAAAAMXAYhiG4UxHFxcXVa5cWefPny/smgDcZOLj4xUYGKi4uDgFBASUdDkAAAAAAAAAADvy811unmcgXS87O9vZrgAAAAAAAAAAACjFXEq6AAAAAAAAAAAAAJQuTgdIO3fuVNOmTfX000/fsO2IESPUtGlT7d6929nhAAAAAAAAAAAAUEycDpCWLFmi3377Ta1bt75h2xYtWmjfvn1asmSJs8MBAAAAAAAAAACgmDgdIG3ZskWS9OCDD96w7SOPPCJJ2rRpk7PDAQAAAAAAAAAAoJg4HSCdPXtWgYGBCgkJuWHbcuXKKTAwUOfOnXN2OAAAAAAAAAAAABQTpwOklJQUZWdn57m9YRhKSEhwdjgAAAAAAAAAAAAUE6cDpIoVKyohIUHnz5+/Ydtz584pPj5e5cuXd3Y4AAAAAAAAAAAAFBOnA6QWLVpIkj744IMbtrW2ueeee5wdDgAAAAAAAAAAAMXE6QBp+PDhMgxD06dP1+zZsx22mzVrlqZPny6LxaLhw4c7OxwAAAAAAAAAAACKicUwDMPZzn369NHKlStlsVjUqFEjde3aVWFhYZKkqKgoffXVVzp06JAMw1DPnj21YsWKQiscQOkRHx+vwMBAxcXFKSAgoKTLAQAAAAAAAADYkZ/vct0KMtDChQtlsVi0YsUKHThwQAcPHjQtt2ZT/fr109y5cwsyFAAAAAAAAAAAAIqJ05ewkyRvb28tW7ZMGzZsUP/+/RUWFiZPT095eXkpPDxcAwYM0A8//KAlS5bI29u7sGoGAAAAAAAAAABAESrQJewAQOISdgAAAAAAAABwM8jPd7kFmoGUV9nZ2frqq6/Uo0eP4hgOAAAAAAAAAAAABVCgeyDdyLFjxzR37lwtWrRIFy9eLMqhAAAAAAAAAAAAUEgKPUBKTk7W8uXLNXfuXO3YsUOSZL1KXv369Qt7OAAAAAAAAAAAABSyQguQdu7cqblz52r58uVKTEyUdDU4qlevnnr37q3evXurUaNGhTUcAAAAAAAAAAAAikiBAqTo6GgtWrRI8+bN05EjRyT9b7aRxWLRL7/8ombNmhW8SgAAAAAAAAAAABSbfAdIhmHom2++0bx587R27VplZmbKMAx5e3urR48eGjx4sDp16iSJS9YBAAAAAAAAAADcjPIcIP33v//VvHnztHDhQv35558yDEMWi0X33nuvBg0apD59+sjf378oawUAAAAAAAAAAEAxyHOAVKdOHVksFhmGoYiICA0aNEiDBg1SREREUdYHAAAAAAAAAACAYpbvS9g9++yzmj59ujw8PIqiHgAAAAAAAAAAAJQwl7w29PT0lGEYeu+991S1alU9/fTT2rlzZ1HWBgAAAAAAAAAAgBKQ5wDpzz//1Lvvvqvbb79dV65c0UcffaRWrVqpbt26eu2113T69OmirBMAAAAAAAAAAADFxGIYhpHfTnv37tWcOXP02WefKTY2VhaLRRaLRW3atNHjjz+u4cOHy2KxKCEhQT4+PkVRN4BSJD4+XoGBgYqLi1NAQEBJlwMAAAAAAAAAsCM/3+U6FSBZpaWlaeXKlZo7d662bNkiwzBksVhs/121apW6du0qN7d832oJwE2EAAkAAAAAAAAASr9iC5CudfLkSc2bN08LFy7U2bNnr67cYlFgYKC6d++u3r1768EHHyRMAm5BBEgAAAAAAAAAUPqVSIBkZRiG1q9frzlz5uirr75SRkaGLBaLJCkoKEiXL18uzOEAlAIESAAAAAAAAABQ+uXnu1yXwh7cYrGoU6dOWrlypc6dO6c333xT9evXl2EYio2NLezhAAAAAAAAAAAAUMgKPUC6Vvny5TV27FgdPHhQO3bs0PDhw4tyOAAAAAAAAAAAABSCYrshUYsWLdSiRYviGg4AAAAAAAAAAABOKtIZSAAAAAAAAAAAALj5ECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATt5IuAMDNzzAMSVJ8fHwJVwIAAAAAAAAAcMT6Ha71O93cECABKLCEhARJUmhoaAlXAgAAAAAAAAC4kYSEBAUGBubaxmLkJWYCgFxkZ2fr/Pnz8vf3l8ViKelySr34+HiFhobqzJkzCggIKOlygFKDYwNwjOMDsI9jA3CM4wOwj2MDcIzjo2wwDEMJCQmqWrWqXFxyv8sRM5AAFJiLi4uqV69e0mXcdAICAjgZA3ZwbACOcXwA9nFsAI5xfAD2cWwAjnF83PpuNPPIKvd4CQAAAAAAAAAAAGUOARIAAAAAAAAAAABMCJAAoJh5enpq0qRJ8vT0LOlSgFKFYwNwjOMDsI9jA3CM4wOwj2MDcIzjA9ezGIZhlHQRAAAAAAAAAAAAKD2YgQQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAFBI4uPjNW3aNLVs2VIVKlSQp6enqlevrvbt2ysyMlKxsbF2+yUkJCgyMlKNGzeWn5+fAgMDdffdd+s///mP0tPTi/dNAIXEYrHk+dG+fXuH67l48aLGjRununXrytvbWyEhIWrdurXmzJkjwzCK8R0Bhe/7779Xnz59FBYWJi8vL3l7e6tmzZoaMGCAtmzZkmtfzh241W3btk19+/ZV9erV5enpqYoVK6pDhw767LPPbtiXcwduVsnJyVq3bp2mTp2qRx99VGFhYbbPS5GRkXlaR0H3///+97968sknFRERIS8vL1WoUEEdO3bUqlWrCvjuAOcV5NiIjY3VF198oVdeeUVdu3ZVlSpVbH0XLFiQ5xo4NlAaFeTYOHfunD788EP17t1btWvXlre3t7y9vRUREaHHHntMP/zwQ55q4HNXGWAAAArshx9+MCpVqmRIMiQZHh4eRlBQkO1nScbevXtz9Dt16pQRHh5ua+Pj42N4enrafr7zzjuNK1euFP8bAgqoUqVKuT5CQkJs+/n48ePtrmP37t1GuXLlbO38/PwMNzc3288dO3Y00tLSivmdAQWXnZ1tPPnkk6ZzhLe3t+Ht7W16bcyYMXb7c+7Are65554zHQtBQUGGu7u77edHHnnEyMjIsNuXcwduZps2bTLt+9c+Jk2adMP+Bd3/v/76a8PHx8fWPiAgwHBxcbH9PHToUCM7O7sQ3zGQNwU5NubPn++w7/z58/M0PscGSitnj43Tp08bFovF1N7HxyfH3yPDhg0zMjMzHa6Hz11lAzOQAKCAfvzxRz300EO6ePGiHn30Uf3yyy9KTU1VTEyMkpKS9PPPP+vFF19UYGCgqV9mZqa6deumU6dOqUqVKvr++++VlJSk5ORkLV26VP7+/tq7d68GDhxYQu8McN6FCxdyfbzwwgu2tsOHD8/RPy4uTl27dtXly5dVr149/fLLL0pISFBSUpLef/99ubu7a/369frnP/9ZjO8KKBwLFizQrFmzJEm9evXSH3/8oeTkZCUnJ+vIkSPq3r27JGnGjBn6/PPPTX05d+BWN2vWLE2bNk2S1K9fP505c0YxMTFKSEjQggUL5Ovrq88//1wTJkzI0ZdzB24FwcHBuv/++zV+/Hh99tlnqly5cp76FXT/P3nypPr06aPk5GS1atVKR48eVVxcnOLi4vTKK69IkubPn6833nijsN4qkC/OHhuSVLlyZXXu3FkvvviiVq9ena9xOTZQ2jlzbGRlZckwDN1///1auHChzp07p6SkJCUmJurQoUO2v0fmzZvncCYTn7vKkJJOsADgZpaUlGTUrFnTkGSMHj06X33nzJlj+78yduzYkWP5kiVLbMs3bNhQWCUDpUL9+vUNSca9995rd/lLL71km5Vx4sSJHMtfe+01Q5Lh6upqHD16tKjLBQpVu3btDElG7dq17c6iSE9Pt51b+vXrZ1rGuQO3soyMDNuM7qZNmxpZWVk52nz00UeGJMPNzc3473//a1rGuQM3O3v/l3dYWFieZlkUdP8fOHCgIcmoXLmyERMTk2P5E088YZt5wSxXFLeCHBv2+lo/K+VlBhLHBkozZ4+N2NhYY8+ePQ6XZ2dnG506dbLNKkpJScnRhs9dZQczkACgAD755BOdOHFClStX1vTp0/PVd+HChZKk9u3b629/+1uO5f369VNERIQkadGiRQUvFiglduzYocOHD0uSRowYYbeNdZ+/9ji41ujRo+Xn56esrCwtXry46IoFisCff/4pSWrSpInc3NxyLHd3d9cdd9whSUpMTDQt49yBW9mePXt08eJFSdK4cePk4pLzz9WRI0cqKChImZmZ+vTTT03LOHfgZufq6up034Ls/0lJSbb7uIwaNUpBQUE5+j///POSrt73dc2aNU7XCTijIMdGQfpybKC0c3b/DgwMVNOmTR0ut1gsGjZsmKSrf49Y/36/Fp+7yg4CJAAoAOsJs3fv3vLy8spzv+TkZP3444+SpM6dO9ttY7FY1KlTJ0nSd999V8BKgdJj7ty5kq5+aO3du3eO5UePHtXp06clOT4+/Pz81Lp1a0kcH7j51KxZU5L022+/KTMzM8fyjIwM7du3T5J011132V7n3IFbXVRUlO15gwYN7LZxdXXVbbfdJsm8j3PuQFlW0P1/+/btSklJybV/eHi46tevb7c/cKvi2EBZdu13XFlZWaZlfO4qWwiQAMBJaWlp2r17tySpWbNmOn36tJ544gmFhobKw8NDlSpVUrdu3fT111/n6Hv48GFlZ2dLkho1auRwDOuyCxcu6MqVK0XwLoDilZiYqOXLl0uSHnvsMfn4+ORoc/DgQdvzvBwfv//+eyFXCRStUaNGSZKOHz+uxx57TMePH7ctO3r0qPr06aMTJ06oVq1aGjNmjG0Z5w6UJdd/UWFv2bXnC84dKMsKuv/nt/+hQ4ecqhO42XBsoCzbvHmzJMnDw8P2P+9Y8bmrbCFAAgAnnTp1Sunp6ZKkEydOqFGjRvr444916dIl+fr66tKlS1q7dq26du2qkSNHyjAMW9/z58/bnlerVs3hGNcuu7YPcLNaunSp7ZJcji5fl9/jIz4+PsdlvoDSrFu3bpoxY4Y8PDy0cuVK1alTRz4+PvLx8VG9evW0efNmjRo1Sj///LMCAgJs/Th34FYXHh5ue37tFxPXSk9P17FjxyRdvXlzUlKSJM4dKNsKuv9b+wcHB8vb2/uG/Tm3oKzg2EBZdfLkSc2cOVOS1LdvX9PfJBKfu8oaAiQAcFJMTIzt+dSpU+Xu7q4VK1YoMTFRMTExioqKsl2ea86cOZoxY4atfUJCgu25vRkY9pZd2we4Wc2ZM0fS1Xu/NGvWzG4bjg+UBf/85z+1evVqVaxYUZKUkpJiu0RKenq6EhMTFRcXZ+rDsYFbXdOmTVWpUiVJ0rRp0+xe4vG9995TfHy87Wfrc44PlGUF3f+tz3Pre+1yjh2UFRwbKItSUlLUu3dvJScnq3z58nr99ddztOFzV9lCgAQATrJeRsj6fO7cuerVq5fc3d0lSTVq1NDSpUvVpEkTSdJrr71m94sQoKw4dOiQdu3aJcnx7COgLEhOTlbfvn3VtWtX1ahRQ999952io6MVHR2t7777Tg0aNNAnn3yi5s2ba//+/SVdLlBs3Nzc9Morr0i6esnGrl276tdff1V6erouXLigN954Q88//7zts5YkubjwJy0AAEBhyMzMVP/+/bVnzx65u7tr8eLFqlq1akmXhRLGp20AcJK/v7/teZ06ddSjR48cbVxcXPR///d/kqTLly9rz549OfomJyc7HOPaZdf2AW5G1tlHXl5eGjhwoMN2HB+41Y0fP17Lly9X3bp1tW3bNnXo0EHly5dX+fLl1aFDB23dulW33Xab/vrrLz399NO2fhwbKAv+/ve/2z47rV+/Xs2aNZOnp6eqVKmiCRMmKDw8XBMmTLC1Dw4OlsTxgbKtoPu/9Xlufa9dzrGDsoJjA2VJVlaWBgwYoDVr1sjNzU1LlizRgw8+aLctn7vKFgIkAHDStdd5rVevnsN2DRo0sD2PioqSJNP/wXHu3DmHfa9dxv/1gZtZenq6Pv30U0lSz549FRQU5LBtfo+PgIAA+fn5FU6hQBFLSEjQ7NmzJUlPP/20vLy8crTx9vbWM888I0navn27Ll26JIlzB8qON954Q9u3b9eQIUPUsGFDhYaGqnnz5po6dar27t0rV1dXSVJYWJg8PDwkce5A2VbQ/d/aPyYmxnY51dz6c25BWcGxgbIiKytLAwcO1PLly+Xq6qpPP/1UvXr1ctiez11lCwESADgpJCQk15sFWhmGYXtusVgkSfXr17ddcsXRTaKvXVa5cmWFhIQUpFygRH3xxRf666+/JN348nWNGjWyPc/L8XFtSAuUdn/88Yftcqa1atVy2K5OnTq25ydPnpTEuQNlS6tWrTR//nwdPHhQp0+f1q5du/Tiiy/K19dXu3fvliS1bNnS1p5zB8qygu7/+e3fsGFDp+oEbjYcGygLrDOPli5daguP+vbtm2sfPneVLQRIAFAA1um8hw8fdtjm999/tz2PiIiQdPVGgq1atZIkffvtt3b7GYah9evXm8YBblbWy9fVrl1bbdu2zbXtbbfdpho1akhyfHwkJSVp27Ztkjg+cHO59n4t1lmp9ly8eNH23Hq5B84dwNVjY8OGDZKkQYMG2V7n3IGyrKD7/7333itvb+9c+0dFRdn+5uH4QVnBsYFbXVZWlvr3769ly5bZwqN+/frdsB+fu8oWAiQAKIChQ4dKko4fP641a9bkWJ6dna0333xT0tVL3jVt2tS2bPDgwZKkTZs2adeuXTn6rlixQidOnJBk/oIEuNmcPn3a9mXfsGHDbDPxHLFYLLZ9funSpTp16lSONh988IESExPl6uqqAQMGFHrNQFGpV6+e7YuIOXPm2GYjXSsrK8t2mbvg4GDVrVvXtoxzB8qyrKwsPfXUU0pPT1fz5s3VsWNH2zLOHSjLCrr/+/r6qmfPnpKkjz76SHFxcTn6T5s2TdLV/6nB3r1fgVsRxwZuZdaZR8uXL5ebm5sWL16cp/BI4nNXmWMAAAqkV69ehiSjXLlyxsqVK42MjAzDMAwjKirK6NOnjyHJkGQsWLDA1C8jI8No3LixIcmoVq2asWHDBsMwDCMrK8tYvny5ERAQYEgyOnfuXOzvCShMkyZNMiQZbm5uxvnz5/PUJzY21qhcubIhyWjQoIGxe/duwzAMIy0tzfjwww8NDw8PQ5IxatSooiwdKBKjR4+2nRs6depk7N+/38jKyjKysrKM3377zXjwwQdtyydPnmzqy7kDt7r//ve/xgsvvGDs2bPHSElJMQzj6v69fft247777jMkGUFBQcbvv/+eoy/nDtwKrly5YkRHR9seoaGhhiRj/PjxptcTEhJM/Qq6/584ccLw9fU1JBmtW7c2/vjjD8MwDCMxMdGYPHmyYbFYDEnGtGnTinYDAA44e2wYhmFaHh0dbfuc9d5775leT0pKytGXYwOlnTPHRmZmptGvXz/b3+nLly/P97h87io7CJAAoIASExONNm3a2D6Eenp6GsHBwbafJRmTJk2y2/fkyZNGeHi4rZ2Pj4/h5eVl+/nOO+80rly5UrxvCChEWVlZRo0aNQxJxsMPP5yvvrt37zbKlStnOx78/f0Nd3d3288PPvigkZqaWkSVA0UnOTnZ6NSpk+k84enpaXh6eppee+yxx4zMzMwc/Tl34Fa2d+9e03EQHBxs+re/Ro0axp49exz259yBm11YWJjpGHD0GDx4cI6+Bd3/v/76a8PHx8fWPjAw0HB1dbX9PHToUCM7O7sI3z3gWEGOjbz0y+3vdo4NlGbOHBtbtmyxve7u7m5UqlQp18fSpUvtjs3nrrKBS9gBQAH5+vpq06ZN+vjjj9WmTRv5+voqMTFR1apVU79+/fTjjz8qMjLSbt/w8HDt379fr7zyiho1aiSLxSJ3d3c1a9ZMb775pnbu3Kng4ODifUNAIdqwYYNOnz4tSRoxYkS++jZr1kyHDh3SmDFjVKdOHWVkZMjX11f33nuvPv74Y61bt06enp5FUTZQpLy9vfXNN99oxYoV6t69u6pXry7DMCRJoaGh6tmzp9auXaslS5bI1dU1R3/OHbiVhYeH65VXXlGbNm1UtWpVJSUlKSAgQK1atdJ//vMfHT582HRJ4Otx7kBZVtD9v0uXLtq/f79Gjhyp8PBwpaamKjg4WB06dNDKlSs1b968G16KGLgVcWzgVpOdnW17npGRoYsXL+b6SElJsbsePneVDRbD+tcqAAAAAAAAAAAAIIkZSAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAlBCLxSKLxaLNmzeXdCmFavPmzbb3hptXSe2f6enpqlWrljw9PXXmzJkCr2/nzp2yWCxq06ZNIVQHAABQdhAgAQAAAIATrF+uO/NYsGBBSZcPlFrvvfeeTpw4oREjRig0NLTA62vRooU6duyobdu26fPPPy+ECgEAAMoGt5IuAAAAAABuRpUqVbL7emJiopKSknJt4+3tLUmqW7euJMnHx6cIKiw5Pj4+tvcG5MeVK1c0depUeXp66vnnny+09UZGRmr9+vWaOHGiunXrJjc3vg4BAAC4ET4xAQAAAIATLly4YPf1yMhITZ48Odc2VkeOHCn0ukqD5s2b37LvDUVr9uzZio2NVa9evVS9evVCW2+LFi3UpEkT/fbbb1qzZo169epVaOsGAAC4VXEJOwAAAAAAUOIMw9Ds2bMlSQMHDiz09VvXOWvWrEJfNwAAwK2IAAkAAAAASoj1nkibN282vX7q1CnbslOnTikqKkojR45UjRo15OXlpVq1aumll16yXSpPkg4ePKiBAwcqNDRUXl5eqlOnjqZOnaqMjIxcazh16pT++c9/qmHDhvLz85OPj4/q1aunf/zjHzp9+rRT72vz5s22+q+3YMECWSwWhYeHS5L27NmjPn36qEqVKvL09FTNmjU1duxYxcTEODW2JO3atUsDBgxQRESEvLy85Ovrq7CwMLVt21avvvqqzp49a7dfenq6PvzwQ7Vv317ly5eXh4eHKleurO7du2vdunV5Gnfo0KGqXbu2fHx8FBAQoAYNGmjYsGFav3693T5xcXGaMmWKmjZtqoCAAHl7e6tOnToaNWqUTpw44XCsa/edhIQEvfTSS6pXr568vb1Vrlw5de3aVbt27cq13piYGI0fP161atWSl5eXqlSpot69e2vPnj03fK9nz57VmDFj1LBhQ/n6+srT01NVq1ZVs2bNNGbMGP3yyy83XMf1NmzYoJMnTyooKEhdunRx2O7IkSN64okndNttt8nHx0deXl4KDQ1VixYt9MILLzic/da/f39J0saNG3PdtgAAAPj/DAAAAABAoZk0aZIhycjLn1vWdps2bTK9fvLkSduyVatWGUFBQYYkIyAgwHB1dbUta926tZGenm6sXbvW8PHxMSQZgYGBhsVisbXp27evw/E//fRTw9PT09bW09PT8Pb2tv3s7+9vrF+/Pt/bYNOmTQ63wfz58w1JRlhYmLF48WLD3d3dVreLi4utX8OGDY2EhIR8j71gwQLT+/f09DQCAgJsP0sy5s+fn6PfqVOnjIYNG9raWCwWIzAw0NTvqaeesjtmZmam8eyzz5ra+vr6GsHBwbZaAgMDc/Q7ePCgUb16dVsfLy8vw9/f31T7ypUr7Y5pbbNkyRKjdu3atv7W/UCS4eHh4fD3d/LkSSMsLMzU1rqdPDw8jC+++MLh/rlv3z4jODjYttzV1dX0XiUZgwcPzu3XZNfYsWMNSUbHjh0dtvnuu+9M+6y7u7vt+LA+Jk2a5LB/rVq1DEnGhx9+mO/6AAAAyhpmIAEAAABAKTZ8+HA1a9ZMhw4dUlxcnBISEvTuu+/K1dVV27Zt05QpUzRgwAB169ZNp06dUmxsrOLj4/Xiiy9KkpYtW6YNGzbkWO/333+vQYMGKSsrSxMmTNDJkyeVkpKipKQkHTlyRL1791ZCQoJ69+7t9Eyk3ERHR2vYsGEaPHiwTp8+rdjYWCUkJOj999+Xu7u7Dh06pOnTp+drncnJyRo9erQMw9DAgQN1/PhxpaamKi4uTomJidq9e7fGjx+vihUrmvolJSWpU6dOOnTokNq1a6fNmzcrJSVFsbGxio2N1VtvvSU/Pz/NnDlT77zzTo5xX3jhBb377ruSpGHDhuno0aNKTEzUlStXFBMTozVr1qhTp06mPgkJCerWrZvOnj2ratWq6euvv1ZSUpLi4+O1b98+tWjRQmlpaRowYIB+++03h+/56aefloeHh3744QclJSUpMTFRP//8s+rWrav09HQ98cQTys7ONvXJyspS7969FRUVpeDgYC1fvlxJSUmKi4vToUOHdM8992jw4MEOxxw3bpxiYmLUtGlT/fTTT8rIyNCVK1eUmpqqP/74Q2+++aYaNmx4w9/X9bZu3Srp6j20HBk1apTS0tL04IMP6sCBA0pPT1dMTIxSUlJ08OBBTZ482Ta7zZ577rlHkrRly5Z81wcAAFDmlHSCBQAAAAC3ksKegdSwYUMjNTU1R9/HH3/c1qZDhw5GdnZ2jjatW7c2JBnDhw83vZ6VlWXUqVPHkGTMmjXLYX0PP/ywIcn4xz/+ccP3cq28zEBSLrNUrDNRateuna9xd+3aZZv9k5GRked+U6ZMMSQZbdu2NdLT0+22Wb16tSHJKF++vGndR48etc2cmjBhQp7HfP31120zaA4cOJBjeXx8vBEeHm5IMh566KEcy63bsEKFCsbFixdzLN+/f7+tzfbt203Lli1bZlu2YcOGHH2TkpJsM3Xs7Z/WWWo7duzI8/u9kbS0NNvsOkezri5evGir6fz5806N88YbbxiSjBo1ahSkXAAAgDKBGUgAAAAAUIqNGTNGnp6eOV7v2LGj7fnEiRPt3m/I2mb//v2m17du3apjx46pfPnyGjFihMOxBw0aJEkO799TUC+99JLd17t37y5JOn78uJKTk/O8vqCgIElX72V0+fLlPPebO3euJGns2LFyd3e326ZHjx4KCAjQX3/9ZbpH0MKFC5Wdna1y5cpp8uTJeR5z2bJlkqRevXqpUaNGOZb7+/trwoQJkqR169YpLi7O7nqeeOKJHDOqJKlx48aKiIiQlPP3v3TpUklSq1atdP/99+fo6+PjYxvbHut2/vPPPx22ya9Lly4pKytLklShQgW7bfz9/eXi4lKgscuXL1+g/gAAAGUJARIAAAAAlGKOLudVqVIl2/O777471zYxMTGm13/88UdJUlxcnKpWrarKlSvbfYwcOVKSFBUVVeD3cb2QkBDVrl3b7rKqVavanl9fe25q1aqlevXqKSMjQ/fcc4+mTZumffv22YIJe86dO2d7f8OHD3e4LapUqaLExERJ5u2xY8cOSVKHDh3k5eWVpzrT09Ntoc4DDzzgsF2HDh0kSdnZ2fr111/ttrFeks0e63a8cuWK6fXdu3dLku677z6HfXNb1rVrV0nS4MGDNW7cOG3ZsiVfQZ890dHRtuchISF223h7e9sCr06dOumVV17Rrl27lJ6enudxrOvOyMhQbGys8wUDAACUAQRIAAAAAFCK+fv7233dzc0tz20yMjJMr58/f972+sWLFx0+rOFNSkpKgd/H9RzVfG3d9mrPjaurq5YuXaqIiAhFRUVp4sSJuvPOOxUQEKAOHTroo48+yhF0WLeFJP3111+5bg/rvYSuXceFCxckSWFhYXmu88qVK7ZQq1q1ag7bVa9e3fb80qVLdtvkZTtevw2t68rr2NebPn262rdvr8TERL311ltq166dAgICdNddd2nSpEk6d+6cw76OpKam2p7bm3FnNWfOHDVp0kTR0dF69dVX1aJFC/n7++vee+/VG2+8kSMsu563t7fdMQEAAJATARIAAAAAlDHW8OKee+6RYRh5etwsmjRpoiNHjmjVqlV64okn1KhRI6WkpGjDhg36+9//rnr16unAgQO29tfOTjp8+HCetsWQIUNsfexdOvBWFxQUpB9++EHbtm3ThAkT1KpVK7m5uWnPnj2aMmWK6tSpo88++yxf6yxXrpzteW6zzmrUqKFff/1V3377rZ599lk1a9ZM2dnZ+vHHHzVhwgTVrl1bP/zwg8P+1wZM144JAACAnAiQAAAAAKCMqVy5sqSiuTRdaeDh4aFHH31Us2bN0oEDBxQdHa2ZM2cqJCREZ86c0eDBg21trdtCcm57OLMtQ0JC5OrqKkk6e/asw3bXLrN3nyNnWdeV20yhvMwiuvfeezVt2jRt375dsbGx+uKLL9S4cWOlpKRo2LBhunjxYp5ruva+RzeaReTi4qKOHTvqnXfe0e7du3XlyhUtXrxYNWrUUExMjPr37+/wsnbWdQcGBjq83xUAAACuIkACAAAAgDKmVatWkq5efs16P5xbWbly5fTkk09q2rRpkqS9e/fq8uXLkqTw8HDbpdy++uqrfK+7ZcuWkqTvv/8+z5dE8/Dw0O233y5J2rhxo8N2GzZskHQ1MGnatGm+a3PkrrvukiRt2rTJYZvcZvHY4+XlpYcfflirV6+WdPXycNu3b89z/+DgYFsYd+LEiXyN7e/vr/79+2vu3LmSpIsXL5pmmV3r5MmTkqT69evnawwAAICyiAAJAAAAAMqY9u3bq3bt2pKkMWPGOJytYXWjGSGlRVpaWq7Lr73/jYvL//4cHjlypCRp7ty52rt3b67ruH5bDBkyRK6urrp8+bImTZqU51r79esnSVq5cqUOHjyYY3liYqKmT58uSerSpYsCAwPzvO4b6du3ryRp+/bt2rx5c47lKSkpeuONN+z2zczMtN0Lyh5H2zgv2rRpI0n6+eef7S6/0X6al7F37dolSWrbtm2+agMAACiLCJAAAAAAoIxxc3PTzJkz5ebmpu3bt6tNmzbauHGjMjIybG1OnDihmTNn6u6779aHH35YgtXm3dKlS9WqVSvNmjXLNIslKytL69ev18SJEyVJf/vb3xQcHGxbPm7cODVu3Fipqalq37693n//fdsMJUmKjY3VunXrNGjQILVu3do0Zu3atTV+/HhJ0vTp0zVixAgdO3bMtjw+Pl7Lli3TI488Yuo3atQoRUREKCMjQ507d9a6detswcyBAwfUsWNHnTx5Up6enpo6dWohbaGrevbsaZvR1LNnT61atcp2L6jDhw+rc+fOio6Ottv37NmzqlOnjqZOnaq9e/cqMzPTtmz//v0aOHCgJMnX1zffIU27du0k/S/kud6OHTt0++23a8aMGTp8+LBtexmGoR07dmjUqFGSpOrVq9tmeF0rKytLe/bskUSABAAAkBduJV0AAAAAAKD43X///VqxYoUGDRqkXbt26YEHHpC7u7sCAgKUmJhoms3To0ePkis0H6xBwo4dOyRJnp6e8vPzU0xMjC1sqFq1qubNm2fq5+fnp2+//VY9e/bUzp07NXr0aD377LMKDAxUdna24uPjbW2tM7euNXXqVCUkJOiDDz7Q3LlzNXfuXPn5+cnd3V2xsbEyDCPHDCJ/f399+eWX6tSpk86ePasuXbrIy8tLHh4etvE8PT316aefqkmTJoW6ndzc3LRixQq1a9dOZ86cUa9eveTp6SkvLy/FxcXJw8NDK1asUPfu3e32P3HihF5++WW9/PLLcnV1VWBgoBITE20zhDw8PLRgwQKFhITkq66ePXvqH//4h44cOaJjx46pTp06OdocOHBAY8eO1dixY237a1xcnC3ICggI0JIlS2z3mLrWxo0blZSUpIoVK+qBBx7IV20AAABlETOQAAAAAKCM6tGjh44fP65JkyapefPm8vPzU2xsrDw9PdWkSRONGDFCn3/+uW2GTWn38MMPa9GiRRo6dKiaNGmiwMBAxcXFyd/fX82bN9err76qQ4cOqV69ejn6Vq1aVdu3b9dnn32mhx9+WFWqVFFycrLS09MVHh6ubt266e2339bWrVtz9HV1ddX777+v7du3a8CAAapRo4YyMjJkGIYaNGig4cOHa9WqVTn6NWrUSIcOHVJkZKTuuOMOubm5KS0tTbVq1dJTTz2lQ4cOqVevXkWyrWrWrKl9+/Zp7NixioiIkGEY8vLyUq9evbRjxw49/PDDdvtVq1ZNX375pcaMGaMWLVqoSpUqSkxMlJubmxo0aKCnn35aBw8edKruihUr2mZqLV68OMfyu+++W8uXL9eoUaPUrFkzlS9fXvHx8fLy8tIdd9yhCRMm6PDhwzlmiVlZ1zl06FC5u7vnuz4AAICyxmIYhlHSRQAAAAAAAGzdulVt27ZVrVq1dOzYMVkslkJZb1JSki0U/OOPP1SzZs1CWS8AAMCtjBlIAAAAAACgVGjTpo0efPBB/fe//9WKFSsKbb3vv/++EhISNGLECMIjAACAPGIGEgAAAAAAKDUOHDigO+64Q/Xr19f+/fvl4lKw//c1MTFRERERSk1N1fHjx1WpUqVCqhQAAODW5lbSBQAAAAAAAFg1btxYc+fO1alTp/Tnn3+qWrVqBVrfqVOn9PTTT+vOO+8kPAIAAMgHZiABAAAAAAAAAADAhHsgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwOT/AcC9bmAcxCZlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the actions from file\n", + "actions = nwbfile.get_acquisition(\"task_recording\").actions\n", + "action_types = nwbfile.get_lab_meta_data(\"task\").action_types\n", + "\n", + "# Plot the data\n", + "fig = plot_actions(\n", + " actions=actions[20:100],\n", + " action_types=action_types,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Actions\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "5f90f877-5ecb-40fb-9c8d-50ee870f7198", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAFVCAYAAAD/gzyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz60lEQVR4nOzdd1zV5f//8cebDQKHoeKWtFLLmXslOEo/+ikLR5opLbOyj6OlpYlmrsrSMm2YKwcOMs3KVMQ0t6Vm21KcuIDD3uf3B79zviBDOOJ+3m+39y14X+t1vc85Sry8rsuwWCwWRERERERERERERERERErJ4VoHICIiIiIiIiIiIiIiIjcmJZpERERERERERERERETELko0iYiIiIiIiIiIiIiIiF2UaBIRERERERERERERERG7KNEkIiIiIiIiIiIiIiIidlGiSUREREREREREREREROyiRJOIiIiIiIiIiIiIiIjYRYkmERERERERERERERERsYsSTSIiIiIiIiIiIiIiImIXJZpERERERERERERERETELk7XOgARERERERGR0rJYLKxcuZIlS5bw008/cfbsWRwdHQkICKBy5cq0aNGC9u3b06lTJ7y9vW3t3n//feLj4+nZsyeNGze+IrFdjTFERERERK4XhsVisVzrIERERERERERKyprE2bJli+2ek5MT3t7eJCQkkJWVZbs/b948QkNDbd8HBgYSHR1d4H5ZuhpjiIiIiIhcL7R1noiIiIiIiNxQBg4cyJYtW3B0dOTFF1/kr7/+Ij09nQsXLpCamsqBAweYOnUqjRo1utahioiIiIjc9LR1noiIiIiIiNww/v77b9auXQvAxIkTGTVqVL5yJycnGjZsSMOGDXnllVdITU29FmGKiIiIiNwytKJJREREREREbhj79++3ff3ggw9esr67uzsAYWFhGIZBdHQ0AI8//jiGYeS78jp06BBhYWF07NiR2rVr4+7ujre3N02aNGHMmDGcP3++wFilHcNq3bp1hISEULVqVVxdXfH19eXee+9l9uzZZGRkFDm38PBwunXrRkBAAM7Ozvj4+HDHHXfwwAMPMGvWLNLS0i75fERERERELpdWNImIiIiIiMgN6cSJE9SrV69EdT09PQkICODcuXPk5OTg7e1tS0IVpkePHraEkZubGx4eHsTFxbF//37279/P/Pnz2bRpE3Xq1LF7jNTUVAYOHMjKlStt97y9vTGbzWzdupWtW7eycOFCvvnmG3x9ffO1feKJJ5g3b16+sTMzMzl8+DCHDx9m7dq1dO/encDAwBI9HxERERERe2lFk4iIiIiIiNwwmjdvblsZZD2fqSReeuklYmJiqF69OgAzZswgJiYm35VXhw4dmD9/PtHR0aSmpnLhwgXS0tLYuHEjLVq04OTJk/Tv3/+yxhg8eDArV66kVq1aLF68GLPZjNlsJiUlha+++opatWqxc+dOnnjiiXzttm3bxrx583BwcGDq1KlcuHCBxMREkpOTOX/+POvXr2fQoEG4uLiU/MGKiIiIiNjJsFgslmsdhIiIiIiIiEhJDR48mE8//RQAwzBo3LgxrVu3pmnTprRo0YK77767yG3qAgMDiY6OZt68eYSGhto1flJSErfffjtnzpxh69attGvXrtRjbN26lXvvvZeKFSuyd+9eW3IqrxMnTlC3bl2Sk5P5+eefady4MQDTpk3j1Vdf5b777mP9+vV2zUFEREREpKxoRZOIiIiIiIjcUD766CPGjh1LuXLlsFgs/Pzzz3z00Uc8+eSTNGjQgEqVKjFy5EjOnDlzRcb39PSkQ4cOQO7qInvMnTsXgEcffbTQJBNAtWrVCA4OBsiXUPLx8QHg3LlzZGdn2zW+iIiIiEhZUaJJREREREREbihOTk5MmDCBkydPsmjRIp566ikaNWpk2yru7NmzvPfee9SvX5/du3fbPc7XX39N3759qVWrFuXKlcMwDNu1fPlyIHfVkT1+/PFHIDfhVKlSpSKvjRs3AtjOiwLo1KkTbm5u/Pzzz7Rv3565c+dy5MgRu+cpIiIiInI5nK51ACIiIiIiIiL2MJlMDBgwgAEDBgCQlpbGtm3bmDlzJmvXruX8+fOEhITw999/4+bmVuJ+c3JyGDBgAEuXLrXdc3JywtfX15bMMpvNpKWlkZycbFfsp06dAiAhIYGEhIRL1k9JSbF9Xbt2bT777DOGDBnCjh072LFjBwAVKlQgODiY/v3788ADDxS5faCIiIiISFnSiiYRERERERG5Kbi5udG5c2fWrFnDoEGDgNwVR999912p+pk7dy5Lly7F0dGRN954g7///pv09HRiY2OJiYkhJiaGXr16AWDvscfWLe9mz56NxWK55DV//vx87R999FGio6OZM2cOffv2pXr16pw7d47ly5fTs2dPOnToUKIEloiIiIjI5VKiSURERERERG46gwcPtn39559/lqrtsmXLAHjqqacYP348t99+Ow4O+f/3OSYm5rLiq1SpEpB/S7zS8vPz45lnnmHZsmUcO3aMw4cPM2rUKAzDYOvWrYSFhV1WjCIiIiIiJaFEk4iIiIiIiNx0PD09bV+7urravrYmjIpbiXT8+HEAmjRpUmh5UlISu3btKrJ9ScZo27YtkHsOVFmpXbs2kydPpn///gBs2LChzPoWERERESmKEk0iIiIiIiJywzhy5Ah//fXXJestWLDA9vU999xj+9rb2xuA+Pj4ItuaTCYADhw4UGj5m2++SWJiYpHtSzKGdcXVoUOHmD17dpH1AJKTk8nIyLB9n56eXmx9d3d3gAKrsERERERErgT91CkiIiIiIiI3jF9//ZV69erRvXt3Fi5cyNGjR21lmZmZ/Pzzzzz++ONMnz4dgBYtWtCuXTtbnfr16wOwcuVK4uLiCh2ja9euAHz66ad88skntiRPTEwMI0aMYNq0afj7+xcZY0nG6NChA48//jgAzz//PCNGjODff/+1laenp7Nz505eeeUVatasydmzZ21lQ4cOpU+fPqxatSrf/aSkJObMmcPChQsB6N69e5ExioiIiIiUFcNi78mlIiIiIiIiIlfZ+vXrbYkgKxcXFzw9PYmLi8u3Xd0999zD2rVrqVKliu3eDz/8QFBQEBaLBUdHRypWrIiLiwuALWkVHx9P69at+eOPP4DclUHe3t6YzWYsFgvPPPMMaWlpLFiwgEGDBjF//vx88ZRkDICMjAyef/55PvvsM9s9T09PnJ2dMZvN5OTk2O6fOHGCqlWrAhAaGppvxZanpydOTk75VlC1a9eO7777jnLlypX00YqIiIiI2EWJJhEREREREbmhHD58mG+++YZt27Zx6NAhTpw4QXJyMu7u7lSpUoUmTZrw8MMP07t370K3j/v222+ZPn06P//8M3FxcbaETt7/PY6Li2PChAmsXr2akydPYjKZaNCgAYMHD+aRRx6xJXsKSzSVdAyrHTt28Mknn7B161ZOnTpFVlYW/v7+1K1bl3vvvZdevXrRoEEDW/1//vmHb775hs2bN/P7778TExNDUlISfn5+NGrUiH79+jFw4EAcHR0v91GLiIiIiFySEk0iIiIiIiIiIiIiIiJiF53RJCIiIiIiIiIiIiIiInZRoklERERERERERERERETsokSTiIiIiIiIiIiIiIiI2EWJJhEREREREREREREREbGLEk0iIiIiIiIiIiIiIiJiFyWaRERERERERERERERExC5O1zoAEbl15OTkcOrUKby8vDAM41qHIyIiIiIiIiIiIiKFsFgsJCYmUqVKFRwcil+zpESTiFw1p06donr16tc6DBEREREREREREREpgePHj1OtWrVi6yjRJCJXjZeXFwBVn52Pg6tHqdoeGn9/seX1x623O65L9X01+i8Je2Mo7fhlOdeyiPlqzVtEysaN8pm9UeKU0rse/s6+3l3P7/8rGdv1PG+Ra+lG+2zcaPHeKvS6iIgU7nr589GeOHLSUzg5O9T2O93iKNEkIleNdbs8B1ePUieavL29iy0vbX+l6ftq9F8S9sZQ2vHLcq5lEfPVmreIlI0b5TN7o8QppXc9/J19vbue3/9XMrbred4i19KN9tm40eK9Veh1EREp3PXy5+Pl/H9SSY5AKX5jPREREREREREREREREZEiKNF0izAMA8MwiIqKui77u5KCgoIwDIOwsLAy7TcsLAzDMAgKCirTfm+U8UVEREREREREREREtHWeyHVm//79rF69Gh8fH4YPH36twxERERERERERERERKZISTbeIOnXqAODhYf9ejDeqGjVqUKdOHcqXL3+tQymR/fv3M378eGrWrFlsoql8+fLUqVOHGjVqXL3gRERERERERERERETyUKLpFvHHH39c6xCumYULF17rEK6IoUOHMnTo0GsdhoiIiIiIiIiIiIjcwnRGk4iIiIiIiIiIiIiIiNhFiaZSCAoKwjAMwsLCyMjIYMqUKTRs2JBy5crh6+tLly5d+PbbbwttaxgGhmEQFRVVov6La5+YmMiYMWOoW7cu7u7u+Pv706NHD3bt2lVk38WNHxcXxxtvvME999yDt7c3Li4uVKpUiYYNGzJkyBA2bdpU7HOxJ56SyszMpHz58hiGwcyZM4ut+/nnn2MYBt7e3qSkpNjuF/dcrSIiIujRowcBAQG4uLgQEBBAjx49+PLLL+2KOyUlhaVLlzJw4EAaN25MhQoVcHV1pUqVKvTs2bPY98njjz8OQHR0tO11s1555xAWFoZhGAQFBRUZx88//8zAgQOpWbMmbm5u+Pr60qZNG95//33S09MLbTN//nwMwyAwMBCAffv20adPHypXroyrqyu1atVi5MiRxMXF2fVsREREREREREREROTmoa3z7JCRkUHnzp3ZunUrTk5OeHp6Eh8fz8aNG9m4cSPjxo0rNqlxOU6fPs0999zD4cOHcXNzw8HBgdjYWNatW8eGDRtYu3Yt9913X4n7O3HiBG3btuXYsWMAODg4YDKZOH/+PGfOnOGXX37hjz/+oFOnTlclnos5OzvzyCOPMGvWLBYtWsT//ve/IusuWrQIgJCQkBKfRZWRkcHAgQMJDw8H8s9/3bp1rFu3jn79+rFgwQKcnZ1LHPfy5cttCSNr8svJyYnTp0/z1Vdf8dVXX/Hiiy/yzjvv5GsXEBBAamoqCQkJODg4UKFChXzlnp6eJY7hvffe48UXX8RisQBgMplITk5mx44d7Nixg3nz5vHdd99RuXLlIvtYsmQJoaGhZGZmYjKZyMrK4siRI7z33nt8//337Ny5s1QxiYiIiIiIiIiIiMjNRSua7PDRRx+xe/du5syZQ2JiInFxcRw7doxevXoBMH78eNasWXNFxn7++edxcXEhMjKS5ORkkpKS2L17N3Xq1CEjI4PBgweTk5NT4v7CwsI4duwYgYGBbNy4kYyMDGJjY0lPT+fo0aPMnj2bVq1aXbV4CjNw4EAA9u7dW+RZU8eOHWPLli356pfEa6+9Rnh4OIZhMHbsWC5cuEBsbCznz5/ntddeA2Dp0qWMHTu2VDH7+vry0ksvsW3bNpKSkoiPjyc5OZlTp04xfvx4nJ2deffddwu8T2JiYpgxYwYA1atXJyYmJt/10ksvlWj8r7/+mpEjR2KxWHjwwQf5999/iY+PJykpiYULF+Ll5cXBgwfp1asX2dnZhfZx7tw5nnjiCQYNGsSxY8eIj48nMTGRDz/8EGdnZ3799VemTZtWquciIiIiIiIiIiIiIjcXJZrsYDab+eijj3jmmWdwc3MDcpMC4eHh3HvvvQC2JEVZc3JyYvPmzQQHB+Pg4IBhGDRv3pwVK1YAudut7dixo8T9bd++HYBJkybRqVMnHB0dAXB0dKRmzZoMGTKEKVOmXLV4CtOiRQvq1KkDwMKFCwuts3jxYiwWCzVq1Ch2K7m8Tp48aUvqjBo1igkTJuDj4wPkJoreeustRo4cCcD06dM5ffp0iWN+8MEHefvtt2nbtm2+1VWVK1fmjTfeYNKkSQCX3A7QXq+88goA7du3Z9WqVdx2220AuLi48Nhjj7F48WIg9/UvanvAlJQUHnnkET799FOqV68OgIeHB88//zwvvPACkJuEK056ejoJCQn5LhERERERERERERG5eSjRZIfq1avbtkXLy8HBgTFjxgDw66+/8ssvv5T52IMHD6ZixYoF7jdo0MCWTDh48GCJ+7MmVkqTRLmS8RTlscceA/4voXQx67Z5jz76KIZhlKjPVatWkZWVhZubG6NGjSq0zpgxY3B1dSUzM5OVK1faGX1B3bt3B2DHjh1Friiy18GDB/n999+B3PitycO8/vvf/9KiRQug+GSR9f18sQcffBCAw4cP5zsP62KTJ0/GZDLZLmvCSkRERERERERERERuDko02SEoKKjIZEb79u1xcso9+mrv3r1lPnbLli2LLKtSpQoAsbGxJe6vR48eQO6KnsGDB/Pdd9+VatVJWcdTlMceewzDMPJtkWe1b98+W2KlNNvmWV+f5s2b4+3tXWgdX19fmjVrlq9+SZ05c4Zx48bRunVr/P39cXJywjAMDMPgrrvuAnJXDcXFxZWq30uxxunk5ESHDh2KrNelS5d89S/m5+fH7bffXmiZ9bUFio1/9OjRmM1m23X8+PFLxi8iIiIiIiIiIiIiNw4lmuxQtWrVIsvc3Nzw9/cH4OzZs2U+tpeXV5Fl1gRXZmZmift7+eWX6dOnD5mZmXz66ad069YNHx8fGjRowMsvv8yff/55VeMpSo0aNWxJE+vqJSvr982bN6du3bol7tP6+hT3egJUq1YtX/2S2LFjB3Xr1mXChAns3LmT2NhY3N3dqVixIgEBAZQvX95WNzk5ucT9loQ1zvLly+Pq6lpkvUvNqySvLRT/+rq6uuLt7Z3vEhEREREREREREZGbhxJNtzhnZ2fCw8PZv38/b7zxBh07dsTDw4NDhw7xzjvvcPfdd/Puu+9e6zCB/1uttHLlSlJTUwHIysqybf1m3V7vWsvKyqJfv37Ex8fTuHFjvvnmGxISEkhMTOTMmTPExMSwc+dOW/3CtgIUEREREREREREREbkRKNFkh5MnTxZZlp6ezoULFwDynV1kPScnLS2tyLZms7mMIiy9Ro0aMX78eDZt2kR8fDwbN27k3nvvJTs7m5dffpkDBw5cs9isevXqhbu7OwkJCXz11VcAfP/995w9exZnZ2f69etXqv6sr8+JEyeKrWctL+wsqsLs2LGD6OhoHB0d+frrr+nWrVuB1UExMTGlirU0rHGeP3+e9PT0IuuVdl4iIiIiIiIiIiIiIhdToskOW7ZsKXIVytatW8nKygKwne0DuWf9AEWeUZOYmGg7Z+hac3JyolOnTqxbtw5XV1csFgsbN2681mHh5eVFz549gf/bLs/6327duuXbjq4k8p69VFSSLz4+Pt9ZTiVhfY0rVKhQ5LZ8xT1PB4fcj6W9K52s88rKyipwnlVhMZR0XiIiIiIiIiIiIiIiF1OiyQ7Hjh1jwYIFBe7n5OQwadIkAO666y4aNGhgK2vUqBEAq1atKrTPd955p9jVJ1dKcWO6urraVmJZkx/XmnX7vO+//56///7btrLJer80QkJCcHJyIi0tjalTpxZaZ9KkSaSnp+Ps7ExISEiJ+jWZTACcOXOGM2fOFCg/ceIEM2fOLLK99Ryj+Pj4Eo13sYYNG3LXXXcBMHHiRLKzswvU+eabb9i1axdAqVeCiYiIiIiIiIiIiIhYXR/ZgxuMyWTi2Wef5dNPP7VthXf8+HH69evH5s2bgdxf8Odl/WX++vXrGTduHAkJCUDu9mavvfYaEydOxMfH5+pN4v+rWbMmo0ePZufOnfmSTocPH+bRRx8lJSUFBwcH7r///qseW2G6dOlCpUqVyMrKon///qSmpuLr60uPHj1K3VfVqlUZNmwYAFOmTGHcuHG25E58fDxjx47l7bffBmDkyJFUrly5RP22a9eOcuXKYbFY6NOnD3/99RcA2dnZrF+/nqCgIAzDKLJ9/fr1AUhISGD58uWlnhdgS5xt3bqVXr16ceTIEQAyMzNZvHix7f3Ypk0b2yoxEREREREREREREZHSUqLJDs899xzNmjVj8ODBeHt74+fnR40aNWxJgTFjxvDQQw/laxMaGkpwcDAAEyZMwMfHBz8/PypWrMiUKVOYOnWqbdXT1XTmzBmmTJlC69at8fDwwM/PD3d3d+644w5WrFiBYRi8++67thUy15qjoyP9+/cHsG1p16dPH1xdXe3qb9KkSfTp0weLxcKECRPw9/fHz88Pf39/W7KwX79+vPnmmyXu02Qy8c477wDwww8/UKdOHby8vPD09KRr166YzWbmzZtXZPvbb7+dTp06AdC3b1+8vb0JDAwkMDCQ999/v0Qx9OjRg+nTp2MYBqtXr6ZWrVr4+vri6enJgAEDSEhIoEGDBqxYscK2ak1EREREREREREREpLSUaLKDi4sLmzZtYtKkSdSpU4f09HRMJpPtXKPCkhKOjo6sW7eO8ePHU7duXVxcXDAMg/vuu48NGzbw0ksvXYOZ5G5BN3r0aNq3b0/16tVJTU0FcpMdjz/+OHv27GH48OHXJLaiXLxNnj3b5lm5uLgQHh7OypUr6datG/7+/iQmJuLv70+3bt2IiIhgyZIlODs7l6rfIUOGsG7dOoKCgvD09CQrK4uqVavywgsvcODAgXzbKhZm5cqVjBgxgjvvvJPMzEyio6OJjo4u1XZ6I0aMYO/evQwYMIDq1auTkpKCu7s7rVq14r333mPPnj1UqVKlVPMSEREREREREREREcnL6VoHcKNycXFh9OjRjB49usRt3N3deeONN3jjjTcKLY+KiiqyrcViuWT/9rTv0qULXbp0uWTfZR3P5WjUqFGJxi9NHCEhISU+g8kqLCyMsLCwIsv/85//8J///KfI8uLm4OPjw/Tp05k+fbrd4wPcc889LFq0qNg6FwsNDSU0NLTYOoGBgaV6DURERERERERERETk5qQVTSIiIiIiIiIiIiIiImIXw6JlCSUWFBTEli1bGDdu3CVXkohIQQkJCZhMJsxmM97e3tc6HBH5/wJHrQPg6JTu1zgSESkLgaPW6fMsIiWmnwNERERufPp/ALkSSvO7XK1oEhEREREREREREREREbvojCa5aoYNG0Z4eHip2syYMYO+ffteoYhERERERERERERERORyKNFUClFRUdc6hBua2WzmzJkzpWqTmpp6haIREREREREREREREZHLpa3z5KqZP38+FoulVFdoaOi1DlsKERQUhGEYOqtMRERERERERERE5BanRJOIiIiIiIiIiIiIiIjYRYkmERERERERERERERERsYsSTSIiIiIiIiIiIiIiImIXJZpERERERERERERERETELko0yS0rKCgIwzAICwsjMzOTd999l2bNmuHj44NhGERFRdnqHjp0iMGDB3PHHXfg4eGBp6cnDRs25PXXX+f8+fMF+n7hhRcwDINevXoVKMvMzMTLywvDMKhQoQIWi6VAnfvvvx/DMBg7dmy++0eOHGHq1Kl07dqVO++8k3LlyuHp6cldd93F8OHDOXbsWJnMNzs7mw8++IB77rmHcuXK4efnR1BQECtXrizBkxURERERERERERGRW4XTtQ5A5FpLS0sjKCiI7du34+TkZEsCWU2bNo3Ro0eTk5MDgIeHB5mZmfzyyy/88ssvzJs3j3Xr1tGkSRNbm+DgYD788EOioqKwWCz5+tu9ezdJSUkAnD9/nl9++YWGDRvayjMzM9m2bRsAHTt2zBfr448/zpYtWwBwcXHBy8uLuLg4fv/9d37//Xfmz5/P119/Tbt27eyeb3p6Og8++CDr168HwMHBARcXF3744Qe2bNnCq6++WroHLCIiIiIiIiIiIiI3La1oklverFmzOHjwIPPmzSMhIYHY2FjOnTtHw4YNmTt3Lq+++ioeHh689dZbnD59muTkZFJSUti7dy8dO3bk9OnTPPDAA7bkEfzf6qELFy5w4MCBfONt3rwZAG9vbwAiIyPzle/atYuUlBRcXV1p3bp1vrLGjRsza9Ys/vrrL1JTUzl//jzp6ens2rWLrl27Yjab6du3L6mpqXbNF2D06NGsX78ewzCYOHEicXFxxMXFERMTw7PPPsvUqVPZv3+/3c9bRERERERERERERG4eSjTJLS8pKYklS5YQGhqKu7s7AP7+/jg7O/PSSy8BsHLlSl577TUqVaoEgKOjI02bNmX9+vU0bdqUEydO8Nlnn9n69PPzo1GjRkDBRJL1++HDhxdb3rp1a9zc3PKVvf/++zz33HPccccdODjkfnydnJxo0aIFX3/9NQ0bNuTUqVOsWrWq1PP18/Pj1KlTfPDBBwCMGTOG119/3ZYQq1ixIh999BH9+vXDbDZf8rlC7uqohISEfJeIiIiIiIiIiIiI3DyUaJJb3t13381///vfAvdXrVpFfHw8TZo04f777y+0rZOTE/369QOwbTVnFRwcDORPJKWnp7Njxw7KlSvHyJEjbVvSZWdn2+pYVzxZ25eUo6MjXbt2BbBtvVeYouYLuQm1rKws3N3dbUm2i4WFhZU4psmTJ2MymWxX9erVS9xWRERERERERERERK5/SjTJLa9t27aF3v/xxx8B+P3336lUqVKR14QJEwCIjo7O1956vtLWrVttiaTt27eTlpZGu3btMJlMtGzZErPZzL59+4Dc85N27NgBFJ1o2rp1K6GhodStWxdPT08Mw7Bd06ZNA+DEiROlni/A3r17AWjWrJltJdPF7rzzTqpWrVpkH3mNHj0as9lsu44fP16idiIiIiIiIiIiIiJyY3C61gGIXGsVK1Ys9P6pU6eA3ORPWlraJftJSUnJ9/29996Lo6MjCQkJ7Nmzh1atWtlWK1mTUB07dmTr1q1ERkbSokULtm/fTnp6Ou7u7rRs2bLAGK+++qotmQS5q5h8fX1xcXEBcrfFS05OJjk5udTzBTh79izAJRNJ1apV4+TJk8XWAXB1dcXV1fWS9URERERERERERETkxqQVTXLLc3R0LPS+dRVS3759sVgsl7yOHj2ar723tzdNmzYF/m/7POt/8yaaCitv27atLXlktWHDBluS6bnnnuOXX34hPT2d2NhYYmJiiImJYcSIEQBYLJZSz1dEREREREREREREpLSUaBIpQqVKlYCCW+KVRt5zmpKTk9m9ezc+Pj7cc889ALRq1Qp3d3d+/PFHMjIyCiSi8lq2bBkA999/P7NmzaJ+/foFkkYxMTF2xwr/t9rpUquVSrKaSURERERERERERERufko0iRTBepbRvn37OH36tF19WBNN27dvZ9OmTWRmZtKhQwccHHI/ei4uLrRt25aUlBQ2btzInj178rXLy3q+UZMmTQody2Kx2BJV9mrWrBmQe1ZTUlJSoXX+/vvvYs+AEhEREREREREREZFbhxJNIkXo3bs3Pj4+ZGZmMnLkyGK3o8vJySE+Pr7A/Xbt2uHs7ExqaiqTJk0CCq5WsiaVJkyYQFZWFp6enraET14mkwmAAwcOFBrDnDlz+Pfff0s0t6KEhITg6OhIamoq77zzTqF1JkyYcFljiIiIiIiIiIiIiMjNQ4kmkSL4+Pjw/vvvA7nb1nXv3p1du3aRk5MD5CaXfv/9d959913uvvtuvv766wJ9lCtXjhYtWgCwa9cuoGCiyfq9tbx9+/Y4OTkV6Ktr164AfPvtt7z55pskJycDEB8fz6RJk3jhhRfw9/e/rDlXrVqV559/HoA333yTyZMnk5iYCMC5c+cYOnQoX3zxhS3pJSIiIiIiIiIiIiK3NiWaRIoxaNAgZs+ejYuLC99++y2tWrXCw8OD8uXL4+bmxl133cVLL73EH3/8gWEYhfaRN7FUsWJF6tevn6+8WbNmeHl52b4vbNs8gIEDB9K+fXsA3njjDby8vPDz88Pf35/XX3+drl278uyzz17ulJk6dSqdO3cmJyeH1157DV9fX/z8/AgICGDWrFm8+uqrNG7c+LLHEREREREREREREZEbnxJNIpcwZMgQ/vzzT1566SUaNWqEq6sr8fHxti3uXnjhBTZs2EC/fv0KbZ83cVRYEsnJycmWQCqqDoCzszPff/8948aN484778TZ2RmLxUKLFi2YPXs2a9aswdHR8TJnC25ubnz77bfMmDGDxo0b4+LigsVioX379ixfvpwpU6Zc9hgiIiIiIiIiIiIicnMwLMUdPCMiUoYSEhIwmUyYzWa8vb2vdTgi8v8FjloHwNEp3a9xJCJSFgJHrdPnWURKTD8HiIiI3Pj0/wByJZTmd7la0SQiIiIiIiIiIiIiIiJ2UaJJRERERERERERERERE7KKt80TkqtHWeSIiIiIiIiIiIiLXP22dJyIiIiIiIiIiIiIiIlecU1l0kpOTw759+4iOjiYlJYWBAweWRbciIiIiIiIiIiIiIiJyHbvsFU0ffPABlStXplWrVvTt25fHH388X3lcXBz169enbt26nDlz5nKHExERERERERERERERkevEZSWann/+eYYPH865c+fw8vLCMIwCdXx9fbnnnnv4+++/WbFixeUMJyIiIiIiIiIiIiIiItcRuxNN3333HbNnz8bT05Mvv/yS+Ph4KlSoUGjd/v37Y7FY2Lhxo92BitxIVq9eTVhYGKtXr77WoZSZo0ePEhYWRlhY2LUORURERERERERERESuE3YnmubMmYNhGEyYMIEHH3yw2LqtW7cG4JdffrF3OJEbyurVqxk/fvxNl2gaP34848ePv9ahiIiIiIiIiIiIiMh1wu5E065duwB44oknLlnXZDLh7e1NTEyMvcOJiIiIiIiIiIiIiIjIdcbuRFNsbCwmkwkvL6+SDeTgQE5Ojr3DiYiIiIiIiIiIiIiIyHXG7kSTt7c3CQkJZGZmXrJubGwsZrOZ8uXL2zucyGWJioqid+/eVK1aFVdXV8qXL0+nTp2YN28e2dnZBeqHhYVhGAZBQUEALF++nA4dOuDn50e5cuVo2rQpH374YYG2UVFRGIbBggULAFiwYAGGYeS7oqKiLns+MTExvPzyy9x9992UK1eOcuXKcffdd/PKK69w5syZIp+BNYbiFBZnYGAgwcHBBepYr9DQ0Muek4iIiIiIiIiIiIjceJzsbdigQQO2bNnCrl27aNeuXbF1ly5disVioVmzZvYOJ2K3kSNH8t577wG5CRKTyUR8fDyRkZFERkbyxRdfsHr16iJX57366qtMmzYNwzDw8fEhLS2Nn376iZ9++omvv/6ar776CldXVwBcXFwICAjAbDaTlpaGm5sbJpMpX38uLi6XNZ8tW7bQs2dP4uPjAShXrhwAv/32G7/99hufffYZa9asueTnsjQqVKhAQkICcXFxAAQEBOQrv3iOIiIiIiIiIiIiInJrsHtFU69evbBYLISFhRW7Jd6BAwcYM2YMhmHQr18/e4cTscuHH35oSzINHjyYU6dOERcXh9ls5r333sPJyYnIyEiefvrpQtvv37+fadOmMXToUM6cOUNsbCxxcXG8+eabGIbB+vXrGT16tK1+mzZtiImJoW/fvgD07duXmJiYfFebNm3sns/x48dtSaa77rqLbdu2kZSURFJSEj/88AN16tQhLi6OBx98kJMnT9o9zsX27NlDRESE7fuL5zRjxowyG0tEREREREREREREbhx2J5qefvpp7rrrLjZv3kyXLl34+uuvbduI/f3332zYsIH//e9/tGnTBrPZTKtWrejdu3eZBS5yKampqYwbNw6Afv368fHHH1OpUiUgdxXQ8OHDmT59OgDh4eHs27evQB9ms5nHHnuMDz74gAoVKgC520aOGTOG119/HYAPPviAU6dOXY0pMWnSJOLj4/H19WXTpk20bdvWVta+fXs2btyIt7c3sbGxTJ48+arEVJz09HQSEhLyXSIiIiIiIiIiIiJy87A70eTs7My6deu488472bx5Mw8++CAXLlwAoG7dunTt2pVZs2aRmppKgwYNWLVq1SXPhhEpSxs2bCA2NhbIPXOpMM899xyVK1cGYMmSJYXWeeONNwq9//LLL+Pu7k5WVharVq26/IAvwWKxsHz5cgCGDBliS5rlVa1aNYYMGQLAsmXLrnhMlzJ58mRMJpPtql69+rUOSURERERERERERETKkN2JJoCaNWuyb98+xo8fT40aNbBYLPmuKlWqEBYWxvbt2wv9pbjIlbR3714Aqlevzp133lloHUdHRzp27Jivfl7Vq1fn9ttvL7Stt7c3TZs2LbJtWTty5Igtcda5c+ci63Xp0gWACxcucOTIkSseV3FGjx6N2Wy2XcePH7+m8YiIiIiIiIiIiIhI2XK63A48PDwYO3YsY8eO5dSpU5w6dYrs7GwqVapEzZo1yyJGEbucPXsWgKpVqxZbr1q1avnq53WpttbywtqWtbxjFBeXdT7WNrfddtsVjas4rq6uuLq6XrPxRUREREREREREROTKuuxEU15VqlShSpUqZdmliIiIiIiIiIiIiIiIXKcua+s8ketZxYoVAThx4kSx9azl1vp5nTx5sti21vLC2pa1vGMUN6e8ZXnbODn9X145LS2t0LZms/lyQhQRERERERERERGRW8xlJ5osFgurVq2id+/e3HbbbZQrV45y5cpx22230bt3b1atWkVOTk5ZxCpSKs2aNQNyEy9//fVXoXWys7PZvHkzAM2bNy9Qfvz4cf75559C2yYmJrJv3758Y1k5OOR+tCwWi33BF+K2227Dz88PgE2bNhVZb+PGjQD4+/vn2zbP19fX9nVRZyXt2rWryH6tc4KynZeIiIiIiIiIiIiI3LguK9F07NgxWrduTZ8+fYiIiCA6OprU1FRSU1OJjo4mIiKCPn360KpVK6Kjo8sqZpES6dKlC/7+/gCEhYUVWufjjz/m1KlTAPTr16/QOm+++Wah9999911SU1NxcnIiJCQkX5m3tzcA8fHxdkReOMMw6Nu3L5Abd0xMTIE6p06d4uOPPwYKzufOO+/E3d0dgFWrVhVom5OTw+TJk4sc3zonKNt5iYiIiIiIiIiIiMiNy+5Ek9lspkOHDuzZsweLxULr1q0ZM2YMs2fPZvbs2YwZM4Y2bdpgsVjYu3cvwcHB2pZLrip3d3dbgmnp0qUMGTKEM2fOAJCSksLMmTMZPnw4AH379qVp06YF+jCZTCxYsIBhw4Zx/vx5IHcl06RJk5gwYQIAzz//fIGzyerXrw/A1q1b+eOPP8psTq+99ho+Pj7ExsbSuXNntm/fbiv78ccf6dy5M/Hx8fj5+TFq1Kh8bZ2dnW0JsUmTJrF8+XIyMjIA+PPPP3nooYc4ePBgkWPfeeeduLi4APDZZ59pVZOIiIiIiIiIiIiIYFjs/G3xK6+8wjvvvIOfnx/h4eF06tSp0HqbN2+md+/exMXF8dJLLzF16tTLCliktEaOHMl7770H5K4K8vHxITExkaysLACCg4P56quv8PLysrUJCwtj/PjxdOjQgZYtWzJt2jRb24SEBLKzswHo3Lkza9euxc3NLd+YcXFx1KlTh3PnzgFQvnx5ypUrB8CyZcto1aqV3fPZsmULDz74oC1xa+03OTkZAB8fH9asWUP79u0LtD1x4gQtW7a0reJydnbG3d2dhIQEvLy8WLt2LUFBQUDuZ9f6tdVTTz3F3LlzAfDw8KB8+fIYhkGvXr145513Lhl7QkICJpMJs9mcb4WUiIiIiIiIiIiIiFw/SvO7XLtXNH355ZcYhsGcOXOKTDJB7i/x58yZYzvLSeRqmz59OpGRkYSEhBAQEEBSUhJeXl4EBwfz+eefs2HDhnxJpotNnTqVZcuW0a5dOywWCy4uLjRu3JgZM2bw3XffFUgyQe55SD/88AOPPPIIVatWxWw2Ex0dTXR0NGlpaZc1nw4dOvD777/z4osvUq9ePXJycrBYLNSrV4+XXnqJ33//vdAkE0C1atXYtWsXTz31FFWrVgXA09OTgQMH8tNPP9GhQ4dix541axZhYWE0aNAAyN0+Mzo62rbaS0RERERERERERERuLXavaLKe9ZKcnIyDQ/H5quzsbDw9PQFITU21ZziRqyrviqaoqKhrHc5NQyuaRERERERERERERK5/pfldrpO9g/j6+pKamnrJJBOAo6Mjbm5utuSUiIiIiIiIiIiIiIiI3Pjs3jqvTZs2JCQk8Ndff12y7l9//YXZbKZdu3b2DiciIiIiIiIiIiIiIiLXGbtXNI0aNYqvv/6a5557jnXr1uHq6lpovYyMDJ577jmcnZ0ZNWqU3YGKiIhcTYGj1l3rEK64o1O6X+sQRKQESvLnkT7PItefG+FnCf3ZISIicn0o7OcG/T0tNxK7VzQ1a9aM5cuXs2/fPho3bsy8efM4evQomZmZZGZmcvToUebNm0eTJk346aefWLlyJffcc09Zxi5yQwoPD6dSpUqluoYNG3atwxYRERERERERERERKcDuFU2Ojo62rxMSEnjqqaeKrd+zZ89C7xuGQVZWlr1hiFwRYWFhhIWFXZG+U1NTOXPmTKnamM3mKxKLiIiIiIiIiIiIiMjlsDvRZLFYyjIOkVtGaGgooaGh1zoMEREREREREREREZHLZneiafPmzWUZxw0lMDCQ6Oho5s2bd1UTBtnZ2cyYMYNFixbx119/kZKSAsCXX35Z5IqxG1VYWBjjx4+nQ4cOREVFXfX2N4ugoCC2bNnCuHHjrtgKLRERERERERERERG5ddmdaOrQoUNZxnHTsP4yPzQ0lMDAwDLte/jw4Xz44YcAuLi4EBAQAICbm1uZjiMiIiIiIiIiIiIiIlISdieabmW1a9fGzc0Nk8lUoGz8+PFA7kqSskw0JSYm8vHHHwMwbdo0XnrpJQzDKLP+rzfly5enTp061KhR41qHIiIiIiIiIiIiIiIiRbA70fTEE0/wzDPP0LJly7KM54awadOmqz7mH3/8QWZmJgDPPvvsTZ1kAhg6dChDhw691mGIiIiIiIiIiIiIiEgxHOxtOH/+fNq0aUOjRo346KOPSEhIKMu45CLW85gAPD09r2EkIiIiIiIiIiIiIiIiuexONLVt2xaLxcIvv/zCCy+8QJUqVXjyySfZtWtXWcYHQIMGDTAMw3Y+UV47duzAMAwMw6BXr14FyjMzM/Hy8sIwjHwrkXbu3Mmrr75K+/btqVmzJm5ubvj4+NCqVSumTp1KUlJSkfEEBgZiGAbz58+33QsNDc23yig4ONgWl2EYdm+jN3/+fAzDICgoyHYvb79571tFRETQo0cPAgICbGc59ejRgy+//LLIcazxh4aGYrFY+Oyzz2jXrh3+/v4F5mqP8PBwunXrRkBAAM7Ozvj4+HDHHXfwwAMPMGvWLNLS0vLVDwsLK3J+Vt9++y1dunTBx8cHT09PGjVqxLRp02wrvy7l6NGjDB8+nLvvvhtPT088PDyoW7cuw4YN49ixY5cz3Xzyvl8SExMZPXo0derUwd3dnfLly9OzZ89Lfm6ys7P5/PPP6dixI+XLl8fV1ZWqVavSu3dvoqKi7I5twYIFODs7YxgGr7/+eoHydevWERISQtWqVXF1dcXX15d7772X2bNnk5GRYfe4IiIiIiIiIiIiInJzsDvRtHXrVn7//XdGjBiBv78/KSkp+VY5zZ49u8xWOQUHBwMQGRlZoCzvvaioKCwWS77y3bt3k5SUhKurK23btrXdb926NdOmTWPbtm2cP38eDw8PzGYzu3btYtSoUbRs2ZKzZ8+WOEaTyURAQIDte19fXwICAmxXhQoVStxXXu7u7gQEBODr62u7l7dfPz8/2/2MjAweeeQRQkJCWLduHefPn8fT05Pz58+zbt06Hn74Yfr3719sIsZisdC7d2+efvppduzYgcViwcHB7rcJkLvN4iOPPMJ3333H2bNncXNzIzMzk8OHD7N27VqGDh1KTExMqfoMCwvjP//5Dxs3bsRsNuPs7Mxvv/3Gq6++SufOnS+ZBFm8eDF169ZlxowZ/Pbbb2RlZQHw559/MnPmTOrXr8/3339v95wLExcXR/PmzZkyZQpHjx7FxcWFCxcu8NVXX9GmTRs+//zzQtuZzWY6d+7Mk08+yebNm4mPj8fDw4PTp0+zcuVKgoODefnll0sdz5QpUwgNDSUnJ4cPP/yQt956y1aWmppK79696dGjBxEREZw6dQo3NzfMZjNbt27lueeeo0OHDsTFxdn9PERERERERERERETkxndZGYQ6derw7rvvcuLECZYsWWJbffLLL78wdOjQMlvlZE00bdmyhZycnHxlmzdvBsDb25sLFy5w4MCBQstbtWqFm5ub7f5///tfwsPDOX36NMnJycTGxpKSkkJERAR16tTht99+Y8iQISWOccaMGfmSJREREcTExNiuPXv2lG7S/1/fvn2JiYkhIiLCdi9vv3nvv/baa4SHh2MYBmPHjuXChQvExsZy/vx5XnvtNQCWLl3K2LFjixwvIiKCr776infeeYe4uDhiY2Mxm83cf//9dsW/bds25s2bh4ODA1OnTuXChQskJiaSnJzM+fPnWb9+PYMGDcLFxaXEfa5Zs4bx48cD0Lt3b44dO0ZcXBwJCQnMmjWLnTt3Mnv27CLbb9iwgYEDB5Kdnc0rr7zCkSNHSE1NJTk5mT/++IPevXuTmJho67usjB8/nrNnz7J8+XKSk5Mxm8389ttvdOjQgZycHJ555hl++umnAu2efPJJoqKicHFxYebMmSQkJBAXF8epU6d44oknAHjnnXeYM2dOieKwWCwMGzaM0aNH4+rqSnh4OM8//3y+OoMHD2blypXUqlWLxYsXYzabMZvNpKSk8NVXX1GrVi127txpG19EREREREREREREbk2Xt1Tl/3NxceGRRx5h06ZN/PXXX7zyyitUrFiRlJQU5s2bd9mrnIKCgnBwcCA2Npb9+/fb7qenp7N9+3Y8PDwYPHgwUHDVk/V7a7LKas2aNfTp04dKlSrZ7rm7u/PQQw+xadMmXF1dWb16dZkmGq6kkydPMmPGDABGjRrFhAkT8PHxAXJXV7311luMHDkSgOnTp3P69OlC+0lKSmL69Om8+OKLeHt7A7lnQlWuXNmuuLZv3w5A586deeWVV/KtwPL39+e+++5j/vz5VKlSpcR9jh49GoAOHTqwbNkyqlevDuS+fs899xwzZ84kPj6+0LY5OTk8//zz5OTkMGvWLKZOnWrb2s4wDOrUqcPy5ct54IEHSEhIYPr06XbNuzBms5kVK1bQu3dvnJycAKhXrx7ffvstd9xxB1lZWQWSgLt27WLVqlUAfPDBB7zwwgt4eHgAUKlSJebOnUtISAgAY8eOLbAF4cWsq95mzpyJyWTiu+++K7Dl5NatW/niiy+oWLEiUVFR9O/f3/ZecHNz44EHHmDLli2UK1eO1atX5/tMXiw9PZ2EhIR8l4iIiIiIiIiIiIjcPMok0ZRX7dq1mTJlCsePH2fVqlW0bNkSi8XCoUOHbKucBg8ezO+//17iPn19fWnUqBGQP5G0c+dOUlNTadu2LV27di1Qnp6ezo4dO4CCiabiVK1alUaNGmGxWGyJkuvdqlWryMrKws3NjVGjRhVaZ8yYMbi6upKZmcnKlSsLrePr68szzzxTZnFZk13nzp0jOzv7svs7ePAgv/32G5A7n8K29Xv66aepWrVqoe1/+OEH/v77b8qXL89TTz1V5DgDBw4EYP369Zcds1Xbtm3p1KlTgfvu7u62re++++47zGazrSw8PByAatWqFRnvm2++CcD58+fZsGFDkeMnJCTQtWtXli9fTuXKlfnhhx8KPQNr7ty5ADz66KO2JN7FqlWrZvtMFfeMJk+ejMlksl1F9SciIiIiIiIiIiIiN6YyTzRZbd26leXLl7N//34Mw7CdnZSSksLcuXNp2LAhw4cPL7AVXlE6duwI5E8kWb/u2LEjbdq0wdXVla1bt9oSGtu3byctLQ13d3datWqVr7+cnByWLFnCAw88QI0aNXB3d7etajEMg927dwNw4sSJy3sQV8nevXsBaN68uW31ycV8fX1p1qxZvvoXa968eam2sbuUTp064ebmxs8//0z79u2ZO3cuR44csbs/a9xOTk60b9++0DoODg6FJlAAfvzxRyB3dVGVKlWoVKlSodfTTz8NQHR0tN2xXsz6Hi6uLCcnJ9/2edb5BgcHF3lWVr169WyJtaJe19OnT9OhQwc2b97MnXfeyfbt22nYsGGhda3PaO7cuUU+n0qVKrFx40ag+Gc0evRo27Z7ZrOZ48ePF1lXRERERERERERERG48TmXZ2blz55g3bx6fffYZ//zzjy251LRpU5599ll69erFhg0b+OCDD/jhhx/44IMPqFChAq+//vol+w4ODubdd99l69atZGVl4eTkZDt/qWPHjrZk0pYtW9izZw+tWrWylbdp0yZf8iQlJYUePXrYyiF3+z8/Pz+cnZ0BiI2NJTMzk+Tk5DJ7PlfS2bNnAYpcyWNVrVq1fPUvVrFixTKNq3bt2nz22WcMGTKEHTt22FaYVahQgeDgYPr3788DDzyAYRgl6s8ad/ny5XF1dS2ynnWeFzt16hQAmZmZnDlz5pLjpaamliiukijutclblve1Kc3revLkySJf108++QTI3fpu48aNxa4ssj6jkm51l5KSUmSZq6trsa+TiIiIiIiIiIiIiNzYymRF04YNG+jduzfVq1dn9OjRHD58GHd3d5588kn27NnDnj17eOKJJ/D29iYkJISoqCjmzJmDxWJh/vz5JRrj3nvvxcnJiaSkJHbv3k1KSgq7du3CZDLRtGlToOCqp6LOZ3rrrbfYvHkz7u7uvPfee0RHR5OWlsaFCxeIiYkhJiaGli1bAtiSZbcKR0fHMu/z0UcfJTo6mjlz5tC3b1+qV6/OuXPnWL58OT179qRDhw5X7ewe62o365aOJbluBj169MBkMpGWlsbjjz9ebHLI+oxmz55doudT0s+wiIiIiIiIiIiIiNx87E40xcTEMGnSJGrXrk3Xrl1ZtWoVGRkZ1KtXj5kzZ3Lq1Ck+/fRTWxLoYoMHD8bHx6fEW5N5eXnZ+oqMjGTbtm1kZGRw77332pIj1oRSZGQkycnJtu3vLt6ybNmyZQC88cYbDB8+nBo1ahRYURMTE1PCJ3F9sK5EutRWf9bysl65dCl+fn4888wzLFu2jGPHjnH48GFGjRqFYRhs3bqVsLCwEvVjjfv8+fNkZGQUWe/kyZOF3q9UqRJQtlvilVRRMV1clve1KavXtWnTpmzcuBFfX182bdpE9+7di1ytdy2fkYiIiIiIiIiIiIjcWOxONNWoUYOxY8dy5MgRnJ2d6devH1u2bOHQoUMMHTq0yHOC8vL29ratniiJvImkvNvmWbVs2RIPDw+2b9/Opk2byMzMxNPTk+bNm+frx3pOTJMmTQod5+jRoxw+fLjEceVlTVhd7ZUwec9eMpvNhdaJj4/Pd5bTtVS7dm0mT55M//79gdxVcSVhnWdWVhZbt24ttE5OTg5RUVGFlrVt2xbITSQWdZ7RlZJ3q8aiyhwcHPK9L63z3bx5c5Hnmf3xxx+2RFVxr2uzZs3YtGkTfn5+REVF0a1bN5KSkgrUsz6jr7/++hIzEhEREREREREREZFbnd2JpqysLAIDA5kyZQonTpxg8eLFtG/fvlR9hIeH27a3KwlrUmnHjh18++23+e5B7jlLbdu2JTU1lUmTJgHQrl07nJzyH0VlMpkAOHDgQKHjjBo1quSTuIg1wRYfH293H/YICQnBycmJtLQ0pk6dWmidSZMmkZ6ejrOzMyEhIVclrvT09GLL3d3dgdwES0k0bNiQevXqAblbIBaWfPn888+LXAEUHBzM7bffDsCIESOKXRUFuWd1lZVt27YVmgBLS0vj3XffBeD+++/Hx8fHVvbII48AuSuePvvss0L7feONN4Dcc6s6d+5cbAxNmjQhMjKS8uXLs3XrVrp27UpiYmK+OoMHDwbg0KFDzJ49u9j+kpOTL/kMRUREREREREREROTmZXei6dtvv+Wff/7hlVdeoXz58nb10bJlSzp06FDi+m3btsXFxYW0tDQOHDhAhQoVaNCgQb461sTTrl27gILnMwF07doVgIkTJxIREUFWVhYAR44coX///ixfvhxfX1+75lS/fn0AFi9eXOw5OGWtatWqDBs2DIApU6Ywbtw4W7IrPj6esWPH8vbbbwMwcuRIKleufFXiGjp0KH369GHVqlWcPXvWdj8pKYk5c+awcOFCALp3717iPt966y0gd5VP//79bUmltLQ05syZw9ChQ/Mla/JycnJizpw5ODk5sW3bNu69917b6jerf//9lzlz5tC8eXM++uij0k65SCaTiZCQEFauXGl7z/3xxx90796dP/74A0dHRyZMmJCvTYsWLWxJwRdeeIEPP/zQ9r6KiYnh6aefZsWKFQC8+eabuLm5XTKORo0aERkZSYUKFfjxxx+5//77852R1aFDBx5//HEAnn/+eUaMGMG///5rK09PT2fnzp288sor1KxZM9/rKiIiIiIiIiIiIiK3FrsTTfXq1Sv2zJmLnTp1imPHjtk7HAAeHh60bNnS9n1QUFCBs5UuTiwVlmiaOHEiAQEBJCYmEhISgru7Oz4+PtSqVYulS5fy1ltv0bBhQ7tiHDJkCACrVq3Cx8eHatWqERgYSLt27ezqrzQmTZpEnz59sFgsTJgwAX9/f/z8/PD392fixIkA9OvXjzfffPOKx2KVmZnJihUr6NWrFwEBAXh5eeHr64uXlxfPPvssGRkZtGvXjtdff73EfT700EO2+uHh4VSvXh0/Pz9bny1atODZZ58tsn2nTp1YsWIFXl5e7Nq1i86dO1OuXDnKly+Pm5sbtWvX5tlnn2Xv3r0F3l+XY9y4cVSoUIHevXvj6emJj48P9erVIzIyEsMwmD17tm2rvLzmzp1Lhw4dyMjI4IUXXsBkMuHn50eVKlVsq5xeeukl23uvJBo0aEBUVBQBAQHs2LGDLl265FuFN2fOHJ566iksFgvvv/8+tWvXxsvLCz8/Pzw8PGjdujVvv/02Fy5cKNNnJCIiIiIiIiIiIiI3FrsTTYGBgbRo0aLE9du2bUutWrXsHc4mb+Io77Z5Vs2aNbNtX+ft7c0999xToE7NmjXZu3cvTz75JFWqVAHAzc2NHj16sH79ekaPHm13fAMGDGDRokW0a9cODw8PTp8+TXR0dJFbuZUlFxcXwsPDWblyJd26dcPf35/ExET8/f3p1q0bERERLFmyBGdn5ysei9XYsWOZOXMmDz30EHXr1sXJyYmkpCQqVqxIly5d+Pzzz4mKiqJcuXKl6nfixIl8/fXXdOzYEW9vb9LT06lXrx5Tpkxh06ZNuLi4FNu+Z8+eHD58mHHjxtGiRQs8PT2Jj4/H1dWVRo0a8dRTT/Hll1/y8ssvX8708/H19WX37t2MGjWKGjVqkJ6ejp+fH//973/58ccfefrppwttZzKZ2LRpE3PnziUoKAgvLy+SkpKoVKkSISEhbN682bZarTTuuusuoqKiqFy5Mrt376Zz587ExcUBue+lTz/9lO3btxMaGkrt2rXJzs62vXZBQUG88cYbHDx4kKpVq17WcxERERERERERERGRG5dhsVgs9jR0cHCgUqVKnDp1qkT1b7vtNo4dO0Z2drY9w4ncsAIDA4mOjmbevHmEhoZe63CuqYSEBEwmE2az2ZYQFrleBY5ad61DuOKOTin5tqUicu2U5M8jfZ5Frj83ws8S+rNDRETk+lDYzw36e1qutdL8LtfuFU2llZaWhpOT09UaTkRERERERERERERERK6wq5L5OXXqFOfOnaNixYpXYzgREZHLpn85JCLXC/15JHJj0mdXRERESko/N8iNrsSJph9++IGoqKh895KSkpgwYUKRbSwWC/Hx8XzzzTdYLBZatmxpd6AiIiIiIiIiIiIiIiJyfSlxomnz5s2MHz8ewzBs95KTkxk/fvwl21osFtzc3Bg9erR9Ud4kHn74YbZv316qNhEREbRp0+YKRVRyN3LsZaF58+YcP368VG327NlD9erVr1BEIiIiIiIiIiIiIiLXXokTTYGBgXTo0MH2/ZYtW3B2dqZ169ZFtnFwcMDb25v69eszaNAgbr/99suL9gYXGxvLmTNnStUmIyPjCkVTOjdy7GXh3LlzpZ5/dnY2AEePHr0CEYmIiIiIiIiIiIiIXHuGxWKx2NPQwcGBSpUqcerUqbKOSUSuc9aVjZs3byYoKKjE7RISEjCZTJjNZry9va9QdCIiIiIiIiIiIiJyOUrzu9wSr2i62Lx583B3d7e3udyEVq9ezf79+2ncuDE9e/a81uGIiIiIiIiIiIiIiMgVZneiadCgQWUZh9wEVq9ezYIFCxg0aJASTSIiIiIiIiIiIiIitwCHax2AiIiIiIiIiIiIiIiI3JiUaBIRERERERERERERERG7KNEkxQoPD6dbt24EBATg7OyMj48Pd9xxBw888ACzZs0iLS2NqKgoDMNgwYIFACxYsADDMPJdUVFRBfqOiIigR48eBAQE4OLiQkBAAD169ODLL78sMp7Q0FAMwyA0NBSLxcKcOXNo0aIF3t7eeHt7065dO5YsWVKmz+DEiROMGDGCu+++m3LlyuHq6kqVKlVo2rQpI0aMYM+ePYW2S0tL4/3336dNmzb4+vri5uZGzZo1GThwIPv37y9yvOKemVVQUBCGYRAWFlZs+8TERMaMGUPdunVxd3fH39+fHj16sGvXrmLnHBcXx8svv0zt2rVxc3OjcuXK9O7dm3379hXbTkRERERERERERERuLXaf0SQ3vyeeeIJ58+bZvvf09CQzM5PDhw9z+PBh1q5dS/fu3W1JIrPZTFpaGm5ubphMpnx9ubi42L7OyMhg4MCBhIeHA+Dg4IDJZOL8+fOsW7eOdevW0a9fPxYsWICzs3OR8fXr14/w8HBb+/j4eH788Ud+/PFHNm7cyNy5czEM47KewYEDBwgODiYuLg4AR0dHvL29iYmJ4fTp0/z000/ExcUxf/78fO1OnjxJ165dOXToEADOzs54eHhw7NgxFi1axOLFi3n//fd54YUXLiu+4pw+fZp77rmHw4cP4+bmhoODA7Gxsaxbt44NGzawdu1a7rvvvgLtjh49SlBQENHR0UDua5eSksLKlStZs2YNK1asuGIxi4iIiIiIiIiIiMiNRSuapFDbtm1j3rx5ODg4MHXqVC5cuEBiYiLJycmcP3+e9evXM2jQIFxcXGjTpg0xMTH07dsXgL59+xITE5PvatOmja3v1157jfDwcAzDYOzYsVy4cIHY2FjOnz/Pa6+9BsDSpUsZO3ZskfGtXr2a5cuX8+abbxIXF0dsbCxnzpxh6NChAMybN48PPvjgsp/Diy++SFxcHPfccw87duwgMzOT2NhY0tLS+Ouvv3jnnXe4++6787XJzs4mJCSEQ4cOYTKZ+OKLL0hKSiI+Pp5//vmHHj16kJOTw7Bhw/j2228vO8aiPP/887i4uBAZGUlycjJJSUns3r2bOnXqkJGRweDBg8nJySkQe+/evYmOjsbX15fly5eTnJyM2Wzm119/pWXLlgwaNOiKxSwiIiIiIiIiIiIiNxYlmqRQ27dvB6Bz58688sor+Pn52cr8/f257777mD9/PlWqVClVvydPnmTGjBkAjBo1igkTJuDj4wOAr68vb731FiNHjgRg+vTpnD59utB+zGYzY8aMYcyYMXh7ewNQoUIFPvjgAwYMGADA+PHjSUtLK1V8F7M+hw8//JBWrVrZVki5uLhwxx138OKLL/Lyyy/na7Ny5Urb1nTLly/n0Ucfta3oqlWrFl9++SUtW7bEYrHwyiuvXFZ8xXFycmLz5s0EBwfj4OCAYRg0b97ctiIpOjqaHTt25GuzatUq9u7dC8CKFSvo3bs3Tk65Cx/vuusuvvvuO/z9/UscQ3p6OgkJCfkuEREREREREREREbl5KNEkhbImf86dO0d2dnaZ9btq1SqysrJwc3Nj1KhRhdYZM2YMrq6uZGZmsnLlykLruLu789JLLxVa9sYbbwAQGxvLhg0bLite63MoKuFVGOuWgK1bty50azonJyfGjRsHwKFDh/jll18uK8aiDB48mIoVKxa436BBA2677TYADh48mK9s2bJlALRt25ZOnToVaOvh4VGq5NjkyZMxmUy2q3r16qWZgoiIiIiIiIiIiIhc55RokkJ16tQJNzc3fv75Z9q3b8/cuXM5cuTIZfdrXS3TvHlz20qki/n6+tKsWbN89S/WrFmzItvfcccdVKtWrdj2JdWjRw8ABg0axIsvvsiWLVtISUkpto11zM6dOxdZJzg4GEdHxzKJsSgtW7Ysssy6Ei02NjbffWssHTt2LLJtcWUXGz16NGaz2XYdP368xG1FRERERERERERE5PpXJommgwcP8vbbbzN06FCefPLJfGWZmZmcOnWqVCtC5NqrXbs2n332GZ6enuzYsYOnnnqKWrVqUbFiRfr27ctXX32FxWIpdb9nz54FoGrVqsXWsyaKrPUvdqn21vKi2pfUtGnTCA4OJikpienTpxMUFIS3tzfNmjVj3LhxnDx5skCbkszRzc2N8uXLl0mMRfHy8iqyzLodXmZmZr77JYnd+tqUhKurK97e3vkuEREREREREREREbl5XFaiyWw2ExISQpMmTRg1ahQfffQR8+fPz1cnMzOTRo0aUb16dX799dfLGU6uskcffZTo6GjmzJlD3759qV69OufOnWP58uX07NmTDh063PRn7vj4+BAZGcnWrVt55ZVXaNu2LU5OTuzbt48JEyZwxx13sHTp0msdpoiIiIiIiIiIiIjINWF3oikzM5Nu3bqxevVqPDw86N69O25ubgXqeXh48Pjjj5OTk1PkeTty/fLz8+OZZ55h2bJlHDt2jMOHDzNq1CgMw2Dr1q2EhYWVqj/rmUEnTpwotp61vLAzhoBCVxIVVl5U+9Jq164dU6dOZdu2bcTHx/PVV1/RoEEDUlNTeeKJJzhz5oytbknmmJaWxoULFwqN0bqlXlpaWpHtzWaz3XMpjjWW4p7vpZ69iIiIiIiIiIiIiNw67E40zZ07l507d1KrVi3+/PNP1qxZg8lkKrRuSEgIAD/88IO9w8l1onbt2kyePJn+/fsDsGHDBluZg0Pu26m4LfXynr1UVLIkPj4+31lOhdm7dy9JSUmFlh0+fNiW5LGOV5bc3Nx44IEHiIiIAHITQtu2bbOVW8fctGlTkX1ERUWRlZUFFJyjr68vQJHnGSUmJvL777/bP4FiWGPfvHlzkXUiIyOvyNgiIiIiIiIiIiIicuOxO9G0dOlSDMPgvffeo0qVKsXWbdKkCQ4ODvzxxx/2DidXWXp6erHl7u7uwP8llwDb+Tvx8fFFtgsJCcHJyYm0tDSmTp1aaJ1JkyaRnp6Os7OzLUl5sdTUVN55551CyyZOnAjkrsbq0qVLsfMoTlZWFjk5OUWWW58B5H8OjzzyCAA7duzg+++/L7TfCRMmAFC/fn3q16+fr7xRo0YArFq1qtBx33nnnUu+Pvbq27cvANu2bSMqKqpAeWpqKm+//fYVGVtEREREREREREREbjx2J5p++eUXDMPgvvvuu2RdFxcXTCaTbaswuf4NHTqUPn36sGrVKs6ePWu7n5SUxJw5c1i4cCEA3bt3t5VZEyZbt24tMqlYtWpVhg0bBsCUKVMYN26cLTEVHx/P2LFjbYmMkSNHUrly5UL7MZlMvPnmm0yePJnExEQAzp8/z7Bhw1iwYAEAY8eOLXQ7x5I6ceIEd9xxBxMnTuTnn3+2rUACOHjwIAMGDACgXLlydOjQwVYWEhJCy5YtAejTpw9LliwhMzMTgCNHjhASEsKOHTsAmDZtWoFx+/XrB8D69esZN26c7Rys8+fP89prrzFx4kR8fHzsnldxQkJCuOeee2xfr1q1iuzsbAB+//13unXrxrlz567I2CIiIiIiIiIiIiJy4zEsxe1zVgw3Nzfc3d2Ji4uz3atcuTJnz561/WI6L29vb3Jycorc7kyuL6GhobaEDYCnpydOTk75Viu1a9eO7777jnLlygEQFxdHnTp1bImI8uXL28qWLVtGq1atAMjIyOCxxx5j+fLlQO5qIJPJhNlstq0g6tevHwsWLMDZ2bnQuAYNGkRaWhrh4eE4Ojri7e1NfHy8bdu+gQMHMm/evHwrjUrr6NGj3HbbbbbvHR0dMZlMJCUlkZGRAeQmURcvXkyvXr3ytT158iT3338/v/76q62eh4eH7fk5ODjw3nvv8b///a/AuNnZ2XTp0sW2fZ1hGPj4+NjaTps2ja+//potW7Ywbty4AudkGYYB5G5/FxQUVOjcgoKCimz/77//EhQUZNu6z9XVFTc3N8xmMy4uLqxYsYIHH3zwkmMUJiEhwfZaW1fAiYiIiIiIiIiIiMj1pTS/y7X7t/Dly5cnISGhRImjI0eOkJSUdMkt9uT6MXbsWGbOnMlDDz1E3bp1cXJyIikpiYoVK9KlSxc+//xzoqKibIkkyD1b6IcffuCRRx6hatWqmM1moqOjiY6OJi0tzVbPxcWF8PBwVq5cSbdu3fD39ycxMRF/f3+6detGREQES5YsKZBkutjSpUv56KOPaNKkCVlZWZQrV47WrVuzcOFCFixYcFlJJshdfbVmzRpGjBhBq1atqFy5MklJSTg5OXHXXXfx/PPPc+jQoQJJJmvbvXv3Mn36dFq1aoW7uzspKSlUr16dxx57jH379hWaZILchNa6desYP348devWxcXFxbZ6cMOGDbz00kuXNa9LqVWrFvv372fkyJHcdtttWCwW3Nzc6NWrF9u3b+eBBx64ouOLiIiIiIiIiIiIyI3D7hVNISEhrF69miVLltjOdSlqRdPIkSN5//33efzxx5k7d+7lRy23rLwrmubPn3+tw5FS0oomERERERERERERkevfVVnR9MQTT2CxWBg7diynTp0qst7HH3/MjBkzMAyDwYMH2zuciIiIiIiIiIiIiIiIXGec7G3YvXt3QkJCWLVqFc2aNaN///6kpqYC8MknnxAdHc3XX3/NoUOHsFgsPP3007Rs2bLMAhcREREREREREREREZFry+5EE8CiRYtwc3Nj8eLFvPfee7b7zz77LADWXfmeeOIJZs2adTlDiYgAEDhqHQBHp3S/Iv1e6b7tURbxXKnnVtQ4ZTFW4Kh1ZdJHWcRyK7nc96vc2srqM3ullNWfBfbEeS3+HLqVPs9l+Xxv9ud2NT+nV/t9X1xs+pmi5G72z4D8n7L8/4yr5Xr/WeNmdiX//NPrIjeja/kzgz5T14/r5e/aq/F+vKxEk5ubG4sWLeKZZ57hs88+Y/v27Zw6dYrs7GwqVapE27ZtGTx4MPfee29ZxStSatu3b+fhhx8uVZs2bdoQERFxhSISEREREREREREREbk5XFaiyapdu3a0a9euLLoSKdb8+fOZP39+qdpkZGRw5syZUrWJjY0tVX0RERERERERERERkVtRmSSaRK5nQUFBtm0cRURERERERERERESk7DjY3dDBgapVq5a4/m233YaTk/JaN7rAwEAMwyj1qqLLlZ2dzfTp02nSpAnlypXDMAwMw2D16tVXNY4bSWhoKIZhEBoaeq1DEREREREREREREZGb1GVlfkq7SkSrSm5uYWFhQG6CIzAwsEz7Hj58OB9++CEALi4uBAQEALnnhImIiIiIiIiIiIiIyLVx1ZYYZWRk4OBg9wIquU7Url0bNzc3TCZTgbLx48cDuVvVlWWiKTExkY8//hiAadOm8dJLL2EYRpn1LyIiIiIiIiIiIiIi9rkqiab4+HjOnj2Lr6/v1RhOrqBNmzZd9TH/+OMPMjMzAXj22WeVZBIRERERERERERERuU6UONF08OBB9u/fn+9eamoqCxcuLLKNxWIhPj6elStXkpOTQ5MmTewOVG5dKSkptq89PT2vYSQiIiIiIiIiIiIiIpJXifey+/LLL3n88cdtF0BCQkK+exdfTzzxBCNHjuTHH38EYOTIkVdmFjexBg0aYBiG7XyivHbs2IFhGBiGQa9evQqUZ2Zm4uXlhWEY+VYi7dy5k1dffZX27dtTs2ZN3Nzc8PHxoVWrVkydOpWkpKQi4wkMDMQwDObPn2+7Fxoamm+VUXBwsC0uwzDs3kZv/vz5GIZBUFCQ7V7efvPet4qIiKBHjx4EBATYznLq0aMHX375ZZHjWOMPDQ3FYrHw2Wef0a5dO/z9/QvMtbSCgoIwDIOwsDAyMjKYMmUKDRs2pFy5cvj6+tKlSxe+/fbbS/Zjz7wu5fvvv7e9P0JDQ8nKyspX/uOPPzJgwADbe8RkMtGiRYtLvkdERERERERERERE5NZR4hVNPj4+1KhRw/Z9dHQ0Dg4OVKtWrcg2Dg4OeHt7U79+fQYPHkz79u0vL9pbUHBwMIcOHSIyMpKhQ4fmK4uMjLR9HRUVhcViyZfw2b17N0lJSbi6utK2bVvb/datW9u+9vDwwMPDg7i4OHbt2sWuXbtYuHAhmzdvpmLFiiWK0WQyERAQwJkzZwDw9fXFxcXFVl6hQoXSTfr/c3d3JyAggIyMDOLi4gAICAiwlfv5+dm+zsjIYODAgYSHhwO57z2TycT58+dZt24d69ato1+/fixYsABnZ+dCx7NYLPTu3ZtVq1bZ2pfVuWIZGRl07tyZrVu34uTkhKenJ/Hx8WzcuJGNGzcybtw4wsLCCm13ufMqzBdffMETTzxBZmYmr776KlOmTLGV5eTkMGLECGbOnGm75+npSXJyMnv27GHPnj3MmzeP9evXU7NmTfsfioiIiIiIiIiIiIjc8Er8W/Rhw4Zx5MgR2wW5CYS89y6+/vnnH37++WcWLVqkJJOdgoODAdiyZQs5OTn5yjZv3gyAt7c3Fy5c4MCBA4WWt2rVCjc3N9v9//73v4SHh3P69GmSk5OJjY0lJSWFiIgI6tSpw2+//caQIUNKHOOMGTOIiYmxfR8REUFMTIzt2rNnT+km/f/17duXmJgYIiIibPfy9pv3/muvvUZ4eDiGYTB27FguXLhAbGws58+f57XXXgNg6dKljB07tsjxIiIi+Oqrr3jnnXeIi4sjNjYWs9nM/fffb1f8eX300Ufs3r2bOXPmkJiYSFxcHMeOHbOtRBs/fjxr1qwp0K4s5nWxd955h4EDB5KVlcX777+fL8kEMG7cOGbOnEnFihWZNWsWFy5cIDExkdTUVDZv3kyTJk34888/efjhhwu8J0VERERERERERETk1mL3co1x48bx4osvlmUsUoigoCAcHByIjY3Nd0ZWeno627dvx8PDg8GDBwP5Vzjl/d6arLJas2YNffr0oVKlSrZ77u7uPPTQQ2zatAlXV1dWr17NsWPHrtCsytbJkyeZMWMGAKNGjWLChAn4+PgAuaur3nrrLdu2jdOnT+f06dOF9pOUlMT06dN58cUX8fb2BnJX8lSuXPmyYzSbzXz00Uc888wztqRf9erVCQ8P59577wWwJY7Kel5WFouFkSNH8vLLL+Ps7MzSpUsZNmxYvjpHjx5l8uTJuLu78/333/Pcc8/ZVo45OzsTFBTEli1bqFatGj/99FOhybG80tPTSUhIyHeJiIiIiIiIiIiIyM1DiabrnK+vL40aNQLyJ5J27txJamoqbdu2pWvXrgXK09PT2bFjB1Aw0VScqlWr0qhRIywWC9u3by+LKVxxq1atIisrCzc3N0aNGlVonTFjxuDq6kpmZiYrV64stI6vry/PPPPMFYmxevXqtrPN8nJwcGDMmDEA/Prrr/zyyy+2srKaF+Ruwffoo4/y3nvv4eXlxTfffEPfvn0L1Js/fz7Z2dl07drV9r67mJeXFz179gRg/fr1RY4JMHnyZEwmk+2qXr16sfVFRERERERERERE5MZSNgfQyBXVsWNHIH8iyfp1x44dadOmDa6urmzdupXs7GwAtm/fTlpaGu7u7rRq1Spffzk5OSxZsoQHHniAGjVq4O7ujmEYtmv37t0AnDhx4mpM77Lt3bsXgObNm9tWIl3M19eXZs2a5at/sebNm+c7W6osBQUF5Ts/K6/27dvj5ORUILaymldiYiLdu3dn6dKlBAQEsGXLFjp16lRo3R9//BGA77//nkqVKhV5zZs3D8g9q604o0ePxmw2267jx48XW19EREREREREREREbixOZdHJ9u3b2bZtGydOnCA5ORmLxVJoPcMwmDt3blkMeUsJDg7m3XffZevWrWRlZeHk5GQ7f6ljx462ZNKWLVvYs2cPrVq1spW3adMmX/IkJSWFHj162MoBXFxc8PPzw9nZGYDY2FgyMzNJTk6+irO039mzZ4Hc1VjFqVatWr76F6tYsWLZBpZHcbG5ubnh7+/PmTNn8sVWVvPKe5bV2rVradKkSZF9nTp1CoDk5OQSvf4pKSnFlru6uuLq6nrJfkRERERERERERETkxnRZiaa///6b/v3789NPP+W7b7FYCqzesN5Toqn07r33XpycnEhKSmL37t00btyYXbt2YTKZaNq0KZCbcNqyZQuRkZG0atWqyPOZ3nrrLTZv3oy7uzuTJk3i4Ycfpnr16vler/bt27Nt27YiE4Y3K0dHx2sdwhXRoUMH/v33X44fP85TTz3Fxo0bqVChQqF1rSviXn31VaZMmXI1wxQRERERERERERGRG5DdW+dduHCBjh07sm/fPipWrEjv3r2xWCy4ubkxYMAAOnXqhKenJxaLBX9/fwYNGsTAgQPLMvZbhpeXly2hFBkZybZt28jIyODee++1JUesCaXIyEiSk5Nt299Zt92zWrZsGQBvvPEGw4cPp0aNGgWSgjExMVd0PmXNuhLpUlv9Wcuv5Mqlopw8ebLIsvT0dC5cuADkj62s5hUYGEhUVBQ1a9bk4MGDBAcHF7n6qVKlSsClt8QTEREREREREREREYHLSDS9//77nDx5kpYtW/LPP//YEhgmk4mFCxfy/fffc+rUKV5++WXOnz+Pu7u77VwXKb28iaS82+ZZtWzZEg8PD7Zv386mTZvIzMzE09OT5s2b5+vHekZOUdunHT16lMOHD9sVozVhdbVXQuU9o8hsNhdaJz4+Pt+ZR1fbli1binwu1i0R4f/mkvfrsphXrVq1iIqKIjAwkF9//ZWgoKBCE4pt27YFYOPGjaSlpZVgZiIiIiIiIiIiIiJyK7M70bRu3ToMw2DSpEl4eHgUWqdcuXJMnTqVYcOG8fHHH7NixQq7A73VWZNKO3bs4Ntvv813D3LPWWrbti2pqalMmjQJgHbt2uHklH93RJPJBMCBAwcKHWfUqFF2x+jt7Q3kJj+uppCQEJycnEhLS2Pq1KmF1pk0aRLp6ek4OzsTEhJyVeMDOHbsGAsWLChwPycnx/Z63XXXXTRo0MBWVtbzCgwMZMuWLdSqVYvff/+doKAgTp8+na/OE088gZOTE+fPn2fcuHHF9peRkUFSUlKxdURERERERERERETk5mZ3oumff/7BMAzat2+f735GRkaButbkxSeffGLvcLe8tm3b4uLiQlpaGgcOHKBChQr5khLwf4mnXbt2AQXPZwLo2rUrABMnTiQiIsK2kubIkSP079+f5cuX4+vra1eM9evXB2Dx4sWkpKTY1Yc9qlatyrBhwwCYMmUK48aNsyW74uPjGTt2LG+//TYAI0eOpHLlylctNiuTycSzzz7Lp59+alspdPz4cfr162dboTZx4sR8ba7EvGrUqMGWLVu4/fbb+fPPP+nQoUO+bf1q167N2LFjAZg2bRoDBw7k0KFDtvKsrCz279/PhAkTuP3229m/f799D0REREREREREREREbgp2J5oyMzPx9fXNt2LGw8ODxMTEAnUDAgIwmUwcPHjQ3uFueR4eHrRs2dL2fVBQUIGzlS5OLBWWaJo4cSIBAQEkJiYSEhKCu7s7Pj4+1KpVi6VLl/LWW2/RsGFDu2IcMmQIAKtWrcLHx4dq1aoRGBhIu3bt7OqvNCZNmkSfPn2wWCxMmDABf39//Pz88Pf3tyVw+vXrx5tvvnnFYynMc889R7NmzRg8eDDe3t74+flRo0YNli9fDsCYMWN46KGHCrS7EvOqVq0aW7ZsoU6dOvz999906NDBtqUiwNixYxk7diyGYbBo0SIaNGiAh4cH5cuXx83NjSZNmjBu3DiOHz9e4D0oIiIiIiIiIiIiIrcWuxNNVapUKbBqJSAggKysLP7999989zMzM0lISCjynBkpmbyJo7zb5lk1a9bMtn2dt7c399xzT4E6NWvWZO/evTz55JNUqVIFADc3N3r06MH69esZPXq03fENGDCARYsW0a5dOzw8PDh9+jTR0dGcOHHC7j5LysXFhfDwcFauXEm3bt3w9/cnMTERf39/unXrRkREBEuWLMHZ2fmKx1JUfJs2bWLSpEnUqVOH9PR0TCYTnTp1Yt26dUUmiq7UvKpUqUJUVBT16tXjn3/+oUOHDkRHRwO5Z21NmDCBgwcP8txzz1GvXj0cHR0xm834+vrSpk0bXn75ZbZv324700lEREREREREREREbk1Ol65SuJo1a3LkyBFOnDhBtWrVAGjevDlHjx7liy++4I033rDVnT9/Pjk5OVStWvXyI76FjR8/nvHjxxdZbk0GXEq1atX47LPPiiyPiooqsuzo0aPF9j1gwAAGDBhwyRhKIygoCIvFUqK6ISEhpT6Daf78+cyfP9+OyErHxcWF0aNH25XMuxLzqlSpEr/99luR5fXr12fWrFmlGlNEREREREREREREbi12r2iyns2UNynx2GOPYbFYmDhxIs8//zyffvopQ4cOZejQoRiGQc+ePS83XhEREREREREREREREblO2J1o6t27NzVq1GDTpk22e927d+eRRx4hKyuLOXPmMGTIEGbPnk1mZiZ169bNt8pJREREREREREREREREbmyGpaR7kpWQxWLhs88+Izw8nOPHj2MymejatSsvvvgiJpOpLIcSue4FBQWxZcsWxo0bR1hY2LUO55pLSEjAZDJhNptt54mJyLUTOGodAEendL/GkYjI5bJ+nkGfaREpucBR6/RnhoiIyHUq78/4l6K/z+VKKM3vcu0+o6kohmHw9NNP8/TTT5d113IDe/jhh9m+fXup2kRERNCmTZsrFFHJ3cixi4iIiIiIiIiIiIhcSWWeaBIpTGxsLGfOnClVm4yMjCsUTelcTux5zzATEREREREREREREbnZ2J1ocnBwoHLlypw8ebJE9W+77TaOHz9OVlaWvUPKDexGTrjcyLGLiIiIiIiIiIiIiFxJDpfTuLTHO5XxcVAico0cPXoUwzAwDIOjR49e63BERERERERERERE5Bq5rERTaWRkZODgcNWGExERERERERERERERkSvsqmR+4uPjOXv2LL6+vldjOBEREREREREREREREbkKSnxG08GDB9m/f3++e6mpqSxcuLDINhaLhfj4eFauXElOTg5NmjSxO1ARERERERERERERERG5vpQ40fTll18yYcKEfPcSEhJ4/PHHL9nWYrFgGAYjR44sfYQiIiIiIiIiIiIiIiJyXSrx1nk+Pj7UqFHDdgE4ODjku3fxFRgYSMOGDXn00UeJiori/vvvv2ITKUpcXBxz586lT58+NGjQAD8/P9zc3KhZsyb9+/dn586dhbYLCwvDMAyCgoIA2LRpE927d6dChQq4ublRr149xo8fT1paWqHtQ0NDMQyD0NBQAFauXElQUBB+fn54eHjQuHFjZsyYQU5OTrHxR0VF0bt3b6pWrYqrqyvly5enU6dOzJs3j+zs7BKNXZj58+djGAaBgYFXLPbjx4/zyiuv0LhxY0wmE+7u7tSuXZsHH3yQhQsXFvnsfvzxRwYMGEDNmjVxc3PDZDLRokULpk6dSlJSUrFjltTRo0cxDAPDMDh69Cj//PMPgwcP5rbbbsPV1bXAc8nJyWHx4sX85z//ISAgABcXFypUqMB9993H0qVLsVgs+epnZ2fj4+ODYRh8/fXXBcZfunSpbfyXXnqpQPnp06dt5f/880++ODZt2sT//vc/WrVqRbVq1XBxccHf358OHTowZ84cMjMzy2TOJ0+e5JlnnqF69eq4urpSrVo1Hn/8cQ4fPlzCpywiIiIiIiIiIiIiN7sSr2gaNmwYw4YNs33v4OBAhQoVOHLkyBUJrKzMmDGD8ePHA+Do6Ii3tzcAx44d49ixYyxbtoz333+f//3vf0X28fbbb/Pqq68CYDKZyMjI4I8//iAsLIwtW7awYcMGHB0di2w/dOhQZs2ahYODA97e3qSmpnLgwAGGDx/OTz/9xIIFCwptN3LkSN577z0ADMPAZDIRHx9PZGQkkZGRfPHFF6xevRovLy+7nk1J2Bv7okWLGDx4sC2Z5OLigpeXF8eOHePff/9lzZo1NGzYkMaNG9va5OTkMGLECGbOnGm75+npSXJyMnv27GHPnj3MmzeP9evXU7NmzTKb4/bt23nmmWdISkrCw8MDZ2fnfOWxsbE89NBD/PDDD7Z7JpOJ8+fPs2HDBjZs2MCyZctYsWIFLi4uQO577d5772Xt2rVERkbSo0ePfH1GRkYW+vXF92rUqEHt2rVt948dO0bnzp1t33t6euLh4UFsbCw//PADP/zwA0uWLGH9+vW4u7vbPeeffvqJzp07ExcXB4C7uztms5n58+cTERHBp59+WmTfIiIiIiIiIiIiInLrKPGKpouNGzeOF198sSxjuSKqVKnCuHHj2Lt3LykpKcTGxpKamsq///5rS5yNHDmSn3/+udD2Bw4cYNSoUYwaNYqzZ88SFxdHfHw8b7zxBgCbN28uMtkCsGbNGj799FOmT59OXFwccXFxnD9/nqeeegqAhQsXFppo+PDDD21JpsGDB3Pq1Cni4uIwm8289957ODk5ERkZydNPP31Zz6c49sa+bt06Bg0aRFpaGm3btmXr1q2kpqZy/vx5kpOT2bp1K08//bQtKWM1btw4Zs6cScWKFZk1axYXLlwgMTGR1NRUNm/eTJMmTfjzzz95+OGHL7maqjSeeeYZ7r77bvbs2UNycjJJSUl8//33QO7KpIcffpgffviBxo0bs3btWpKTk4mPjycpKYkFCxZQsWJF1qxZY0tGWgUHBwOFJ5I2b94MgLe3NwcOHCA2NrbQcmsfVk5OTjz66KOsWbPG9nzi4+NJTExk3rx5VKlSha1bt/L666/bPefExEQeeugh4uLiqFGjBt9//z3JyckkJiayfft2qlevzjPPPFPSxysiIiIiIiIiIiIiN7GbPtE0ePBgwsLCaNq0qS2xYRgGt912G++//z7PPfcc2dnZzJo1q9D28fHxjB07lkmTJlG+fHkgNzkwfvx4Hn74YSB3G7SixMXF8fHHHzNixAjbaip/f38+/fRTmjZtWmj71NRUxo0bB0C/fv34+OOPqVSpEgDlypVj+PDhTJ8+HYDw8HD27dtn17O5FHtiz8rK4oUXXsBisdCuXTsiIyNp164dDg65bzUXFxfatWvHJ598wl133WVrd/ToUSZPnoy7uzvff/89zz33HH5+fgA4OzsTFBTEli1bqFatGj/99BNr1qwps3n6+/uzceNGmjVrZrt35513ArBkyRK2bNlC3bp1iYqKokePHnh4eAC5r8XAgQP55ptvMAyDjz76iLNnz9r66NixIwAHDx7kwoULtvvHjh3jn3/+oXbt2vTo0YOcnByioqLyxWRNTl2caKpWrRpffPEF//3vf23PB3JXNoWGhvLVV18B8MknnxS5NeGl5jx79myOHTuGi4sL3333HV26dMEwDABat27Nxo0bbd9fSnp6OgkJCfkuEREREREREREREbl52J1oKkpGRgZr1qzh7bffZubMmWzbtq2shyhT3bt3BygyTldX10LP0AF48MEHgdxEQlGqV6/OoEGDCi174IEHCm2/YcMG2wqXsLCwQts+99xzVK5cGchNhlwJ9sS+efNm23aK7733XoFVS0WZP38+2dnZdO3alUaNGhVax8vLi549ewKwfv36EvVbEkOHDsXT07PQsrlz5wLw7LPPYjKZCq3TtGlT7r77bjIyMmwrkQAaNmyIv78/Fosl333r1x07drQlo/KueoqOjrY9w4sTTZfSrFkzKlasSHJyMvv37y+yXnFzXrZsGQC9e/emXr16BcorVarEkCFDShTP5MmTMZlMtqt69eolaiciIiIiIiIiIiIiN4YSn9GUmJjIl19+CUDfvn1xdXUtUGfv3r2EhIRw4sSJfPdbtmxJRESEbVXO1fbvv//y0UcfsXnzZv755x8SExMLbL12ccxWd999d5G/kK9SpQpAgW3P8mrevHmRqz+Kar93714gN9FjXWVyMUdHRzp27MjixYtt9cuaPbFv374dyE1G5F0tcyk//vgjAN9//32x75OkpCQgNxlTVtq2bVvo/ezsbHbu3AnkJvwmTZpUZB/W55A3LsMwCAoKYtWqVURGRtKrVy/g/5JKHTt2pEWLFvnu5f26Vq1a1KhRo8BYGRkZfP7550RERHDo0CEuXLhARkZGgXpFvaeLm3NGRga//PKLLb6idOzYkcmTJxdZbjV69GhGjhxp+z4hIUHJJhEREREREREREZGbSIkTTZs2bSI0NJTGjRszcODAAuVnz57lP//5DxcuXMBiseQr27VrFw888AC7d+++/IhL6csvv6Rfv36kp6fb7nl7e+Pm5oZhGGRkZBAXF0dycnKh7b28vIrs28kp9/FlZWUVWack7TMzM/Pdt26/VrVq1SLbQu42annrlzV7Yo+JiQGgZs2apRrr1KlTACQnJxf5WuSVkpJSqv6LU7FixULvx8bG2t43cXFxJerr4riCg4NtiSarvCuaKlasSM2aNfn999+JiYmhUqVKRZ7PBLmvdefOnW3JIAA3NzfKly+Po6MjAOfOnSMnJ6fY51jcnK3v5+Lef9b33qW4uroWmpQWERERERERERERkZtDibfO27p1KwD9+/cvtHzq1KmcP38egEGDBvHjjz9y4MABRowYgcViYd++faxcubIMQi65CxcuEBoaSnp6Oh07diQqKoqUlBTMZjNnzpwhJiaGFStWXNWYbnYlPbvnYtnZ2QC8+uqrWCyWS14Xn2l0OawJmqJiAvj2229LFNfFWx1aVwX9+eefnDp1isOHD3P8+HHuvvtuW7Ln4u3ziks0jRgxgl9++QV/f38+//xzTp8+TWpqKufOnSMmJoaYmBjbarOLE74lmbOIiIiIiIiIiIiISGmUONG0e/duDMOga9euhZYvXrwYwzD473//y7x582jdujUNGjTg3XffZdCgQVgsFlatWlVmgZfEN998Q0JCAr6+vqxdu5YOHTrg7u6er451Bc71xJqAKG7rs7zlF69Osa42SktLK7Kt2Wy+nBCLZN32rrRb29nb7kry9/e3PUt746pXr55tbpGRkfm2zbOyJpQiIyP566+/bK/rxVvXZWZmEhERAcCHH37I448/XmCbwezsbFvC1x5+fn62JNTJkyeLrFdcmYiIiIiIiIiIiIjcOkqcaDp9+jROTk7cddddBcp+/fVX2/Zt//vf/wqUDxs2DICff/7Z3jjtcvz4cQDq1KmDh4dHoXU2btx4NUMqEevZRidOnOCvv/4qtE52drZt5Uvz5s3zlfn6+gL/N//C7Nq1qyxCLaBNmzZAbgKvNGdHWc8M2rhxY7EJsqvJ2dnZdobS2rVr7e4nKCgIyE0k5d02zyrviiZreZ06dahcuXK+fs6dO2d7Nk2aNCl0rG3btl3W83NxcaFhw4bA/62sKkzerQBFRERERERERERE5NZV4kTTmTNn8Pb2xsGhYBPr2UsuLi60a9euQHn9+vUxDMN2Ds/VYjKZAPjrr78K/eX7/v37WbJkyVWNqSS6dOmCv78/QIGt2Kw+/vhj2/Ps169fvrJGjRoBsGfPnkKTTb///rttZUxZCw4OplatWkDuNm8ZGRklavfEE0/g5OTE+fPnGTduXLF1MzIySEpKuuxYS2Lw4MFA7uq4b775pti6sbGxhd7Pm0iKiorCwcHBlnyC3LOQ7rjjDo4cOcK8efOAwrfN8/b2tm1NeODAgQLlWVlZvP7665ee1CX07dsXgBUrVvDnn38WKD979ixz5sy57HFERERERERERERE5MZX4kRTdnY2CQkJhZbt27cPyN0mzMXFpUC5k5MTvr6+pKam2hmmfe677z4cHByIjY3l0UcftW33lZGRwfLly7nvvvvw8vK6qjGVhLu7uy3BtHTpUoYMGcKZM2cASElJYebMmQwfPhzITQo0bdo0X/v//ve/eHp6kpmZSZ8+fWzJgszMTL766is6d+5MuXLlrkjsjo6OfPjhhxiGwbZt2+jUqRPbtm0jJycHyH32UVFRDBgwgN9++83Wrnbt2owdOxaAadOmMXDgQA4dOmQrz8rKYv/+/UyYMIHbb7+d/fv3X5H4LzZgwAA6d+6MxWLhoYceYuLEifkSpsnJyWzevJnnn3/elmC7mDVpFB0dTUxMDE2aNMHHxydfHWsyyrrSrLBEk6enp23l18iRI4mMjLQ910OHDvGf//yHvXv3XvZr++yzz1KtWjXS09Pp2rUrmzZtsp33tGvXLjp37mwbV0RERERERERERERubSVONFWsWJGsrCz++eefAmU7duzAMIwCW7jllZSUdMWSG0W54447ePnllwGIiIigWrVq+Pj44OnpSd++ffH09GTmzJlXNaaSGjp0KCNGjAByVy9VrlwZPz8/TCYTw4YNIzMzk+DgYD799NMCbU0mE++//z6GYbBz507q1q2Lt7c3np6e9OzZkxo1ajBhwoQrFnu3bt2YP38+rq6ubNu2jfbt2+Ph4UH58uUpV64cwcHBLF68uMBqp7FjxzJ27FgMw2DRokU0aNDA1s7NzY0mTZowbtw4jh8/blvZc6U5OjqyatUqevToQUZGBmPHjqVq1aqYTCZ8fX3x8vKiY8eOfPTRRyQnJxfax+2330716tVt31989hIUTCzlXfGU1/vvv0+5cuU4efIknTp1wsPDA29vbxo0aMDmzZv59NNPKV++vP0TJnfl1JdffomPjw9Hjx6lc+fOeHp64uXlRatWrTh69Cgff/zxZY0hIiIiIiIiIiIiIjeHEiea7rnnHgA++eSTfPf//vtv2+qSDh06FNo2OjqajIwMqlWrZmeY9psyZQoLFy6kRYsWuLu7k5mZye23385rr73Gzz//TJUqVa56TCU1ffp0IiMjCQkJISAggKSkJLy8vAgODubzzz9nw4YNRa7IevLJJ1m3bh0dO3bE29ubrKws7rzzTqZMmcKWLVuueNJv4MCB/PHHHwwfPpy77roLJycnUlNTqVmzJj179mTRokXUq1cvXxvDMJgwYQIHDx7kueeeo169ejg6OmI2m/H19aVNmza8/PLLbN++3bay52rw9vZm7dq1fPPNN/Tt25caNWqQnp5OSkoKVatW5b777mPy5MmFbjNnlTeRVFSiyZo8u/vuu6lYsWKh/TRt2pTdu3fTp08fypcvT05ODl5eXvTp04ft27fz2GOPXeZsczVr1oyDBw/y1FNPUbVqVbKysjCZTAwaNIiffvrJdnaViIiIiIiIiIiIiNzaDIt1T6xLWLFiBX379sXJyYm33nqLBx54gBMnTvDiiy9y8OBBPD09OXnyZKGJj0WLFjFo0CD69OnDsmXLynwSInJjSEhIwGQyYTab8fb2vtbhiNzyAketA+DolO7XOBIRuVzWzzPoMy0iJRc4ap3+zBAREblO5f0Z/1L097lcCaX5XW6JVzT17t2be++9l6ysLEaNGsVdd93Ffffdxy+//IJhGIwcObLI1TXh4eEYhkG7du1KNxMRERERERERERERERG5bpV4RROA2Wzmscce4+uvv/6/DgyDp556itmzZ+PgUDBv9ffff1OvXj0sFgt///03tWrVKpvIReSGU5Yrmi7+Vx1l+S83CvsXI9fyX4aU5aqTkvxrmLKaa1n8C9my+le2pflXQFb610AipXe9/8v4a7nqx54/h6yu52d6vdCKrpK7mp/T6+nv32vxM4Xei3K9uxFXt1/vP2vczC71559eF5H8SvtzkD5DN6fr5e8te+Moze9ynUrTsclkYs2aNRw+fNh2LlPz5s2pWbNmkW2cnZ356quvcHZ2VpJJRERERERERERERETkJlKqRJPV7bffzu23316iuoGBgQQGBtozjEixjh8/TvPmzUvVpnr16uzZs+cKRSQiIiIiIiIiIiIicmuxK9Ekcj3Izs7mzJkzpWrj5uZ2haIREREREREREREREbn1FDxUSeQqCwsLwzAMgoKCStUuMDAQi8VSquvo0aNXZA4iIiIiIiIiIiIiIrcirWgSucEdPXqU+fPnA7lJOxERERERERERERGRq0UrmuSaK1++PHXq1KFGjRrXOpQb0tGjRxk/fjzjx4+/1qGIiIiIiIiIiIiIyC1GK5rkmhs6dChDhw691mGIiIiIiIiIiIiIiEgpaUWTiIiIiIiIiIiIiIiI2EWJpqskKCgIwzAICwvDYrHw6aef0rJlS7y9vfHy8qJ169Z88cUXxfYRERFBjx49CAgIwMXFhYCAAHr06MGXX35ZbLv169fz8MMPU61aNVxcXPD29qZWrVrcd999vPPOO8TGxhbaLjExkSlTptC6dWv8/PxwdXWlevXqPPLII+zYscPuZ3GxsLAwDMMgKCioQFloaOj/a+++o6uq1v3/f3baTgJJCJ1QEqQXRaWJWODSOYBI6F2qXAvtK00QRORQLBevKCAo6KEECHpsSFMOIEcUEIEcmkKAUAIhvbf1+4Nf1s0mOyENEpL3a4w9xsqa85nrWYswx85+9lxLFotFI0eOlCRt3bpV7dq1U/ny5eXu7q5HH31Uy5YtU3p6eqHlI0np6enavHmzevfurerVq8tqtapSpUpq3ry5pk+frpMnT9qNy881Cw4OlsVikcViUXBwsEJDQzVx4kTVrl1brq6uqlKligYOHKjTp09nifXz81P79u3NnzPGyXhlXLfCzvGvv/7SuHHjVLt2bVmtVvn5+d39ogIAAAAAAAAAShxunXefpaWl6fnnn9c///lPOTk5yd3dXTExMfrll1/0yy+/6Ny5c1metZOcnKzhw4crICBAkuTg4CAvLy+FhYXpu+++03fffadBgwZp3bp1cnZ2tomdP3++5s6da/7s7u4uwzB04cIFXbhwQbt27VKLFi2yFHmOHTumnj17KiQkRJLk6Ogod3d3hYSEKCAgQJs3b9bbb7+tmTNn3oOrZN/LL7+s5cuXy8HBQZ6enkpISNAff/yhSZMm6ejRo1q3bl2hHCcsLEz+/v7at2+fua9cuXJKTEzU0aNHdfToUZ05c0ZfffWVTVxhXLOgoCCNGjVKN27ckLu7uyTpxo0bCggI0Pbt27Vv3z41a9bM7F+pUiVFR0crIiJCklSlShWb8by8vAo9x4MHD2r8+PGKjY2Vu7t7lt85AAAAAAAAAEDpwYqm+2z58uXau3ev1q5dq+joaEVFReny5cvq2bOnJGnBggU6d+6cTcysWbMUEBAgi8WiOXPm6NatWwoPD1dYWJhmzZolSdq4caPmzJljE3fx4kWzaDVlyhRduXJFcXFxiomJUWRkpPbv36///u//loeHh03ctWvX1KVLF4WEhKhPnz46fPiwEhISFB0drdDQUM2ZM0eOjo6aNWtWlmLLvfL111/rk08+0XvvvaeIiAhFREQoLCxMY8aMkSR9/vnn+vHHHwt8nNTUVPXu3Vv79u2T1WrV4sWLdePGDUVERCgmJkZXrlzRypUr1bhxY5u4wrpmw4YNU7169fTbb78pLi5OsbGx2rVrl6pVq6bo6Gi98sorNv1/++03bdu2zfz5+vXrNq9ly5YVeo7jx49XkyZNbHLcuXNn3i40AAAAAAAAAKBEoNB0n0VEROjLL7/UiBEj5ObmJkmqUaOGtmzZIh8fH/OWbRmuXLliFgtmzJih+fPnq1y5cpIkb29vvf3225oyZYok6b333tO1a9fM2EOHDik9PV3169fXu+++Kx8fH7PNy8tLTz31lJYvX67mzZvb5Dh79mzduHFDgwcPVmBgoJo3b26uWqlcubLmz5+vJUuWSLp927v7ISIiQitXrtTkyZPl6ekpSapQoYI++eQTM/+NGzcW+Djr1q3Tzz//LIvFom3btmnatGmqVKmS2e7j46Nx48Zp4cKFNnGFdc2qVKlirjKTJCcnJ3Xs2FErV66UJO3fv99cjZRXhZVjhQoVtHv3bjNHSapfv77dvklJSYqOjrZ5AQAAAAAAAABKDgpN91nbtm1tnqmTwWq1qkuXLpKk48ePm/sDAwOVmpoqV1dXzZgxw+6Ys2fPltVqVUpKirZu3WruzyhIxcTEKC4uLlf5JSYmasOGDZKk6dOnZ9tv+PDhkqQ//vhDoaGhuRq7IGrWrKkRI0bYbevVq5ck2+uWX59++qkkqXv37urevXuuYgrzmk2dOtUsQGbWrVs3ubi4SJJOnDiRq7zuVY4vv/yyypYtm6vj/v3vf5eXl5f5qlmzZh4zBwAAAAAAAAAUZzyj6T5r3bp1tm0ZK47Cw8PNfYcPH5YktWzZ0lzJcydvb2+1aNFCP//8s9lfklq1aqWKFSvq2rVrat26tV588UV17NhRDRo0kMVisTvWkSNHlJiYKEnq3Llzrs7p4sWLWZ4NVNhatmyZbc72rlt+pKam6rfffpMk81aGuVGY1yy73w8nJydVqlRJV65cydd5FmaObdu2zfVxZ86caa64k6To6GiKTQAAAAAAAABQglBous/ufB5SZk5Ot/85UlJSzH03btyQJFWvXj3HcWvUqGHTX7q9omnjxo0aPHiwgoKCzOf7eHl56ZlnnlH//v01YMAA8/ZpknT16lVzO7crleLj43PVryDyet3y49atW+YYvr6+uY4rzGt2r86zMHOsXLlyro9rtVpltVpz3R8AAAAAAAAA8GCh0FTCdezYURcuXNC2bdu0Z88eHTx4UOfOndM333yjb775RosWLdKOHTvMQlZaWpoZm5CQIFdX16JK/b7LbsXU3TwI16wwc3R0dCyMlAAAAAAAAAAAJQDPaCrmMlaPhISE5Ngvo93eapMyZcpo2LBhWrt2rc6ePauQkBAtXrxYrq6uNiudJKlq1arm9sWLFwvjFB4Y5cuXN1d35eXcH4Rr9iDkCAAAAAAAAAB48FBoKuZatGgh6fazmqKiouz2iYyMtHmW091Ur15d06ZN09SpUyVJu3btMttatmwpFxcXSdI333xToNwfNE5OTmrVqpWkvJ17UV8zB4f/+29sGIbdPkWdIwAAAAAAAACgZKLQVMz5+/vLyclJiYmJWrx4sd0+CxcuVFJSkpydneXv72/uT0pKynFsNzc3SbaFijJlymjw4MGSpMWLF+vSpUs5jhEeHp6r83hQjB49WpL0/fff6/vvv89VTFFfM09PT3M7MjLSbp+izhEAAAAAAAAAUDJRaCrmqlevrokTJ0qSFi1apLlz55rFhMjISM2ZM0dLly6VJE2ZMkXVqlUzYxcvXqxu3brpiy++sLn1XlJSkjZv3mzG/e1vf7M55sKFC+Xj46OwsDC1adNGX3zxhWJiYsz2mzdvKjAwUM8//7wGDRp0T867qAwbNkxPPfWUDMOQv7+/li5dqrCwMLP96tWrev/99zV9+nSbuKK8ZvXr1zdXK61evTrbVU2l+d8VAAAAAAAAAHBvOBV1Ari7hQsX6vLly9q8ebPmz5+vBQsWyMvLS1FRUUpPT5ckDRo0SG+99ZZNXHp6un744Qf98MMPkm6vYHJzc1NERIRZjGjUqJHee+89m7hq1app9+7d6t27t86ePavhw4fLwcFB5cqVU1JSkuLi4sy+HTt2vJenft85OTnpyy+/VJ8+fbR//35NmzZN06dPl5eXl1JTUxUbGytJeu6552ziivKaubu7a9iwYVqzZo2mTZumefPmqWLFirJYLOrbt6/eeeedIs8RAAAAAAAAAFAyUWh6ALi4uCggIED9+/fXmjVrdPjwYUVERKhChQpq0aKFxo4dq+effz5L3Lhx41S9enX99NNPOnHihK5du6aoqCh5e3urSZMm8vf31/jx4+Xq6poltlGjRjp+/LjWrVunwMBAHTt2TOHh4XJxcVHdunX12GOPqVOnTurbt+/9uAT3VcWKFbV3715t3LhR69ev15EjRxQRESFvb281aNBAnTp10rBhw7LEFeU1W758uWrWrKnAwED99ddf5q3xMq/GKuocAQAAAAAAAAAlD4Wm+2Tv3r137TNv3jzNmzcv23Z/f3+bZzDdjY+Pj8aOHauxY8fmOiYzq9WqcePGady4cfmKz62cznvt2rVau3ZtjvEjR47UyJEjCzUnBwcHDRkyREOGDMlTXH6umZ+fX7a3u8ssODg4x+POnTtXc+fOLdIcAQAAAAAAAAClC89oAgAAAAAAAAAAQL5QaAIAAAAAAAAAAEC+WAzuhwXgPomOjpaXl5eioqLk6elZ1OkAAAAAAAAAAOzIy2e5PKMJhWLixIkKCAjIU8yyZcs0YMCAQs/l4MGD6tOnT55innzySW3btq3QcwEAAAAAAAAAoCSj0IRCERUVpdDQ0DzFJCQk3JNckpOT85xLeHj4PckFAAAAAAAAAICSjFvnAbhvuHUeAAAAAAAAABR/efks1+E+5QQAAAAAAAAAAIAShkITAAAAAAAAAAAA8oVCEwAAAAAAAAAAAPKFQhMAAAAAAAAAAADyhUITSiXDMPTZZ5+pTZs28vDwkJeXl1q3bq1Vq1bJMAyNHDlSFotFI0eOtBu/bds29ejRQ1WqVJGLi4uqVKmiHj166Msvv7wn+e7cuVMDBw6Ur6+v3NzcVL58eT3yyCN65ZVX9O9//9um77x582SxWNSuXbtsx9u7d68sFossFku2fWJiYrRo0SK1adNG5cuXl9VqVc2aNTVw4MAsxwQAAAAAAAAAlE5ORZ0AcL+lpaVpyJAhCggIkCRZLBaVK1dOhw8f1q+//qq9e/fKxcXFbmxycrKGDx9uxjo4OMjLy0thYWH67rvv9N1332nQoEFat26dnJ2dC5xrfHy8Ro4cqS1btpj7PDw8lJ6erhMnTujEiRPav3+/jh07VuBjZXbs2DH17NlTISEhkiRHR0e5u7srJCREAQEB2rx5s95++23NnDmzUI8LAAAAAAAAAHiwsKIJpc7SpUvNQtGUKVN08+ZNhYeHKyIiQgsXLtSmTZv09ddf242dNWuWAgICZLFYNGfOHN26dUvh4eEKCwvTrFmzJEkbN27UnDlzCiXXF154QVu2bJGDg4OmT5+uy5cvKzo6WpGRkbp586bWr1+vNm3aFMqxMly7dk1dunRRSEiI+vTpo8OHDyshIUHR0dEKDQ3VnDlz5OjoqFmzZumrr74q1GMDAAAAAAAAAB4sFJpQqsTFxenvf/+7JGn06NF69913VaFCBUmSp6enZs6cqTfeeEMRERFZYq9cuaJly5ZJkmbMmKH58+erXLlykiRvb2+9/fbbmjJliiTpvffe07Vr1wqU6549e7R582ZJ0ocffqhFixapRo0aZnvFihU1ePBgffzxxwU6zp1mz56tGzduaPDgwQoMDFTz5s3N1VmVK1fW/PnztWTJEkm3b9MHAAAAAAAAACi9KDShVNm5c6eio6MlSa+//rrdPlOnTpW7u3uW/YGBgUpNTZWrq6tmzJhhN3b27NmyWq1KSUnR1q1bC5Trp59+Kklq2rSpJkyYUKCxcisxMVEbNmyQJE2fPj3bfsOHD5ck/fHHHwoNDc22X1JSkqKjo21eAAAAAAAAAICSg0ITSpWjR49KkmrVqqXatWvb7ePh4aHmzZtn2X/48GFJUsuWLeXp6Wk31tvbWy1atLDpn18HDx6UJPXo0aNA4+TFkSNHlJiYKEnq3LmzqlatavfVpEkTM+bixYvZjvf3v/9dXl5e5qtmzZr3/BwAAAAAAAAAAPePU1EnANxPN2/elCT5+Pjk2K969epZ9t24cSPbtswybm+X0T+/rl+/Lkny9fUt0Dh5cfXqVXM7p5VKmcXHx2fbNnPmTPN2gpIUHR1NsQkAAAAAAAAAShAKTSiVLBZLUadwV0WRY1pamrmdkJAgV1fXAo1ntVpltVoLmhYAAAAAAAAAoJji1nkoVSpVqiTJduWOPVeuXMmyr3LlypKkkJCQHGMz2jP651fVqlUl5XxrOnucnG7XjzNugWdPVFRUjsfMz3EBAAAAAAAAAKUPhSaUKo8//rik20WU4OBgu31iY2N15MiRLPszP3spu0JNZGSkzbOcCuLJJ5+UJH3zzTd5ivP29pYkXb58Ods+hw4dsru/ZcuWcnFxyddxAQAAAAAAAAClD4UmlCqdO3eWp6enJGnhwoV2+7z//vt2nzvk7+8vJycnJSYmavHixXZjFy5cqKSkJDk7O8vf379AuY4ePVqSFBQUpI8//jjXcc2aNZN0e9WWvYLSjRs39Mknn9iNLVOmjAYPHixJWrx4sS5dupTjscLDw3OdFwAAAAAAAACg5KHQhFKlTJkymj59uiTpk08+0bRp08xiSUxMjBYvXqx58+aZq4Iyq169uiZOnChJWrRokebOnavIyEhJt1cyzZkzR0uXLpUkTZkyRdWqVStQru3bt9fAgQMlSS+//LJmzpxpc9u+sLAwrV692ixIZXjyySfl6+srSRoxYoQOHz4swzCUnp6uvXv3ql27dkpPT8/2uAsXLpSPj4/CwsLUpk0bffHFF4qJiTHbb968qcDAQD3//PMaNGhQgc4RAAAAAAAAAPBgsxiGYRR1EsD9lJqaqkGDBmnr1q2SJAcHB3l5eSk6OlppaWkaNmyYLBaLPv/8c40fP14rVqwwY5OTkzVs2DBt3rzZJjYqKsos3gwaNEjr1q2Ts7NzgXONj4/XsGHDtG3bNnOfp6enLBaLefu+Zs2a6dixYzZxO3bsUM+ePZWSkiJJcnd3V3p6uhITE1WvXj3Nnz/fLBLZmwJOnTql3r176+zZs+Z5litXTklJSYqLizP7dezYUbt27cr1+URHR5vXK2NlGQAAAAAAAACgeMnLZ7msaEKp4+TkpM2bN2v16tVq1aqV3NzclJqaqhYtWmj16tX6/PPPzZVK5cqVs4l1cXFRQECAtm7dqm7duqlChQqKiYlRhQoV1K1bN23btk0bNmwolCKTdLtAFBgYqG+//VbPP/+8fHx8lJiYKCcnJz3yyCN69dVXtWrVqixxXbp00f79+9WjRw95e3srLS1NNWvW1IwZM3TkyBFVrVo1x+M2atRIx48f18qVK9W5c2dVrFhR0dHRMgxDdevWVb9+/bRq1Sqz4AYAAAAAAAAAKJ1Y0QTcwTAM1apVSyEhIfr88881bNiwok6pxGBFEwAAAAAAAAAUf6xoAgrgiy++UEhIiJycnNSxY8eiTgcAAAAAAAAAgGKLQhNKpYxnNIWFhZn7QkNDtWjRIo0dO1aSNHz4cFWrVq2oUgQAAAAAAAAAoNjj1nkolcqVK6eoqChJt5+D5OzsbP4sSU8//bS+/fZbbu9WyKKiolSuXDldvnyZawsAAAAAAAAAxVR0dLRq1qypyMhIeXl55djX6T7lBBQrH3zwgbZv367ff/9dN27cUGxsrCpVqqRHH31UAwcO1LBhw+Ts7Fzg41y+fFktW7bMU0zNmjX122+/FfjYxVFMTIyk2+cIAAAAAAAAACjeYmJi7lpoYkUTcA8FBwerdu3aeYrx9fVVcHDwvUmoiKWnp+vq1avy8PCQxWIp1LEzKuyslgJwrzDPALgfmGsA3GvMMwDuNeYZoGQwDEMxMTHy8fGRg0POT2FiRRNwD/n5+Yla7v9xcHBQjRo17ukxPD09eRMD4J5ingFwPzDXALjXmGcA3GvMM8CD724rmTLkXIYCAAAAAAAAAAAAskGhCQAAAAAAAAAAAPlCoQlAiWC1WjV37lxZrdaiTgVACcU8A+B+YK4BcK8xzwC415hngNLHYvAAGQAAAAAAAAAAAOQDK5oAAAAAAAAAAACQLxSaAAAAAAAAAAAAkC8UmgAAAAAAAAAAAJAvFJoAAAAAAAAAAACQLxSaABRru3btUv/+/eXr6ytXV1e5ubnpoYce0pAhQ/Svf/0rx9iYmBjNmzdPDz/8sMqWLSsvLy+1bNlS7777rpKTk+/TGQAoKvHx8dq+fbsWLFigPn36yNfXVxaLRRaLRfPmzcvVGKGhoZo6daoaNGggNzc3lS9fXk8//bRWr14twzDuGv/XX39p/Pjxql27tlxdXVWpUiV16dJFgYGBBTw7AMVFQeaaK1eu6KOPPlK/fv1Ut25dubm5yc3NTbVr19agQYP0448/5iqHgs5VAIq3wnhPc6cXX3zRHMPPz++u/ZlngJKtsOaZ69eva86cOWrevLnKly8vNzc3+fr6qmvXrlq0aJFSUlKyjWWeAR5wBgAUQ+np6cb48eMNSebLzc3NcHNzs9k3efJku/HBwcGGn5+f2c/d3d2wWq3mz4899pgRHh5+n88KwP30008/2cwXmV9z5869a/zhw4eNChUqmDFly5Y1nJyczJ+7dOliJCUlZRv/3XffGe7u7mZ/T09Pw8HBwfz5hRdeMNLT0wvxjAEUhfzONZcuXTIsFotNf3d39yzvdUaNGmWkpqZmO05B5yoAxV9B39Pc6ccff7SZf3x9fXPszzwDlHyFMc9s2rTJ8PT0NONcXV1tfpZkRERE2I1lngEefKxoAlAsrV27VitXrpQk9e3bV2fPnlV8fLzi4+N1+vRpPffcc5Kk999/X19++aVNbGpqqnr27Kng4GBVq1ZNu3btUlxcnOLj47Vp0yZ5eHjo999/19ChQ+/7eQG4v7y9vdWhQwe99tpr2rhxo6pWrZqruKioKPXo0UO3bt1Sw4YN9dtvvykmJkZxcXH68MMP5ezsrB07dmjSpEl24y9cuKD+/fsrPj5ebdu21ZkzZxQVFaWoqCi98cYbkqTPPvtMS5cuLaxTBVCE8jPXpKWlyTAMdejQQevWrdOVK1cUFxen2NhYBQUFme91Pv3002y/SVzQuQrAgyO/72nuFB8fr7Fjx8rJyUktWrS4a3/mGaD0KMg8s2XLFg0ePFjR0dEaN26cgoKClJCQoKioKEVHR2vfvn2aPHmynJ2ds8QyzwAlRFFXugDAnnbt2hmSjLp16xopKSlZ2pOTk42HHnrIkGQMHDjQpm316tXmt14OHjyYJXbDhg1m++7du+/ZOQAoWvZWAPj6+ubqW3mzZ882V1KeP38+S/vChQsNSYajo6Nx5syZLO1Dhw41JBlVq1a1+629cePGmaucWF0JPNjyO9dERkYaR44cybY9PT3d6Nq1q/mt3oSEhCx9CjpXAXgwFOQ9zZ0mTZpkSDJef/11Y8SIEXdd0cQ8A5QOBZlnrl69anh7exuSjHfffTfPx2aeAUoGVjQBKJauXbsmSWrWrJmcnJyytDs7O+vRRx+VJMXGxtq0rVu3TpLUvn17tWnTJkvswIEDVbt2bUnS559/XphpAyhGHB0d8x2bMTdkni8ye+WVV1S2bFmlpaVp/fr1Nm1xcXHmM5gmTJigcuXKZYmfOXOmJCk6OlpfffVVvvMEUPTyO9d4eXnp8ccfz7bdYrFo1KhRkm6/1zl16lSWPgWZqwA8OAryniazX375RR988IHq16+v2bNn5yqGeQYoHQoyz3zwwQeKiIjQY489psmTJ+c5nnkGKBkoNAEolh566CFJ0h9//KHU1NQs7SkpKTp27Jgk2dzyIT4+Xj///LMkqVu3bnbHtlgs6tq1qyRp586dhZk2gBLgzJkzunTpkqTs55GyZcvq6aeflpR1Hjlw4IASEhJyjPfz81OjRo3sxgNABldXV3M7LS3Npq2gcxWA0iUpKUmjRo2SYRhatWqVzfySHeYZALmRUSgaOnSoLBZLnmKZZ4CSg0ITgGJpwoQJkqQ///xTgwYN0p9//mm2nTlzRv3799f58+dVp04dm2/MnDp1Sunp6ZKkpk2bZjt+Rtv169cVHh5+L04BwAPq5MmT5nZu5pH//Oc/BYoPCgrKV54ASr69e/dKklxcXFS/fn2btoLOVQBKl/nz5+vUqVMaPXq0nn322VzFMM8AuJsLFy7o6tWrkqTmzZvrxIkTGjx4sKpVqyar1aoaNWpowIAB5heC78Q8A5QcFJoAFEs9e/bU+++/LxcXF23dulX16tWTu7u73N3d1bBhQ+3du1cTJkzQr7/+Kk9PTzMu4w2OJFWvXj3b8TO3ZY4BgLzOI9HR0Ta38MyI9/b2lpub213jmYMA2HPhwgWtWLFCkjRgwACb9ztSwecqAKXH77//riVLlqhKlSpaunRpruOYZwDczdmzZ83tn3/+WS1atNDGjRsVFRUlV1dXXblyRZs3b9bTTz+tt956K0s88wxQclBoAlBsTZo0Sdu2bVPlypUlSQkJCebtqJKTkxUbG6uoqCibmJiYGHPb3d0927Ezt2WOAYCCziMZ2znFZm5nDgJwp4SEBPXr10/x8fGqWLGiFi1alKUP73kA5EZqaqpGjRql1NRUffDBB3afHZkd5hkAdxMREWFuz5kzRz4+Ptq1a5f5eU1QUJDatWsnwzD0xhtvaNu2bTbxzDNAyUGhCUCxFB8frwEDBqhHjx6qVauWdu7cqZs3b+rmzZvauXOnGjdurC+++EKtWrXS8ePHizpdAACAQpGamqrBgwfryJEjcnZ21vr16+Xj41PUaQF4QC1atEjHjh1Tjx491L9//6JOB0AJk/HoAkkyDEOBgYHq2LGjHBxuf+TcuHFjffPNN6pataok6c033yySPAHcexSaABRLr732mjZv3qwGDRpo//796tSpkypWrKiKFSuqU6dO2rdvn+rXr6+wsDC99NJLZpyHh4e5HR8fn+34mdsyxwBAQeeRjO2cYjO3MwcByJCWlqYhQ4boq6++kpOTkzZs2KDOnTvb7ct7HgB385///EdvvfWWypYtq48++ijP8cwzAO4m8//5Dh066PHHH8/Sp2zZsubnNsePH1doaKjdeOYZ4MFGoQlAsRMTE6NVq1ZJkl566SW5urpm6ePm5qaXX35ZknTgwAHduHFDkmy+8XvlypVsj5G5jW8JA8gsr/OIp6enypYtmyU+IiLCvN1nTvHMQQCk20WmoUOHavPmzXJ0dNQ//vEP9e3bN9v+BZ2rAJR8L730kpKTk/X666/L29tbsbGxNq/U1FRJt1chZOxLSUkx45lnANxN5ucqNWrUKNt+jRs3NrcvXrxobjPPACUHhSYAxc7Zs2fNP3rq1KmTbb969eqZ2xcuXJB0+41NxhLtkydPZhub0Va1alWVL1++wDkDKDmaNm1qbudmHsn8R1N+4ps0aZKvPAGUHBkrmTZt2mQWmQYMGJBjTEHnKgAlX8bfSDNnzpSHh0eW1/r16yVJly5dMvctX77cjGeeAXA3jRs3lqOj4137GYZhblssFnObeQYoOSg0ASh2MgpFku03Xe5kb7m1u7u72rZtK0n64Ycf7MYZhqEdO3ZIUra3owFQetWvX1+1atWSlP08EhcXp/3790vKOo889dRTcnNzyzH+4sWLOnXqlN14AKVLWlqaBg8erICAALPINHDgwLvGFXSuAoC7YZ4BcDeurq565plnJMn8+8ae//znP5JuF5n8/PzM/cwzQMlBoQlAsdOwYUPzQ9rVq1ebq5syS0tLM2+v5+3trQYNGphtI0aMkCT99NNPOnToUJbYLVu26Pz585Kk4cOHF3r+AB5sFovFnBs2bdqk4ODgLH2WL1+u2NhYOTo6asiQITZtZcqUkb+/vyTp448/VlRUVJb4xYsXS7pdJO/du3fhngCAB0bGSqbNmzfLyclJ69evz1WRSSr4XAWg5AsODpZhGNm+Mv5u8vX1NfdNmjTJjGeeAZAbL7zwgiRpz549Onr0aJb22NhY8zlxrVu3VqVKlcw25hmg5KDQBKDYcXNz05gxYyRJR48eVc+ePXXixAmlp6crPT1dx48fV/fu3XXw4EFJ0qRJk2yWao8YMUIPP/ywDMOQv7+/9uzZI0lKT0/Xli1bNHbsWElSt27d1KFDh/t8dgDup4iICIWFhZmv9PR0SbcfJpt5f2xsrE3c//t//09Vq1ZVfHy8/va3v+nIkSOSpOTkZH388ceaM2eOJGncuHGqX79+luPOnz9fZcqU0bVr19SzZ0+dO3dO0u1v482fP18rVqyQJM2ePVve3t737PwB3B/5mWsynskUEBAgJycnbdiw4a63y7tTQecqAA+O/L6nKSjmGaD0yO88M2TIELVq1crmM5iM2FOnTqlXr166fv26HBwc9Pbbb2c5LvMMUDJYjMw3yQSAYiIhIUF9+vSxWTpttVolSUlJSea+QYMG6YsvvshyT+Dg4GC1b9/e/DaMu7u70tPTlZiYKEl67LHHtGfPHj7gBUo4Pz+/HG/BmWHEiBFau3atzb4jR46oS5cuunXrlqTbq48SExPNh2R37txZX3/9tTk33en7779Xv379FB8fL0ny8vJSbGys0tLSJN3+5t+aNWts7lEO4MGUn7lm3759evbZZyVJzs7Od31m5LJly+wWogo6VwF4MBTkPU12Ro4cqXXr1snX19fuKoIMzDNA6VCQeeb69evq0KGDeYs8d3d3OTs7m3d3cHZ21vLly80v/t6JeQZ48LGiCUCx5Obmpu+//15btmzRc889pxo1apgPj6xZs6b8/f317bffasOGDXYfPOnn56fjx4/rjTfeUNOmTWWxWOTs7KzmzZvrnXfe0S+//EKRCUCOmjdvrqCgIE2ePFn16tVTSkqKypQpo6eeekqffPKJtm/fnuMfOt27d9fx48c1duxY+fn5KTExUd7e3urUqZO2bt2qTz/9lCITUIplfNNXklJSUhQaGprjKyEhwe44BZ2rAOBumGcA3E3VqlV19OhRvfPOO2rZsqWcnZ2VkJAgPz8/jRo1SkePHs22yCQxzwAlASuaAAAAAAAAAAAAkC+saAIAAAAAAAAAAEC+UGgCAAAAAAAAAABAvlBoAgAAAAAAAAAAQL5QaAIAAAAAAAAAAEC+UGgCAAAAAAAAAABAvlBoAgAAAAAAAAAAQL5QaAIAAAAAAAAAAEC+UGgCAAAAAAAAAABAvlBoAgAAAAAAAAAAQL5QaAIAAAAAAAAAAEC+UGgCAAAAgGLOYrHIYrFo7969RZ1Kodq7d695bnhwFdXvZ3JysurUqSOr1arLly8XeLxffvlFFotFzzzzTCFkBwAAUHpQaAIAAACAeyjjQ/j8vNauXVvU6QPF1v/+7//q/PnzGjNmjGrWrFng8Z544gl16dJF+/fv15dfflkIGQIAAJQOTkWdAAAAAACUZFWqVLG7PzY2VnFxcTn2cXNzkyQ1aNBAkuTu7n4PMiw67u7u5rkBeREeHq4FCxbIarVq5syZhTbuvHnztGPHDs2YMUM9e/aUkxMfmwAAANwN75gAAAAA4B66fv263f3z5s3Tm2++mWOfDKdPny70vIqDVq1aldhzw721atUqRUZGqm/fvqpRo0ahjfvEE0+oWbNm+uOPP/TVV1+pb9++hTY2AABAScWt8wAAAAAAwAPDMAytWrVKkjR06NBCHz9jzJUrVxb62AAAACURhSYAAAAAKOYyntm0d+9em/3BwcFmW3BwsC5evKixY8eqVq1acnV1VZ06dTR79mzzFn2SdPLkSQ0dOlQ1a9aUq6ur6tWrpwULFiglJSXHHIKDgzVp0iQ1adJEZcuWlbu7uxo2bKiJEyfq0qVL+TqvvXv3mvnfae3atbJYLPLz85MkHTlyRP3791e1atVktVr10EMPacqUKYqIiMjXsSXp0KFDGjJkiGrXri1XV1eVKVNGvr6+evbZZ/XWW28pJCTEblxycrI++ugjtW/fXhUrVpSLi4uqVq2q5557Ttu3b8/VcV944QXVrVtX7u7u8vT0VOPGjTVq1Cjt2LHDbkxUVJTmz5+vxx9/XJ6ennJzc1O9evU0YcIEnT9/PttjZf7diYmJ0ezZs9WwYUO5ubmpQoUK6tGjhw4dOpRjvhEREXrttddUp04dubq6qlq1aurXr5+OHDly13MNCQnR5MmT1aRJE5UpU0ZWq1U+Pj5q3ry5Jk+erN9+++2uY9xp9+7dunDhgsqVK6fu3btn2+/06dMaN26c6tevL3d3d7m6uqpmzZp64oknNGvWrGxX0w0ePFiStGfPnhyvLQAAAP5/BgAAAADgvps7d64hycjNn2UZ/X766Seb/RcuXDDbAgMDjXLlyhmSDE9PT8PR0dFse/rpp43k5GTj22+/Ndzd3Q1JhpeXl2GxWMw+AwYMyPb4//jHPwyr1Wr2tVqthpubm/mzh4eHsWPHjjxfg59++inba/DZZ58ZkgxfX19j/fr1hrOzs5m3g4ODGdekSRMjJiYmz8deu3atzflbrVbD09PT/FmS8dlnn2WJCw4ONpo0aWL2sVgshpeXl03ciy++aPeYqampxquvvmrTt0yZMoa3t7eZi5eXV5a4kydPGjVq1DBjXF1dDQ8PD5vct27daveYGX02bNhg1K1b14zP+D2QZLi4uGT773fhwgXD19fXpm/GdXJxcTH++c9/Zvv7eezYMcPb29tsd3R0tDlXScaIESNy+meya8qUKYYko0uXLtn22blzp83vrLOzs/n/I+M1d+7cbOPr1KljSDI++uijPOcHAABQ2rCiCQAAAABKgNGjR6t58+YKCgpSVFSUYmJi9MEHH8jR0VH79+/X/PnzNWTIEPXs2VPBwcGKjIxUdHS0Xn/9dUlSQECAdu/enWXcXbt2afjw4UpLS9O0adN04cIFJSQkKC4uTqdPn1a/fv0UExOjfv365XtlU05u3rypUaNGacSIEbp06ZIiIyMVExOjDz/8UM7OzgoKCtKSJUvyNGZ8fLxeeeUVGYahoUOH6s8//1RiYqKioqIUGxurw4cP67XXXlPlypVt4uLi4tS1a1cFBQWpXbt22rt3rxISEhQZGanIyEi99957Klu2rFasWKFly5ZlOe6sWbP0wQcfSJJGjRqlM2fOKDY2VuHh4YqIiNBXX32lrl272sTExMSoZ8+eCgkJUfXq1fXdd98pLi5O0dHROnbsmJ544gklJSVpyJAh+uOPP7I955deekkuLi768ccfFRcXp9jYWP36669q0KCBkpOTNW7cOKWnp9vEpKWlqV+/frp48aK8vb21efNmxcXFKSoqSkFBQWrdurVGjBiR7TGnTp2qiIgIPf744/r3v/+tlJQUhYeHKzExUWfPntU777yjJk2a3PXf60779u2TdPsZX9mZMGGCkpKS1LlzZ504cULJycmKiIhQQkKCTp48qTfffNNcLWdP69atJUn/+te/8pwfAABAqVPUlS4AAAAAKI0Ke0VTkyZNjMTExCyxw4YNM/t06tTJSE9Pz9Ln6aefNiQZo0ePttmflpZm1KtXz5BkrFy5Mtv8evXqZUgyJk6ceNdzySw3K5qUw6qXjJUtdevWzdNxDx06ZK4mSklJyXXc/PnzDUnGs88+ayQnJ9vts23bNkOSUbFiRZuxz5w5Y67EmjZtWq6PuWjRInNFzokTJ7K0R0dHG35+foYk429/+1uW9oxrWKlSJSM0NDRL+/Hjx80+Bw4csGkLCAgw23bv3p0lNi4uzlz5Y+/3M2PV28GDB3N9vneTlJRkrtbLbhVXaGiomdPVq1fzdZylS5cakoxatWoVJF0AAIBSgRVNAAAAAFACTJ48WVarNcv+Ll26mNszZsyw+zykjD7Hjx+32b9v3z6dO3dOFStW1JgxY7I99vDhwyUp2+cLFdTs2bPt7n/uueckSX/++afi4+NzPV65cuUk3X7W0q1bt3Idt2bNGknSlClT5OzsbLdP79695enpqbCwMJtnGK1bt07p6emqUKGC3nzzzVwfMyAgQJLUt29fNW3aNEu7h4eHpk2bJknavn27oqKi7I4zbty4LCu0JOnhhx9W7dq1JWX999+0aZMkqW3bturQoUOWWHd3d/PY9mRc52vXrmXbJ69u3LihtLQ0SVKlSpXs9vHw8JCDg0OBjl2xYsUCxQMAAJQmFJoAAAAAoATI7jZiVapUMbdbtmyZY5+IiAib/T///LMkKSoqSj4+Pqpatard19ixYyVJFy9eLPB53Kl8+fKqW7eu3TYfHx9z+87cc1KnTh01bNhQKSkpat26tRYvXqxjx46ZBQx7rly5Yp7f6NGjs70W1apVU2xsrCTb63Hw4EFJUqdOneTq6pqrPJOTk83iT8eOHbPt16lTJ0lSenq6jh49ardPxq3g7Mm4juHh4Tb7Dx8+LEn6r//6r2xjc2rr0aOHJGnEiBGaOnWq/vWvf+WpIGjPzZs3ze3y5cvb7ePm5mYWxrp27ao33nhDhw4dUnJycq6PkzF2SkqKIiMj858wAABAKUChCQAAAABKAA8PD7v7nZycct0nJSXFZv/Vq1fN/aGhodm+Moo8CQkJBT6PO2WXc+a87eWeE0dHR23atEm1a9fWxYsXNWPGDD322GPy9PRUp06d9PHHH2cpiGRcC0kKCwvL8XpkPOso8xjXr1+XJPn6+uY6z/DwcLP4Vb169Wz71ahRw9y+ceOG3T65uY53XsOMsXJ77DstWbJE7du3V2xsrN577z21a9dOnp6eatGihebOnasrV65kG5udxMREc9veCr4Mq1evVrNmzXTz5k299dZbeuKJJ+Th4aGnnnpKS5cuzVJUu5Obm5vdYwIAACArCk0AAAAAALsyihytW7eWYRi5ej0omjVrptOnTyswMFDjxo1T06ZNlZCQoN27d+u///u/1bBhQ504ccLsn3m106lTp3J1LUaOHGnG2LtlYUlXrlw5/fjjj9q/f7+mTZumtm3bysnJSUeOHNH8+fNVr149bdy4MU9jVqhQwdzOaRVbrVq1dPToUf3www969dVX1bx5c6Wnp+vnn3/WtGnTVLduXf3444/ZxmcuRGU+JgAAALKi0AQAAAAAsKtq1aqS7s0t8YoDFxcX9enTRytXrtSJEyd08+ZNrVixQuXLl9fly5c1YsQIs2/GtZDydz3ycy3Lly8vR0dHSVJISEi2/TK32XsOU35ljJXTyqPcrEp66qmntHjxYh04cECRkZH65z//qYcfflgJCQkaNWqUQkNDc51T5ucy3W1VkoODg7p06aJly5bp8OHDCg8P1/r161WrVi1FRERo8ODB2d5OL2NsLy+vbJ/HBQAAgNsoNAEAAAAA7Grbtq2k27d9y3heT0lWoUIFjR8/XosXL5Yk/f7777p165Ykyc/Pz7yF3DfffJPnsZ988klJ0q5du3J9KzYXFxc98sgjkqQ9e/Zk22/37t2SbhdWHn/88Tznlp0WLVpIkn766ads++S0KsgeV1dX9erVS9u2bZN0+7Z0Bw4cyHW8t7e3WbQ7f/58no7t4eGhwYMHa82aNZKk0NBQm1VrmV24cEGS1KhRozwdAwAAoDSi0AQAAAAAsKt9+/aqW7euJGny5MnZrv7IcLcVJsVFUlJSju2Zn8/j4PB/fzaPHTtWkrRmzRr9/vvvOY5x57UYOXKkHB0ddevWLc2dOzfXuQ4cOFCStHXrVp08eTJLe2xsrJYsWSJJ6t69u7y8vHI99t0MGDBAknTgwAHt3bs3S3tCQoKWLl1qNzY1NdV8VpU92V3j3HjmmWckSb/++qvd9rv9nubm2IcOHZIkPfvss3nKDQAAoDSi0AQAAAAAsMvJyUkrVqyQk5OTDhw4oGeeeUZ79uxRSkqK2ef8+fNasWKFWrZsqY8++qgIs829TZs2qW3btlq5cqXNqpi0tDTt2LFDM2bMkCS1adNG3t7eZvvUqVP18MMPKzExUe3bt9eHH35orniSpMjISG3fvl3Dhw/X008/bXPMunXr6rXXXpMkLVmyRGPGjNG5c+fM9ujoaAUEBOj555+3iZswYYJq166tlJQUdevWTdu3bzcLOCdOnFCXLl104cIFWa1WLViwoJCu0G3+/v7mCil/f38FBgaaz6o6deqUunXrpps3b9qNDQkJUb169bRgwQL9/vvvSk1NNduOHz+uoUOHSpLKlCmT52JOu3btJP1fMehOBw8e1COPPKL3339fp06dMq+XYRg6ePCgJkyYIEmqUaOGuWIss7S0NB05ckQShSYAAIDccCrqBAAAAAAAxVeHDh20ZcsWDR8+XIcOHVLHjh3l7OwsT09PxcbG2qwO6t27d9ElmgcZBYeDBw9KkqxWq8qWLauIiAizKOHj46NPP/3UJq5s2bL64Ycf5O/vr19++UWvvPKKXn31VXl5eSk9PV3R0dFm34yVYJktWLBAMTExWr58udasWaM1a9aobNmycnZ2VmRkpAzDyLIiycPDQ19//bW6du2qkJAQde/eXa6urnJxcTGPZ7Va9Y9//EPNmjUr1Ovk5OSkLVu2qF27drp8+bL69u0rq9UqV1dXRUVFycXFRVu2bNFzzz1nN/78+fOaM2eO5syZI0dHR3l5eSk2NtZcceTi4qK1a9eqfPnyecrL399fEydO1OnTp3Xu3DnVq1cvS58TJ05oypQpmjJlivn7GhUVZRa8PD09tWHDBvMZWJnt2bNHcXFxqly5sjp27Jin3AAAAEojVjQBAAAAAHLUu3dv/fnnn5o7d65atWqlsmXLKjIyUlarVc2aNdOYMWP05Zdfmit2irtevXrp888/1wsvvKBmzZrJy8tLUVFR8vDwUKtWrfTWW28pKChIDRs2zBLr4+OjAwcOaOPGjerVq5eqVaum+Ph4JScny8/PTz179tT//M//aN++fVliHR0d9eGHH+rAgQMaMmSIatWqpZSUFBmGocaNG2v06NEKDAzMEte0aVMFBQVp3rx5evTRR+Xk5KSkpCTVqVNHL774ooKCgtS3b997cq0eeughHTt2TFOmTFHt2rVlGIZcXV3Vt29fHTx4UL169bIbV716dX399deaPHmynnjiCVWrVk2xsbFycnJS48aN9dJLL+nkyZP5yrty5crmyq/169dnaW/ZsqU2b96sCRMmqHnz5qpYsaKio6Pl6uqqRx99VNOmTdOpU6eyrDrLkDHmCy+8IGdn5zznBwAAUNpYDMMwijoJAAAAAACA3Nq3b5+effZZ1alTR+fOnZPFYimUcePi4szi4dmzZ/XQQw8VyrgAAAAlGSuaAAAAAADAA+WZZ55R586d9ddff2nLli2FNu6HH36omJgYjRkzhiITAABALrGiCQAAAAAAPHBOnDihRx99VI0aNdLx48fl4FCw79LGxsaqdu3aSkxM1J9//qkqVaoUUqYAAAAlm1NRJwAAAAAAAJBXDz/8sNasWaPg4GBdu3ZN1atXL9B4wcHBeumll/TYY49RZAIAAMgDVjQBAAAAAAAAAAAgX3hGEwAAAAAAAAAAAPKFQhMAAAAAAAAAAADyhUITAAAAAAAAAAAA8oVCEwAAAAAAAAAAAPKFQhMAAAAAAAAAAADyhUITAAAAAAAAAAAA8oVCEwAAAAAAAAAAAPKFQhMAAAAAAAAAAADyhUITAAAAAAAAAAAA8uX/A7z/Jac6VktoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the states from file\n", + "states = nwbfile.get_acquisition(\"task_recording\").states\n", + "state_types = nwbfile.get_lab_meta_data(\"task\").state_types\n", + "\n", + "# Plot the data\n", + "plot_states(states=states[20:100],\n", + " state_types=state_types,\n", + " marker_size=500)\n", + "plt.title(\"States\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a761eef8-db30-445e-8f43-7ff4149e4f52", + "metadata": {}, + "source": [ + "## Accessing the trials\n", + "\n", + "The `TrialsTable` is a column-based table to store information about trials, one trial per row.\n", + "The table can be accessed from the file as `nwbfile.trials`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "547c05e1-e5ba-4144-a95d-c54b5ef49899", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestateseventsactionstrials_in_stagechangedcycle_blockstarget_reward_delaycatch_percentage...num_trials_in_adaptation_blocksis_catchpunish_sound_enablednose_in_centertarget_duration_for_nose_in_centeris_warm_upnum_trials_in_test_blocksblock_typeprevious_was_violationcenter_port_cue
id
019.988039.6237[0, 1][0, 1][0, 1, 2, 3, 4]129054FalseTrue1.50.25...40FalseTrue1.0954001False40MixedFalseFalse
139.715443.5430[3, 4][3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...[5, 6, 7, 8, 9]129056FalseTrue1.50.25...40TrueTrue1.1881731False40MixedTrueFalse
243.631346.8007[6, 7][26, 27, 28, 29, 30, 31, 32, 33][10, 11, 12, 13, 14]129057FalseTrue1.50.25...40FalseTrue1.1881731False40MixedTrueFalse
346.873259.3249[9, 10][35, 36, 37, 38][15, 16, 17, 18, 19]129058FalseTrue1.50.25...40TrueTrue1.1097491False40MixedTrueFalse
459.401177.6604[12, 13, 14, 15, 16][40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 5...[20, 21, 22, 23, 24, 25, 26, 27]129059FalseTrue1.50.25...40TrueTrue1.0181441False40MixedTrueFalse
\n", + "

5 rows × 30 columns

\n", + "
" + ], + "text/plain": [ + " start_time stop_time states \\\n", + "id \n", + "0 19.9880 39.6237 [0, 1] \n", + "1 39.7154 43.5430 [3, 4] \n", + "2 43.6313 46.8007 [6, 7] \n", + "3 46.8732 59.3249 [9, 10] \n", + "4 59.4011 77.6604 [12, 13, 14, 15, 16] \n", + "\n", + " events \\\n", + "id \n", + "0 [0, 1] \n", + "1 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... \n", + "2 [26, 27, 28, 29, 30, 31, 32, 33] \n", + "3 [35, 36, 37, 38] \n", + "4 [40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 5... \n", + "\n", + " actions trials_in_stage changed cycle_blocks \\\n", + "id \n", + "0 [0, 1, 2, 3, 4] 129054 False True \n", + "1 [5, 6, 7, 8, 9] 129056 False True \n", + "2 [10, 11, 12, 13, 14] 129057 False True \n", + "3 [15, 16, 17, 18, 19] 129058 False True \n", + "4 [20, 21, 22, 23, 24, 25, 26, 27] 129059 False True \n", + "\n", + " target_reward_delay catch_percentage ... \\\n", + "id ... \n", + "0 1.5 0.25 ... \n", + "1 1.5 0.25 ... \n", + "2 1.5 0.25 ... \n", + "3 1.5 0.25 ... \n", + "4 1.5 0.25 ... \n", + "\n", + " num_trials_in_adaptation_blocks is_catch punish_sound_enabled \\\n", + "id \n", + "0 40 False True \n", + "1 40 True True \n", + "2 40 False True \n", + "3 40 True True \n", + "4 40 True True \n", + "\n", + " nose_in_center target_duration_for_nose_in_center is_warm_up \\\n", + "id \n", + "0 1.095400 1 False \n", + "1 1.188173 1 False \n", + "2 1.188173 1 False \n", + "3 1.109749 1 False \n", + "4 1.018144 1 False \n", + "\n", + " num_trials_in_test_blocks block_type previous_was_violation \\\n", + "id \n", + "0 40 Mixed False \n", + "1 40 Mixed True \n", + "2 40 Mixed True \n", + "3 40 Mixed True \n", + "4 40 Mixed True \n", + "\n", + " center_port_cue \n", + "id \n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + "[5 rows x 30 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trials = nwbfile.trials\n", + "\n", + "trials[:].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "f55fdd71-2069-4468-a605-788e250095c2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABtIAAANtCAYAAAANWO88AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hU1fr38d9O75MCBAhNkCbSq9QEEEFRQQTEAtiw4aEcVEAwoUixoCAqPoqABaSKKCoCIRTpKGDBgkKoAUKSSe/zvMh/5hAyCemhfD/XtS+Tvcq+157R2c6dtZZhsVgsAgAAAAAAAAAAAJCLQ0UHAAAAAAAAAAAAAFyNSKQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADhJpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdpBIAwBc92bNmiXDMDR69Ohc53ft2qXu3bvL09NTPj4+6tq1q1JSUvLtJysrS5MnT9ZNN90kd3d31atXT9OmTZPFYrHVsVgseuWVV1StWjW5u7urZ8+e+vvvv8tqaAAA3BDCwsJkGEauo1GjRrbyf/75R/3791flypXl4+OjQYMG6dy5cwX2+f7776tZs2by8fGRj4+PbrvtNn333Xe28piYGD3//PNq2LCh3N3dVatWLf3nP/+R2Wwus3ECAAAAV4M6derkef42DEPPPfecjh8/brfMMAytXLmywH6PHDmie+65RyaTSZ6enmrbtq1OnDiRq05Rv68rDyTSAADXtX379umDDz5Qs2bNcp3ftWuXevfurV69emnv3r3at2+fRo4cKQeH/D8aZ8+erffff1/z58/XkSNHNHv2bL322mt65513bHVee+01zZs3TwsWLNCePXvk6empO+64Q6mpqWU2RgAAbgRNmjTR2bNnbceOHTskSUlJSerVq5cMw1B4eLh+/PFHpaen6+6771Z2dna+/dWoUUOzZs3SgQMHtH//fnXv3l333nuvfvvtN0nSmTNndObMGb3xxhv69ddftXjxYn3//fd6/PHHy2W8AAAAQEXZt29frmfvjRs3SpIGDhyomjVr5io7e/aspkyZIi8vL/Xp0yffPv/55x917txZjRo1UkREhA4fPqzJkyfLzc3NVqc439eVB8Ny6Z/RAwBwHUlMTFSrVq303nvvafr06WrRooXefvttSVKHDh10++23a9q0aYXur2/fvgoMDNTChQtt5wYMGCB3d3d99tlnslgsql69uv773/9q3LhxkiSz2azAwEAtXrxYDzzwQKmODwCAG0VYWJjWrl2rgwcP5in74Ycf1KdPH8XGxsrHx0dSzuevn5+ffvjhB/Xs2bPQ1/H399frr7+eb7Js5cqVevjhh5WUlCQnJ6dijQUAAAC41owePVrffPON/v77bxmGkae8ZcuWatWqVa7vzC73wAMPyNnZWZ9++mm+dYrzfV15YEYaAOC69dxzz+muu+7K8wXa+fPntWfPHlWpUkUdO3ZUYGCgunXrZvvL9vx07NhRmzdv1l9//SVJOnTokHbs2GH7a5tjx44pKioq1/VMJpPat2+vXbt2lfLoAAC4sfz999+qXr266tatq4ceesi2BExaWpoMw5Crq6utrpubmxwcHK742W6VlZWlL774QklJSbrtttvyrWc2m+Xj40MSDQAAADeM9PR0ffbZZ3rsscfsJtEOHDiggwcPFrhyQ3Z2ttavX68GDRrojjvuUJUqVdS+fXutXbvWVqe439eVBxJpAIDr0hdffKGffvpJM2fOzFP277//Ssr56/Ynn3xS33//vVq1aqUePXoUuJ/Z+PHj9cADD6hRo0ZydnZWy5YtNXr0aD300EOSpKioKElSYGBgrnaBgYG2MgAAUHTt27e3La34/vvv69ixY+rSpYsSEhLUoUMHeXp66qWXXlJycrKSkpI0btw4ZWVl6ezZswX2+8svv8jLy0uurq56+umn9eWXX+qWW26xWzc6OlrTpk3TiBEjymKIAAAAwFVp7dq1iouL0/Dhw+2WL1y4UI0bN1bHjh3z7eP8+fNKTEzUrFmz1Lt3b/3www/q37+/7rvvPm3dulVS8b+vKw8k0gAA152TJ09q1KhR+vzzz3Ots2xl3S/lqaee0qOPPqqWLVvqrbfeUsOGDfXxxx/n2++KFSv0+eefa+nSpfrpp5+0ZMkSvfHGG1qyZEmZjQUAAEh9+vTRwIED1axZM91xxx369ttvFRcXpxUrVqhy5cpauXKlvv76a3l5eclkMikuLk6tWrW64l4KDRs21MGDB7Vnzx4988wzGjZsmH7//fc89eLj43XXXXfplltuUVhYWBmNEgAAALj6LFy4UH369FH16tXzlKWkpGjp0qVX3EfY+l3cvffeqzFjxqhFixYaP368+vbtqwULFuSqU9Tv68oD61EAAK47Bw4c0Pnz59WqVSvbuaysLG3btk3z58/Xn3/+KUl5/uK8cePGtmWi7HnhhRdss9IkqWnTpoqMjNTMmTM1bNgwVa1aVZJ07tw5VatWzdbu3LlzatGiRWkNDwCAG56vr68aNGigo0ePSpJ69eqlf/75R9HR0XJycpKvr6+qVq2qunXrFtiPi4uLbr75ZklS69attW/fPs2dO1cffPCBrU5CQoJ69+4tb29vffnll3J2di67gQEAAABXkcjISG3atElr1qyxW75q1SolJydr6NChBfZTqVIlOTk52f0uzrp0o/W7tKJ+X1cemJEGALju9OjRQ7/88osOHjxoO9q0aaOHHnpIBw8eVN26dVW9enVbQs3qr7/+Uu3atfPtNzk5Oc9ftjs6Otr+Yuamm25S1apVtXnzZlt5fHy89uzZU+B+KwAAoGgSExP1zz//5PrDFSnnf9B9fX0VHh6u8+fP65577ilSv9nZ2UpLS7P9Hh8fr169esnFxUXr1q2zO9MdAAAAuF4tWrRIVapU0V133WW3fOHChbrnnntUuXLlAvtxcXFR27ZtC/wurk6dOsX6vq48MCMNAHDd8fb21q233prrnKenpwICAmznX3jhBYWGhqp58+Zq0aKFlixZoj/++EOrVq2ytenRo4f69++vkSNHSpLuvvtuvfrqq6pVq5aaNGmin3/+WXPmzNFjjz0mSTIMQ6NHj9b06dNVv3593XTTTZo8ebKqV6+ufv36lc/gAQC4Do0bN0533323ateurTNnzig0NFSOjo4aMmSIpJz/wW/cuLEqV66sXbt2adSoURozZowaNmxo6+Pyz/UJEyaoT58+qlWrlhISErR06VJFRERow4YNkv6XREtOTtZnn32m+Ph4xcfHS5IqV64sR0fHcr4LAAAAQPnJzs7WokWLNGzYMDk55U0lHT16VNu2bdO3335rt32jRo00c+ZM9e/fX1LOd3GDBw9W165dFRISou+//15ff/21IiIiJOV8r1aY7+sqAok0AMANafTo0UpNTdWYMWMUExOj5s2ba+PGjapXr56tjnWJKKt33nlHkydP1rPPPqvz58+revXqeuqpp/TKK6/Y6rz44otKSkrSiBEjFBcXp86dO+v777/nL9gBACiBU6dOaciQIbp48aIqV66szp07a/fu3ba/fP3zzz81YcIExcTEqE6dOnr55Zc1ZsyYXH1c/rl+/vx5DR06VGfPnpXJZFKzZs20YcMG3X777ZKkn376SXv27JEk2/KPVseOHVOdOnXKcMQAAABAxdq0aZNOnDhh+wPyy3388ceqUaOGevXqZbf8zz//lNlstv3ev39/LViwQDNnztR//vMfNWzYUKtXr1bnzp1tdQrzfV1FMCwWi6VCIwAAAAAAAAAAAACuQuyRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QarlqGYcgwDNtmg1dbf2UpODhYhmEoLCysVPsNCwuTYRgKDg4u1X6vlesDAAAAAAAAAFAUThUdAIBr38GDB7V27Vr5+vpq9OjRFR0OAAAAAAAAAAClgkQarloNGzaUJHl4eFRwJOWvVq1aatiwoSpVqlTRoRTKwYMHNWXKFNWuXbvARFqlSpXUsGFD1apVq/yCAwAAAAAAAACgmEik4ar1xx9/VHQIFeaTTz6p6BDKxMiRIzVy5MiKDgMAAAAAAAAAgEJhjzQAAAAAAAAAAADADhJp17ng4GAZhqGwsDClp6dr1qxZatasmTw9PeXn56fbb79d3333nd22hmHIMAxFREQUqv+C2ickJGjSpElq1KiR3N3dFRAQoL59+2rPnj359l3Q9WNjY/XKK6+oVatW8vHxkYuLi6pWrapmzZrp6aef1ubNmwu8L8WJp7AyMjJUqVIlGYahefPmFVj3448/lmEY8vHxUXJysu18QffVas2aNerbt68CAwPl4uKiwMBA9e3bV19++WWx4k5OTtayZcs0dOhQtWjRQpUrV5arq6uqV6+ufv36Ffg+efTRRyVJkZGRttfNelw6hrCwMBmGoeDg4Hzj+PnnnzV06FDVrl1bbm5u8vPzU8eOHfX2228rLS3NbpvFixfLMAzVqVNHknTgwAENGjRI1apVk6urq+rWrauxY8cqNja2WPcGN660tDSFhYXl+94DAADXFj7bAQAAgPJzvTx/k0i7QaSnp6tnz56aMGGCjhw5IhcXF8XFxWnTpk268847C0zYlNTZs2fVqlUrvfrqq4qMjJSDg4NiYmK0fv16de3aVT/88EOR+jt16pRatGihadOm6eeff1ZSUpK8vLwUHR2tX375RR988IGmTZtWbvFcztnZWQ888IAk6dNPPy2wrrV8wIABhd4LLj09XQ888IAGDBig9evXKzo62jb+9evX67777tODDz6ojIyMIsW9YsUKPfjgg/r00091+PBhZWRkyMnJSWfPntVXX32lO++8U+PGjcvTLjAwUD4+PpIkBwcHBQYG5jq8vLwKHcNbb72l1q1b69NPP9WJEyfk5uampKQk7dq1S2PGjFG7du109uzZAvtYunSpbrvtNq1cuVIpKSnKzMzUsWPH9NZbb6lLly5KTEws0n3BjS0tLU1Tpky55j/sAQBADj7bAQAAgPJzvTx/k0i7Qbz33nvau3evFixYoISEBMXGxurEiRO6//77JUlTpkzRunXryuTazz33nFxcXBQeHq6kpCQlJiZq7969atiwodLT0zVixAhlZ2cXur+wsDCdOHFCderU0aZNm5Senq6YmBilpaXp+PHjev/999WhQ4dyi8eeoUOHSpL279+f715vJ06c0NatW3PVL4yJEydq+fLlMgxDkydP1sWLFxUTE6Po6GhNnDhRkrRs2TJNnjy5SDH7+flp3Lhx2rFjhxITExUXF6ekpCSdOXNGU6ZMkbOzs958880875OoqCjNnTtXklSzZk1FRUXlOuwl3+z55ptvNHbsWFksFt177736999/FRcXp8TERH3yySfy9vbW4cOHdf/99ysrK8tuHxcuXNBjjz2mYcOG6cSJE4qLi1NCQoLmz58vZ2dn/fbbb3rttdeKdF8AAAAAAAAAADcuEmk3CLPZrPfee09PPfWU3NzcJOUkPZYvX66uXbtKki0JU9qcnJy0ZcsWhYSEyMHBQYZhqG3btlq5cqWknOUAd+3aVej+du7cKUmaMWOGevToIUdHR0mSo6OjateuraefflqzZs0qt3jsadeunRo2bChJ+uSTT+zW+fzzz2WxWFSrVq0Clzq81OnTp21Jq/Hjx2vq1Kny9fWVlJMIe/XVVzV27FhJ0pw5c644e+tS9957r15//XV16tQp1+y4atWq6ZVXXtGMGTMk6YrLVRbXiy++KEnq0qWLVq9erZtuukmS5OLiokceeUSff/65pJzXP7/lK5OTk/XAAw/oww8/VM2aNSVJHh4eeu655/T8889LykkyAgAAAAAAAABQGE4VHQDKR82aNW37WF3KwcFBkyZNUq9evfTbb7/pl19+UdOmTUv12iNGjFCVKlXynG/atKluuukmHTt2TIcPH1anTp0K1Z81cVSUJFFZxpOfRx55RJMmTdLnn3+uV199VYZh5Cq3Luv40EMP5SnLz+rVq5WZmSk3NzeNHz/ebp1Jkybp3XffVVpamlatWmVLIJXUXXfdpRdeeEG7du1SVlaWLYFZGg4fPqwjR45IyonfXt9333232rVrp71792rZsmW22ZSXmzRpkt3z9957r+bMmaOjR48qOTm5wKU009LSck03zsrK0okTJ+Tv71/o1wrXh4SEBEk5Sez4+PgKjgYAAJQUn+0AAABA+amI52+LxaLExEQ1aNCg1L7DJpF2gwgODs43AdClSxc5OTkpMzNT+/fvL/VEWvv27fMtq169uo4dO6aYmJhC99e3b1/t2rVL48eP1x9//KH77rtPHTt2tO3TVd7x5OeRRx7R5MmTbUs4Xjrr7MCBA7bEUVGWddy/f78kqW3btvmO18/PT23atNGPP/5oq19Y586d03vvvacffvhBf/31l8xmc55lFJOTkxUbG6tKlSoVqe+CWON0cnJSt27d8q13++23a+/evfmOy9/fXzfffLPdsurVq9t+jo2NLTCRNnPmTE2ZMqUwoeMGccstt1R0CAAAoBTx2Q4AAACUn4p4/v7999/VuHHjUumLRNoNIigoKN8yNzc3BQQE6Ny5czp//nypX9vb2zvfMiennLdgRkZGoft74YUXdOjQIa1YsUIffvihPvzwQxmGoSZNmqh379564oknbMsqlkc8+alVq5a6deumiIgIffrpp7kSadbZaG3btlWjRo0K3af19Sno9ZSkGjVq5KpfGLt27dKdd96puLg42zkvLy95eHjIMAxlZWUpOjpakpSUlFSqiTRrnJUqVZKrq2u+9a40rsK8ttKVX98JEybYlsiUpLi4ONWuXVuHDx+Wn59fgW1x/crMzNSuXbt022235Xo/AQCAaxOf7QAAAED5Ka/n74SEBN1yyy2qVq1aqfXJ/y3gmuPs7Kzly5dr4sSJWrNmjXbs2KE9e/bo119/1a+//qq33npLs2fP1n//+9+KDlVDhw5VRESEVq1apfnz58vd3V2ZmZm2fboeeeSRCo4wR2ZmpoYMGaK4uDi1aNFCM2bMUOfOnXMlpv755x/bbC+LxVJRoZYLV1dXuwm96tWrKyAgoAIiwtUgIyNDHh4eCgoKkrOzc0WHAwAASojPdgAAAKD8lNfzt3UJSQcHh1Lrs/R6wlXt9OnT+ZalpaXp4sWLkpRr7zDr+qGpqan5tjWbzaUUYdE1b95cU6ZM0ebNmxUXF6dNmzapa9euysrKss1aq2j333+/3N3dFR8fr6+++kqS9MMPP+j8+fNydnbWkCFDitSf9fU5depUgfWs5fb2grNn165dioyMlKOjo7755hv16dMnz+yuqKioIsVaFNY4o6Ojc+1NdrmijgsAAAAAAAAAgJIgkXaD2Lp1a76ziLZv367MzExJUps2bWznrUvYnTx50m67hIQE2z5fFc3JyUk9evTQ+vXr5erqKovFok2bNlV0WPL29la/fv0k/W85R+s/+/TpU+TlEa2vz/79+/NNYsbFxeXaS60wrK9x5cqV8102sqD7ac3uF3emmnVcmZmZ2rp1a771rDEUdlwAAAAAAAAAAJQEibQbxIkTJ7RkyZI857OzszVjxgxJORv+NW3a1FbWvHlzSdLq1avt9vnGG28UOHuorBR0TVdXV9tMutKculkSQ4cOlZQzE+3vv/+2zUyzni+KAQMGyMnJSampqZo9e7bdOjNmzFBaWpqcnZ01YMCAQvVrMpkkSefOndO5c+fylJ86dUrz5s3Lt72Pj48k5dpfrSiaNWtm23By+vTpysrKylPn22+/1Z49eySpyDP5AAAAAAAAAAAojqsj04AyZzKZ9Mwzz+jDDz+0LdV48uRJDRkyRFu2bJGUk8C4lDVZsWHDBoWGhtrWFo2OjtbEiRM1ffp0+fr6lt8g/k/t2rU1YcIE7d69O1dS7ejRo3rooYeUnJwsBwcH3XHHHeUemz233367qlatqszMTD344INKSUmRn5+f+vbtW+S+goKCNGrUKEnSrFmzFBoaaktexcXFafLkyXr99dclSWPHji30hoqdO3eWp6enLBaLBg0apL/++kuSlJWVpQ0bNig4OFiGYeTb/tZbb5WUs/7sihUrijwuSbbE4Pbt23X//ffr2LFjknLWzv38889t78eOHTvaZvkBAAAAAAAAAFCWSKTdIJ599lm1adNGI0aMkI+Pj/z9/VWrVi1b0