From 8331874b6df8a3decab10e693a37d8454e981e65 Mon Sep 17 00:00:00 2001 From: weiglszonja Date: Wed, 28 Aug 2024 13:39:48 +0200 Subject: [PATCH 01/18] add example notebook --- .../mah_2024/mah_2024_notes.md | 2 +- .../{mah_2025_uml.png => mah_2024_uml.png} | Bin .../tutorials/mah_2024_example_notebook.ipynb | 2603 +++++++++++++++++ 3 files changed, 2604 insertions(+), 1 deletion(-) rename src/constantinople_lab_to_nwb/mah_2024/{mah_2025_uml.png => mah_2024_uml.png} (100%) create mode 100644 src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb diff --git a/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md index 81d3f7a..d2ff9c7 100644 --- a/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md +++ b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md @@ -165,4 +165,4 @@ Example task arguments: The following UML diagram shows the mapping of the raw Bpod output to NWB. -![nwb mapping](mah_2025_uml.png) \ No newline at end of file +![nwb mapping](mah_2024_uml.png) \ No newline at end of file diff --git a/src/constantinople_lab_to_nwb/mah_2024/mah_2025_uml.png b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_uml.png similarity index 100% rename from src/constantinople_lab_to_nwb/mah_2024/mah_2025_uml.png rename to src/constantinople_lab_to_nwb/mah_2024/mah_2024_uml.png diff --git a/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb new file mode 100644 index 0000000..937b4c2 --- /dev/null +++ b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb @@ -0,0 +1,2603 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7a36ffb3-ce49-49af-853c-61d2fd3d364c", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "source": [ + "# Example notebook\n", + "\n", + "This tutorial demonstrates how to access an NWB file from the [Mah et al. 2023]((https://doi.org/10.1038/s41467-023-43250-x)) dataset using `pynwb`.\n", + "\n", + "The dataset from [“Distinct value computations support rapid sequential decisions”](https://doi.org/10.1038/s41467-023-43250-x) includes behavioral data from rats performing various decision-making tasks, collected using a Bpod system (Bpod State Machine r2, Sanworks).\n", + "\n", + "The behavioral task and data is stored using the [ndx-structured-behavior](https://github.com/rly/ndx-structured-behavior) extension for NWB.\n", + "\n", + "## Overview of NWB\n", + "\n", + "This schematic shows an overview of the data types added to NWB. \n", + "\n", + "![NWB mapping](../mah_2024_uml.png)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7a7155cb-4876-4ff4-9e87-18be6ee3707c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "173c17e4-7ee4-4e58-884e-2353a4ee46d5", + "metadata": {}, + "source": [ + "## Reading an NWB file\n", + "\n", + "This section demonstrates how to access an NWB file using `pynwb.NWBHDF5IO`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "52d493c5-1c7a-487f-971c-4e3ef6442abe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: We developed a temporal wagering task for rats, in which they were offered one of several water rewards on each trial, the volume of which (5, 10, 20, 40, 80μL) was indicated by a tone. The reward was assigned randomly to one of two ports, indicated by an LED. The rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate the trial by poking in the other port (opt-out). Wait times were defined as how long rats waited before opting out. Trial initiation times were defined as the time from opting out or consuming reward to initiating a new trial. Reward delays were drawn from an exponential distribution, and on 15–25 percent of trials, rewards were withheld to force rats to opt-out, providing a continuous behavioral readout of subjective value. We used a high-throughput facility to train 291 rats using computerized, semi-automated procedures. The task contained latent structure; rats experienced blocks of 40 completed trials (hidden states) in which they were presented with low (5, 10, or 20μL) or high (20, 40, or 80μL) rewards. These were interleaved with “mixed\" blocks which offered all rewards. 20μL was present in all blocks, so comparing behavior on trials offering this reward revealed contextual effects (i.e., effects of hidden states). The hidden states differed in their average reward and therefore in their opportunity costs, or what the rat might miss out on by continuing to wait.
identifier: 85da9943-6b94-4995-b357-1dfa562fed25
session_start_time2019-09-09 15:03:58-04:00
timestamps_reference_time2019-09-09 15:03:58-04:00
file_create_date
02024-08-26 16:38:50.004510+02:00
experimenter('Mah, Andrew',)
related_publications('https://doi.org/10.1038/s41467-023-43250-x', 'https://doi.org/10.5281/zenodo.10031483')
acquisition
task_recording
events
description: Contains the onset times of events in the task.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampevent_typevalue
id
018321.21483In
118321.27333In
218388.10323In
318392.69483In

... and 9941 more rows.

states
description: Contains the start and end times of each state in the task.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestate_type
id
017950.090718390.37210
118390.372118391.24131
218391.241318391.24332
318391.243318395.37893

... and 1786 more rows.

actions
description: Contains the onset times of the task output actions (e.g. LED turned on/off).
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampaction_typevalue
id
017950.09080On
117950.09090On
218391.24340On
318391.24350On

... and 2476 more rows.

epoch_tagsset()
devices
bpod
description: State Machine Version: Bpod 2.0
manufacturer: Sanworks
intervals
trials
description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", + "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", + "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", + "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", + "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", + "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", + "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", + "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", + "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", + "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", + "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", + "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", + "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", + "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", + "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", + "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", + "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", + "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", + "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", + ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", + "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", + "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", + "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", + "broke fixation on a subset of trials, in practice, block durations were variable.\n", + "
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.369254120

... and 362 more rows.

subject
age: P6M/P24M
age__reference: birth
sex: U
species: Rattus norvegicus
subject_id: C005
lab_meta_data
task
event_types
description: Contains the name of the events in the task.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_name
id
0state_timer
1left_port_poke
2center_port_poke
3right_port_poke
state_types
description: Contains the name of the states in the task.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
state_name
id
0wait_for_poke
1nose_in_center
2go_cue
3wait_for_side_poke

... and 4 more rows.

action_types
description: Contains the name of the task output actions.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
action_name
id
0sound_output
task_arguments
description: Task arguments for the task.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
argument_nameargument_descriptionexpressionexpression_typeoutput_type
id
0reward_volume_ulThe volume of reward in microliters.20integernumeric
1nose_in_centerThe time in seconds when the animal is required to maintain center port to initiate the trial (uniformly drawn from 0.8 - 1.2 seconds).0.8692142692974026doublenumeric
2time_increment_for_nose_in_centerThe time increment for nose in center in seconds.0doublenumeric
3target_duration_for_nose_in_centerThe goal for how long the animal must poke center in seconds.1doublenumeric

... and 24 more rows.

trials
description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", + "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", + "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", + "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", + "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", + "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", + "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", + "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", + "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", + "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", + "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", + "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", + "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", + "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", + "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", + "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", + "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", + "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", + "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", + ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", + "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", + "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", + "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", + "broke fixation on a subset of trials, in practice, block durations were variable.\n", + "
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.369254120

... and 362 more rows.

experiment_description: The value of the environment determines animals’ motivational states and sets expectations for error-based learning.\n", + "How are values computed? Reinforcement learning systems can store or cache values of states or actions that are \n", + "learned from experience, or they can compute values using a model of the environment to simulate possible futures.\n", + "These value computations have distinct trade-offs, and a central question is how neural systems decide which \n", + "computations to use or whether/how to combine them. Here we show that rats use distinct value computations for \n", + "sequential decisions within single trials. We used high-throughput training to collect statistically powerful \n", + "datasets from 291 rats performing a temporal wagering task with hidden reward states. Rats adjusted how quickly they\n", + "initiated trials and how long they waited for rewards across states, balancing effort and time costs against \n", + "expected rewards. Statistical modeling revealed that animals computed the value of the environment differently when\n", + "initiating trials versus when deciding how long to wait for rewards, even though these decisions were only seconds\n", + "apart. Moreover, value estimates interacted via a dynamic learning rate. Our results reveal how distinct value \n", + "computations interact on rapid timescales, and demonstrate the power of using high-throughput training to \n", + "understand rich, cognitive behaviors.\n", + "
session_id: RWTautowait-20190909-145629
lab: Constantinople
institution: NYU Center for Neural Science
source_script: Created using NeuroConv v0.5.1
source_script_file_name: /Users/weian/catalystneuro/neuroconv/src/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x5092437648\n", + "Fields:\n", + " acquisition: {\n", + " task_recording \n", + " }\n", + " devices: {\n", + " bpod \n", + " }\n", + " experiment_description: The value of the environment determines animals’ motivational states and sets expectations for error-based learning.\n", + "How are values computed? Reinforcement learning systems can store or cache values of states or actions that are \n", + "learned from experience, or they can compute values using a model of the environment to simulate possible futures.\n", + "These value computations have distinct trade-offs, and a central question is how neural systems decide which \n", + "computations to use or whether/how to combine them. Here we show that rats use distinct value computations for \n", + "sequential decisions within single trials. We used high-throughput training to collect statistically powerful \n", + "datasets from 291 rats performing a temporal wagering task with hidden reward states. Rats adjusted how quickly they\n", + "initiated trials and how long they waited for rewards across states, balancing effort and time costs against \n", + "expected rewards. Statistical modeling revealed that animals computed the value of the environment differently when\n", + "initiating trials versus when deciding how long to wait for rewards, even though these decisions were only seconds\n", + "apart. Moreover, value estimates interacted via a dynamic learning rate. Our results reveal how distinct value \n", + "computations interact on rapid timescales, and demonstrate the power of using high-throughput training to \n", + "understand rich, cognitive behaviors.\n", + "\n", + " experimenter: ['Mah, Andrew']\n", + " file_create_date: [datetime.datetime(2024, 8, 26, 16, 38, 50, 4510, tzinfo=tzoffset(None, 7200))]\n", + " identifier: 85da9943-6b94-4995-b357-1dfa562fed25\n", + " institution: NYU Center for Neural Science\n", + " intervals: {\n", + " trials \n", + " }\n", + " lab: Constantinople\n", + " lab_meta_data: {\n", + " task \n", + " }\n", + " related_publications: ['https://doi.org/10.1038/s41467-023-43250-x'\n", + " 'https://doi.org/10.5281/zenodo.10031483']\n", + " session_description: We developed a temporal wagering task for rats, in which they were offered one of several water rewards on each trial, the volume of which (5, 10, 20, 40, 80μL) was indicated by a tone. The reward was assigned randomly to one of two ports, indicated by an LED. The rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate the trial by poking in the other port (opt-out). Wait times were defined as how long rats waited before opting out. Trial initiation times were defined as the time from opting out or consuming reward to initiating a new trial. Reward delays were drawn from an exponential distribution, and on 15–25 percent of trials, rewards were withheld to force rats to opt-out, providing a continuous behavioral readout of subjective value. We used a high-throughput facility to train 291 rats using computerized, semi-automated procedures. The task contained latent structure; rats experienced blocks of 40 completed trials (hidden states) in which they were presented with low (5, 10, or 20μL) or high (20, 40, or 80μL) rewards. These were interleaved with “mixed\" blocks which offered all rewards. 20μL was present in all blocks, so comparing behavior on trials offering this reward revealed contextual effects (i.e., effects of hidden states). The hidden states differed in their average reward and therefore in their opportunity costs, or what the rat might miss out on by continuing to wait.\n", + " session_id: RWTautowait-20190909-145629\n", + " session_start_time: 2019-09-09 15:03:58-04:00\n", + " source_script: Created using NeuroConv v0.5.1\n", + " source_script_file_name: /Users/weian/catalystneuro/neuroconv/src/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x5090802448\n", + "Fields:\n", + " age: P6M/P24M\n", + " age__reference: birth\n", + " sex: U\n", + " species: Rattus norvegicus\n", + " subject_id: C005\n", + "\n", + " timestamps_reference_time: 2019-09-09 15:03:58-04:00\n", + " trials: trials " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pynwb import NWBHDF5IO\n", + "import ndx_structured_behavior\n", + "\n", + "nwbfile_path = \"/Volumes/T9/Constantinople/nwbfiles/C005_RWTautowait_20190909_1456292.nwb\"\n", + "\n", + "io = NWBHDF5IO(nwbfile_path, \"r\")\n", + "nwbfile = io.read()\n", + "nwbfile" + ] + }, + { + "cell_type": "markdown", + "id": "750d82d9-13df-404e-8512-960613255b88", + "metadata": { + "ExecuteTime": { + "end_time": "2024-08-28T08:55:08.865637Z", + "start_time": "2024-08-28T08:55:07.711552Z" + } + }, + "source": [ + "## Accessing the task metadata\n", + "\n", + "The task-related general metadata is stored in a `Task` object which can be accessed as `nwbfile.lab_meta_data[\"task\"]`.\n", + "\n", + "The `EventTypesTable` is a column-based table to store the type of events that occur during the task (e.g. port poke from the animal), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].event_types`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "662468a8-23c6-4d90-8070-0575579b7e44", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_name
id
0state_timer
1left_port_poke
2center_port_poke
3right_port_poke
\n", + "
" + ], + "text/plain": [ + " event_name\n", + "id \n", + "0 state_timer\n", + "1 left_port_poke\n", + "2 center_port_poke\n", + "3 right_port_poke" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].event_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "d8035e39-8405-42c2-92cf-758b51845c77", + "metadata": {}, + "source": [ + "The `ActionTypesTable` is a column-based table to store the type of actions that occur during the task (e.g. sound output from the acquisition system), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].action_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2c1a5c0e-e4b6-4c16-af8a-fdaef0ffa353", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
action_name
id
0sound_output
\n", + "
" + ], + "text/plain": [ + " action_name\n", + "id \n", + "0 sound_output" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].action_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "99b05bc7-d23e-4a19-8e5f-2a228702dc59", + "metadata": {}, + "source": [ + "The `StateTypesTable` is a column-based table to store the type of states that occur during the task (e.g. while the animal is waiting for reward), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].state_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "3ecfb7c9-e58f-4856-8916-e73d16bb326e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
state_name
id
0wait_for_poke
1nose_in_center
2go_cue
3wait_for_side_poke
4announce_reward
5reward
6punish_violation
7opt_out
\n", + "
" + ], + "text/plain": [ + " state_name\n", + "id \n", + "0 wait_for_poke\n", + "1 nose_in_center\n", + "2 go_cue\n", + "3 wait_for_side_poke\n", + "4 announce_reward\n", + "5 reward\n", + "6 punish_violation\n", + "7 opt_out" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].state_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "12176f7b-b6f4-4f16-b8d0-37bde6132ec5", + "metadata": {}, + "source": [ + "The arguments for the task is stored in a `TaskArgumentsTable` which can be accessed as `nwbfile.lab_meta_data[\"task\"].task_arguments`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "68998e44-3eb6-484e-8548-04de7a3816bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
argument_nameargument_descriptionexpressionexpression_typeoutput_type
id
0reward_volume_ulThe volume of reward in microliters.20integernumeric
1nose_in_centerThe time in seconds when the animal is require...0.8692142692974026doublenumeric
2time_increment_for_nose_in_centerThe time increment for nose in center in seconds.0doublenumeric
3target_duration_for_nose_in_centerThe goal for how long the animal must poke cen...1doublenumeric
4training_stageThe stage of the training.9integernumeric
5delay_to_rewardThe delay in seconds from the end of NoseInCen...4.135626626614768doublenumeric
6target_delay_to_rewardThe target delay in seconds from the end of No...1.5doublenumeric
7time_increment_for_delay_to_rewardThe time increment during monotonic increase o...0.025doublenumeric
8violation_time_outThe time-out if nose is center is not satisfie...2doublenumeric
9num_trials_in_stage_2Determines how many trials occur in stage 2 be...1integernumeric
10num_trials_in_stage_4Determines how many trials occur in stage 4 be...250integernumeric
11num_trials_in_stage_5Determines how many trials occur in stage 5 be...250integernumeric
12num_trials_in_stage_6Determines how many trials occur in stage 6 be...250integernumeric
13num_trials_in_stage_3Determines how many trials occur in stage 3 be...400integernumeric
14num_trials_in_stage_8Determines how many trials occur in stage 8 be...250integernumeric
15block_typeThe block type (High, Low or Test).Highstringstring
16num_trials_in_test_blocksThe number of trials in test blocks.80integernumeric
17num_trials_in_adaptation_blocksThe number of trials in adaptation blocks.80integernumeric
18punish_sound_enabledWhether to play a white noise pulse on error.Truebooleanboolean
19catch_percentageThe percentage of catch trials.0.15doublenumeric
20is_catchWhether the trial is a catch trial.Falsebooleanboolean
21current_trialThe current trial number.0integernumeric
22cumulative_reward_volume_ulThe cumulative volume received during session ...0doublenumeric
23is_warm_upWhether the trial is warm-up.Falsebooleanboolean
24trials_in_stageThe cumulative number of trials in the stages.23023integernumeric
25auto_change_catch_probabilityWhether to change the probability automaticall...Falsebooleanboolean
26previous_was_violationWhether the previous trial was a violation.Falsebooleanboolean
27changedWhether a block transition occurred for the tr...Falsebooleanboolean
\n", + "
" + ], + "text/plain": [ + " argument_name \\\n", + "id \n", + "0 reward_volume_ul \n", + "1 nose_in_center \n", + "2 time_increment_for_nose_in_center \n", + "3 target_duration_for_nose_in_center \n", + "4 training_stage \n", + "5 delay_to_reward \n", + "6 target_delay_to_reward \n", + "7 time_increment_for_delay_to_reward \n", + "8 violation_time_out \n", + "9 num_trials_in_stage_2 \n", + "10 num_trials_in_stage_4 \n", + "11 num_trials_in_stage_5 \n", + "12 num_trials_in_stage_6 \n", + "13 num_trials_in_stage_3 \n", + "14 num_trials_in_stage_8 \n", + "15 block_type \n", + "16 num_trials_in_test_blocks \n", + "17 num_trials_in_adaptation_blocks \n", + "18 punish_sound_enabled \n", + "19 catch_percentage \n", + "20 is_catch \n", + "21 current_trial \n", + "22 cumulative_reward_volume_ul \n", + "23 is_warm_up \n", + "24 trials_in_stage \n", + "25 auto_change_catch_probability \n", + "26 previous_was_violation \n", + "27 changed \n", + "\n", + " argument_description expression \\\n", + "id \n", + "0 The volume of reward in microliters. 20 \n", + "1 The time in seconds when the animal is require... 0.8692142692974026 \n", + "2 The time increment for nose in center in seconds. 0 \n", + "3 The goal for how long the animal must poke cen... 1 \n", + "4 The stage of the training. 9 \n", + "5 The delay in seconds from the end of NoseInCen... 4.135626626614768 \n", + "6 The target delay in seconds from the end of No... 1.5 \n", + "7 The time increment during monotonic increase o... 0.025 \n", + "8 The time-out if nose is center is not satisfie... 2 \n", + "9 Determines how many trials occur in stage 2 be... 1 \n", + "10 Determines how many trials occur in stage 4 be... 250 \n", + "11 Determines how many trials occur in stage 5 be... 250 \n", + "12 Determines how many trials occur in stage 6 be... 250 \n", + "13 Determines how many trials occur in stage 3 be... 400 \n", + "14 Determines how many trials occur in stage 8 be... 250 \n", + "15 The block type (High, Low or Test). High \n", + "16 The number of trials in test blocks. 80 \n", + "17 The number of trials in adaptation blocks. 80 \n", + "18 Whether to play a white noise pulse on error. True \n", + "19 The percentage of catch trials. 0.15 \n", + "20 Whether the trial is a catch trial. False \n", + "21 The current trial number. 0 \n", + "22 The cumulative volume received during session ... 0 \n", + "23 Whether the trial is warm-up. False \n", + "24 The cumulative number of trials in the stages. 23023 \n", + "25 Whether to change the probability automaticall... False \n", + "26 Whether the previous trial was a violation. False \n", + "27 Whether a block transition occurred for the tr... False \n", + "\n", + " expression_type output_type \n", + "id \n", + "0 integer numeric \n", + "1 double numeric \n", + "2 double numeric \n", + "3 double numeric \n", + "4 integer numeric \n", + "5 double numeric \n", + "6 double numeric \n", + "7 double numeric \n", + "8 double numeric \n", + "9 integer numeric \n", + "10 integer numeric \n", + "11 integer numeric \n", + "12 integer numeric \n", + "13 integer numeric \n", + "14 integer numeric \n", + "15 string string \n", + "16 integer numeric \n", + "17 integer numeric \n", + "18 boolean boolean \n", + "19 double numeric \n", + "20 boolean boolean \n", + "21 integer numeric \n", + "22 double numeric \n", + "23 boolean boolean \n", + "24 integer numeric \n", + "25 boolean boolean \n", + "26 boolean boolean \n", + "27 boolean boolean " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].task_arguments[:]" + ] + }, + { + "cell_type": "markdown", + "id": "a7511f54-0f3e-4bc1-971c-1100cb1902d7", + "metadata": {}, + "source": [ + "## Accessing the behavioral data\n", + "\n", + "The `TaskRecording` object stores the data for events, states, and actions that occured during the task. The `TaskRecording` is added as acquisition which can be accessed as `nwbfile.acquisition[\"task_recording\"]`.\n", + "\n", + "The `EventsTable` is a column-based table to store the information about the events (e.g. poke times), one event per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].events`." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "21dab6d0-0392-48f3-9c1b-65055bab99bb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampevent_typevalueevent_name
018321.21483Inright_port_poke
118321.27333Inright_port_poke
218388.10323Inright_port_poke
318392.69483Inright_port_poke
418392.82863Inright_port_poke
...............
994024398.92523Outright_port_poke
994124401.82463Outright_port_poke
994224406.32783Outright_port_poke
994324406.35433Outright_port_poke
994424404.89660Offstate_timer
\n", + "

9945 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " timestamp event_type value event_name\n", + "0 18321.2148 3 In right_port_poke\n", + "1 18321.2733 3 In right_port_poke\n", + "2 18388.1032 3 In right_port_poke\n", + "3 18392.6948 3 In right_port_poke\n", + "4 18392.8286 3 In right_port_poke\n", + "... ... ... ... ...\n", + "9940 24398.9252 3 Out right_port_poke\n", + "9941 24401.8246 3 Out right_port_poke\n", + "9942 24406.3278 3 Out right_port_poke\n", + "9943 24406.3543 3 Out right_port_poke\n", + "9944 24404.8966 0 Off state_timer\n", + "\n", + "[9945 rows x 4 columns]" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].events[:],\n", + " nwbfile.lab_meta_data[\"task\"].event_types[:],\n", + " left_on=\"event_type\",\n", + " right_on=\"id\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a7b526b5-7aa2-47df-a733-fa458d9d28fc", + "metadata": {}, + "source": [ + "The `ActionsTable` is a column-based table to store the information about the actions (e.g. sound onset times), one action per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].actions`." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "18183143-c735-427f-a54f-43d03e81f8c3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestampaction_typevalueaction_name
017950.09080Onsound_output
117950.09090Onsound_output
218391.24340Onsound_output
318391.24350Onsound_output
418390.37220Onsound_output
\n", + "
" + ], + "text/plain": [ + " timestamp action_type value action_name\n", + "0 17950.0908 0 On sound_output\n", + "1 17950.0909 0 On sound_output\n", + "2 18391.2434 0 On sound_output\n", + "3 18391.2435 0 On sound_output\n", + "4 18390.3722 0 On sound_output" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].actions[:],\n", + " nwbfile.lab_meta_data[\"task\"].action_types[:],\n", + " left_on=\"action_type\",\n", + " right_on=\"id\",\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "id": "4d47f67a-a13c-4f46-a703-6ab6753fe62b", + "metadata": {}, + "source": [ + "The `StatesTable` is a column-based table to store the information about the states (e.g. the duration while nose is in center port). This table can be accessed as `nwbfile.acquisition[\"task_recording\"].states`." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "a4fd969f-8b11-4bbd-986a-b275413c8079", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestate_typestate_name
017950.090718390.37210wait_for_poke
118390.372118391.24131nose_in_center
218391.241318391.24332go_cue
318391.243318395.37893wait_for_side_poke
418395.378918395.47434announce_reward
\n", + "
" + ], + "text/plain": [ + " start_time stop_time state_type state_name\n", + "0 17950.0907 18390.3721 0 wait_for_poke\n", + "1 18390.3721 18391.2413 1 nose_in_center\n", + "2 18391.2413 18391.2433 2 go_cue\n", + "3 18391.2433 18395.3789 3 wait_for_side_poke\n", + "4 18395.3789 18395.4743 4 announce_reward" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].states[:],\n", + " nwbfile.lab_meta_data[\"task\"].state_types[:],\n", + " left_on=\"state_type\",\n", + " right_on=\"id\",\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "id": "d983e620-b3d4-424b-bb53-cd64c5ec6cd8", + "metadata": {}, + "source": [ + "### Plot the events, actions, and states\n", + "\n", + "The ``plot_events``, ``plot_actions``, and ``plot_states`` functions can consume both the raw table as well as a subset of the table as a pandas DataFrame created through slicing, e.g., via ``events[:100]`` will plot only the first 100 rows from the events table.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "9e145e47-ebd3-4eb3-93c5-6e9d036c111b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAAGiCAYAAAC7/hjYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0tUlEQVR4nOzdeVzU1f7H8dewg+yIkIiS5jVcU0vLXHBfM5fcTdFbblmmWWlqopnack0rzUpTyyXNLXPJLVFzK8tKvWJZgisoKiAg68zvD34zF2RHEJf38/GYxx2+37N8zvkOkw8+95xjMJlMJkRERERERERERERERETuA1alHYCIiIiIiIiIiIiIiIjI7aLkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSYyIiIiIiIiIiIiIiInLfUHJMRERERERERERERERE7htKjomIiIiIiIiIiIiIiMh9Q8kxERERERERERERERERuW8oOSYiIiIiIiIiIiIiIiL3DSXHRERERERERERERERE5L6h5JiIiIiIiIiIiIiIiIjcN5QcExERERERESkhISEhGAyGAr/uBbNnzyYkJITffvuttEMREREREcmRTWkHICIiIiIiInI/8PHxKe0QbovZs2cTERFBQEAAjzzySGmHIyIiIiKSjZJjIiIiIiIiIrdBZGRkaYcgIiIiIiJoW0URERERERERERERERG5jyg5JiIiIiIiInIHOXLkiOUMsj/++CPPsgMGDMBgMNCyZcsc72/atInu3bvj5+eHvb09Hh4eNG3alE8++YSUlJQc6wQFBWEwGAgJCcFkMvH555/TsGFDXF1dcXFx4YknnmDp0qXZ6pnPV4uIiABg0KBBeZ6pdu3aNd58803q1auHq6srdnZ2+Pr6Urt2bYYNG8bOnTsLMl0iIiIiIoWmbRVFRERERERE7iB169alRo0aHD9+nK+++or33nsvx3IJCQmsXbsWyEiSZXbjxg0GDBjA6tWrLddcXV2JjY1l79697N27ly+//JLNmzfj4eGRY/vp6el07dqVb7/9FhsbG5ycnLh+/ToHDx7k4MGD/PXXX0yZMsVS3tnZGR8fHy5fvozRaMTV1RVHR8cc2z537hxPPvkkZ86cAcDKygo3Nzeio6OJiori6NGjhIWF5Zr0ExERERG5FVo5JiIiIiIiInKHMSe7li9fjtFozLHMunXrSEhIoEyZMnTv3j3LvSFDhrB69WoqV67MsmXLiI2NJTY2lsTERL799lsqV67MwYMHGTx4cK4xzJ07l9DQUBYvXkxcXByxsbGcPXuWp556CoBp06bx119/WcqPHTuWyMhI/P39AZgzZw6RkZFZXmYhISGcOXOGgIAAduzYQUpKClevXiU5OZnw8HA++eQTHn/88aJNnoiIiIhIPpQcExEREREREbkNfH1983yNGjXKUrZfv35YWVlx4cIFduzYkWN7X331FQBdu3bF2dnZcn3v3r0sXbqUcuXKERoaSt++fXF1dQXAwcGBzp07s3v3bsqUKcP69ev57bffcmz/2rVrrFu3joEDB1pWgFWoUIFvvvmG8uXLYzQaWbVqVZHmYv/+/QBMnz6dli1bYm1tDYC1tTWVKlVi2LBhzJw5s0hti4iIiIjkR8kxERERERERkdsgKioqz1dsbKylrJ+fHy1atAD+lwTL7OLFi5YzuZ599tks9xYuXAhkJNjMq7huVqFCBZo3bw7A1q1bcyzz5JNPWspkZm9vT9u2bQHyPRMtN+7u7kDGOEREREREbjedOSYiIiIiIiJyG5hMpkKVHzBgADt27MiyfaLZ8uXLSU9Pp3z58rRq1SpLvX379gEZSbLly5fn2r45GRcREZHj/YYNG+Zat3z58gBcvXq1YIO5SadOnThw4ADjxo0jLCyMbt260ahRI8sKNxERERGRkqSVYyIiIiIiIiJ3oG7duuHs7ExCQgJr167Ncs+8msy8/WJmFy5cACAuLi7PlWpJSUkAJCYm5ti/i4tLrrHZ2GT8f21TU1OLNLZXX32Vnj17kpqayueff0779u1xd3enVq1avPrqq5w8ebJI7YqIiIiIFISSYyIiIiIiIiJ3oDJlytCtWzcAvvzyS8v1o0eP8vvvvwPZt1QESE9PB+CTTz7BZDLl+1q8eHHJD+Ymtra2rFy5kt9++40333yTFi1a4OTkxLFjx3j//fepUaMG//nPf257XCIiIiJyf1ByTEREREREROQOZU5+/fDDD5w/fx7436qxRx55hFq1amWr4+vrC+S+XeKdpE6dOkyZMoWdO3cSExPDjh07aNq0Kenp6bz66quWJKCIiIiISHFSckxERERERETkDtWiRQsqVKiA0Whk+fLllv+FjDPJcvLkk08CsHHjxtsWZ2bmbR4Le8aajY0NLVu2ZNOmTdjb22MymdixY0dJhCgiIiIi9zklx0RERERERETuUFZWVvTr1w/IWDFmXkFmbW1N3759c6wzZMgQAI4dO8Ynn3ySZ/sJCQmkpKQUa8yurq4AxMTE5FomOTk513v29vZYW1sDZDtPTURERESkOOhfmSIiIiIiIiJ3MPPWikePHmX8+PEAtGnTBh8fnxzLN2vWjEGDBgHwwgsvMHr0aP755x/L/eTkZA4ePMhrr71GpUqVuHTpUrHGW7NmTQBWr17NtWvXcixTqVIlxo8fz8GDB7Mkyk6dOkW/fv1ITEzEysqKtm3bFmtsIiIiIiIANqUdgIiIiIiIiMj9wHwWWF7Wrl1Lo0aNslyrUaMG9erV49dff+Xw4cNA7lsqms2fPx9ra2sWLFjA7NmzmT17Ns7Oztja2hIbG4vRaLSUNRgMRRhN7oYMGcLy5cvZv38/3t7elCtXDjs7OwDCw8MBiIqKYubMmcycORMrKyvc3Ny4ceMGSUlJlpj+85//UL169WKNTUREREQElBwTERERERERuS2ioqLyLZPbFocDBgzg119/BTK2LXz66afzbMfOzo7PP/+cwYMH89lnn7F3714uXLhAcnIy5cqV4+GHH6Zp06Y888wz+Pn5FX4weWjatCmbNm1i1qxZHDlyhKioqCzJOIBt27axa9cufvzxR86cOWOZm4ceeogmTZrwwgsvUL9+/WKNS0RERETEzGAq7Am5IiIiIiIiIiIiIiIiIncpnTkmIiIiIiIiIiIiIiIi9w0lx0REREREREREREREROS+oeSYiIiIiIiIiIiIiIiI3DeUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuGzalHYCIyJ3OaDRy4cIFXFxcMBgMpR2OiIiIiIiIiIiIiOTAZDJx/fp1ypcvj5VV7uvDlBwTEcnHhQsX8Pf3L+0wRERERERERERERKQAzp49S4UKFXK9r+SYiEg+XFxcgIwvVFdX11KO5v51JT6JZu/tBmD3q83wcnYo5YhEii4xJY0Gb+8E4KcJLXGy0z/JpHTou/XOpe8JESkO9+r3vL4jRe4c9+r3jMjdSv+NhLi4OPz9/S1/083N/TczIiKFZN5K0dXVVcmxUpRiZYeVvRMALq6uuOof3HIXs0lJs3yeXV1d78t/rMqdQd+tdy59T4hIcbhXv+f1HSly57hXv2dE7lb6b+T/5Hc8Tu4bLoqIiIiIiIiIiIiIiIjcY5QcExERERERERERERERkfuGkmNSYsLDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZs6UdTrEJCgrCYDAQEhJS2qHkKiQkBIPBQFBQULZ77dq1w2Aw8MMPP9z+wERERERERERERETkjqPk2C1Yv349ISEhrF+//q7uoyhCQkIICQm5L5JeBfXRRx/xzz//8Nxzz+Hv75/lXuZEYUFeixcvLp1B3IPMSb2xY8diNBpLNxgRERERERERERERKXX372lsxWD9+vUsWbKEgQMH0qVLl7u2j6KYMmUKkLGqKCAgIMcytra2VKtWzfL+Xnb16lWmTZuGvb0948ePz7Osq6srjo6OeZbJ7/7tVLFiRapVq0bZsmVLO5Qiefzxx2nbti1bt25l6dKlDBgwoLRDEhEREREREREREZFSpOSYlBg/Pz/CwsJKO4zb4rPPPiMmJoZnnnmGChUq5Fl2zpw5BAcH357AisGXX35Z2iHcsmHDhrF161beffddJcdERERERERERERE7nPaVlHkFplMJj777DMA+vfvX8rRSE46dOiAp6cnx48fZ9++faUdjoiIiIiIiIiIiIiUIiXHbrJy5Urat2+Pj48Ptra2uLu7U7VqVTp37szcuXNJSkoiNDQUg8HAkiVLAFiyZEm2M6NCQ0MtbUZGRvLRRx/x9NNPExgYiJubG46Ojjz00EM899xzHD9+PFsche3D7NixYwwZMoSqVavi5OSEs7MztWvXZsKECURHR9/y/AQHB2MwGCw/N2/ePEtMmbdYzHzO1s1nk5nHZ27rjz/+oE+fPpQvXx5HR0cCAwN5//33SUtLs9TZt28fXbp04YEHHsDBwYGaNWsyd+5cTCZTnjEXZU5CQkIwGAwEBQUBsGbNGtq0aUO5cuWwsrKynGMFsGPHDk6fPo27uzsdOnQowCwWzv79+7GxscFgMPDBBx/kWObcuXN4eXlhMBh4/vnns9wLCgrCYDAQEhJCSkoKM2fOpHbt2pQpUwYPDw9at27Nli1bcu0/c/2bBQQEWM5Ii4+P580336RWrVq4uLjk+Nz37dtH//79qVSpEg4ODri5udGgQQPeeecd4uPj85yHLVu20Lp1a9zd3XF2dqZOnTq8++67pKam5lkPwM7Oju7duwNYEpkiIiIiIiIiIiIicn/StoqZDB48mEWLFll+dnZ2JjU1lVOnTnHq1Cm+++47OnbsiJ2dHT4+PsTGxpKUlGT5I39mdnZ2lvfjxo2zJLlsbGxwdXUlMTGRv//+m7///pulS5eybNkyyx/vzfUL0wfAu+++y/jx4zEajQA4OTmRmprK0aNHOXr0KIsWLWLTpk3UrVu3yHPk5uaGj48PUVFRAHh4eGSJw9vbu9BtbtmyhW7dupGUlISbmxvJycmEhYXx6quv8ssvv7BixQoWLFjAsGHDMBqNuLq6kpyczPHjxxk5ciRnz55l5syZObZdHHPyyiuvMGvWLAwGA+7u7lhZZc0pf//99wA0bNiwRM5Wa9SoEZMnT+bNN99k3LhxBAUFZYnXaDTSv39/rl69SmBgIHPmzMmxnZSUFFq1asXevXuxsbHB2dmZmJgYduzYwY4dO5g8eXKOCbCCuHLlCvXr1+fPP//Ezs4OJyenLPeNRiOjR4/mww8/tFxzdnYmISGBn3/+mZ9//plFixaxdetWKlWqlK39kJAQyzl3AO7u7vz3v//l9ddfZ9OmTTz55JP5xti0aVM+//xztm7dWqQxioiIiIiIiIiIiMi9QSvH/t+PP/7IokWLsLKy4p133uHKlStcv36dhIQEoqOj2bp1KwMHDsTOzo5GjRoRGRlJr169AOjVqxeRkZFZXo0aNbK0/dBDD/Hee+9x9OhRbty4wZUrV0hOTubYsWP069eP5ORkBg4cyIULFyx1CtvHwoULef3113FycuLtt9/m4sWLJCQkkJiYyOHDh2nRogUXL16kc+fO+a7QycucOXOIjIy0/Lx27dosMf3888+FbrNv3748/fTTREREEBMTQ2xsLOPHjwfg66+/ZubMmYwYMYIRI0YQGRlJTEwMV69etZzb9d577/Hnn39ma7c45uSXX35h1qxZvP7660RFRXH16lUSEhIYNGiQpcyePXsAaNCgQaHHXlATJkwgKCiIlJQUevfuTUJCguXetGnT2L17N/b29qxYsSJbYsps3rx5/PTTT8yfP5/r169z7do1zpw5wzPPPAPAlClT2LBhQ5HiCwkJIS4ujnXr1hEfH8+1a9c4e/Ys5cqVA2Dy5Ml8+OGHlCtXjrlz51p+v27cuMGuXbuoW7cuJ0+epFu3bpZEptmGDRssibEePXpw5swZrl27RlxcHHPnzuXgwYN88skn+cbYsGFDAKKiou6bs/BEREREREREREREJDslx/7f/v37AWjVqhWvvfYanp6elnteXl60adOGxYsXU758+UK3PXHiRMaOHUvNmjWxsclYrGdlZUWNGjVYunQpHTt2JCEhgS+++KJIsV+/fp2xY8cCsHr1at544w18fX0BsLa2pn79+mzdupX69etz7tw5FixYUKR+Sspjjz3GihUrqFixIgAuLi5Mnz6dJk2aADB+/HgGDhxoSa5Axoq1BQsW8OCDD2I0Glm1alWWNotrTuLj4xkzZgwzZ860rIqzt7e3rG5KSUnhyJEjANSpU6dA4x01ahS+vr55vm5mZWXF0qVL8fLy4s8//2TkyJFAxjaFU6dOBTJWyeUVQ2xsLPPmzWPo0KE4ODgA4O/vz8qVK2natCkAb7zxRoHGcLMbN26wefNmunTpYlk9V6FCBZycnAgPD2fGjBk4Ojqybds2RowYYfn9srW1JSgoiN27d1OhQgV+/fXXbAk6c6K0WbNmfP311/j7+wPg6OjIiBEj+PDDD4mJick3xqpVq+Ls7AzAgQMH8iybnJxMXFxclpeIiIiIiIiIiIiI3BuUHPt/7u7uAFy+fJn09PTb2nfHjh2BjNVrRbFmzRpiYmKoW7cubdu2zbGMjY0Nffr0AbjjtpV7/fXXs5xjZpZ5LOYESWbW1ta0bNkSyDizLLPimhMrKytef/31XGO/dOmS5fNS0C0l4+LiiIqKyvOVEz8/P0sCdfHixXzyySf07duX9PR0OnXqxEsvvZRnv/7+/llWvGUe48SJEwE4fvw4R48eLdA4MmvXrl2uW1MuXryY9PR02rVrl2vyzsXFhS5dugBZn8Uff/zBf//7XyAjyXzzlpYAzz//PH5+fgWK08vLCyDLKs2czJgxAzc3N8vLnJATERERERERERERkbufzhz7fy1btsTBwYEjR47QpEkT/v3vf9OiRQsefPDBYmn/999/59NPP+XHH38kPDyc+Ph4TCZTljLnzp0rUtv79u0D4MSJEzmuOjK7ceMGABEREUXqp6Tkth2hj48PAJ6enlSuXDnPMteuXctyvbjm5KGHHrKsVsvJ5cuXLe8zrzbMy6JFiyxbQhZW586dGTlyJB9//DEjRowA4IEHHshyVl5ugoKCckxCAjRp0gQbGxvS0tI4fPgwtWrVKlRceZ35ZX4W27Zty/NZmLe2zPwsDh8+DGQkMs0rCW9mZWVFUFAQy5YtyzdOT09PIiIisjy3nIwfP54xY8ZYfo6Li1OCTEREREREREREROQeoeTY/6tSpQoLFixg2LBhHDhwwLLtmre3N82bN6dv37507tw51+RCXj7++GNGjRplOUvJYDDg5uaGvb09kJGgiYuLy3KOVGGYV8EkJSWRlJSUb/nExMQi9VNSXFxccrxu3oIyt/uZy6Smpma5XlxzkldizNy+mfl5lrT333+fdevWcf78eQC++OILypYtm2+9vFZXOTg44OXlRVRUFJcuXSp0THnNk/lZJCQkFOgznvlZmGMpW7ZsnvNboUKFAsXp6OgIkO9nwt7e/rY9TxERERERERERERG5vbStYib9+vUjIiKC+fPn06tXL/z9/bl8+TKrVq2iS5cuNGvWrNBnD504cYKXX34Zo9FIjx49+Omnn0hKSuLatWtERkYSGRnJrFmzALKtJCso87Z+vXr1wmQy5fsKDw8vUj93k+KaE2tr6zz7MW/TB9lXr5WUTZs2WRJjALt3774t/eYlr3kyP4vXX3+9QM8iNDS0xOK8evUqkPW5iYiIiIiIiIiIiMj9Rcmxm3h6ejJ06FC+/vprzpw5w6lTpxg3bhwGg4G9e/cSEhJSqPZWr15Neno6gYGBfP311zz22GPY2dllKRMZGXlLMZu3qrvTtkssTbdrTjKfM2ZOvJSks2fP8txzzwFQu3ZtAN59911++OGHfOtmTqjdLDk5mStXrgD5r5YrrFt5FuZYoqOjSUlJybVcXmPLzPyMCno+nIiIiIiIiIiIiIjce5Qcy0eVKlWYMWMGffv2BWD79u2We1ZWGdOX14qvs2fPAlCnTh1L+Zvt2LEj1/oF6cN83tMvv/zCxYsXcy1XnMzbSxZ1tVtJu11z4uHhYUn+/PPPPyXWD2SswOrXrx/Xrl2jevXqHDx4kK5du2I0Gnn22Wctya3c7N69O9fntXfvXtLS0gB49NFHizVu87PYsWNHgba4zMwcS1paGnv37s2xjNFoLNBqs+vXrxMdHQ1AYGBgoeIQERERERERERERkXuHkmP/Lzk5Oc/75rOKMie4XF1dAYiJicm1npubGwBHjx7NMTGxZcuWPP+wX5A+evTogbu7O6mpqYwZMybPhJXRaMyzrYIqSFyl6XbOSdOmTQH46aefitxGQUybNo29e/dib2/P119/jaOjIwsWLKBChQpcuHCBQYMG5Vn/zJkzLFmyJNt1o9HI9OnTAahevTq1atUq1rgHDx6MjY0N0dHRTJ48Oc+yKSkpxMfHW36uXbu2JZH19ttvW87ty+yLL77g3Llz+cZx+PBhjEYjNjY2loSdiIiIiIiIiIiIiNx/lBz7fyNHjqRnz56sWbOGS5cuWa7Hx8czf/58vvzySwA6duxouVezZk0gY9VNWFhYju22a9cOgOPHj/PCCy9YtnVLSEjg008/5Zlnnsnz/KOC9OHu7s7s2bMB+Prrr+nYsSOHDh2yJBKMRiMnTpzgP//5DzVq1GDjxo35zkd+zHEtW7aMxMTEW26vuN3OOQkKCgLg0KFDtxp2rvbt28dbb70FwHvvvWdJYHl6erJ06VKsrKz47rvv+Pjjj3Ntw83NjeHDh/P5559bVnCdPXuWPn36sGvXLiAjAVfcqlSpwqRJk4CMLSAHDBjAsWPHLPfT0tL47bffmDp1Kg899BC//fZblvpvv/02ALt27aJv376WRFhSUhLz589n5MiRuLu75xuH+fnUq1cPZ2fnYhiZiIiIiIiIiIiIiNyNlBz7f6mpqXzzzTc888wz+Pj44OLigoeHBy4uLgwfPpyUlBQaN27MhAkTLHW6d++Ot7c3165dIzAwEG9vbwICAggICODgwYMAtGzZkt69ewPwySef4OXlhYeHB25ubgwbNozAwMA8zzErSB8AAwcO5JNPPsHOzo4tW7bw+OOP4+TkRNmyZXFwcKB69eqMHTuWsLAwy5aIt2LYsGEArFmzBnd3dypUqEBAQACNGze+5baLy+2ak+7du2Nra0tYWBh//fVXvuVHjRqFr69vnq9Ro0ZZysfExNC3b1/S09Pp1KkTL774Ypb2mjVrZvlcvvrqqxw9ejTHfkeMGMGjjz7KkCFDcHV1xdPTk4oVK7Jq1SoAJk6cSNeuXYs6DXmaNGkSkyZNwmAw8NVXX1GrVq0sz6Ju3bpMnjyZs2fPZnsWXbt2tYxv5cqV+Pv74+npafndbNCgAcOHD883hg0bNgBYtkgVERERERERERERkfuTkmP/b9KkSXz44Yd07dqVhx9+GBsbG+Lj4ylXrhytW7fmiy++IDQ0lDJlyljqeHh4sGfPHnr37o2fnx+xsbFEREQQERGR5WylZcuWMXv2bGrXro29vT3p6enUqlWLGTNmsG/fvjxXsRS0D8hIWJ08eZKxY8dSp04d7O3tiYmJwdnZmUcffZQXX3yR7du306dPn1uer/79+/PVV1/RuHFjnJycuHjxIhEREQXa3u52uh1zUq5cOUtSadmyZfmWj4uLIyoqKs9XbGyspfzzzz/PmTNn8PX15YsvvsixzcmTJ9OoUSOSkpLo3bs3N27cyFbGzs6OnTt3Mn36dKpVq0ZycjJubm60bNmSTZs2WVamlQSDwcDUqVP5448/GDFiBIGBgVhbWxMbG4uHhweNGjXi1VdfZf/+/TlueTht2jQ2btxIixYtcHV1JTk5mcDAQGbOnMnOnTuxs7PLs/9//vmHAwcO4OjoyIABA0pqmCIiIiIiIiIiIiJyFzCY8jqMSUQKZM+ePTRr1owqVarw119/FcvqvOISFBTE7t27mTx5cp6rFO9lU6dOZfLkyQwaNCjXBGNe4uLicHNzIzY21nLentx+0fFJPDptJwCHJ7akrLNDKUckUnSJKWlUf3MrAP+d2hYnO5tSjkjuV/puvXPpe0JEisO9+j2v70iRO8e9+j0jcrfSfyML/rdcrRwTKQZNmzalTZs2/P3333zzzTelHY5kkpCQwEcffYS9vT2TJ08u7XBEREREREREREREpJQpOSZSTN5//32srKyYOnUqRqOxtMOR//fxxx8THR3NSy+9RKVKlUo7HBEREREREREREREpZfffmjqRElKrVi0WLlxIeHg4Fy9exM/Pr7RDEqBMmTKEhITw8ssvl3YoIiIiIiIiIiIiInIHUHLsPubr61voOpGRkSUQyb0jODi4tEOQm4wcObK0QxARERERERERERGRO4iSY/exqKio0g5BboPQ0NDSDkFERERERERERERE5I5hMJlMptIOQkTkThYXF4ebmxuxsbG4urqWdjgiIiIiIiIiIiIikoOC/i3X6jbGJCIiIiIiIiIiIiIiIlKqlBwTERERERERERERERGR+4aSYyIiIiIicldKTEkjYNwmyysxJS3bdfO1vK6LlLbCfmbz+iwX9Z5IUej7VsxK6nupuL8HC3JfRETuD0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJcdERERERERERERERETkvqHkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSY3e44OBgDAYDwcHBxd723r176dixI97e3lhbW2MwGOjSpUux9yN3hoCAAAwGA4sXLy6V/vv374/BYGDlypW3td927dphMBj44Ycfbmu/IiIiIiIiIiIiInJnUnLsPnXw4EFatGjB5s2buXLlCp6envj4+ODh4QFASEgIISEhhIeHl26gpSA8PNwyfikehw8fZvny5dSsWZOePXtmu29O3JVEEtj8HMeOHYvRaCz29kVERERERERERETk7mJT2gFI6Zg9ezZpaWk8+eSTbNiwAU9Pzyz3p0yZAkBQUBABAQGlEGHpCQ8Pt4xfCbLi8corr2AymZg8eTIGg+G29v3444/Ttm1btm7dytKlSxkwYMBt7V9ERERERERERERE7ixaOXafOnr0KAC9e/fOlhgTKU4HDx5kz549+Pr60rVr11KJYdiwYQC8++67pdK/iIiIiIiIiIiIiNw5lBy7TyUmJgLg7OxcypHIvW7+/PlARiLW2tq6VGLo0KEDnp6eHD9+nH379pVKDCIiIiIiIiIiIiJyZ1By7C4XHh7Oyy+/TI0aNXB2dsbJyYmHH36YUaNGcebMmWzlDQYDBoPBcpbYoEGDLNfMZz5l3vauefPmWe7f6haLQUFBGAwGQkJCSElJYebMmdSuXZsyZcrg4eFB69at2bJlS77trF27lk6dOuHj44OdnR0+Pj506tSJdevW5VrHPLbg4GBMJhMLFiygcePGeHl5YTAYWLx4MQEBATRv3txSJ/PYi+NMLHM7oaGhREZGMnLkSB588EEcHBzw9fWlX79+hIWF5dlGUlISs2fPplGjRnh4eODg4EClSpUYMGAAv/32W5Fje/vttzEYDFhbW1sSWmZGo5Fly5bRoUMHy5x7e3vTpk0bVqxYgclkyrHNuLg4Vq1aBUDfvn2LFFfm5wawevVqgoKC8PT0xMnJiUceeYQ5c+bkeZ6YnZ0d3bt3B+Czzz4rUhwiIiIiIiIiIiIicm/QmWN3sWXLlvHvf/+b5ORkAOzt7bGysuLkyZOcPHmSRYsWsXr1atq0aWOp4+PjA8Dly5cxGo24urri6OhouW9tbY2Pjw9RUVEAeHh4YGdnZ7nv7e1dLLGnpKTQqlUr9u7di42NDc7OzsTExLBjxw527NjB5MmTczzvKyUlhQEDBrBy5UoArKyscHNzIzo6mk2bNrFp0yb69OnDkiVLsLW1zbFvk8lEjx49WLNmjaW+lZWVZXxxcXFcu3YN+N98mbm5uRXL+E+fPk2fPn2IjIzE0dERW1tboqKiWL58OWvXrmXdunW0a9cuW73z58/Trl07jh07BoCtrS1OTk6cOXOGr776imXLljF79mxefPHFAsdiNBp56aWXmDt3Lg4ODixfvjzL9odXr16la9eu7Nmzx3LNPOfbt29n+/btfP3113zzzTdZPisAu3fv5saNG5QpU4Z69eoVdpqyGTlyJHPnzsXKygpXV1du3LjB77//zssvv8yvv/7KkiVLcq3btGlTPv/8c7Zu3XrLcYiIiIiIiIiIiIjI3Usrx+5S27dvZ8CAAaSnp/Paa69x+vRpbty4QUJCAmFhYfTo0YPr16/To0ePLCvIIiMjiYyMxN/fH4A5c+ZYrkVGRrJw4UIiIyMt5deuXZvl/s8//1ws8c+bN4+ffvqJ+fPnc/36da5du8aZM2d45plnAJgyZQobNmzIVu+NN95g5cqVGAwGJk2axJUrV7h69SrR0dG88cYbAKxYsYJJkybl2vfatWv59ttvef/997l27RpXr14lNjaWtm3b8vPPP7N27dps82V+zZkzp1jGP3r0aOzs7Ni2bRsJCQlcv36dQ4cOUatWLZKSkujVqxfnzp3LUic9PZ3u3btz7Ngx3NzcWLp0KfHx8cTExPD333/TqVMnjEYjo0aNKtDqO4Dk5GR69uzJ3LlzcXd3Z9u2bVkSY+np6XTr1o09e/bwyCOP8N1335GQkEBMTAzx8fEsWbKEcuXKsWHDBl5//fVs7ZsTavXq1bvlLRU3bNjA559/zqxZs7h27RrXrl0jOjqa5557DoAvv/ySH374Idf6DRs2BCAqKirf1XkiIiIiIiIiIiIicu9ScuwuZDQaeeGFFzAajcydO5d33nmHgIAAy5Z91apVY9WqVXTu3Jm4uDhmzZpV2iFnExsby7x58xg6dCgODg4A+Pv7s3LlSpo2bQpgSXaZnT9/3pKcGjduHFOnTsXd3R3IWOH29ttvM2bMGABmzZrFxYsXc+w7Pj6eWbNm8corr+Dq6gpknL32wAMPFPs4c3Pjxg2+//57WrdubdnGskGDBuzYsQNPT0/i4uKYMWNGljqrV6/m0KFDAKxatYp+/fpZVmpVrlyZdevW0bBhQ0wmE6+99lq+MZgTgmvWrMHPz4+9e/fSpEmTLGWWL1/O7t27efjhhwkNDaVTp044OTkBUKZMGQYMGMDmzZsxGAzMmzePS5cuZalvjrdOnTpFmKWsrl27xqeffsro0aMtz83Ly4vPP/+c+vXrAxmJ0dxUrVrVcsbegQMH8uwrOTmZuLi4LC8RERERERERERERuTcoOXYX2rNnD3/99Rdly5a1rJrJyYABAwDuyG3k/P39GTRoULbrVlZWTJw4EYDjx49z9OhRy701a9aQlpaGg4MD48aNy7HdiRMnYm9vT2pqKqtXr86xjIeHB0OHDi2GURRdjx49CAwMzHa9XLlyDBs2DMCydaSZ+ecnnngiy1aZZjY2NkyePBmAY8eOZZm7m124cIEmTZpYEl/79++nZs2a2cotXLgQgOHDh+e6pWT9+vWpUaMGKSkp7Nq1K1s/UDzbcfr7+zNw4MAc73Xu3BmAP/74I882vLy8ssSVmxkzZuDm5mZ5mVdaioiIiIiIiIiIiMjdT8mxu9C+ffuAjJU/5cuXx9fXN8fX888/D0BERERphpujoKAgy4qpmzVp0gQbm4zj8A4fPmy5bn7/2GOPWVYO3czDw4NHH300W93MHnvssWxnY91uLVq0yPfelStXOH36tOW6eTytWrXKtW7z5s0t2xfmNv6wsDAaNWrE0aNHeeKJJ9i3bx8VK1bMVi49PZ2DBw8CEBISkuvnzNfXl5MnTwLZP2uXL18GwNPTM9eYC+qxxx7L9TNTvnx5ION8tLyY4zDHlZvx48cTGxtreZ09e7YIEYuIiIiIiIiIiIjIncimtAOQwjOveklNTSUqKirf8jdu3CjpkArNz88v13sODg54eXkRFRWVZZs+8/u86gJUqFAhS/mblStXrrDhFru8xpD53qVLl3jwwQct7/Or6+DgQNmyZbPNXWbvvPMOAD4+Pmzbts2y1eDNrl69SnJyMpCxpWFBJCYmZvk5KSkJAHt7+wLVz4uLi0uu98zJ1NTU1DzbcHR0zBJXbuzt7YslZhERERERERERERG582jl2F0oPT0dwHK+VEFe8j/mlVX3qx49emBnZ0dUVBTDhw+3fJ5ulvn6li1bCvQ5CwkJydKGeRvDgibXSpp5ZZk5LhERERERERERERG5/yg5dhfy9fUF7sztEgvq/Pnzud5LTk7mypUrQNZVXub3586dy7Nt8/07YYVYbvIaf+Z7hR1/UlJSjnOXWYcOHVi3bh329vYsXbqUZ599NscEmZeXl2VFVlE/a+azxvLb7vB2McdRHGegiYiIiIiIiIiIiMjdScmxu9CTTz4JQGRkZK7nSt0q89lOJbXqbPfu3bm2vXfvXtLS0gAs54dlfn/48GFiY2NzrBsTE5PlbLKisLL6369FSY1/165d+d7z9PS0bKkI/xv/zp07c60bGhpqmbu8xt+hQwe+/fZbHBwcWLFiBX379rXUM7O1taVBgwYAfPfdd/mMKGfVq1cH4J9//ilS/eJ0/fp1oqOjAQgMDCzlaERERERERERERESktCg5dhdq3rw5Dz30EACjR48mJSUlz/JFWbXj6uoKZCSbSsKZM2dYsmRJtutGo5Hp06cDGYmVWrVqWe51794dGxsbkpKSLOdm3Wz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t0725ldQ4YMAWDz5s1s3rw5z/Zy+pw1bdoUgJ9++inPurfD4cOHMRqN2NjYWBLMIiIiIiIiIiIiInL/UXLsLmRjY8P8+fOxsbHhxx9/pGnTpuzcuTNLYuOff/5h/vz5PPbYY8ybN6/QfZgTK8uWLSMxMbHYYjdzc3Nj+PDhfP755yQlJQFw9uxZ+vTpY1k5NW3atCx1/Pz8GDVqFAAzZ85k8uTJluRVTEwMkyZN4r333gNgzJgxPPDAA0WK7V//+hd2dnYALFiwoERWjzk4ONCuXTt27Nhhaf/nn3+mVatWREdH4+Liwrhx47LU6d69Ow0bNgSgZ8+eLF++3PLMT58+Tffu3Tlw4AAA7777boHiaN26NRs3bsTJyYk1a9bQs2fPLMnW/v3706pVK0wmE127dmXatGlcuHDBcj8hIYFdu3bxwgsvULly5WztBwUFARnbMkZFRRVwdkrGoUOHAKhXrx7Ozs6lGouIiIiIiIiIiIiIlB4lx+5SLVu25JtvvsHFxYVDhw7RqlUrypQpQ9myZXFwcKBKlSoMHz6cw4cPW7ZILIxhw4YBsGbNGtzd3alQoQIBAQE0bty4WOIfMWIEjz76KEOGDMHV1RVPT08qVqzIqlWrAJg4cSJdu3bNVm/69On07NkTk8nE1KlT8fLywtPTEy8vL0syrU+fPrz11ltFjs3JyYlnn30WgNdeew1nZ2cqVapEQEAAY8eOLXK7mX3wwQckJSXRunVrnJ2dcXFxoUGDBvz+++/Y29uzYsUKKlasmKWOtbU1a9asoUaNGsTGxtKvXz+cnZ3x8PCgcuXKbNiwASsrK+bMmUP79u0LHEuLFi3YvHkzZcqUYf369XTv3t2SIDP32alTJ1JSUpg0aRJ+fn64ubnh4eGBi4sLLVq0YN68eSQkJGRrOzAwkDp16gCwYcOGW5ixW2fuv2/fvqUah4iIiIiIiIiIiIiULiXH7mJdunTh1KlTTJ48mQYNGuDs7ExMTAz29vbUqVOH5557jnXr1vHqq68Wuu3+/fvz1Vdf0bhxY5ycnLh48SIRERGcO3euWGK3s7Nj586dTJ8+nWrVqpGcnIybmxstW7Zk06ZNuSa37OzsWLlyJatXr6Z9+/Z4eXlx/fp1vLy8aN++PWvXrmX58uXY2treUnxz584lJCTEsq3jmTNniIiIsJxZdasefPBBjhw5wgsvvIC3tzcpKSmUK1eOPn36cOTIETp27JhjPT8/Pw4fPsysWbN4/PHHcXR0JDExEX9/f5599ll++eUXXnrppULH06xZM77//ntcXFzYuHEjXbp0ITk5GcjYZvK7775j8+bN9OrVi4oVK5KcnExiYiJ+fn60adOGGTNm5LhNJMDQoUOBjFWIpeWff/7hwIEDODo6MmDAgFKLQ0RERERERERERERKn01pByB5W7x4MYsXL871frly5QgJCSEkJKRQ7YaHh+dbpn///vTv379Q7RaGnZ0d48ePZ/z48YWu271790KfKZbfXGZmb2/P5MmTmTx5cqFjKyhfX18+/vhjPv7440LVc3BwYPTo0YwePbpQ9fJ75o0bNyYuLi7X++3bty/UijSz/v37M27cOPbs2UNERASVKlUqVGwFeW7BwcEEBwfnen/p0qVAxrltHh4eBQlbRERERERERERERO5RWjkmIiXKfH6ayWTinXfeue39JyQk8NFHH1kSniIiIiIiIiIiIiJyf1NyTERK3OjRo/H392fhwoWcPXv2tvb98ccfEx0dzUsvvZTjqjURERERERERERERub9oW0URKXEODg58+eWXhIaGcubMGfz9/W9b32XKlCEkJISXX375tvUpIiIiIiIiIiIiIncuJcek0Lp168b+/fsLVWft2rU0atSohCK6vXx9fQtdJzIysgQiubsEBQURFBR02/sdOXLkbe9TRERERERERERERO5cSo5JoV29epWoqKhC1UlJSQEgNDS0BCK6vQo79sxMJlMxRiIiIiIiIiIiIiIiIoVlMOmv9SIieYqLi8PNzY3Y2FhcXV1LOxwRERERERERERERyUFB/5ZrdRtjEhERERERERERERERESlVSo6JiIiIiIiIiIiIiIjIfUPJMRERERERuWslpqQRMG6T5ZWYkpbjPfP1nK6JlLa8Ppf5fWaLUle/B1Kc9DkTs5L4vrrVurfSp4iI3NuUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuG0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJceKSXBwMAaDgeDg4GJve+/evXTs2BFvb2+sra0xGAx06dKl2PuRO0NAQAAGg4HFixeXSv/9+/fHYDCwcuXKUum/OBmNRmrUqIGtrS0nT54s7XBERERERERERERE5A5gU9oBSN4OHjxIixYtSEtLw2Aw4OXlhbW1NR4eHgCEhIQAGcm5gICA0gu0FISHh1sSSOZ5kFtz+PBhli9fTs2aNenZs2eeZU+dOsXChQvZsWMH4eHhxMbG4unpSZUqVWjTpg3PP/885cuXL7FY169fz2+//cYjjzySa7LYysqKSZMm0adPH1577TW+/fbbEotHRERERERERERERO4OWjl2h5s9ezZpaWk8+eSTREdHc/nyZSIjI1m0aBEAU6ZMYcqUKYSHh5duoKUgPDzcMn4pHq+88gomk4nJkydjMBhyLJOens6rr75KYGAgM2fO5PDhw1y7dg1nZ2cuX77M/v37CQkJoWrVqrz//vslFuv69euZMmUK69evz7Ncz549qV69Ohs2bGDPnj0lFo+IiIiIiIiIiIiI3B2UHLvDHT16FIDevXvj6elZytHIvezgwYPs2bMHX19funbtmmMZo9FI9+7def/990lLS6Ndu3bs3r2b5ORkrl69yo0bN/j+++9p1KgRiYmJvPrqq7z00ku3eSRZWVlZ8fzzzwPw7rvvlmosIiIiIiIiIiIiIlL6lBy7wyUmJgLg7OxcypHIvW7+/PlARiLW2to6xzLTpk2zbE04btw4tmzZQtOmTS3l7ezsaNu2LXv37mXAgAEAfPTRR3z11Ve3YQS569OnD9bW1mzZsoUzZ86UaiwiIiIiIiIiIiIiUrqUHLtNwsPDefnll6lRowbOzs44OTnx8MMPM2rUqBz/WG8wGDAYDJbtEgcNGmS5ZjAYCA4OzrLtXfPmzbPcv9Xzx4KCgjAYDISEhJCSksLMmTOpXbs2ZcqUwcPDg9atW7Nly5Z821m7di2dOnXCx8cHOzs7fHx86NSpE+vWrcu1jnlswcHBmEwmFixYQOPGjfHy8sJgMLB48WICAgJo3ry5pU7msZvr3gpzO6GhoURGRjJy5EgefPBBHBwc8PX1pV+/foSFheXZRlJSErNnz6ZRo0Z4eHjg4OBApUqVGDBgAL/99luRY3v77bcxGAxYW1tbElpmRqORZcuW0aFDB8uce3t706ZNG1asWIHJZMqxzbi4OFatWgVA3759cyxz6dIlZs6cCWR83qZPn55rjFZWVnz22WcEBgYCMH78eFJSUrKUyfycc7N48eJsn+fQ0FAMBgNLliwBYMmSJdmef2hoaJZ2fHx8aNGiBUajkYULF+ban4iIiIiIiIiIiIjc+5Qcuw2WLVvGww8/zJw5c/jvf/9LWloaACdPnuTDDz+kZs2abNu2LUsdHx8ffHx8sLLKeESurq6Waz4+PlhbW+Pj42Mp7+HhkeW+t7d3scSekpJCq1atGD9+PCdOnMDOzo6YmBh27NhBhw4dCAkJybVe79696d69O5s2bSI6OhpnZ2eio6PZtGkT3bp1o2/fvqSmpubat8lkokePHjz//PMcOHAAk8lkmQ9vb288PDwsZTOP3cfHBzc3t2IZ/+nTp6lbty5z584lKioKW1tboqKiWL58OXXr1uX777/Psd758+d57LHHGD16NAcOHCAhIQEHBwfOnDnDV199Rf369fnoo48KFYvRaGTkyJFMnDgRBwcHVq9ezbBhwyz3r169SvPmzenfvz9btmzh0qVLODk5ER0dzfbt2+nbty9dunTJlqQC2L17Nzdu3KBMmTLUq1cvx/4XLVrEjRs3API8k8zM3t6ecePGWeYjv7PBCsqcZHVwcADAwcEh2/O3s7PLVq9p06YAuT4zEREREREREREREbk/KDlWwrZv386AAQNIT0/ntdde4/Tp09y4cYOEhATCwsLo0aMH169fp0ePHllWkEVGRhIZGYm/vz8Ac+bMsVyLjIxk4cKFREZGWsqvXbs2y/2ff/65WOKfN28eP/30E/Pnz+f69etcu3aNM2fO8MwzzwAwZcoUNmzYkK3eG2+8wcqVKzEYDEyaNIkrV65w9epVoqOjeeONNwBYsWIFkyZNyrXvtWvX8u233/L+++9z7do1rl69SmxsLG3btuXnn39m7dq12ebL/JozZ06xjH/06NHY2dmxbds2EhISuH79OocOHaJWrVokJSXRq1cvzp07l6VOeno63bt359ixY7i5ubF06VLi4+OJiYnh77//plOnThiNRkaNGlWg1XcAycnJ9OzZk7lz5+Lu7s62bduynAuWnp5Ot27d2LNnD4888gjfffcdCQkJxMTEEB8fz5IlSyhXrhwbNmzg9ddfz9b+nj17AKhXr16uWyr+8MMPAHh5edGsWbMCxd2lSxdLEm3Xrl0FqpOfRo0aERkZSa9evQDo1atXtuffqFGjbPUaNmwIwK+//kp8fHyxxCIiIiIiIiIiIiIidx8lx0qQ0WjkhRdewGg0MnfuXN555x0CAgIsW79Vq1aNVatW0blzZ+Li4pg1a1Zph5xNbGws8+bNY+jQoZaVOv7+/qxcudKyEsec7DI7f/68JTk1btw4pk6diru7O5Cxwu3tt99mzJgxAMyaNYuLFy/m2Hd8fDyzZs3ilVdewdXVFcg4e+2BBx4o9nHm5saNG3z//fe0bt3akuRp0KABO3bswNPTk7i4OGbMmJGlzurVqzl06BAAq1atol+/fpaVTJUrV2bdunU0bNgQk8nEa6+9lm8M5oTgmjVr8PPzY+/evTRp0iRLmeXLl7N7924efvhhQkND6dSpE05OTgCUKVOGAQMGsHnzZgwGA/PmzePSpUtZ6pvjrVOnTq5xHD9+HIC6devmG7OZq6srlStXBuDYsWMFrlcSzHGnpaXlmzxOTk4mLi4uy0tERERERERERERE7g1KjpWgPXv28Ndff1G2bFmee+65XMsNGDAAgK1bt96u0ArM39+fQYMGZbtuZWXFxIkTgYykydGjRy331qxZQ1paGg4ODpZt9W42ceJE7O3tSU1NZfXq1TmW8fDwYOjQocUwiqLr0aOH5dyszMqVK2fZ0nDlypVZ7pl/fuKJJ2jTpk22ujY2NkyePBnISBhlnrubXbhwgSZNmlgSX/v376dmzZrZypnP0Ro+fHiuW0rWr1+fGjVqkJKSkm0V14ULFwDy3I7zypUrQMbKscIoW7ZslvqlxdPT07Itp3m8uZkxYwZubm6Wl3kFp4iIiIiIiIiIiIjc/ZQcK0H79u0DMlb+lC9fHl9f3xxfzz//PAARERGlGW6OgoKCcj1bqkmTJtjY2ABw+PBhy3Xz+8cee8yy4utmHh4ePProo9nqZvbYY4/leHbU7dSiRYt87125coXTp09brpvH06pVq1zrNm/e3LJ9YW7jDwsLo1GjRhw9epQnnniCffv2UbFixWzl0tPTOXjwIAAhISG5fs58fX05efIkkP2zdvnyZSAjgXSvsrKysiQOzePNzfjx44mNjbW8zp49eztCFBEREREREREREZHbwKa0A7iXmVenpKamEhUVlW/5GzdulHRIhebn55frPQcHB7y8vIiKisqyTZ/5fV51ASpUqJCl/M3KlStX2HCLXV5jyHzv0qVLPPjgg5b3+dV1cHCgbNmy2eYus3feeQcAHx8ftm3bhrOzc47lrl69SnJyMgDXrl3LYzT/k5iYmOXnpKQkAOzt7XOt4+Xlxfnz5wu9Aiw6OtpSv7Q5Ojpy7do1y3hzY29vn+dciIiIiIiIiIiIiMjdSyvHSlB6ejqA5Xypgrzkf8wrq+5XPXr0wM7OjqioKIYPH275PN0s8/UtW7YU6HMWEhKSpQ1z4iqv5Fr16tUBOHLkSIHHEBcXxz///ANAjRo1ClyvpFy9ehW4MxJ1IiIiIiIiIiIiIlI6lBwrQb6+vsCduV1iQZ0/fz7Xe8nJyZZVRJlXeZnfnzt3Ls+2zffvhBViuclr/JnvFXb8SUlJOc5dZh06dGDdunXY29uzdOlSnn322RwTZF5eXpbtLYv6WTOfNWZOHuWkZcuWQMY2kqGhoQVqd926dZak781bVJpjzmsVV2xsbIH6KYgbN25Y+srrbDURERERERERERERubfdcnLs3LlzjBkzhho1auDs7Gz5g7fZtWvXmD59OjNmzCAtLe1Wu7urPPnkkwBERkbmeq7UrTKfB1ZSq852796da9t79+61PFPz+WGZ3x8+fDjX5EZMTEyWs8mKwsrqfx/fkhr/rl278r3n6elp2VIR/jf+nTt35lo3NDTUMnd5jb9Dhw58++23ODg4sGLFCvr27Zvt98jW1pYGDRoA8N133+UzopyZV4WZV3nlJDg4GAcHBwCmTp2a75wnJydbtoYsX748Xbp0yXLfw8MDIM/zvA4dOpTrPfPzL+izz3wuXGBgYIHqiIiIiIiIiIiIiMi955aSY9u3b6dWrVrMmTOHEydOkJiYmO0P1R4eHqxfv56JEyeyefPmWwr2btO8eXMeeughAEaPHk1KSkqe5fNatZMbV1dXICPZVBLOnDnDkiVLsl03Go1Mnz4dyEis1KpVy3Kve/fu2NjYkJSUZEmO3Gz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t2b1NTULGWGDBkCwObNm/P9Pcvpc9a0aVMAfvrpp1zr+fj48NprrwEZicEJEybkWtZoNDJ06FBOnDgBZDxvOzu7LGXq1KkDwM8//5xjguzEiROsXbs21z4K+9k3J9p8fHyoVq1ageqIiIiIiIiIiIiIyL2nyMmxs2fP8swzzxAbG8tTTz3F6tWrLStBbjZ48GBMJhObNm0qcqB3IxsbG+bPn4+NjQ0//vgjTZs2ZefOnVkSG//88w/z58/nscceY968eYXuw5xYWbZsGYmJicUWu5mbmxvDhw/n888/t2xJd/bsWfr06WNZOTVt2rQsdfz8/Bg1ahQAM2fOZPLkyZYERkxMDJMmTeK9994DYMyYMTzwwANFiu1f//qXJeGyYMGCElk95uDgQLt27dixY4el/Z9//plWrVoRHR2Ni4sL48aNy1Kne/fuNGzYEICePXuyfPlyyzM/ffo03bt358CBAwC8++67BYqjdevWbNy4EScnJ9asWUPPnj2zJFv79+9Pq1atMJlMdO3alWnTpnHhwgXL/YSEBHbt2sULL7xA5cqVs7UfFBQEZGzLGBUVlWsckydPplOnTgDMmDGDDh06sHfvXst2j6mpqWzbto2mTZtakqojRoxg4MCB2dp66qmncHZ2JjU1lZ49e1qSkKmpqXz77be0atWKMmXK5BqL+bO/d+9ewsLCci1nZk6ONWvWLN+yIiIiIiIiIiIiInLvKnJy7D//+Q/Xr1+nZ8+erF+/nm7dumVbGWLWtm1bICOpcL9p2bIl33zzDS4uLhw6dMjyB/+yZcvi4OBAlSpVGD58OIcPH7ZskVgYw4YNA2DNmjW4u7tToUIFAgICaNy4cbHEP2LECB599FGGDBmCq6srnp6eVKxYkVWrVgEwceJEunbtmq3e9OnT6dmzJyaTialTp+Ll5YWnpydeXl6WZFqfPn146623ihybk5MTzz77LACvvfYazs7OVKpUiYCAAMaOHVvkdjP74IMPSEpKonXr1jg7O+Pi4kKDBg34/fffsbe3Z8WKFVSsWDFLHWtra9asWUONGjWIjY2lX79+ODs74+HhQeXKldmwYQNWVlbMmTOH9u3bFziWFi1asHnzZsqUKcP69evp3r27JUFm7rNTp06kpKQwadIk/Pz8cHNzw8PDAxcXF1q0aMG8efNISEjI1nZgYKBlJdeGDRtyjcHKyop169YxevRobGxs2LJlC02bNsXe3h4vLy8cHBxo27Yt+/btw8HBgZkzZzJ37twc23Jzc2P27NkYDAYOHjzIww8/jKurK87OznTp0oWKFStaVtjlpHv37nh7e3Pt2jUCAwPx9vYmICCAgIAADh48mKWs0Wi0JOf79u2b90SLiIiIiIiIiIiIyD2tyMmxrVu3YjAYCpTcePDBB7G3t89y5s/9pEuXLpw6dYrJkyfToEEDnJ2diYmJwd7enjp16vDcc8+xbt06Xn311UK33b9/f7766isaN26Mk5MTFy9eJCIignPnzhVL7HZ2duzcuZPp06dTrVo1kpOTcXNzo2XLlmzatCnX529nZ8fKlStZvXo17du3x8vLi+vXr+Pl5UX79u1Zu3Yty5cvx9bW9pbimzt3LiEhIZZtHc+cOUNERATR0dG31K7Zgw8+yJEjR3jhhRfw9vYmJSWFcuXK0adPH44cOULHjh1zrOfn58fhw4eZNWsWjz/+OI6OjiQmJuLv78+zzz7LL7/8wksvvVToeJo1a8b333+Pi4sLGzdupEuXLiQnJwMZ2wx+9913bN68mV69elGxYkWSk5NJTEzEz8+PNm3aMGPGjBy3iQQYOnQokLEKMS82NjbMmjWL//73v7z22mvUr18fd3d3y/N94oknmDx5MqdOneL111/Ps61///vfbNq0iRYtWuDq6kpaWhr/+te/mDlzJrt3785z5ZiHhwd79uyhd+/e+Pn5ERsbS0REBBEREZZVjma7d+/m3Llz+Pn5WVa+iYiIiIiIiIiIiMj9yaaoFc+cOYOjoyNVq1YtUHlnZ2diY2OL2t0db/HixSxevDjX++XKlSMkJISQkJBCtRseHp5vmf79+9O/f/9CtVsYdnZ2jB8/nvHjxxe6bvfu3Qt9plh+c5mZvb09kydPZvLkyYWOraB8fX35+OOP+fjjjwtVz8HBgdGjRzN69OhC1cvvmTdu3Ji4uLhc77dv375QK9LM+vfvz7hx49izZw8RERFUqlQpz/JVq1bN9Uy5wsgr3uDgYIKDg3Ot+/DDD7NixYp8+/jqq6+AjLPZrK2tixSniIiIiIiIiIiIiNwbirxyzMrKCqPRWKCyaWlpxMXF4erqWtTuRKSEmc9PM5lMxZL0ulOcPXuWZcuW4e3tzcsvv1za4YiIiIiIiIiIiIhIKStycqxSpUokJydz5syZfMvu2bOH1NTUAq8yE5HSMXr0aPz9/Vm4cCFnz54t7XCKxfTp00lJSSEkJEQJehEREREREREREREpenKsVatWAMyfPz/PcqmpqUyYMAGDwVCkrd5E5PZxcHDgyy+/ZPz48QVKfN/pjEYjFStWZNq0aQwZMqS0wxERERERERERERGRO0CRzxwbPXo0n376Kf/5z3+oUqUK//73v7OV+fXXXxk9ejSHDh3C1dWVESNG3FKwUjjdunVj//79haqzdu1aGjVqVEIR3V6+vr6FrhMZGVkCkdxdgoKCCAoKKu0wioWVlVWRzsoTERERERERERERkXtXkZNjlSpVYsGCBQwcOJAhQ4bwxhtvEBsbC0CjRo2IiIggMjISk8mEjY0NX375JWXLli22wCV/V69eJSoqqlB1UlJSAAgNDS2BiG6vwo49M5PJVIyRiIiIiIiIiIiIiIjIncJgusUswPbt23nhhRc4depUjvcfeugh5s+fT4sWLW6lGxGRUhMXF4ebmxuxsbE6t0xERERERERERETkDlXQv+UWeeWYWevWrTl58iR79uxh3759XLhwgfT0dHx9fXnyySdp3rw51tbWt9qNiIiIiIiIiIiIiIiIyC275ZVjIiL3Oq0cExEREREREREREbnzFfRvuVa3MSYRERGRO05iShoB4zYRMG4TiSlpxdJmdHySpc3o+KQS7+9ukNe4c7t3v86ViIiIiIiIiJSsW95WESAlJYXt27dz+PBhLl26BEC5cuV49NFHad26NXZ2dsXRjYiIiIiIiIiIiIiIiMgtueXk2Mcff8yUKVO4evVqjvc9PT158803efHFF2+1KxEREREREREREREREZFbckvJseeee45FixZhPrasQoUK+Pn5AXD+/HnOnTvHlStXePnllzly5AhffPHFrUcsIiIiIiIiIiIiIiIiUkRFPnNsxYoVfPHFF5hMJvr378+ff/7JmTNnOHDgAAcOHODMmTP89ddfDBgwAJPJxJIlS1i+fHlxxi4iIiIiIiIiIiIiIiJSKEVOjs2bNw+DwcCLL77Il19+yUMPPZStTJUqVVi8eDEvvvgiJpOJefPm3VKwIiIiIiIiIiIiIiIiIreiyMmxP/74A4PBwJtvvplv2TfffBODwcDRo0eL2p2IiIiIiIiIiIiIiIjILStycgzA3d0dLy+vfMt5eXnh7u6OwWC4le5KRWhoKAaDoURiDwkJwWAwEBQUVOxty92ptD8TO3fuxGAw0L59+1Lpv7jNnDkTg8HApEmTSjsUEREREREREREREblDFDk5Vq1aNWJjY4mPj8+3bHx8PHFxcVSrVq2o3UkO1q9fT0hICOvXry/tUErF7NmzCQkJ4bfffivtUO4JRqORV155BYApU6bkWTYpKYlPP/2UTp06UbFiRRwdHXFzcyMwMJAhQ4awa9euEo01PDyckJAQQkJC8iw3cuRIypYty6xZszh//nyJxiQiIiIiIiIiIiIid4ciJ8cGDx5Meno6H330Ub5lP/74Y9LT0xk8eHBRuys1Tk5OVKtW7Y5M7K1fv54pU6bc18mxKVOmKDlWTJYsWcLvv/9Ox44dadCgQa7ltm/fTtWqVRk2bBibNm3i7Nmz2NnZkZycTFhYGJ9//jktWrSgQ4cOXLlypURiDQ8PZ8qUKfkm8ZydnXnllVdITEzU6jERERERERERERERAW4hOTZs2DB69erFpEmTmDJlSo4ryBITE5k6dSqTJk2id+/eDB069JaCLQ0NGjQgLCyMsLCw0g5FpES9++67AAwfPjzXMitXrqRDhw6cO3cOPz8/FixYwNWrV4mNjSUpKYkTJ07w8ssvY2Njw5YtW3j88ce5dOnS7RpCjp577jlsbGz46quvuHjxYqnGIiIiIiIiIiIiIiKlz6aoFQcPHoyjoyMuLi5MnTqV9957j0cffRQ/Pz8Azp8/z+HDh7lx4wZubm44ODjkuHLMYDCwcOHCoo9ARG5ZaGgoYWFheHt707Zt2xzLnDhxgsGDB5OWlkatWrXYuXMn3t7eWco8/PDDfPDBB7Ru3ZquXbty6tQp+vbty44dO27HMHJUtmxZ2rZty6ZNm/jiiy+YMGFCqcUiIiIiIiIiIiIiIqWvyCvHFi9ezJIlS4iNjcVkMpGYmMiePXtYsWIFK1asYM+ePSQmJmIymYiJiWHJkiUsXrzY8sr8c2kJCgrCYDAQEhJCamoq//nPf3j00Udxd3fHYDAQGhpKaGgoBoMBg8GQaztHjx6lV69e+Pr64uDgQOXKlXnxxRe5dOlSgeqb7dy5k44dO+Lt7Y2DgwOBgYFMmTKFpKSkLOXMbS5ZsgTI2A7P3If5FRoaWuR5Wbx4MQaDgYCAACBjG7327dvj7e2No6MjNWrUYNq0adniutnff//N8OHDqVq1Ko6Ojri6ulKvXj2mTp1KXFxcjnVunq8jR47Qr18/KlSogK2tLUFBQYSEhGAwGIiIiABg0KBB2cZ/K4KDgzEYDAQHB2MymZg/fz4NGjTA1dUVV1dXGjduzPLly/NtJzQ0lB49euDn54e9vT1ly5alZcuWLFq0iPT09CLFduTIEXx9fTEYDLRt2zbbis1jx44xZMgQqlatipOTE87OztSuXZsJEyYQHR2da7uff/45AD169MDGJuec+cSJE0lMTMTe3p5vvvkmW2Issw4dOjBx4kQg43O9adOmLPcL+nuR0+c5ICCA5s2bZytjfgUHB2drp2/fvlnGKSIiIiIiIiIiIiL3ryKvHBswYMAtJyHuFElJSQQFBbF//35sbGxwcXEp8NjWrVtHr169SE1NBTLOOLp48SIff/wxa9asYfr06QVq57333uP1118HwM3NjZSUFMLCwggJCWH37t1s374da2trAOzs7PDx8bFsZefg4ICbm1uW9uzs7Ao6/DzNmzePkSNHYjKZcHd3Jy0tjf/+979MmjSJtWvXsnPnTjw8PLLVW7VqFQMGDCA5ORkAFxcXUlJSOHLkCEeOHGHBggVs3bqVwMDAXPtes2YNffr0ITU1FVdXV0vSxtnZGR8fHy5fvozRaMTV1RVHR8diGe/N+vTpw8qVK7GyssLNzY2YmBj27dvHvn372LFjBwsXLszxszJmzBg++OADICN5Y677ww8/8MMPP7B06VLWr1+Pi4tLgWPZsWMH3bp14/r16/Tv358vvvgCW1tby/13332X8ePHYzQagYzz8lJTUzl69ChHjx5l0aJFbNq0ibp162Zp12QysXXrVgCaNGmSY98XL160nG3Xp0+fAp3BN3r0aN577z2uX7/O3Llz6dixY4HHmhdvb2/i4uK4du0aAD4+Plnu3/y7ANC0aVMAIiIiOHHiRJ6fOxERERERERERERG5x5nuY82aNTMBJmdnZ5Ozs7Np0aJFpsTERJPJZDJFR0ebrly5Ytq1a5cJMOU0VX///bfJycnJBJjq1atnOnz4sMlkMpmMRqNp+/btpkqVKpk8PDxyrT958mQTYHJ3dzdZWVmZxo8fb7p8+bLJZDKZYmNjTW+++aal7sKFC7PVHzhwoAkwDRw4sBhnxWRatGiRCTA5OTmZbG1tTT169DCdOXPGZDKZTImJiaZPPvnEZG9vbwJMXbt2zVb/l19+Mdna2poA05NPPmn6448/TCaTyZSenm7asGGD6YEHHjABpipVqpiuX7+epW7m+XZ2djZ16NDBdOLECcv9P//80/K+UqVKJsC0aNGiYh2/eV7d3NxMBoPB9NZbb5liY2NNJpPJdOnSJdPIkSMtMc6ZMydb/Y8++shyf8iQIaaLFy+aTCaTKT4+3vTBBx+YbGxsTICpV69e2eqaPxPNmjXLcn358uUmOzs7E2B65ZVXTEajMcv9BQsWWObs7bfftvSZlpZmOnz4sKlFixYmwFShQoVsc37s2DFLvH///XeOc7J8+XJLme+++65gE2kymbp3726JKzU11XI9r9+rzMxldu3aleV6QetnVr58eRNg+uSTTwpcxyw2NtYEWD4HInJvSUhONVV6faOp0usbTQnJqflXKIDL129Y2rx8/UaJ93c3yGvcud27X+dKRERERERERIqmoH/LLfK2iveS+Ph4li9fTnBwsGUFkpeXF56ennnWmz59OomJiZQrV47t27dTv359IGOlUKtWrdi6dSuJiYn59h8TE8OkSZOYPn06ZcuWBcDV1ZUpU6bQrVs3AFasWHErQyySxMREGjVqxNdff42/vz8Ajo6ODBs2jLlz5wIZK+d+/vnnLPUmTJhAamoqDz30ENu2baNWrVoAWFlZ8dRTT7Fp0yZsbGz4+++/mT9/fq79V69enQ0bNvDwww9brlWtWrW4h5mr2NhYJk6cyMSJE3F1dQUyVi199NFH9O/fHyDbtpc3btxg8uTJQMYKq08//RRfX18AypQpw8svv8ysWbMAWLlyJb/88ku+ccyaNYt+/fpZtv58//33s6xWu379OmPHjgVg9erVvPHGG5Y+ra2tqV+/Plu3bqV+/fqcO3eOBQsWZGn/0KFDQMbqvsqVK+cYw/Hjxy3vb155lpdHHnkEyPgdM2+DWVrMcR84cCDfssnJycTFxWV5iYiIiIiIiIiIiMi9ocjJsT179hRnHKWqRo0aPPXUU4WqYzKZWLNmDQDDhw/PMZFWrVo1evbsmW9b9vb2luTGzZ5++mkA/vjjj0LFV1wmTpyIlVX2j8mgQYOoUKECAF9//bXlekxMjGWLvldffRUnJ6dsdevWrVugpN+rr75q2UqyNDg6Oub6XN58800Arl69yvbt2y3Xt2/fztWrVwEICQnJse6IESN44IEHAPI8u8xkMvHqq6/yyiuvYGNjw9KlSxkzZky2cmvWrCEmJoa6devStm3bHNuysbGhT58+AJbnY3bhwgUAS2I2J1euXLG89/LyyrXczTK3mbmN0mCOxTzevMyYMQM3NzfLy5wcFhEREREREREREZG7X5GTY0FBQVSvXp3Zs2dbkgF3qyeffLLQdf755x9iYmIAaNasWa7lgoKC8m2rRo0aODs753ivfPnyAKUyxzY2NrmeQWVlZWUZ2+HDhy3Xf/31V0wmEwCtWrXKte3WrVsDGUk/83ltNyvKcylOjz76qGXF2M2qVq1qSQ5mHr/5vb+/P//6179yrGttbU2LFi2y1c0sNTWVAQMG8P777+Ps7MymTZvo27dvjmX37dsHwIkTJ/D19c31NXXqVIBsK7guX74MkO9KybudeXzm8eZl/PjxxMbGWl5nz54t6fBERERERERERERE5Da5pW0Vw8LCeOWVV6hQoQLPPvvsXbuarFy5coWuk/kP7OYEVk78/PzybcvFxSXXezY2NgCkpaUVIrriUbZsWezt7XO9bx7bpUuXLNcyv89r7ObEUlpaWq6Jv6I8l+KU37PLa/z51TWPP3PdzPbv38/SpUsBWLRokSWZmBPzSqikpCSioqJyfZm3Brx5q0/ztpB5PevMq8UKswIsOjo6xzZKg3nL1MzbYObG3t4eV1fXLC8RERERERERERERuTcUOTn2119/8dprr1GuXDmSkpJYvnw5zZs3vytXk93q1n2Zz3+S4lOaWyqWtlq1alG7dm0AxowZw99//51r2fT0dAB69eqFyWTK9xUeHp6lvjlpde3atVz7qF69uuX9r7/+WuBxHDlyBABnZ2cqVapU4HolwfydVNpJOhEREREREREREREpXUVOjlWpUoWZM2dy9uxZVq9eTevWrTEYDPfMarL8eHt7W97ndYbR+fPnb0c4JSI6OpqUlJRc75vHlnmFV+b3586dy7Wu+Z6Njc0du51ffs8ur/HnNfbM93NbHefp6ckPP/zAI488wtmzZ2nWrBl//vlnjmV9fX2B7NslFpT5s5xXQrt58+aWs+fMZ+3lJz4+3nIeW5MmTSyrIIEs73NbyRUbG1ugfgrKPL7Mv7siIiIiIiIiIiIicv+5pW0VIeOP3N26deP777/nn3/+YcKECZQvX56kpCSWLVt2164my0/lypVxd3cHIDQ0NNdyed27VeZkhfmMr+KWlpbG3r17c7xnMpnYvXs3kHE2l1m9evUsce3cuTPXtnfs2AFAnTp1sLW1LVJ8JT3+w4cPEx8fn+O9U6dOWRJcmcdvfn/u3Llck1np6ens2rULgMceeyzX/r28vNi5cyf16tXj/PnzBAUFcfLkyWzlzGez/fLLL1y8eLEAI8vKvCrs8uXLuY73gQce4Omnnwbg66+/zjGOm33wwQdcv34dgBEjRmS55+HhYXmf23lehw4dyrVt87OHgj//06dPAxAYGFig8iIiIiIiIiIiIiJyb7rl5FhmFStW5K233iIiIoJvv/2Wp556Cisrq2yryfbt21ec3ZYKg8FAt27dAJg/f36OW9L99ddfrFq1qsRiMJ+DFBMTU2J9vP322xiNxmzXlyxZYklq9OrVy3Ld3d2dtm3bAvDee+9lO98K4Pfff7esPurTp0+RYyvp8d+4cYP3338/x3vTpk0DMlZ4ZT4PrHXr1pZt+0JCQnKs++mnn1pWG+Y3fk9PT3bu3Mljjz3GxYsXCQoK4sSJE1nK9OjRA3d3d1JTUxkzZkyeySKj0Zhtvho1aoS1tTVGo5HDhw/nWvett97C0dGR5ORkevTokeU8sZtt2bLFMkfNmzenY8eOWe7/61//spwBltNKNKPRyIwZM3JtP/MZYAV5/snJyfz+++8ANGvWLN/yIiIiIiIiIiIiInLvKtbkmKVRKyueeuophg8fTsOGDTEYDJhMJstqsqZNm/Lkk0/y888/l0T3t8348eNxdHQkKiqKNm3aWM5XMplM/PDDD7Rt2xYnJ6cS679mzZoA7N27l7CwsGJv38nJiR9//JG+fftaVkklJSXx2WefMXz4cACefvppGjRokKXetGnTsLW15dSpU7Rt25ajR48CGQmPzZs306FDB9LS0qhSpQpDhw4tcnzm8a9evTrP87KKys3NjbfeeosZM2ZYVkBFR0czatQolixZAsCkSZNwcHCw1HF0dLQkxVasWMGwYcOIiooCIDExkQ8//JCXX34ZyEgq1q9fP9843N3d2b59O48//jiRkZEEBQVx7NixLPdnz54NZKzq6tixI4cOHbIkNY1GIydOnOA///kPNWrUYOPGjVnad3FxscSR12qtGjVqsGDBAqytrTl69Ch169bliy++yJKc+vPPPxkzZgydO3cmJSWFypUrs3z58mzn8tna2tK9e3cApk+fzqpVqyxbeJ48eZKuXbvyxx9/5BrLv/71L+zs7ABYsGBBvqvHjhw5QkpKCjY2NpaVdiIiIiIiIiIiIiJyfyr25NjFixeZNm0alStXpmPHjuzfvx+TyUTjxo2ZM2cOHTt2xGAwcODAARo3blyi2w6WtIceeogvv/wSGxsbDh8+TL169XB1dcXZ2ZmWLVuSkpLCrFmzALC3ty/2/rt37463tzfXrl0jMDAQb29vAgICCAgI4ODBg7fcvre3Nx988AGrVq3C398fT09PXF1dGTp0KElJSdSpU4eFCxdmq1evXj2++uor7Ozs+PHHH6lduzZubm6UKVOGjh07cuHCBfz9/fnuu+9wdnYucnxDhgzBYDCwf/9+vL29KV++vGX8xaFLly706NGDN954Aw8PDzw9PSlXrhwffvghAAMGDOCll17KVm/kyJGMHj0ayFgl9sADD+Dp6YmbmxujRo0iNTWV5s2b8/nnnxc4Fjc3N7Zt20ajRo24dOkSzZs3z5I8GjhwIJ988gl2dnZs2bKFxx9/HCcnJ8qWLYuDgwPVq1dn7NixhIWFZUtUwf9WsG3YsCHPOPr27cvGjRspX748586d49///jceHh64u7vj6OhItWrV+OCDD0hLS6NNmzYcPHjQcibazWbMmEH58uW5fv06vXr1wtnZGTc3Nx5++GF27drF2rVrc43DycmJZ599FoDXXnsNZ2dnKlWqREBAAGPHjs1W3jyuTp064eLikucYRUREREREREREROTeVizJMZPJxKZNm+jSpQuVKlVi8uTJhIeH4+LiwgsvvMDRo0fZs2cPL774It999x1//vknrVu3JjU1lUmTJhVHCKXmmWee4fDhw/To0QNvb2+Sk5Px8fFh1KhRHDlyBDc3NwDL+WTFycPDgz179tC7d2/8/PyIjY0lIiKCiIgIkpKSiqWPF154ga1bt9KuXTusrKywsrLi4YcfZurUqRw4cMCyheDNevXqxfHjxxk6dChVqlQhOTkZGxsbHnnkEaZMmcKxY8du+eynpk2bsmnTJlq1aoW7uztRUVGW8ReXFStWMG/ePOrWrUtaWhplypThiSee4Msvv2TJkiVZzr7KbNasWfzwww90794dHx8f4uPjcXFxoXnz5nzxxRds37690EkaFxcXtm7dSpMmTYiOjqZFixaW1YoAw4YN4+TJk4wdO5Y6depgb29PTEwMzs7OPProo7z44ots3749x60cBw4ciIODA/v377eczZWbdu3acerUKebNm0eHDh3w8/MjKSkJW1tb/vWvf/Hvf/+bHTt2sHXrVry9vXNtp0KFChw6dIjnnnsOPz8/AJydnRkwYAC//vprvtsfzp07l5CQEGrVqgXAmTNniIiIyLbdo8lkYvny5QC3tFJRRERERERERERERO4NBlN++5Hl4dy5cyxcuJAvvviCc+fOWbY2q1evHsOGDaNv3765bisYFxdHuXLlsLe3JzY2tqgh3PEmTJjA9OnTadGiBTt37iztcApk8eLFDBo0iEqVKhEeHl7a4dx2wcHBLFmyhIEDB7J48eLSDue2GTx4MIsWLWLKlCm8+eabpR1OsdmzZw/NmjWjSpUq/PXXXzmunMtPXFwcbm5uxMbGZjnvTETuDYkpaVR/cysA/53aFic7m1tuMzo+iUenZfx3//DElpR1/t8WvCXR390gr3Hndu9+nSsRERERERERKZqC/i23yCvHOnXqxIMPPsjUqVM5e/Ysjo6ODBo0iEOHDnH48GGee+65PM/bcnV1xdfXl/j4+KKGcMe7fPkyCxYsADJW24jcyd58803s7e35+OOPSUhIKO1wis2MGTOAjLPwipIYExEREREREREREZF7S5GTY5s3byY9PZ2HH36Y2bNnc/78eRYuXMhjjz1W4DaeeeYZBgwYUNQQ7ggffvghM2fO5NSpU6SlpQGQnJzM5s2badq0KZcuXcLb25vBgweXcqQieQsICODFF1/k8uXLzJ07t7TDKRaHDh3i+++/p0GDBvTq1au0wxERERERERERERGRO0CR96bp1asXw4YNy/dcoLy8//77Ra57p/jnn3+YM2cO48ePx9raGjc3N+Li4iyJMjc3N1atWpXr2Vwid5IJEybg7OxMmTJlSjuUYnH58mUmT55M165dtWpMRERERERERERERIBbSI6tWLGiOOO4aw0cOBBra2v27NnD+fPnuXLlCo6Ojjz44IO0bduWUaNG4efnd9vjWrlyJaNGjSpUnV69ejFnzpwSiuj2GjVqFCtXrixUnTlz5tz3q4vc3d2ZPHlyaYdRbDp16kSnTp1KOwwRERERERERERERuYMUOTnWokULvLy8+OabbwpUvk+fPly6dImdO3cWtcs7Ut26dalbt25ph5HNjRs3iIqKKlSd2NhYAIKDgwkODi6BqG6f2NjYQo//xo0bACxevJjFixeXQFQiIiIiIiIiIiIiIlLaDCaTyVSUilZWVvj6+nLhwoUClX/wwQc5c+YM6enpRelORKTUxMXF4ebmRmxsLK6urqUdjoiIiIiIiIiIiIjkoKB/y7W6XQEZjUad+SMiIiIiIiIiIiIiIiKl6rYkx9LT07l06RJlypS5Hd2JiIiIiIiIiIiIiIiI5KjAZ47FxcURExOT5Vp6ejpnz54lt50ZTSYTMTExLFq0iOTkZGrXrn1LwYqIiIjciRJT0qj+5lYA/ju1LU52RT7WVUSKSL+HIiKlQ9+/IiIicjcq8L9YPvjgA6ZOnZrlWnR0NAEBAQWqbzAYePbZZwsVnIiIiIiIiIiIiIiIiEhxKtT/nSfzCjGDwZDrirGb+fn5MWzYMEaOHFm46ERERERERERERERERESKUYGTYy+//DLBwcFARpKscuXKeHt789NPP+Vax8rKCldXV9zc3G45UBEREREREREREREREZFbVeDkmJubW5YkV9OmTSlbtiyVKlUqkcBEREREREREREREREREiluRT0kNDQ0txjBERERERERERERERERESp5VaQcgIiIiIiIiIiIiIiIicrsoOSZyC8LDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZsyXeX3p6OrNmzaJu3bqUKVPGMtfr16+3lElMTGTSpEkEBgbi6OhoKfPbb78RHx+Pt7c3Hh4eXLlypcTjFREREREREREREZE7X5G3VZT7w/r16/ntt9945JFH6NKly13bR1GEhIQAEBwcTEBAQKnGcqf46KOP+OeffxgxYgT+/v55lt29ezfLly9nz549XLx4kaSkJLy9valduzadOnUiODgYR0fHPNt4+eWX+fjjjwGws7PDx8cHAAcHB0uZXr16sXHjRgAcHR0tZWxtbXF2duaVV15h/PjxTJ06lTlz5hR57CIiIiIiIiIiIiJyb9DKMcnT+vXrmTJlSpaVOndjH0UxZcoUpkyZkueKMFtbW6pVq0a1atWwtbW9fcGVgqtXrzJt2jTs7e0ZP358ruWuXLlCx44dCQoK4rPPPiMsLIykpCQcHBw4d+4cmzdvZsSIEVStWpXt27fn2s7169f59NNPAXj33XdJSkoiMjKSyMhI2rVrB0BYWJglMbZy5UoSExMtZWrUqAHAyJEjKVu2LJ988gmnTp0qrukQERERERERERERkbuUkmMit8DPz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq3JsKywsjNTUVACGDx+OwWDIVubo0aMAeHl50bNnzxzbcXZ2pl+/fqSmpjJ79uwijFxERERERERERERE7iVKjolIvkwmE5999hkA/fv3z7VM3759OXXqFLa2tqxbt44PP/yQ6tWrW8q4u7sTHBzMkSNHqFOnDmlpaQwePJiwsLBs7SUmJlreOzs759inuUxu983MMS9dujRLuyIiIiIiIiIiIiJy/1Fy7D60cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwcJZVSs2bN88SU+bzx8LDwy3Xb95+0Tw+c1t//PEHffr0oXz58jg6OhIYGMj7779PWlqapc6+ffvo0qULDzzwAA4ODtSsWZO5c+diMpnyjLkocxISEoLBYCAoKAiANWvW0KZNG8qVK4eVlZXlzDWAHTt2cPr0adzd3enQoUOO7W3cuJEffvgBgAkTJvDUU0/lGq+XlxfffPMNDg4OJCQkMGnSJMu9xYsXZ4kLyDL/QUFBltiDg4MBiIiIyFLGfN3s0UcfpWrVqsTGxrJy5cpc4xIRERERERERERGRe59NaQcgt9fgwYNZtGiR5WdnZ2dSU1M5deoUp06d4rvvvqNjx47Y2dnh4+NDbGys5bwoNze3LG3Z2dlZ3o8bN86S5LKxscHV1ZXExET+/vtv/v77b5YuXcqyZcvo3r17lvqF6QMyzp4aP348RqMRACcnJ1JTUzl69ChHjx5l0aJFbNq0ibp16xZ5jtzc3PDx8SEqKgoADw+PLHF4e3sXus0tW7bQrVs3kpKScHNzIzk5mbCwMF599VV++eUXVqxYwYIFCxg2bBhGoxFXV1eSk5M5fvw4I0eO5OzZs8ycOTPHtotjTl555RVmzZqFwWDA3d0dK6usefPvv/8egIYNG+Z6ttq8efMAcHFx4ZVXXsl3TqpWrUqfPn1YtGgRa9euJTIyEl9fXxwdHfHx8SElJYVr164B4OPjY6nn6emJs7MzPj4+3Lhxg7i4OKysrLI8l5s/RwBNmzblr7/+4vvvv2fQoEH5xiciIiIiIiIiIiIi96YirxyzsrIq1BlLDz74IDY2ysWVph9//JFFixZhZWXFO++8w5UrV7h+/ToJCQlER0ezdetWBg4ciJ2dHY0aNSIyMpJevXoB0KtXLyIjI7O8GjVqZGn7oYce4r333uPo0aPcuHGDK1eukJyczLFjx+jXrx/JyckMHDiQCxcuWOoUto+FCxfy+uuv4+TkxNtvv83FixdJSEggMTGRw4cP06JFCy5evEjnzp2Jj48v8jzNmTOHyMhIy8/mxI359fPPPxe6zb59+/L0008TERFBTEwMsbGxjB8/HoCvv/6amTNnMmLECEaMGEFkZCQxMTFcvXrVsgLqvffe488//8zWbnHMyS+//MKsWbN4/fXXiYqK4urVqyQkJGRJIO3ZsweABg0a5NhGWloae/fuBaBNmzb5bnNo1q1bNwCMRiO7d+8G/vc5WLt2raVc5vlfu3YtY8eOJTIykjlz5gDg7++fpYz5emYNGzbMMhYRERERERERERERuT/d0raK+W31dqvlpXjt378fgFatWvHaa6/h6elpuefl5UWbNm1YvHgx5cuXL3TbEydOZOzYsdSsWdOSBLWysqJGjRosXbqUjh07kpCQwBdffFGk2K9fv87YsWMBWL16NW+88Qa+vr4AWFtbU79+fbZu3Ur9+vU5d+4cCxYsKFI/JeWxxx5jxYoVVKxYEchYXTV9+nSaNGkCwPjx4xk4cCAffvgh5cqVAzJWrC1YsIAHH3wQo9HIqlWrsrRZXHMSHx/PmDFjmDlzpmX1lb29PZUqVQIgJSWFI0eOAFCnTp0c2wgPDychIQGgUKv2HnnkEcv7Y8eOFbheUZjjioyM5PTp03mWTU5OJi4uLstLRERERERERERERO4Nt+3MsZSUlGxbtcnt5e7uDsDly5dJT0+/rX137NgRyFi9VhRr1qwhJiaGunXr0rZt2xzL2NjY0KdPHwC2bt1atEBLyOuvv57lHDOzzGMxryTLzNrampYtWwIZZ5ZlVlxzYmVlxeuvv55r7JcuXbJ8XnLbUvLKlSuW915eXrm2dbOyZcvm2EZJyNxX5hWMOZkxYwZubm6Wl7+/f4nGJiIiIiIiIiIiIiK3z23Z5zAmJoZLly7h4eFxO7qTXLRs2RIHBweOHDlCkyZN+Pe//02LFi148MEHi6X933//nU8//ZQff/yR8PBw4uPjs60WPHfuXJHa3rdvHwAnTpywrI7KyY0bNwCIiIgoUj8lJbftCM1naXl6elK5cuU8y5jP3zIrrjl56KGHLKvVcnL58mXL+8yrDe82mWPPPKacjB8/njFjxlh+jouLU4JMRERERERERERE5B5R4OTYH3/8wW+//Zbl2o0bN/jyyy9zrWMymYiJiWH16tUYjcZCbbcmxa9KlSosWLCAYcOGceDAAQ4cOABkrAZq3rw5ffv2pXPnzjmucMrPxx9/zKhRozAajQAYDAbc3Nywt7cHMj4rcXFxlq33Csu80icpKYmkpKR8yycmJhapn5Li4uKS43XzFpS53c9cJjU1Ncv14pqTvBJj5vbNzM/zZplXixVmBVh0dHSObZQER0dHy/v85sve3j7XsYqIiIiIiIiIiIjI3a3AybF169YxderULNfi4uIYNGhQvnVNJhMGgyHLSgwpHf369aN9+/Z888037Nq1i/3793P27FlWrVrFqlWraNKkCRs3bsTV1bXAbZ44cYKXX34Zo9FIjx49ePXVV6lTpw52dnaWMgsXLuS5554r8rlz5m39evXqxddff12kNu41xTUn1tbWed7PnLS6efWaWaVKlShTpgwJCQn8+uuvBe7bfJYZQI0aNQpcryiuXr1qeV/SiTgRERERERERERERuXMVODnm7u5OxYoVLT9HRERgZWVFhQoVcq1jZWWFq6srNWvWZMiQITRp0uTWopVi4enpydChQxk6dCgAf//9NwsWLOCdd95h7969hISEMGvWrAK3t3r1atLT0wkMDOTrr7/O8Wy5yMjIW4rZvG3gnbZdYmm6XXOS+ZyxzAmmzGxtbWnSpAnff/8927Zt4/r163muhjNbu3YtkPFdERQUVCzx5iZz7LmdnSYiIiIiIiIiIiIi977sWYxcjBo1itOnT1tekPEH5szXbn79/fffHDlyhK+++kqJsTtYlSpVmDFjBn379gVg+/btlnvmRFdeK77Onj0LQJ06dXJMjAHs2LEj1/oF6ePJJ58E4JdffuHixYu5litO5u0li7raraTdrjnx8PCwJOL++eefXMsNHz4cgPj4+AIlV//66y/LireuXbvmeW5acTB/b9nY2FC1atUS7UtERERERERERERE7lwFTo7dbPLkybzyyivFGYuUsOTk5Dzvm89kypzgMm+vGBMTk2s9Nzc3AI4ePZpjImnLli2EhobmWr8gffTo0QN3d3dSU1MZM2ZMngkro9GYZ1sFVZC4StPtnJOmTZsC8NNPP+Va5qmnnrKs/nr77bfZuHFjrmWvXLlCjx49SEpKwsnJibfeeqvIsRXUoUOHAKhfvz5lypQp8f5ERERERERERERE5M6k5Nh9ZOTIkfTs2ZM1a9Zw6dIly/X4+Hjmz5/Pl19+CUDHjh0t92rWrAnA3r17CQsLy7Hddu3aAXD8+HFeeOEFy/Z1CQkJfPrppzzzzDN5nvFUkD7c3d2ZPXs2AF9//TUdO3bk0KFDGI1GICP5c+LECf7zn/9Qo0aNPBMzBWWOa9myZSQmJt5ye8Xtds6JOellTjDlxGAwsGLFCipXrkxqaipdu3Zl1KhRnDhxwlImNjaWJUuWUK9ePX7//Xesra1ZsGABgYGBRY6toMyxN2vWrMT7EhEREREREREREZE7V5GTY3L3SU1N5ZtvvuGZZ57Bx8cHFxcXPDw8cHFxYfjw4aSkpNC4cWMmTJhgqdO9e3e8vb25du0agYGBeHt7ExAQQEBAAAcPHgSgZcuW9O7dG4BPPvkELy8vPDw8cHNzY9iwYQQGBhISEpJrXAXpA2DgwIF88skn2NnZsWXLFh5//HGcnJwoW7YsDg4OVK9enbFjxxIWFmbZEvFWDBs2DIA1a9bg7u5OhQoVCAgIoHHjxrfcdnG5XXPSvXt3bG1tCQsL46+//sq1nK+vLwcPHqRt27akpaXx4YcfUr16dRwdHfHw8MDd3Z3g4GDOnDnDAw88wMaNG+nTp0+R4yqouLg4du/eDWDZPlRERERERERERERE7k82t9rA33//zapVq/jjjz+4evUqqampuZY1GAzs3LnzVruUIpo0aRL169dn165dnDhxgsjISOLj4ylXrhx16tShT58+DBgwAGtra0sdDw8P9uzZw5QpU9i7dy+XLl0iOjoagKSkJEu5ZcuW8fjjj/PFF19w8uRJ0tPTqVWrFr169WL06NGsWLEi17gK2gdkJKzatWvH3Llz2b59O6dPnyYmJgZXV1eqVKnCE088QefOnWnRosUtz1f//v0B+PTTTzl69CgXL160rMq6k9yOOSlXrhxdu3Zl1apVLFu2LM9kp7e3N99//z27du1i+fLl7N27l4sXL3Ljxg38/PyoXbs2nTp1Ijg4GCcnpyLHVBhr1qwhKSmJhg0bUqdOndvSp4iIiIiIiIiIiIjcmQymvA4qyseUKVOYNm0aRqMxz/OOLJ0ZDKSnpxe1OxEpRXv27KFZs2ZUqVKFv/76q1hW590uLVq0YNeuXSxZsoQBAwYUun5cXBxubm7ExsZazqITEcksMSWN6m9uBeC/U9viZHfL//8jESkk/R6KiJQOff+KiIjInaSgf8st8r9Yli1bxpQpUwAoX748bdu2pXz58tjY6B9BIveipk2b0qZNG7Zt28Y333xDz549SzukAjl06BC7du2iRo0a9OvXr7TDEREREREREREREZFSVuRM1ty5cwHo3Lkzq1atws7OrtiCEpE70/vvv88jjzzC1KlTeeaZZ7CyuvOPLTRvAfnuu+9m2TJURERERERERERERO5PRU6OHTt2DIPBwLx585QYE7lP1KpVi4ULFxIeHs7Fixfx8/Mr7ZDyFB8fz+OPP067du3o0KFDaYcjIiIiIiIiIiIiIneAIifHDAYDrq6ulC9fvjjjESlWvr6+ha4TGRlZApHcO4KDg0s7hAJzdnZm8uTJpR2GiIiIiIiIiIiIiNxBipwce/jhh/ntt99ITk7G3t6+OGMSKTZRUVGlHYKIiIiIiIiIiIiIiNxBDCaTyVSUip9//jlDhw7lyy+/pH///sUdl4jIHSMuLg43NzdiY2NxdXUt7XBEREREREREREREJAcF/VuuVVE7eP755+ncuTMvvfQSe/bsKWozIiIiIiIiIiIiIiIiIrdNkbdVnDp1KnXq1GHv3r00b96cJ598koYNG+Li4pJnvTfffLOoXYqIiIiIiIiIiIiIiIjckiJvq2hlZYXBYADA3IT557ykp6cXpTsRkVKjbRXvDIkpaVR/cysA/53aFie7Iv//O0RE5P/pu1VE5N6m73kRKWn6nhGRO01B/5Zb5G+rpk2bFigZJiIiIiIiIiIiIiIiInKnKHJyLDQ0tBjDEBERERERERERERERESl5VqUdgIiIiIiIiIiIiIiIiMjtouSYiIiIiIiIiIiIiIiI3DeK5YTEP/74g61btxIREcGNGzdYuHCh5V5qaiqXL1/GYDDwwAMPFEd3IiIiIiIiIiIiIiIiIkVyS8mx2NhYBg8ezPr16wEwmUwYDIZsybE6depw7do1fv/9d2rUqHFLAYuIiIiIiIiIiIiIiIgUVZG3VUxNTaV9+/asX78eJycnOnbsiIODQ7ZyTk5ODBo0CKPRyOrVq28pWJE7VXh4OAaDAYPBQHh4eGmHU+JSUlKoUqUK9vb2nD17trTDyZXRaKRGjRrY2tpy8uTJ0g5HRERERERERERERO4ARU6OLVy4kIMHD1K5cmVOnjzJhg0bcHNzy7Fs9+7dAdizZ09Ru5NStn79ekJCQiyrBO/WPooiJCSEkJCQ+yLpVVAfffQR//zzD8899xz+/v55lt29ezdDhw4lMDAQd3d3HBwc8Pf3p2PHjnzyySfcuHGjxOK0srJi0qRJpKWl8dprr5VYPyIiIiIiIiIiIiJy9yhycmzFihUYDAY++OADypcvn2fZunXrYmVlRVhYWFG7k1K2fv16pkyZUuLJsZLuoyimTJnClClT8kyO2draUq1aNapVq4atre3tC64UXL16lWnTpmFvb8/48eNzLXflyhU6duxIUFAQn332GWFhYSQlJeHg4MC5c+fYvHkzI0aMoGrVqmzfvr3E4u3ZsyfVq1dnw4YNStCLiIiIiIiIiIiISNGTY0ePHsVgMNCmTZt8y9rZ2eHm5saVK1eK2p3IHc3Pz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq0okXisrK55//nkA3n333RLpQ0RERERERERERETuHkVOjiUmJuLi4oKdnV2ByqempmJjY1PU7kTkDmAymfjss88A6N+/f65l+vbty6lTp7C1tWXdunV8+OGHVK9e3VLG3d2d4OBgjhw5Qp06dUhLS2Pw4MEltrq0T58+WFtbs2XLFs6cOVMifYiIiIiIiIiIiIjI3aHIybGyZcsSFxdHfHx8vmVPnz5NfHx8vtsvyu21cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwMAaDwfJz8+bNs8QUEBBguRceHm65fvP2i+bxmdv6448/6NOnD+XLl8fR0ZHAwEDef/990tLSLHX27dtHly5deOCBB3BwcKBmzZrMnTsXk8mUZ8xFmZOQkBAMBgNBQUEArFmzhjZt2lCuXDmsrKwICQmxlN2xYwenT5/G3d2dDh065Njexo0b+eGHHwCYMGECTz31VK7xenl58c033+Dg4EBCQgKTJk3KViYoKAiDwUBISAgmk4nPP/+chg0b4urqiouLC0888QRLly7Nc158fHxo0aIFRqORhQsX5llWRERERERERERERO5tRU6ONWzYEIBNmzblW/ajjz4CoEmTJkXtTorZ4MGD6d27N99//z2XLl3CwcGB1NRUTp06xXfffcfIkSOJjIzEzs4OHx8fHBwcAHBwcMDHxyfLK/PqwXHjxvHSSy+xYcMGTv1fe/cdHVXx/nH8vekJKSQQQg8IqPRqQ7o0EZWOFAmiglhpIiiYgIhYvqgoigrSpEpRBJEeuihNAUFFekko6b3d3x+c3V9CsmFDGkk+r3P2nOXOzJ3n3t3ZDXkyMydP4uDgQEpKCv/99x9z5syhadOmrFy5MkMsOe0DbiyP17BhQ7755htOnjyJyWQiOTmZI0eOMHXqVBo0aMChQ4dydY+8vLzw8/Oz/Nvb2ztDTL6+vjk+5/r163nggQdYunQpcXFxJCYmcuLECV5//XWefvppAGbPnk3r1q1Zs2YN8fHxJCYmcuzYMV5++eVs9/jKi3syevRoevXqxebNm0lJScHOLuNHxC+//ALcGP/W9lb74osvAPDw8GD06NG3vCe1atWiX79+AKxatYqQkJAs66WmptK9e3eGDh3KwYMHMZlMxMTE8Ouvv/L0008TGBiYbT+tWrXKcA0iIiIiIiIiIiIiUjLddnJsyJAhGIbBxIkTuXTpktV6X331FZ9++ikmk4mhQ4febneSh3bt2sXcuXOxs7Pj/fff5/r160RHRxMbG8u1a9fYsGEDAQEBODk50bx5c0JCQujbty8Affv2JSQkJMOjefPmlnPXrFmTDz/8kCNHjhAfH8/169dJTEzk6NGjDBgwgMTERAICAjK8Z3Lax5w5c3jjjTdwc3Pj3Xff5fLly8TGxhIXF8f+/ftp164dly9f5oknnrBpZqM1n376aYZEjTlxY378/vvvOT5n//79efLJJzl79iwRERFERkZaEl5Lly5l2rRpvPjii7z44ouEhIQQERFBWFgYgwcPBuDDDz/kn3/+yXTevLgnBw4cYPr06bzxxhuEhoYSFhZGbGwszzzzjKXOjh07ALj//vuzPEdKSgo7d+4EoGPHjri7u9t0X3r06AFAWloa27dvz7LOzJkzCQ4OZt68eURFRREZGcn58+ctM9OmTJnCv//+a7UPc0L/4MGDuXpfiIiIiIiIiIiIiEjRdtvJsccee4yePXty8uRJmjVrxpgxY4iPjwfg66+/5q233qJhw4a8+OKLGIbBc889Z/nltBSuPXv2ANC+fXvGjh2Lj4+PpaxMmTJ07NiRefPm3dYymBMmTGDMmDHUq1fPssecnZ0ddevW5bvvvuOxxx4jNjaWb7/99rZij46OZsyYMQCsWLGCN998k/LlywNgb29P06ZN2bBhA02bNuXChQvMnj37tvrJL/fddx9LliyhatWqwI3ZVVOnTrXMqhw/fjwBAQHMmDGDcuXKATdmrM2ePZvq1auTlpbG8uXLM5wzr+5JTEwMo0aNYtq0aZZZcc7Ozvj7+wOQlJRkmXnWsGHDLM9x5swZYmNjAWjcuLHN96VRo0aW50ePHs2yTnh4OKtXryYgIABXV1cAKleuzPfff0/FihWzvDfpmeNJSUm5ZWIzMTGRqKioDA8RERERERERERERKR5uOzkGsHDhQgYMGEBISAgff/wx0dHRAAwfPpxp06Zx5MgRDMNgyJAhzJw5M08CltwrXbo0AFevXiU1NbVA+37ssceAG7PXbsfKlSuJiIigcePGdOrUKcs6Dg4OlmX6NmzYcHuB5pM33ngjwz5mZumvJaulE+3t7XnkkUeAG3uWpZdX98TOzo433njDauxXrlyxvF+sLSl5/fp1y/MyZcpYPdfNypYtm+U50nv44Ydp27ZtpuPOzs6W67753qTn4+NjWSYyu9muAO+99x5eXl6WR5UqVW55DSIiIiIiIiIiIiJSNDjkprGLiwsLFy5k2LBhzJ49mz179nDp0iVSU1MpX748Dz/8MEOHDrXs9SN3hkceeQQXFxcOHTpEy5YtefbZZ2nXrh3Vq1fPk/P/8ccffPXVV+zatYszZ84QExODYRgZ6ly4cOG2zr17924Ajh8/bpkdlRXzLMazZ8/eVj/5xdpyhOa9zXx8fLjrrruyrRMeHp7heF7dk5o1a1pmq2Xl6tWrlufpZxsWlOxmnppnOYaFhVmtY2dnh5eXF+Hh4RmuJSvjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTOQqOWbWokULWrRokRenkgJQo0YNZs+ezQsvvMDevXvZu3cvcGM2UNu2benfvz9PPPFEljOcbuXzzz/ntddeIy0tDQCTyYSXlxfOzs7AjQRNVFSUZem9nDLP+ElISCAhIeGW9ePi4m6rn/zi4eGR5XHzEpTWytPXSU5OznA8r+5Jdokx8/nNzK/nzdLPFrM2Aywr165dy/Ic6d3OvbmZq6sr4eHht7xPzs7OVq9RRERERERERERERIq2XC2rKEXXgAEDOHv2LLNmzaJv375UqVKFq1evsnz5crp160br1q1zvM/S8ePHGTFiBGlpafTu3ZvffvuNhIQEwsPDCQkJISQkhOnTpwNkmklmK/Oyfn379sUwjFs+zpw5c1v9FCV5dU/s7e2z7Sd90urm2Wtm/v7+lCpVCoCDBw/afA3mvcwA6tata3O7nDLPLMvJko8iIiIiIiIiIiIiUrzcdnKsQ4cOfPfdd3fczByxnY+PD8OGDWPp0qWcO3eOkydPMm7cOEwmEzt37iQoKChH51uxYgWpqanUrl2bpUuXct999+Hk5JShTkhISK5iNi8beKctl1iYCuqepN9nzNryhY6OjrRs2RKAjRs3WvYhvJVVq1YBN5Y+bNOmTe4CtSI+Pt4yY8zanmkiIiIiIiIiIiIiUvzddnJsy5YtBAQEUL58eQYPHszmzZvzMi4pBDVq1OC9996jf//+AGzatMlSZmd3462S3Yyv8+fPA9CwYUNL/Ztl9z6xpY+HH34YgAMHDnD58mWr9fKSeXnJ253tlt8K6p54e3tbEnGnTp2yWm/48OEAxMTEWGYKZufff/9l6dKlAHTv3j3bfdNy4/Tp05bntWvXzpc+REREREREREREROTOd9vJsYEDB+Lm5kZMTAwLFy6kU6dOVKlShfHjx3Ps2LG8jFHyWGJiYrblrq6uABkSXJ6engBERERYbefl5QXAkSNHskwkrV+/nuDgYKvtbemjd+/elC5dmuTkZEaNGpVtwiotLS3bc9nKlrgKU0Hek1atWgHw22+/Wa3z+OOPW2Z/vfvuu6xdu9Zq3evXr9O7d28SEhJwc3PjnXfeue3YbmXfvn0A+Pn5cc899+RbPyIiIiIiIiIiIiJyZ7vt5NiCBQsIDQ1l4cKFtG/fHjs7Oy5evMgHH3xAgwYNaNq0KTNmzODq1at5Ga/kgZdffpk+ffqwcuVKrly5YjkeExPDrFmzWLBgAQCPPfaYpaxevXoA7Ny5kxMnTmR53s6dOwNw7NgxXnrpJcvSe7GxsXz11Vf06tUr272ebOmjdOnSfPLJJwAsXbqUxx57jH379pGWlgbcSP4cP36c//3vf9StWzfbxIytzHEtWrTojlxGtCDviTnpZU40ZcVkMrFkyRLuuusukpOT6d69O6+99hrHjx+31ImMjGT+/Pk0adKEP/74A3t7e2bPnp2vM7rMMbdu3Trf+hARERERERERERGRO99tJ8cA3NzcGDBgABs2bOD8+fN8+OGHNGjQAMMwOHToECNHjqRSpUo8/vjjLF++/JYzlqRgJCcn8/3339OrVy/8/Pzw8PDA29sbDw8Phg8fTlJSEi1atOCtt96ytOnZsye+vr6Eh4dTu3ZtfH19qVatGtWqVePXX38F4JFHHuGpp54C4Msvv6RMmTJ4e3vj5eXFCy+8QO3atbPdx8yWPgACAgL48ssvcXJyYv369Tz44IO4ublRtmxZXFxcqFOnDmPGjOHEiROWJRFz44UXXgBg5cqVlC5dmsqVK1OtWjVatGiR63PnlYK6Jz179sTR0ZETJ07w77//Wq1Xvnx5fv31Vzp16kRKSgozZsygTp06uLq64u3tTenSpRk8eDDnzp2jQoUKrF27ln79+t12XLeSlpbGunXrACzLhoqIiIiIiIiIiIhIyZSr5Fh65cuXZ/To0Rw6dIg///yTMWPGULFiRVJSUli3bh39+vWjQoUKedWd5MLEiROZMWMG3bt3595778XBwYGYmBjKlStHhw4d+PbbbwkODqZUqVKWNt7e3uzYsYOnnnqKSpUqERkZydmzZzl79iwJCQmWeosWLeKTTz6hQYMGODs7k5qaSv369XnvvffYvXs37u7uVuOytQ+4kbD6+++/GTNmDA0bNsTZ2ZmIiAjc3d1p1qwZr7zyCps2bcqThMvAgQNZuHAhLVq0wM3NjcuXL3P27FkuXLiQ63PnpYK4J+XKlaN79+7Ajdc6O76+vvzyyy9s3bqV5557jnvuuQcnJyfi4+OpVKkSjz76KDNnzuTkyZOWWYf5Zfv27Vy4cIFKlSrRtWvXfO1LRERERERERERERO5sJiO7DYpyyTAMtm7dyvjx49m/fz8mk4nU1NT86k5ECsCOHTto3bo1NWrU4N9//82T2Xn5bciQIcydO5dJkybx9ttv57h9VFQUXl5eREZGWvagk4IXl5RCnbc3APDX5E64OTkUckQiIkWfPltFRIo3fc6LSH7T54yI3Gls/V1uns0cu9nly5eZPn06o0eP5sCBA/nVjYgUsFatWtGxY0f+++8/vv/++8IO55bOnz/PokWL8PX1ZcSIEYUdjoiIiIiIiIiIiIgUsjxN5cfHx7Nq1SoWLFjA1q1bSUtLwzwxrUmTJgwaNCgvuxORQvLRRx/RqFEjJk+eTK9evbCzy7c8e65NnTqVpKQkgoKCNOtLRERERERERERERPImObZ582YWLlzI6tWriY2NtSTEKleuzIABA3j66aepU6dOXnQlIneA+vXrM2fOHM6cOcPly5epVKlSYYeUpbS0NKpWrcqUKVMYOnRoYYcjIiIiIiIiIiIiIneA206OHT16lIULF7J48WIuXboE3NhjzN3dnR49evD000/Trl27IrEfkRR/5cuXz3GbkJCQfIik+Bg8eHBhh3BLdnZ2jB8/vrDDEBEREREREREREZE7yG0nxxo0aIDJZMIwDOzs7GjXrh2DBg2iR48euLm55WWMIrkWGhpa2CGIiIiIiIiIiIiIiMgdwGSY10DMITs7O+rWrcugQYMYMGAAFStWzOvYRETuCFFRUXh5eREZGal9y0RERERERERERETuULb+Lve2Z44dPHiQRo0a3W5zERERERERERERERERkQJnd7sNlRgTERERERERERERERGRoua2k2M59euvv7Jjx46C6k5ERHIpLimFauPWUW3cOuKSUgo7HBGRIkmfpSIiJZM+/0UkP+kzRkQk92xeVtHOzo4KFSpw8eLFTGUjR44kKiqKOXPmWG3fvXt3rl69SkqKPrBFRERERERERERERESkcORo5phhGFkeX7p0KfPmzbvt9iIiIiIiIiIiIiIiIiIFocCWVRQREREREREREREREREpbEqOiYiIiIiIiIiIiIiISImh5JiIiIiIiIiIiIiIiIiUGEqOiYiIiIiIiIiIiIiISImh5JhICVGtWjVMJhPz5s0rlP4HDhyIyWRi2bJlBdpv586dMZlMbN26tUD7FREREREREREREZE7k5JjRcy8efMICgoiODi4sEMpts6cOUNQUBBBQUGFHUqxsX//fhYvXky9evXo06dPpnJz4m7w4MF53rf5dRwzZgxpaWl5fn4RERERERERERERKVqUHCti5s2bx6RJk5Qcy0dnzpxh0qRJTJo0qbBDKTZGjx6NYRgEBgZiMpkKtO8HH3yQTp06cejQIb777rsC7VtERERERERERERE7jw5So6FhoZib2+f6XHlyhWALMvMj9DQ0Hy5ABG5s/3666/s2LGD8uXL071790KJ4YUXXgDggw8+KJT+RUREREREREREROTOkaPkmGEYt/0QkZJp1qxZADz11FPY29sXSgxdunTBx8eHY8eOsXv37kKJQURERERERERERETuDDYnxwIDA3P9ePvtt/PzWnLl/PnzjB07lkaNGuHl5YWrqys1atTgySefZMGCBSQkJGRqs3v3bgYOHIi/vz8uLi54eXlx//338/777xMTE5NlP4MHD86wt9KKFSto06YNPj4+uLm50ahRIz799NNMeyPNmzcPk8nE9u3bAZg0aRImkynD48yZM3keo2EYzJ49mxYtWlCmTBlMJhPz5s2z/cbepE2bNphMJoKCgkhKSmLatGk0aNCAUqVK4e3tTYcOHVi/fv0tz7Nq1Sq6du2Kn58fTk5O+Pn50bVrV1avXm21jS3XVa1aNdq2bWtpc/M9zu2eWObzBAcHExISwssvv0z16tVxcXGhfPnyDBgwgBMnTmR7joSEBD755BOaN2+Ot7c3Li4u+Pv7M2jQIA4fPnzbsb377ruYTCbs7e0tCS2ztLQ0Fi1aRJcuXSz33NfXl44dO7JkyRKrCfCoqCiWL18OQP/+/W8rrtsdM+k5OTnRs2dPAL7++uvbikNEREREREREREREigcHWysGBgbmZxyFauHChQwdOtSSAHNycsLDw4Nz585x6tQp1qxZQ4MGDWjUqBFwI1EwcuRIZsyYYTmHu7s7sbGx/P777/z+++/MnTuXDRs24O/vb7Xfl19+mZkzZ2JnZ4enpyfx8fH88ccfjBgxgoMHDzJ//nxLXVdXV/z8/AgLCyM5OZlSpUrh7u6e4XzpZ+XkRYyGYdC7d29WrlyJnZ0dXl5e2NnlzTZ1SUlJtG/fnp07d+Lg4IC7uzsRERFs3ryZzZs3ExgYSFBQUJbtBg0axLJlywAscV27do1169axbt06+vXrx/z583F0dMzxdfn6+hIVFUV4eDgAfn5+Gdp6eXnlyfWfPn2afv36ERISgqurK46OjoSGhrJ48WJWrVrF6tWr6dy5c6Z2Fy9epHPnzhw9ehQAR0dH3NzcOHfuHAsXLmTRokV88sknvPLKKzbHkpaWxquvvsrMmTNxcXFh8eLFGZY/DAsLo3v37uzYscNyzHzPN23axKZNm1i6dCnff/89Tk5OGc69fft24uPjKVWqFE2aNMnpbcokJ2PmZq1ateKbb75hw4YNuY5DRERERERERERERIquvMl0FGHr1q0jICCAhIQEHn74YXbu3El8fDzXrl0jNjaWnTt38vzzz2f4pX9gYCAzZsygXLlyzJw5k+vXrxMdHU18fDzbtm2jcePG/P333/To0cPqbJY1a9bwzTffMH36dMLDwwkPD+fatWs899xzACxYsICtW7da6vft25eQkBCaN28OwJgxYwgJCcnwqFKlSp7GuGrVKn788Uc++ugjwsPDCQsLIzIykk6dOuX6vn/xxRf89ttvzJo1i+joaMLDwzl37hy9evUCbsyMW7NmTaZ2b775JsuWLcNkMjFx4kSuX79OWFgY165d48033wRgyZIlTJw40Wrf2V3X77//zqpVqyx1b77Hn376aa6vHWDkyJE4OTmxceNGYmNjiY6OZt++fdSvX5+EhAT69u3LhQsXMrRJTU2lZ8+eHD16FC8vL7777jtiYmKIiIjgv//+o2vXrqSlpfHaa6/ZNPsOIDExkT59+jBz5kxKly7Nxo0bMyTGUlNT6dGjBzt27KBRo0b89NNPxMbGEhERQUxMDPPnz6dcuXKsWbOGN954I9P5zQm1Jk2a5HpJxZyOmZs98MADwI29E281O09EREREREREREREijGjBEtOTjaqV69uAEaLFi2MxMTEW7Y5ffq0YW9vb7i6uhqHDx/Osk5UVJRRuXJlAzBWr16doSwgIMAADMCYO3dulu2bNm1qAMZzzz2Xqax169YGYAQGBhZIjDNmzLDaz+0wxw8Yc+bMyVSemppqtGrVygCMunXrZii7cOGC4eDgYADG+PHjszz/qFGjDMBwdHQ0Ll26lKHM1uvatm2bpV5eM5/XycnJ+OuvvzKVh4aGGj4+PgZgvPjiixnKli5damm/YcOGTG2Tk5ONBx54wACMevXqZSr39/fP8L6LiIiwvB6VKlUyjhw5kqnNggULDMC49957jYiIiCyvaf/+/YbJZDKcnJyM0NDQDGUtW7Y0AOPll1+2ek/SxxYQEJCpLLdjJj13d3cDML799tts6yUkJBiRkZGWx/nz5w3AiIyMzLZdcRObmGz4v7HW8H9jrRGbmFzY4YiIFEn6LBURKZn0+S8i+UmfMSIi1kVGRtr0u9wSPXNs27ZtnD59GoCPP/4405JwWZk3bx6pqal07tyZhg0bZlnHw8ODbt26AVhdwq1KlSoEBARkWfbEE08A8Oeff94ynvyM0dvbm2HDht1WDLdSpUoVnnnmmUzH7ezsmDBhAgDHjh3jyJEjlrKVK1eSkpKCi4sL48aNy/K8EyZMwNnZmeTkZFasWJFlnfy8Llv17t2b2rVrZzperlw5XnjhBQDL0pFm5n8/9NBDdOzYMVNbBwcHy/KnR48ezXDvbnbp0iVatmzJ9u3buffee9mzZw/16tXLVG/OnDkADB8+3OqSkk2bNqVu3bokJSWxbdu2TP3AjeUqcysvxkyZMmUyxGXNe++9h5eXl+WRflamiIiIiIiIiIiIiBRtNu85Vhzt2bMHgPLly9OsWTOb2uzevRuAjRs3Ur58eav1YmJiADh79myW5ffddx8mkynLsooVKwI39nq6HXkZoy0Jw9vRpk0bq9ffsmVLHBwcSElJYf/+/dSvXx+A/fv3W+Ly9PTMsq23tzfNmjVj9+7dlvo3y8/rslW7du2yLZs6dSrXr1/n9OnTVK9eHfj/62/fvr3Vtm3btsXe3p7U1NQM9y69EydOEBQUxNmzZ3nooYdYu3YtPj4+meqlpqby66+/AhAUFMTUqVOt9mt+r978Xrp69SpAlufPqbwYMz4+Ppw9e9YSlzXjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTJTo5FhISAgA/v7+NrcxzziJjY0lNjb2lvXj4uKyPO7h4WG1jYPDjZclOTnZ5rjSy6sYy5Urd1v926JSpUpWy1xcXChTpgyhoaFcuXLFctz8PLu2AJUrV85Q/2b5eV22yu4a0pdduXLFkhyz5fpdXFwoW7ZspnuX3vvvvw+An58fGzduxN3dPct6YWFhJCYmAhAeHp7N1fy/m99LCQkJADg7O9vUPjt5MWZcXV0zxGWNs7NznsQsIiIiIiIiIiIiIneeEr2sorVZKNlJTU0F4I033sAwjFs+goOD8zjqgovR3t6+AKMuOMX1umzVu3dvnJycCA0NZfjw4Zb3y83SH1+/fr1N76WgoKAM5zAvY2hrci2/mWeWmeMSERERERERERERkZKnRCfHzEsOWltWMK/aFLSiEOPFixetliUmJnL9+nUg4ywv8/MLFy5ke25z+Z0wQ8ya7K4/fVlOrz8hISHLe5dely5dWL16Nc7Oznz33Xc8/fTTWSbIypQpY5mRdbvvJfNeY7e7RGheM8eRF3ugiYiIiIiIiIiIiEjRVKKTY82bNwduLK9obX+qmz388MMAbN68+ZZLs+UHO7sbL5lhGFbrFHaMtti+fbvVa9i5cycpKSkAGfaCMz/fv38/kZGRWbaNiIjIsDfZ7TDfY8j+PufGtm3bblnm4+NjWVIR/v/6t2zZYrVtcHCw5d5ld/1dunThxx9/xMXFhSVLltC/f39LOzNHR0fuv/9+AH766adbXFHW6tSpA8CpU6duq31eio6O5tq1awDUrl27kKMRERERERERERERkcJSopNjbdu25a677gJg5MiRJCUl3bLNkCFDcHBw4Nq1awQGBmZbNykpiZiYmDyJ1czT0xO4kQSyprBjtMW5c+eYP39+puNpaWlMnToVuJFYqV+/vqWsZ8+eODg4kJCQYNk362ZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdqza+jQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+y7ZtQdi/fz9paWk4ODhYEsgiIiIiIiIiIiIiUvKU6OSYvb09n3/+OSaTiV27dvHII4+wa9cu0tLSgBuJo+DgYAYOHMhff/0FQI0aNZg4cSIAH3zwAYMGDeLo0aOWc6akpHD48GEmT55MzZo1OXz4cJ7GbE54/Pzzz1aX5ivsGG3h5eXF8OHD+eabbyyz286fP0+/fv0sM6emTJmSoU2lSpV47bXXAJg2bRqBgYGW5FVERAQTJ07kww8/BGDUqFFUqFDhtmK7++67cXJyAmD27Nn5MnvMxcWFzp07s3nzZsv5f//9d9q3b8+1a9fw8PBg3LhxGdr07NmTBx54AIA+ffqwePFiSzLr9OnT9OzZk7179wI3XndbdOjQgbVr1+Lm5sbKlSvp06dPhiTxwIEDad++PYZh0L17d6ZMmcKlS5cs5bGxsWzbto2XXnrJkmhOr02bNsCNZRlDQ0NtvDv5Y9++fQA0adIEd3f3Qo1FRERERERERERERApPiU6OATz66KPMmzcPZ2dndu3aRcuWLXFzc6Ns2bKUKlWKtm3bsmjRogwJg4kTJzJx4kRMJhMLFy6kfv36ljYuLi40btyYwMBAzp8/j8lkytN4AwICcHFx4eTJk1StWpXy5ctTrVo1qlWrlmEvqsKM0RYvvvgizZo1Y+jQoXh6euLj40PVqlVZvnw5ABMmTKB79+6Z2k2dOpU+ffpgGAaTJ0+mTJky+Pj4UKZMGUsyrV+/frzzzju3HZubmxtPP/00AGPHjsXd3R1/f3+qVavGmDFjbvu86X388cckJCTQoUMH3N3d8fDw4P777+ePP/7A2dmZJUuWULVq1Qxt7O3tWblyJXXr1iUyMpIBAwbg7u6Ot7c3d911F2vWrMHOzo5PP/2URx991OZY2rVrx88//0ypUqX44Ycf6Nmzp+X9bu6za9euJCUlMXHiRCpVqoSXlxfe3t54eHjQrl07vvjiC2JjYzOdu3bt2jRs2BCANWvW5OKO5Z65//79+xdqHCIiIiIiIiIiIiJSuEp8cgxg0KBBnDhxghEjRlCnTh0cHByIj4/H39+fbt26sXDhwgx7FJlMJiZPnsyff/7Jiy++SO3atbG3tycyMhJvb2+aN2/O66+/zp49e/J8+bZatWqxbds2nnjiCXx9fbl+/Tpnz57l7NmzGfaMKswYbeHk5MSWLVuYOnUq99xzD4mJiXh5efHII4+wbt06q8ktJycnli1bxooVK3j00UcpU6YM0dHRlClThkcffZRVq1axePFiHB0dcxXfzJkzCQoKsizreO7cOc6ePWvZsyq3qlevzqFDh3jppZfw9fUlKSmJcuXK0a9fPw4dOsRjjz2WZbtKlSqxf/9+pk+fzoMPPoirqytxcXFUqVKFp59+mgMHDvDqq6/mOJ7WrVvzyy+/4OHhwdq1a+nWrRuJiYnAjWUmf/rpJ37++Wf69u1L1apVSUxMJC4ujkqVKtGxY0fee++9LJeJBBg2bBgAixYtynFceeXUqVPs3bsXV1dXBg0aVGhxiIiIiIiIiIiIiEjhMxn5sWaciBVt2rRh+/btBAYGEhQUVNjhFDjzLL1t27ZZlhws7qKjo6lcuTLR0dGcPn0af3//Ao9h8uTJBAYG8swzz/Dtt9/muH1UVBReXl5ERkZm2JOuuItLSqHO2xsA+GtyJ9ycHAo5IhGRokefpSIiJZM+/0UkP+kzRkTEOlt/l6uZYyKSr8z7pxmGwfvvv1/g/cfGxvLZZ5/h7OxMYGBggfcvIiIiIiIiIiIiIncWJcdEJN+NHDmSKlWqMGfOHM6fP1+gfX/++edcu3aNV199tVBmrYmIiIiIiIiIiIjInUVzbkUk37m4uLBgwQKCg4M5d+4cVapUKbC+S5UqRVBQECNGjCiwPkVERERERERERETkzqXkmORYjx492LNnT47arFq1iubNm+dTRAWrfPnyOW4TEhKSD5EULW3atCmUfdZefvnlAu9TRERERERERERERO5cSo5JjoWFhREaGpqjNklJSQAEBwfnQ0QFK6fXnp5hGHkYiYiIiIiIiIiIiIiI5JTJ0G/rRUSyFRUVhZeXF5GRkXh6ehZ2OCIiIiIiIiIiIiKSBVt/l2tXgDGJiIiIiIiIiIiIiIiIFColx0RERERERERERERERKTEUHJMRERERPJdXFIK1cato9q4dcQlpdz2cRERERERkZvl5f83bPm/iK3/X8mqnv6vI3JnUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHKskAQHB2MymTCZTHl+7qCgIEwmE23atMnzc0vRVNjviS1btmAymXj00UcLtN+lS5diMpl4+umnC7RfEREREREREREREblzKTkmmfzwww8EBQXxww8/FHYoheKTTz4hKCiIw4cPF3YoxUJaWhqjR48GYNKkSZnKzYm7/EgU9+nThzp16rBo0SIOHjyY5+cXERERERERERERkaJHybFC4ubmxj333MM999xT2KFk8sMPPzBp0qQSnRybNGmSkmN5ZP78+fzxxx889thj3H///QXat52dHRMnTsQwDMaMGVOgfYuIiIiIiIiIiIjInUnJsUJy//33c+LECU6cOFHYoYjkqw8++ACA4cOHF0r/vXr1omzZsmzbto39+/cXSgwiIiIiIiIiIiIicudQckxE8k1wcDAnTpzA19eXTp06FUoMDg4O9O3bF4CvvvqqUGIQERERERERERERkTuHkmP5oE2bNphMJoKCgkhOTuZ///sfzZo1o3Tp0phMJoKDgwkODr7lPktHjhyhb9++lC9fHhcXF+666y5eeeUVrly5YlN7sy1btvDYY4/h6+uLi4sLtWvXZtKkSSQkJGSoZz7n/PnzgRvL4Zn7MD+Cg4Nv+77MmzcPk8lEtWrVANi0aROPPvoovr6+uLq6UrduXaZMmZIprpv9999/DB8+nFq1auHq6oqnpydNmjRh8uTJREVFZdnm5vt16NAhBgwYQOXKlXF0dKRNmzaWva/Onj0LwDPPPJPp+nNj8ODBmEwmBg8ejGEYzJo1i/vvvx9PT088PT1p0aIFixcvvuV5goOD6d27N5UqVcLZ2ZmyZcvyyCOPMHfuXFJTU28rtkOHDlG+fHlMJhOdOnUiJiYmQ/nRo0cZOnQotWrVws3NDXd3dxo0aMBbb73FtWvXrJ73m2++AaB37944ODjkOK6bX7eTJ08yZMgQqlSpgrOzM5UrV+b555/n4sWL2Z6nf//+ACxZsiTTtYmIiIiIiIiIiIhIyaLkWD5KSEigTZs2jBkzhj/++AM7OzubEyyrV6+madOmLF++nNDQUBwdHbl8+TKff/45jRo14syZMzad58MPP6RDhw6sX7+elJQUkpKSOHHiBEFBQXTp0iVDMsXJyQk/Pz9cXFwAcHFxwc/PL8PDyckpx/chK1988QWdOnXil19+ISUlhZSUFP766y8mTpxI8+bNCQ8Pz7Ld8uXLqVu3LrNmzeLkyZM4OjqSlJTEoUOHCAwMpF69ehw/fjzbvleuXMkDDzzA4sWLiY6OtiRt3N3d8fPzw87uxrDw9PTMdP15pV+/fgwfPpwDBw7g4OBATEwMu3fvZsCAAQwZMgTDMLJsN2rUKNq2bcuKFSu4fPkybm5uREREsHXrVoYMGULHjh2Jjo7OUSybN2+mdevWhIaGMnDgQNauXYu7u7ul/IMPPqBhw4Z88803nDx5EpPJRHJyMkeOHGHq1Kk0aNCAQ4cOZTqvYRhs2LABgJYtW+Yopqxs27aNxo0bM3fuXCIjI0lLS+PixYvMnj2b+++/P9sE2X333YeLiwuxsbHs3Lkz17GIiIiIiIiIiIiISNGl5Fg+mjlzJn/++Sdz584lKiqKsLAwrl69SoMGDbJtd+rUKQYOHEhycjJNmjRh//79REdHExcXx6ZNm3BycmLUqFG37P+PP/5g3LhxjBs3jitXrhAeHk5ERARvv/02cCPZYJ4lBtC8eXNCQkIsS9D17duXkJCQDI/mzZvn4o7ccPXqVUaMGEGvXr04d+4c4eHhREVF8eWXX+Ls7MyhQ4d49tlnM7U7ePAgAwcOJDExkYcffpg///yTqKgo4uLiWLNmDRUqVOD8+fM8/vjj2c4OGjx4MB06dOD48eNERkYSHx/PN998w5gxYwgJCaFKlSoAfPrpp5muPy/88MMPLF++nHfeeYfw8HDCwsIIDQ3l5ZdfBmDu3Ll89tlnmdp9/vnnfPzxxwAMHTqUS5cuER4eTmRkJB9//DEODg5s3bqV559/3uZYlixZwmOPPUZ0dDSjR49mwYIFODo6WsrnzJnDG2+8gZubG++++y6XL18mNjaWuLg49u/fT7t27bh8+TJPPPFEpnv+119/cf36deDGHnu51bNnT9q1a8fx48eJiooiNjaWZcuW4eHhwaVLlxg/frzVto6OjjRp0gSA7du35zoWERERERERERERESm6lBzLRzExMSxevJjBgwfj6uoKQJkyZfDx8cm23dSpU4mLi6NcuXJs2rSJpk2bAmAymWjfvj0bNmwgLi7ulv1HREQwceJEpk6dStmyZYEbs6EmTZpEjx49gBvJkYIWFxdH8+bNWbp0qSUR5erqygsvvMDMmTOBGzPnfv/99wzt3nrrLZKTk6lZsyYbN26kfv36ANjZ2fH444+zbt06HBwc+O+//5g1a5bV/uvUqcOaNWu49957Lcdq1aqV15dpVWRkJBMmTGDChAl4enoC4Ovry2effcbAgQMBMi17GR8fT2BgIHBj1tlXX31F+fLlAShVqhQjRoxg+vTpACxbtowDBw7cMo7p06czYMAAy9KfH330UYaZjdHR0YwZMwaAFStW8Oabb1r6tLe3p2nTpmzYsIGmTZty4cIFZs+eneH8+/btA8DDw4O77ror5zfqJo0aNWL16tWW183JyYk+ffrw7rvvWmJMSUmx2r5x48YA7N2795Z9JSYmEhUVleEhIiIiIiIiIiIiIsWDkmP5qG7dujz++OM5amMYBitXrgRg+PDhWSbS7rnnHvr06XPLczk7O1uSGzd78sknAfjzzz9zFF9emTBhgmX5wvSeeeYZKleuDMDSpUstxyMiIixL9L3++uu4ubllatu4cWObkn6vv/469vb2uYo/N1xdXa2+LuZZfWFhYWzatMlyfNOmTYSFhQEQFBSUZdsXX3yRChUqAGS7d5lhGLz++uuMHj0aBwcHvvvuuyxnIq5cuZKIiAgaN25Mp06dsjyXg4MD/fr1A7C8PmaXLl0CsCRmc+vNN9/M8j1jfi/Hx8fz77//Wm1vjsMcV3bee+89vLy8LA9zEldEREREREREREREij4lx/LRww8/nOM2p06dIiIiAoDWrVtbrdemTZtbnqtu3boZ9o5Kr2LFigCWhEtBcnBwsLoHlZ2dneXa9u/fbzl+8OBByz5c7du3t3ruDh06ADeSfsnJyVnWuZ3XJS81a9bMMmPsZrVq1bIkB9Nfv/l5lSpVuPvuu7Nsa29vT7t27TK1TS85OZlBgwbx0Ucf4e7uzrp16+jfv3+WdXfv3g3A8ePHKV++vNXH5MmTATh79myG9levXgW45UxJWz3wwANZHje/lyH797M5DnNc2Rk/fjyRkZGWx/nz53MYrYiIiIiIiIiIiIjcqRwKO4DirFy5cjluk/4X9+l/6X+zSpUq3fJcHh4eVsscHG689NktQ5dfypYti7Ozs9Vy87VduXLFciz98+yu3ZxYSklJISwsDD8/v0x1bud1yUu3eu0qVarEhQsXsrz+W7U1X3/6tunt2bOHPXv2ADf2NjMnE7NinmGVkJCQYYlHa25e6tPcJrvXOiesvZ/N72XAakIUsCxtasu1ODs751ncIiIiIiIiIiIiInJn0cyxfJTbpfvS7/8keacwl1QsbPXr16dBgwYAjBo1iv/++89q3dTUVAD69u2LYRi3fJw5cyZD+zJlygAQHh6ePxeTQ+ZZZea4RERERERERERERKRkUnLsDuPr62t5nt3eSBcvXiyIcPLFtWvXSEpKslpuvrb0M7zSP79w4YLVtuYyBweHPFvOL6/d6rXL7vqzu/b05dZmx/n4+LB161YaNWrE+fPnad26Nf/880+WdcuXLw9kXi7RVub3cmEs3ZkVcxzpx5iIiIiIiIiIiIiIlDxKjt1h7rrrLkqXLg1AcHCw1XrZleWWnd2Nt4V5j6+8lpKSws6dO7MsMwyD7du3Azf25jJr0qSJJa4tW7ZYPffmzZsBaNiwIY6OjrcVX35f//79+4mJicmy7OTJk5YEV/rrNz+/cOGC1WRWamoq27ZtA+C+++6z2n+ZMmXYsmULTZo04eLFi7Rp04a///47Uz3z3mwHDhzg8uXLNlxZRnXq1AFuLBVq7XoL0unTpwGoXbt2IUciIiIiIiIiIiIiIoVJybE7jMlkokePHgDMmjUryyXp/v33X5YvX55vMXh6egIQERGRb328++67pKWlZTo+f/58zp8/D9xYzs+sdOnSdOrUCYAPP/ww0/5WAH/88QcrV64EoF+/frcdW35ff3x8PB999FGWZVOmTAFuzPBKvx9Yhw4dLMsBBgUFZdn2q6++ssw2vNX1+/j4sGXLFu677z4uX75MmzZtOH78eIY6vXv3pnTp0iQnJzNq1Khsk4VpaWmZ7lfz5s2xt7cnLS2N/fv3ZxtPQdi3bx8ArVu3LuRIRERERERERERERKQwKTl2Bxo/fjyurq6EhobSsWNHDh06BNyYybR161Y6deqEm5tbvvVfr149AHbu3MmJEyfy/Pxubm7s2rWL/v37W2ZJJSQk8PXXXzN8+HAAnnzySe6///4M7aZMmYKjoyMnT56kU6dOHDlyBLiRmPn555/p0qULKSkp1KhRg2HDht12fObrX7FiRb7sl+Xl5cU777zDe++9R3R0NHBjqcnXXnuN+fPnAzBx4kRcXFwsbVxdXS1JsSVLlvDCCy8QGhoKQFxcHDNmzGDEiBHAjaRi06ZNbxlH6dKl2bRpEw8++CAhISG0adOGo0ePZij/5JNPAFi6dCmPPfYY+/btsyQ109LSOH78OP/73/+oW7cua9euzXB+Dw8PSxzmxFRhCQkJ4dy5c4CSYyIiIiIiIiIiIiIlnZJjd6CaNWuyYMECHBwc2L9/P02aNMHT0xN3d3ceeeQRkpKSmD59OgDOzs553n/Pnj3x9fUlPDyc2rVr4+vrS7Vq1ahWrRq//vprrs/v6+vLxx9/zPLly6lSpQo+Pj54enoybNgwEhISaNiwIXPmzMnUrkmTJixcuBAnJyd27dpFgwYN8PLyolSpUjz22GNcunSJKlWq8NNPP+Hu7n7b8Q0dOhSTycSePXvw9fWlYsWKluvPC926daN37968+eabeHt74+PjQ7ly5ZgxYwYAgwYN4tVXX83U7uWXX2bkyJHAjVliFSpUwMfHBy8vL1577TWSk5Np27Yt33zzjc2xeHl5sXHjRpo3b86VK1do27Ytf/75p6U8ICCAL7/8EicnJ9avX8+DDz6Im5sbZcuWxcXFhTp16jBmzBhOnDiByWTKdH7zDLY1a9bk6B7lNXP/jRo10rKKIiIiIiIiIiIiIiWckmN3qF69erF//3569+6Nr68viYmJ+Pn58dprr3Ho0CG8vLwALPuT5SVvb2927NjBU089RaVKlYiMjOTs2bOcPXuWhISEPOnjpZdeYsOGDXTu3Bk7Ozvs7Oy49957mTx5Mnv37rUsIXizvn37cuzYMYYNG0aNGjVITEzEwcGBRo0aMWnSJI4ePZrr5EerVq1Yt24d7du3p3Tp0oSGhlquP68sWbKEL774gsaNG5OSkkKpUqV46KGHWLBgAfPnz7fse3az6dOns3XrVnr27Imfnx8xMTF4eHjQtm1bvv32WzZt2oSHh0eOYvHw8GDDhg20bNmSa9eu0a5dO8tsRYAXXniBv//+mzFjxtCwYUOcnZ2JiIjA3d2dZs2a8corr7Bp06Ysl3IMCAjAxcWFPXv2WPb8KgyLFi0CyNWMQhEREREREREREREpHhwKO4DiKDg4+JZ12rRpk+0eTgANGza0ureYeQ+nunXrZioLCgqyui+Vrf3fe++9LFmyJNtz5FaHDh0y7Ktlq5o1azJr1qwctbHlfqf36KOP8uijj+Y0NJuZTCaGDx9uWUYyJ9q2bUvbtm1z1OZW7wl3d3d27NhhtbxatWp8+OGHOeoTbiRa+/Xrx9y5c1m4cCFvv/12jmKz9XXLrs6ZM2fYuXMnnp6eDBgwwObYRURERERERERERKR40syxIujq1avMnj0bgM6dOxdyNCLZe/vtt3F2dubzzz8nNja2wPt///33MQyD8ePH53hWnYiIiIiIiIiIiIgUP0qO3aFmzJjBtGnTOHnyJCkpKQAkJiby888/06pVK65cuYKvry9Dhgwp5EhFsletWjVeeeUVrl69ysyZMwu07/Pnz/Ptt99StWpVRowYUaB9i4iIiIiIiIiIiMidScsq3qFOnTrFp59+yvjx47G3t8fLy4uoqChLoszLy4vly5db3ZtL5E7y1ltv4e7uTqlSpQq037NnzzJ+/Hjatm2Li4tLgfYtIiIiIiIiIiIiIncmJcfuUAEBAdjb27Njxw4uXrzI9evXcXV1pXr16nTq1InXXnuNSpUqFXhcy5Yt47XXXstRm759+/Lpp5/mU0QF67XXXmPZsmU5avPpp5/St2/ffIqoaChdujSBgYEF3m+LFi1o0aJFgfcrIiIiIiIiIiIiIncuJcfuUI0bN6Zx48aFHUYm8fHxhIaG5qhNZGQkAIMHD2bw4MH5EFXBiYyMzPH1x8fHAzBv3jzmzZuXD1GJiIiIiIiIiIiIiIitTIZhGIUdhIjInSwqKgovLy8iIyPx9PQs7HBEREREREREREREJAu2/i7XrgBjEhERERERERERERERESlUSo6JiIiIiIiIiIiIiIhIiaHkmIiIFGlxSSlUG7eOauPWEZeUUtjhiIgUG/p8FREpnvT5LiIFRZ83InInU3JMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJM5A5TrVo1TCYT8+bNK5T+Bw4ciMlkYtmyZYXSf15KS0ujbt26ODo68vfffxd2OCIiIiIiIiIiIiJyB1ByLJ/MmzePoKAggoODCzuUYuvMmTMEBQURFBRU2KEUG/v372fx4sXUq1ePPn36ZFv35MmTjB8/nvvuuw9fX1+cnJwoX748Dz/8MJMmTeLSpUv5GusPP/xAUFAQP/zwg9U6dnZ2TJw4kZSUFMaOHZuv8YiIiIiIiIiIiIhI0aDkWD6ZN28ekyZNUnIsH505c4ZJkyYxadKkwg6l2Bg9ejSGYRAYGIjJZMqyTmpqKq+//jq1a9dm2rRp7N+/n/DwcNzd3bl69Sp79uwhKCiIWrVq8dFHH+VbrD/88AOTJk3KNjkG0KdPH+rUqcOaNWvYsWNHvsUjIiIiIiIiIiIiIkWDkmMiAsCvv/7Kjh07KF++PN27d8+yTlpaGj179uSjjz4iJSWFzp07s337dhITEwkLCyM+Pp5ffvmF5s2bExcXx+uvv86rr75awFeSkZ2dHc8//zwAH3zwQaHGIiIiIiIiIiIiIiKFT8kxEQFg1qxZADz11FPY29tnWWfKlCn8+OOPAIwbN47169fTqlUrS30nJyc6derEzp07GTRoEACfffYZCxcuLIArsK5fv37Y29uzfv16zp07V6ixiIiIiIiIiIiIiEjhKnLJsfPnzzN27FgaNWqEl5cXrq6u1KhRgyeffJIFCxaQkJCQqc3u3bsZOHAg/v7+uLi44OXlxf3338/7779PTExMlv0MHjwYk8nE4MGDAVixYgVt2rTBx8cHNzc3GjVqxKeffkpaWlqGdvPmzcNkMrF9+3YAJk2ahMlkyvA4c+ZMnsdoGAazZ8+mRYsWlClTBpPJxLx582y/sTdp06YNJpOJoKAgkpKSmDZtGg0aNKBUqVJ4e3vToUMH1q9ff8vzrFq1iq5du+Ln54eTkxN+fn507dqV1atXW21jy3VVq1aNtm3bWtrcfI/Nr9vtMp8nODiYkJAQXn75ZapXr46Liwvly5dnwIABnDhxIttzJCQk8Mknn9C8eXO8vb1xcXHB39+fQYMGcfjw4duO7d1338VkMmFvb29JaJmlpaWxaNEiunTpYrnnvr6+dOzYkSVLlmAYRpbnjIqKYvny5QD0798/yzpXrlxh2rRpALRt25apU6dajdHOzo6vv/6a2rVrAzB+/HiSkpIy1Ll5jGXFPJ6qVatmORYcHIzJZGL+/PkAzJ8/P9Prf/Nypn5+frRr1460tDTmzJljtT8RERERERERERERKf6KVHJs4cKF3H333Xz44Yf88ccfJCQkUKpUKc6dO8eaNWsICAjIkLBIS0vjtddeo0WLFixatIhz587h6OhIbGwsv//+O+PGjaNZs2acPXs2235ffvllevfuzc6dOzEMg/j4eP744w9GjBjBM888k6Guq6srfn5+ODo6AlCqVCn8/PwyPNLPysmLGA3DoHfv3jz//PPs3bsXwzCws8ublzYpKYn27dszfvx4jh8/jpOTExEREWzevJkuXboQFBRktd1TTz1Fz549WbduHdeuXcPd3Z1r166xbt06evToQf/+/UlOTr6t6/L19cXb29tS9+Z77OXllSfXf/r0aRo3bszMmTMJDQ3F0dGR0NBQFi9eTOPGjfnll1+ybHfx4kXuu+8+Ro4cyd69e4mNjcXFxYVz586xcOFCmjZtymeffZajWNLS0nj55ZeZMGECLi4urFixghdeeMFSHhYWRtu2bRk4cCDr16/nypUruLm5ce3aNTZt2kT//v3p1q1bpiQVwPbt24mPj6dUqVI0adIky/7nzp1LfHw8QLZ7kpk5Ozszbtw4y/241d5gtjInWV1cXABwcXHJ9Po7OTllateqVSsAq6+ZiIiIiIiIiIiIiJQMRSY5tm7dOgICAkhISODhhx9m586dxMfHc+3aNWJjY9m5cyfPP/98hl+KBwYGMmPGDMqVK8fMmTO5fv060dHRxMfHs23bNho3bszff/9Njx49Ms0AM1uzZg3ffPMN06dPJzw8nPDwcK5du8Zzzz0HwIIFC9i6daulft++fQkJCaF58+YAjBkzhpCQkAyPKlWq5GmMq1at4scff+Sjjz4iPDycsLAwIiMj6dSpU67v+xdffMFvv/3GrFmziI6OJjw8nHPnztGrVy/gxsy4NWvWZGr35ptvsmzZMkwmExMnTuT69euEhYVx7do13nzzTQCWLFnCxIkTrfad3XX9/vvvrFq1ylL35nv86aef5vraAUaOHImTkxMbN24kNjaW6Oho9u3bR/369UlISKBv375cuHAhQ5vU1FR69uzJ0aNH8fLy4rvvviMmJoaIiAj+++8/unbtakmK2jL7DiAxMZE+ffowc+ZMSpcuzcaNGzPsC5aamkqPHj3YsWMHjRo14qeffiI2NpaIiAhiYmKYP38+5cqVY82aNbzxxhuZzr9jxw4AmjRpYnVJRfP7vEyZMrRu3dqmuLt162ZJom3bts2mNrfSvHlzQkJC6Nu3L/D/Yy79wzz+0nvggQcAOHjwoNXZmCIiIiIiIiIiIiJS/BWJ5FhKSgqvvPIKhmHQokULtm7dSosWLSyziJycnGjRogVff/01derUAeDMmTO89957uLq6snHjRl588UV8fHwAcHR0pE2bNmzfvp3KlStz8ODBLBM8AOHh4Xz11VeMHDkST09P4EZy4JtvvqFp06bAjSTP7cirGGNiYpg+fTqjR4+2xOju7k6FChVuK670IiMj+eKLLxg2bJhlpk6VKlVYtmyZZSaOOdlldvHiRUtyaty4cUyePJnSpUsD4O3tzbvvvsuoUaMAmD59OpcvXy7w67JVfHw8v/zyCx06dLAkee6//342b96Mj48PUVFRvPfeexnarFixgn379gGwfPlyBgwYYEna3nXXXaxevZoHHngAwzAYO3bsLWMwJwRXrlxJpUqV2LlzJy1btsxQZ/HixWzfvp17772X4OBgunbtipubG3Bj9uKgQYP4+eefMZlMfPHFF1y5ciVDe3O8DRs2tBrHsWPHAGjcuPEtYzbz9PTkrrvuAuDo0aM2t8sP5rhTUlL4/fffs62bmJhIVFRUhoeIiIiIiIiIiIiIFA9FIjm2bds2Tp8+DcDHH3+c5ZJpN5s3bx6pqal07tzZ6i/8PTw86NatGwAbNmzIsk6VKlUICAjIsuyJJ54A4M8//7xlPPkZo7e3N8OGDbutGG6lSpUqmZaOhBt7Sk2YMAG4kTQ5cuSIpWzlypWkpKTg4uJiWVbvZhMmTMDZ2Znk5GRWrFiRZZ38vC5b9e7d27JvVnrlypWzLGm4bNmyDGXmfz/00EN07NgxU1sHBwcCAwOBGwmj9PfuZpcuXaJly5aWxNeePXuoV69epnrmfbSGDx9udUnJpk2bUrduXZKSkjLN4rp06RJwY7lKa65fvw7cSA7nRNmyZTO0Lyw+Pj6WhLr5eq1577338PLysjzSz/YUERERERERERERkaLNobADsMWePXsAKF++PM2aNbOpze7duwHYuHEj5cuXt1rPvLyatT297rvvPqt7K1WsWBG4sdfT7cjLGG1JGN6ONm3aWL3+li1b4uDgQEpKCvv376d+/foA7N+/3xKXecbXzby9vWnWrBm7d++21L9Zfl6Xrdq1a5dt2dSpU7l+/TqnT5+mevXqwP9ff/v27a22bdu2Lfb29qSmpma4d+mdOHGCoKAgzp49y0MPPcTatWstMwvTS01N5ddffwUgKCiIqVOnWu3X/F69+b109epVgCzPX1zY2dnh5eVFeHi45XqtGT9+vGV2I0BUVJQSZCIiIiIiIiIiIiLFRJFIjoWEhADg7+9vcxvzzJDY2FhiY2NvWT8uLi7L4x4eHlbbODjcuH3Jyck2x5VeXsVYrly52+rfFpUqVbJa5uLiQpkyZQgNDc2wTJ/5eXZtASpXrpyh/s3y87psld01pC+7cuWKJTlmy/W7uLhQtmzZTPcuvffffx8APz8/Nm7ciLu7e5b1wsLCSExMBG4sA2qLm99LCQkJADg7O1ttU6ZMGS5evJjjGWDXrl2ztC9srq6uhIeHW67XGmdn52zvhYiIiIiIiIiIiIgUXUViWUVrM5eyk5qaCsAbb7yBYRi3fAQHB+dx1AUXo729fQFGXXCK63XZqnfv3jg5OREaGsrw4cMt75ebpT++fv16m95LQUFBGc5hTlxll1wz7+d36NAhm68hKiqKU6dOAVC3bl2b2+UX88y5OyFRJyIiIiIiIiIiIiKFo0gkx8xLDlpbVjCv2hS0ohDjxYsXrZYlJiZaZhGln+Vlfn7hwoVsz20uvxNmiFmT3fWnL8vp9SckJGR579Lr0qULq1evxtnZme+++46nn346ywRZmTJlLLMYb/e9ZN5rLLslQh955BHgxt5htiaTV69ejWEYQOYlKs0xZzeLKzIy0qZ+bBEfH2/pK7u91URERERERERERESkeCsSybHmzZsDN5ZXtLY/1c0efvhhADZv3nzLJdTyg53djVtrTgxkpbBjtMX27dutXsPOnTtJSUkByLAXnPn5/v37rSY3IiIiMuxNdjvM9xiyv8+5sW3btluW+fj4WJZUhP+//i1btlhtGxwcbLl32V1/ly5d+PHHH3FxcWHJkiX079/f0s7M0dGR+++/H4CffvrpFleUNfOsMPMsr6wMHjwYFxcXACZPnnzLe56YmGhZGrJixYp069YtQ7m3tzcA58+ft3qOffv2WS2zZYyld/r0acvz2rVr29RGRERERERERERERIqfIpEca9u2LXfddRcAI0eOJCkp6ZZthgwZgoODA9euXSMwMDDbuklJScTExORJrGaenp7AjSSQNYUdoy3OnTvH/PnzMx1PS0tj6tSpwI3ESv369S1lPXv2xMHBgYSEBEty5GZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdrnbujQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+s9rOz8+PsWPHAjcSg2+99ZbVumlpaQwbNozjx48DN15vJyenDHUaNmwIwO+//55lguz48eOsWrXKah+2jLH0zIk2Pz8/7rnnHpvaiIiIiIiIiIiIiEjxUySSY/b29nz++eeYTCZ27drFI488wq5du0hLSwNuJI6Cg4MZOHAgf/31FwA1atRg4sSJAHzwwQcMGjSIo0ePWs6ZkpLC4cOHmTx5MjVr1uTw4cN5GrM54fHzzz9bXZqvsGO0hZeXF8OHD+ebb76xzG47f/48/fr1s8ycmjJlSoY2lSpV4rXXXgNg2rRpBAYGWhIYERERTJw4kQ8//BCAUaNGUaFChduK7e6777YkXGbPnp0vs8dcXFzo3Lkzmzdvtpz/999/p3379ly7dg0PDw/GjRuXoU3Pnj154IEHAOjTpw+LFy+2JLNOnz5Nz5492bt3L3DjdbdFhw4dWLt2LW5ubqxcuZI+ffpkSBIPHDiQ9u3bYxgG3bt3Z8qUKVy6dMlSHhsby7Zt23jppZcsieb02rRpA9xYljE0NNRqHIGBgXTt2hWA9957jy5durBz507Lco/Jycls3LiRVq1aWZKqL774IgEBAZnO9fjjj+Pu7k5ycjJ9+vSxJCGTk5P58ccfad++PaVKlbIai3mM7dy5kxMnTlitZ2ZOjrVu3fqWdUVERERERERERESkGDOKkPnz5xvOzs4GYACGs7OzUaZMGcPBwcFy7NChQ5b6aWlpxsSJEw2TyWQpd3V1NcqUKWPY29tbjgHGrl27MvQVEBBgAEZAQIDVeObOnWsAhr+/f6ayf/75x3BxcTEAw87OzvDz8zP8/f0Nf39/4/z58wUW4+1q3bq1ARjjx483WrRoYQCGo6Oj4e3tnSGmCRMmZNk+MTHR6NOnj6WenZ2d4e3tbdjZ2VmO9evXz0hKSsrUNifX9eyzz1rO5+bmZlStWtXw9/c3Ro8enavrN5/z22+/NcqXL285v7u7e4b339q1a7Nsf+HCBaNu3bqWuk5OTkbp0qUz3I9PP/00y7b+/v4GYMydOzdTWXBwsFGqVCkDMLp27WokJiZayiIjI42uXbtmeH08PT2N0qVLZ3h/OTg4ZNlvw4YNDcD4+uuvs703ycnJxsiRIzOMO3t7e8PHxyfD6+vi4mJMmzYt23PNnj07Q2weHh6Gk5OTARgPPvig8fnnn1sdY2FhYYavr6+lbdmyZS1jbO/evRnqpqamGpUrVzYA44cffsg2pqxERkYagBEZGZnjtpL/YhOTDf831hr+b6w1YhOTCzscEZFiQ5+vIiLFkz7fRaSg6PNGRAqDrb/LLRIzx8wGDRrEiRMnGDFiBHXq1MHBwYH4+Hj8/f3p1q0bCxcuzLCXkMlkYvLkyfz555+8+OKL1K5dG3t7eyIjI/H29qZ58+a8/vrr7Nmzx7L/V16pVasW27Zt44knnsDX15fr169z9uxZzp49m2HPqMKM0RZOTk5s2bKFqVOncs8995CYmIiXlxePPPII69at45133rHabtmyZaxYsYJHH32UMmXKEB0dTZkyZXj00UdZtWoVixcvxtHRMVfxzZw5k6CgIMuyjufOnePs2bNcu3YtV+c1q169OocOHeKll17C19eXpKQkypUrR79+/Th06BCPPfZYlu0qVarE/v37mT59Og8++CCurq7ExcVRpUoVnn76aQ4cOMCrr76a43hat27NL7/8goeHB2vXrqVbt24kJiYCN5YZ/Omnn/j555/p27cvVatWJTExkbi4OCpVqkTHjh157733slwmEmDYsGEALFq0KNsYHBwcmD59On/99Rdjx46ladOmlC5d2vL6PvTQQwQGBnLy5EneeOONbM/17LPPsm7dOtq1a4enpycpKSncfffdTJs2je3bt2c7c8zb25sdO3bw1FNPUalSJSIjIy1j7OY9/LZv386FCxeoVKmSZeabiIiIiIiIiIiIiJRMJsPIh7XopMhr06YN27dvJzAwkKCgoMIOp8CZTCbgxt5a5iUHi7vo6GgqV65MdHQ0p0+fxt/fv7BDyjNDhgxh7ty5TJo0ibfffjvH7aOiovDy8iIyMjLDXndyZ4hLSqHO2xsA+GtyJ9ycHAo5IhGR4kGfryIixZM+30WkoOjzRkQKg62/yy1SM8dEJP+Y908zDIP333+/sMPJM+fPn2fRokX4+voyYsSIwg5HRERERERERERERAqZkmMiYjFy5EiqVKnCnDlzOH/+fGGHkyemTp1KUlISQUFBmvUlIiIiIiIiIiIiImguq4hYuLi4sGDBAoKDgzl37hxVqlQp7JByJS0tjapVqzJlyhSGDh162+cxrz4bFRWVV6FJHopLSiEtMQ648RqlaJkGEZE8oc9XEZHiSZ/vIlJQ9HkjIoXB/DvcW+0opk+kYqxHjx7s2bMnR21WrVpF8+bN8ymiglW+fPkctwkJCcmHSIqWNm3aFJt91uzs7Bg/fnyuzxMdHQ1Q5JOFJUGFTwo7AhGR4kmfryIixZM+30WkoOjzRkQKWnR0NF5eXlbLlRwrxsLCwggNDc1Rm6SkJACCg4PzIaKCldNrT+9WWWUpWSpWrMj58+fx8PDAZDIVdjg5FhUVRZUqVTh//ryWlhTJhsaKiO00XkRso7EiYhuNFRHbaKyI2EZjpWQzDIPo6GgqVqyYbT0lx4qx4pDgyg0luCSv2NnZUbly5cIOI9c8PT31A4GIDTRWRGyn8SJiG40VEdtorIjYRmNFxDYaKyVXdjPGzOwKIA4RERERERERERERERGRO4KSYyIiIiIiIiIiIiIiIlJiKDkmIlLMOTs7ExgYiLOzc2GHInJH01gRsZ3Gi4htNFZEbKOxImIbjRUR22isiC1MhjZmEhERERERERERERERkRJCM8dERERERERERERERESkxFByTEREREREREREREREREoMJcdERERERERERERERESkxFByTEREREREREREREREREoMJcdERPJYXFwc69evZ8qUKfTo0QN/f39MJhMmk4mgoCCbzrFixQoef/xxKlasiJOTE6VKleKee+7h+eef5/Dhw1bbbd++nbfeeotOnTpRq1YtvL29cXR0pFy5crRt25YZM2YQHx+fbd+pqaksXLiQDh06ULZsWZydnalcuTL9+vVj7969NsV/8OBBBg4cSOXKlXF2dqZChQp0796drVu32tReSoaSPFbatGljuVZrj8qVK9t0D6T4K8yxYs0LL7xgiaFatWq3rB8aGsro0aO55557cHV1xcfHh5YtWzJ79mwMw7hl+//++49hw4ZRvXp1XFxc8PX1pVOnTqxcuTLHsUvxVpLHy+DBg2/53WIymUhJScnxNUjxU5THSkREBD/++CNvv/02Xbt2pUKFCpZ28+bNs7k/fbeILUryWNH3iuREUR4rFy9e5IsvvqB3797UrFkTV1dXXF1dqV69Ov369bP5d1m5/T+PFAJDRETy1LZt2wwgy0dgYGC2bRMSEozHH388Qxt3d3fDycnJ8m87Oztj+vTpWbZ/7LHHMrQtVaqUUapUqQzHqlevbvz9999Zto+Ojjbat29vqWtvb294e3sbdnZ2lr4/+OCDbK/hm2++MRwcHCzn8PLyMkwmk833QEqOkjxWWrdubenXz88vy0fjxo1tvpdSvBXmWMnK1q1bM3yu+/v7Z1t///79RpkyZTL0n/57olOnTkZiYqLV9uvWrTPc3Nws9T09PS1jDTCeeeYZIy0tzeb4pXgryeMlICDAAAwXFxer3y1+fn5GSkqKzfFL8VWUx8rcuXOtxj537lyb+tN3i9iqJI8Vfa9IThTVsXLu3LkM9QDDzc3NcHV1zXBsyJAh2b7Xc/t/HikcmjkmIpIPvL29eeSRR3j99ddZsmQJ5cuXt6nd1KlT+emnnwB48cUXuXDhAtHR0cTHx7N//35atGhBWloao0eP5sCBA5nat2/fnhkzZnDw4EGioqKIiYkhJiaGa9euMWPGDFxdXTl9+jTdu3cnLS0tU/vnn3+ezZs3Y2dnx9SpUwkPDycsLIxr164xduxY0tLSGDt2LGvWrMky/r179/LCCy+QkpJCt27dOH/+PBEREVy9epVhw4YBMGnSJJYvX27rrZRirqSOFbMxY8YQEhKS5ePgwYM23QspGQprrNwsLi6O559/HgcHB5o1a3bL+pGRkXTt2pXr169z77338vvvvxMdHU1sbCyff/45jo6ObNiwgREjRmTZ/vTp0/Tp04e4uDgefvhh/v77byIjI4mMjOTtt98GYO7cuXz44Yc23Q8pGUrqeDHr27ev1e+WkJAQ7O3tbbofUvwV1bECUL58eR599FHeeustVq1aZVMbM323SE6V1LFipu8VsVVRHCupqakYhsEjjzzC/PnzuXjxIrGxscTExHDs2DGefPJJAL799lurM+Dy6mc4KQSFnZ0TESlusvpLEn9/f5v+WqZatWoGYLRu3TrL8oiICMPd3d0AjHHjxuU4tq+++sryVyu7du3KUPbnn39aykaMGJFl+759+xqAUbNmTSM1NTVTeYsWLQzAqF+/vpGUlJSpvFOnTgZgVKtWTX9dJiV6rJhnjmkmpdjiThorI0aMMADjrbfesvw1cXZ/sTxhwgQDMFxdXY1Tp05lKp86daoBN2ZfZjVTc+DAgQZglC9f3ggPD89UPnToUMtf/IeFhd0yfin+SvJ4MfcREBBwy9hEivJYySp2889mtsyG0XeL5ERJHiv6XpGcKKpjJSIiwjhw4IDVc6WlpRmdO3e2zAaLj4/PVCe3P8NJ4dHMMRGRPJabv5q6fPkygNW/bPHy8uLuu+8GICYmJsfnf/DBBy3PL1y4kKHs559/tjx//fXXs2w/duxYAE6ePMmuXbsylJ06dcpybMyYMTg6OmZqP378eADOnDnDjh07chy/FC8ldayI5NSdMlZ+/fVXZsyYwd13382ECRNs6n/BggUAPPXUU1SvXj1T+SuvvIK7uzupqaksWrQoQ1lsbKxl35fhw4dTunTpTO3N3ytRUVH88MMPNsUkxVtJHS8iOVWUx0puYtd3i+RUSR0rIjlVVMeKl5cXTZo0sVpuMpkYMmSIpe/jx49nqqOf4YouJcdERO4gd911F4DVaeKRkZH8888/gPUfGrKzc+dOy/MaNWpkKDt79ixw4weDihUrZtn+3nvvxWQyAbBx48YMZZs2bbI879y5c5btW7RogYeHR5btRXKiKI8VkYKUV2MlMTGRIUOGYBgGX3/9NS4uLrfs+++//+bcuXMAPProo1nWcXd3p2XLlkDmsbJr1y7i4+OzbV+tWjVq166dZXuRnCrK40WkIBXmWMktfbdIQSrKY0WkIN3pYyX9eVJTUzOU6We4ok3JMRGRO8jw4cMBCA4O5qWXXuLixYsAGIbBwYMH6dq1KzExMTz00EMMHDjQpnPGx8fz77//MnXqVEaPHg1Aq1atrP5AkdX+SunLDMMA4MiRIxnKjh49CkC5cuUoV65clu3t7e259957ATh27JhN8YtkpSiPlfQWLVpEtWrVcHZ2pnTp0jRr1oy33nqLS5cu2RSzyK3k1ViZPHkyx48f59lnn6V169Y29W3+XgCoV6+e1Xrmsr/++itX7fW9IrlVlMdLelu2bOHuu+/GxcUFT09P6tevz4gRI/j3339tikXkVgpzrOSWvlukIBXlsZKevlckv93pYyU4OBgAJycnyww2s7z8GU4KnpJjIiJ3kJdeeomxY8diZ2fHF198QeXKlfHw8MDFxYWmTZty8uRJxo0bx5YtW7Kdsh4SEoLJZMJkMuHm5sbdd9/NW2+9RWJiIo8//jirV6/O1KZatWoAREdHW2bG3Cz9l/7Nv7w3/7tSpUrZXqO5XL/8l9woymMlvZMnT3Lp0iVKlSpFVFQUBw4cYOrUqdSuXTvLvkVyKi/GyqFDh/jggw/w8/Pjww8/tLnv9O/97L4bzGVRUVEZlkkxt/f29sbV1fWW7fW9IrlVlMdLehcuXODUqVO4ubkRFxfH0aNH+fTTT6lXrx5ffvmlzTGJWFOYYyW39N0iBakoj5X09L0i+e1OHiunT59m1qxZAPTt2xdPT88M5Xn5M5wUPCXHRETuIHZ2drz33nt8++23uLu7AzfWNE5KSgIgISGByMhIYmNjsz2Pvb09fn5++Pn5ZZj+3bt3bz744AN8fHwytUk//XvKlClZnvfdd9+1PI+KispQFh0dDYCbm1u2sZnLzfVFbkdRHisAbdq0Ye7cuVy8eJHExETCwsIIDw9n7ty5lCtXjqioKPr27cuvv/6abfwit5LbsZKSksKQIUNISUlhxowZWe7NYk36z/nsvhvSl6Vvo+8VKWhFebwANGnShM8//5wzZ85YvluioqJYuXIlNWrUICkpiRdffNGy35LI7SrMsZJb+m6RglSUxwroe0UKzp06VuLj4+nduzdxcXGULVuWadOmZaqTFz/DSeFRckxE5A5y7do1HnnkEQYPHsxDDz3Erl27iIiI4PLly6xatQpfX1++/PJLHnjgAcs086z4+voSEhJCSEgIcXFxnD9/nrfeeouffvqJBg0a8PXXX2dqU79+fXr37g3A7NmzGTVqFGfOnCE5OZl//vmHIUOGsHbtWhwdHYEbP7yIFJaiPlaCgoIYPHgwFStWtOxN5uXlxeDBg9mzZw+lS5cmOTmZsWPH5sXtkhIst2Nl2rRpHD58mK5du9KnT59CuAKRglPUx8urr77KSy+9hL+/v+Wvqt3c3OjRowf79u2zbBA/evRoy9K/IrejqI8VkYJS1MeKvlekoNyJYyUlJYX+/ftz4MABHB0dWbRokdU9x6UIM0REJN/5+/sbgBEYGJhtvS5duhiA0bp1ayMtLS1TeWhoqFG2bFkDMAYOHJjjOFauXGkAhp2dnXH48OFM5VFRUUa7du0MIMvHk08+aXTr1s0AjIceeihD2x49ehiA0bhx42xjMLdv2rRpjuOX4q8kjBVbvPXWWwZgmEwm49q1azluL8VfQYyVY8eOGU5OToa7u7tx7ty5TG0DAgIMwPD398+y7xkzZljGRGRkpNUYP/nkE0u96Ohoy/FRo0YZgOHt7Z3tNY4YMcIAjDJlymRbT0qukjBebPHNN99Y2h44cCBHbaVkKApjxRrze3vu3LnZ1tN3i+SFkjBWbKHvFbmVojpWUlJSjD59+hiA4eDgYHz//fdW6xbEz3CSf/Rn/yIid4jjx4/z888/Azf+8so8myS9cuXKMWjQIABWrVqV47/O6tGjB1WrViUtLY05c+ZkKvfw8GDTpk0sXryYJ598klq1alGtWjXat2/P/PnzWb16NWFhYQCZNiE1/wVNdrN00pfrL27kdhX1sWKLhx56CLixAfHp06dz3F4Ecj9WXnrpJZKSknjrrbfw9vYmJiYmwyMlJQW48T41H0tOTra0T/85n913g7nM09PTsoxK+vbh4eHEx8ffsr2+VyQ3ivp4sYX5uwXg1KlTOWorYlbYYyW39N0iBaWojxVb6HtF8sKdNlZSU1MZOHAgy5cvx97enu+++45evXpZrV8QP8NJ/lFyTETkDvHXX39ZnteoUcNqvVq1agEQFxfHlStXctyPeRPQkydPZlluZ2dHv379+OGHH/jnn384ffo0mzZtYtCgQaSmpvLHH38A0Lx58wzt6tWrB8CVK1e4evVqludOTU3lxIkTANStWzfHsYtA0R8rIgUlt2PFnJgdP348Hh4emR6LFi0C4Ny5c5ZjM2fOtLQ3fy8AHD161Gr/5rI6depkOJ7T9vpekdwo6uNFpKAU9ljJLX23SEEp6mNFpKDcSWMlNTWVAQMGsHTpUktirG/fvtnGr5/hijYlx0RE7hDp9yU6e/as1XqhoaGW5zn9a5P0s1A8PDxyGCH89NNPREZG4urqatlzyaxDhw6W57/88kuW7Xfv3m3ZeLRjx4457l8Eiv5YscWvv/4KgMlkolq1ajluLwIFM1ayc/fdd1O1alXA+vdCbGwsO3fuBDJ/L7Ro0QJXV9ds2589e5bjx49n2V4kJ4r6eLGF+bsFsOwTI5JThT1WckvfLVJQivpYsYW+VyQv3CljJTU1lf79+7Ns2TJLYuypp566ZbuC+BlO8o+SYyIid4gmTZpYnn/55ZdZ1omNjWXBggUANGjQgFKlSlnKzFPFszN37lxCQkIAaNOmTY7iu3r1KmPGjAFuTFv39vbOUH7XXXfRokULAP73v/9lOU192rRpAPj7+9OqVasc9S9iVtTHyq2WeDx9+rTlL9maN29O2bJlc9S/iFlux8qZM2cwDMPqIyAgALjxmW4+NmLECEt7k8lkWf5k6dKlnDlzJlP/M2fOJCYmBnt7ewYMGJChrFSpUvTs2dMSf2RkZKb277//PnAjid2tW7db3BER64r6eLnVd0tYWBhTp04FoEqVKjRu3Djb+iLWFPZYyS19t0hBKepjRd8rUlDuhLFinjG2fPlyHBwcWLRokU2JMcj9z3BSyPJg3zIREblJWFiYcfXqVcujSpUqBmC8/vrrGY7fvAnn448/btmgc+DAgcbJkyeNtLQ0Iykpydi9e7fRrFkzS/n8+fMztN22bZvRsmVLY8GCBcb58+czlP3zzz/GG2+8YTg4OBiAUaNGDSMuLi5T3GvXrjU++eQT4+TJk0ZKSophGIYRGxtrLF++3KhRo4YBGA0bNsyyrWEYxu7duw17e3sDMHr06GFcuHDBMAzDuH79ujF8+HBL7MuWLbvteyvFS0kcK1OnTjUGDRpk/Pzzz0Z4eLjleGRkpDF//nyjfPnyBmA4Ojoau3btut1bK8VMYYyVW7Flc+uIiAjLe7pOnTrG/v37DcMwjMTEROOLL74wnJycDMAYPnx4lu1PnTpllCpVygCMli1bGv/8849hGIYRExNjTJo0yTCZTAZgvP/++zmKXYq3kjheFixYYHTv3t1YsWKFERoaajkeFxdnrF692rj77rstsS9dujRHsUvxVVTHimEYGeK7evWqpb/PPvssw/HY2NhMbfXdIjlVEseKvlfkdhTFsZKSkmI89dRTBmA4ODgYy5cvz/F15/b/PFJ4lBwTEckH/v7+li/u7B4BAQEZ2l29etVo2rRphjpubm6WX9SbH6+//nqmPrdt25ahjouLi1G2bFnD1dU1w/GGDRsap0+fzjLujz/+2FLP3t7e8Pb2Nuzs7CzHWrVqZVy/fj3ba//mm28yxFu6dGnLfzABIzAw8DbvqhRHJXGsBAYGZujHw8PD8PHxydDey8vLWLlyZW5vrxQjhTFWbsXWX8rs37/fKFOmTIb3vKOjo+XfHTt2NBISEqy2X7duneHm5pZhfJj/EAMwnnnmGSMtLS3H8UvxVRLHy9y5czPEWKpUKaNMmTIZxoqzs7Mxc+bMHMcuxVdRHiu2xJ3d/z303SI5URLHir5X5HYUxbGyfft2y/kdHR0NPz+/bB/WksG5/T+PFA4HRETkjlG2bFl+/fVX5s+fz/fff8/hw4cJCwvDwcGBqlWr0rx5c4YNG2ZZvjC9pk2bsnDhQoKDg9m/fz8hISFcv34dZ2dnatSoQZMmTejZsye9evXC3t4+y/47dOjAK6+8wq5duzh//jxRUVH4+flx3333MWDAAHr37o3JZMr2Gp577jmaNGnC//73P7Zv387Vq1cpV64cDz30EK+88grt2rXLk3slJVtRHiu9e/fGMAz27t3LyZMnuX79OlFRUXh7e1O7dm06duzI0KFD8fPzy9N7JiVTbsZKXmnatCnHjh3j/fffZ+3atZw/f55SpUpRr149AgICGDJkSIa9Bm7WpUsX/vzzT95//302bdrE5cuX8fb2pnHjxgwbNsyyPJZIbhXl8dK2bVveffdd9u7dy/Hjx7l+/TqRkZF4enpSs2ZN2rVrx7Bhw7QnjOSJO2Gs5Ja+W6QgFOWxou8VKUiFOVbS0tIsz5OTkzPsbZaV+Pj4LI/n9v88UjhMhnGLRWRFREREREREREREREREigmlK0VERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERCRfmEwmTCYTwcHBhR1KngoODrZcmxRdhfX+TEpKokaNGjg7O3P+/Plcn+/XX3/FZDLRqlWrPIhOREREpGRQckxEREREREQyMScObucxb968wg5f5I712WefcerUKZ577jmqVKmS6/M9+OCDdOrUiZ07d7J69eo8iFBERESk+HMo7ABERERERETkzuPn55fl8ZiYGGJjY7Ot4+rqCsA999wDgJubWz5EWHjc3Nws1yaSE2FhYUyZMgVnZ2fGjx+fZ+cNCgpiw4YNjBs3jscffxwHB/26R0RERCQ7+mlJREREREREMgkJCcnyeFBQEJMmTcq2jtmJEyfyPK47wf33319sr03y19dff01ERAS9evWicuXKeXbeBx98kIYNG/LHH3/www8/0KtXrzw7t4iIiEhxpGUVRURERERERETymWEYfP311wAMHDgwz89vPudXX32V5+cWERERKW6UHBMREREREZF8Yd6DLDg4OMPxM2fOWMrOnDnD2bNnef7556latSouLi7UqFGDCRMmWJZvBDh69CgDBw6kSpUquLi4UKtWLaZMmUJycnK2MZw5c4YRI0ZQt25d3N3dcXNz49577+W1117j3Llzt3VdwcHBlvhvNm/ePEwmE9WqVQPgwIED9OnThwoVKuDs7Mxdd93FqFGjCA8Pv62+Afbt28eAAQOoXr06Li4ulCpVCn9/f1q3bs0777zDhQsXsmyXlJTEF198Qdu2bSlbtixOTk6UL1+eJ598kvXr19vU7zPPPEPNmjVxc3PD09OTOnXqMGTIEDZs2JBlm8jISCZPnkyTJk3w9PTE1dWVWrVqMXz4cE6dOmW1r/TvnejoaCZMmMC9996Lq6srZcqUoWvXruzbty/beMPDw3n99depUaMGLi4uVKhQgd69e3PgwIFbXuuFCxcYOXIkdevWpVSpUjg7O1OxYkWaNm3KyJEj+f333295jptt3ryZ06dPU7p0abp06WK13okTJxg6dCh33303bm5uuLi4UKVKFR588EHefPNNq7MW+/fvD8CWLVuyvbciIiIiAhgiIiIiIiIiNgoMDDQAw5b/Tprrbdu2LcPx06dPW8pWrlxplC5d2gAMT09Pw97e3lLWsmVLIykpyVi7dq3h5uZmAIaXl5dhMpksdfr27Wu1/++++85wdna21HV2djZcXV0t//bw8DA2bNiQ43uwbds2q/dg7ty5BmD4+/sbixYtMhwdHS1x29nZWdrVrVvXiI6OznHf8+bNy3D9zs7Ohqenp+XfgDF37txM7c6cOWPUrVvXUsdkMhleXl4Z2r3wwgtZ9pmSkmK8+uqrGeqWKlXK8Pb2tsTi5eWVqd3Ro0eNypUrW9q4uLgYHh4eGWJfsWJFln2a6yxevNioWbOmpb35fQAYTk5OVl+/06dPG/7+/hnqmu+Tk5OT8eOPP1p9fx4+fNjw9va2lNvb22e4VsAICAjI7mXK0qhRowzA6NSpk9U6GzduzPCedXR0tIwP8yMwMNBq+xo1ahiA8cUXX+Q4PhEREZGSRDPHREREREREpNA8++yzNG3alGPHjhEZGUl0dDQzZszA3t6enTt3MnnyZAYMGMDjjz/OmTNniIiIICoqirfeeguAZcuWsXnz5kzn3bRpE4MGDSI1NZWxY8dy+vRp4uPjiY2N5cSJE/Tu3Zvo6Gh69+592zPIsnP16lWGDBlCQEAA586dIyIigujoaD7//HMcHR05duwYH3zwQY7OGRcXxyuvvIJhGAwcOJCTJ0+SkJBAZGQkMTEx7N+/n9dff51y5cplaBcbG0vnzp05duwYbdq0ITg4mPj4eCIiIoiIiGD69Om4u7sza9YsPv3000z9vvnmm8yYMQOAIUOG8PfffxMTE0NYWBjh4eH88MMPdO7cOUOb6OhoHn/8cS5cuEClSpVYt24dsbGxREVFcfjwYR588EESExMZMGAAf/zxh9Vrfumll3BycmLr1q3ExsYSExPDb7/9xj333ENSUhJDhw4lLS0tQ5vU1FR69+7N2bNn8fb2Zvny5cTGxhIZGcmxY8d44IEHCAgIsNrn6NGjCQ8Pp0mTJuzdu5fk5GTCwsJISEjgn3/+4aOPPqJu3bq3fL1utmPHDuDGnnXWDB8+nMTERDp27MiRI0dISkoiPDyc+Ph4jh49yqRJkyyzErPywAMPALB9+/YcxyciIiJSohR2dk5ERERERESKjryeOVa3bl0jISEhU9unn37aUqdDhw5GWlpapjotW7Y0AOPZZ5/NcDw1NdWoVauWARhfffWV1fieeOIJAzBee+21W15LerbMHCOb2UXmGUQ1a9bMUb/79u2zzNpKTk62ud3kyZMNwGjdurWRlJSUZZ1Vq1YZgFG2bNkM5/77778tM97Gjh1rc5/Tpk2zzHw6cuRIpvKoqCijWrVqBmA89thjmcrN99DX19cIDQ3NVP7nn39a6uzatStD2bJlyyxlmzdvztQ2NjbWMsMqq/eneXbhnj17bL7eW0lMTLTMirQ2Wy40NNQS06VLl26rnw8//NAAjKpVq+YmXBEREZFiTzPHREREREREpNCMHDkSZ2fnTMc7depkeT5u3Lgs9/cy1/nzzz8zHN+xYwf//vsvZcuW5bnnnrPa96BBgwCs7peVWxMmTMjy+JNPPgnAyZMniYuLs/l8pUuXBm7sHXb9+nWb282ZMweAUaNG4ejomGWdbt264enpybVr1zLsyTV//nzS0tIoU6YMkyZNsrnPZcuWAdCrVy/q1auXqdzDw4OxY8cCsH79eiIjI7M8z9ChQzPNhAOoX78+1atXBzK//kuXLgXg4Ycf5pFHHsnU1s3NzdJ3Vsz3+fLly1br5NSVK1dITU0FwNfXN8s6Hh4e2NnZ5arvsmXL5qq9iIiISEmh5JiIiIiIiIgUGmtLzPn5+Vme33fffdnWCQ8Pz3B89+7dAERGRlKxYkXKly+f5eP5558H4OzZs7m+jpv5+PhQs2bNLMsqVqxoeX5z7NmpUaMG9957L8nJyTzwwAO8//77HD582JJ0ycrFixct1/fss89avRcVKlQgJiYGyHg/9uzZA0CHDh1wcXGxKc6kpCRLwqp9+/ZW63Xo0AGAtLQ0Dh48mGUd8zKBWTHfx7CwsAzH9+/fD0C7du2sts2urGvXrgAEBAQwevRotm/fnqMkZlauXr1qee7j45NlHVdXV0syr3Pnzrz99tvs27ePpKQkm/sxnzs5OZmIiIjbD1hERESkmFNyTERERERERAqNh4dHlscdHBxsrpOcnJzh+KVLlyzHQ0NDrT7Mian4+PhcX8fNrMWcPu6sYs+Ovb09S5cupXr16pw9e5Zx48bRuHFjPD096dChA19++WWmJI75XgBcu3Yt2/th3rsr/TlCQkIA8Pf3tznOsLAwS8KuUqVKVutVrlzZ8vzKlStZ1rHlPt58D83nsrXvm33wwQe0bduWmJgYpk+fTps2bfD09KRZs2YEBgZy8eJFq22tSUhIsDzPaqak2ezZs2nYsCFXr17lnXfe4cEHH8TDw4MWLVrw4YcfZkoE3szV1TXLPkVEREQkIyXHREREREREpFgxJ2YeeOABDMOw6VFUNGzYkBMnTrBy5UqGDh1KvXr1iI+PZ/Pmzbz44ovce++9HDlyxFI//ayy48eP23QvBg8ebGmT1XKWxV3p0qXZunUrO3fuZOzYsTz88MM4ODhw4MABJk+eTK1atViyZEmOzlmmTBnL8+xmC1atWpWDBw/yyy+/8Oqrr9K0aVPS0tLYvXs3Y8eOpWbNmmzdutVq+/TJs/R9ioiIiEhGSo6JiIiIiIhIsVK+fHkgf5ZLvBM4OTnRo0cPvvrqK44cOcLVq1eZNWsWPj4+nD9/noCAAEtd872A27sft3MvfXx8sLe3B+DChQtW66Uvy2pfsdtlPld2M7xsmf3VokUL3n//fXbt2kVERAQ//vgj9evXJz4+niFDhhAaGmpzTOn3GbvV7C87Ozs6derEp59+yv79+wkLC2PRokVUrVqV8PBw+vfvb3WpRfO5vby8rO4vJyIiIiJKjomIiIiIiEgx8/DDDwM3lgQ07z9VnJUpU4Zhw4bx/vvvA3Do0CGuX78OQLVq1SzLC/700085Pnfz5s0B2LRpk83L9Dk5OdGgQQMAtmzZYrXe5s2bgRvJoCZNmuQ4NmuaNWsGwLZt26zWyW72VVZcXFx44oknWLVqFXBjycJdu3bZ3N7b29uSaDx16lSO+vbw8KB///7MmTMHgNDQ0AyzA9M7ffo0ALVr185RHyIiIiIljZJjIiIiIiIiUqy0bduWmjVrAjBy5Eirs2zMbjWT506RmJiYbXn6/abs7P7/v/vPP/88AHPmzOHQoUPZnuPmezF48GDs7e25fv06gYGBNsf61FNPAbBixQqOHj2aqTwmJoYPPvgAgC5duuDl5WXzuW+lb9++AOzatYvg4OBM5fHx8Xz44YdZtk1JSbHsvZYVa/fYFq1atQLgt99+y7L8Vu9TW/ret28fAK1bt85RbCIiIiIljZJjIiIiIiIiUqw4ODgwa9YsHBwc2LVrF61atWLLli0kJydb6pw6dYpZs2Zx33338cUXXxRitLZbunQpDz/8MF999VWG2Uepqals2LCBcePGAfDQQw/h7e1tKR89ejT169cnISGBtm3b8vnnn1tmlgFERESwfv16Bg0aRMuWLTP0WbNmTV5//XUAPvjgA5577jn+/fdfS3lUVBTLli2je/fuGdoNHz6c6tWrk5yczKOPPsr69estSacjR47QqVMnTp8+jbOzM1OmTMmjO3RDz549LTPRevbsycqVKy17rx0/fpxHH32Uq1evZtn2woUL1KpViylTpnDo0CFSUlIsZX/++ScDBw4EoFSpUjlOQLVp0wb4/wTWzfbs2UODBg34+OOPOX78uOV+GYbBnj17GD58OACVK1e2zMxLLzU1lQMHDgBKjomIiIjcikNhByAiIiIiIiKS1x555BG+//57Bg0axL59+2jfvj2Ojo54enoSExOTYRZWt27dCi/QHDAnSfbs2QOAs7Mz7u7uhIeHWxIpFStW5Ntvv83Qzt3dnV9++YWePXvy66+/8sorr/Dqq6/i5eVFWloaUVFRlrrmGXfpTZkyhejoaGbOnMmcOXOYM2cO7u7uODo6EhERgWEYmWZ+eXh4sGbNGjp37syFCxfo0qULLi4uODk5Wfpzdnbmu+++o2HDhnl6nxwcHPj+++9p06YN58+fp1evXjg7O+Pi4kJkZCROTk58//33PPnkk1m2P3XqFBMnTmTixInY29vj5eVFTEyMZWaXk5MT8+bNw8fHJ0dx9ezZk9dee40TJ07w77//UqtWrUx1jhw5wqhRoxg1apTl/RoZGWlJ0nl6erJ48WLLnm7pbdmyhdjYWMqVK0f79u1zFJuIiIhISaOZYyIiIiIiIlIsdevWjZMnTxIYGMj999+Pu7s7ERERODs707BhQ5577jlWr15tmRl1p3viiSdYsGABzzzzDA0bNsTLy4vIyEg8PDy4//77eeeddzh27Bj33ntvprYVK1Zk165dLFmyhCeeeIIKFSoQFxdHUlIS1apV4/HHH+eTTz5hx44dmdra29vz+eefs2vXLgYMGEDVqlVJTk7GMAzq1KnDs88+y8qVKzO1q1evHseOHSMoKIhGjRrh4OBAYmIiNWrU4IUXXuDYsWP06tUrX+7VXXfdxeHDhxk1ahTVq1fHMAxcXFzo1asXe/bs4YknnsiyXaVKlVizZg0jR47kwQcfpEKFCsTExODg4ECdOnV46aWXOHr06G3FXa5cOcsMu0WLFmUqv++++1i+fDnDhw+nadOmlC1blqioKFxcXGjUqBFjx47l+PHjmWb3mZnP+cwzz+Do6Jjj+ERERERKEpNhGEZhByEiIiIiIiIiUtzt2LGD1q1bU6NGDf79919MJlOenDc2NtaS8Pznn3+466678uS8IiIiIsWVZo6JiIiIiIiIiBSAVq1a0bFjR/777z++//77PDvv559/TnR0NM8995wSYyIiIiI20MwxEREREREREZECcuTIERo1akTt2rX5888/sbPL3d8tx8TEUL16dRISEjh58iR+fn55FKmIiIhI8eVQ2AGIiIiIiIiIiJQU9evXZ86cOZw5c4bLly9TqVKlXJ3vzJkzvPTSSzRu3FiJMREREREbaeaYiIiIiIiIiIiIiIiIlBjac0xERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKjP8DsIExolcsqtcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "from ndx_structured_behavior.plot import plot_events, plot_actions, plot_states, plot_trials\n", + "\n", + "# Get the events from file\n", + "events = nwbfile.get_acquisition(\"task_recording\").events\n", + "event_types = nwbfile.get_lab_meta_data(\"task\").event_types\n", + "\n", + "# Plot the data\n", + "fig = plot_events(\n", + " events=events[20:100],\n", + " event_types=event_types,\n", + " show_event_values=True,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Events\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "b14f720f-2e2e-423a-ac16-35940f92e775", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrMAAAGiCAYAAABEXD06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkHklEQVR4nO3dd3hUVf7H8c+kJ6TQO4ZQpIMCIiIdEUQQVNoiUkVhEXeBlcVKKOsqa6+AgoCidLEiClKlrCAIBFD5EUKHAKmkJ/f3B8/MJmQmmUzK3JD363nmcTL3nHu+c5mTmPvJuddiGIYhAAAAAAAAAAAAwIQ83F0AAAAAAAAAAAAA4AhhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAJLCw8NlsVjUtWtXd5cCAAAAIBvCLAAAAACA28TExMjf318Wi0UWi0V//vlnkY9x4MABhYeH68033yzyfQMAAAAofoRZAAAAAAC3WbZsmVJSUmxfL1q0qMjHOHDggGbOnJlvmFW5cmU1atRIt9xyS5HXAAAAAMB1hFkAAAAAALdZuHChJGnSpEmSpCVLligzM9MttTz55JM6duyYli5d6pbxAQAAANhHmAUAAAAAcItff/1VBw4cUPny5TV37lyFhYXp/Pnz+u6779xdGgAAAAATIcwCAAAAALiFdVXWkCFD5OfnpxEjRkhy7lKDP/zwg4YOHarQ0FD5+/urYsWKatmypSZNmqRdu3bZ2lksFo0ePVqSFBUVZbs3l/URHh5uaxseHi6LxaKuXbs6HHf//v0aMWKEQkND5efnpwoVKqhDhw568803lZqaarfP4sWLZbFYVLduXUnSvn37NHjwYNWoUUO+vr6qV6+epkyZopiYGIfj7tmzR4888ojCwsLk5+encuXKKTQ0VF26dNHs2bN15syZfI8ZAAAAUFp5ubsAAAAAAEDZk5KSos8++0ySbCHWiBEjNGvWLH3zzTe6ePGiqlWrlqtfUlKSRo0apVWrVtleCwoKUlZWlg4dOqRDhw5p+/btOnDggCSpWrVqSk5OVnx8vDw8PFSlSpUc+wsMDHS65jfeeENTp06VYRiSpJCQEF27dk27du3Srl279PHHH+v7779XjRo1HO7js88+06hRo5Senq6QkBBlZGQoMjJSb7zxhn744Qft3r07V01LlizR6NGjbeP6+vrKy8tLp06d0qlTp7Rt2zbVqVNHo0aNcvq9AAAAAKUJK7MAAAAAACVuzZo1io2NVYMGDdShQwdJUr169dSxY0dlZGQ4vG/V6NGjtWrVKnl4eOif//ynTp8+rfj4eMXGxio6OlrLli3TXXfdZWt/4cIFvfXWW5KkOnXq6MKFCzke//jHP5yq95tvvtGUKVNkGIb69++vEydOKDY2VomJiVq6dKmCgoJ08OBBDRw40OE9v6KjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3bo4+SUlJmjRpkgzD0PDhw3X8+HGlpKQoLi5OiYmJ2rt3r55++mlVrVrVqfcBAAAAlEaEWQAAAACAEme9xKB1VZZVXpca3LRpk1auXClJevfdd/Xyyy+rdu3atu2VK1fWsGHD9MEHHxR5vdOmTZMkderUSWvWrFFYWJgkycfHR48++qiWLVsmSdq5c6e++OILu/tISkrS0KFD9eGHH6pOnTqSpICAAE2cOFGTJk2SJH3++ec5+hw+fFgJCQkqV66cPv74Y9WvX9+2rVy5cmrTpo3mzp2rPn36FO0bBgAAAEyEMAsAAAAAUKJOnDihLVu2yGKx6NFHH82xbfDgwfL399exY8e0c+fOHNusAVfz5s01YcKEEqv34MGDOnr0qCTp+eefl6enZ642/fr1U7t27STlDqSye/755+2+3r9/f0nS8ePHlZSUZHu9fPnykqS0tDRduXLFpfoBAACA0o4wCwAAAABQoj7++GMZhqFOnTqpbt26ObYFBwdrwIABkv63esvKGm717du3JMq02bt3ryTJy8tLXbp0cdiuZ8+eOdrfqGLFimrQoIHdbTVr1rQ9j4mJsT2vX7++GjdurPT0dN1555165ZVXdODAAYeXMgQAAABuRoRZAAAAAIASk5WVpcWLF0vKfYlBq5EjR0qSVq5cqcTERNvrFy5ckCSFhoYWb5E3uHTpkqTrlzH09fV12M56yUNr+xsFBQU57Ovl5WV7np6ebnvu6emp5cuXKywsTFFRUZo+fbpuv/12BQcHq2fPnvrggw9yrOQCAAAAbkaEWQAAAACAErNhwwadOXNGkvTYY4/JYrHkevTu3VuSlJiYaLtHliRZLBa31OxurVq10rFjx7RmzRo9/vjjat68uZKTk7Vx40b99a9/VePGjXXo0CF3lwkAAAAUG8IsAAAAAECJufHSgQVpX716dUlSVFRUkdaUn6pVq0qSLl++rNTUVIftrCGdtX1R8vHx0UMPPaT58+fr0KFDio6O1rx581SxYkWdPn3atpoNAAAAuBkRZgEAAAAASkR0dLS++uorSdLq1auVkJDg8PHf//5X0vX7ZP3++++SpA4dOkiSvv766wKN6+Fx/VdfwzBcqrtt27aSpIyMDG3dutVhu40bN0qS7rjjDpfGKYhKlSrpiSee0CuvvCJJ2r9/v65cuVLs4wIAAADuQJgFAAAAACgRn3zyidLT0xUSEqJ+/fopMDDQ4eOOO+5Q48aNJf1vddbYsWMlSREREfrggw+cHjc4OFiSFBsb61LdLVu2VNOmTSVJc+bMUWZmZq423333nfbs2SNJ+stf/uLSOPbktRJMkvz9/W3PraEdAAAAcLPh/3QBAAAAACXCGkr1799fPj4++bYfNGiQJGnp0qXKyMhQt27dNHToUEnSk08+qWeeecZ2aT/p+mUAP/roI1voZdW8eXNJUnx8fI57cBWEdQXU9u3bNXDgQEVGRkqS0tPTtWzZMluA1aFDBw0YMMClMexZvny57r77bs2fP18nTpywvZ6ZmakNGzZo+vTpkqS77rpLFSpUKLJxAQAAADMhzAIAAAAAFLvdu3fryJEjkv4XUuXH2u7ixYv69ttvJV0PxB566CFlZWXp5ZdfVp06dRQSEqLy5curSpUqGjdunPbt25djPw0aNFCPHj0kSUOGDFFwcLDq1q2runXr6s0333Sqlr59++r111+XxWLRunXrVK9ePVWoUEGBgYEaPny44uPj1aJFC61atUqenp5O7dMZhmFo586dGj9+vOrXry8/Pz9VrlxZPj4+6t27t86cOaOaNWtq0aJFRTYmAAAAYDaEWQAAAACAYmddlRUSEqJ7773XqT4tWrRQkyZNcvQPCAjQmjVr9M033+jBBx9UzZo1lZKSIi8vL7Vs2VJPPfWUFixYkGtfq1ev1uTJk3XrrbcqPT1dUVFRioqKKtClBydPnqy9e/dq+PDhqlOnjpKSkuTv76/27dvrjTfe0C+//KKaNWs6vT9nPPDAA1q6dKlGjx6tVq1aKSQkRHFxcQoKClK7du00e/ZsRURE2C7JCAAAANyMLIard8AFAAAAAAAAAAAAihkrswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0/JydwEASr+srCydO3dOQUFBslgs7i4HAAAAAAAAAGCHYRhKSEhQzZo15eFRetY7EWYBKLRz586pTp067i4DAAAAAAAAAOCE06dPq3bt2u4uw2mEWQAKLSgoSNL1b4DBwcFurgYAAAAAAAAAYE98fLzq1KljO6dbWhBmASg066UFg4ODCbMAAAAAAAAAwORK2+1iSs8FEQEAAAAAAAAAAFDmEGYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLS8imInBw8e1IYNGxQVFaXk5GQtXLjQti09PV3R0dGyWCyqUaNGUQwHAAAAAAAAAACAMqJQYVZcXJzGjBmjdevWSZIMw5DFYskVZrVq1UoxMTH67bff1KxZs0IVDAAAAAAAAAAAgLLD5csMpqen67777tO6desUEBCg+++/X35+frnaBQQEaPTo0crKytLq1asLVSwAAAAAAAAAAADKFpfDrIULF2r37t2qV6+efv/9d3311VcKCQmx2/bhhx+WJG3bts3V4QAAAAAAAAAAAFAGuRxmff7557JYLHrjjTdUs2bNPNvefvvt8vDw0LFjx1wdDgAAAAAAAAAAAGWQy2HWoUOHZLFYdO+99+bb1sfHRyEhIbpy5YqrwwEAAAAAAAAAAKAMcjnMSkpKUlBQkHx8fJxqn56eLi8vL1eHAwAAAAAAAAAAQBnkcphVuXJlxcfHKzExMd+2kZGRSkxMzPdyhAAAAAAAAAAAAEB2LodZd955pyTp22+/zbftO++8I0nq1KmTq8MBAAAAAAAAAACgDHI5zBozZowMw9ALL7ygc+fOOWw3f/58vfXWW7JYLHr88cddHQ4AAAAAAAAAAABlkMs3sbr//vv18MMPa82aNWrbtq2GDRum5ORkSdKCBQsUFRWlb775RocPH5ZhGBo3bpxtNRcAAAAAAAAAAADgDIthGIarnVNSUjRu3DgtW7ZMFosl13brrseMGaN58+bJy8vl7AyAicXHxyskJERxcXEKDg52dzkAAAAAAAAAADtK67lcly8zKEl+fn765JNPtG3bNj366KOqX7++/P395ePjo1tuuUXDhg3Tli1b9NFHHxFkAQAAAAAAAAAAoMAKtTILAKTSm+YDAAAAAAAAQFlSWs/lFmplFgAAAAAAAAAAAFCcivTaf1FRUbp06ZIkqWrVqgoNDS3K3QMAAAAAAAAAAKCMKfTKrHPnzmnSpEmqWrWq6tWrp/bt26t9+/aqV6+eqlSpokmTJunMmTNFUSsAAAAAAAAAAADKmELdM+uHH37QkCFDFB8