mPSpEnq379/rjbDhw9XSEiIJGnq1Kny9fWVv7+/qlSpolmzZmn27Nm2WWvl6dy5c5o1a5Zuu+02eXh4yN/fX+7u7qpfv75WrlwpwzD05ptv2mY4VTRHR0c9+OCDkmRbcnHQoEFydXUtVn8zZszQoEGDZLFYNHXqVAUEBMjf318BAQG2ZOiQIUM0bdq0QvdpMpn0xhtvSJK2bdumhg0bytvbW15eXurdu7fMZrMWLVqUb/ubb75ZPXr0kCQNHjxYPj4+qlOnjurUqaO33367UDH07dtXc+bMkWEYWrt2rerWrSs/Pz95eXnp4YcfVnx8vJo2baqVK1faZh0CAAAAAAAAAFCWSKTdIFxcXLR582bNmDFDDRs2VFpamkwmk21fMXtJF0dHR61fv15TpkxRo0aN5OLiIsMw1KtXL23cuFHjxo2rgJHkLJE4YcIEdenSRTVr1lRKSoqknGTOo48+qn379mn06NEVElt+Ll/GsTjLOlq5uLho+fLlWrVqlfr06aOAgAAlJCQoICBAffr00Zo1a7R06VI5OzsXqd+nn35a69evV3BwsLy8vJSZmamgoCA9//zzOnToUK5lP+1ZtWqVxowZowYNGigjI0ORkZGKjIws0nKPY8aM0f79+/Xwww+rZs2aSk5Olru7uzp06KC33npL+/btU/Xq1Ys0LgAAAAAAAAAAisuwWCyWig4CZSc4OFhbt25VaGiowsLCKjoc4JoUHx8vk8mk6OhoBQQEVHQ4qCAZGRn69ttvdeeddxY5UQ0AAK4+fLYDAAAA5ae8nr+t3+WazWb5+PiUSp/MSAMAAAAAAAAAAADsIJEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALDDqaIDAK5mo0aN0vLly4vUZu7cuRo8eHAZRQQAAAAAAAAAAMoLibTrXEREREWHcE0zm806d+5ckdqkpKSUUTQAAAAAAAAAAKA8kUgDCrB48WItXry4osMAAAAAAAAAAAAVgD3SAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSANwwgoODZRiGwsLCKjoUAAAAAAAAAMA1gEQaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAHXmODgYBmGobCwMGVkZOjNN99UmzZt5OvrK8MwFBERYav766+/asSIEapfv748PDzk5eWlZs2a6eWXX1Z0dHSevp9//nkZhqH7778/T1lGRoa8vb1lGIYqV64si8WSp84dd9whwzA0efLkXOePHTum2bNnq3fv3mrQoIE8PT3l5eWlW265RaNHj9aJEydKZbxZWVl655131KpVK3l6esrf31/BwcFatWpVIe4sAAAAAAAAAAC5OVV0AACKJzU1VcHBwdq5c6ecnJxsSS6r1157TRMmTFB2drYkycPDQxkZGfrll1/0yy+/aNGiRVq/fr1atmxpaxMSEqL58+crIiJCFoslV3979+5VYmKiJCk6Olq//PKLmjVrZivPyMjQjh07JEndu3fPFeujjz6qrVu3SpJcXFzk7e2t2NhYHTlyREeOHNHixYv1zTffqHPnzsUeb1pamu69915t2LBBkuTg4CAXFxdt27ZNW7du1UsvvVS0GwwAAAAAAAAAuOExIw24Rr377rs6fPiwFi1apPj4eMXExOjChQtq1qyZFi5cqJdeekkeHh569dVXdfbsWSUlJSk5OVn79+9X9+7ddfbsWd1zzz225Jj0v9lfFy9e1KFDh3Jdb8uWLZIkHx8fSVJ4eHiu8j179ig5OVmurq667bbbcpW1aNFC7777rv766y+lpKQoOjpaaWlp2rNnj3r37i2z2azBgwcrJSWlWOOVpAkTJmjDhg0yDEPTp09XbGysYmNjFRUVpWeeeUazZ8/WwYMHi32/AQAAAAAAAAA3HhJpwDUqMTFRS5cu1fDhw+Xu7i5JCggIkLOzs8aNGydJWrVqlSZOnKiqVatKkhwdHdW6dWtt2LBBrVu31qlTp/TRRx/Z+vT391fz5s0l5U2UWX8fPXp0geW33Xab3NzccpW9/fbbevbZZ1W/fn05OOT8Z8fJyUnt2rXTN998o2bNmunMmTNavXp1kcfr7++vM2fO6J133pEkTZo0SS+//LIt4VelShW99957GjJkiMxm8xXvq5Qzuy0+Pj7XAQAAAAAAAAC48ZBIA65RTZo00d13353n/OrVqxUXF6eWLVvqjjvusNvWyclJQ4YMkSTbUohWISEhknInytLS0rRr1y55enpq7NixtiUTs7KybHWsM9as7QvL0dFRvXv3liTb0pD25DdeKSdhmJmZKXd3d1sS8XJhYWGFjmnmzJkymUy2o2bNmoVuCwAAAAAAAAC4fpBIA65RnTp1snv+xx9/lCQdOXJEVatWzfeYOnWqJCkyMjJXe+v+Ztu3b7clynbu3KnU1FR17txZJpNJ7du3l9ls1oEDByTl7F+2a9cuSfkn0rZv367hw4erUaNG8vLykmEYtuO1116TJJ06darI45Wk/fv3S5LatGljm4l2uQYNGigoKCjfPi41YcIEmc1m23Hy5MlCtQMAAAAAAAAAXF+cKjoAAMVTpUoVu+fPnDkjKSe5lZqaesV+kpOTc/3etWtXOTo6Kj4+Xvv27VOHDh1ss82sSbbu3btr+/btCg8PV7t27bRz506lpaXJ3d1d7du3z3ONl156yZYsk3Jmofn5+cnFxUVSzrKNSUlJSkpKKvJ4Jen8+fOSdMVEWY0aNXT69OkC60iSq6urXF1dr1gPAAAAAAAAAHB9Y0YacI1ydHS0e946i2zw4MGyWCxXPI4fP56rvY+Pj1q3bi3pf8s7Wv95aSLNXnmnTp1syTGrjRs32pJozz77rH755RelpaUpJiZGUVFRioqK0pgxYyRJFoulyOMFAAAAAAAAAKCskEgDrjNVq1aVlHfJxqK4dJ+0pKQk7d27V76+vmrVqpUkqUOHDnJ3d9ePP/6o9PT0PIm2S33xxReSpDvuuEPvvvuubr311jxJsaioqGLHKv1vttqVZpsVZjYaAAAAAAAAAABWJNKA64x1L7EDBw7o7NmzxerDmkjbuXOnNm/erIyMDHXr1k0ODjn/yXBxcVGnTp2UnJysTZs2ad++fbnaXcq6v1jLli3tXstisdgSccXVpk0bSTl7pSUmJtqt8/fffxe4BxsAAAAAAAAAAJcjkQZcZwYOHChfX19lZGRo7NixBS6XmJ2drbi4uDznO3fuLGdnZ6WkpGjGjBmS8s42sybNpk6dqszMTHl5edkSWpcymUySpEOHDtmNYcGCBfr3338LNbb8DBgwQI6OjkpJSdEbb7xht87UqVNLdA0AAAAAAAAAwI2HRBpwnfH19dXbb78tKWdZxbvuukt79uxRdna2pJzk2ZEjR/Tmm2+qSZMm+uabb/L04enpqXbt2kmS9uzZIylvIs36u7W8S5cucnJyytNX7969JUnfffedpk2bpqSkJElSXFycZsyYoeeff14BAQElGnNQUJCee+45SdK0adM0c+ZMJSQkSJIuXLigkSNH6rPPPrMl9QAAAAAAAAAAKAwSacB1aNiwYXr//ffl4uKi7777Th06dJCHh4cqVaokNzc33XLLLRo3bpz++OMPGYZht49LE2dVqlTRrbfemqu8TZs28vb2tv1ub1lHSRo6dKi6dOkiSXrllVfk7e0tf39/BQQE6OWXX1bv3r31zDPPlHTImj17tnr27Kns7GxNnDhRfn5+8vf3V2BgoN5991299NJLatGiRYmvAwAAAAAAAAC4cZBIA65TTz/9tP7880+NGzdOzZs3l6urq+Li4mxLMD7//PPauHGjhgwZYrf9pYkxe0kyJycnW4IsvzqS5OzsrB9++EGhoaFq0KCBnJ2dZbFY1K5dO73//vtat26dHB0dSzhayc3NTd99953mzp2rFi1ayMXFRRaLRV26dNGKFSs0a9asEl8DAAAAAAAAAHBjMSwFbaAEAFB8fLxMJpOio6NLvAwlrl0ZGRn69ttvdeedd8rZ2bmiwwEAACXEZzsAAABQfsrr+dv6Xa7ZbJaPj0+p9MmMNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOp4oOAAAAAAAAAAAAANeev//+WwkJCfmWe3t7q379+uUYUekjkQYAAAAAAAAAAIAi+fvvv9WgQYMr1vvrr79Up06dsg+ojLC0IwAAAAAAAAAAAIqkoJloxal3tSKRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACww6miAwBwdVi7dq0OHjyoFi1aqF+/fhUdTqk4fvy4Fi9eLEkKCwur0FgAAAAAAAAAANceZqQBkJSTSJsyZYrWrl1b0aGUmuPHj2vKlCmaMmVKRYcCAAAAAAAAALgGkUgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg24SkVERGjgwIEKCgqSq6urKlWqpB49emjRokXKysrKUz8sLEyGYSg4OFiStGLFCnXr1k3+/v7y9PRU69atNX/+/DxtIyIiZBiGlixZIklasmSJDMPIdURERJR4PFFRUXrhhRfUpEkTeXp6ytPTU02aNNGLL76oc+fO5XsPrDEUxF6cderUUUhISJ461mP48OElHhMAAAAAAAAA4PrmVNEBAMhr7NixeuuttyTlJIBMJpPi4uIUHh6u8PBwffbZZ1q7dq28vb3ttn/ppZf02muvyTAM+fr6KjU1VT/99JN++uknffPNN/rqq6/k6uoqSXJxcVFgYKDMZrNSU1Pl5uYmk8mUqz8XF5cSjWfr1q3q16+f4uLiJEmenp6SpN9//12///67PvroI61bt06dO3cu0XUuVblyZcXHxys2NlaSFBgYmKv88jECAAAAAAAAAHA5ZqQBV5n58+fbkmgjRozQmTNnFBsbK7PZrLfeektOTk4KDw/Xk08+abf9wYMH9dprr2nkyJE6d+6cYmJiFBsbq2nTpskwDG3YsEETJkyw1e/YsaOioqI0ePBgSdLgwYMVFRWV6+jYsWOxx3Py5ElbEu2WW27Rjh07lJiYqMTERG3btk0NGzZUbGys7r33Xp0+fbrY17ncvn37tGbNGtvvl49p7ty5pXYtAAAAAAAAAMD1iUQacBVJSUlRaGioJGnIkCH64IMPVLVqVUk5s7hGjx6tOXPmSJKWL1+uAwcO5OnDbDbrkUce0TvvvKPKlStLknx8fDRp0iS9/PLLkqR33nlHZ86cKY8hacaMGYqLi5Ofn582b96sTp062cq6dOmiTZs2ycfHRzExMZo5c2a5xAQAAAAAAAAAQGGQSAOuIhs3blRMTIyknD3P7Hn22WdVrVo1SdLSpUvt1nnllVfsnn/hhRfk7u6uzMxMrV69uuQBX4HFYtGKFSskSU8//bQtKXipGjVq6Omnn5YkffHFF2UeU2GkpaUpPj4+1wEAAAAAAAAAuPGQSAOuIvv375ck1axZUw0aNLBbx9HRUd27d89V/1I1a9bUzTffbLetj4+PWrdunW/b0nbs2DFbYrBnz5751rv99tslSRcvXtSxY8fKPK4rmTlzpkwmk+2oWbNmRYcEAAAAAAAAAKgAJNKAq8j58+clSUFBQQXWq1GjRq76l7pSW2u5vbal7dJrFBSXdTyXt6koEyZMkNlsth0nT56s6JAAAAAAAAAAABXAqaIDAICrjaurq1xdXSs6DAAAAAAAAABABWNGGnAVqVKliiTp1KlTBdazllvrX+r06dMFtrWW22tb2i69RkFjurTs0jZOTv/L9aemptptazabSxIiAAAAAAAAAAD5IpEGXEXatGkjKSex9Ndff9mtk5WVpS1btkiS2rZtm6f85MmT+ueff+y2TUhI0IEDB3Jdy8rBIec/BxaLpXjB23HTTTfJ399fkrR58+Z8623atEmSFBAQoJtuusl23s/Pz/Zzfssr7tmzJ99+rWOSSndcAAAAAAAAAIAbA4k04Cpy++23KyAgQJIUFhZmt84HH3ygM2fOSJKGDBlit860adPsnn/zzTeVkpIiJycnDRgwIFeZj4+PJCkuLq4YkdtnGIYGDx4sKSfuqKioPHXOnDmjDz74QFLe8TRo0EDu7u6SpNWrV+dpm52drZkzZ+Z7feuYpNIdFwAAAAAAAADgxkAiDbiKuLu72xJoy5Yt09NPP61z585JkpKTkzVv3jyNHj1akjR48GC1bt06Tx8mk0lLlizRqFGjFB0dLSlnJtqMGTM0depUSdJzzz2n6tWr52p36623SpK2b9+uP/74o9TGNHHiRPn6+iomJkY9e/bUzp07bWU//vijevbsqbi4OPn7+2v8+PG52jo7O9sSfjNmzNCKFSuUnp4uSfrzzz/Vv39/HT58ON9rN2jQQC4uLpKkjz76iFlpAAAAAAAAAIAiIZEGXGVGjhypMWPGSMqZxVWtWjX5+/vLZDJp1KhRysjIUEhIiD788EO77Vu0aKEXX3xR8+bNU5UqVeTv7y8/Pz+9/PLLslgs6tmzp2bNmpWn3YABA1S5cmXFxsaqcePGqly5surUqaM6depo9+7dxR5PjRo1tHbtWplMJv3222/q1KmTvLy85OXlpc6dO+vIkSPy9fXV2rVrFRQUlKf9zJkzVb16dSUkJGjw4MHy8vKSyWRSo0aNtGXLFq1Zsybfa3t4eOiRRx6RJL344ovy8vJS7dq1VadOHY0bN67YYwIAAAAAAAAA3BhIpAFXoTlz5ig8PFwDBgxQYGCgEhMT5e3trZCQEH388cfauHGjvL29820/e/ZsffHFF+rcubMsFotcXFzUokULzZ07V99//73c3NzytPHz89O2bdv0wAMPKCgoSGazWZGRkYqMjFRqamqJxtOtWzcdOXJE//3vf9W4cWNlZ2fLYrGocePGGjdunI4cOaIuXbrYbVujRg3t2bNHTzzxhC3R5uXlpaFDh+qnn35St27dCrz2u+++q7CwMDVt2lSSdOLECUVGRtpm6wEAAAAAAAAAkB+nig4AgH0hISEKCQkpdvvBgwfb9icrrEaNGmnZsmXFvmZBqlWrpjfeeENvvPFGkdvWqFEj3xl4kgpcstHV1VWhoaEKDQ0t8nUBAAAAAAAAADc2ZqQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADYwR5pAK5o+fLlGjVqVJHaDB48WHPnzi2jiAAAAAAAAAAAKHsk0oDrRFhYmMLCwsqk75SUFJ07d65Ibcxmc5nEAgAAAAAAAABAeSGRBuCKhg8fruHDh1d0GAAAAAAAAAAAlCv2SAMAAAAAAAAAAADsIJEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgh1NFBwAAAAAAAG5sf//9txISEio6DAAAABTBkSNHKjqEckEiDQAAAAAAVJi///5bDRo0qOgwAAAAUEa8vb0rOoQSIZEGAAAAAAAqDDPRAAAArm2fffaZGjdubLfM29tb9evXV0ZGRjlHVXpIpAEAAAAAAAAAAKBYGjdurFatWlV0GGXGoaIDAAAAAAAAAAAAAK5GJNIAAAAAAAAAAAAAO0ikAQAAAAAAAAAAAHaQSAMAAAAAAAAAAADsIJEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgB4k0AAAAAAAAAAAAwA4SaTeIOnXqyDAMLV68uFyvm5WVpTlz5qhly5by9PSUYRgyDENr164t1zjKQ1hYmAzDUHBwcIW0v14EBwfLMAyFhYVVdCgAAAAAAAAAgBucU0UHgIpnTVgMHz5cderUKdW+R48erfnz50uSXFxcFBgYKElyc3Mr1esAAAAAAAAAAACUNhJpN4h69erJzc1NJpMpT9mUKVMk5cwEKs1EWkJCgj744ANJ0muvvaZx48bJMIxS6/9qU6lSJTVs2FC1atWq6FAAAAAAAAAAAEApIJF2g9i8eXO5X/OPP/5QRkaGJOmZZ565rpNokjRy5EiNHDmyosMAAAAAAAAAAAClhD3SUGaSk5NtP3t5eVVgJAAAAAAAAAAAAEVHIq2MNG3aVIZh2PYHu9SuXbtkGIYMw9D999+fpzwjI0Pe3t4yDCPXTLLdu3frpZdeUpcuXVS7dm25ubnJ19dXHTp00OzZs5WYmJhvPHXq1JFhGFq8eLHt3PDhw3PNEgsJCbHFZRhGsZd5XLx4sQzDUHBwsO3cpf1eet5qzZo16tu3rwIDA217qfXt21dffvllvtexxj98+HBZLBZ99NFH6ty5swICAvKMtTiWL1+uPn36KDAwUM7OzvL19VX9+vV1zz336N1331Vqamqu+mFhYfmOz+q7777T7bffLl9fX3l5eal58+Z67bXXbDP3ruT48eMaPXq0mjRpIi8vL3l4eKhRo0YaNWqUTpw4UZLh5nLp+yUhIUETJkxQw4YN5e7urkqVKqlfv37as2dPgX1kZWXp448/Vvfu3VWpUiW5uroqKChIAwcOVERERLFjW7JkiZydnWUYhl5++eU85evXr9eAAQMUFBQkV1dX+fn5qWvXrnr//feVnp5e7OsCAAAAAAAAAG48LO1YRkJCQvTrr78qPDw8z3J/4eHhtp8jIiJksVhyJbT27t2rxMREubq6qlOnTrbzt912m+1nDw8PeXh4KDY2Vnv27NGePXv0ySefaMuWLapSpUqhYjSZTAoMDNS5c+ckSX5+fnJxcbGVV65cuWiD/j/u7u4KDAxUenq6YmNjJUmBgYG2cn9/f9vP6enpGjp0qJYvXy5JcnBwkMlkUnR0tNavX6/169dryJAhtuSJPRaLRQMHDtTq1att7R0cSpYjfuyxx7Ro0SLb715eXsrIyNDRo0d19OhRff3117rrrruKlGwMCwuz7UcnSb6+vvr999/10ksvaf369blea3s+//xzPf7440pLS5Mkubq6ysHBQX/++af+/PNPLVq0SKtWrVKvXr2KNtgCxMbGqm3btvrzzz/l4uIiNzc3Xbx4UV999ZW+/vprffjhh3rsscfytDObzerXr58tYebo6Chvb2+dPXtWq1at0qpVqzRu3Di9/vrrRYpn1qxZmjBhghwcHDR//nw999xztrKUlBQNHTpUq1atsp3z8fGR2WzW9u3btX37dn3yySf69ttv5efnV7wbAgAAAAAAAAC4oTAjrYyEhIRIkrZu3ars7OxcZVu2bJGU8yX/xYsXdejQIbvlHTp0kJubm+383XffreXLl+vs2bNKSkpSTEyMkpOTtWbNGjVs2FC///67nn766ULHOHfuXEVFRdl+X7NmjaKiomzHvn37ijbo/zN48GBFRUVpzZo1tnOX9nvp+YkTJ2r58uUyDEOTJ0/WxYsXFRMTo+joaE2cOFGStGzZMk2ePDnf661Zs0ZfffWV3njjDcXGxiomJkZms1l33HFHseLfsWOHFi1aJAcHB82ePVsXL15UQkKCkpKSFB0drQ0bNmjYsGG5ko5Xsm7dOlsSbeDAgTpx4oRiY2MVHx+vd999V7t379b777+fb/uNGzdq6NChysrK0osvvqhjx44pJSVFSUlJ+uOPPzRw4EAlJCTY+i4tU6ZM0fnz57VixQolJSXJbDbr999/V7du3ZSdna2nnnpKP/30U552jz/+uCIiIuTi4qJ58+YpPj5esbGxOnPmjC3x9sYbb2jBggWFisNisWjUqFGaMGGCXF1dtXz58lxJNEkaMWKEVq1apbp16+rzzz+X2WyW2WxWcnKyvvrqK9WtW1e7d++2m/gDAAAAAAAAAMAuC8pETEyMxcHBwSLJcuDAAdv51NRUi7u7u8XDw8Mybtw4iyTLm2++mattSEiIRZIlLCys0Nc7deqUxdXV1WIYhiUyMjJPee3atS2SLIsWLcpTJskiybJly5ZCX68wtmzZYus7v5idnJwskiwTJkywW2fs2LEWSRZnZ2fLmTNncpUNGzbM1v+8efNKLe7Zs2dbJFl69epVpHahoaEWSZZu3brlKbvllltsZVlZWXnKFyxYYBvL5e2zsrIs9evXt0iyfPDBB/le/5577rFIsowaNapIcdtjfb9IsmzatClPeXJysi2mO++8M1fZ7t27bW3zi3fAgAEWSZZKlSpZUlJScpV169bNIskSGhpqsVgslrS0NMugQYMskiwmk8nu+3Tbtm0WSZYqVapYTpw4YfeaJ0+etHh6elokWX7++ecr34RLmM1miyRLdHR0kdrh+pKenm5Zu3atJT09vaJDAQAApYDP9qvHgQMHbP8PwcHBwcHBwcHBce0dl+ZA8lNez9/W73LNZnOp9cmMtDLi5+en5s2bS8q9lOPu3buVkpKiTp06qXfv3nnK09LStGvXLkn/m9VWGEFBQWrevLksFot27txZGkMoc6tXr1ZmZqbc3Nw0fvx4u3UmTZokV1dXZWRk5Fqy71J+fn566qmnSi0uX19fSdKFCxeUlZVV4v4OHz6s33//XVLOeOwtO/nkk08qKCjIbvtt27bp77//VqVKlfTEE0/ke52hQ4dKkjZs2FDimK06deqkHj165Dnv7u6uF154QZL0/fffy2w228qsy3TWqFEj33inTZsmSYqOjtbGjRvzvX58fLx69+6tFStWqFq1atq2bZvdPegWLlwoSXrooYdUs2ZNu33VqFHD9u/Ule5RWlqa4uPjcx0AAAAAAAAAgBsPibQy1L17d0m5E2XWn7t3766OHTvK1dVV27dvtyVsdu7cqdTUVLm7u6tDhw65+svOztbSpUt1zz33qFatWnJ3d5dhGLZj7969kqRTp06Vx/BKbP/+/ZKktm3bysfHx24dPz8/tWnTJlf9y7Vt27ZIyyxeSY8ePeTm5qaff/5ZXbp00cKFC3Xs2LFi92eN28nJSV26dLFbx8HBwW6CSJJ+/PFHSTn7jlWvXl1Vq1a1ezz55JOSpMjIyGLHejnre7igsuzs7FzLO1rHGxISku9edY0bN7YlDvN7Xc+ePatu3bppy5YtatCggXbu3KlmzZrZrWu9RwsXLsz3/lStWlWbNm2SdOV7NHPmTJlMJtuRX3IOAAAAAAAAAHB9c6roAK5nISEhevPNN7V9+3ZlZmbKycnJtv9Z9+7dbcmyrVu3at++ferQoYOtvGPHjrmSQ8nJyerbt6+tXJJcXFzk7+8vZ2dnSVJMTIwyMjKUlJRUjqMsvvPnz0tSvjOxrGrUqJGr/uWqVKlSqnHVq1dPH330kZ5++mnt2rXLNkOwcuXKCgkJ0YMPPqh77rlHhmEUqj9r3JUqVZKrq2u+9azjvNyZM2ckSRkZGTp37twVr5eSklKouAqjoNfm0rJLX5uivK6nT5/O93X9f//v/0mS3NzctGnTpgKTWdZ7VNjZY8nJyQWWT5gwQWPHjrX9Hh8fTzINAAAAAAAAAG5AzEgrQ127dpWTk5MSExO1d+9eJScna8+ePTKZTGrdurWkvLPWrP+8fFnHV199VVu2bJG7u7veeustRUZGKjU1VRcvXlRUVJSioqLUvn17SZLFYimvIV4VHB0dS73Phx56SJGRkVqwYIEGDx6smjVr6sKFC1qxYoX69eunbt26ldtyf9bZiu3bt5fFYinUcT3o27evTCaTUlNT9eijjxaY/LLeo/fff79Q92fx4sUFXtvV1VU+Pj65DgAAAAAAAADAjYdEWhny9va2JczCw8O1Y8cOpaenq2vXrrbkjzVhFh4erqSkJNvyjJcvqffFF19Ikl555RWNHj1atWrVyjMjKioqqkzHU9qsM8mutBSltby0Z55dib+/v5566il98cUXOnHihI4eParx48fLMAxt375dYWFhherHGnd0dLTS09PzrXf69Gm756tWrSqpdJdsLKz8Yrq87NLXprRe19atW2vTpk3y8/PT5s2bddddd+U727Ii7xEAAAAAAAAA4PpFIq2MXZoou3RZR6v27dvLw8NDO3fu1ObNm5WRkSEvLy+1bds2Vz8nT56UJLVs2dLudY4fP66jR48WK0ZrQq68ZzJduveZ2Wy2WycuLi7XXmoVqV69epo5c6YefPBBSdLGjRsL1c46zszMTG3fvt1unezsbEVERNgt69Spk6ScRGl++4mVlUuXEs2vzMHBIdf70jreLVu2KDs7227bP/74w5aIK+h1bdOmjTZv3ix/f39FRESoT58+SkxMzFPPeo+++eabK4wIAAAAAAAAAIDCI5FWxqxJs127dum7777LdU7K2eesU6dOSklJ0YwZMyRJnTt3lpNT7u3rTCaTJOnQoUN2rzN+/Phix2hdti4uLq7YfRTHgAED5OTkpNTUVM2ePdtunRkzZigtLU3Ozs4aMGBAucSVlpZWYLm7u7uknARSYTRr1kyNGzeWlLNEp73k0scff5zvDK6QkBDdfPPNkqQxY8YUOKtNytkrr7Ts2LHDboIvNTVVb775piTpjjvukK+vr63sgQcekJQzY+2jjz6y2+8rr7wiKWffuJ49exYYQ8uWLRUeHq5KlSpp+/bt6t27txISEnLVGTFihCTp119/1fvvv19gf0lJSVe8hwAAAAAAAAAASCTSylynTp3k4uKi1NRUHTp0SJUrV1bTpk1z1bEm1vbs2SMp7/5oktS7d29J0vTp07VmzRplZmZKko4dO6YHH3xQK1askJ+fX7FivPXWWyVJn3/+eYH7UJW2oKAgjRo1SpI0a9YshYaG2pJ5cXFxmjx5sl5//XVJ0tixY1WtWrVyiWvkyJEaNGiQVq9erfPnz9vOJyYmasGCBfrkk08kSXfddVeh+3z11Vcl5czSevDBB21Js9TUVC1YsEAjR47MlYy6lJOTkxYsWCAnJyft2LFDXbt2tc1etPr333+1YMECtW3bVu+9915Rh5wvk8mkAQMGaNWqVbb33B9//KG77rpLf/zxhxwdHTV16tRcbdq1a2dLej7//POaP3++7X0VFRWlJ598UitXrpQkTZs2TW5ubleMo3nz5goPD1flypX1448/6o477si1R123bt306KOPSpKee+45jRkzRv/++6+tPC0tTbt379aLL76o2rVr53pdAQAAAAAAAADIlwVlrkuXLhZJFkmWgQMH5infvXu3rVySZe/evXnqHD9+3BIYGGir4+TkZDGZTLbfZ8yYYenWrZtFkiU0NDRP+9q1a1skWRYtWpSn7NNPP7X14+zsbAkKCrLUrl3b0qlTpxKNe8uWLbZ+85OWlmYZNGiQrZ6Dg4PFz8/P4uDgYDs3ZMgQS3p6ep62w4YNs0iyDBs2rERx5tev9fDy8rL4+vrmOte5c2dLYmJirnahoaEWSZZu3brZ7ffll1/O1Yefn5/FycnJIsnSpUsXy4QJEwps/+WXX1q8vb1zvVYBAQEWV1fXXP1Onz69xPfA+n6ZM2eOpWHDhhZJFldX11zvOcMwLP/v//0/u+3j4uJs70fr+9XPz89iGIbt3Lhx4+y2Leh9/Ntvv9n+PWjXrp0lNjbWVpaWlmZ54okn8rx2l7+fJFlOnTpVpPthNpstkizR0dFFaofrS3p6umXt2rV2/3sEAACuPXy2Xz0OHDiQ63mdg4ODg4ODg4Pj2joOHDhwxWe+8nr+tn6XazabS61PZqSVg0tnmF26rKNVmzZtbMsr+vj4qFWrVnnq1K5dW/v379fjjz+u6tWrS5Lc3NzUt29fbdiwQRMmTCh2fA8//LA+/fRTde7cWR4eHjp79qwiIyPzXWqwNLm4uGj58uVatWqV+vTpo4CAACUkJCggIEB9+vTRmjVrtHTpUjk7O5d5LFaTJ0/WvHnz1L9/fzVq1EhOTk5KTExUlSpVdPvtt+vjjz9WRESEPD09i9Tv9OnT9c0336h79+7y8fFRWlqaGjdurFmzZmnz5s1ycXEpsH2/fv109OhRhYaGql27dvLy8lJcXJxcXV3VvHlzPfHEE/ryyy/1wgsvlGT4ufj5+Wnv3r0aP368atWqpbS0NPn7++vuu+/Wjz/+qCeffNJuO5PJpM2bN2vhwoUKDg6Wt7e3EhMTVbVqVQ0YMEBbtmyxzTYsiltuuUURERGqVq2a9u7dq549eyo2NlZSznvpww8/1M6dOzV8+HDVq1dPWVlZttcuODhYr7zyig4fPqygoKAS3RcAAAAAAAAAwI3BsFgslooOAsDVpU6dOoqMjNSiRYs0fPjwig6nwsXHx8tkMik6OloBAQEVHQ4qSEZGhr799lvdeeed5ZrcBwAAZYPP9qvHTz/9pNatW1d0GAAAACimAwcO2J0gdKnyev62fpdrNpttE5hKihlpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdjhVdAC4ut13333auXNnkdqsWbNGHTt2LKOICu9ajr00tG3bVidPnixSm3379qlmzZplFBEAAAAAAAAAANcWEmkoUExMjM6dO1ekNunp6WUUTdFcy7GXhgsXLhR5/FlZWZKk48ePl0FEAAAAAAAAAABcW0ikoUAREREVHUKxXcuxlwaSYQAAAAAAAAAAlAx7pAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAACoMN7e3hUdAgAAAErgen+ec6roAAAAAAAAwI2rfv36+uuvv5SQkFDRoQAAAKCIvL29Vb9+/YoOo0yRSAMAAAAAABXqev/yBQAAANculnYEAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBuCGYRiGDMNQRERERYcCAAAAAAAAALgGOFV0AEBFW7t2rQ4ePKgWLVqoX79+FR0OAAAAAAAAAAC4SjAjDTe8tWvXasqUKVq7dm1FhwIAAAAAAAAAAK4iJNIAAAAAAAAAAAAAO0ikAQAAAAAAAAAAAHaQSMN1afny5erTp48CAwPl7OwsX19f1a9fX/fcc4/effddpaamKiIiQoZhaMmSJZKkJUuWyDCMXEdERESevtesWaO+ffsqMDBQLi4uCgwMVN++ffXll1/mG8/w4cNlGIaGDx8ui8WiBQsWqF27dvLx8ZGPj486d+6spUuXluo9OHXqlMaMGaMmTZrI09NTrq6uql69ulq3bq0xY8Zo3759dtulpqbq7bffVseOHeXn5yc3NzfVrl1bQ4cO1cGDB/O9XkH3zCo4OFiGYSgsLKzA9gkJCZo0aZIaNWokd3d3BQQEqG/fvtqzZ0+BY46NjdULL7ygevXqyc3NTdWqVdPAgQN14MCBAtsBAAAAAAAAAGCPU0UHAJS2xx57TIsWLbL97uXlpYyMDB09elRHjx7V119/rbvuusuWBDObzUpNTZWbm5tMJlOuvlxcXGw/p6ena+jQoVq+fLkkycHBQSaTSdHR0Vq/fr3Wr1+vIUOGaMmSJXJ2ds43viFDhmj58uW29nFxcfrxxx/1448/atOmTVq4cKEMwyjRPTh06JBCQkIUGxsrSXJ0dJSPj4+ioqJ09uxZ/fTTT4qNjdXixYtztTt9+rR69+6tX3/9VZLk7OwsDw8PnThxQp9++qk+//xzvf3223r++edLFF9Bzp49q1atWuno0aNyc3OTg4ODYmJitH79em3cuFFff/21evXqlafd8ePHFRwcrMjISEk5r11ycrJWrVqldevWaeXKlWUWMwAAAAAAAADg+sSMNFxXduzYoUWLFsnBwUGzZ8/WxYsXlZCQoKSkJEVHR2vDhg0aNmyYXFxc1LFjR0VFRWnw4MGSpMGDBysqKirX0bFjR1vfEydO1PLly2UYhiZPnqyLFy8qJiZG0dHRmjhxoiRp2bJlmjx5cr7xrV27VitWrNC0adMUGxurmJgYnTt3TiNHjpQkLVq0SO+8806J78N///tfxcbGqlWrVtq1a5cyMjIUExOj1NRU/fXXX3rjjTfUpEmTXG2ysrI0YMAA/frrrzKZTPrss8+UmJiouLg4/fPPP+rbt6+ys7M1atQofffddyWOMT/PPfecXFxcFB4erqSkJCUmJmrv3r1q2LCh0tPTNWLECGVnZ+eJfeDAgYqMjJSfn59WrFihpKQkmc1m/fbbb2rfvr2GDRtWZjEDAAAAAAAAAK5PJNJwXdm5c6ckqWfPnnrxxRfl7+9vKwsICFCvXr20ePFiVa9evUj9nj59WnPnzpUkjR8/XlOnTpWvr68kyc/PT6+++qrGjh0rSZozZ47Onj1rtx+z2axJkyZp0qRJ8vHxkSRVrlxZ77zzjh5++GFJ0pQpU5Samlqk+C5nvQ/z589Xhw4dbDPcXFxcVL9+ff33v//VCy+8kKvNqlWrbEsnrlixQg899JBtRl7dunX15Zdfqn379rJYLHrxxRdLFF9BnJyctGXLFoWEhMjBwUGGYaht27a2GWWRkZHatWtXrjarV6/W/v37JUkrV67UwIED5eSUM+H2lltu0ffff6+AgIBCx5CWlqb4+PhcBwAAAAAAAADgxkMiDdcVa3LrwoULysrKKrV+V69erczMTLm5uWn8+PF260yaNEmurq7KyMjQqlWr7NZxd3fXuHHj7Ja98sorkqSYmBht3LixRPFa70N+CT17rEtW3nbbbXaXTnRyclJoaKgk6ddff9Uvv/xSohjzM2LECFWpUiXP+aZNm+qmm26SJB0+fDhX2RdffCFJ6tSpk3r06JGnrYeHR5GSfzNnzpTJZLIdNWvWLMoQAAAAAAAAAADXCRJpuK706NFDbm5u+vnnn9WlSxctXLhQx44dK3G/1tlObdu2tc0ku5yfn5/atGmTq/7l2rRpk2/7+vXrq0aNGgW2L6y+fftKkoYNG6b//ve/2rp1q5KTkwtsY71mz549860TEhIiR0fHUokxP+3bt8+3zDqTMCYmJtd5ayzdu3fPt21BZZebMGGCzGaz7Th58mSh2wIAAAAAAAAArh8k0nBdqVevnj766CN5eXlp165deuKJJ1S3bl1VqVJFgwcP1ldffSWLxVLkfs+fPy9JCgoKKrCeNRFmrX+5K7W3lufXvrBee+01hYSEKDExUXPmzFFwcLB8fHzUpk0bhYaG6vTp03naFGaMbm5uqlSpUqnEmB9vb+98y6zLNWZkZOQ6X5jYra9NYbi6usrHxyfXAQAAAAAAAAC48ZBIw3XnoYceUmRkpBYsWKDBgwerZs2aunDhglasWKF+/fqpW7du1/2eV76+vgoPD9f27dv14osvqlOnTnJyctKBAwc0depU1a9fX8uWLavoMAEAAAAAAAAAuKqRSMN1yd/fX0899ZS++OILnThxQkePHtX48eNlGIa2b9+usLCwIvVn3bPr1KlTBdazltvb40uS3Zlg9srza19UnTt31uzZs7Vjxw7FxcXpq6++UtOmTZWSkqLHHntM586ds9UtzBhTU1N18eJFuzFal3xMTU3Nt73ZbC72WApijaWg+3ulew8AAAAAAAAAwOVIpOGGUK9ePc2cOVMPPvigJGnjxo22MgeHnH8NClry8dK9z/JLBsXFxeXaS82e/fv3KzEx0W7Z0aNHbUks6/VKk5ubm+655x6tWbNGUk7Ca8eOHbZy6zU3b96cbx8RERHKzMyUlHeMfn5+kpTvfmIJCQk6cuRI8QdQAGvsW7ZsybdOeHh4mVwbAAAAAAAAAHD9IpGG60paWlqB5e7u7pL+lzyTZNv/Ki4uLt92AwYMkJOTk1JTUzV79my7dWbMmKG0tDQ5OztrwIABduukpKTojTfesFs2ffp0STmz6W6//fYCx1GQzMxMZWdn51tuvQdS7vvwwAMPSJJ27dqlH374wW6/U6dOlSTdeuutuvXWW3OVN2/eXJK0evVqu9d94403rvj6FNfgwYMlSTt27FBERESe8pSUFL3++utlcm0AAAAAAAAAwPWLRBquKyNHjtSgQYO0evVqnT9/3nY+MTFRCxYs0CeffCJJuuuuu2xl1oTQ9u3b9ccff9jtNygoSKNGjZIkzZo1S6GhobbEW1xcnCZPnmxL1IwdO1bVqlWz24/JZNK0adM0c+ZMJSQkSJKio6M1atQoLVmyRJI0efJkubm5FfcW6NSpU6pfv76mT5+un3/+2TaDTJIOHz6shx9+WJLk6empbt262coGDBig9u3bS5IGDRqkpUuXKiMjQ5J07NgxDRgwQLt27ZIkvfbaa3muO2TIEEnShg0bFBoaatuHLjo6WhMnTtT06dPl6+tb7HEVZMCAAWrVqpXt59WrVysrK0uSdOTIEfXp00cXLlwok2sDAAAAAAAAAK5fJNJwXcnIyNDKlSt1//33KzAwUN7e3vLz85O3t7eeeeYZpaenq3Pnznr55ZdtbQYMGKDKlSsrNjZWjRs3VuXKlVWnTh3VqVNHu3fvttWbMWOGBg0aJIvFoqlTpyogIED+/v4KCAiwzSYbMmSIpk2blm98/fr108CBAzVx4kT5+fnJ399fVapU0bx58yRJQ4cO1X/+858S34d///1XkydPVqtWreTm5qaAgAC5urqqefPmioiIkIuLixYvXix/f39bG0dHR61evVpNmjSR2WzWQw89JC8vL/n5+alu3bpat26dHBwcNHfuXPXp0yfPNYcPH66QkBBJ0tSpU+Xr62sb36xZszR79mzbrLXS5uTkpJUrV6pmzZqKiYnR/fffL09PT/n6+uqWW27Rrl27bIlKAAAAAAAAAAAKi0QariuTJ0/WvHnz1L9/fzVq1EhOTk5KTExUlSpVdPvtt+vjjz9WRESEPD09bW38/Py0bds2PfDAAwoKCpLZbFZkZKQiIyOVmppqq+fi4qLly5dr1apV6tOnjwICApSQkKCAgAD16dNHa9as0dKlS+Xs7FxgjMuWLdN7772nli1bKjMzU56enrrtttv0ySefaMmSJbmWWyyOoKAgrVu3TmPGjFGHDh1UrVo1JSYmysnJSbfccouee+45/frrr7r//vvttt2/f7/mzJmjDh06yN3dXcnJyapZs6YeeeQRHThwIN9En6Ojo9avX68pU6aoUaNGcnFxkWEY6tWrlzZu3Khx48aVaFxXUrduXR08eFBjx47VTTfdJIvFIjc3N91///3auXOn7rnnnjK9PgAAAAAAAADg+mNYLBZLRQcBXO+GDx+uJUuWaNiwYVq8eHFFh4Miio+Pl8lkUnR0tAICAio6HFSQjIwMffvtt7rzzjuvmDAHAABXPz7bAQAAgPJTXs/f1u9yzWazfHx8SqVPZqQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADY4VTRAQCwb+fOnbrvvvuK1KZjx45as2ZNGUUEAAAAAAAAAMCNhUQaUA4WL16sxYsXF6lNenq6zp07V6Q2MTExRaoPAAAAAAAAAADyRyINuEoFBwfLYrFUdBgAAAAAAAAAANyw2CMNAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADvZIA4BC+uWXX+Tj41PRYZQbb29v1a9fv6LDuOocOnRIDg78HQoAANL18bxwI3y2Xw+vEwAAAK4Ppfn8XV7PuSTSAKCQ+vTpo9TU1IoOo1z99ddffOnyf/755x9JUteuXZWSklLB0QAAcPW4Vp8XbrTP9mv1dQIAAMD1oayev8vjOff6/rM7AECJJCQkVHQIV43ExMSKDgEAgKvStfq8cKN9tl+rrxMAAACuD2X1/F0ez7kk0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADhJpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKThhlCnTh0ZhqHFixeX63WzsrI0Z84ctWzZUp6enjIMQ4ZhaO3ateUax7Vk+PDhMgxDw4cPr+hQAAAAAAAAAAA3OKeKDgCoaGFhYZJyEjh16tQp1b5Hjx6t+fPnS5JcXFwUGBgoSXJzcyvV6wAAAAAAAAAAgNJHIg03hHr16snNzU0mkylP2ZQpUyRJwcHBpZpIS0hI0AcffCBJeu211zRu3DgZhlFq/QMAAAAAAAAAgLJFIg03hM2bN5f7Nf/44w9lZGRIkp555hmSaAAAAAAAAAAAXGPYIw0oI8nJybafvby8KjASAAAAAAAAAABQHCTSUCaaNm0qwzBs+4NdateuXTIMQ4Zh6P77789TnpGRIW9vbxmGkWsm2e7du/XSSy+pS5cuql27ttzc3OTr66sOHTpo9uzZSkxMzDeeOnXqyDAMLV682HZu+PDhuWaJhYSE2OIyDKPYyzwuXrxYhmEoODjYdu7Sfi89b7VmzRr17dtXgYGBtr3U+vbtqy+//DLf61jjHz58uCwWiz766CN17txZAQEBecZaVMHBwTIMQ2FhYUpPT9esWbPUrFkzeXp6ys/PT7fffru+++67K/ZTnHFdyQ8//GB7fwwfPlyZmZm5yn/88Uc9/PDDtveIyWRSu3btrvgeAQAAAAAAAADgciztiDIREhKiX3/9VeHh4Ro5cmSusvDwcNvPERERslgsuRJae/fuVWJiolxdXdWpUyfb+dtuu832s4eHhzw8PBQbG6s9e/Zoz549+uSTT7RlyxZVqVKlUDGaTCYFBgbq3LlzkiQ/Pz+5uLjYyitXrly0Qf8fd3d3BQYGKj09XbGxsZKkwMBAW7m/v7/t5/T0dA0dOlTLly+XJDk4OMhkMik6Olrr16/X+vXrNWTIEC1ZskTOzs52r2exWDRw4ECtXr3a1t7BoXRy5Onp6erZs6e2b98uJycneXl5KS4uTps2bdKmTZsUGhqqsLAwu+1KOi57PvvsMz322GPKyMjQSy+9pFmzZtnKsrOzNWbMGM2bN892zsvLS0lJSdq3b5/27dunRYsWacOGDapdu3bxbwoAAAAAAAAA4IbBjDSUiZCQEEnS1q1blZ2dnatsy5YtkiQfHx9dvHhRhw4dslveoUMHubm52c7ffffdWr58uc6ePaukpCTFxMQoOTlZa9asUcOGDfX777/r6aefLnSMc+fOVVRUlO33NWvWKCoqynbs27evaIP+P4MHD1ZUVJTWrFljO3dpv5eenzhxopYvXy7DMDR58mRdvHhRMTExio6O1sSJEyVJy5Yt0+TJk/O93po1a/TVV1/pjTfeUGxsrGJiYmQ2m3XHHXcUK/5Lvffee9q7d68WLFighIQExcbG6sSJE7aZhFOmTNG6devytCuNcV3ujTfe0NChQ5WZmam33347VxJNkkJDQzVv3jxVqVJF7777ri5evKiEhASlpKRoy5Ytatmypf7880/dd999ed6TAAAAAAAAAADYQyINZSI4OFgODg6KiYnRwYMHbefT0tK0c+dOeXh4aMSIEZJyz1C79HdrMs5q3bp1GjRokKpWrWo75+7urv79+2vz5s1ydXXV2rVrdeLEiTIaVek6ffq05s6dK0kaP368pk6dKl9fX0k5s+NeffVVjR07VpI0Z84cnT171m4/iYmJmjNnjv773//Kx8dHUs5MrGrVqpU4RrPZrPfee09PPfWULalZs2ZNLV++XF27dpUkW2KstMdlZbFYNHbsWL3wwgtydnbWsmXLNGrUqFx1jh8/rpkzZ8rd3V0//PCDnn32WdvMP2dnZwUHB2vr1q2qUaOGfvrpJ7vJPwAAAAAAAAAALkciDWXCz89PzZs3l5Q7UbZ7926lpKSoU6dO6t27d57ytLQ07dq1S1LeRFpBgoKC1Lx5c1ksFu3cubM0hlDmVq9erczMTLm5uWn8+PF260yaNEmurq7KyMjQqlWr7Nbx8/PTU089VSYx1qxZU48++mie8w4ODpo0aZIk6bffftMvv/xiKyutcUk5S0Q+9NBDeuutt+Tt7a1vv/1WgwcPzlNv8eLFysrKUu/evW3vu8t5e3urX79+kqQNGzbke00p530YHx+f6wAAAAAAAAAA3HhIpKHMdO/eXVLuRJn15+7du6tjx45ydXXV9u3blZWVJUnauXOnUlNT5e7urg4dOuTqLzs7W0uXLtU999yjWrVqyd3dXYZh2I69e/dKkk6dOlUewyux/fv3S5Latm1rm0l2OT8/P7Vp0yZX/cu1bds2195upSk4ODjX/nWX6tKli5ycnPLEVlrjSkhI0F133aVly5YpMDBQW7duVY8ePezW/fHHHyVJP/zwg6pWrZrvsWjRIklSZGRkgeOeOXOmTCaT7ahZs2aB9QEAAAAAAAAA1yenig4A16+QkBC9+eab2r59uzIzM+Xk5GTb/6x79+62ZNnWrVu1b98+dejQwVbesWPHXMmh5ORk9e3b11YuSS4uLvL395ezs7MkKSYmRhkZGUpKSirHURbf+fPnJeXMpitIjRo1ctW/XJUqVUo3sEsUFJubm5sCAgJ07ty5XLGV1rgu3Uvu66+/VsuWLfPt68yZM5KkpKSkQr3+ycnJBZZPmDDBtvykJMXHx5NMAwAAAAAAAIAbEDPSUGa6du0qJycnJSYmau/evUpOTtaePXtkMpnUunVrSXlnreW3P9qrr76qLVu2yN3dXW+99ZYiIyOVmpqqixcvKioqSlFRUWrfvr2knD21biSOjo4VHUKZ6Natmy159cQTT+jChQv51rXOaHzppZdksViueERERBR4bVdXV/n4+OQ6AAAAAAAAAAA3HhJpKDPe3t62hFl4eLh27Nih9PR0de3a1Zb8sSbMwsPDlZSUZFue0Zpgs/riiy8kSa+88opGjx6tWrVq5VlyMCoqqkzHU9qsM8mutBSltbwsZ57l5/Tp0/mWpaWl6eLFi5Jyx1Za46pTp44iIiJUu3ZtHT58WCEhIfnOXqtataqkKy/ZCAAAAAAAAABAUZBIQ5m6NFF26bKOVu3bt5eHh4d27typzZs3KyMjQ15eXmrbtm2ufk6ePClJ+S7vd/z4cR09erRYMVoTcuU9k+3SPcLMZrPdOnFxcbn2HCtvW7duzfe+WJfslP43lkt/Lo1x1a1bVxEREapTp45+++03BQcH202YdurUSZK0adMmpaamFmJkAAAAAAAAAABcGYk0lClr0mzXrl367rvvcp2TcvY569Spk1JSUjRjxgxJUufOneXklHv7PpPJJEk6dOiQ3euMHz++2DFal+2Li4srdh/FMWDAADk5OSk1NVWzZ8+2W2fGjBlKS0uTs7OzBgwYUK7xSdKJEye0ZMmSPOezs7Ntr9ctt9yipk2b2spKe1x16tTR1q1bVbduXR05ckTBwcE6e/ZsrjqPPfaYnJycFB0drdDQ0AL7S09PV2JiYoF1AAAAAAAAAACQSKShjHXq1EkuLi5KTU3VoUOHVLly5VxJF+l/ibU9e/ZIyrs/miT17t1bkjR9+nStWbPGNhPq2LFjevDBB7VixQr5+fkVK8Zbb71VkvT5558rOTm5WH0UR1BQkEaNGiVJmjVrlkJDQ23JvLi4OE2ePFmvv/66JGns2LGqVq1aucVmZTKZ9Mwzz+jDDz+0zfQ6efKkhgwZYpthOH369FxtymJctWrV0tatW3XzzTfrzz//VLdu3XItO1mvXj1NnjxZkvTaa69p6NCh+vXXX23lmZmZOnjwoKZOnaqbb75ZBw8eLN4NAQAAAAAAAADcUEikoUx5eHioffv2tt+Dg4Pz7G12eeLMXiJt+vTpCgwMVEJCggYMGCB3d3f5+vqqbt26WrZsmV599VU1a9asWDE+/fTTkqTVq1fL19dXNWrUUJ06ddS5c+di9VcUM2bM0KBBg2SxWDR16lQFBATI399fAQEBtgTVkCFDNG3atDKPxZ5nn31Wbdq00YgRI+Tj4yN/f3/VqlVLK1askCRNmjRJ/fv3z9OuLMZVo0YNbd26VQ0bNtTff/+tbt262Zb8lKTJkydr8uTJMgxDn376qZo2bSoPDw9VqlRJbm5uatmypUJDQ3Xy5Mk870EAAAAAAAAAAOwhkYYyd2li7NJlHa3atGljW17Rx8dHrVq1ylOndu3a2r9/vx5//HFVr15dkuTm5qa+fftqw4YNmjBhQrHje/jhh/Xpp5+qc+fO8vDw0NmzZxUZGalTp04Vu8/CcnFx0fLly7Vq1Sr16dNHAQEBSkhIUEBAgPr06aM1a9Zo6dKlcnZ2LvNY8otv8+bNmjFjhho2bKi0tDSZTCb16NFD69evzzcRVlbjql69uiIiItS4cWP9888/6tatmyIjIyXl7HU3depUHT58WM8++6waN24sR0dHmc1m+fn5qWPHjnrhhRe0c+dO255qAAAAAAAAAAAUxLBYLJaKDgLA1SU4OFhbt25VaGiowsLCKjqcChcfHy+TySQ3NzfbEpc3igMHDthNbt+I9u/fr9OnT2vIkCFKSUmp6HAAALhqXKvPCzfaZ/u1+joBAADg+lBWz9+XP+dav8s1m822CTwlxYw0AAAAAAAAAAAAwA4SaQAAAAAAAAAAAIAdJNIAAAAAAAAAAAAAO5wqOgDganbfffdp586dRWqzZs0adezYsYwiKrxrOXYAAAAAAAAAAK4GJNKAAsTExOjcuXNFapOenl5G0RRNSWKPiIgog4gAAAAAAAAAALi2kEgDCnAtJ5Su5dgBAAAAAAAAALgasEcaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAOTL29u7okO4anh5eVV0CAAAXJWu1eeFG+2z/Vp9nQAAAHB9KKvn7/J4zjUsFoulzK8CANew+Ph4mUwmbdmyRT4+PhUdTrnx9vZW/fr1KzqMq0ZGRoa+/fZbBQUFycGBv0MBAEC6tp8XbqTP9mv5dQIAAMD1oSyev+0951q/yzWbzaX2Xa5TqfQCADeApk2bKiAgoKLDQAVr3ry5nJ2dKzoMAABQSvhsBwAAAMrPtfj8fX3/2R0AAAAAAAAAAABQTCTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAbgjHjx+XYRgyDEPHjx+v6HAAAAAAAAAAANcAEmkAAAAAAAAAAACAHSTSAAAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRdhWKjY3VwoULNWjQIDVt2lT+/v5yc3NT7dq19eCDD2r37t1224WFhckwDAUHB0uSNm/erLvuukuVK1eWm5ubGjdurClTpig1NdVu++HDh8swDA0fPlyStGrVKgUHB8vf318eHh5q0aKF5s6dq+zs7ALjj4iI0MCBAxUUFCRXV1dVqlRJPXr00KJFi5SVlVWoa9uzePFiGYahOnXqlFnsJ0+e1IsvvqgWLVrIZDLJ3d1d9erV07333qtPPvkk33v3448/6uGHH1bt2rXl5uYmk8mkdu3aafbs2UpMTCzwmoV1/PhxGYYhwzB0/Phx/fPPPxoxYoRuuukmubq65rkv2dnZ+vzzz3XnnXcqMDBQLi4uqly5snr16qVly5bJYrHkqp+VlSVfX18ZhqFvvvkmz/WXLVtmu/64cePylJ89e9ZW/s8//+SKY/PmzfrPf/6jDh06qEaNGnJxcVFAQIC6deumBQsWKCMjo1TGfPr0aT311FOqWbOmXF1dVaNGDT366KM6evRoIe8yAAAAAAAAAAD/41TRASCvuXPnasqUKZIkR0dH+fj4SJJOnDihEydO6IsvvtDbb7+t//znP/n28frrr+ull16SJJlMJqWnp+uPP/5QWFiYtm7dqo0bN8rR0THf9iNHjtS7774rBwcH+fj4KCUlRYcOHdLo0aP1008/acmSJXbbjR07Vm+99ZYkyTAMmUwmxcXFKTw8XOHh4frss8+0du1aeXt7F+veFEZxY//00081YsQIW7LMxcVF3t7eOnHihP7991+tW7dOzZo1U4sWLWxtsrOzNWbMGM2bN892zsvLS0lJSdq3b5/27dunRYsWacOGDapdu3apjXHnzp166qmnlJiYKA8PDzk7O+cqj4mJUf/+/bVt2zbbOZPJpOjoaG3cuFEbN27UF198oZUrV8rFxUVSznuta9eu+vrrrxUeHq6+ffvm6jM8PNzuz5efq1WrlurVq2c7f+LECfXs2dP2u5eXlzw8PBQTE6Nt27Zp27ZtWrp0qTZs2CB3d/dij/mnn35Sz549FRsbK0lyd3eX2WzW4sWLtWbNGn344Yf59g0AAAAAAAAAgD3MSLsKVa9eXaGhodq/f7+Sk5MVExOjlJQU/fvvvxo1apSknITVzz//bLf9oUOHNH78eI0fP17nz59XbGys4uLi9Morr0iStmzZkm8ySZLWrVunDz/8UHPmzFFsbKxiY2MVHR2tJ554QpL0ySef2E2kzJ8/35ZEGzFihM6cOaPY2FiZzWa99dZbcnJyUnh4uJ588skS3Z+CFDf29evXa9iwYUpNTVWnTp20fft2paSkKDo6WklJSdq+fbuefPJJW9LJKjQ0VPPmzVOVKlX07rvv6uLFi0pISFBKSoq2bNmili1b6s8//9R99913xdlwRfHUU0+pSZMm2rdvn5KSkpSYmKgffvhBUs7Msvvuu0/btm1TixYt9PXXXyspKUlxcXFKTEzUkiVLVKVKFa1bt86WbLUKCQmRZD9RtmXLFkmSj4+PDh06pJiYGLvl1j6snJyc9NBDD2ndunW2+xMXF6eEhAQtWrRI1atX1/bt2/Xyyy8Xe8wJCQnq37+/YmNjVatWLf3www9KSkpSQkKCdu7cqZo1a+qpp54q7O0FAAAAAAAAACCHBdec5557ziLJ8vjjj+c6HxoaapFkkWQJDQ212/a+++6zSLL07NkzT9mwYcNs7RctWmS3fevWrS2SLE888USu88nJyRZ/f3+LJMuQIUPstp03b56t//3799u99rBhw+wP2mKxLFq0yCLJUrt27VKNPSMjw3LTTTdZJFk6d+5sSUtLyzeGSx07dszi6OhocXd3txw8eNBunfj4eEuNGjUskixffvllofot6HrWMdauXduSkJBgt94nn3xikWRp1KiRJS4uzm6d/fv3WwzDsLi4uFjOnTtnO3/w4EGLJIthGJbo6Gjb+cjISIskS7169SwPPvigRZJl9erVufq03sPFixcXaVz79u2zSLJ4enpaUlJSijXm2bNnWyRZXFxcLL///nue8rNnz1r8/PxsfR07dqzAmFJTUy1ms9l2nDx50iIp1z3BjSc9Pd2ydu1aS3p6ekWHAgAASgGf7QAAAED5Ka/nb7PZbJFkMZvNpdYnM9KuQXfddZckaceOHXbLXV1d7e5hJUn33nuvJOnw4cP59l+zZk0NGzbMbtk999xjt/3GjRttM5TCwsLstn322WdVrVo1SdLSpUvzvX5JFCf2LVu26NixY5Kkt956K8+ss/wsXrxYWVlZ6t27t5o3b263jre3t/r16ydJ2rBhQ6H6LYyRI0fKy8vLbtnChQslSc8884xMJpPdOq1bt1aTJk2Unp5um0kmSc2aNVNAQIAsFkuu89afu3fvru7du0vKPWstMjLSdg8vn5F2JW3atFGVKlWUlJSkgwcP5luvoDF/8cUXkqSBAweqcePGecqrVq2qp59+utAxzZw5UyaTyXbUrFmz0G0BAAAAAAAAANcPEmlXqX///Vfjxo1T69at5evrK0dHRxmGIcMwdOedd0qSTp06ZbdtkyZN8k04VK9eXZLyLMt3qbZt28owjCK1379/v6ScRFaDBg3stnV0dLQlYaz1S1txYt+5c6eknGRLmzZtCn2tH3/8UZL0ww8/qGrVqvkeixYtkpSTbCotnTp1sns+KytLu3fvlpST0Cworj///DNPXIZhKDg4WJL9PdG6d+9ud/lH689169ZVrVq18sSVnp6uBQsWqFevXqpevbpcXV1t72fDMHT+/HlJ+b+nCxpzenq6fvnlF1t8+Smo7HITJkyQ2Wy2HSdPnix0WwAAAAAAAADA9cOpogNAXl9++aWGDBmitLQ02zkfHx+5ubnJMAylp6crNjZWSUlJdtt7e3vn27eTU85LnpmZmW+dwrTPyMjIdd6aCAkKCsq3rSTVqFEjV/3SVpzYo6KiJEm1a9cu0rXOnDkjSUpKSsr3tbhUcnJykfovSJUqVeyej4mJsb1vYmNjC9XX5XGFhIRo9erVuRJll85Iq1KlimrXrq0jR44oKipKVatWzXd/NCnnte7Zs6ct2SVJbm5uqlSpkhwdHSVJFy5cUHZ2doH3saAxW9/PBb3/rO+9wnB1dZWrq2uh6wMAAAAAAAAArk/MSLvKXLx4UcOHD1daWpq6d++uiIgIJScny2w269y5c4qKitLKlSsrOszrSn4z2K4kKytLkvTSSy/JYrFc8YiIiCi1mK0JqPxikqTvvvuuUHFdvhSndebWn3/+qTNnzujo0aM6efKkmjRpYktmXb68Y0GJtDFjxuiXX35RQECAPv74Y509e1YpKSm6cOGCoqKiFBUVZZstaLFYijxmAAAAAAAAAADKCom0q8y3336r+Ph4+fn56euvv1a3bt3k7u6eq451BtXVxJpgKWhpvkvLL59dZJ0tlpqamm9bs9lckhDzVbVqVUlFX3qxuO3KUkBAgO1eFjeuxo0b28YWHh6ea1lHq0uXd/zrr79sr+vlyydmZGRozZo1kqT58+fr0UcftfVtlZWVpejo6GLFKkn+/v62JNvp06fzrVdQGQAAAAAAAAAA9pRqIu3ChQvav3+/tm3bVprd3lCsezE1bNhQHh4eduts2rSpPEMqFOveYqdOndJff/1lt05WVpZt5lLbtm1zlfn5+UlSgXtR7dmzpzRCzaNjx46SchKURdm7zbpn16ZNmwpMAJYnZ2dntWvXTpL09ddfF7ufS/dJu3RZR6tLZ6RZyxs2bKhq1arl6ufChQu2e9OyZUu719qxY0eJ7p+Li4uaNWsm6X8z4+y5dKlKAAAAAAAAAAAKo1QSaevWrVOrVq1UtWpVtW/fPs+slNjYWPXu3Vu9e/cus1lF1wuTySRJ+uuvv+wmFw4ePKilS5eWd1hXdPvttysgIECS8iwVaPXBBx/Y9hUbMmRIrrLmzZtLkvbt22c3mXbkyBHbzKbSFhISorp160rKWYYwPT29UO0ee+wxOTk5KTo6WqGhoQXWTU9PV2JiYoljLYwRI0ZIypnd+O233xZYNyYmxu75SxNlERERcnBwsCXXpJy9yOrXr69jx45p0aJFkuwv6+jj42NbOvPQoUN5yjMzM/Xyyy9feVBXMHjwYEnSypUr9eeff+YpP3/+vBYsWFDi6wAAAAAAAAAAbiwlTqTNmjVL/fv318GDB3Ptu3QpPz8/ubu7a+PGjVq1alVJL3ld69WrlxwcHBQTE6OHHnrIthxdenq6VqxYoV69esnb27uCo8zL3d3dlkBbtmyZnn76aZ07d06SlJycrHnz5mn06NGScpIerVu3ztX+7rvvlpeXlzIyMjRo0CBbMiQjI0NfffWVevbsKU9PzzKJ3dHRUfPnz5dhGNqxY4d69OihHTt2KDs7W1LOvY+IiNDDDz+s33//3dauXr16mjx5siTptdde09ChQ/Xrr7/ayjMzM3Xw4EFNnTpVN998sw4ePFgm8V/u4YcfVs+ePWWxWNS/f39Nnz7dlsCUpKSkJG3ZskXPPfecLYF4OWtSLDIyUlFRUWrZsqV8fX1z1bEm26wzBe0l0ry8vGwz98aOHavw8HDbff3111915513av/+/SV+bZ955hnVqFFDaWlp6t27tzZv3mz779CePXvUs2dP23UBAAAAAAAAACisEiXSdu/erZdffllOTk566623FB0drcDAQLt1H374YVksFm3cuLEkl7zu1a9fXy+88IIkac2aNapRo4Z8fX3l5eWlwYMHy8vLS/PmzavgKO0bOXKkxowZIyln9lm1atXk7+8vk8mkUaNGKSMjQyEhIfrwww/ztDWZTHr77bdlGIZ2796tRo0aycfHR15eXurXr59q1aqlqVOnllnsffr00eLFi+Xq6qodO3aoS5cu8vDwUKVKleTp6amQkBB9/vnneWarTZ48WZMnT5ZhGPr000/VtGlTWzs3Nze1bNlSoaGhOnnypG1mVllzdHTU6tWr1bdvX6Wnp2vy5MkKCgqSyWSSn5+fvL291b17d7333ntKSkqy28fNN9+smjVr2n6/fJaplDdxdumMtUu9/fbb8vT01OnTp9WjRw95eHjIx8dHTZs21ZYtW/Thhx+qUqVKxR+wcma+ffnll/L19dXx48fVs2dPeXl5ydvbWx06dNDx48f1wQcflOgaAAAAAAAAAIAbT4kSaXPnzpUkTZgwQaNGjZK/v3++dbt16yZJ+vnnn0tyyRvCrFmz9Mknn6hdu3Zyd3dXRkaGbr75Zk2cOFE///yzqlevXtEh5mvOnDkKDw/XgAEDFBgYqMTERHl7eyskJEQff/yxNm7cmO+Muscff1zr169X9+7d5ePjo8zMTDVo0ECzZs3S1q1by2xGmtXQoUP1xx9/aPTo0brlllvk5OSklJQU1a5dW/369dOnn36qxo0b52pjGIamTp2qw4cP69lnn1Xjxo3l6Ogos9ksPz8/dezYUS+88IJ27txpm5lVHnx8fPT111/r22+/1eDBg1WrVi2lpaUpOTlZQUFB6tWrl2bOnGl3GUSrSxNl+SXSrMnBJk2aqEqVKnb7ad26tfbu3atBgwapUqVKys7Olre3twYNGqSdO3fqkUceKeFoc7Rp00aHDx/WE088oaCgIGVmZspkMmnYsGH66aefbHvHAQAAAAAAAABQWIbl8nUYi6BWrVo6ffq0zp07Z5tRUq1aNZ0/f15ZWVl56lsTKAkJCcW9JACUu/j4eJlMJkVHR9v2AsSNJyMjQ99++63uvPNOOTs7V3Q4AACghPhsBwAAAMpPeT1/W7/LNZvN8vHxKZU+SzQj7fz58/L29i70smyurq55lsYDAAAAAAAAAAAArkYlSqR5enoqOTnZ7uyzyyUmJiouLq7A5R8BAAAAAAAAAACAq0WJEmkNGzZUVlaWDh8+fMW6a9euVXZ2tlq0aFGSSwIAAAAAAAAAAADlwqkkje+55x7t3r1bM2fO1IoVK/Ktd+rUKY0fP16GYWjAgAEluSRwTTt58qTatm1bpDY1a9bUvn37yigiAAAAAAAAAACQnxIl0kaOHKl3331Xq1ev1tChQ/Xiiy/ayjIyMnT8+HF9/fXXmj17ti5cuKCGDRtq2LBhJQ4auFZlZWXp3LlzRWrj5uZWRtEAAAAAAAAAAICClCiR5uXlpa+//lp33HGHPvvsM33++ee2sku//LdYLKpevbrWrl0rZ2fnklwSuKbVqVNHFoulosMAAAAAAAAAAACFUKI90iSpRYsWOnTokB599FG5urrKYrHkOpydnTV8+HDt379fDRs2LI2YAQAAAAAAAAAAgDJXohlpVlWrVtXChQv13nvv6cCBAzpz5oyysrJUtWpVtW3bVh4eHqVxGQAAAAAAAAAAAKDclEoizcrV1VUdO3YszS4BAAAAAAAAAACAClGiRNpjjz0mX19fzZkzp1D1X3zxRV28eFELFy4syWUBAOXg77//VkJCQplfx9vbW/Xr1y/z6wAAgNJn73mBz/arT3k915UE7xsAAAAUlb3n3MTExFK/TokSaYsXL1bVqlULnUhbuXKlTpw4QSINAK5yf//9txo0aFBu1/vrr7/44gQAgGtMQc8LfLZfPcr7ua4keN8AAACgsMrzOdehXK7yfywWS3leDgBQTOX9F8tX+19IAwCAvAr6/Oaz/epxLb0W11KsAAAAqFjl+exYrom06OhoeXh4lOclAQAAAAAAAAAAgGIp0dKOhWU2m/XRRx8pOTlZzZo1K49LAgAAAAAAAAAAACVSpETalClTNHXq1Fznzp07J0dHx0K1NwxDAwYMKMolAQAA/j979xkdZbX+ffw7IZ30EAKE0BSpglQVCwEpUkTpRYQgKnJEEVABBQlIF0EUVASkSUkkgCgoPYC0QwBpgkekhh5SIZ3M8yLPzJ+QQsJMEsrvs9ask9y7XfueGzNrrrP3FhERERERERERKRL5XpF26zlnBoMhz+ee2dvb89prrzFs2LD8DikiIiIiIiIiIiIiIiJS6PKVSAsMDCQgIADISKg1bdoULy8vQkNDc2xjY2ODm5sbjz32GE5OThYFKyIiIiIiIiIiIiIiIlJY8pVIK1++POXLlzf/Xq5cOXx9fWncuLHVAxMREREREREREREREREpSvne2vFWp0+ftlIYIiIiIiIiIiIiIiIiIvcWm6IOQEREREREREREREREROReZNGKtNtduXKFiIgIbty4gdFozLHe888/b81hRURERERERERERERERKzOKom0GTNm8NVXX/Hvv//esa7BYCAtLc0aw4qIiIiIiIiIiIiIiIgUGIu3duzWrRsDBw7kxIkTGI3GO77S09OtEbdIkQoKCsJgMBAQEFDUoYiIiIiIiIiIiIiISAGxKJG2bNkyQkJCcHNzY/ny5dy4cQOAUqVKkZaWRkREBPPmzePRRx+lRIkSbNq0SYk0EeH06dMEBQURFBRU1KGIiIiIiIiIiIiIiOTIokTa/PnzMRgMfPbZZ3To0AEnJ6f/69jGhjJlytC7d2/279+Pv78/r7zyCidOnLA4aJGiVqJECapUqUK5cuWKOpT70unTpxk9ejSjR48u6lBERERERERERERERHJkUSLtwIEDAPTs2TPT9dtXnbm4uDBjxgzi4+OZNGmSJUOK3BMGDBjA8ePHWbhwYVGHIiIiIiIiIiIiIiIiBcSiRFpMTAyurq54eHiYr9nZ2Zm3eLzV008/jbOzMxs3brRkSBEREREREREREREREZFCYVEizdvbG4PBkOmah4cHCQkJxMTEZNvm0qVLlgwphSggIACDwUBQUBBGo5HZs2fz5JNP4ubmhqurK08//TQ//vhjrn2sWLGCtm3b4uvri729Pb6+vrRt25aVK1fm2m7dunV06NCBsmXLYm9vj5ubG5UqVaJFixZMmTKFqKiobNvFx8czceJEnn76aby8vHBwcMDf359u3bqxa9euu74XtwsKCsJgMBAQEJClLDAwEIPBQGBgIADLly8nICAALy8vnJ2deeKJJ5g+fbrVzwtMT08nJCSEV155BT8/PxwcHPDx8aFevXoMHTqUI0eOZNvubu7Z6dOnMRgMGAwGTp8+zeXLlxk4cCAVK1bE0dERX19funXrxvHjx7O0rVChAk2aNDH/burH9DLdN2vH+O+///LWW29RsWJFHBwcqFChwp1vqoiIiIiIiIiIiIg81Gwtaezn58f+/fu5fv06Li4uAFSrVo3t27ezZcsW2rdvb667f/9+EhIS8PT0tCxiKXQ3b96kffv2/Pzzz9ja2uLs7Ex8fDy7d+9m9+7d/PPPP1nOukpJSaFXr14EBwcDGWfmubu7ExkZyZo1a1izZg3du3dnwYIF2NnZZWo7ZswYRo0aZf7d2dkZo9HIqVOnOHXqFBs2bKB+/fpZklh//vknL730EhEREQAUK1YMZ2dnIiIiCA4OJiQkhHHjxjF8+PACuEvZGzBgADNnzsTGxgY3NzcSExM5ePAg77//Pvv372fBggVWGScyMpKOHTuybds28zUPDw+SkpLYv38/+/fv5++//2bVqlWZ2lnjnh09epTXX3+dK1eu4OzsDMCVK1cIDg7mt99+Y9u2bdSuXdtc38fHh7i4OKKjowHw9fXN1J+7u7vVY9y5cyf9+vXj+vXrODs7Z3nmRERERERERERERESyY9GKtLp16wKwd+9e87U2bdpgNBr54IMP2Lt3L6mpqYSHh9O7d28MBgPPPPOMZRFLoZs5cyZhYWHMnz+fuLg4YmNjOXfuHC+99BIAY8eO5Z9//snU5uOPPyY4OBiDwcDIkSO5du0aUVFRREZG8vHHHwOwdOlSRo4cmandmTNnzEm5wYMHc/78eW7cuEF8fDwxMTFs376d//znP7i6umZqd/HiRVq2bElERAQdOnQgPDycxMRE4uLiuHz5MiNHjqRYsWJ8/PHHWZJJBWX16tXMnj2bqVOnEh0dTXR0NJGRkbzxxhsALFy4kM2bN1s8TlpaGq+88grbtm3DwcGBSZMmceXKFaKjo4mPj+f8+fPMmjWL6tWrZ2pnrXv22muvUblyZfbu3cuNGze4fv06GzZsoHTp0sTFxfHuu+9mqr93715WrFhh/v3SpUuZXtOnT7d6jP369aNGjRqZYly/fn3+brSIiIiIiIiIiIiIPHyMFvj555+NBoPB2L9/f/O1+Ph4Y9myZY0Gg8FoY2NjfhkMBqO9vb1x9+7dlgwphahx48ZGwAgYN2/enKU8KSnJWKZMGSNgHDt2rPl6RESE0dbW1ggYhw8fnm3fgwcPNgJGOzs744ULF8zXg4ODjYDxsccey1esr7/+uhEw9ujRI8c6U6dONQLG2rVr56vv7IwaNcoIGBs3bpylrHfv3ub7Nm/evGzb16tXzwgY33jjDYtjmTNnjhEwGgwG45o1a/LczpJ7durUKfMcq1atakxISMjSdvXq1eY6586dy1S2ZcsWc1lhxFi+fHljfHx8rmPdKikpyRgbG2t+nTt3zggYIyMj89zH/W7fvn3m+1cYr3379hX1lO8oJSXFuGrVKmNKSkpRhyIiInJPyO3zgv623zsK+3Pdg/6ZUERERETujrU/f9/pc25sbKxVxjEajUaLVqS1bt2aLVu20KdPH/M1FxcXNm/ezNNPP43RaDS/ypUrx4oVK3jyySctGVKKwDPPPJPpTCsTBwcHWrZsCcChQ4fM10NDQ0lLS8PR0ZFhw4Zl2+eIESNwcHAgNTWV5cuXm697eHgAGWdi3bhxI0/xJSUlsWTJEgCGDh2aY71evXoBcPDgQS5fvpynvi3h7+9P7969sy1r164dkPm+3a0ffvgByPj32Lp16zy1seY9GzJkCE5OTlmut2rVCnt7ewAOHz6cp7gKKsYBAwaYt5/NiwkTJuDu7m5++fv75yNyEREREREREREREXlQWHRGmq2tLY0bN85yvXLlyuzYsYOIiAjOnTuHu7s71apVw2AwWDKcFJHckp9lypQBICoqynwtPDwcgAYNGuDm5pZtO09PT+rXr8+OHTvM9QEaNmxIiRIluHjxIk8++SRvv/02zZo1o0qVKjk+P/v27SMpKQmAFi1a5GlOZ86cyXI2l7U1aNAgx5izu293Iy0tzby1qmmrzbyw5j3L6fmwtbXFx8eH8+fP39U8rRljfreUHT58OIMHDzb/HhcXp2SaiIiIiIiIiIiIyEPIokTanZQtW5ayZcsW5BBSCG4/j+xWtrYZj1Bqaqr52pUrVwDw8/PLtV/Ts2GqDxkr0pYuXUqPHj04evSo+Xwtd3d3nn/+ebp06ULXrl2xs7Mzt7lw4YL557yuNEtISMhTPUvk977djWvXrpn7KF++fJ7bWfOeFdQ8rRljyZIl8zW2g4MDDg4O+WojIiIiIiIiIiIiIg8eixJpr7/+Oh4eHkydOjVP9T/66COuXbvG3LlzLRlWHnDNmjXj1KlTrFixgk2bNrFz507++ecffvnlF3755RcmTpzIunXrzIm6mzdvmtsmJibi6OhYVKEXurtd5Xk/3DNrxlisWDFrhCQiIiIiIiIiIiIiDxmLzkibP38+y5Yty3P9n376ifnz51sypNwHTKt/IiIicq1nKs9utVDx4sV57bXXmD9/Pv/73/+IiIhg0qRJODo6ZlqpBlCqVCnzz2fOnLHGFO4bXl5e5tV5+Zn7/XDP7ocYRUREREREREREROTBZlEiLb+MRmNhDidFpH79+kDGWWmxsbHZ1omJicl0ltqd+Pn58dFHHzFkyBAANmzYYC5r0KAB9vb2APzyyy8WxX6/sbW1pWHDhkD+5l7U98zG5v/+05PTfxeKOkYRERERERERERERkUJNpEVGRuLs7FyYQ0oR6NixI7a2tiQlJTFp0qRs64wfP57k5GTs7Ozo2LGj+XpycnKufTs5OQGZEzHFixenR48eAEyaNImzZ8/m2kdUVFSe5nG/6Nu3LwBr165l7dq1eWpT1PfMzc3N/HNMTEy2dYo6RhERERERERERERGRQkmkxcbG8sUXX5CQkMAjjzxSGENKEfLz82PgwIEATJw4kVGjRpmTJTExMYwcOZLPP/8cgMGDB1O6dGlz20mTJtGqVSsWLVqUaWvI5ORkQkJCzO3atGmTaczx48dTpkwZIiMjefrpp1m0aBHx8fHm8qtXrxIaGkr79u3p3r17gcy7qLz22ms8++yzGI1GOnbsyOeff05kZKS5/MKFC0ybNo2hQ4dmaleU9+yxxx4zrzabM2dOjqvSHub3VURERERERERERESKnm1+Ko8ePZoxY8Zkunb58mWKFSuWp/YGgyHT6iN5cI0fP55z584REhLCmDFjGDt2LO7u7sTGxpKeng5A9+7d+eyzzzK1S09P5/fff+f3338HMlagOTk5ER0dbU62VKtWjalTp2ZqV7p0aTZu3Mgrr7zC//73P3r16oWNjQ0eHh4kJydz48YNc91mzZoV5NQLna2tLStXrqRDhw5s376djz76iKFDh+Lu7k5aWhrXr18H4OWXX87UrijvmbOzM6+99hpz587lo48+IigoiBIlSmAwGOjUqRNTpkwp8hhFRERERERERERERPKVSIPM5xkZDIY8n3tmb2/Pa6+9xrBhw/I7pNyH7O3tCQ4OpkuXLsydO5fw8HCio6Px9vamfv36vPnmm7Rv3z5Lu7feegs/Pz+2bNnC4cOHuXjxIrGxsXh6elKjRg06duxIv379cHR0zNK2WrVqHDp0iAULFhAaGsqff/5JVFQU9vb2PProo9SpU4fmzZvTqVOnwrgFhapEiRKEhYWxdOlSFi9ezL59+4iOjsbT05MqVarQvHlzXnvttSztivKezZw5E39/f0JDQ/n333/NWzfeupquqGMUERERERERERERkYebwZjXTBhw5swZTp8+DWQk1Jo2bYqXlxehoaE5trGxscHNzY3HHnvMfL6ViMj9JC4uDnd3dyIjI/H29i7qcArF/v37qVevXqGNt2/fPurWrVto492N1NRU1q5dS+vWrbGzsyvqcERERIpcbp8X9Lf93lHYn+sscT88NyIiIiJyd6z9+ftOn3NjY2Nxc3OzeBzI54q08uXLU758efPv5cqVw9fXl8aNG1slGBEREREREREREREREZF7Rb63dryVaXWaiIiIiIiIiIiIiIiIyIPGpiA7v3r1KnFxcQU5hIiIiIiIiIiIiIiIiEiBsGhFWnZSUlIYMWIEP/zwA9HR0QBUrFiRDz74gLffftvaw4nctYEDBxIcHJyvNtOnT6dr165Wj2Xnzp106NAhX20aNWrEihUrrB6LiIiIiIiIiIiIiIhkyFcibdeuXTz77LN4eXkRERGBg4NDpnKj0Ui7du3YsGEDRqPRfP3kyZO88847nDt3jnHjxlknchELxcbGcvny5Xy1SUxMLJBYUlJS8h1LVFRUgcQiIiIiIiIiIiIiIiIZ8pVI2759O0ajke7du2dJogEsXLiQ9evXYzAYKFmyJC+//DIuLi6sWLGCM2fOMHnyZLp3707NmjWtNgGRuzV//nzmz59f1GEAEBAQkCn5LCIiIiIiIiIiIiIiRS9fZ6T98ccfGAwG2rVrl235jBkzAChfvjyHDh1i1qxZfPHFFxw+fJjHH3+c9PT0eyZxISIiIiIiIiIiIiIiIpKbfCXSTp48CcCTTz6Zpezq1avs27cPg8HA8OHDKVmypLnMxcWFTz75BKPRyB9//GFhyCIiIiIiIiIiIiIiIiIFL1+JtMuXL+Pm5oarq2uWsl27dpl/fvnll7OUt2rVCoATJ07kN0YRERERERERERERERGRQpevRFpsbCw3b97Mtmzfvn0AlCtXLtNqNBNXV1dcXFyIj4+/izBFRERERERERERERERECle+Emnu7u7cuHGDuLi4LGV79+4FoE6dOjm2NxgMFCtWLJ8hiohIYctu5fGDNJ6IiIhYLre/3/rbfu+4n96LxMTEog5BRERERO4Thfk51zY/latWrcrOnTtZtWoVvXr1Ml9PSEhg+/btGAwGnn766WzbxsfHEx8fj7+/v2URi4hIgatcuTL/+9//CmUVsaurK5UrVy7wcURERMS6cvq8oL/t95bC/Fx3t44dO0bPnj1xcnIq6lBERERE5D6R0+fc69ev07hxY6uOla9E2osvvsiOHTsYPXo0L7zwAn5+fgB8+umn3LhxA4PBQLt27bJt+9///heAKlWqWBiyiIgUBn0BJiIiIneizwv3B71PIiIiIvIgyu5zbnY7KloqX4m0fv36MW3aNE6fPs2jjz7KE088wYULF4iIiMBgMNC8efMcE2U///wzBoOBhg0bWiVwERERERERERERERERkYKUrzPSSpQoQXBwMMWLFyc5OZk9e/Zw7tw5jEYjpUuXZtasWdm2S0xMZOnSpQA0b97c8qhFRERERERERERERERECli+VqQBvPDCCxw9epRZs2bx559/AtCwYUPeeecdvL29s22zb98+AgICsLOz47nnnrMoYBEREREREREREREREZHCkO9EGoC/vz9jx47Nc/1nn32WZ5999m6GEhERERERERERERERESkS+draUURERERERERERERERORhoUSaiIiIiIiIiIiIiIiISDaUSBMRERERERERERERERHJhhJpIiIiIiIiIiIiIiIiItlQIk1EREREREREREREREQkG0qkiYiIiIiIiIiIiIiIiGRDiTQRERERERERERERERGRbCiRJiIiIiIiIiIiIiIiIpKNfCXSPv30Uw4cOFBQsYiIiIiIiIiIiIiIiIjcM/KVSBs7diz169enXLlyvPvuu2zYsIG0tLSCik1EbmM0Gpk3bx5PP/00rq6uuLu78+STT/L9999jNBoJDAzEYDAQGBiYbfsVK1bQtm1bfH19sbe3x9fXl7Zt27Jy5coCiXf9+vV069aN8uXL4+TkhJeXF7Vq1eLdd99l165dmeoGBQVhMBgICAjIsb+wsDAMBgMGgyHHOvHx8UycOJGnn34aLy8vHBwc8Pf3p1u3blnGFBERERERERERERHJjW1+Kr/33nusXr2a06dPM3PmTL755hvc3Nxo3bo17dq1o3Xr1ri6uhZUrCIPtZs3b/Lqq68SHBwMgMFgwMPDg/DwcP773/8SFhaGvb19tm1TUlLo1auXua2NjQ3u7u5ERkayZs0a1qxZQ/fu3VmwYAF2dnYWx5qQkEBgYCA//fST+Zqrqyvp6ekcPnyYw4cPs337dv7880+Lx7rVn3/+yUsvvURERAQAxYoVw9nZmYiICIKDgwkJCWHcuHEMHz7cquOKiIiIiIiIiIiIyIMpXyvSvvzyS06ePMnBgwcZPXo0TzzxBLGxsSxdupQePXrg4+PDiy++yLfffsv58+cLKmaRh9Lnn39uToQNHjyYq1evEhUVRXR0NOPHj2fZsmWsXr0627Yff/wxwcHBGAwGRo4cybVr14iKiiIyMpKPP/4YgKVLlzJy5EirxNqnTx9++uknbGxsGDp0KOfOnSMuLo6YmBiuXr3K4sWLefrpp60ylsnFixdp2bIlERERdOjQgfDwcBITE4mLi+Py5cuMHDmSYsWK8fHHH7Nq1Sqrji0iIiIiIiIiIiIiD6Z8JdJMHn/8cUaOHMm+ffs4e/YsM2bM4IUXXsBoNLJ+/XoGDBhAuXLlaNCgAePGjePIkSPWjlvkoXLjxg0mTJgAQN++ffniiy/w9vYGwM3NjeHDh/Ppp58SHR2dpe358+eZPn06AMOGDWPMmDF4eHgA4Onpybhx4xg8eDAAU6dO5eLFixbFumnTJkJCQgCYMWMGEydOpGzZsubyEiVK0KNHD7799luLxrndiBEjuHLlCj169CA0NJR69eqZV9eVLFmSMWPGMHnyZCBjG0kRERERERERERERkTu5q0TarcqWLct//vMf1q9fz9WrV1myZAmdO3fG1dWVffv28emnn1K7dm0eeeQRhgwZwtatW0lPT7dG7CIPjfXr1xMXFwfAJ598km2dIUOG4OzsnOV6aGgoaWlpODo6MmzYsGzbjhgxAgcHB1JTU1m+fLlFsf7www8A1KxZk/79+1vUV14lJSWxZMkSAIYOHZpjvV69egFw8OBBLl++nGO95ORk4uLiMr1ERERERERERERE5OFjcSLtVm5ubnTr1o1ly5Zx9epV1q1bR79+/ShTpgynTp1i2rRpNG3aFF9fX/r06cOBAwesObzIA2v//v0AlCtXjooVK2Zbx9XVlXr16mW5Hh4eDkCDBg1wc3PLtq2npyf169fPVP9u7dy5E4C2bdta1E9+7Nu3j6SkJABatGhBqVKlsn3VqFHD3ObMmTM59jdhwgTc3d3NL39//wKfg4iIiIiIiIiIiIjce2wLqmM7OzuaN29O8+bN+eabb9i3bx+rVq1i9erVHD58mIULF1KxYkXq1KlTUCGIPDCuXr0KQJkyZXKt5+fnl+XalStXciy7lWn7RVP9u3Xp0iUAypcvb1E/+XHhwgXzz7mtNLtVQkJCjmXDhw83b3cJEBcXp2SaiIiIiIiIiIiIyEOowBJpt6tXrx716tXjs88+49SpU/z88893/GJfRDIzGAxFHcIdFUWMN2/eNP+cmJiIo6OjRf05ODjg4OBgaVgiIiIiIiIiIiIicp8rtETarSpWrMj7779fFEOL3Jd8fHyAzCuvsnP+/Pks10qWLAlARERErm1N5ab6d6tUqVKcOnUq160Ts2Nrm/GfI9MWjdmJjY3NcUyTM2fOUKVKlXyNLSIiIiIiIiIiIiKSHauekSYiBaNu3bpARpLo9OnT2da5fv06+/bty3L91rPPckpExcTEZDpLzRKNGjUC4JdffslXO09PTwDOnTuXY509e/Zke71BgwbY29vf1bgiIiIiIiIiIiIiIjlRIk3kPtCiRQvc3NwAGD9+fLZ1pk2blu25Xx07dsTW1pakpCQmTZqUbdvx48eTnJyMnZ0dHTt2tCjWvn37AnD06FG+/fbbPLerXbs2kLHqLruE2ZUrV5g9e3a2bYsXL06PHj0AmDRpEmfPns11rKioqDzHJSIiIiIiIiIiIiIPLyXSRO4DxYsXZ+jQoQDMnj2bjz76yJwMio+PZ9KkSQQFBZlXdd3Kz8+PgQMHAjBx4kRGjRpFTEwMkLESbeTIkXz++ecADB48mNKlS1sUa5MmTejWrRsAAwYMYPjw4Zm2lYyMjGTOnDnmhJtJo0aNKF++PAC9e/cmPDwco9FIeno6YWFhBAQEkJ6enuO448ePp0yZMkRGRvL000+zaNEi4uPjzeVXr14lNDSU9u3b0717d4vmKCIiIiIiIiIiIiIPByXSRO4TH330EZ06dQLg888/x8fHBy8vLzw9PRk2bBivvvoqL730EgCOjo6Z2o4fP54uXbpgNBoZM2YM3t7eeHl54e3tzdixYwHo3r07n332mVVinTt3Lh06dCA9PZ2JEyfi7++Pu7s7Hh4e+Pj48Oabb2bZhtLGxoZZs2ZhZ2fH33//TYMGDXBxcaF48eI0adKEtLQ0Zs6cmeOYpUuXZuPGjTz22GNcuHCBXr164eHhgbe3Ny4uLpQsWZJOnTqxatWqXBNyIiIiIiIiIiIiIiImSqSJ3CdsbW0JCQlhzpw5NGzYECcnJ9LS0qhfvz5z5sxh4cKF5pVmHh4emdra29sTHBzM8uXLadWqFd7e3sTHx+Pt7U2rVq1YsWIFS5Yswc7OziqxOjs7Exoayq+//kr79u0pU6YMSUlJ2NraUqtWLd577z2+//77LO1atmzJ9u3badu2LZ6enty8eRN/f3+GDRvGvn37KFWqVK7jVqtWjUOHDjFr1ixatGhBiRIliIuLw2g08uijj9K5c2e+//57QkJCrDJPEREREREREREREXmw2RZ1ACKSdwaDgb59+2bZFhHAaDSyf/9+AGrUqJFt+44dO1p8Blp+tGnThjZt2uSrzZNPPskvv/ySbVlAQABGozHX9g4ODrz11lu89dZb+RpXREREREREREREROR2WpEm8oBYtGgRERER2Nra0qxZs6IOR0RERERERERERETkvqdEmsh9pHv37ixfvpzIyEjztcuXLzNx4kTefPNNAHr16kXp0qWLKkQRERERERERERERkQeGVbd2TEpKIjo6mtTU1FzrlStXzprDijw0fvvtN5YtWwZknENmZ2dHbGysufy5555j2rRpRRWeiIiIiIiIiIiIiMgDxeJEWkJCApMnT2bp0qWcOHHijvUNBgNpaWmWDivyUPrqq6/47bffOHDgAFeuXOH69ev4+PjwxBNP0K1bN1577TXs7OwsHufcuXM0aNAgX238/f3Zu3evxWOLiIiIiIiIiIiIiNwrLEqkxcTE8Pzzz3P06FGMRmOe2uS1nohk1atXL3r16lXg49y8eZPLly/nq42jo2MBRSMiIiIiIiIiIiIiUjQsSqR99tlnHDlyBDs7O959911efvllypQpg62tVXeMFJFCVqFCBSW9RUREREREREREROShZ1HGa9WqVRgMBr788kv69+9vrZhEREREREREREREREREipyNJY3Pnz+PjY0Nffr0sVY8IiIiIiIiIiIiIiIiIvcEi1akeXl5kZSUpLORRERERERERERERERE5IFj0Yq0Z599ltjYWM6fP2+teERERERERERERERERETuCRYl0oYOHYqtrS2fffaZteIRERERERERERERERERuSdYlEirV68e8+fPZ8GCBfTt25eTJ09aKy4REREREREReQiULl2aUaNGUbp06aIORUREREQkC4vOSKtUqRIAxYoVY/78+cyfPx8vLy9cXV1zbGMwGPj3338tGVZEREREREREHhClS5cmKCioqMMQEREREcmWRYm006dPZ7l27do1rl27lmMbg8FgyZAiIiIiIiIiIiIiIiIihcKiRNq8efOsFYeIiIiIiIiIiIiIiIjIPcVgNBqNRR2EiMi9LC4uDnd3d8avG8/wFsOzlE/dNZW45DjcHNwY/PTgIojQ+gprTtYepyDjnrZjGpUiK3GyxEkGPTOoUMcWERG5F2X3t09/2+899/o8pu6aysTtE0lNT8XPzY8j/zlS1CGJiIiISB7l57OmtT9/51R//MbxfNL8E2JjY3Fzc8v/pLKhRJqIyB2YEmkVx1fk5PCTWcrLTi3L+fjz+Ln6ETE4oggitL7CmpO1xynIuB+d9ihfVPqCISeHcGLQiUIdW0RE5F6U3d8+/W2/99zr8zDFZ2Icpa8oRERERO4X+fmsae3P3znVLzO+DBc/uWjVRJqNVXoRERERERERERERERERecBYJZFmNBpZsWIFnTt3pmLFihQvXpzixYtTsWJFunTpwqpVq9DCNxEREREREREREREREbmf2FraweXLl+nUqRM7d+4EyJQwO3PmDGfPniU0NJRnnnmGkJAQSpUqZemQIiIiIiIiIiIiIiIiIgXOokRaSkoKLVu25PDhwxiNRho2bEjz5s0pW7YsABEREWzcuJE9e/awY8cOWrVqxX//+1/s7OysEryIiIiIiIiIiIiIiIhIQbEokfbtt99y6NAh3Nzc+PHHH2nbtm2WOp999hlr166lR48eHDp0iO+++453333XkmFFRERERERERERERERECpxFZ6SFhIRgMBiYOXNmtkk0k9atWzNz5kyMRiPLli2zZEh5SAQFBWEwGAgICCjqUCQHPXv2xGAwEBwcXNSh5Ortt9/GYDAwd+7cog5FRERERERERERERO4zFiXSjh07hp2dHV27dr1j3a5du2Jvb8+xY8csGVLkvhITE0NQUBBBQUHExMQUdTg5WrVqFUFBQaxatSpP9cPDw1myZAk1a9akS5cuudY9ceIEw4cPp0GDBvj4+GBvb0+pUqV45plnGD16NBcuXLDCDHL28ccfY29vz6effkpCQkKBjiUiIiIiIiIiIiIiDxaLEmmJiYk4Oztja3vnHSJtbW1xdnYmMTHRkiFF7isxMTGMHj2a0aNH3/OJtNGjR+c5kTZkyBCMRiOjRo3CYDBkW+fmzZt8+OGHVKtWjYkTJxIeHk50dDQuLi5cvXqVnTt3EhQUROXKlZkyZYoVZ5NZuXLl6NOnDxcuXCjQcURERERERERERETkwWNRIs3X15fY2FjOnj17x7qnT58mJiYGX19fS4YUkSK2e/dutm3bRqlSpWjfvn22ddLT0+nYsSNTpkwhLS2NF198ka1bt5KcnExUVBSJiYn8/vvvNGrUiISEBD788EPee++9Aov57bffBuCrr74iOTm5wMYRERERERERERERkQeLRYm0559/HqPRyKBBgzAajTnWMxqNDB48GIPBQOPGjS0ZUkSK2HfffQdAt27dKFasWLZ1xo4dy88//wzAsGHD+O2333j++efN9e3t7WnZsiXbt2+nV69eAHz99dcsWrSoQGJ+4oknqFGjBteuXWP58uUFMoaIiIiIiIiIiIiIPHgsSqSZkmOrVq2iadOmbNq0idTUVHN5amoqGzdupEmTJqxatQqDwcCgQYMsDvpBFRwcTKtWrfD19cXOzg4PDw8qV65Mu3btmDlzJklJSVnaHDhwgF69elG+fHkcHR3x9PSkUaNGfPnllzmuvAkKCsJgMBAQEJBjLGFhYRgMhmy37bu9/aZNm2jTpg0+Pj44OjpSrVo1Ro8enW28t/rtt99o3rw5Hh4euLi4ULt2bSZPnpzpGbKm2NhYxowZQ926dXFzc8PJyYnKlSvTv39/Tp48mW2b06dPm+/D6dOnc+y7QoUKGAwG5s+fb74WEBBAxYoVzb9XrFjR3Nft93/+/PkYDAYqVKgAwIYNG2jVqhU+Pj44OTlRo0YNxo4dm+M9DQwMxGAwEBgYmGOMt48B//c+L1iwAIAFCxZkitFgMBAWFmauHxcXR0hICAA9evTIdpwrV64wceJEAJo0acL48eNzjMnGxobvv/+eatWqATB8+HBSUlIy1bHW82aK9/vvv8+1noiIiIiIiIiIiIiIiUWJtCeeeIIpU6ZgNBrZtm0bLVq0wMXFBT8/P/z8/HBxcaFly5Zs27YNgClTpvDEE09YI+4Hzuuvv063bt34/fffuXLlCo6OjqSmpnLixAl++eUXBgwYwKVLlzK1mTZtGvXq1WPRokWcPXsWR0dHbty4wa5duxg0aBANGzbk4sWLBRr3559/TvPmzfntt99IS0sjJSWF48ePExQUROvWrbl582a27UzlGzduJDY2Fjs7O/766y+GDh1Ks2bNsiRTLHX06FFq1qzJqFGjOHDgAKmpqdjZ2XHixAm+++47qlevTmhoqFXH9PLyokSJEubfS5Qoga+vr/nl5eWVbbtvvvmGli1b8vvvv5OWlkZaWhp//fUXI0eOpFGjRkRHR1stRnt7e3x9fXF0dATA0dExU4y+vr7Y29ub62/dupXExESKFy9O3bp1s+1z3rx55rMQcztDzcTBwYFhw4YBcP78+VzPabvb5w0yVtAC7Nixg/j4+FxjEhEREREREREREREBCxNpAIMGDWL16tVUqVIFo9FIamoqFy9e5OLFi6SmpmI0GqlevTq//PIL77//vhVCfvD88ccfzJs3DxsbGyZNmsS1a9eIj4/nxo0bREZGsm7dOnr37p0pofHrr78yePBgjEYjL7/8MidPniQmJobr16+zcOFCXF1dOXToEJ06dco1uWCJgwcPMmzYMIYNG8aVK1eIjo4mJiaGTz/9FIAtW7aYVzrdavXq1YwePRqAzp07c/bsWaKjo4mLi2PmzJns3r2bb7/91mpxxsfH89JLLxEREYGfnx9r1qzhxo0bxMXF8eeff/LUU0+RnJzMq6++ysGDB6027ooVK9i7d6/5971793Lp0iXza8WKFVnaXL16lffff59OnTplui/ffvstDg4OHDhwgL59+1otxkaNGnHp0iW6du0KQNeuXTPFeOnSJRo1amSub0qK161bN8dtHTdv3gyAt7d3nrdyfeWVV8wJty1btmRb526fN5N69epha2vLzZs32bFjR57iEhEREREREREREZGHm8WJNIC2bdvy119/cfDgQebOncuECROYMGECc+fO5eDBgxw5coQ2bdpYY6gH0s6dOwFo1qwZH330UaaVSt7e3rRo0YL58+dTpkwZ8/WPPvoIgOeee47Q0FDzFoL29va89tprLF682Nz3ypUrCyTumJgYRo4cyfjx480rr9zc3Bg9ejQdOnQAYOnSpVnaDR8+HIDGjRuzbNky/P39AXBycuI///kPX331FTExMVaL85tvvuHUqVPY2dnx+++/07p1a2xsMh792rVrs379eipUqEBycjKffPKJ1ca9GwkJCTRq1CjLfXn77beZOXMmACtXrsyUoCtMe/bsATLuW06OHj0KQJ06dfLcr5ubG5UqVQLgyJEj2da52+fNxMnJiSpVqgCwa9euXONJTk4mLi4u00tEREREREREREREHj5WSaSZPP744/Tp04ehQ4cydOhQ+vTpw+OPP27NIR5IHh4eQMZqpLysHjt06BDHjh0DYMSIEdmuDHrppZdo2LAhkHtywRIODg588MEH2Za9/PLL5lhvdejQIf766y8gI3ZTQutWb775Jn5+flaLMzg4GIBOnTpRs2bNLOWurq7mxORvv/1GbGys1ca+Gzndlz59+lC2bFkAli1bVthhAXDhwgUAfHx8cqxz7do1ICMJnB+m5Jip/e3u5nnLaQzTPHIyYcIE3N3dzS9TUlNEREREREREREREHi5WTaTJ3XnhhRdwdHTkwIEDPPfcc8ydO5dTp07lWD88PBwAW1vbXLfOa968eab61lajRg1cXFyyLTOtnouKisp0/dbYn3vuuWzb2tjYEBAQYJUYU1JSzMmVZs2a5VjPdK/S09PZv3+/Vca+G3m9LwX1nt7J1atXAXI8360g3c3zdjtT3KZ55GT48OHExsaaX+fOnbuLiEVERERERERERETkfqdE2j3gkUceYc6cObi4uLBr1y7eeOMNKlWqRMmSJenatSs///wzRqPRXP/KlStAxuoaBweHHPs1rV4y1bc2V1fXHMtsbW0BSEtLy3Q9v7FbKioqyrzKL7dVbreOV1D3Ky/udF9McyiqGJOSkgByjdG0Ei2nlWU5iYyMzNT+dnfzvN3OyckJ+L955MTBwQE3N7dMLxERERERERERERF5+NjmtWLTpk0BKF++PPPmzct0LT8MBgObNm3Kd7sH3auvvkqrVq346aef2LJlCzt37uTcuXOEhIQQEhLCc889x6+//qov9KVIeXt7c/HiRaKjo3OsU716dc6fP8+BAwfy3G9cXBwnT54EMlaeFRTTirX8bjspIiIiIiIiIiIiIg+nPCfSwsLCAKhatWqWa/lhMBjy3eZh4eXlRb9+/ejXrx8A//77L3PmzGHSpEls376doKAgpk6dSsmSJYGMFTzJyck5rg6KiIgAMNc3Ma3eyW1VTkGdE3Zr7CkpKdjb22db7/z581YZz8vLi2LFinHz5k3z/cjOrWW33i/TvYLCuV95vS9F9Z76+Phw8eLFXLdQfOGFF9iwYQPXrl0jLCwsT9t0rly50rzq8m4S9Hlliju3M95EREREREREREREREzynEgbNWoUkLH13O3XpGA88sgjTJgwgXPnzrF48WI2bNgAQP369YGMbey2bt1KixYtsm2/ceNGABo0aJDpuqenJ0Cu5z7t2bPH4vizc2vs27dv54UXXshSJz09/a6StNmxt7enVq1aHDhwgE2bNtG3b99s65nulY2NDXXr1jVfN90ryLhftyaSTf73v/8RExOTbb82Nv+3e+qt23PmJLf7YjQa2bp1K/B/9/H2OO/2PTXFeacYq1evzqFDh8yrx7ITGBhIUFAQSUlJjBkzhsaNG+eaQE9OTmbSpElAxllnr7zySq4xWMJ09mC1atUKbAwREREREREREREReXDkO5F2p2uSf7mtKoP/O9fJlOyoVasW1atX56+//mLs2LG88MILFCtWLFObtWvXmhMn3bt3z1RWu3ZtAC5cuMCePXt48sknM5VfuXKF2bNnWzapHNSqVYtq1apx7Ngxxo0bR5MmTTIlmwB++OGHXFeP5Ve3bt04cOAAy5cv5+OPP6ZmzZqZyq9fv87kyZMBaN26Ne7u7uay4sWL88gjj/Dvv/8SGhpK8+bNs/Q/bty4HMe+dSvOnJJt2fWX3X1ZsGCBOVHWtWvXTGWm93Tv3r2cO3cOf3//TOXHjh1jxYoVd4zzTjE+//zzLFu2jP/+97851vH19eWjjz5izJgxbNmyhU8++YTx48dnWzc9PZ1+/fpx7NgxAMaPH5/jajxLnTp1iqtXrwLQuHHjAhlDRERERERERERERB4sNneuIgVtwIABdOnShdDQUK5cuWK+fv36db777jsWLlwIQJs2bcxlphU827dvp1OnTuaVNqmpqSxevNicPGvUqFGWFT6NGjWifPnyAPTu3Zvw8HCMRqN5JVhAQADp6ekFNl9T4mnLli306NHDnDRLSkriu+++Y8CAAXh4eFhtvP79+1OxYkVSU1Np1aoVv/32m3l+hw8fpmXLlpw6dQoHBwfGjh2bpb3pXv7www988803JCYmAhmrv9544w2Cg4NxdnbOdmwPDw/8/PwAmDdvHmlpabnG6uzszB9//JHlvnz//ff0798fgJdffpmGDRtmavfSSy/h4uJCamoqXbp04e+//wYynoeff/6ZZs2aUbx48RzHNSUXt2/fzvHjx3OsZ9qm8cyZM1y+fDnHeqNGjaJt27YATJgwgdatW7N9+3Zu3rxpjmv9+vU8//zzLFiwAID//Oc/9O7dO8c+LWVKLPv6+ma7slBERERERERERERE5HYWJdLGjBnD1KlT81z/q6++YsyYMZYM+UBKTU3lp59+olOnTvj6+uLq6oqnpyeurq7079+flJQUnn32WT755BNzm7Zt2zJ16lQMBgOrVq2iUqVKeHp64uLiQs+ePYmLi+Pxxx/np59+yrJazcbGhlmzZmFnZ8fff/9NgwYNcHFxoXjx4jRp0oS0tDRmzpxZYPNt3769eS7BwcH4+/vj5eVlnm/Dhg3NSSNrcHV1ZfXq1fj5+REREUHr1q0pXrw47u7u1KpVi507d+Lg4MCPP/5oXtl1q6FDh1K9enVSU1N55513cHFxwdPTk3LlyrFw4ULmz5+f65lbb7/9NgBff/01Li4ulCtXjgoVKtCtW7csdX18fJg2bRohISHm++Lm5ka/fv1ISkqidu3azJ07N0s7d3d3vvzySwwGA7t376Zq1aq4ubnh4uLCK6+8Qrly5XL9t9exY0d8fHyIjo6mWrVq+Pj4UKFCBSpUqMDu3bvN9apVq2a+R6tXr86xPxsbG1auXMmgQYOwtbXlt99+4/nnn8fBwQFvb28cHR1p2bIlO3bswNHRkYkTJxboM3drvLev0BQRERERERERERERyYlFibSgoCCmTJmS5/rTpk1j9OjRlgz5QBo5ciRfffUV7du3p2rVqtja2nL9+nVKlixJ8+bN+eGHHwgLC8uyomjQoEGEh4fTs2dP/P39SUhIwMnJiaeeeopp06axd+9eypQpk+2YLVu2ZPv27bRt2xZPT09u3ryJv78/w4YNY9++fZQqVapA5zx27Fh+/fVXmjZtipubG8nJyVSrVo2JEyeyadMmq2/vV7NmTY4ePUpQUBBPPPEEtra2JCcn88gjj/D2229z9OhROnXqlG1bFxcX/vjjDwYPHkzFihWxtbXFzs6Ojh07smvXrmwTYrf6+OOPmT59OvXr18fOzo6IiAjOnDnDpUuXsq3/zjvvsG7dOl588UVsbGywsbGhatWqjBkzhl27duHt7Z1tu759+7JmzRrzPU1LS+Oxxx5j4sSJbN26NdcVaZ6enmzbto1u3brh5+dHbGwsZ86c4cyZMyQlJWWq269fPwAWL16c67xtbW2ZOnUqf/31Fx999BH16tXDw8OD+Ph4vL29efrppxk1ahQnTpxg6NChufZlqevXr/Pzzz9nil9ERERERERERERE5E7yfEaaFJxHHnmEd999l3fffTffbevWrcuiRYvuatwnn3ySX375JduygIAAjEZjtmVBQUEEBQXl2ndu7U3atGmTabvK/I6RX+7u7owaNequzvbz9PTkiy++4Isvvsi2/PTp0zm2tbGx4b333uO9997L83jNmzfP9jy2O2nVqhWtWrXKtiwwMJDAwMAc21atWpWlS5fecYyePXsybNgwtm3bxpkzZ8zbhOakcuXK5q1I74Y1nrcVK1aQkJBAkyZNtK2jiIiIiIiIiIiIiORZoZ6RFhUVhaOjY2EOKSJW5urqyrBhwzAajRYlyApLeno6kydPBmD8+PFFHI2IiIiIiIiIiIiI3E8KLZH2008/ER8fT7ly5QprSBEpIIMGDcLf35+5c+dy7ty5og4nVz/99BNHjx6lc+fOPPXUU0UdjoiIiIiIiIiIiIjcR/K1teP06dOZPn16pmtXr16lUqVKObYxGo3ExMQQFxeHwWDIcSs/Ebl/ODo6snDhQsLCwjh79iz+/v5FHVKOUlNTGTVqFH369CnqUERERERERERERETkPpOvRFpMTEyWs6Bu3ryZ6/lQt3rhhRf49NNP8zOkCAA7d+6kQ4cO+WrTqFEjVqxYUUARSUBAAAEBAUUdxh317NmzqEMQERERERERERERkftUvhJpr7zyChUqVAAyVpq9/vrruLu78+WXX+bYxsbGBjc3N2rWrMkjjzxiSazyEEtJSeHy5cv5ahMVFVVA0VhfYGAggYGBRR2GiIiIiIiIiIiIiIjcIl+JtNq1a1O7dm3z76+//jpOTk707t3b6oGJ3CogIACj0VjUYchD7s16b2Z7ffDTg4lLjsPNwa2QIyo4hTUna49TkHG/0/AdiPz//1vIY4uIiNyLsvvbp7/t9557fR6Dnx7MxO0TSU1Pxc/Nr6jDEREREZF8yM9nTWt//s6p/oCGA/iET/LUR14ZjMpOiIjkKi4uDnd3dyIjI/H29i7qcKSIpKamsnbtWlq3bo2dnV1RhyMiIiIW0t92EREREZHCU1ifv03f5cbGxuLmZp3/M5mNVXoRERERERERERERERERecBYlEjbvXs3devW5Z13sl+Kd6s33niDunXrEh4ebsmQIiIiIiIiIiIiIiIiIoXCokTakiVLOHjwIM8999wd6z711FP8+eefLFmyxJIhRURERERERERERERERAqFRYm0rVu3AtCiRYs71m3fvj0AW7ZssWRIERERERERERERERERkUJhUSItIiICd3d3vLy87ljX29sbd3d3zp8/b8mQIiIiIiIiIiIiIiIiIoXCokRaYmIi6enpea5vNBqJj4+3ZEgRERERERERERERERGRQmFRIq1kyZLEx8dz4cKFO9Y9f/48cXFxlChRwpIhRURERERERERERERERAqFRYm0p556CoCZM2fesa6pzpNPPmnJkCIiIiIiIiIiIiIiIiKFwtaSxn379iUkJITJkydTvnx53nrrrWzrzZo1i8mTJ2MwGOjbt68lQ4qIiIiIiIiIWM3UqRAXB25uMHhwztcK4/rdllm7v/zcq8JkjffqTmVF0fZei+d+bns3LIkH4OWXITYW3N3h558LJ6aHVX7+G5BbWVE9v9aqY2kMeX2+rF1P5H5mMBqNRks66NKlC8uXL8dgMFCzZk3atm1L+fLlAThz5gy//PILR48exWg00rFjR3766SerBC4iUlji4uJwd3cnMjISb2/vog5Hikhqaipr166ldevW2NnZFXU4IiIiYiH9bReTsmXh/Hnw84OIiJyvFcb1uy2zdn/5uVeFyRrv1Z3KiqLtvRbP/dz2blgSD0CxYpCeDjY2cPNm4cT0sMrPfwNyKyuq59dadSyNIa/Pl7XriRTW52/Td7mxsbG4ublZpU+LVqQBLFiwAIPBwE8//cThw4c5cuRIpnJTnq5bt27MnTvX0uFERERERERERERERERECoVFZ6QBODk5ERwczMaNG+nRowfly5fHwcEBR0dHKlSowKuvvsrmzZtZsmQJTk5O1ohZREREREREREREREREpMBZvCLNpGnTpjRt2tRa3YmIiIiIiIiIiIiIiIgUKYtXpOVVeno6v/zyC6+88kphDSkiIiIiIiIiIiIiIiJy1wo8kfbPP/8wbNgwypYtyyuvvMIvv/xS0EM+UAIDAzEYDAQGBlq97+3bt9OmTRt8fHwoVqwYBoNBic4HWIUKFTAYDMyfP79Ixu/ZsycGg4Hg4OBCHffFF1/EYDCwefPmQh1XRERERERERERERO5/Vtva8VYJCQmEhIQwd+5cdu7cCYDRaASgWrVqBTGk5NPu3btp2rQpaWlpGAwGvL29KVasGJ6engAEBQUBGYm8ChUqFF2gReD06dPmZJPpPohlwsPDWbJkCTVr1qRLly5ZyitUqMCZM2fo3bu31RN9QUFBrFu3jg8++IDw8HBsbAptIa6IiIiIiIiIiIiI3OesmkjbvXs3c+fOJSQkhOvXrwMZCbSqVavSuXNnOnfuTM2aNa05pNylL7/8krS0NJ555hlWr16Nl5dXpvLRo0cDEBAQ8FAm0kzzVyLNOoYMGYLRaGTUqFEYDIZCHfupp56iZcuWrFu3jh9//JFevXoV6vgiIiIiIiIiIiIicv+yOJF29epVFi5cyA8//MDx48eB/1t9ZjAY2Lt3L/Xq1bN0GLGyw4cPA9CtW7csSTQRa9q9ezfbtm2jVKlStG/fvkhiePvtt1m3bh2TJ09WIk1ERERERERERERE8uyu9jgzGo2sWbOGjh07UrZsWT766COOHTuGo6Mj3bp14/fffzfX1VaO96aEhAQAXFxcijgSedB99913QEbStlixYkUSQ+vWrfHy8uLo0aPs2LGjSGIQERERERERERERkftPvhJp//77L5988gn+/v60a9eOlStXkpaWxrPPPsvs2bO5dOkSixcvpkWLFgUVr9zm9OnTvP/++9SoUQMXFxecnZ2pWrUqAwcO5OzZs1nqGwwGDAYDp0+fBqBPnz7mawaDgcDAwExb7zVp0iRTuaXbPAYEBGAwGAgKCiIlJYWJEydSq1YtihcvjqenJ82bN+e33367Yz8rVqygbdu2+Pr6Ym9vj6+vL23btmXlypU5tjHNLTAwEKPRyJw5c3j22Wfx9vbGYDAwf/58KlSoQJMmTcxtbp27qa0lTP2EhYVx6dIlBgwYQMWKFXF0dKRUqVK8+uqr5pWdOUlKSuLLL7+kUaNGeHp64ujoSPny5enVqxd//vnnXcc2btw4DAYDxYoVMye/TNLT01m8eDGtW7c233MfHx9atGjB0qVLzatQbxcXF0dISAgAPXr0uKu4bn3fAJYvX05AQABeXl44OzvzxBNPMH36dNLT03Psw97eno4dOwLw/fff31UcIiIiIiIiIiIiIvLwydfWjpUrV8ZgMGA0GqlYsSK9evWiV69eVKxYsaDik1wsXryYvn37kpycDICDgwM2Njb8/fff/P3338ybN4/ly5dnSmz6+voCGVtypqen4+bmhpOTk7m8WLFi+Pr6cvnyZQA8PT2xt7c3l/v4+Fgl9pSUFJo1a8b27duxtbXFxcWFmJgYNm7cyMaNGxk1alS255OlpKTQq1cvgoODAbCxscHd3Z3IyEjWrFnDmjVr6N69OwsWLMDOzi7bsY1GI507dyY0NNTc3sbGxjy/uLg4oqOjgf+7Xybu7u5Wmf+pU6fo3r07ly5dwsnJCTs7Oy5fvsySJUtYsWIFK1eu5MUXX8zS7vz587z44oscOXIEADs7O5ydnTl79iyLFi1i8eLFfPnll7z77rt5jiU9PZ333nuPmTNn4ujoyJIlSzJtwRgVFUX79u3Ztm2b+Zrpnm/YsIENGzawbNkyfvrpp0zPCsDWrVtJTEykePHi1K1bN7+3KYsBAwYwc+ZMbGxscHNzIzExkYMHD/L++++zf/9+FixYkGPb559/ntmzZ7Nu3TqL4xARERERERERERGRh8Ndbe343nvvcezYMUaNGqUkWhHZsGEDvXr14ubNm3z00UecOnWKxMREbty4wfHjx+ncuTPx8fF07tw508q0S5cucenSJfz9/QGYPn26+dqlS5eYO3culy5dMtdfsWJFpvK9e/daJf5vvvmG//73v3z33XfEx8cTHR3N2bNn6dSpEwCjR49m9erVWdp9/PHHBAcHYzAYGDlyJNeuXSMqKorIyEg+/vhjAJYuXcrIkSNzHHvFihX8/PPPTJkyhejoaKKiooiNjaVly5bs3buXFStWZLlfptf06dOtMv9BgwZhb2/P+vXruXHjBvHx8ezZs4fHH3+cpKQkunbtSkRERKY2N2/epGPHjhw5cgR3d3d+/PFHrl+/TkxMDP/++y9t27YlPT2dgQMH5mlVH0BycjJdunRh5syZeHh4sH79+kxJtJs3b9KhQwe2bdvGE088wS+//MKNGzeIiYnh+vXrLFiwgJIlS7J69WqGDh2apX9T8q1u3boWb+u4evVqZs+ezdSpU4mOjiY6OprIyEjeeOMNABYuXMjmzZtzbP/kk08CcPny5Tuu+hMRERERERERERERgXwm0hwcHDAajXz99deUKVOGd955h927dxdUbJKD9PR03nnnHdLT05k5cyaTJk2iQoUK5m0Dq1SpQkhICO3atSMuLo6pU6cWdchZxMbG8s0339CvXz8cHR0B8Pf3Jzg4mOeffx7AnBgzOX/+vDmRNWzYMMaMGYOHhweQsXJu3LhxDB48GICpU6dy8eLFbMe+fv06U6dOZciQIbi5uQEZZ8WVLl3a6vPMSWJiIr///jvNmzc3b6XZsGFDNm7ciJeXF3FxcUyYMCFTm+XLl7Nnzx4AQkJCePXVV80rwCpVqsTKlSt58sknMRqNfPTRR3eMwZQ8DA0Nxc/Pj+3bt/Pcc89lqrNkyRK2bt1K1apVCQsLo23btjg7OwNQvHhxevXqxdq1azEYDHzzzTdcuXIlU3tTvLVr176Lu5RZdHQ0s2bNYtCgQeb3zdvbm9mzZ1OvXj0gI4mak8qVK5vPBNy1a5fF8YiIiIiIiIiIiIjIgy9fibSLFy/y1VdfUatWLaKiovj222955plnqFKlCuPHj8/2TC6xvm3btvHPP/9QokQJ82qc7PTq1QvgntzKzt/fnz59+mS5bmNjw4gRIwA4evQohw8fNpeFhoaSlpaGo6Mjw4YNy7bfESNG4ODgQGpqKsuXL8+2jqenJ/369bPCLO5e586dqVatWpbrJUuW5O233wYwb19pYvr96aefzvYcQltbW0aNGgXAkSNHMt272124cIHnnnvOnCTbuXMnNWvWzFJv7ty5APTv3z/HbS3r1atHjRo1SElJYcuWLVnGAetsCerv70/v3r2zLWvXrh0Ahw4dyrUPb2/vTHHlJDk5mbi4uEwvEREREREREREREXn45CuR5uHhwYABAzhw4AD79u0zf7n+zz//MHLkSCpVqkTTpk2ZN29eQcUrwI4dO4CMFUVlypShVKlS2b7efPNNAM6cOVOU4WYrICDAvBLrds899xy2thnH94WHh5uvm35u0KCBeUXS7Tw9Palfv36Wtrdq0KBBlrO8ClvTpk3vWHbt2jVOnTplvm6aT7NmzXJs26RJE/MWijnN//jx4zRq1IjDhw/z9NNPs2PHDsqVK5el3s2bN80rToOCgnJ8zkqVKsXff/8NZH3Wrl69CoCXl1eOMedVgwYNcnxmypQpA2Sc55YbUxymuHIyYcIE3N3dzS/TVqgiIiIiIiIiIiIi8nC5qzPSAOrUqcPMmTO5ePEiixYtonHjxhiNRsLCwjKtklq/fj1paWlWCVYymFbTpKamcvny5Rxf0dHRQMY2gvcaPz+/HMscHR3NK4du3SrQ9HNubQHKli2bpe2tSpYsma9YC0Juc7i1LL/zd3R0pESJElna3mrSpEmcOXMGX19f1q9fn2OSKyoqiuTkZCBjW8XcnrXU1FQAEhISMvWRlJQEZGwLaylXV9ccy0yJV1McOXFycsoUV06GDx9ObGys+XXu3Ll8RisiIiIiIiIiIiIiD4K7TqSZODg48Oqrr7J582ZOnDjBJ598Yv6i32g00rFjR0qWLEmfPn1Yu3atkmpWcPPmTQDzeVh5ecn/Ma3Yelh17twZe3t7Ll++TP/+/c3P0+1uvf7bb7/l6TkLCgrK1IcpIWpK6hY104o1U1w5cXBwwM3NLdNLRERERERERERERB4+FifSblWxYkU+++wzzpw5w9q1a+nQoQO2trbExMSwcOFCXnrpJXx9fa055EOpVKlSwL25ZWNenT9/Psey5ORkrl27BmRePWb6OSIiIte+TeX3wsqznOQ2/1vL8jv/pKSkbO/drVq3bs3KlStxcHDgxx9/5LXXXss2mebt7W1e6XW3z5rpbLQ7bblYWExxWOPMNhERERERERERERF58Fk1kWZiMBh48cUXWb58OefPn2fKlClUq1YNo9FITExMQQz5UHnmmWcAuHTpUo7nYFnKdBZVQa1m27p1a459b9++3bxy0XTe2a0/h4eHExsbm23bmJiYTGep3Q0bm//7Z1FQ89+yZcsdy7y8vKhYsaL5umn+mzZtyrFtWFiY+d7lNv/WrVvz888/4+joyNKlS+nRo0eW1aJ2dnY0bNgQgF9++eUOM8pe9erVATh58uRdtbem+Ph4IiMjAahWrVoRRyMiIiIiIiIiIiIi94MCSaTdqkSJEgwePJgjR46wc+dO+vbtW9BDPvCaNGnCo48+CsCgQYNISUnJtf7drAYybWVXUInPs2fPsmDBgizX09PTGT9+PJCRhHn88cfNZR07dsTW1pakpCQmTZqUbb/jx48nOTkZOzs7OnbseFex3bqNX0HN/6effuLvv//Ocj0yMpJZs2YB0LVr10xl3bp1A2DXrl2sX78+S9u0tDTGjBkDQM2aNalZs2auMbRs2ZLVq1fj5ORESEgI3bp1y3LG2FtvvQXA2rVrWbt2ba79ZfecPf/88wD897//zbVtYQgPDyc9PR1bW1tzMlpEREREREREREREJDcFnki71VNPPcX3339fmEM+kGxtbfnuu++wtbXljz/+4Pnnn2fTpk2ZkiAnT57ku+++o0GDBnzzzTf5HsOUhFm8eDEJCQlWi93E3d2d/v37M3v2bJKSkgA4d+4c3bt3N6/IGjt2bKY2fn5+DBw4EICJEycyatQoc6IrJiaGkSNH8vnnnwMwePBgSpcufVexPfbYY9jb2wMwZ86cAlmV5ujoyIsvvsjGjRvN/e/du5dmzZoRGRmJq6srw4YNy9SmY8eOPPnkkwB06dKFJUuWmN/zU6dO0bFjR3bt2gXA5MmT8xRH8+bN+fXXX3F2diY0NJQuXbpkSsz27NmTZs2aYTQaad++PWPHjuXChQvm8hs3brBlyxbeeecdKlWqlKX/gIAAIGNryMuXL+fx7hSMPXv2AFC3bl1cXFyKNBYRERERERERERERuT8UaiJNrOeFF17gp59+wtXVlT179tCsWTOKFy9OiRIlcHR05JFHHqF///6Eh4ebt2nMj7fffhuA0NBQPDw8KFu2LBUqVODZZ5+1Svz/+c9/qF+/Pm+99RZubm54eXlRrlw5QkJCABgxYgTt27fP0m78+PF06dIFo9HImDFj8Pb2xsvLC29vb3PirXv37nz22Wd3HZuzszOvvfYaAB999BEuLi6UL1+eChUq8MEHH9x1v7eaNm0aSUlJNG/eHBcXF1xdXWnYsCEHDx7EwcGBpUuXUq5cuUxtihUrRmhoKDVq1CA2NpZXX30VFxcXPD09qVSpEqtXr8bGxobp06fTqlWrPMfStGlT1q5dS/HixVm1ahUdO3Y0J9NMY7Zt25aUlBRGjhyJn58f7u7ueHp64urqStOmTfnmm2+4ceNGlr6rVatG7dq1AVi9erUFd8xypvF79OhRpHGIiIiIiIiIiIiIyP1DibT72CuvvMKJEycYNWoUDRs2xMXFhZiYGBwcHKhduzZvvPEGK1eu5MMPP8x33z179mTRokU8++yzODs7c/HiRc6cOUNERIRVYre3t2fTpk2MHz+eKlWqkJycjLu7Oy+88AJr1qzJMRFmb29PcHAwy5cvp1WrVnh7exMfH4+3tzetWrVixYoVLFmyBDs7O4vimzlzJkFBQeatJc+ePcuZM2fMZ2xZqmLFihw4cIB33nkHHx8fUlJSKFmyJN27d+fAgQO0adMm23Z+fn6Eh4czdepUnnrqKZycnEhISMDf35/XXnuNffv28d577+U7nsaNG/P777/j6urKr7/+yiuvvEJycjKQsdXlL7/8wtq1a+natSvlypUjOTmZhIQE/Pz8aNGiBRMmTMh2q0qAfv36ARmrG4vKyZMn2bVrF05OTvTq1avI4hARERERERERERGR+4ttUQcguZs/fz7z58/PsbxkyZIEBQURFBSUr35Pnz59xzo9e/akZ8+e+eo3P+zt7Rk+fDjDhw/Pd9uOHTvm+wy0O93LWzk4ODBq1ChGjRqV79jyqlSpUsyYMYMZM2bkq52joyODBg1i0KBB+Wp3p/f82WefJS4uLsfyVq1a5Wulm0nPnj0ZNmwY27Zt48yZM5QvXz5fseXlfQsMDCQwMDDH8h9//BHIOGfO09MzL2GLiIiIiIiIiIiIiGhFmogULNN5b0ajkUmTJhX6+Ddu3ODrr782J0dFRERERERERERERPJKiTQRKXCDBg3C39+fuXPncu7cuUIde8aMGURGRvLee+9luxpORERERERERERERCQn2tpRRAqco6MjCxcuJCwsjLNnz+Lv719oYxcvXpygoCDef//9QhtTRERERERERERERB4MSqRJvnXo0IGdO3fmq82KFSto1KhRAUVUuEqVKpXvNpcuXSqASO4vAQEBBAQEFPq4AwYMKPQxRUREREREREREROTBkK9EWvny5XnllVdo164dAQEBFCtWrKDikntYVFQUly9fzleblJQUAMLCwgogosKV37nfymg0WjESEREREREREREREREpSPlKpJ07d44ZM2YwY8YM3N3dad26NS+//DKtWrXCxcWloGKUe8yDkAyzhJJhIiIiIiIiIiIiIiIPh3wl0g4cOMCqVav4+eef+fPPP1myZAlLly7F3t6eJk2a0K5dO9q1a0eZMmUKKl4REREREREREasZPBji4sDNLfdrhXH9bsus3V9O8lvf2qzxXt2prCja3mvx3M9t74Yl8QC0bQuxseDuXngxPazy89+A3MqK6vm1Vh1LY8jr82XteiL3M4PxLpfXnDt3jp9//plVq1axbds20tLSMBgMGAwG6tWrZ94CskaNGtaOWUSkUMXFxeHu7k5kZCTe3t5FHY4UkdTUVNauXUvr1q2xs7Mr6nBERETEQvrbLiIiIiJSeArr87fpu9zY2FjcrJThtbnbhv7+/gwYMICNGzdy9epVFi9eTKdOnShevDh79+5lxIgR1KpVi8qVK/Phhx+yfft2bYknIiIiIiIiIiIiIiIi9427TqTdyt3dne7duxMcHExkZCS//fYbb731FqVLl+bff//liy++ICAgAF9fX15//XVWrVpFYmKiNYYWERERERERERERERERKRBWSaTdys7OjpYtW/Ltt98SERHBnj17GD58ONWrVycyMpL58+fTsWNHfHx8mDdvnrWHFxEREREREREREREREbEKqyfSbtegQQPGjRvH4cOHOXHiBF988QXPPPMMycnJnDt3rqCHFxEREREREREREREREbkrtoU5WKVKlRg0aBCDBg3i2rVrREVFFebwIiIiIiIiIiIiIiIiInlWqIm0W3l7e+Pt7V1Uw4uIiIiIiIiIiIiIiIjkqsC3dhQRERERERERERERERG5HymRJiIiIiIiIiIiIiIiIpKNItvaUURE8m/qVIiLAzc3GDw452siIiIiIiIiIiIiheFB/35SiTQRkfvI1Klw/jz4+WVOpN1+TURERERERERERKQwPOjfT2prRxEREREREREREREREZFsKJEmIiIiIiIiIiIiIiIikg0l0kRERERERERERERERESyYVEizcbGBj8/vzzXr1ixIra2OpZNRERERERERERERERE7n0Wr0gzGo0FWr+ohYWFYTAYMBgMVu87KCgIg8FAQECA1fuW+1NRPxObNm3CYDDQqlWrIhnf2iZOnIjBYGDkyJFFHYqIiIiIiIiIiIiI3IcKdWvHlJQUbGy0m6S1rFq1iqCgIFatWlXUoRSJL7/8kqCgIP7888+iDuWBkJ6ezpAhQwAYPXp0rnWTkpKYNWsWbdu2pVy5cjg5OeHu7k61atV466232LJlS4HGevr0aYKCgggKCsq13oABAyhRogRTp07l/PnzBRqTiIiIiIiIiIiIiDx4Ci2rFRMTw5UrV/D09CysIa3C2dmZKlWqUKVKlaIOJYtVq1YxevTohzqRNnr0aCXSrGTBggUcPHiQNm3a0LBhwxzrbdiwgcqVK/P222+zZs0azp07h729PcnJyRw/fpzZs2fTtGlTWrduzbVr1wok1tOnTzN69Og7JvxcXFwYMmQICQkJWpUmIiIiIiIiIiIiIvmWrwPLDh06lCVpkZiYyMKFC3NsYzQaiYmJYfny5aSnp1OnTp27CrSoNGzYkOPHjxd1GCIFbvLkyQD0798/xzrBwcH07NmTtLQ0/Pz8GD16NB06dDAnyI8fP86sWbOYMWMGv/32G0899RQ7duygZMmShTKH7LzxxhuMHDmSRYsWMW7cOEqXLl1ksYiIiIiIiIiIiIjI/SVfibSVK1cyZsyYTNfi4uLo06fPHdsajUYMBgODBw/OX4QiUuDCwsI4fvw4Pj4+tGzZMts6x44d4/XXXyctLY3HH3+cTZs24ePjk6lO1apVmTZtGs2bN6d9+/acOHGCHj16sHHjxsKYRrZKlChBy5YtWbNmDT/88AOffPJJkcUiIiIiIiIiIiIiIveXfG3t6OHhQbly5cwvABsbm0zXbn9VqFCBWrVq8eqrrxIWFpbjl/RFISAgAIPBQFBQEKmpqXzxxRfUr18fDw8PDAYDYWFhhIWFYTAYMBgMOfZz+PBhunbtSqlSpXB0dKRSpUq8++67XLlyJU/tTTZt2kSbNm3w8fHB0dGRatWqMXr0aJKSkjLVM/W5YMECIGNLPtMYpldYWNhd35f58+djMBioUKECkLGVX6tWrfDx8cHJyYkaNWowduzYLHHd7t9//6V///5UrlwZJycn3NzcqFu3LmPGjCEuLi7bNrffrwMHDvDqq69StmxZ7OzsCAgIICgoCIPBwJkzZwDo06dPlvlbIjAwEIPBQGBgIEajke+++46GDRvi5uaGm5sbzz77LEuWLLljP2FhYXTu3Bk/Pz8cHBwoUaIEL7zwAvPmzePmzZt3FduBAwcoVaoUBoOBli1bcv369UzlR44c4a233qJy5co4Ozvj4uJCrVq1+OSTT4iMjMyx39mzZwPQuXNnbG2zz6+PGDGChIQEHBwc+Omnn7Ik0W7VunVrRowYAWQ812vWrMlUntd/F9k9zxUqVKBJkyZZ6phegYGBWfrp0aNHpnmKiIiIiIiIiIiIiORFvlakDRw4kIEDB5p/t7GxwcfHh1OnTlk9sMKUlJREQEAAO3fuxNbWFldX1zwnY1auXEnXrl1JTU0FMs5kunjxIjNmzCA0NJTx48fnqZ/PP/+coUOHAuDu7k5KSgrHjx8nKCiIrVu3smHDBooVKwaAvb09vr6+xMbGkpSUhKOjI+7u7pn6s7e3z+v0c/XNN98wYMAAjEYjHh4epKWl8ddffzFy5EhWrFjBpk2bsj33LiQkhF69epGcnAyAq6srKSkpHDhwgAMHDjBnzhzWrVtHtWrVchw7NDSU7t27k5qaipubmznB4+Ligq+vL1evXiU9PR03NzecnJysMt/bde/eneDgYGxsbHB3dycmJoYdO3awY8cONm7cyNy5c7N9VgYPHsy0adOAjESPqe3mzZvZvHkzP/74I6tWrcLV1TXPsWzcuJEOHToQHx9Pz549+eGHH7CzszOXT548meHDh5Oeng5knO+XmprK4cOHOXz4MPPmzWPNmjVZtlc1Go2sW7cOgOeeey7bsS9evGg+i6979+55OjNw0KBBfP7558THxzNz5kzatGmT57nmxsfHh7i4OKKjowHw9fXNVH77vwWA559/HoAzZ85w7NixXJ87ERERERERERERERGTfK1Iu92oUaMYMmSItWIpMjNnzuTQoUPMmzePuLg4oqKiuHr1KrVq1cq13cmTJ+nZsyepqanUrVuX8PBw4uPjSUhIYMOGDdjb2+dpK8uDBw8ybNgwhg0bxpUrV4iOjiYmJoZPP/0UgC1btphXnwE0atSIS5cu0bVrVwC6du3KpUuXMr0aNWpkwR3JcPXqVd5//306derE2bNniY6OJi4ujm+//RYHBwcOHDhA3759s7Tbv38/PXv2JDk5mWeeeYZDhw4RFxdHQkICq1evpnTp0pw7d46XXnopy4qqWwUGBtK8eXOOHTtGbGwsiYmJzJ49mw8++IBLly7h7+8PwPTp07PM3xpWrVpFSEgIn332GdHR0URFRXH58mUGDBgAwLx58/j666+ztJsxY4Y5ifbWW29x4cIFoqOjiY2NZdq0adja2rJ582befPPNPMeydOlS2rRpQ3x8PEOGDGHhwoWZkmhz585l6NChODs7M27cOC5evMiNGzdISEggPDycpk2bcvHiRdq1a5flnv/1119cu3YNyDgTMDthYWHmBF3Hjh3zFLOLiwstWrQAYPv27aSlpeV5vrnZu3cvK1asMP9++3s/ffr0LG3Kli1LmTJlANi6datV4hARERERERERERGRB58SacD169dZsmQJgYGB5pVN3t7eeHl55dpu/PjxJCQkULJkSTZs2EC9evWAjBVIzZo1Y926dSQkJNxx/JiYGEaOHMn48eMpUaIEAG5ubowePZoOHToAGYmUwpaQkECjRo1YtmyZOWnl5OTE22+/zcyZM4GMFXl79+7N1O6TTz4hNTWVRx99lPXr1/P4448DGSsYX3rpJdasWYOtrS3//vsv3333XY7jV69endWrV1O1alXztcqVK1t7mjmKjY1lxIgRjBgxAjc3NyBjNdTXX39Nz549AbJsvZmYmMioUaOAjJVbs2bNolSpUgAUL16c999/n6lTpwIQHBzMvn377hjH1KlTefXVV83bj06ZMiXTKrj4+Hg++OADAJYvX87HH39sHrNYsWLUq1ePdevWUa9ePSIiIpgzZ06m/vfs2QNkrBqsVKlStjEcPXrU/PPtK9py88QTTwAZ/8ZMW3EWFVPcu3btKtI4REREREREREREROT+YVEi7UFRo0YNXnrppXy1MRqNhIaGAtC/f/9sk25VqlShS5cud+zLwcHBnAi53csvvwzAoUOH8hWftYwYMQIbm6yPSZ8+fShbtiwAy5YtM1+PiYkxbxP44Ycf4uzsnKVtnTp18pQg/PDDD83bWRYFJyenHN8X02rBqKgoNmzYYL6+YcMGoqKiAAgKCsq27X/+8x9Kly4NkOtZa0ajkQ8//JAhQ4Zga2vLjz/+mO0Kx9DQUGJiYqhTp06OZxDa2trSvXt3APP7Y3LhwgUAcxI3O6YVa5CRZM6rW/u8tY+iYIrFNN/cJCcnExcXl+klIiIiIiIiIiIiIg+ffJ2RlpN///2XkJAQDh06RFRUlPm8sOwYDAY2bdpkjWGt5plnnsl3m5MnTxITEwNA48aNc6wXEBDAokWLcu2rRo0auLi4ZFtm2o7OlJwpTLa2tjmemWVjY0NAQAA//vgj4eHh5uv79+/HaDQC0KxZsxz7bt68ufmZSU1NzbRNocndvC/WVL9+ffNKtNtVrlyZsmXLEhERQXh4uDkRa7oX/v7+PPbYY9m2LVasGE2bNmXx4sWZ7t2tUlNT6dWrFz/++CMuLi6sWLGC5s2bZ1t3x44dABw7dsy8Ei07iYmJAFlWhl29ehXgjisw73em+Znmm5sJEyYwevTogg5JRERERERERERERO5xFifSRo8ezdixY0lPTzcnUHJz65Z094qSJUvmu82tX8abkl3Z8fPzu2Nfrq6uOZbZ2ma8RdY6Xyo/SpQogYODQ47lprlduXLFfO3Wn3Obu2k1W1paGlFRUfj6+mapczfvizXd6b3z8/MjIiIi2/nfqa1p/re2vdXOnTvZuXMnkHEWW05JNPi/FVZJSUmZtpnMye3bjZra5PZe37oK7dq1a3l6rgEiIyOz7aMomLZtzcs9Gj58eKbVf3FxcebtTUVERERERERERETk4WFRIm3x4sXmVRtlypShZcuWlClTxpz8uV9Yun3gvZgcfBAU5baORe3xxx/HYDBw6NAhBg8eTJ06dXjkkUeyrXvz5k0AunbtmmmbzbwyJbiio6NzrFO9enXzz/v3789zIu3AgQMAuLi4UL58+XzHZk2mVZ15Seg5ODjkmlgUERERERERERERkYeDRRmvmTNnAtCuXTtCQkKwt7e3SlD3Ax8fH/PPFy5cyHEbv/PnzxdWSFYXGRlJSkpKju+raW63rhy79eeIiIgckz8RERFAxoq7e3VLwTu9d7nN3zS/nJjKc1p15+XlRWhoKM2aNePPP/+kcePGbN68OdvnzLSd4+1bNuaV6VnObfvQJk2aYGNjQ3p6OqGhoXk6U/D69evm8+Oee+65TAn2W39OSkrC0dExS/vY2Ng8zyEvTPO79d+uiIiIiIiIiIiIiEhubCxpfOTIEQwGA998881DlUQDqFSpEh4eHgCEhYXlWC+3MkvZ2GS8fXnZUvNupKWlsX379mzLjEYjW7duBTLOEjOpW7euOa7czsLbuHEjALVr1872fLS8KOj5h4eHc/369WzLTpw4YU6G3Tp/088RERH873//y7btzZs32bJlCwANGjTIcXxvb282bdpE3bp1OX/+PAEBAfz9999Z6pnOktu3bx8XL17Mw8wyM602u3r1ao7zLV26NC+//DIAy5YtyzaO202bNo34+HgA/vOf/2Qq8/T0NP987ty5bNvv2bMnx75N7z3k/f0/deoUANWqVctTfRERERERERERERERixJpBoMBNze3XM8Ie1AZDAY6dOgAwHfffZfttnj//PMPISEhBRaDm5sbADExMQU2xrhx40hPT89yfcGCBeYESNeuXc3XPTw8aNmyJQCff/55lvO4AA4ePEhoaCgA3bt3v+vYCnr+iYmJTJkyJduysWPHAhkrx249v6x58+bmrQODgoKybTtr1izzuWZ3mr+XlxebNm2iQYMGXLx4kYCAAI4dO5apTufOnfHw8CA1NZXBgwfnmlhKT0/Pcr8aNWpEsWLFSE9PJzw8PMe2n332GU5OTiQnJ9O5c+dM55/d7rfffjPfoyZNmtCmTZtM5Y899pj5zDLTs3B7nBMmTMixf9N7D3l7/5OTkzl48CAAjRs3vmN9ERERERERERERERGwMJFWtWpVEhISSE5OtlY895Xhw4fj5OTE5cuXadGihfk8KKPRyObNm2nZsiXOzs4FNn7NmjUB2L59O8ePH7d6/87Ozvzxxx/06NHDvPoqKSmJ77//nv79+wPw8ssv07Bhw0ztxo4di52dHSdOnKBly5YcPnwYyEiOrF27ltatW5OWlsYjjzxCv3797jo+0/yXL1+e6/led8vd3Z3PPvuMCRMmmFdWRUZGMnDgQBYsWADAyJEjM21L6OTkZE6gLV26lLfffpvLly8DkJCQwFdffcX7778PZCQg69Wrd8c4PDw82LBhA0899RSXLl0iICCAI0eOZCr/8ssvgYzVYm3atGHPnj3mBGh6ejrHjh3jiy++oEaNGvz666+Z+nd1dTXHkdsqsBo1ajBnzhyKFSvG4cOHqVOnDj/88EOmRNb//vc/Bg8eTLt27UhJSaFSpUosWbIkyzmCdnZ2dOzYEYDx48cTEhJCSkoKAH///Tft27fn0KFDOcby2GOPmVfBzpkz546r0g4cOEBKSgq2trbmFXwiIiIiIiIiIiIiIndiUSLtjTfeIDU1lZ9++sla8dxXHn30URYuXIitrS3h4eHUrVsXNzc3XFxceOGFF0hJSWHq1KkAODg4WH38jh074uPjQ3R0NNWqVcPHx4cKFSpQoUIFdu/ebXH/Pj4+TJs2jZCQEPz9/fHy8sLNzY1+/fqRlJRE7dq1mTt3bpZ2devWZdGiRdjb2/PHH39Qq1Yt3N3dKV68OG3atOHChQv4+/vzyy+/4OLictfxvfXWWxgMBnbu3ImPjw9lypQxz98aXnnlFTp37szHH3+Mp6cnXl5elCxZkq+++gqAXr168d5772VpN2DAAAYNGgRkrD4rXbo0Xl5euLu7M3DgQFJTU2nSpAmzZ8/Ocyzu7u6sX7+eRo0aceXKFZo0aZIp0dS7d2++/fZb7O3t+e2333jqqadwdnamRIkSODo6Ur16dT744AOOHz+eJakF/7cybvXq1bnG0aNHD3799VfKlClDREQEffv2xdPTEw8PD5ycnKhSpQrTpk0jLS2NFi1asHv3bvMZbrebMGECZcqUIT4+nq5du+Li4oK7uztVq1Zly5YtrFixIsc4nJ2dee211wD46KOPcHFxoXz58lSoUIEPPvggS33TvNq2bYurq2uucxQRERERERERERERMbEokfbmm2/Srl073nvvPbZt22atmO4rnTp1Ijw8nM6dO+Pj40NycjK+vr4MHDiQAwcO4O7uDmA+T82aPD092bZtG926dcPPz4/Y2FjOnDnDmTNnSEpKssoY77zzDuvWrePFF1/ExsYGGxsbqlatypgxY9i1a5d5G8Pbde3alaNHj9KvXz8eeeQRkpOTsbW15YknnmD06NEcOXLE4rOqnn/+edasWUOzZs3w8PDg8uXL5vlby9KlS/nmm2+oU6cOaWlpFC9enKeffpqFCxeyYMGCTGd13Wrq1Kls3ryZjh074uvry/Xr13F1daVJkyb88MMPbNiwId8JHVdXV9atW8dzzz1HZGQkTZs2Na+CBHj77bf5+++/+eCDD6hduzYODg7ExMTg4uJC/fr1effdd9mwYUO220n27t0bR0dHdu7caT5LLCcvvvgiJ06c4JtvvqF169b4+fmRlJSEnZ0djz32GH379mXjxo2sW7cOHx+fHPspW7Yse/bs4Y033sDPzw8AFxcXevXqxf79+++4BePMmTMJCgri8ccfB+Ds2bOcOXMmy5aTRqORJUuWAFi0AlJEREREREREREREHj4G4532RMvFmDFjuHnzJjNmzCAmJoZnnnmGJ5988o4Jgk8//fRuh7zvfPLJJ4wfP56mTZuyadOmog4nT+bPn0+fPn0oX748p0+fLupwCl1gYCALFiygd+/ezJ8/v6jDKTSvv/468+bNY/To0Q/Uv9Ft27bRuHFjHnnkEf75559sV+TdSVxcHO7u7kRGRuaYPC4sZcvC+fPg5wf/f8fVbK+J9aWmppq3p7WzsyvqcERERMRC+tsuIiIiImIdefl+srA+f5u+y42NjcXNzc0qfdpa0jgoKMj8pbTRaOSPP/5gx44dd2z3IH1Jn5urV68yZ84cIGMVj8i97NNPP2XJkiXMmDGDIUOGULx48aIOySomTJgAZJzddzdJNBERERERERERERF5eFmUSHv++ecf+i+mv/rqKxISEujUqRMVKlTA1taW5ORkNm3axJAhQ7hy5Qo+Pj68/vrrRR2qSK4qVKjAu+++y5QpU5g5cyYfffRRUYdksT179vD777/TsGFDunbtWtThiIiIiIiIiIiIiMh9xqJEWlhYmJXCuH+dPHmS6dOnM3z4cIoVK4a7uztxcXGkpaUB4O7uTkhISJFvByeSF5988gkuLi4PzGq0q1evMmrUKNq3b//QJ/1FREREREREREREJP8sSqQJ9O7dm2LFirFt2zbOnz/PtWvXcHJyomLFirRs2ZKBAwfi5+dX6HEFBwczcODAfLXp2rUr06dPL6CICtfAgQMJDg7OV5vp06c/9KuWPDw8GDVqVFGHYTVt27albdu2RR2GiIiIiIiIiIiIiNynlEizUJ06dahTp05Rh5FFYmIily9fzleb2NhYAAIDAwkMDCyAqApPbGxsvuefmJgIwPz585k/f34BRCUiIiIiIiIiIiIiIvcTqyXSDh06xLp16zhz5gyJiYnMnTvXXJaamsrVq1cxGAyULl3aWkNKLh6EZJgllAwTERERERERERERERFLWZxIi42N5fXXX2fVqlUAGI1GDAZDlkRa7dq1iY6O5uDBg9SoUcPSYUVEHkqDB0NcHLi55X5NREREREREREREpDA86N9PWpRIS01NpVWrVuzZswdnZ2eaNGnCxo0bSU5OzlTP2dmZPn36MGXKFJYvX65EmojIXRo8OG/XRERERERERERERArDg/79pI0ljefOncvu3bupVKkSf//9N6tXr8bd3T3buh07dgRg27ZtlgwpIiIiIiIiIiIiIiIiUigsSqQtXboUg8HAtGnTKFOmTK5169Spg42NDcePH7dkSBEREREREREREREREZFCYVEi7fDhwxgMBlq0aHHHuvb29ri7u3Pt2jVLhhQREREREREREREREREpFBYl0hISEnB1dcXe3j5P9VNTU7G1tehYNhEREREREREREREREZFCYVEirUSJEsTFxXH9+vU71j116hTXr1+/4xaQIiIiIiIiIiIiIiIiIvcCixJpTz75JABr1qy5Y92vv/4agOeee86SIUVEREREREREREREREQKhUWJtNdffx2j0cjIkSO5cOFCjvVmzZrF9OnTMRgMvPXWW5YMKSIiIiIiIiIiIiIiIlIoLDqwrE2bNnTs2JHQ0FDq169Pjx49SExMBOD777/nzJkz/Prrrxw5cgSj0cibb75pXsUmIiJ5N3UqxMWBmxsMHpz1dxEREREREREREZHC9LB8R2lRIg1g0aJFODo6snjxYqZNm2a+3r9/fwCMRiOQsXpt5syZlg4nIvJQmjoVzp8HP7//S6Td+ruIiIiIiIiIiIhIYXpYvqO0aGtHAEdHRxYtWsS2bdt47bXXeOSRR3BycsLe3p5y5crRo0cPwsLCmDNnDra2FuftRERERERERERERERERAqF1TJbzz77LM8++6y1uhMREREREREREREREREpUhavSBMRERERERERERERERF5EFmUSGvevDk//vgjCQkJ1opHRERERERERERERERE5J5gUSJt06ZN9O7dm1KlShEYGMjGjRutFZeIiIiIiIiIiIiIiIhIkbIokdazZ0+cnZ25fv06ixYtomXLlvj7+zN8+HCOHj1qrRgfSGFhYRgMBgwGg9X7DgoKwmAwEBAQYPW+5f5U1M/Epk2bMBgMtGrVqlDHXbZsGQaDgddee61QxxURERERERERERGRB4NFibSFCxdy+fJlFi1aRLNmzbCxseH8+fNMnjyZWrVqUa9ePb766iuuXr1qrXilEKxatYqgoCBWrVpV1KEUiS+//JKgoCD+/PPPog7lgZCens6QIUMAGD16dJZyU5KvIJLKXbp0oXr16ixevJj9+/dbvX8RERERERERERERebBZlEgDcHZ25tVXX2XdunWcO3eOzz//nFq1amE0Gjlw4ACDBg3Cz8+Pl156iZCQEJKTk60R933P2dmZKlWqUKVKlaIOJYtVq1YxevTohzqRNnr0aCXSrGTBggUcPHiQNm3a0LBhw0Id28bGhpEjR2I0Gvnggw8KdWwRERERERERERERuf9ZnEi7ValSpRgyZAgHDhzg0KFDfPDBB5QpU4a0tDTWrFlD9+7dKV26tDWHvG81bNiQ48ePc/z48aIORaRATZ48GYD+/fsXyfidOnWiRIkSbNmyhfDw8CKJQURERERERERERETuT1ZNpN2qZs2aTJ48mbNnz7Jhwwbq16+P0WgkNja2oIYUkXtMWFgYx48fx8fHh5YtWxZJDLa2tnTt2hWAWbNmFUkMIiIiIiIiIiIiInJ/KrBEGsDFixeZOnUqQ4YMYd++fQU51D0lICAAg8FAUFAQqampfPHFF9SvXx8PDw8MBgNhYWGEhYXd8Vyow4cP07VrV0qVKoWjoyOVKlXi3Xff5cqVK3lqb7Jp0ybatGmDj48Pjo6OVKtWjdGjR5OUlJSpnqnPBQsWABlb8pnGML3CwsLu+r7Mnz8fg8FAhQoVANiwYQOtWrXCx8cHJycnatSowdixY7PEdbt///2X/v37U7lyZZycnHBzc6Nu3bqMGTOGuLi4bNvcfr8OHDjAq6++StmyZbGzsyMgIMB8VteZM2cA6NOnT5b5WyIwMBCDwUBgYCBGo5HvvvuOhg0b4ubmhpubG88++yxLliy5Yz9hYWF07twZPz8/HBwcKFGiBC+88ALz5s3j5s2bdxXbgQMHKFWqFAaDgZYtW3L9+vVM5UeOHOGtt96icuXKODs74+LiQq1atfjkk0+IjIzMsd/Zs2cD0LlzZ2xtbfMd1+3v24kTJ3j99dfx9/fHwcGBsmXL8uabb3L+/Plc++nRowcAS5cuzTI3EREREREREREREZGc5P+b7TtITExkxYoVLFy4kM2bN5Oeno7RaASgbt269OrVy9pD3rOSkpIICAhg586d2Nra4urqmudkzMqVK+natSupqakAuLi4cPHiRWbMmEFoaCjjx4/PUz+ff/45Q4cOBcDd3Z2UlBSOHz9OUFAQW7duZcOGDRQrVgwAe3t7fH19iY2NJSkpCUdHR9zd3TP1Z29vn9fp5+qbb75hwIABGI1GPDw8SEtL46+//mLkyJGsWLGCTZs24enpmaVdSEgIvXr1Mp+15+rqSkpKCgcOHODAgQPMmTOHdevWUa1atRzHDg0NpXv37qSmpuLm5mZO8Li4uODr68vVq1dJT0/Hzc0NJycnq8z3dt27dyc4OBgbGxvc3d2JiYlhx44d7Nixg40bNzJ37txsn5XBgwczbdo0AAwGg7nt5s2b2bx5Mz/++COrVq3C1dU1z7Fs3LiRDh06EB8fT8+ePfnhhx+ws7Mzl0+ePJnhw4eTnp4OZJzvl5qayuHDhzl8+DDz5s1jzZo11KlTJ1O/RqORdevWAfDcc8/l+x7dbsuWLbRr147r16/j6upKeno658+fZ86cOaxdu5b//ve/+Pn5Zdu2QYMGODo6cuPGDbZv306rVq0sjkdEREREREREREREHnxWW5G2ceNGevfuja+vL7169WLDhg3cvHkTPz8/hg4dypEjRwgPD+e9996z1pD3vJkzZ3Lo0CHmzZtHXFwcUVFRXL16lVq1auXa7uTJk/Ts2ZPU1FTq1q1LeHg48fHxJCQksGHDBuzt7Rk8ePAdxz948CDDhg1j2LBhXLlyhejoaGJiYvj000+BjMSEafUZQKNGjbh06ZJ5G7yuXbty6dKlTK9GjRpZcEcyXL16lffff59OnTpx9uxZoqOjiYuL49tvv8XBwYEDBw7Qt2/fLO32799Pz549SU5O5plnnuHQoUPExcWRkJDA6tWrKV26NOfOneOll17KddVRYGAgzZs359ixY8TGxpKYmMjs2bP54IMPuHTpEv7+/gBMnz49y/ytYdWqVYSEhPDZZ58RHR1NVFQUly9fZsCAAQDMmzePr7/+Oku7GTNmmJNob731FhcuXCA6OprY2FimTZuGra0tmzdv5s0338xzLEuXLqVNmzbEx8czZMgQFi5cmCmJNnfuXIYOHYqzszPjxo3j4sWL3Lhxg4SEBMLDw2natCkXL140J7hu9ddff3Ht2jUg40xAS3Xs2JGmTZty7Ngx4uLiuHHjBsHBwbi6unLhwgWGDx+eY1s7Ozvq1q0LwNatWy2ORUREREREREREREQeDhYl0o4cOcLQoUPx9/enZcuW/Pjjj1y/fp3ixYubk2lnzpxhwoQJVK9e3Vox3zeuX7/OkiVLCAwMNK9s8vb2xsvLK9d248ePJyEhgZIlS7Jhwwbq1asHZKxAatasGevWrSMhIeGO48fExDBy5EjGjx9PiRIlAHBzc2P06NF06NAByEikFLaEhAQaNWrEsmXLzEkrJycn3n77bWbOnAlkrMjbu3dvpnaffPIJqampPProo6xfv57HH38cABsbG1566SXWrFmDra0t//77L999912O41evXp3Vq1dTtWpV87XKlStbe5o5io2NZcSIEYwYMQI3NzcAfHx8+Prrr+nZsydAlq03ExMTGTVqFJCxmm3WrFmUKlUKgOLFi/P+++8zdepUAIKDg/O0lerUqVN59dVXzduPTpkyJdMquPj4eD744AMAli9fzscff2wes1ixYtSrV49169ZRr149IiIimDNnTqb+9+zZA2SsGqxUqVL+b9RtnnjiCVauXGl+3+zt7enSpQvjxo0zx5iWlpZje9OKuV27dt1xrOTkZOLi4jK9REREREREREREROThY1EirVatWkyZMoXz589jMBh44YUXWLhwIZcuXWL+/Pm88MILFp8rdT+rUaMGL730Ur7aGI1GQkNDAejfv3+2SbcqVarQpUuXO/bl4OBgToTc7uWXXwbg0KFD+YrPWkaMGIGNTdbHr0+fPpQtWxaAZcuWma/HxMSYtwn88MMPcXZ2ztK2Tp06eUoQfvjhh+btLIuCk5NTju+LabVgVFQUGzZsMF/fsGEDUVFRAAQFBWXb9j//+Q+lS5cGyPWsNaPRyIcffsiQIUOwtbXlxx9/zHaFY2hoKDExMdSpU4eWLVtm25etrS3du3cHML8/JhcuXAAwJ3Et9fHHH2f7zJie5cTERP75558c25viMMWVmwkTJuDu7m5+mRK+IiIiIiIiIiIiIvJwsXhrx+rVqzNp0iTOnj3L+vXr6dmzZ7ZJjofRM888k+82J0+eJCYmBoDGjRvnWC8gIOCOfdWoUQMXF5dsy8qUKQNgTs4UJltb2xzPzLKxsTHPLTw83Hx9//795rP2mjVrlmPfzZs3BzIShKbz5W53N++LNdWvX9+8Eu12lStXNicSb52/6Wd/f38ee+yxbNsWK1aMpk2bZml7q9TUVHr16sWUKVNwcXFhzZo19OjRI9u6O3bsAODYsWOUKlUqx9eYMWMAOHPmTKb2V69eBbjjCsy8evLJJ7O9bnqWIffn2RSHKa7cDB8+nNjYWPPr3Llz+YxWRERERERERERERB4EtpY03r9/P0888YSVQnnwlCxZMt9tbv2S/9YEwe38/Pzu2Jerq2uOZba2GW99blvhFZQSJUrg4OCQY7lpbleuXDFfu/Xn3OZuSkKlpaURFRWFr69vljp3875Y053eOz8/PyIiIrKd/53amuZ/a9tb7dy5k507dwIZZ7GZEo/ZMa3cSkpKyrTNZE5u327U1Ca39zo/cnqeTc8ykGPyFDBvr5qXuTg4OFgtbhERERERERERERG5f1m0Ik1JtNxZun3gw7wtZkEqym0di9rjjz9OrVq1ABg8eDD//vtvjnVv3rwJQNeuXTEajXd8nT59OlN7b29vAKKjowtmMvlkWq1miktERERERERERERE5E4s3toxP3bv3s22bdsKc8j7jo+Pj/nn3M5yOn/+fGGEUyAiIyNJSUnJsdw0t1tXjt36c0RERI5tTWW2trZW21LQ2u703uU2/9zmfmt5TqvuvLy82Lx5M0888QTnzp2jcePG/O9//8u2bqlSpYCsWzbmlelZLortQ7NjiuPWf2MiIiIiIiIiIiIiIrnJVyLNxsYmx63lBg0aRN++fXNt3759e/MZTpK9SpUq4eHhAUBYWFiO9XIrs5SNTcZjYTqTzNrS0tLYvn17tmVGo5GtW7cCGWeJmdStW9cc16ZNm3Lse+PGjQDUrl0bOzu7u4qvoOcfHh7O9evXsy07ceKEORl26/xNP0dEROSY+Lp58yZbtmwBoEGDBjmO7+3tzaZNm6hbty7nz58nICCAv//+O0s901ly+/bt4+LFi3mYWWbVq1cHMrYrzWm+henUqVMAVKtWrYgjEREREREREREREZH7Rb5XpOWUXFi2bBnz58+/6/aSwWAw0KFDBwC+++67bLfF++effwgJCSmwGNzc3ACIiYkpsDHGjRtHenp6lusLFizg3LlzQMaWgiYeHh60bNkSgM8//zzLeVwABw8eJDQ0FIDu3bvfdWwFPf/ExESmTJmSbdnYsWOBjJVjt55f1rx5c/OWhEFBQdm2nTVrlnkV453m7+XlxaZNm2jQoAEXL14kICCAY8eOZarTuXNnPDw8SE1NZfDgwbn+201PT89yvxo1akSxYsVIT08nPDw813gKw549ewBo3LhxEUciIiIiIiIiIiIiIveLQt3aUfJm+PDhODk5cfnyZVq0aMGBAweAjCTk5s2badmyJc7OzgU2fs2aNQHYvn07x48ft3r/zs7O/PHHH/To0cO8+iopKYnvv/+e/v37A/Dyyy/TsGHDTO3G/j/27jws6nL///hrWAcEhkXERASzTrlltmcuuKSmno5Grplap9LMMq1cSg/oMbXl58nKVk3N1DS3zKXMEjWX0rJSy75ZCriAITuyz/z+4MwckBkEBEbl+biuuYL53Mv7vj8zZ+bw9r7vGTPk7u6uo0ePqkePHjp48KCk4iTOpk2b1KtXLxUWFqpZs2YaOXJkleOzjn/VqlU1cr6XyWTSv//9b82aNUuZmZmSire7HDt2rBYvXixJmjp1qoxGo62Ol5eXLYG2fPlyjRo1SklJSZKkc+fO6fXXX9fTTz8tqTgBefPNN18wDn9/f3355Ze64447lJiYqMjISB06dKjU9ddee01ScaK8d+/e+vbbb20JULPZrF9//VX/7//9P7Vs2VIbNmwo1b6vr68tDmsSy1kSExMVHx8viUQaAAAAAAAAAKDiSKRdgq655hp9+OGHcnNz0/79+3XTTTfJz89PPj4+6tq1q/Lz8zVnzhxJkqenZ7X3HxUVpeDgYKWmpqp58+YKDg5WRESEIiIitHfv3otuPzg4WP/5z3+0cuVKhYWFKTAwUH5+fho5cqRyc3PVpk0bLViwoEy9m266SUuWLJGHh4e++eYb3XDDDTKZTKpXr5569+6tU6dOKSwsTJ999pl8fHyqHN9jjz0mg8Gg3bt3Kzg4WI0aNbKNvzr07dtX/fv31/PPP6+AgAAFBgaqQYMGev311yVJw4YN01NPPVWm3pgxYzRu3DhJxavPrrrqKgUGBspkMmns2LEqKChQ586d9f7771c4FpPJpC1btqhdu3Y6c+aMOnfurJ9//tl2ffjw4Xr77bfl4eGhzZs364477pC3t7fq168vo9GoFi1a6Nlnn9WRI0dkMBjKtG9dGbd+/fpKzVF1s/Z/4403srUjAAAAAAAAAKDCSKRdou6//37t379f/fv3V3BwsPLy8hQSEqKxY8fqwIEDMplMkmQ7T606BQQEaMeOHRo0aJBCQ0OVnp6uuLg4xcXFKTc3t1r6eOKJJ/TFF1+oZ8+ecnFxkYuLi66//npNnz5de/bssW1jeL6BAwfq8OHDGjlypJo1a6a8vDy5ubnpxhtv1LRp03To0KGLTpR07NhRGzduVLdu3eTv76+kpCTb+KvL8uXL9dZbb6lt27YqLCxUvXr1dOedd+rDDz/U4sWLbee0nW/OnDn6+uuvFRUVpZCQEGVlZcnX11edO3fWBx98oC+//FK+vr6VisXX11dffPGFOnTooOTkZHXp0sW2ClKSRo0apd9++03PPvus2rRpI09PT6WlpcnHx0e33HKLnnzySX355Zd2t5McPny4jEajdu/ebTujzBmWLl0qSRe1UhEAAAAAAAAAUPcYLJU4tMzFxUUNGza0ncNU0lVXXaUzZ86oqKjIYf2KlEHFvPDCC5o5c6a6dOmir776ytnhVMiiRYv00EMPKTw8XMePH3d2OLVuxIgRWrx4sYYPH16h8wSvFA8//LAWLlyoadOm6V//+let93/8+HFdffXV8vX11YkTJyqdaJSkjIwMmUwmJScnO0zy1rTGjaWTJ6XQUOnEibK/o+YVFBTYtpF1d3d3djgAAOAi8dkOAAAAXJzK/I2ytr5/W/+Wm56eLj8/v2ppkxVpl6G//vpL8+fPlyT17NnTydEA5fvXv/4lT09Pvfnmm8rOzq71/l966SVZLBZNnjy5Skk0AAAAAAAAAEDdRSLtEvX6669r9uzZOnr0qAoLCyVJeXl52rRpkzp27KgzZ84oODhYDz/8sJMjBcoXERGhJ598Un/99ZfmzZtXq30nJCTogw8+UJMmTfT000/Xat8AAAAAAAAAgMufm7MDgH1//vmn5s6dq8mTJ8vV1VUmk0kZGRm2pJrJZNLKlSudts0cUBkvvPCCfHx8VK9evVrtNy4uTpMnT1bnzp1lNBprtW8AAAAAAAAAwOWv0om0pKQkubq6Orxe3jWLxSKDwVDZLuuk4cOHy9XVVTt27NDJkyd19uxZeXl5qWnTpurRo4fGjh2r0NDQWo9rxYoVGjt2bKXqDBw4UHPnzq2hiGrX2LFjtWLFikrVmTt3rgYOHFhDEV0e/P39FR0dXev9tm/fXu3bt6/1fgEAAAAAAAAAV4ZKJ9IsFktNxIHztG3bVm3btnV2GGXk5OQoKSmpUnXS09MlSSNGjNCIESNqIKrak56eXunx5+TkSJIWLVqkRYsW1UBUAAAAAAAAAACgJlQqkeaMFSW4tFwJybCLQTIMzjJ+vJSRIfn52f8dAAAAAAAAAGpTXfkbJYk0ALgMjB9f/u8AAAAAAAAAUJvqyt8oXZwdAAAAAAAAAAAAAHApIpEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgB4k0AAAAAAAAAAAAwA4SaQAAAAAAAAAAAIAdJNIAAAAAAAAAAAAAO0ikAQAAAAAAAAAAAHa4OTsAAAAAAABQd/3jH1J6umQySZ9+6uxoAAAAUF3mzJEyMiQ/P+nJJ50dTdWRSAMAAAAAAE6zYYNkNksu7JkDAABwRZkzRzp5UgoNvbwTaXxNBQAAAAAAAAAAAOwgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTTUmOPHj8tgMMhgMOj48ePODqfG5efnq1mzZvL09FRCQoKzw6k2kZGRMhgMiomJcXYoDsXExMhgMCgyMrLMtZ49e8pgMOjrr7+u/cAAAAAAAAAAAJc1EmkXYd26dYqJidG6desu6z6qIiYmRjExMXUiQVZRb7zxhv7880898sgjCgsLK3WtZFKxIo9FixY5ZxBXIGsC8Nlnn5XZbHZuMAAAAAAAAACAy4qbswO4nK1bt06LFy/W8OHD1bdv38u2j6qYNm2apOLVShEREXbLuLu767rrrrP9fCVLSUnRjBkz5OnpqcmTJ5db1s/PT15eXuWWudD12tSkSRNdd911ql+/vrNDqZI77rhDPXr00BdffKGPPvpIw4YNc3ZIAAAAAAAAAIDLBIk01JjQ0FAdOXLE2WHUivfee09paWm6//771bhx43LLzp07VyNGjKidwKrBhx9+6OwQLtqoUaP0xRdf6OWXXyaRBgAAAAAAAACoMLZ2BC6SxWLRe++9J0kaOnSok6OBPb169VJgYKAOHz6sXbt2OTscAAAAAAAAAMBlgkTaeVasWKF77rlHISEhcnd3l7+/v6699lrde++9mjdvnnJzcxUbGyuDwaDFixdLkhYvXlzmjKvY2Fhbm4mJiXrjjTf0j3/8Q82bN5fJZJKXl5euueYaPfLIIzp8+HCZOCrbh9WhQ4f02GOP6dprr5W3t7d8fHx0ww036IUXXlBycvJFz8+IESNkMBhsv3fu3LlUTCW3eSx5Ltj5Z6lZx2dt6+eff9bgwYPVqFEjeXl5qXnz5nr11VdVWFhoq7Nr1y717dtXV111lYxGo1q1aqV58+bJYrGUG3NV5iQmJkYGg0GRkZGSpNWrV6t79+5q0KCBXFxcbOduSdLWrVt17Ngx+fv7q1evXhWYxcrZvXu33NzcZDAY9J///MdumRMnTigoKEgGg0GPPvpoqWuRkZEyGAyKiYlRfn6+Zs+erRtuuEH16tVTQECA7r77bm3evNlh/yXrny8iIsJ2pltWVpb+9a9/qXXr1vL19bV733ft2qWhQ4cqPDxcRqNRJpNJt912m1566SVlZWWVOw+bN2/W3XffLX9/f/n4+KhNmzZ6+eWXVVBQUG49SfLw8FBUVJQk2ZKeAAAAAAAAAABcCFs7lvDwww9r4cKFtt99fHxUUFCgo0eP6ujRo/rss8/Uu3dveXh4KCQkROnp6crNzbUlBEry8PCw/Txp0iRbQszNzU1+fn46d+6c/vjjD/3xxx/66KOPtHTpUtsf+q31K9OHJL388suaPHmyzGazJMnb21sFBQU6ePCgDh48qIULF2rjxo1q27ZtlefIZDIpJCRESUlJkqSAgIBScQQHB1e6zc2bN+u+++5Tbm6uTCaT8vLydOTIET333HP6/vvvtXz5cs2fP1+jRo2S2WyWn5+f8vLydPjwYY0ZM0YJCQmaPXu23barY06eeeYZzZkzRwaDQf7+/nJxKZ1//vzzzyVJt99+e42cBdeuXTtFR0frX//6lyZNmqTIyMhS8ZrNZg0dOlQpKSlq3ry55s6da7ed/Px8devWTTt37pSbm5t8fHyUlpamjqYVBQAAmLNJREFUrVu3auvWrYqOjrabLKuIs2fP6uabb9b//d//ycPDQ97e3qWum81mjRs3Tq+//rrtOR8fH2VnZ2vfvn3at2+fFi5cqC+++ELh4eFl2o+JibGdyydJ/v7++uWXXzRx4kRt3LhRd9111wVj7Nixo95//3198cUXVRojAAAAAAAAAKDuYUXaf33zzTdauHChXFxc9NJLL+ns2bPKzMxUdna2kpOT9cUXX2j48OHy8PBQu3btlJiYqIEDB0qSBg4cqMTExFKPdu3a2dq+5ppr9Morr+jgwYPKycnR2bNnlZeXp0OHDumBBx5QXl6ehg8frlOnTtnqVLaPBQsWaOLEifL29taLL76o06dPKzs7W+fOndP+/fvVpUsXnT59Wvfee+8FV/6UZ+7cuUpMTLT9vmbNmlIx7du3r9JtDhkyRP/4xz8UFxentLQ0paena/LkyZKkjz/+WLNnz9bo0aM1evRoJSYmKi0tTSkpKbZzxl555RX93//9X5l2q2NOvv/+e82ZM0cTJ05UUlKSUlJSlJ2drYceeshWZseOHZKk2267rdJjr6gXXnhBkZGRys/P16BBg5SdnW27NmPGDG3fvl2enp5avnx5mSSW1VtvvaXvvvtO77zzjjIzM5Wamqr4+Hjdf//9kqRp06Zp/fr1VYovJiZGGRkZWrt2rbKyspSamqqEhAQ1aNBAkhQdHa3XX39dDRo00Lx582zvr5ycHG3btk1t27bVb7/9pvvuu8+W9LRav369LYnWv39/xcfHKzU1VRkZGZo3b5727t2rt99++4Ix3n777ZKkpKSkOnN2HwAAAAAAAADgIllgsVgslpdeeskiydK9e/cK1xk+fLhFkmX48OEX1Xfv3r0tkiz//ve/q9RHRkaGxd/f3yLJ8vnnn9stU1BQYLn55pstkiz/+c9/Lipei8VikWSRZNm2bZvDMseOHbOVO3bsWKlr27Zts127++67LWazuUz9Dh062Mo88sgjZa4XFhZamjZtanfuLnZOoqOjbX2PHz/e4Rjz8vIsrq6uFkmWVatWOSxXci78/PwsISEh5T7sOXHihCUoKMgiyTJixAiLxWKxfPPNN7b+586da7dep06dbH0vWLCgzPWioiJLx44dLZIsLVu2dFg/Ojq6zLXw8HCLJIurq6vlhx9+cDh2V1dXi5eXl+XHH3+0WyYjI8PSuHFjiyTL2rVrS11r0aKFRZKlU6dOlqKiojJ133nnHdv4OnXqZLd9Kx8fH4skywcffFBuufOlp6dbJFmSk5MrVQ9Xlvz8fMu6dess+fn5zg4FAABUAz7bLx0uLhaLVPxfAAAAXDlCQ4u/54WG1t73b+vfctPT06utTVak/Ze/v78k6a+//lJRUVGt9t27d29JxaviqmL16tVKS0tT27Zt1aNHD7tl3NzcNHjwYEm65La2mzhxYqlz16xKjsW6Qq0kV1dXde3aVVLxGWslVdecuLi4aOLEiQ5jP3PmjO31UtFtLTMyMpSUlFTuw57Q0FB98MEHkqRFixbp7bff1pAhQ1RUVKQ+ffroqaeeKrffsLCwUivpSo5xypQpkqTDhw/r4MGDFRpHST179nS4PeaiRYtUVFSknj17qk2bNnbL+Pr6qm/fvpJK34uff/5Zv/zyiyRpypQpZbbVlKRHH31UoaGhFYozKChIkkqt/rQnLy9PGRkZpR4AAAAAAAAAgLqHM9L+q2vXrjIajTpw4IA6dOigf/7zn+rSpYuaNm1aLe3/9NNPevfdd/XNN9/o+PHjysrKksViKVXmxIkTVWp7165dkqRff/1VDRs2dFguJydHkhQXF1elfmqKoy0RQ0JCJEmBgYG6+uqryy2Tmppa6vnqmpNrrrnGtj2hPX/99Zft58DAQIflSlq4cKFtW8rKuvfeezVmzBi9+eabGj16tCTpqquuKnW2nyORkZF2E5aS1KFDB7m5uamwsFD79+9X69atKxVXeWeUWe/Fli1byr0X1u01S96L/fv3SypOenbo0MFuPRcXF0VGRmrp0qUXjDMwMFBxcXGl7ps9s2bNKnUmGwAAAAAAAACgbiKR9l/NmjXT/PnzNWrUKO3Zs0d79uyRVLzKqHPnzhoyZIjuvfdeh4mI8rz55psaO3as7ewng8Egk8kkT09PScXJnIyMjFLnXlWGdXVNbm6ucnNzL1j+3LlzVeqnpvj6+tp93s3NrdzrJcsUFBSUer665qS8JJq1fSvr/axpr776qtauXauTJ09Kkj744APVr1//gvXKW7VlNBoVFBSkpKQknTlzptIxlTdP1nuRnZ1dodd4yXthjaV+/frlzm/jxo0rFKeXl5ckXfA1MXnyZI0fP972e0ZGhsLCwirUBwAAAAAAAADgysHWjiU88MADiouL0zvvvKOBAwcqLCxMf/31l1auXKm+ffuqU6dOld7i7ddff9XTTz8ts9ms/v3767vvvlNubq5SU1OVmJioxMREzZkzR5LKrFCrKOvWggMHDpTFYrng4/jx41Xq53JSXXPi6upabj/WrQKlsqviasrGjRttSTRJ2r59e630W57y5sl6LyZOnFihexEbG1tjcaakpEgqfd/s8fT0lJ+fX6kHAAAAAAAAAKDuIZF2nsDAQI0cOVIff/yx4uPjdfToUU2aNEkGg0E7d+5UTExMpdpbtWqVioqK1Lx5c3388ce69dZb5eHhUapMYmLiRcVs3S7vUtuy0Zlqa05KnotmTdLUpISEBD3yyCOSpBtuuEGS9PLLL+vrr7++YN2Sybfz5eXl6ezZs5IuvAqvsi7mXlhjSU5OVn5+vsNy5Y2tJOs9quh5dgAAAAAAAACAuo1E2gU0a9ZMs2bN0pAhQyRJX375pe2ai0vx9JW3kiwhIUGS1KZNG1v5823dutVh/Yr0YT2f6vvvv9fp06cdlqtO1i0uq7qKrqbV1pwEBATYEkV//vlnjfUjFa/seuCBB5SamqoWLVpo79696tevn8xmsx588EFbIsyR7du3O7xfO3fuVGFhoSTplltuqda4rfdi69atFdpmsyRrLIWFhdq5c6fdMmazuUKr2DIzM5WcnCxJat68eaXiAAAAAAAAAADUTSTS/isvL6/c69azlUomw6zbvaWlpTmsZzKZJEkHDx60m8TYvHlzuUmAivTRv39/+fv7q6CgQOPHjy83uWU2m8ttq6IqEpcz1eacdOzYUZL03XffVbmNipgxY4Z27twpT09Pffzxx/Ly8tL8+fPVuHFjnTp1Sg899FC59ePj47V48eIyz5vNZs2cOVOS1KJFC7Vu3bpa43744Yfl5uam5ORkRUdHl1s2Pz9fWVlZtt9vuOEGW9LrxRdftJ0zWNIHH3ygEydOXDCO/fv3y2w2y83NzZbcAwAAAAAAAACgPCTS/mvMmDEaMGCAVq9erTNnztiez8rK0jvvvKMPP/xQktS7d2/btVatWkkqXs1z5MgRu+327NlTknT48GE98cQTtq3lsrOz9e677+r+++8v97ymivTh7++v1157TZL08ccfq3fv3vr2229tSQez2axff/1V/+///T+1bNlSGzZsuOB8XIg1rqVLl+rcuXMX3V51q805iYyMlCR9++23Fxu2Q7t27dK///1vSdIrr7xiS3YFBgbqo48+kouLiz777DO9+eabDtswmUx6/PHH9f7779tWhiUkJGjw4MHatm2bpOJkXXVr1qyZpk6dKql4G8phw4bp0KFDtuuFhYX68ccfNX36dF1zzTX68ccfS9V/8cUXJUnbtm3TkCFDbEmz3NxcvfPOOxozZoz8/f0vGIf1/tx0003y8fGphpEBAAAAAAAAAK50JNL+q6CgQJ988onuv/9+hYSEyNfXVwEBAfL19dXjjz+u/Px8tW/fXi+88IKtTlRUlIKDg5WamqrmzZsrODhYERERioiI0N69eyVJXbt21aBBgyRJb7/9toKCghQQECCTyaRRo0apefPm5Z67VpE+JGn48OF6++235eHhoc2bN+uOO+6Qt7e36tevL6PRqBYtWujZZ5/VkSNHbNsyXoxRo0ZJklavXi1/f381btxYERERat++/UW3XV1qa06ioqLk7u6uI0eO6Pfff79g+bFjx6phw4blPsaOHWsrn5aWpiFDhqioqEh9+vTRk08+Waq9Tp062V6Xzz33nA4ePGi339GjR+uWW27RY489Jj8/PwUGBqpJkyZauXKlJGnKlCnq169fVaehXFOnTtXUqVNlMBi0ZMkStW7dutS9aNu2raKjo5WQkFDmXvTr1882vhUrVigsLEyBgYG29+Ztt92mxx9//IIxrF+/XpJs27QCAAAAAAAAAHAhJNL+a+rUqXr99dfVr18/XX/99XJzc1NWVpYaNGigu+++Wx988IFiY2NVr149W52AgADt2LFDgwYNUmhoqNLT0xUXF6e4uLhSZ0EtXbpUr732mm644QZ5enqqqKhIrVu31qxZs7Rr165yV8dUtA+pOLn122+/6dlnn1WbNm3k6emptLQ0+fj46JZbbtGTTz6pL7/8UoMHD77o+Ro6dKiWLFmi9u3by9vbW6dPn1ZcXFyFttirTbUxJw0aNLAloJYuXXrB8hkZGUpKSir3kZ6ebiv/6KOPKj4+Xg0bNtQHH3xgt83o6Gi1a9dOubm5GjRokHJycsqU8fDw0FdffaWZM2fquuuuU15enkwmk7p27aqNGzfaVrzVBIPBoOnTp+vnn3/W6NGj1bx5c7m6uio9PV0BAQFq166dnnvuOe3evdvutoszZszQhg0b1KVLF/n5+SkvL0/NmzfX7Nmz9dVXX8nDw6Pc/v/880/t2bNHXl5eGjZsWE0NEwAAAAAAAABwhTFYyjs8CkCF7NixQ506dVKzZs30+++/V8uqv+oSGRmp7du3Kzo6utzVj1ey6dOnKzo6Wg899JDDZGR5MjIyZDKZlJycXO5WrLiyFRQUaNOmTerVq5fc3d2dHQ4AALhIfLZfOlxdJbNZcnGRioqcHQ0AAACqS+PG0smTUmiodOxY7Xz/tv4tNz09XX5+ftXSJivSgGrQsWNHde/eXX/88Yc++eQTZ4eDErKzs/XGG2/I09NT0dHRzg4HAAAAAAAAAHAZIZEGVJNXX31VLi4umj59usxms7PDwX+9+eabSk5O1lNPPaXw8HBnhwMAAAAAAAAAuIy4OTsA4ErRunVrLViwQMePH9fp06cVGhrq7JAgqV69eoqJidHTTz/t7FAAAAAAAAAAAJcZEml1WMOGDStdJzExsQYiuXKMGDHC2SHgPGPGjHF2CAAAAAAAAACAyxSJtDosKSnJ2SGgFsTGxjo7BAAAAAAAAAAALksk0uowi8Xi7BAAAAAAAAAAAAAuWSTSAAAAAACA0/TpI6WnSyaTsyMBAABAdRo/XsrIkPz8nB3JxSGRBgAAAAAAnObTT50dAQAAAGrC+PH/+7mgwHlxXCwXZwcAAAAAAAAAAAAAXIpIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAON2cHAAC49MyZI2VkSH5+0vjxV15/AADg4jn6/OZz/dLC/QAAAMCVqDa/5xosFoulZrsAgMtbRkaGTCaTkpOTFRQU5OxwakXjxtLJk1JoqHTixJXXX1UUFBRo06ZN6tWrl9zd3Z0dDgAATufo8/ty+FyX6s5n++VyPwAAAHBlq+7v346+51r/lpueni4/P7+L7kdia0cAAAAAAAAAAADALhJpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQbUERERETIYDFq0aJFT+h86dKgMBoNWrFhRq/327NlTBoNBX3/9da32CwAAAAAAAAC4/JFIu8wsWrRIMTExio2NdXYoV6zjx48rJiZGMTExzg7lirF//34tW7ZMrVq10oABA8pctyb5RowYUe19W+/js88+K7PZXO3tAwAAAAAAAACuXCTSLjOLFi3StGnTSKTVoOPHj2vatGmaNm2as0O5YjzzzDOyWCyKjo6WwWCo1b7vuOMO9ejRQwcOHNBHH31Uq30DAAAAAAAAAC5vJNIA1Ki9e/dqx44datiwofr16+eUGEaNGiVJevnll53SPwAAAAAAAADg8kQiDUCNeueddyRJgwYNkqurq1Ni6NWrlwIDA3X48GHt2rXLKTEAAAAAAAAAAC4/JNL+KyEhQRMmTNCNN94ok8kkLy8vNWvWTP/4xz/04YcfKjc3t0ydXbt2aejQoQoPD5fRaJTJZNJtt92ml156SVlZWXb7GTFiRKmzoFatWqXIyEgFBgbK29tbN954o+bOnVvmLKdFixbJYDBo+/btkqRp06bJYDCUehw/frzaY7RYLJo/f77at2+voKAgGQwGLVq0qOITe57IyEgZDAbFxMQoPz9fs2fP1g033KB69eopICBAd999tzZv3nzBdtasWaM+ffooJCREHh4eCgkJUZ8+fbR27VqHdSoyroiICHXu3NlW5/w5vtgzvKztxMbGKjExUWPGjFHTpk1lNBrVsGFDPfDAAzpy5Ei5beTm5uq1115Tu3btFBAQIKPRqPDwcA0bNkw//vhjlWN78cUXZTAY5Orqakt+WZnNZi1dulS9evWyzXlwcLC6d++u5cuXy2Kx2G0zIyNDK1eulCQNGTKkSnFV9T1TkoeHh6KioiRJ7733XpXiAAAAAAAAAADUPW7ODuBSsGTJEj322GO2ZJmHh4d8fX0VHx+vP//8U+vXr9cNN9ygG2+8UVJxUmHcuHF6/fXXbW34+PgoOztb+/bt0759+7Rw4UJ98cUXCg8Pd9jvmDFjNG/ePLm4uMjPz085OTn66aef9PTTT+uHH37Q4sWLbWW9vLwUEhKilJQUFRQUqF69evLx8SnVXsnVPtURo8ViUf/+/bV69Wq5uLjIZDLJxaV6cq/5+fnq1q2bdu7cKTc3N/n4+CgtLU1bt27V1q1bFR0drZiYGLv1hg0bphUrVkiSLa7k5GRt3LhRGzdu1ODBg7V48WK5u7tXelzBwcHKyMhQamqqJCkkJKRUXZPJVC3jP3bsmAYPHqzExER5eXnJ3d1dSUlJWrZsmdasWaO1a9eqZ8+eZeqdPHlSPXv21KFDhyRJ7u7u8vb2Vnx8vJYsWaKlS5fqtdde05NPPlnhWMxms5566inNmzdPRqNRy5YtK7UFY0pKivr166cdO3bYnrPO+Zdffqkvv/xSH3/8sT755BN5eHiUanv79u3KyclRvXr1dNNNN1V2msqozHvmfB07dtT777+vL7744qLjAAAAAAAAAADUDXV+RdrGjRs1fPhw5ebm6q677tLOnTuVk5Oj5ORkZWdna+fOnXr00UdLJQiio6P1+uuvq0GDBpo3b57Onj2rzMxM5eTkaNu2bWrbtq1+++033XfffQ5Xyaxfv17vv/++5syZo9TUVKWmpio5OVmPPPKIJOnDDz/U119/bSs/cOBAJSYmql27dpKkZ599VomJiaUeYWFh1RrjmjVr9Omnn+rVV19VamqqUlJSlJ6erh49elz0vL/11lv67rvv9M477ygzM1OpqamKj4/X/fffL6l4xd369evL1Hv++ee1YsUKGQwGTZ06VWfPnlVKSoqSk5P1/PPPS5KWL1+uqVOnOuy7vHHt27dPa9assZU9f47nzp170WOXpHHjxsnDw0NbtmxRdna2MjMz9e2336p169bKzc3VwIEDdeLEiVJ1ioqKFBUVpUOHDslkMumjjz5SVlaW0tLS9Mcff6hPnz4ym80aO3ZshVb1SVJeXp4GDBigefPmyd/fX1u2bCmVRCsqKtJ9992nHTt26MYbb9Rnn32m7OxspaWlKSsrS4sXL1aDBg20fv16TZw4sUz71uTbTTfddNHbOlb2PXO+22+/XZKUlJR0wVV/AAAAAAAAAABIkix1WEFBgaVp06YWSZb27dtb8vLyLljn2LFjFldXV4uXl5flxx9/tFsmIyPD0rhxY4sky9q1a0tdGz58uEWSRZJl4cKFduvffPPNFkmWRx55pMy1Tp06WSRZoqOjayXG119/3WE/VWGNX5JlwYIFZa4XFRVZOnbsaJFkadmyZalrJ06csLi5uVkkWSZPnmy3/fHjx1skWdzd3S2nTp0qda2i49q2bZutXHWztuvh4WH55ZdfylxPSkqyBAYGWiRZRo8eXeraxx9/bKv/xRdflKlbUFBguf322y2SLK1atSpzPTw8vNTrLi0tzXY/QkNDLQcPHixT58MPP7RIslx//fWWtLQ0u2Pav3+/xWAwWDw8PCxJSUmlrnXo0MEiyTJmzBiHc1IytuHDh5e5drHvmZJ8fHwskiwffPBBueVyc3Mt6enptkdCQoJFkiU5ObnceleS0FCLRSr+75XYX1Xk5+db1q1bZ8nPz3d2KAAAXBIcfX5fDp/rFkvd+Wy/XO4HAAAArmzV/f3b0ffc9PR0iyRLenp6tfRjsVgsdXpF2rZt23Ts2DFJ0n/+858y29LZs2jRIhUVFalnz55q06aN3TK+vr7q27evJDncRi4sLEzDhw+3e+3ee++VJP38888XjKcmYwwICNDIkSOrFMOFhIWF6aGHHirzvIuLi6ZMmSJJOnz4sA4ePGi7tnr1ahUWFspoNGrSpEl2250yZYo8PT1VUFCgVatW2S1Tk+OqqP79+6t58+Zlnm/QoIFGjRolSbbtK62sv995553q3r17mbpubm6Kjo6WJB06dKjU3J3v1KlT6tChg7Zv367rr79eu3fvVqtWrcqUW7BggSTp8ccfd7it5c0336yWLVsqPz9f27ZtK9OPVLxl5sWqjvdMUFBQqbgcmTVrlkwmk+1RcrUnAAAAAAAAAKDuqNNnpO3evVuS1LBhQ91yyy0VqrNr1y5J0pYtW9SwYUOH5bKysiRJcXFxdq/feuutMhgMdq81atRIUvHZVFVRnTFWJLlYFZGRkQ7H36FDB7m5uamwsFD79+9X69atJUn79++3xeXn52e3bkBAgG655Rbt2rXLVv58NTmuiurSpUu512bOnKmzZ8/q2LFjatq0qaT/jb9bt24O63bu3Fmurq4qKioqNXclHTlyRDExMYqLi9Odd96pDRs2KDAwsEy5oqIi7d27V5IUExOjmTNnOuzX+lo9/7X0119/SZLd9iurOt4zgYGBiouLs8XlyOTJkzV+/Hjb7xkZGSTTAAAAAAAAAKAOqtOJtMTERElSeHh4hetYV7JkZ2crOzv7guXPnTtn93lfX1+Hddzcim9LQUFBheMqqbpibNCgQZX6r4jQ0FCH14xGo4KCgpSUlKQzZ87Ynrf+XF5dSWrcuHGp8ueryXFVVHljKHntzJkztkRaRcZvNBpVv379MnNX0ksvvSRJCgkJ0ZYtW+Tj42O3XEpKivLy8iRJqamp5Yzmf85/LeXm5kqSPD09K1S/PNXxnvHy8ioVlyOenp7VEjMAAAAAAAAA4PJWp7d2dLS6pTxFRUWSpIkTJ8pisVzwERsbW81R116Mrq6utRh17blSx1VR/fv3l4eHh5KSkvT444/bXi/nK/n85s2bK/RaiomJKdWGdSvFiibiapp1xZo1LgAAAAAAAAAAylOnE2nWbQ8dbW1YXXVq2+UQ48mTJx1ey8vL09mzZyWVXj1m/fnEiRPltm29fimsPHOkvPGXvFbZ8efm5tqdu5J69eqltWvXytPTUx999JEefPBBu8m0oKAg20qvqr6WrGejVXWb0upmjaM6zmwDAAAAAAAAAFz56nQirV27dpKKt3h0dJ7W+e666y5J0tatWy+4PVxNcHEpvmUWi8VhGWfHWBHbt293OIadO3eqsLBQkkqdXWf9ef/+/UpPT7dbNy0trdRZalVhnWOp/Hm+GNu2bbvgtcDAQNu2jtL/xv/VV185rBsbG2ubu/LG36tXL3366acyGo1avny5hgwZYqtn5e7urttuu02S9Nlnn11gRPa1aNFCkvTnn39WqX51yszMVHJysiSpefPmTo4GAAAAAAAAAHA5qNOJtM6dO+vqq6+WJI0bN075+fkXrPPwww/Lzc1NycnJio6OLrdsfn6+srKyqiVWKz8/P0nFCSNHnB1jRcTHx2vx4sVlnjebzZo5c6ak4iRM69atbdeioqLk5uam3Nxc2zlf55s5c6by8vLk7u6uqKioKsVmnWOp/Hm+GJ988ol+++23Ms8nJyfr3XfflSQNHDiw1LVBgwZJkvbs2aMtW7aUqVtYWKjp06dLklq1aqVWrVqVG0OPHj20fv16eXl5aeXKlRo0aFCZM8Yee+wxSdKmTZu0adOmctuzt+qsY8eOkqTvvvuu3Lq1Yf/+/TKbzXJzc7MlmwEAAAAAAAAAKE+dTqS5urrqzTfflMFg0DfffKOuXbvqm2++kdlsllScZIqNjdXQoUP1yy+/SJKaNWumqVOnSpJefvllDRs2TIcOHbK1WVhYqB9//FHTp0/XNddcox9//LFaY7YmRzZt2uRwe0Bnx1gRJpNJjz/+uN5//33bqrmEhAQNHjzYtiJrxowZpeqEhoZq7NixkqTZs2crOjraluhKS0vT1KlT9corr0iSxo8fr6uuuqpKsf3tb3+Th4eHJGn+/Pk1sirNaDSqZ8+e2rp1q639ffv2qVu3bkpOTpavr68mTZpUqk5UVJRuv/12SdKAAQO0bNkyW+Lr2LFjioqK0p49eyQV3/eKuPvuu7VhwwZ5e3tr9erVGjBgQKmE8tChQ9WtWzdZLBb169dPM2bM0KlTp2zXs7OztW3bNj3xxBO2pHRJkZGRkoq3hkxKSqrg7NSMb7/9VpJ00003ycfHx6mxAAAAAAAAAAAuD3U6kSZJ99xzjxYtWiRPT09988036tChg7y9vVW/fn3Vq1dPnTt31tKlS0slF6ZOnaqpU6fKYDBoyZIlat26ta2O0WhU27ZtFR0drYSEBBkMhmqNd/jw4TIajTp69KiaNGmihg0bKiIiQhEREaXOznJmjBUxevRo3XLLLXrsscfk5+enwMBANWnSRCtXrpQkTZkyRf369StTb+bMmRowYIAsFoumT5+uoKAgBQYGKigoyJZ4Gzx4sP79739XOTZvb289+OCDkqQJEybIx8dH4eHhioiI0LPPPlvldkv6z3/+o9zcXN19993y8fGRr6+vbrvtNv3000/y9PTU8uXL1aRJk1J1XF1dtXr1arVs2VLp6el64IEH5OPjo4CAAF199dVav369XFxcNHfuXN1zzz0VjqVLly7atGmT6tWrp3Xr1ikqKsr2erf22adPH+Xn52vq1KkKDQ2VyWRSQECAfH191aVLF7311lvKzs4u03bz5s3Vpk0bSdL69esvYsYunrX/IUOGODUOAAAAAAAAAMDlo84n0iRp2LBhOnLkiJ5++mm1aNFCbm5uysnJUXh4uPr27aslS5aUOlPJYDBo+vTp+vnnnzV69Gg1b95crq6uSk9PV0BAgNq1a6fnnntOu3fvrvYt5K699lpt27ZN9957r4KDg3X27FnFxcUpLi6u1BlXzoyxIjw8PPTVV19p5syZuu6665SXlyeTyaSuXbtq48aNDhNhHh4eWrFihVatWqV77rlHQUFByszMVFBQkO655x6tWbNGy5Ytk7u7+0XFN2/ePMXExNi2loyPj1dcXJztjK2L1bRpUx04cEBPPPGEgoODlZ+frwYNGmjw4ME6cOCAevfubbdeaGio9u/frzlz5uiOO+6Ql5eXzp07p7CwMD344IP6/vvv9dRTT1U6nk6dOunzzz+Xr6+vNmzYoL59+yovL09S8VaXn332mTZt2qSBAweqSZMmysvL07lz5xQaGqru3btr1qxZdreqlKSRI0dKkpYuXVrpuKrLn3/+qT179sjLy0vDhg1zWhwAAAAAAAAAgMuLwVIT+9YBDkRGRmr79u2Kjo5WTEyMs8OpddbVf9u2bbNte3ily8zMVOPGjZWZmaljx44pPDy81mOYPn26oqOj9dBDD+mDDz6odP2MjAyZTCYlJycrKCioBiK89DRuLJ08KYWGSiUWu14x/VVFQUGBNm3apF69el10sh4AgCuBo8/vy+FzXao7n+2Xy/0AAADAla26v387+p5r/Vtuenq6/Pz8LrofiRVpAGqY9bw3i8Wil156qdb7z87O1htvvCFPT09FR0fXev8AAAAAAAAAgMsXiTQANW7cuHEKCwvTggULlJCQUKt9v/nmm0pOTtZTTz3llNVwAAAAAAAAAIDLl5uzAwBw5TMajfrwww8VGxur+Ph4hYWF1Vrf9erVU0xMjJ5++ula6xMAAAAAAAAAcGUgkYZKu++++7R79+5K1VmzZo3atWtXQxHVroYNG1a6TmJiYg1EcnmJjIx0yrlwY8aMqfU+AQAAAAAAAABXBhJpqLSUlBQlJSVVqk5+fr4kKTY2tgYiql2VHXtJFoulGiMBAAAAAAAAAAA1iUQaKu1KSIZdDJJhqAvGj5cyMiQ/vyuzPwAAcPEcfX7zuX5p4X4AAADgSlSb33NJpAEAyhg//sruDwAAXDxHn998rl9auB8AAAC4EtXm91yX2usKAAAAAAAAAAAAuHyQSAMAAAAAAAAAAADsIJEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgB4k0AAAAAAAAAAAAwA4SaQAAAAAAAAAAAIAdJNIAAAAAAAAAAAAAO9ycHQAAoO6aM0fKyJD8/KTx4y++HAAAcK7yPrP5PEdl8HoBAABAVbz5ZvW3abBYLJbqbxYArhwZGRkymUxKTk5WUFCQs8O5ojRuLJ08KYWGSidOXHy5mlRQUKBNmzapV69ecnd3d04QAABc4sr7zL4UPs9L4rP90napvV4AAABwcWrr+3ejRhk6fdqk9PR0+fn5VUubbO0IAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgB4k0AAAAAAAAAAAAwA4SaQAAAAAAAAAAAIAdJNKAS0xERIQMBoMWLVrklP6HDh0qg8GgFStWOKX/6mQ2m9WyZUu5u7vrt99+c3Y4AAAAAAAAAIDLDIm0GrJo0SLFxMQoNjbW2aFcsY4fP66YmBjFxMQ4O5Qrxv79+7Vs2TK1atVKAwYMKLfs0aNHNXnyZN16660KDg6Wh4eHGjZsqLvuukvTpk3TqVOnajTWdevWKSYmRuvWrXNYxsXFRVOnTlVhYaEmTJhQo/EAAAAAAAAAAK48JNJqyKJFizRt2jQSaTXo+PHjmjZtmqZNm+bsUK4YzzzzjCwWi6Kjo2UwGOyWKSoq0nPPPafmzZtr9uzZ2r9/v1JTU+Xj46O//vpLu3fvVkxMjK699lq9+uqrNRbrunXrNG3atHITaZI0YMAAtWjRQuvXr9eOHTtqLB4AAAAAAAAAwJWHRBoASdLevXu1Y8cONWzYUP369bNbxmw2KyoqSq+++qoKCwvVs2dPbd++XXl5eUpJSVFOTo4+//xztWvXTufOndNzzz2np556qpZHUpqLi4seffRRSdLLL7/s1FgAAAAAAAAAAJcXEmkAJEnvvPOOJGnQoEFydXW1W2bGjBn69NNPJUmTJk3S5s2b1bFjR1t5Dw8P9ejRQzt37tSwYcMkSW+88YaWLFlSCyNwbPDgwXJ1ddXmzZsVHx/v1FgAAAAAAAAAAJePyy6RlpCQoAkTJujGG2+UyWSSl5eXmjVrpn/84x/68MMPlZubW6bOrl27NHToUIWHh8toNMpkMum2227TSy+9pKysLLv9jBgxQgaDQSNGjJAkrVq1SpGRkQoMDJS3t7duvPFGzZ07V2azuVS9RYsWyWAwaPv27ZKkadOmyWAwlHocP3682mO0WCyaP3++2rdvr6CgIBkMBi1atKjiE3ueyMhIGQwGxcTEKD8/X7Nnz9YNN9ygevXqKSAgQHfffbc2b958wXbWrFmjPn36KCQkRB4eHgoJCVGfPn20du1ah3UqMq6IiAh17tzZVuf8Obbet6qythMbG6vExESNGTNGTZs2ldFoVMOGDfXAAw/oyJEj5baRm5ur1157Te3atVNAQICMRqPCw8M1bNgw/fjjj1WO7cUXX5TBYJCrq6st+WVlNpu1dOlS9erVyzbnwcHB6t69u5YvXy6LxWK3zYyMDK1cuVKSNGTIELtlzpw5o9mzZ0uSOnfurJkzZzqM0cXFRe+9956aN28uSZo8ebLy8/NLlTn/PWaP9f0UERFhey42NlYGg0GLFy+WJC1evLjM/T9/S9WQkBB16dJFZrNZCxYscNgfAAAAAAAAAAAlXVaJtCVLluhvf/ubXnnlFf3000/Kzc1VvXr1FB8fr/Xr12v48OGlkhtms1ljx45V+/bttXTpUsXHx8vd3V3Z2dnat2+fJk2apFtuuUVxcXHl9jtmzBj1799fO3fulMViUU5Ojn766Sc9/fTTeuihh0qV9fLyUkhIiNzd3SVJ9erVU0hISKlHydU+1RGjxWJR//799eijj2rPnj2yWCxycameW5ufn69u3bpp8uTJ+vXXX+Xh4aG0tDRt3bpVvXr1UkxMjMN6gwYNUlRUlDZu3Kjk5GT5+PgoOTlZGzdu1H333achQ4aooKCgSuMKDg5WQECArez5c2wymapl/MeOHVPbtm01b948JSUlyd3dXUlJSVq2bJnatm2rzz//3G69kydP6tZbb9W4ceO0Z88eZWdny2g0Kj4+XkuWLNHNN9+sN954o1KxmM1mjRkzRlOmTJHRaNSqVas0atQo2/WUlBR17txZQ4cO1ebNm3XmzBl5e3srOTlZX375pYYMGaK+ffuWSWhJ0vbt25WTk6N69erppptustv/woULlZOTI0nlnqFm5enpqUmTJtnm40JnmVWUNSFrNBolSUajscz99/DwKFOvY8eOkuTwngEAAAAAAAAAcL7LJpG2ceNGDR8+XLm5ubrrrru0c+dO5eTkKDk5WdnZ2dq5c6ceffTRUn9Aj46O1uuvv64GDRpo3rx5Onv2rDIzM5WTk6Nt27apbdu2+u2333TfffeVWVlmtX79er3//vuaM2eOUlNTlZqaquTkZD3yyCOSpA8//FBff/21rfzAgQOVmJiodu3aSZKeffZZJSYmlnqEhYVVa4xr1qzRp59+qldffVWpqalKSUlRenq6evTocdHz/tZbb+m7777TO++8o8zMTKWmpio+Pl7333+/pOIVd+vXry9T7/nnn9eKFStkMBg0depUnT17VikpKUpOTtbzzz8vSVq+fLmmTp3qsO/yxrVv3z6tWbPGVvb8OZ47d+5Fj12Sxo0bJw8PD23ZskXZ2dnKzMzUt99+q9atWys3N1cDBw7UiRMnStUpKipSVFSUDh06JJPJpI8++khZWVlKS0vTH3/8oT59+tgSqBVZ1SdJeXl5GjBggObNmyd/f39t2bKl1DlmRUVFuu+++7Rjxw7deOON+uyzz5Sdna20tDRlZWVp8eLFatCggdavX6+JEyeWaX/Hjh2SpJtuusnhto7W13lQUJA6depUobj79u1rS7ht27atQnUupF27dkpMTNTAgQMl/e89V/Jhff+VdPvtt0uSfvjhB4erPAEAAAAAAAAAKOmySKQVFhbqySeflMViUfv27fX111+rffv2ttVJHh4eat++vd577z21aNFCknT8+HHNmjVLXl5e2rJli0aPHq3AwEBJkru7uyIjI7V9+3Y1btxYP/zwg91kkCSlpqbq3Xff1bhx4+Tn5yepOJHw/vvv6+abb5ZUnBCqiuqKMSsrS3PmzNEzzzxji9HHx0dXXXVVleIqKT09XW+99ZZGjhxpWwEUFhamFStW2Fb4WBNjVidPnrQlsiZNmqTp06fL399fkhQQEKAXX3xR48ePlyTNmTNHp0+frvVxVVROTo4+//xz3X333baE0G233aatW7cqMDBQGRkZmjVrVqk6q1at0rfffitJWrlypR544AFbgvfqq6/W2rVrdfvtt8tisWjChAkXjMGaPFy9erVCQ0O1c+dOdejQoVSZZcuWafv27br++usVGxurPn36yNvbW1Lxqshhw4Zp06ZNMhgMeuutt3TmzJlS9a3xtmnTxmEchw8fliS1bdv2gjFb+fn56eqrr5YkHTp0qML1aoI17sLCQu3bt6/csnl5ecrIyCj1AAAAAAAAAADUPZdFIm3btm06duyYJOk///mP3W3bzrdo0SIVFRWpZ8+eDpMDvr6+6tu3ryTpiy++sFsmLCxMw4cPt3vt3nvvlST9/PPPF4ynJmMMCAjQyJEjqxTDhYSFhZXZvlIqPgNrypQpkooTLAcPHrRdW716tQoLC2U0Gm1b+51vypQp8vT0VEFBgVatWmW3TE2Oq6L69+9vO+erpAYNGti2VVyxYkWpa9bf77zzTnXv3r1MXTc3N0VHR0sqTi6VnLvznTp1Sh06dLAlyXbv3q1WrVqVKWc99+vxxx93uK3lzTffrJYtWyo/P7/M6rBTp05JKt4y05GzZ89KKk4kV0b9+vVL1XeWwMBAW/LdOl5HZs2aJZPJZHuUXEUKAAAAAAAAAKg73JwdQEXs3r1bktSwYUPdcsstFaqza9cuSdKWLVvUsGFDh+WsW7w5OoPs1ltvdXgWVKNGjSQVn01VFdUZY0WSi1URGRnpcPwdOnSQm5ubCgsLtX//frVu3VqStH//fltc1pVk5wsICNAtt9yiXbt22cqfrybHVVFdunQp99rMmTN19uxZHTt2TE2bNpX0v/F369bNYd3OnTvL1dVVRUVFpeaupCNHjigmJkZxcXG68847tWHDBtuKxZKKioq0d+9eSVJMTIxmzpzpsF/ra/X819Jff/0lSXbbv1K4uLjIZDIpNTXVNl5HJk+ebFs1KUkZGRkk0wAAAAAAAACgDrosEmmJiYmSpPDw8ArXsa44yc7OVnZ29gXLnzt3zu7zvr6+Duu4uRVPX0FBQYXjKqm6YmzQoEGV+q+I0NBQh9eMRqOCgoKUlJRUaqtA68/l1ZWkxo0blyp/vpocV0WVN4aS186cOWNLpFVk/EajUfXr1y8zdyW99NJLkqSQkBBt2bJFPj4+dsulpKQoLy9PUvFWpBVx/mspNzdXkuTp6emwTlBQkE6ePFnplWXJycm2+s7m5eWl1NRU23gd8fT0LHcuAAAAAAAAAAB1w2WxtaOjFVHlKSoqkiRNnDhRFovlgo/Y2Nhqjrr2YnR1da3FqGvPlTquiurfv788PDyUlJSkxx9/3PZ6OV/J5zdv3lyh11JMTEypNqxJrvIScdbzBw8cOFDhMWRkZOjPP/+UJLVs2bLC9WqKdUXepZDUAwAAAAAAAABc+i6LRJp120NHWxtWV53adjnEePLkSYfX8vLybKuTSq4es/584sSJctu2Xr8UVp45Ut74S16r7Phzc3Ptzl1JvXr10tq1a+Xp6amPPvpIDz74oN1kWlBQkG11ZFVfS9az0crbprRr166Sis86q2jiee3atbJYLJLKbpNpjbm81WHp6ekV6qcicnJybH2VdxYcAAAAAAAAAABWl0UirV27dpKKt3h0dJ7W+e666y5J0tatWy+4jVtNcHEpnlprEsEeZ8dYEdu3b3c4hp07d6qwsFCSSp1dZ/15//79DhMhaWlppc5SqwrrHEvlz/PF2LZt2wWvBQYG2rZ1lP43/q+++sph3djYWNvclTf+Xr166dNPP5XRaNTy5cs1ZMgQWz0rd3d33XbbbZKkzz777AIjss+62sy6esyeESNGyGg0SpKmT59+wTnPy8uzbU/ZqFEj9e3bt9T1gIAASVJCQoLDNr799luH1yryHivp2LFjtp+bN29eoToAAAAAAAAAgLrtskikde7cWVdffbUkady4ccrPz79gnYcfflhubm5KTk5WdHR0uWXz8/OVlZVVLbFa+fn5SSpOGDni7BgrIj4+XosXLy7zvNls1syZMyUVJ2Fat25tuxYVFSU3Nzfl5ubaEinnmzlzpvLy8uTu7q6oqKgqxWadY6n8eb4Yn3zyiX777bcyzycnJ+vdd9+VJA0cOLDUtUGDBkmS9uzZoy1btpSpW1hYqOnTp0uSWrVqpVatWpUbQ48ePbR+/Xp5eXlp5cqVGjRoUJlz+R577DFJ0qZNm7Rp06Zy27O36qxjx46SpO+++85hvZCQEE2YMEFScRLxhRdecFjWbDZr5MiR+vXXXyUV328PD49SZdq0aSNJ2rdvn91k2q+//qo1a9Y47KMi77GSrEm5kJAQXXfddRWqAwAAAAAAAACo2y6LRJqrq6vefPNNGQwGffPNN+ratau++eYbmc1mScVJptjYWA0dOlS//PKLJKlZs2aaOnWqJOnll1/WsGHDdOjQIVubhYWF+vHHHzV9+nRdc801+vHHH6s1ZmtyZNOmTQ63B3R2jBVhMpn0+OOP6/3337etmktISNDgwYNtK7JmzJhRqk5oaKjGjh0rSZo9e7aio6NtyY60tDRNnTpVr7zyiiRp/Pjxuuqqq6oU29/+9jdbcmb+/Pk1sirNaDSqZ8+e2rp1q639ffv2qVu3bkpOTpavr68mTZpUqk5UVJRuv/12SdKAAQO0bNkyW+Lr2LFjioqK0p49eyQV3/eKuPvuu7VhwwZ5e3tr9erVGjBgQKmE8tChQ9WtWzdZLBb169dPM2bM0KlTp2zXs7OztW3bNj3xxBO2pHRJkZGRkoq3hkxKSnIYR3R0tPr06SNJmjVrlnr16qWdO3fatpwsKCjQli1b1LFjR1sCdvTo0Ro+fHiZtv7+97/Lx8dHBQUFGjBggC1hWVBQoE8//VTdunVTvXr1HMZifY/t3LlTR44ccVjOyppI69Sp0wXLAgAAAAAAAAAgSbJcRhYvXmzx9PS0SLJIsnh6elqCgoIsbm5utucOHDhgK282my1Tp061GAwG23UvLy9LUFCQxdXV1facJMs333xTqq/hw4dbJFmGDx/uMJ6FCxdaJFnCw8PLXPu///s/i9FotEiyuLi4WEJCQizh4eGW8PBwS0JCQq3FWFWdOnWySLJMnjzZ0r59e4ski7u7uyUgIKBUTFOmTLFbPy8vzzJgwABbORcXF0tAQIDFxcXF9tzgwYMt+fn5ZepWZlz//Oc/be15e3tbmjRpYgkPD7c888wzFzV+a5sffPCBpWHDhrb2fXx8Sr3+NmzYYLf+iRMnLC1btrSV9fDwsPj7+5eaj7lz59qtGx4ebpFkWbhwYZlrsbGxlnr16lkkWfr06WPJy8uzXUtPT7f06dOn1P3x8/Oz+Pv7l3p9ubm52e23TZs2FkmW9957r9y5KSgosIwbN67U+87V1dUSGBhY6v4ajUbL7Nmzy21r/vz5pWLz9fW1eHh4WCRZ7rjjDsubb77p8D2WkpJiCQ4OttWtX7++7T22Z8+eUmWLioosjRs3tkiyrFu3rtyY7ElPT7dIsiQnJ1e6LsoXGmqxSMX/rY5yNSk/P9+ybt06u/+7BQAAipX3mX0pfJ6XxGf7pe1Se70AAADg4tTW9++rrir+W256enq1tXlZrEizGjZsmI4cOaKnn35aLVq0kJubm3JychQeHq6+fftqyZIlpc4+MhgMmj59un7++WeNHj1azZs3l6urq9LT0xUQEKB27drpueee0+7du23nlVWXa6+9Vtu2bdO9996r4OBgnT17VnFxcYqLiyt1xpUzY6wIDw8PffXVV5o5c6auu+465eXlyWQyqWvXrtq4caP+/e9/O6y3YsUKrVq1Svfcc4+CgoKUmZmpoKAg3XPPPVqzZo2WLVsmd3f3i4pv3rx5iomJsW0tGR8fr7i4OCUnJ19Uu1ZNmzbVgQMH9MQTTyg4OFj5+flq0KCBBg8erAMHDqh3795264WGhmr//v2aM2eO7rjjDnl5eencuXMKCwvTgw8+qO+//15PPfVUpePp1KmTPv/8c/n6+mrDhg3q27ev8vLyJBVvdfjZZ59p06ZNGjhwoJo0aaK8vDydO3dOoaGh6t69u2bNmmV3q0pJGjlypCRp6dKl5cbg5uamOXPm6JdfftGECRN08803y9/f33Z/77zzTkVHR+vo0aOaOHFiuW3985//1MaNG9WlSxf5+fmpsLBQf/vb3zR79mxt37693BVpAQEB2rFjhwYNGqTQ0FClp6fb3mPnnzm4fft2nThxQqGhobYVdQAAAAAAAAAAXIjBYqmB/fBw2YuMjNT27dsVHR2tmJgYZ4dT6wwGg6Tis8Cs2x5e6TIzM9W4cWNlZmbq2LFjCg8Pd3ZI1ebhhx/WwoULNW3aNP3rX/+qdP2MjAyZTCYlJycrKCioBiKsuxo3lk6elEJDpRMnLr5cTSooKNCmTZvUq1evi/5HAAAAXKnK+8y+FD7PS+Kz/dJ2qb1eAAAAcHFq6/t3o0YZOn3apPT0dPn5+VVLm5fVijQANcd63pvFYtFLL73k7HCqTUJCgpYuXarg4GA9/fTTzg4HAAAAAAAAAHAZIZEGwGbcuHEKCwvTggULlJCQ4OxwqsXMmTOVn5+vmJiYavsXCAAAAAAAAACAusHN2QEAuHQYjUZ9+OGHio2NVXx8vMLCwpwd0kUxm81q0qSJZsyYoccee8zZ4QAAAAAAAAAALjMk0q5g9913n3bv3l2pOmvWrFG7du1qKKLa1bBhw0rXSUxMrIFILi+RkZFXzLlwLi4umjx5srPDAAAAAAAAAABcpkikXcFSUlKUlJRUqTr5+fmSpNjY2BqIqHZVduwlWSyWaowEAAAAAAAAAABcjkikXcGuhGTYxSAZBlz6xo+XMjKkCx1fV9FyAADAucr7zObzHJXB6wUAAABVMWaM9MIL1dsmiTQAgNOMH1+95QAAgHOV95nN5zkqg9cLAAAAqqImEmku1dscAAAAAAAAAAAAcGUgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADhJpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdrg5OwAAAAAAAABnmjNHysiQ/Pyk8eOr9ryjslVpvzrrlFe+ItcrM1+1oTruVUWuOatuTVy7VMda02Oqiot5Tx44ILVtW3vx1FXV/V531vuqOvqv6fhrqhxwOTJYLBaLs4MAgEtZRkaGTCaTkpOTFRQU5Oxw4CQFBQXatGmTevXqJXd3d2eHAwAALhKf7SipcWPp5EkpNFQ6caJqzzsqW5X2q7NOeeUrcr0y81UbquNeVeSas+rWxLVLdaw1PaaquJj3pIuLZDbXXjx1VXW/1531vqqO/ms6/poqh7qrtr5/W/+Wm56eLj8/v2ppk60dAQAAAAAAAAAAADtIpAEAAAAAAAAAAAB2kEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIq2ajBgxQgaDQSNGjKj2tnfu3KnevXsrODhYrq6uMhgM6tu3b7X3g0tDRESEDAaDFi1a5JT+hw4dKoPBoBUrVjil/+pkNpvVsmVLubu767fffnN2OAAAAAAAAACAy4ybswNA+fbu3asuXbqosLBQBoNBQUFBcnV1VUBAgCQpJiZGUnEiLyIiwnmBOsHx48dtySbrPODi7N+/X8uWLVOrVq00YMCAcssePXpUCxYs0NatW3X8+HGlp6crMDBQzZo1U/fu3fXoo4+qUaNGNRbrunXr9OOPP+rGG290mFh2cXHR1KlTNXjwYE2YMEGffvppjcUDAAAAAAAAALjysCLtEvfaa6+psLBQd911l5KTk/XXX38pMTFRCxculCRNmzZN06ZN0/Hjx50bqBMcP37cNn5Uj2eeeUYWi0XR0dEyGAx2yxQVFem5555T8+bNNXv2bO3fv1+pqany8fHRX3/9pd27dysmJkbXXnutXn311RqLdd26dZo2bZrWrVtXbrkBAwaoRYsWWr9+vXbs2FFj8QAAAAAAAAAArjwk0i5xBw8elCQNGjRIgYGBTo4GV7K9e/dqx44datiwofr162e3jNlsVlRUlF599VUVFhaqZ8+e2r59u/Ly8pSSkqKcnBx9/vnnateunc6dO6fnnntOTz31VC2PpDQXFxc9+uijkqSXX37ZqbEAAAAAAAAAAC4vJNIucefOnZMk+fj4ODkSXOneeecdScVJW1dXV7tlZsyYYdsecdKkSdq8ebM6duxoK+/h4aEePXpo586dGjZsmCTpjTfe0JIlS2phBI4NHjxYrq6u2rx5s+Lj450aCwAAAAAAAADg8kEirZYcP35cTz/9tFq2bCkfHx95e3vr+uuv19ixY+3+Yd9gMMhgMNi2bHzooYdszxkMBo0YMaLU1nudO3cudf1iz0uLjIyUwWBQTEyM8vPzNXv2bN1www2qV6+eAgICdPfdd2vz5s0XbGfNmjXq06ePQkJC5OHhoZCQEPXp00dr1651WMc6thEjRshisWj+/Plq3769goKCZDAYtGjRIkVERKhz5862OiXHbq17MaztxMbGKjExUWPGjFHTpk1lNBrVsGFDPfDAAzpy5Ei5beTm5uq1115Tu3btFBAQIKPRqPDwcA0bNkw//vhjlWN78cUXZTAY5Orqakt+WZnNZi1dulS9evWyzXlwcLC6d++u5cuXy2Kx2G0zIyNDK1eulCQNGTLEbpkzZ85o9uzZkopfbzNnznQYo4uLi9577z01b95ckjR58mTl5+eXKlPyPjuyaNGiMq/n2NhYGQwGLV68WJK0ePHiMvc/Nja2VDshISHq0qWLzGazFixY4LA/AAAAAAAAAABKIpFWC5YuXarrr79ec+fO1S+//KLCwkJJ0m+//abXX39drVq10pYtW0rVCQkJUUhIiFxcim+Rn5+f7bmQkBC5uroqJCTEVj4gIKDU9eDg4GqJPT8/X926ddPkyZP166+/ysPDQ2lpadq6dat69eqlmJgYh/UGDRqkqKgobdy4UcnJyfLx8VFycrI2btyo++67T0OGDFFBQYHDvi0Wi/r3769HH31Ue/bskcVisc1HcHCwAgICbGVLjj0kJEQmk6laxn/s2DG1bdtW8+bNU1JSktzd3ZWUlKRly5apbdu2+vzzz+3WO3nypG699VaNGzdOe/bsUXZ2toxGo+Lj47VkyRLdfPPNeuONNyoVi9ls1pgxYzRlyhQZjUatWrVKo0aNsl1PSUlR586dNXToUG3evFlnzpyRt7e3kpOT9eWXX2rIkCHq27dvmYSWJG3fvl05OTmqV6+ebrrpJrv9L1y4UDk5OZJU7hlqVp6enpo0aZJtPi50lllFWROyRqNRkmQ0Gsvcfw8PjzL1OnbsKEkO7xkAAAAAAAAAAOcjkVbDvvzySw0bNkxFRUWaMGGCjh07ppycHGVnZ+vIkSPq37+/MjMz1b9//1Ir0xITE5WYmKiwsDBJ0ty5c23PJSYmasGCBUpMTLSVX7NmTanr+/btq5b433rrLX333Xd65513lJmZqdTUVMXHx+v++++XJE2bNk3r168vU+/555/XihUrZDAYNHXqVJ09e1YpKSlKTk7W888/L0lavny5pk6d6rDvNWvW6NNPP9Wrr76q1NRUpaSkKD09XT169NC+ffu0Zs2aMvNlfcydO7daxj9u3Dh5eHhoy5Ytys7OVmZmpr799lu1bt1aubm5GjhwoE6cOFGqTlFRkaKionTo0CGZTCZ99NFHysrKUlpamv744w/16dNHZrNZY8eOrdCqPknKy8vTgAEDNG/ePPn7+2vLli2lzjErKirSfffdpx07dujGG2/UZ599puzsbKWlpSkrK0uLFy9WgwYNtH79ek2cOLFM+zt27JAk3XTTTQ63dfz6668lSUFBQerUqVOF4u7bt68t4bZt27YK1bmQdu3aKTExUQMHDpQkDRw4sMz9b9euXZl6t99+uyTphx9+UFZWVrXEAgAAAAAAAAC4spFIq0Fms1lPPPGEzGaz5s2bp5deekkRERG27eeuu+46rVy5Uvfee68yMjI0Z84cZ4dcRnp6ut566y2NHDnStgIoLCxMK1assK3wsSbGrE6ePGlLZE2aNEnTp0+Xv7+/pOKVcy+++KLGjx8vSZozZ45Onz5tt++srCzNmTNHzzzzjPz8/CQVnxV31VVXVfs4HcnJydHnn3+uu+++25YQuu2227R161YFBgYqIyNDs2bNKlVn1apV+vbbbyVJK1eu1AMPPGBbIXX11Vdr7dq1uv3222WxWDRhwoQLxmBNHq5evVqhoaHauXOnOnToUKrMsmXLtH37dl1//fWKjY1Vnz595O3tLUmqV6+ehg0bpk2bNslgMOitt97SmTNnStW3xtumTRuHcRw+fFiS1LZt2wvGbOXn56err75aknTo0KEK16sJ1rgLCwurLdEMAAAAAAAAALiykUirQTt27NDvv/+u+vXr65FHHnFYbtiwYZKkL774orZCq7CwsDA99NBDZZ53cXHRlClTJBUnWA4ePGi7tnr1ahUWFspoNNq29jvflClT5OnpqYKCAq1atcpumYCAAI0cObIaRlF1/fv3t53zVVKDBg1s2yquWLGi1DXr73feeae6d+9epq6bm5uio6MlFSeXSs7d+U6dOqUOHTrYkmS7d+9Wq1atypSznvv1+OOPO9zW8uabb1bLli2Vn59fZnXYqVOnJKncLUHPnj0rqXhFWmXUr1+/VH1nCQwMtG0Nah2vI3l5ecrIyCj1AAAAAAAAAADUPSTSatCuXbskFa8oatSokRo2bGj38eijj0qS4uLinBmuXZGRkQ7PwurQoYPc3NwkSfv377c9b/351ltvta0kO19AQIBuueWWMnVLuvXWW+2edVWbunTpcsFrZ8+e1bFjx2zPW8fTrVs3h3U7d+5s20LR0fiPHDmidu3a6eDBg7rzzju1a9cuNWnSpEy5oqIi7d27V5IUExPj8HXWsGFD/fbbb5LKvtb++usvScXJpiuVi4uLLcloHa8js2bNkslksj2sW6wCAAAAAAAAAOoWN2cHcCWzrnopKChQUlLSBcvn5OTUdEiVFhoa6vCa0WhUUFCQkpKSSm0VaP25vLqS1Lhx41Llz9egQYPKhlvtyhtDyWtnzpxR06ZNbT9fqK7RaFT9+vXLzF1JL730kiQpJCREW7ZskY+Pj91yKSkpysvLkySlpqaWM5r/OXfuXKnfc3NzJUmenp4O6wQFBenkyZOVXlmWnJxsq+9sXl5eSk1NtY3XkcmTJ9u2H5WkjIwMkmkAAAAAAAAAUAexIq0GFRUVSZLtPKyKPPA/1hVbdVX//v3l4eGhpKQkPf7447bX0/lKPr958+YKvc5iYmJKtWFNcpWXiGvRooUk6cCBAxUeQ0ZGhv78809JUsuWLStcr6akpKRIunBSz9PTU35+fqUeAAAAAAAAAIC6h0RaDWrYsKGkS3PLxoo6efKkw2t5eXm21UklV49Zfz5x4kS5bVuvXworzxwpb/wlr1V2/Lm5uXbnrqRevXpp7dq18vT01EcffaQHH3zQbjItKCjItsVmVV9r1rPRrIkme7p27SqpeCvL2NjYCrW7du1aW4L4/G0yrTGXtzosPT29Qv1URE5Ojq2v8s6CAwAAAAAAAADAikRaDbrrrrskSYmJiQ7PwbpY1vPLamo12/bt2x22vXPnThUWFkqS7byzkj/v37/fYSIkLS2t1FlqVeHi8r+Xb02Nf9u2bRe8FhgYaNvWUfrf+L/66iuHdWNjY21zV974e/XqpU8//VRGo1HLly/XkCFDbPWs3N3dddttt0mSPvvsswuMyD7rajPr6jF7RowYIaPRKEmaPn36Bec8Ly/Ptj1lo0aN1Ldv31LXAwICJEkJCQkO2/j2228dXrPe/4re+5Ln2DVv3rxCdQAAAAAAAAAAdRuJtBrUuXNnXXPNNZKkcePGKT8/v9zy5a0GcsS65VxaWlql61ZEfHy8Fi9eXOZ5s9msmTNnSipOwrRu3dp2LSoqSm5ubsrNzbUlUs43c+ZM5eXlyd3dXVFRUVWKreR2ezU1/k8++US//fZbmeeTk5P17rvvSpIGDhxY6tqgQYMkSXv27NGWLVvK1C0sLNT06dMlSa1atVKrVq3KjaFHjx5av369vLy8tHLlSg0aNEgFBQWlyjz22GOSpE2bNmnTpk3ltmfvddaxY0dJ0nfffeewXkhIiCZMmCCpOIn4wgsvOCxrNps1cuRI/frrr5KK77eHh0epMm3atJEk7du3z24y7ddff9WaNWsc9lHZ1741KRcSEqLrrruuQnUAAAAAAAAAAHUbibQa5ObmpnfeeUdubm765ptv1LFjR3311VelkiB//vmn3nnnHd1666166623Kt2HNQmzdOlSnTt3rtpitzKZTHr88cf1/vvv27bFS0hI0ODBg20rsmbMmFGqTmhoqMaOHStJmj17tqKjo23JjrS0NE2dOlWvvPKKJGn8+PG66qqrqhTb3/72N1tyZv78+TWyKs1oNKpnz57aunWrrf19+/apW7duSk5Olq+vryZNmlSqTlRUlG6//XZJ0oABA7Rs2TLbPT927JiioqK0Z88eSdLLL79coTjuvvtubdiwQd7e3lq9erUGDBhQKjE7dOhQdevWTRaLRf369dOMGTN06tQp2/Xs7Gxt27ZNTzzxhK6++uoy7UdGRkoq3hoyKSnJYRzR0dHq06ePJGnWrFnq1auXdu7cadtysqCgQFu2bFHHjh1tCdjRo0dr+PDhZdr6+9//Lh8fHxUUFGjAgAG2hGVBQYE+/fRTdevWTfXq1XMYi/W1v3PnTh05csRhOStrIq1Tp04XLAsAAAAAAAAAgEQircZ17dpVn3zyiXx9ffXtt9/akgP169eX0WhUs2bN9Pjjj2v//v22bRorY9SoUZKk1atXy9/fX40bN1ZERITat29fLfGPHj1at9xyix577DH5+fkpMDBQTZo00cqVKyVJU6ZMUb9+/crUmzlzpgYMGCCLxaLp06crKChIgYGBCgoKsiXeBg8erH//+99Vjs3b21sPPvigJGnChAny8fFReHi4IiIi9Oyzz1a53ZL+85//KDc3V3fffbd8fHzk6+ur2267TT/99JM8PT21fPlyNWnSpFQdV1dXrV69Wi1btlR6eroeeOAB+fj4KCAgQFdffbXWr18vFxcXzZ07V/fcc0+FY+nSpYs2bdqkevXqad26dYqKirIl06x99unTR/n5+Zo6dapCQ0NlMpkUEBAgX19fdenSRW+99Zays7PLtN28eXPbCrH169c7jMHFxUVr167VuHHj5Obmps2bN6tjx47y9PRUUFCQjEajevTooV27dsloNGr27NmaN2+e3bZMJpNee+01GQwG7d27V9dff738/Pzk4+Ojvn37qkmTJraVe/ZERUUpODhYqampat68uYKDgxUREaGIiAjt3bu3VFmz2ayNGzdKkoYMGVL+RAMAAAAAAAAA8F8k0mpB3759dfToUUVHR+u2226Tj4+P0tLS5OnpqTZt2uiRRx7R2rVr9dxzz1W67aFDh2rJkiVq3769vL29dfr0acXFxenEiRPVEruHh4e++uorzZw5U9ddd53y8vJkMpnUtWtXbdy40WEizMPDQytWrNCqVat0zz33KCgoSJmZmQoKCtI999yjNWvWaNmyZXJ3d7+o+ObNm6eYmBjb1pLx8fGKi4tTcnLyRbVr1bRpUx04cEBPPPGEgoODlZ+frwYNGmjw4ME6cOCAevfubbdeaGio9u/frzlz5uiOO+6Ql5eXzp07p7CwMD344IP6/vvv9dRTT1U6nk6dOunzzz+Xr6+vNmzYoL59+yovL09S8VaHn332mTZt2qSBAweqSZMmysvL07lz5xQaGqru3btr1qxZdreqlKSRI0dKKl7dWB43NzfNmTNHv/zyiyZMmKCbb75Z/v7+tvt75513Kjo6WkePHtXEiRPLbeuf//ynNm7cqC5dusjPz0+FhYX629/+ptmzZ2v79u3lrkgLCAjQjh07NGjQIIWGhio9PV1xcXGKi4uzrZ602r59u06cOKHQ0FDbijoAAAAAAAAAAC7EzdkBXCkWLVqkRYsWObzeoEEDxcTEKCYmplLtHj9+/IJlhg4dqqFDh1aq3crw8PDQ5MmTNXny5ErXjYqKqvQZaBeay5I8PT0VHR2t6OjoSsdWUQ0bNtSbb76pN998s1L1jEajxo0bp3HjxlWq3oXuefv27ZWRkeHw+j333FOplW5WQ4cO1aRJk7Rjxw7FxcUpPDy83PLXXnutwzPwKqO8eEeMGKERI0Y4rHv99ddr+fLlF+xjyZIlkorPknN1da1SnAAAAAAAAACAuocVaQAkyXbem8ViqZYE2aUiISFBS5cuVXBwsJ5++mlnhwMAAAAAAAAAuIyQSANgM27cOIWFhWnBggVKSEhwdjjVYubMmcrPz1dMTIz8/PycHQ4AAAAAAAAA4DLC1o4AbIxGoz788EPFxsYqPj5eYWFhzg7popjNZjVp0kQzZszQY4895uxwAAAAAAAAAACXGRJpV7D77rtPu3fvrlSdNWvWqF27djUUUe1q2LBhpeskJibWQCSXl8jISEVGRjo7jGrh4uJSpbP9AAAAAAAAAACQSKRd0VJSUpSUlFSpOvn5+ZKk2NjYGoiodlV27CVZLJZqjAQAAAAAAAAAAFyOSKRdwa6EZNjFIBkGAAAAAAAAAAAuBok0AAAAAABQp40fL2VkSH5+VX/eUdmqtF+ddcorX5Hr1VWnulTHvarINWfVrYlrNRnvpVq3qi7mPXnggNS2be3FU1dV93vdWe+r6ui/puOvqXLA5chgYdkOAJQrIyNDJpNJycnJCgoKcnY4cJKCggJt2rRJvXr1kru7u7PDAQAAF4nPdgAAAKD21Nb3b+vfctPT0+VXTZldl2ppBQAAAAAAAAAAALjCkEgDAAAAAAAAAAAA7CCRBgAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHW7ODgAAAAAAANRdc+ZIGRmSn580fryzowEAAABKI5EGAAAAAACcZs4c6eRJKTSURBoAAAAuPWztCAAAAAAAAAAAANhBIg0AAAAAAAAAAACwg0QaAAAAAAAAAAAAYAeJNAAAAAAAAAAAAMAOEmkAAAAAAAAAAACAHSTSgGpw/PhxGQwGGQwGHT9+3Nnh1Lj8/Hw1a9ZMnp6eSkhIcHY4DpnNZrVs2VLu7u767bffnB0OAAAAAAAAAOAyQyINFbJu3TrFxMRo3bp1l3UfVRETE6OYmJg6kSCrqDfeeEN//vmnHnnkEYWFhZVbdvv27Ro5cqSaN28uf39/GY1GhYWFqXfv3nr77beVk5NTY3G6uLho6tSpKiws1IQJE2qsHwAAAAAAAADAlYlEGipk3bp1mjZtWo0n0mq6j6qYNm2apk2bVm4izd3dXdddd52uu+46ubu7115wTpCSkqIZM2bI09NTkydPdlju7Nmz6t27tyIjI/Xee+/pyJEjys3NldFo1IkTJ7Rp0yaNHj1a1157rb788ssai3fAgAFq0aKF1q9frx07dtRYPwAAAAAAAACAKw+JNKAahIaG6siRIzpy5IhCQ0OdHU6Neu+995SWlqa///3vaty4sd0ySUlJuuOOO7Rp0ya5urrqySef1OHDh5Wbm6u0tDSlpqZq4cKFCgsL08mTJ9WrVy+tXLmyRuJ1cXHRo48+Kkl6+eWXa6QPAAAAAAAAAMCViUQagAqzWCx67733JElDhw51WGbIkCE6evSo3N3dtXbtWr3++utq0aKFrYy/v79GjBihAwcOqE2bNiosLNTDDz+sI0eO1EjcgwcPlqurqzZv3qz4+Pga6QMAAAAAAAAAcOUhkVaHrVixQvfcc49CQkLk7u4uf39/XXvttbr33ns1b9485ebmKjY2VgaDQYsXL5YkLV68WAaDodQjNjbW1mZiYqLeeOMN/eMf/1Dz5s1lMpnk5eWla665Ro888ogOHz5cJo7K9mF16NAhPfbYY7r22mvl7e0tHx8f3XDDDXrhhReUnJx80fMzYsQIGQwG2++dO3cuFVNERITt2vHjx23Pn78FpHV81rZ+/vlnDR48WI0aNZKXl5eaN2+uV199VYWFhbY6u3btUt++fXXVVVfJaDSqVatWmjdvniwWS7kxV2VOYmJiZDAYFBkZKUlavXq1unfvrgYNGsjFxUUxMTG2slu3btWxY8fk7++vXr162W1vw4YN+vrrryVJL7zwgv7+9787jDcoKEiffPKJjEajsrOzNXXq1DJlIiMjZTAYFBMTI4vFovfff1+33367/Pz85OvrqzvvvFMfffRRufMSEhKiLl26yGw2a8GCBeWWBQAAAAAAAADAys3ZAcA5Hn74YS1cuND2u4+PjwoKCnT06FEdPXpUn332mXr37i0PDw+FhIQoPT3ddr6VyWQq1ZaHh4ft50mTJtkSYm5ubvLz89O5c+f0xx9/6I8//tBHH32kpUuXKioqqlT9yvQhFW/RN3nyZJnNZkmSt7e3CgoKdPDgQR08eFALFy7Uxo0b1bZt2yrPkclkUkhIiJKSkiRJAQEBpeIIDg6udJubN2/Wfffdp9zcXJlMJuXl5enIkSN67rnn9P3332v58uWaP3++Ro0aJbPZLD8/P+Xl5enw4cMaM2aMEhISNHv2bLttV8ecPPPMM5ozZ44MBoP8/f3l4lI61/75559Lkm6//XaHZ8G99dZbkiRfX18988wzF5yTa6+9VoMHD9bChQu1Zs0aJSYmqmHDhmXKFRUVqV+/fvr000/l5uYmb29vZWZmau/evdq7d69+//13TZs2zWE/HTt21JdffqnPP/+83HIAAAAAAAAAAFixIq0O+uabb7Rw4UK5uLjopZde0tmzZ5WZmans7GwlJyfriy++0PDhw+Xh4aF27dopMTFRAwcOlCQNHDhQiYmJpR7t2rWztX3NNdfolVde0cGDB5WTk6OzZ88qLy9Phw4d0gMPPKC8vDwNHz5cp06dstWpbB8LFizQxIkT5e3trRdffFGnT59Wdna2zp07p/3796tLly46ffq07r33XmVlZVV5nubOnavExETb79Ykj/Wxb9++Src5ZMgQ/eMf/1BcXJzS0tKUnp6uyZMnS5I+/vhjzZ49W6NHj9bo0aOVmJiotLQ0paSkaMSIEZKkV155Rf/3f/9Xpt3qmJPvv/9ec+bM0cSJE5WUlKSUlBRlZ2froYcespXZsWOHJOm2226z20ZhYaF27twpSerevbt8fHwqNC/33XefJMlsNmv79u12y8ybN0+xsbFatGiRMjIylJ6eroSEBNuKtxkzZuj333932Mftt98uSfrhhx8u6nUBAAAAAAAAAKg7SKTVQbt375YkdevWTRMmTFBgYKDtWlBQkLp3765FixapUaNGlW57ypQpevbZZ9WqVSu5uRUveHRxcVHLli310UcfqXfv3srOztYHH3xQpdgzMzP17LPPSpJWrVql559/3rZ6ydXVVTfffLO++OIL3XzzzTpx4oTmz59fpX5qyq233qrly5erSZMmkopXbc2cOVMdOnSQJE2ePFnDhw/X66+/rgYNGkgqXgk3f/58NW3aVGazWStXrizVZnXNSVZWlsaPH6/Zs2fbVtt5enoqPDxckpSfn68DBw5Iktq0aWO3jePHjys7O1uSKrUa8MYbb7T9fOjQIbtlUlNTtXbtWg0fPlxeXl6SpMaNG+uTTz5Ro0aN7M5NSdZ4CgsLL5gEzcvLU0ZGRqkHAAAAAAAAAKDuIZFWB/n7+0uS/vrrLxUVFdVq371795ZUvCquKlavXq20tDS1bdtWPXr0sFvGzc1NgwcPliR98cUXVQu0hkycOLHUuWtWJcdiXaFWkqurq7p27Sqp+Iy1kqprTlxcXDRx4kSHsZ85c8b2enG0reXZs2dtPwcFBTls63z169e320ZJd911lzp37lzmeU9PT9u4z5+bkgIDA21bVZZcEWnPrFmzZDKZbI+wsLALjgEAAAAAAAAAcOXhjLQ6qGvXrjIajTpw4IA6dOigf/7zn+rSpYuaNm1aLe3/9NNPevfdd/XNN9/o+PHjysrKksViKVXmxIkTVWp7165dkqRff/3V7jlaVjk5OZKkuLi4KvVTUxxtiRgSEiKpONlz9dVXl1smNTW11PPVNSfXXHONbRWcPX/99Zft55KrGGuLdWtGe6yrJ1NSUhyWcXFxkclkUmpqaqmx2DN58mSNHz/e9ntGRgbJNAAAAAAAAACog0ik1UHNmjXT/PnzNWrUKO3Zs0d79uyRVLzKqHPnzhoyZIjuvfdeuyunLuTNN9/U2LFjZTabJUkGg0Emk0menp6SipM5GRkZtu3/Ksu6kig3N1e5ubkXLH/u3Lkq9VNTfH197T5v3QbT0fWSZQoKCko9X11zUl4Szdq+lfV+nq/kKjRHK8vsSU5OtttGSVWZm/N5eXkpNTX1gvPk6enpcIwAAAAAAAAAgLqDrR3rqAceeEBxcXF65513NHDgQIWFhemvv/7SypUr1bdvX3Xq1KnS50L9+uuvevrpp2U2m9W/f3999913ys3NVWpqqhITE5WYmKg5c+ZIUpkVahVl3Vpw4MCBslgsF3wcP368Sv1cTqprTlxdXcvtp2SC6/xVcVbh4eGqV6+eJOmHH36o8BisZ69JUsuWLStcr7KsK9Yqs+0kAAAAAAAAAKDuIpFWhwUGBmrkyJH6+OOPFR8fr6NHj2rSpEkyGAzauXOnYmJiKtXeqlWrVFRUpObNm+vjjz/WrbfeKg8Pj1JlEhMTLypm69aFl9qWjc5UW3NS8lw0R1souru7q0OHDpKkLVu2KDMzs0Jtr1mzRlLx9ouRkZEXF6gDOTk5tpVojs54AwAAAAAAAACgJBJpsGnWrJlmzZqlIUOGSJK+/PJL2zUXl+KXSnkryRISEiRJbdq0sZU/39atWx3Wr0gfd911lyTp+++/1+nTpx2Wq07WLS6ruoquptXWnAQEBNiSdn/++afDco8//rgkKSsry7YCsTy///67Pv74Y0lSv379yj3n7WIcO3bM9nPz5s1rpA8AAAAAAAAAwJWFRFodlJeXV+51Ly8vSSqVDPPz85MkpaWlOaxnMpkkSQcPHrSbdNq8ebNiY2Md1q9IH/3795e/v78KCgo0fvz4cpNbZrO53LYqqiJxOVNtzknHjh0lSd99953DMn//+99tq8pefPFFbdiwwWHZs2fPqn///srNzZW3t7f+/e9/Vzm2C/n2228lSSEhIbruuutqrB8AAAAAAAAAwJWDRFodNGbMGA0YMECrV6/WmTNnbM9nZWXpnXfe0YcffihJ6t27t+1aq1atJEk7d+7UkSNH7Lbbs2dPSdLhw4f1xBNP2Lb/y87O1rvvvqv777+/3LOpKtKHv7+/XnvtNUnSxx9/rN69e+vbb7+V2WyWVJwo+vXXX/X//t//U8uWLctN4lSUNa6lS5fq3LlzF91edavNObEmyKxJKXsMBoOWL1+uq6++WgUFBerXr5/Gjh2rX3/91VYmPT1dixcv1k033aSffvpJrq6umj9/fo2uFLPG3KlTpxrrAwAAAAAAAABwZSGRVgcVFBTok08+0f3336+QkBD5+voqICBAvr6+evzxx5Wfn6/27dvrhRdesNWJiopScHCwUlNT1bx5cwUHBysiIkIRERHau3evJKlr164aNGiQJOntt99WUFCQAgICZDKZNGrUKDVv3rzcc9cq0ockDR8+XG+//bY8PDy0efNm3XHHHfL29lb9+vVlNBrVokULPfvsszpy5IhtW8aLMWrUKEnS6tWr5e/vr8aNGysiIkLt27e/6LarS23NSVRUlNzd3XXkyBH9/vvvDss1bNhQe/fuVY8ePVRYWKjXX39dLVq0kJeXlwICAuTv768RI0YoPj5eV111lTZs2KDBgwdXOa4LMZvN2rhxoyTZti4FAAAAAAAAAOBCSKTVQVOnTtXrr7+ufv366frrr5ebm5uysrLUoEED3X333frggw8UGxurevXq2eoEBARox44dGjRokEJDQ5Wenq64uDjFxcUpNzfXVm7p0qV67bXXdMMNN8jT01NFRUVq3bq1Zs2apV27dsnHx8dhXBXtQypObv3222969tln1aZNG3l6eiotLU0+Pj665ZZb9OSTT+rLL7+sluTM0KFDtWTJErVv317e3t46ffq04uLidOLEiYtuuzrVxpw0aNBA/fr1k1R8r8sTHByszz//XF9//bUeeeQRXXfddfLw8FBOTo5CQ0N1zz33aN68eTp69KhtNWNN2b59u06cOKHQ0FD16dOnRvsCAAAAAAAAAFw5DJbyDlQCgPPs2LFDnTp1UrNmzfT7779Xy6q/mvbwww9r4cKFmjZtmv71r39Vun5GRoZMJpOSk5PL3Z4UV7aCggJt2rRJvXr1kru7u7PDAQAAF4nP9ktH48bSyZNSaKh0if17RQAAAFST2vr+bf1bbnp6uvz8/KqlTVakAaiUjh07qnv37vrjjz/0ySefODucC0pISNDSpUsVHBysp59+2tnhAAAAAAAAAAAuIyTSAFTaq6++KhcXF02fPl1ms9nZ4ZRr5syZys/PV0xMTLX9CwQAAAAAAAAAQN3g5uwAAFx+WrdurQULFuj48eM6ffq0QkNDnR2SXWazWU2aNNGMGTP02GOPOTscAAAAAAAAAMBlhkQa6oSGDRtWuk5iYmINRHLlGDFihLNDuCAXFxdNnjzZ2WEAAAAAAAAAAC5TJNJQJyQlJTk7BAAAAAAAAAAAcJkhkYY6wWKxODsEAAAAAIAd48dLGRkSRxoDAADgUkQiDQAAAAAAOM348c6OAAAAAHDMxdkBAAAAAAAAAAAAAJciEmkAAAAAAAAAAACAHWztCAAVlJubq5ycHGeHgVrm4uIiT09P2+9JSUlydXV1YkQAAOBieHh4KCgoyPZ7bm6uCgsLnRgRAAAAcOWq7b+tZWZmVnubJNIAoILi4uKUmprq7DDgBNdee63S0tIkSQsXLpTZbHZuQAAA4KKMGTNGRqNRknTs2DG5uLBZCwAAAFBTavNva7m5udXeJv9vAQCACzCbzSooKHB2GAAAoJrk5+fzD2MAAACAWnK5/22NRBoAAAAAAAAAAABgB4k0AAAAAAAAAAAAwA4SaQAAAAAAAAAAAIAdJNIAAAAAAAAAAAAAO0ikAQAAAAAAAAAAAHaQSAMAAAAAAAAAAADsIJEGAAAAAAAAAAAA2EEiDQAAAAAAAAAAALCDRBoAAAAAAAAAAABgh5uzAwAAXDoMBoN8fHzk5+cnb29vubu7S5Ly8vKUkZGhs2fPymw2OzlKAKg+d9xxh5o0aaIGDRqoXr16cnNzU1ZWluLi4rR7926dOXPG2SECAADgv1xdXXXttdfKzc1NeXl5+v33350dEgCgDiCRBgCw8ff3V2hoqCQpNzdXmZmZcnFxkbe3t0JCQmQymXTs2DEVFRU5OVIAqB4dOnSQu7u7kpKSbEmz4OBgtWnTRq1atdKKFSv4Aw0AAMAlomHDhnJ1dXV2GACAOoZEGgDAxmKxKCUlRWfPnlVeXp7teTc3N4WHh8vLy0tXXXWVTpw44cQoAaD6fPzxxzp16lSZfyBwyy23qHfv3rr33ns1Z84cWSwWJ0UIAAAASapXr54CAgKUkpKiwMBAZ4cDAKhDOCMNAGCTlpamU6dOlUqiSVJhYaFOnTolSfLz85PBYHBGeABQ7RISEuyust2/f79SUlLk4+Oj4OBgJ0QGAAAAK4PBoEaNGik3N1fJycnODgcAUMeQSAMAVEhubq4kycXFha00ANQJ1gQb29kCAAA4V4MGDeTh4aFTp06xUwAAoNaRSAMAVIiHh4ckyWw280dlAFe8G264QfXr19fZs2eVkpLi7HAAAADqLE9PT9WvX19paWk6d+6cs8MBANRBnJEGAKiQoKAgSVJWVhb/AhDAFaddu3YKDg6Wu7u7goOD1aBBA2VkZGj16tX8bx4AAIAThYaGqqioSImJic4OBQBQR5FIAwBckI+PjwICAmQ2m3XmzBlnhwMA1a5Zs2a6+uqrbb+npaVp7dq1On36tBOjAgAAqNuCgoLk7e2tEydOsDMKAMBpSKQBAMrl4eGhxo0by2AwKDEx0XZWGgBcSZYsWSKpeOugkJAQdezYUQ899JC+/vpr7dy508nRAQAA1D3u7u5q0KCBsrOzlZaW5uxwAAB1GGekAQAccnNzU0REhNzc3JScnKyzZ886OyQAqFF5eXmKj4/XsmXLdOrUKXXu3FmNGjVydlgAAAB1zlVXXSWDwaCTJ086OxQAQB3HijQAgF2urq6KiIiQh4eHUlNT2Y8eQJ1iNpt1+PBhNWrUSH/729906tQpZ4cEAABQp/j5+amoqEihoaGlnjcYDJKKV6w1bdpUkpSQkKDCwsJajxEAUDeQSAMAlOHi4qLw8HAZjUalp6fzLwAB1Ennzp2TJNWrV8/JkQAAANRNrq6uDr+Lubi42K5Zk2sAANQEEmkAgFIMBoOaNGkib29vZWZm6sSJE84OCQCcIjw8XJKUkpLi5EgAAADqnkOHDtl93t3dXdddd53y8vL0+++/13JUAIC6iDPSAAClNG7cWD4+PsrOzlZ8fLwsFouzQwKAGhEWFqZmzZqVed7FxUW33XabbrjhBhUUFOjw4cNOiA4AAAAAAFwKWJEGALAJCgqSyWSSJBUWFqpRo0Z2yyUmJqqoqKg2QwOAahcYGKi+ffsqOztbp0+f1rlz5+Tt7a2QkBD5+vqqoKBA69atU0ZGhrNDBQAAAAAATkIiDQBg4+rqavvZmlCz58yZMyTSAFz24uLitHPnToWHhyskJETe3t4qKipSWlqafvnlF3377bdKTU11dpgAAAAAAMCJSKQBAGzOnDmjM2fOODsMAKgVaWlp+vrrr50dBgAAACqhoKDA4flpAADUBM5IAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADhJpAAAAAAAAAAAAgB0k0gAAAAAAAAAAAAA7SKQBAAAAAAAAAAAAdpBIAwAAAAAAAAAAAOwgkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAAAAAAAAAAADADjdnBwAAlzqLxSJJys7OlosL//6gLsrIyFBmZqbOnTun3Nxcmc1mZ4cEAAAuQmZmpsxms86dO6esrCy+4wEAAAA1qDb/tpaXlyfpf3/TrQ4GS3W2BgBXoD///FPNmjVzdhgAAAAAAAAAgApISEhQ48aNq6UtVqQBwAUEBgZKkuLj42UymZwcDZwlIyNDYWFhSkhIkJ+fn7PDAQAAF4nPdgAAAKD21Nb3b4vFoszMTDVq1Kja2iSRBgAXYN3qx2Qy8UcWyM/Pj9cBAABXED7bAQAAgNpTG9+/q3sxBBvBAwAAAAAAAAAAAHaQSAMAAAAAAAAAAADsIJEGABfg6emp6OhoeXp6OjsUOBGvAwAArix8tgMAAAC153L+/m2wWCwWZwcBAAAAAAAAAAAAXGpYkQYAAAAAAAAAAADYQSINAAAAAAAAAAAAsINEGgAAAAAAAAAAAGAHiTQAl6XZs2fLYDDYHvb88MMPmjZtmu69915df/31CgoKkru7u4KCgnTXXXfpxRdfVEpKSrXEk5iYqKlTp+rmm29WYGCgvLy8FB4erp49e2r27NkqKCgoU2f79u164YUX1KPH/2/vzqOqKvc/jr8ZDyCDM4rmBBRqpqmZ81CaDU4lZqY5Z3G9lli67FphZq20QfPaYOWQQznk0HTV1CRFylJTkaspAY6JKDMiIOzfH66zfyCH4QBdjT6vtVjreJ7pe/bZcg77u5/n6UtgYCA1atTAxcWFunXr0qtXLxYsWEBWVlalxFdVleU8KCgtLY05c+bQuXNn6tSpg8VioWHDhvTq1YuZM2eSkpJS7li2bdvGo48+SuPGjXFzc8Pd3Z1mzZoxfPhwfvjhh2LbFYy/tJ9evXqVOz4REZGbzbJly8r0+bd9+3ab7fPy8lixYgV9+vShdu3a5uf6sGHD+PHHHys93tzcXO644w4zrtGjR5fa5sCBA4wYMYKGDRtisVioX78+Dz/8MN9//32lxyciIiIiUpKKXIOKj4+3q/2YMWPsii08PNyu/l955ZUiffTs2bPUdg0bNizXsXMuVysRkRvot99+s/nL8npLlizhvffeM/9tTW4kJSURGRlJZGQk8+fP56uvvqJTp07ljmfNmjVMmDCBtLQ0cxxXV1dOnTrFqVOn2Lp1K08//TTVq1cv1O7NN9/k22+/Nf9drVo1LBYLiYmJhIeHEx4ezvz589myZQu33nprueOrqsp6Hljt3LmTYcOGkZCQAICrqyseHh6cPXuWs2fPEh4ezqBBg2jTpo1dcRiGQUhICIsWLTKfc3d3ByAuLo64uDg+++wzQkNDeeedd4q09/X1LbH/3NxcM+F711132RWbiIjIX4GjoyN16tQpttxisRR5LiMjg4cffthMsjk5OeHt7c0ff/zB6tWrWbt2LW+88QZTp06ttDhfe+01oqKiylz/k08+ISQkhKtXrwLg4+NDQkICmzZtYtOmTYSFhTFz5sxKi09EREREpCQVuQbl5ORUavsrV66Qmppqs31pXF1dS+0/MzOTjIyMUvuvVq0anp6eNsvq1q1rV1wmQ0TkLyQvL8/o3LmzARidOnUyAKO4X2Wffvqp8eabbxo//vijkZycbD6fnp5ufPrpp0adOnUMwKhbt66RkpJSrnjWrl1rODo6GoAxYcIEIzo62ixLS0szdu3aZYSGhhoZGRlF2s6bN89YsGCBceDAASMtLc18/uLFi8aCBQsMd3d3AzBatGhh5OXllSu+qsqe88AwDCMiIsI8no888ojxyy+/GPn5+YZhGEZmZqbx888/GzNmzDBiY2PtjmXJkiXm+MHBwcbx48fNsmPHjhkDBw40yzds2GB3/2+99ZbZ/tixY3a3FxERuVktXbrUAIzGjRvb3faxxx4zAMPR0dF4/fXXze9SSUlJxrRp08zPzi+//LJSYj18+LDh4uJiNGvWzPD19TUAY9SoUcXWj4yMNJycnAzAGDRokHH69GnDMK59z3vqqafM+NasWVMp8YmIiIiIVFRFr0H985//NADD3d290LXYytKvXz8DMBo2bGhcvXq1SHmPHj0MwAgLC6v0sZVIE5G/lPnz5xuAMXz4cCMsLKzUBEpJtm7darZfuXKl3e3PnTtn1KhRwwCMt99+u1wxlGTRokVmfBEREZXe/1+ZPedBZmam0axZMwMwJk2aVOmx9OzZ0wCMgIAAIzc3t0h5Tk6OOf5jjz1md//Nmzc3AKNr166VEa6IiMhNo7yJtMOHD5uf/ZMnT7ZZZ+jQoebnc0VvSLp69arRvn17AzC+++47o3HjxqUm0rp27WoARqtWrYycnJwi5X379jUAo0mTJjYvAoiIiIiI/K9V5BpUVlaWeZ10xIgRlR7b2bNnzRvVXnzxRZt1/sxEmvZIE5G/jLi4OGbMmEGtWrWYN29ehfvr2LGj+fjMmTN2t1+wYAHJycnceeedhIaGVjie61U0vqrK3vNgxYoVxMbGUq9ePebOnVvp8fzxxx8AtG7dGmfnoismu7i4mMtFWqefl1VkZCRHjx4FYPz48RULVEREpIr4z3/+Yz4ubunGadOmARATE0NERESFxnv77bfZt28fI0eOpE+fPqXWj42NNcd8/vnncXFxKVLnhRdeAK7tNbFr164KxSciIiIiUlEVvQa1YcMGkpOTy92+NMuWLSMvLw8HBwfGjRtX6f2XRok0EfnLePLJJ8nMzOSdd94pcR+Nstq9e7f52N/f3+72y5cvB2DEiBE4ODhUOJ7rVTS+qsre88D6Pg0ZMgQ3N7dKj6dZs2YAHDp0yNwDpaDc3FwOHjwIQPv27e3qe/HixcC1PVWGDBlSsUBFRESqiJMnTwLXPh/9/Pxs1gkKCjK/n3333XflHuv48eOEhYVRp04dm3ud2rJt2zbz8f3332+zTteuXfHy8qpwfCIiIiIilaGi16Cs7QMDA+nRo0elxmYYBkuWLAHg3nvvpUmTJpXaf1kokSYifwkff/wxO3bsoHfv3owcObLc/WRnZxMfH8/ChQt54oknAAgICKB///529RMXF8e5c+cAaNeuHVFRUTz++OPUr18fi8VCw4YNGTp0KHv27LGr36ysLE6cOMHrr7/Oc889B0D37t3tTsBUVfaeB9nZ2ezbtw+49j6dOnWKCRMmcMstt5ibmPbv359vv/223DGFhIQA1+54HzZsGDExMWbZb7/9xqOPPkpsbCz+/v52zVzMyMhg7dq1AAwbNgwPD49yxygiInIzS0xMpF27dnh6euLu7k6zZs0YMWIE4eHhJbbLz88vscwwDACioqLKFZdhGIwbN44rV64wb948atWqVaZ2R44cAa5tZF7cZuZOTk4EBQUBEB0dXa74REREREQqQ0WvQcXGxrJz506AP2W2WHh4OL///jtQttluq1atokmTJlgsFqpXr0779u2ZMWOGeS23PJRIE5Gb3tmzZ5k6dSru7u4sWrSoXH24ubnh4OCAm5sbTZs2ZdKkSSQnJ9OlSxd27NiBxWKxq7/jx4+bj/fs2UP79u35/PPPSU1Nxc3NjbNnz7J27Vq6devGq6++WmJf58+fx8HBAQcHBzw8PLj11luZMWMG2dnZ9O/fn40bN5brNVc15TkP4uPjycnJAa59qN9+++18/PHHXLhwgWrVqnHhwgW++eYb+vXrx5NPPmlecLNH//79mTdvHq6urnzxxRcEBgbi4eGBh4cHQUFBhIeHExISws8//4y3t3eZ+129erW5FKSWdRQRkars8uXLHDhwAFdXV/Lz84mLi2PVqlX06tWLsWPHFpnxbb0DNT093Zyddj1rMgso9x/MCxcuJCIigr59+zJ8+PAyt7OO16BBgxLrWcsr8ge9iIiIiEhFVfQa1JIlSzAMA2dnZ0aNGlXZ4Zmz3WrVqsXDDz9cav2YmBjOnTtHtWrVSEtLY//+/bz++us0b9683NdZlUgTkZveU089RWpqKjNnzjSX0bNXvXr18PX1pVq1auZzvXr1Yv78+TRq1Mju/qxr/gK89NJL+Pn5sW3bNjIyMkhNTSU6OpqePXtiGAYvv/wyGzZsKLYvJycnfH198fX1LbT04JAhQ5g7dy41a9a0O76qqDznQcH3afbs2bi4uLBu3ToyMjJITk7m5MmT5nT1Tz75pNx7702ePJkNGzaYd51nZWWRlZUFQE5Ojnle2OOTTz4Bru291q5du3LFJSIicjPz8/MjLCyMQ4cOceXKFZKSkrh8+TJ79uyhd+/eACxdurTIjO4HHnjAfDx79mybfb/22mvm47S0NLtji4+P54UXXsDDw4MPPvjArrbp6ekApd7Jay231hcRERERuREqcg0qLy+PZcuWAfDQQw9Rr169So0tJSWF9evXA9e213F1dS22bs+ePVm6dClnz54lOzubpKQkkpOTWbp0KXXr1iUtLY2hQ4fy008/2R2HEmkiclNbuXIl3377LW3atGHKlCnl7ic+Pp7z58+TkZFBQkICb731FgcPHqRDhw68/PLLdvdXcCkhwzBYv349vXv3xtHx2q/VFi1a8PXXX5sfHq+88kqxfdWpU4fz589z/vx5Ll++zOnTp5kxYwZff/01d9xxBx999JHd8VU15T0PCr5P+fn5LF68mODgYFxcXABo1KgRq1evpnXr1gC8/vrrNvc5K8nly5cZOnQo/fr1o1GjRnz33XckJiaSmJjId999R4sWLVixYgUdOnTg8OHDZeozOjqavXv3ApqNJiIiVdd9993HzJkzueOOO8zVAZycnOjcuTNbt25l4MCBALz//vucOHHCbNeqVatCN8JMmTKF+Ph4cnNzOX78OGPHjuWbb74xP++t38/sYd2TddasWTRt2rSiL1VERERE5KZU0WtQW7Zs4ezZs+VuX5pVq1Zx5cqVMvU/c+ZMRo8ejZ+fn7lfso+PD6NHjyYyMpLq1auTm5vLtGnT7I5DiTQRuWklJCQwefJknJyc+Pjjj3F2dq6UfuvWrctzzz3Hli1bcHBw4NVXX+Wbb76xqw/r5vBwbZPLtm3bFqnj6enJxIkTATh8+DAJCQml9uvg4EDDhg2ZPXs2q1atIjc3l5CQEA4dOmRXfFVJRc6Dgu9TYGAggwYNKlLH0dGR559/HoBLly6xf/9+u+KbOnUqa9eu5bbbbmP37t306dOH2rVrU7t2bfr06cOuXbu49dZbuXjxonk+lMZ6J5CbmxsjRoywKx4REZGqwNHRkbfeegu4djPM119/Xah88eLF3HPPPQDMmzePpk2b4urqym233cbSpUsZOHAgDz30EAA1atSwa+xPPvmE7du307ZtWyZPnmx37NbvH5cvXy6xnrW84PcVEREREZH/pYpeg7K2b9CgQaGVIyqLdVnHu+++m9tvv73c/fj7+5vX5SIiIrh06ZJd7ZVIE5Gb1vTp07l06RITJkwgKCiIjIyMQj/Wva8Am8+VpkOHDnTt2hXA7llfBfe8aN68ebH1WrRoYT4ubg+P4jzyyCM0atTInEn1d1WR86Dg+xQUFFTsGOV9n9LT081zZ+LEiYWW5rRyd3fnn//8J3Dtg/rChQsl9pmTk8PKlSsBGDx4MNWrVy9zPCIiIlVJQEAAtWvXBq7tdVqQl5cX27Zt47PPPmPgwIEEBgbSpEkTevfuzaeffsrGjRtJSkoC4NZbby3zmKmpqTz//PM4Ojoyf/58srKyinz3sO6pevXqVfO5grPg/fz8AMw7c4tjLbfWFxERERH5X6roNaiEhARzcsLo0aNxcnKq1PgOHDjAr7/+ClTObLdOnToB11YXi4uLs6tt5UzvEBH5E1h/oX3wwQel7k1hvZP32WefZf78+WUew5poiYmJsSu2Fi1a4OTkRF5eXon1rBdaAHNKsT0aNGjAqVOn7I6vKqnIeVCzZk0aNGhQ6oWs8r5Px48fN5eC9Pf3L7ZeYGCg+TguLs7cS82WL7/8kosXLwJa1lFERKQkjo6ODBs2jGHDhhUpu3r1qjmjv3PnzmXuMzk52dzXtHv37iXWXbVqFatWrQLg119/pU2bNgDmnbIXLlwgMTGROnXqFGmbl5fHsWPHAGjZsmWZ4xMRERERqSwVvQa1fPlyrl69ioODA2PHjq3s8MyJBZ6enjz22GOV3r89NCNNRP7WrHc327ukjpubm3lx5ejRo8XW++9//wtcS840adLErjEK3h2hJX/K77777gPK9j4Bdu2DUnDPlZJmshVc1rO099I6JT4gIIAePXqUORYREZGq5vfffzf/sLd3n7Kvv/6a1NRU3N3dzf3U/lf69OljPt6yZYvNOnv27CE9PR34/+8qIiIiIiL/SxW9BmVNdPXq1YtmzZpVamxZWVl89tlnADz66KN4enpWuM+ffvoJKN91WiXSROSmFR4ejmEYxf6EhYWZda3PWWej5eXlFZplZMuOHTv4+eefAejZs6fd8Y0ZM8bs58CBA0XKMzIyeP/994Fr6/gWvBvZOoupJEuXLuX8+fPljq+qqMh5AP//PsXExLBp06Yi/efn55t7sDRo0MDmfnfFCQoKwt3dHbj25cPW+5qXl2cu/1ijRg1uu+22Yvs7deoU27dvB2Ds2LHlmsUoIiLyV1Da9zTDMJg6dSpw7caVfv36lbnvxMREc//TiRMn2rVHWpMmTUr83mEYBo0bNwZg1KhR5nPW2WgAzZo1M5cPf/vtt8nNzS0yzhtvvAFA48aNS535JiIiIiJS2Sp6DSoiIoLffvsN+HNWVFq/fj0pKSll7r+0vy/i4uJ47733gGsrVliXkC8rJdJEpEo6ffo0d955J4sWLSI2NrbQL9PTp0/zxhtvMHDgQAzDoGbNmoSGhhbpY+bMmTg4OODg4EB8fHyR8uHDh9OhQwcMw2Dw4MHs2LHD3B/j6NGjDBgwgPPnz+Po6Mhrr71WqG1ERATdu3dnxYoVnDlzplDZiRMnmD59Ok899RRwbcnA0aNHV/CI/H1169aN4OBg4NoH7/r1682E16lTpxg2bBiHDx8G4LXXXis0ywxg2bJl5nkQHh5eqMzd3d38MD9w4AD9+/cnKiqK/Px88vPzOXz4MA8++CCRkZEATJ48ucT1opcsWUJ+fj7Ozs56z0VEpEo7efIkHTp0KPJdLT8/n59++okHHniAjRs3AvDUU08VuRHl22+/5d133+X33383l9q+fPky69ato1OnTsTGxtK6dWtmzZplc/yePXuW607UspozZw5OTk4cOnSIxx57zFxmOikpiX/84x9s3rwZgLlz51b6XhIiIiIiIqWp6DUo62y2mjVr8sgjj5SpzejRo81rbGXtv2XLlubeZiV54403GDVqFJs3bzYTcABpaWksX76czp07k5ycjIuLC3PmzClTvAVpjzQRqbIOHTrE008/DYCrqyve3t5kZWWRmZlp1mnatCnr16+nXr16dvfv6OjIl19+yb333st///tfevfujYeHBy4uLubeGi4uLrz33nvcc889Rdrv3r2b3bt3A9eWivT09CQzM5OsrCyzTuvWrdm0aZM560nKZ9myZVy4cIFdu3YRHByMxWLBw8OD5ORks05YWBijRo2yu+85c+Zw4sQJtmzZYv5YLBYAsrOzzXrDhg1jxowZxfaTn5/P0qVLAXjwwQepX7++3bGIiIj8lfzyyy/88ssvAFgsFry8vEhPTy/0+TlmzBgWLFhQpO2JEycIDQ01b1Lx9vYmNTXVvKmpe/fubNy48YZ9h+rcuTMffvghISEhbNiwgQ0bNlC9enVSU1PNpGFYWBiPPvroDYlPRERERP6+KnoNKi0tjXXr1gEwYsQI8zpYZYmJiWHXrl0AjBs3rkxtsrOzWb58OcuXLweuba3i4uJCSkqK+TeCj48PS5YsoUuXLnbHpESaiFRJfn5+rFu3jvDwcPbu3cu5c+e4ePEiTk5ONGrUiNatWzNw4EAef/zxCl1gqVevHgcOHGDhwoWsWbOG48ePk5WVRZMmTbjnnnsIDQ01N5wvqF27dqxYsYLw8HD27dvH+fPnuXTpEhaLBX9/f9q2bcvgwYMJDg7WXcqVoFq1auzcuZMlS5awYsUKjhw5Qnp6Og0aNKBbt25MmjSJzp07l6tvd3d3/vOf/7B+/XpWrlzJ/v37uXDhAg4ODtxyyy106NCBMWPG8NBDD5XYz/bt2zl16hTw50yJFxERuZn4+vry73//mx9//JGDBw+SmJhIcnIybm5uNG3alM6dOzN27Nhi/8jt06cPkyZNIiIigtOnT5OWloavry933XUXw4cPZ8iQITd8ieTx48fTtm1b3n77bX744QcSExOpW7cunTp1YtKkSTZvtBIRERER+bNV9BrU6tWruXz5crnbl2bJkiUYhoGrqytPPPFEmdoMGTIEwzD48ccfiYmJ4dKlS6SlpVGjRg2aN2/Offfdx4QJE/D19S1XTA5GaYtHioiIiIiIiIiIiIiIiPwNaY80ERERERERERERERERERuUSBMRERERERERERERERGxQYk0ERERERERERERERERERuUSBMRERERERERERERERGxQYk0ERERERERERERERERERuUSBMRERERERERERERERGxQYk0ERERERERERERERERERuUSBMRERERERERERERERGxQYk0ERERERERERERERERERuUSBMRERERERERERERERGxQYk0ERERERERERERERERERuUSBMREREREZE/hYODAw4ODoSHh9/oUCpVeHi4+drkr+tGnZ85OTn4+/tjsVg4ffp0hfv76aefcHBwoHv37pUQnYiIiIhcT4k0ERERERERKcKaZCjPz7Jly250+CI3rX//+9/ExsYyfvx4brnllgr317FjR/r27cvu3bvZuHFjJUQoIiIiIgU53+gARERERERE5Obj6+tr8/mMjAwyMzNLrOPu7g7AbbfdBoCHh8efEOGN4+HhYb42EXskJSUxe/ZsLBYLL7zwQqX1O3PmTLZu3cr06dPp378/zs663CMiIiJSWfTNSkRERERERIo4f/68zednzpzJK6+8UmIdq2PHjlV6XDeDDh06VNnXJn+ujz76iJSUFIKDg2nYsGGl9duxY0dat27NoUOH2LRpE8HBwZXWt4iIiMjfnZZ2FBERERERERH5kxmGwUcffQTAiBEjKr1/a5+LFi2q9L5FRERE/s6USBMREREREZE/hXXPtPDw8ELPx8fHm2Xx8fGcPHmSJ598kkaNGuHm5oa/vz8vvviiuYQkwJEjRxgxYgS33HILbm5uBAYGMnv2bHJzc0uMIT4+nsmTJ9OyZUs8PT3x8PAgKCiIZ599llOnTpXrdYWHh5vxX2/ZsmU4ODjQpEkTAPbv38+jjz5K/fr1sVgsNGvWjClTppCcnFyusQH27t3L8OHDadq0KW5ublSrVo3GjRvTo0cPXn31Vc6cOWOzXU5ODu+//z69evWidu3auLq6Uq9ePQYOHMjmzZvLNO6YMWMICAjAw8MDb29vWrRowdixY9m6davNNqmpqcyaNYu2bdvi7e2Nu7s7gYGBhISEEBsbW+xYBc+d9PR0XnzxRYKCgnB3d6dWrVr069ePvXv3lhhvcnIyU6dOxd/fHzc3N+rXr8+QIUPYv39/qa/1zJkzhIaG0rJlS6pVq4bFYsHPz4927doRGhrKL7/8Umof19u+fTtxcXFUr16dBx98sNh6x44dY8KECdx66614eHjg5ubGLbfcQseOHfnXv/5V7GzIxx9/HIAdO3aUeGxFRERExE6GiIiIiIiISBmFhYUZgFGWPyet9Xbu3Fno+bi4OLNs/fr1RvXq1Q3A8Pb2NpycnMyybt26GTk5OcY333xjeHh4GIDh4+NjODg4mHWGDh1a7PgrV640LBaLWddisRju7u7mv728vIytW7fafQx27txZ7DFYunSpARiNGzc2Vq1aZbi4uJhxOzo6mu1atmxppKen2z32smXLCr1+i8VieHt7m/8GjKVLlxZpFx8fb7Rs2dKs4+DgYPj4+BRq9/TTT9sc8+rVq8YzzzxTqG61atWMGjVqmLH4+PgUaXfkyBGjYcOGZhs3NzfDy8urUOxffPGFzTGtdT777DMjICDAbG89DwDD1dW12PcvLi7OaNy4caG61uPk6upqfPnll8WenwcPHjRq1Khhljs5ORV6rYAxatSokt4mm6ZMmWIARt++fYut89133xU6Z11cXMz/H9afsLCwYtv7+/sbgPH+++/bHZ+IiIiI2KYZaSIiIiIiInLDjBs3jnbt2hEdHU1qairp6eksWLAAJycndu/ezaxZsxg+fDj9+/cnPj6elJQU0tLSmDFjBgBr1qxh+/btRfrdtm0bI0eOJC8vj2nTphEXF0dWVhaZmZkcO3aMIUOGkJ6ezpAhQ8o9M60kiYmJjB07llGjRnHq1ClSUlJIT09n4cKFuLi4EB0dzdy5c+3q8/Lly0yaNAnDMBgxYgQxMTFcuXKF1NRUMjIy2LdvH1OnTqVu3bqF2mVmZnL//fcTHR1Nz549CQ8PJysri5SUFFJSUnjnnXfw9PTkww8/5N133y0y7r/+9S8WLFgAwNixY/ntt9/IyMggKSmJ5ORkNm3axP3331+oTXp6Ov379+fMmTM0aNCAb7/9lszMTNLS0jh48CAdO3YkOzub4cOHc+jQoWJf88SJE3F1deX7778nMzOTjIwMfv75Z2677TZycnKYMGEC+fn5hdrk5eUxZMgQTp48SY0aNVi7di2ZmZmkpqYSHR3N3XffzahRo4od87nnniM5OZm2bdvy448/kpubS1JSEleuXOH48eO89dZbtGzZstT363q7du0Cru2xV5yQkBCys7O57777iIqKIicnh+TkZLKysjhy5AivvPKKOdvRlrvvvhuAH374we74RERERKQYNzqTJyIiIiIiIn8dlT0jrWXLlsaVK1eKtH3iiSfMOn369DHy8/OL1OnWrZsBGOPGjSv0fF5enhEYGGgAxqJFi4qNb8CAAQZgPPvss6W+loLKMiONEmYtWWcmBQQE2DXu3r17zdlgubm5ZW43a9YsAzB69Ohh5OTk2KyzYcMGAzBq165dqO/ffvvNnEk3bdq0Mo/5xhtvmDOqoqKiipSnpaUZTZo0MQDjoYceKlJuPYZ16tQxEhISipQfPnzYrBMREVGobM2aNWbZ9u3bi7TNzMw0Z27ZOj+tsxYjIyPL/HpLk52dbc62LG4WXkJCghnTuXPnyjXOm2++aQBGo0aNKhKuiIiIiBSgGWkiIiIiIiJyw4SGhmKxWIo837dvX/Px9OnTbe5HZq1z+PDhQs/v2rWLEydOULt2bcaPH1/s2CNHjgQodn+vinrxxRdtPj9w4EAAYmJiuHz5cpn7q169OnBtr7NLly6Vud3ixYsBmDJlCi4uLjbrDBo0CG9vby5evFhoD7FPP/2U/Px8atWqxSuvvFLmMdesWQNAcHAwt99+e5FyLy8vpk2bBsDmzZtJTU212c+ECROKzLADaNWqFU2bNgWKvv+rV68GoEuXLtx7771F2np4eJhj22I9zn/88Uexdex14cIF8vLyAKhTp47NOl5eXjg6OlZo7Nq1a1eovYiIiIgUpUSaiIiIiIiI3DDFLXPn6+trPr7rrrtKrJOcnFzo+T179gCQmpqKn58f9erVs/nz5JNPAnDy5MkKv47r1axZk4CAAJtlfn5+5uPrYy+Jv78/QUFB5ObmcvfddzNnzhwOHjxoJmhsOXv2rPn6xo0bV+yxqF+/PhkZGUDh4xEZGQlAnz59cHNzK1OcOTk5ZnKrd+/exdbr06cPAPn5+Rw4cMBmHetShbZYj2NSUlKh5/ft2wfAPffcU2zbksr69esHwKhRo3juuef44Ycf7Ep42pKYmGg+rlmzps067u7uZuLv/vvv5+WXX2bv3r3k5OSUeRxr37m5uaSkpJQ/YBERERExKZEmIiIiIiIiN4yXl5fN552dnctcJzc3t9Dz586dM59PSEgo9seaxMrKyqrw67hecTEXjNtW7CVxcnJi9erVNG3alJMnTzJ9+nTuvPNOvL296dOnDx988EGRhI/1WABcvHixxONh3WusYB/nz58HoHHjxmWOMykpyUzuNWjQoNh6DRs2NB9fuHDBZp2yHMfrj6G1r7KOfb25c+fSq1cvMjIyeOedd+jZsyfe3t60b9+esLAwzp49W2zb4ly5csV8bGsGptUnn3xC69atSUxM5NVXX6Vjx454eXnRtWtX3nzzzSJJw+u5u7vbHFNEREREyk+JNBEREREREalSrEmcu+++G8MwyvTzV9G6dWuOHTvG+vXrmTBhArfffjtZWVls376df/zjHwQFBREVFWXWLzhb7ejRo2U6FqNHjzbb2FpSs6qrXr0633//Pbt372batGl06dIFZ2dn9u/fz6xZswgMDOTzzz+3q89atWqZj0uahdioUSMOHDjAli1beOaZZ2jXrh35+fns2bOHadOmERAQwPfff19s+4KJtoJjioiIiEj5KZEmIiIiIiIiVUq9evWAP2fJxpuBq6srjzzyCIsWLSIqKorExEQ+/PBDatasyenTpxk1apRZ13osoHzHozzHsmbNmjg5OQFw5syZYusVLLO1D1p5WfsqaeZYWWaVde3alTlz5hAREUFKSgpffvklrVq1Iisri7Fjx5KQkFDmmArui1barDJHR0f69u3Lu+++y759+0hKSmLVqlU0atSI5ORkHn/88WKXe7T27ePjU+x+eCIiIiJiHyXSREREREREpErp0qULcG1ZQut+WVVZrVq1eOqpp5gzZw4Av/76K5cuXQKgSZMm5hKHX3/9td19d+7cGYBt27aVealAV1dX7rjjDgB27NhRbL3t27cD1xJHbdu2tTu24rRv3x6AnTt3FlunpFldtri5uTFgwAA2bNgAXFs2MSIioszta9SoYSYlY2Nj7Rrby8uLxx9/nMWLFwOQkJBQaNZhQXFxcQA0b97crjFEREREpHhKpImIiIiIiEiV0qtXLwICAgAIDQ0tdvaOVWkzhG4W2dnZJZYX3B/L0fH//9x/8sknAVi8eDG//vpriX1cfyxGjx6Nk5MTly5dIiwsrMyxPvbYYwB88cUXHDlypEh5RkYGc+fOBeDBBx/Ex8enzH2XZujQoQBEREQQHh5epDwrK4s333zTZturV6+ae8XZUtwxLovu3bsD8PPPP9ssL+08LcvYe/fuBaBHjx52xSYiIiIixVMiTURERERERKoUZ2dnPvzwQ5ydnYmIiKB79+7s2LGD3Nxcs05sbCwffvghd911F++///4NjLbsVq9eTZcuXVi0aFGhWU15eXls3bqV6dOnA9CpUydq1Khhlj/33HO0atWKK1eu0KtXLxYuXGjOWANISUlh8+bNjBw5km7duhUaMyAggKlTpwIwd+5cxo8fz4kTJ8zytLQ01qxZw8MPP1yoXUhICE2bNiU3N5cHHniAzZs3mwmqqKgo+vbtS1xcHBaLhdmzZ1fSEbpm8ODB5gy3wYMHs379enOvuKNHj/LAAw+QmJhos+2ZM2cIDAxk9uzZ/Prrr1y9etUsO3z4MCNGjACgWrVqdierevbsCfx/sut6kZGR3HHHHcybN4+jR4+ax8swDCIjIwkJCQGgYcOG5oy/gvLy8ti/fz+gRJqIiIhIZXK+0QGIiIiIiIiIVLZ7772XdevWMXLkSPbu3Uvv3r1xcXHB29ubjIyMQrO7Bg0adOMCtYM1oRIZGQmAxWLB09OT5ORkM+ni5+fHkiVLCrXz9PRky5YtDB48mJ9++olJkybxzDPP4OPjQ35+PmlpaWZd60y+gmbPnk16ejrvvfceixcvZvHixXh6euLi4kJKSgqGYRSZUebl5cVXX33F/fffz5kzZ3jwwQdxc3PD1dXVHM9isbBy5Upat25dqcfJ2dmZdevW0bNnT06fPk1wcDAWiwU3NzdSU1NxdXVl3bp1DBw40Gb72NhYXnrpJV566SWcnJzw8fEhIyPDnDHm6urKsmXLqFmzpl1xDR48mGeffZZjx45x4sQJAgMDi9SJiopiypQpTJkyxTxfU1NTzYSet7c3n332mbkHXUE7duwgMzOTunXr0rt3b7tiExEREZHiaUaaiIiIiIiIVEmDBg0iJiaGsLAwOnTogKenJykpKVgsFlq3bs348ePZuHGjOePqZjdgwACWL1/OmDFjaN26NT4+PqSmpuLl5UWHDh149dVXiY6OJigoqEhbPz8/IiIi+PzzzxkwYAD169fn8uXL5OTk0KRJE/r378/8+fPZtWtXkbZOTk4sXLiQiIgIhg8fTqNGjcjNzcUwDFq0aMG4ceNYv359kXa333470dHRzJw5kzZt2uDs7Ex2djb+/v48/fTTREdHExwc/Kccq2bNmnHw4EGmTJlC06ZNMQwDNzc3goODiYyMZMCAATbbNWjQgK+++orQ0FA6duxI/fr1ycjIwNnZmRYtWjBx4kSOHDlSrrjr1q1rztxbtWpVkfK77rqLtWvXEhISQrt27ahduzZpaWm4ubnRpk0bpk2bxtGjR4vMGrSy9jlmzBhcXFzsjk9EREREbHMwDMO40UGIiIiIiIiIiFR1u3btokePHvj7+3PixAkcHBwqpd/MzEwzOXr8+HGaNWtWKf2KiIiIiGakiYiIiIiIiIj8T3Tv3p377ruP33//nXXr1lVavwsXLiQ9PZ3x48criSYiIiJSyTQjTURERERERETkfyQqKoo2bdrQvHlzDh8+jKNjxe5xzsjIoGnTply5coWYmBh8fX0rKVIRERERAXC+0QGIiIiIiIiIiPxdtGrVisWLFxMfH88ff/xBgwYNKtRffHw8EydO5M4771QSTURERORPoBlpIiIiIiIiIiIiIiIiIjZojzQRERERERERERERERERG5RIExEREREREREREREREbFBiTQRERERERERERERERERG5RIExEREREREREREREREbFBiTQRERERERERERERERERG5RIExEREREREREREREREbFBiTQRERERERERERERERERG5RIExEREREREREREREREbFBiTQRERERERERERERERERG/4PRa2BrXwLOyUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot trial 2 - 5\n", + "plot_trials(\n", + " trials=trials[2:6],\n", + " states=states, state_types=state_types,\n", + " actions=actions, action_types=action_types,\n", + " events=events, event_types=event_types,\n", + " figsize=None,\n", + " fontsize=18,\n", + " rectangle_height=1,\n", + " marker_size=500)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f8e5a9f8-d927-45fb-acc4-7017ddc2f874", + "metadata": {}, + "source": [ + "# Access processed behavior data\n", + "\n", + "This section demonstrates how to access the processed behavior data in the NWBFile.\n", + "The table can be accessed from the file as `nwbfile.intervals[\"processed_trials\"]`." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b13df93c-8de1-49d6-a40e-50967ed875a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecenter_poke_onset_timecenter_poke_offset_timenose_in_centertraining_stageblock_typenum_trials_in_adaptation_blocksnum_trials_in_test_blockscatch_percentage...is_opt_outwait_timerewarded_portleft_poke_timesright_poke_timesleft_opt_out_timesright_opt_out_timesreaction_timeshort_latency_reaction_timeinter_trial_interval
id
019.988039.623748.57017267.1266431.0954009Mixed40400.25...FalseNaNRight[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN18.5562
139.715443.543068.29787270.8276091.1881739Mixed40400.25...FalseNaNLeft[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN2.5297
243.631346.800772.21382373.7344691.1881739Mixed40400.25...FalseNaNLeft[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN1.5206
346.873259.324975.45578186.7871841.1097499Mixed40400.25...FalseNaNLeft[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN11.3312
459.401177.660487.98392089.4287421.0181449Mixed40400.25...True15.5943Left[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][90.4488554055054, 106.04339712480126, 106.043...NaN0.80941.4448
..................................................................
4796237.83016265.69156266.5131906293.1313141.1846589High40400.25...FalseNaNLeft[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN26.6177
4806266.21796268.19726294.9014386295.3699351.1350849High40400.25...FalseNaNRight[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN0.4685
4816268.71886311.91096297.4023696339.4748650.8485179High40400.25...FalseNaNRight[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN42.0718
4826312.43166314.37406341.1158916341.9794270.9153029High40400.25...FalseNaNRight[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN0.8635
4836314.89546316.40976343.5797276343.7217511.0878459High40400.25...FalseNaNRight[nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan][nan, nan, nan, nan]NaNNaN0.1420
\n", + "

484 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " start_time stop_time center_poke_onset_time center_poke_offset_time \\\n", + "id \n", + "0 19.9880 39.6237 48.570172 67.126643 \n", + "1 39.7154 43.5430 68.297872 70.827609 \n", + "2 43.6313 46.8007 72.213823 73.734469 \n", + "3 46.8732 59.3249 75.455781 86.787184 \n", + "4 59.4011 77.6604 87.983920 89.428742 \n", + ".. ... ... ... ... \n", + "479 6237.8301 6265.6915 6266.513190 6293.131314 \n", + "480 6266.2179 6268.1972 6294.901438 6295.369935 \n", + "481 6268.7188 6311.9109 6297.402369 6339.474865 \n", + "482 6312.4316 6314.3740 6341.115891 6341.979427 \n", + "483 6314.8954 6316.4097 6343.579727 6343.721751 \n", + "\n", + " nose_in_center training_stage block_type \\\n", + "id \n", + "0 1.095400 9 Mixed \n", + "1 1.188173 9 Mixed \n", + "2 1.188173 9 Mixed \n", + "3 1.109749 9 Mixed \n", + "4 1.018144 9 Mixed \n", + ".. ... ... ... \n", + "479 1.184658 9 High \n", + "480 1.135084 9 High \n", + "481 0.848517 9 High \n", + "482 0.915302 9 High \n", + "483 1.087845 9 High \n", + "\n", + " num_trials_in_adaptation_blocks num_trials_in_test_blocks \\\n", + "id \n", + "0 40 40 \n", + "1 40 40 \n", + "2 40 40 \n", + "3 40 40 \n", + "4 40 40 \n", + ".. ... ... \n", + "479 40 40 \n", + "480 40 40 \n", + "481 40 40 \n", + "482 40 40 \n", + "483 40 40 \n", + "\n", + " catch_percentage ... is_opt_out wait_time rewarded_port \\\n", + "id ... \n", + "0 0.25 ... False NaN Right \n", + "1 0.25 ... False NaN Left \n", + "2 0.25 ... False NaN Left \n", + "3 0.25 ... False NaN Left \n", + "4 0.25 ... True 15.5943 Left \n", + ".. ... ... ... ... ... \n", + "479 0.25 ... False NaN Left \n", + "480 0.25 ... False NaN Right \n", + "481 0.25 ... False NaN Right \n", + "482 0.25 ... False NaN Right \n", + "483 0.25 ... False NaN Right \n", + "\n", + " left_poke_times right_poke_times left_opt_out_times \\\n", + "id \n", + "0 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "1 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "2 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "3 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "4 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + ".. ... ... ... \n", + "479 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "480 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "481 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "482 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "483 [nan, nan, nan, nan] [nan, nan, nan, nan] [nan, nan, nan, nan] \n", + "\n", + " right_opt_out_times reaction_time \\\n", + "id \n", + "0 [nan, nan, nan, nan] NaN \n", + "1 [nan, nan, nan, nan] NaN \n", + "2 [nan, nan, nan, nan] NaN \n", + "3 [nan, nan, nan, nan] NaN \n", + "4 [90.4488554055054, 106.04339712480126, 106.043... NaN \n", + ".. ... ... \n", + "479 [nan, nan, nan, nan] NaN \n", + "480 [nan, nan, nan, nan] NaN \n", + "481 [nan, nan, nan, nan] NaN \n", + "482 [nan, nan, nan, nan] NaN \n", + "483 [nan, nan, nan, nan] NaN \n", + "\n", + " short_latency_reaction_time inter_trial_interval \n", + "id \n", + "0 NaN 18.5562 \n", + "1 NaN 2.5297 \n", + "2 NaN 1.5206 \n", + "3 NaN 11.3312 \n", + "4 0.8094 1.4448 \n", + ".. ... ... \n", + "479 NaN 26.6177 \n", + "480 NaN 0.4685 \n", + "481 NaN 42.0718 \n", + "482 NaN 0.8635 \n", + "483 NaN 0.1420 \n", + "\n", + "[484 rows x 25 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.intervals[\"processed_trials\"][:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d515db92-9631-4bb5-aeb2-5855a83fedab", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_run_session_to_nwb.ipynb b/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_run_session_to_nwb.ipynb new file mode 100644 index 0000000..706f47b --- /dev/null +++ b/src/constantinople_lab_to_nwb/schierek_embargo_2024/tutorials/ephys_run_session_to_nwb.ipynb @@ -0,0 +1,231 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "352a2fb2-54fe-4418-ae34-eda86223c180", + "metadata": {}, + "source": [ + "# Neuropixels data conversion to NWB\n", + "\n", + "This notebook demonstrates how to convert an example session from the Neuropixels dataset to NWB.\n", + "\n", + "## Neuropixels dataset\n", + "\n", + "This dataset contains in vivo extracellular electrophysiology recordings from rats performing a value-based decision-making task. Neural data were acquired using Neuropixels probes (384 channels, 30 kHz sampling rate) with Neuropix-PXI hardware and OpenEphys, and preprocessed using Kilosort 2.5 with manual curation in Phy. Trials were initiated by a nose-poke in a lit center port and required maintaining a center fixation for 0.8 to 1.2 seconds, during which a tone indicated the possible reward size. A subsequent side LED indicated the potential reward location, followed by a delay period drawn from an exponential distribution (mean = 2.5 s). Rats could opt out at any time by poking the unlit port, restarting the trial. Catch trials, where the delay period only ended if the rat opted out, constituted 15-25% of the trials. Rats received penalties for premature fixation breaks. Additionally, the tasks introduced semi-observable hidden states by varying reward statistics across uncued blocks (high, low, and mixed), structured hierarchically, with blocks transitioning after 40 successfully completed trials.\n", + "This notebook demonstrates how to convert an example session to NWB.\n", + "\n", + "This dataset have the following data streams:\n", + "- Behavior: Bpod output (.mat)\n", + "- Recording AP, LFP: OpenEphys (binary format)\n", + "- Units: Phy output\n", + "\n", + "## Notes on the conversion\n", + "\n", + "The conversion notes is located in `src/constantinople_lab_to_nwb/schierek_embargo_2024/schierek_embargo_2024_notes.md`. This file contains information about the expected file structure and the conversion process.\n", + "\n", + "## Running the conversion\n", + "\n", + "To run a specific conversion, you might need to install first some conversion specific dependencies that are located in each conversion directory:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6408c740-2030-4f51-a44b-5e6b6dece298", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install -r ../schierek_embargo_2024_requirements.txt" + ] + }, + { + "cell_type": "markdown", + "id": "b221cfff-c7e5-44e7-bd3a-024bf2f26f67", + "metadata": {}, + "source": [ + "## Convert a single session to NWB\n", + "\n", + "The `schierek_embargo_2024_convert_session.py` script defines the `session_to_nwb` function that converts a session of Neuropixels data to NWB." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "695d7f2c-5b40-4e0d-b4b7-38546a4dce52", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Source data is valid!\n", + "Metadata is valid!\n", + "conversion_options is valid!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/weian/catalystneuro/constantinople-lab-to-nwb/src/constantinople_lab_to_nwb/general_interfaces/bpodbehaviorinterface.py:496: UserWarning: Task argument 'HiITI' not in metadata. Skipping.\n", + " warn(f\"Task argument '{task_argument_name}' not in metadata. Skipping.\")\n", + "/Users/weian/anaconda3/envs/constantinople_lab_to_nwb_env/lib/python3.12/site-packages/hdmf/container.py:536: UserWarning: The linked table for DynamicTableRegion 'event_type' does not share an ancestor with the DynamicTableRegion.\n", + " child._validate_on_set_parent()\n", + "/Users/weian/anaconda3/envs/constantinople_lab_to_nwb_env/lib/python3.12/site-packages/hdmf/container.py:536: UserWarning: The linked table for DynamicTableRegion 'state_type' does not share an ancestor with the DynamicTableRegion.\n", + " child._validate_on_set_parent()\n", + "/Users/weian/anaconda3/envs/constantinople_lab_to_nwb_env/lib/python3.12/site-packages/hdmf/container.py:536: UserWarning: The linked table for DynamicTableRegion 'action_type' does not share an ancestor with the DynamicTableRegion.\n", + " child._validate_on_set_parent()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NWB file saved at /Volumes/T9/Constantinople/nwbfiles/sub-J076_ephys.nwb!\n" + ] + } + ], + "source": [ + "from constantinople_lab_to_nwb.schierek_embargo_2024.schierek_embargo_2024_convert_session import session_to_nwb\n", + "\n", + "# Parameters for conversion\n", + "\n", + "# The path to the NWB file to write.\n", + "nwbfile_path = \"/Volumes/T9/Constantinople/nwbfiles/sub-J076_ephys.nwb\"\n", + "# The OpenEphys recording folder path (make sure to include the 'Record Node #' in the folder path)\n", + "folder_path = \"/Volumes/T9/Constantinople/Ephys Data/J076_2023-12-12_14-52-04/Record Node 117\"\n", + "# The name of the *raw* recording stream (e.g. )\n", + "raw_stream_name = \"Neuropix-PXI-119.ProbeA-AP\"\n", + "# The name of the *LFP* recording stream (e.g. )\n", + "lfp_stream_name = \"Neuropix-PXI-119.ProbeA-LFP\"\n", + "# The path to the processed spike sorting file (.mat). This file contains the \"SU\" named struct that contains the processed spike data.\n", + "# This file also contains the \"S\" named struct containing the processed behavior data.\n", + "spike_sorting_mat_file_path = \"/Volumes/T9/Constantinople/Ephys Data/J076_2023-12-12.mat\"\n", + "# The path to the raw Bpod data\n", + "bpod_file_path = \"/Volumes/T9/Constantinople/raw_Bpod/J076/DataFiles/J076_RWTautowait2_20231212_145250.mat\"\n", + "\n", + "# Task specific parameters\n", + "\n", + "# The column name mapping is used to rename the columns in the processed data to more descriptive column names.\n", + "# New (unseen) task parameters should be added here.\n", + "column_name_mapping = dict(\n", + " NoseInCenter=\"nose_in_center\",\n", + " TrainingStage=\"training_stage\",\n", + " Block=\"block_type\",\n", + " BlockLengthAd=\"num_trials_in_adaptation_blocks\",\n", + " BlockLengthTest=\"num_trials_in_test_blocks\",\n", + " ProbCatch=\"catch_percentage\",\n", + " RewardDelay=\"reward_delay\",\n", + " RewardAmount=\"reward_volume_ul\",\n", + " WaitForPoke=\"wait_for_center_poke\",\n", + " hits=\"is_rewarded\",\n", + " vios=\"is_violation\",\n", + " optout=\"is_opt_out\",\n", + " wait_time=\"wait_time\",\n", + " wait_thresh=\"wait_time_threshold\",\n", + " wait_for_cpoke=\"wait_for_center_poke\",\n", + " zwait_for_cpoke=\"z_scored_wait_for_center_poke\",\n", + " RewardedSide=\"rewarded_port\",\n", + " Cled=\"center_poke_times\",\n", + " Lled=\"left_poke_times\",\n", + " Rled=\"right_poke_times\",\n", + " l_opt=\"left_opt_out_times\",\n", + " r_opt=\"right_opt_out_times\",\n", + " ReactionTime=\"reaction_time\",\n", + " slrt=\"short_latency_reaction_time\",\n", + " iti=\"inter_trial_interval\",\n", + ")\n", + "# The column descriptions are used to add descriptions to the columns in the processed data.\n", + "# New (unseen) task parameter descriptions should be added here.\n", + "column_descriptions = dict(\n", + " NoseInCenter=\"The time in seconds when the animal is required to maintain center port to initiate the trial (uniformly drawn from 0.8 - 1.2 seconds).\",\n", + " TrainingStage=\"The stage of the training.\",\n", + " Block=\"The block type (High, Low or Test). High and Low blocks are high reward (20, 40, or 80μL) or low reward (5, 10, or 20μL) blocks. Test blocks are mixed blocks.\",\n", + " BlockLengthAd=\"The number of trials in each high reward (20, 40, or 80μL) or low reward (5, 10, or 20μL) blocks.\",\n", + " BlockLengthTest=\"The number of trials in each mixed blocks.\",\n", + " ProbCatch=\"The percentage of catch trials.\",\n", + " RewardDelay=\"The delay in seconds to receive reward, drawn from exponential distribution with mean = 2.5 seconds.\",\n", + " RewardAmount=\"The volume of reward in microliters.\",\n", + " hits=\"Whether the subject received reward for each trial.\",\n", + " vios=\"Whether the subject violated the trial by not maintaining center poke for the time required by 'nose_in_center'.\",\n", + " optout=\"Whether the subject opted out for each trial.\",\n", + " WaitForPoke=\"The time (s) between side port poke and center poke.\",\n", + " wait_time=\"The wait time for the subject for for each trial in seconds, after removing outliers.\"\n", + " \" For hit trials (when reward was delivered) the wait time is equal to the reward delay.\"\n", + " \" For opt-out trials, the wait time is equal to the time waited from trial start to opting out.\",\n", + " wait_for_cpoke=\"The time between side port poke and center poke in seconds, includes the time when the subject is consuming the reward.\",\n", + " zwait_for_cpoke=\"The z-scored wait_for_cpoke using all trials.\",\n", + " RewardedSide=\"The rewarded port (Left or Right) for each trial.\",\n", + " Cled=\"The time of center port LED on/off for each trial (2 x ntrials).\",\n", + " Lled=\"The time of left port LED on/off for each trial (2 x ntrials).\",\n", + " Rled=\"The time of right port LED on/off for each trial (2 x ntrials).\",\n", + " l_opt=\"The time of left port entered/exited for each trial (2 x ntrials).\",\n", + " r_opt=\"The time of right port entered/exited for each trial (2 x ntrials).\",\n", + " ReactionTime=\"The reaction time in seconds.\",\n", + " slrt=\"The short-latency reaction time in seconds.\",\n", + " iti=\"The time to initiate trial in seconds (the time between the end of the consummatory period and the time to initiate the next trial).\",\n", + " wait_thresh=\"The threshold in seconds to remove wait-times (mean + 1*std of all cumulative wait-times).\",\n", + ")\n", + "\n", + "# Optional parameters\n", + "\n", + "# Whether to run a stub test conversion. The stubbed file will only contain a small portion of data.\n", + "# When running the full conversion stub_test should be disabled.\n", + "stub_test = True\n", + "# Whether to overwrite an existing NWB file.\n", + "overwrite = True\n", + "\n", + "# Run the `session_to_nwb` function with the parameters to convert to NWB\n", + "session_to_nwb(\n", + " nwbfile_path=nwbfile_path,\n", + " openephys_recording_folder_path=folder_path,\n", + " ap_stream_name=raw_stream_name,\n", + " lfp_stream_name=lfp_stream_name,\n", + " processed_spike_sorting_file_path=spike_sorting_mat_file_path,\n", + " raw_behavior_file_path=bpod_file_path,\n", + " column_name_mapping=column_name_mapping,\n", + " column_descriptions=column_descriptions,\n", + " stub_test=stub_test,\n", + " overwrite=overwrite,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9e70b3e5-de74-4f15-bec0-688151d80ce4", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37140fad-10d0-436d-a4a8-452083d33d10", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}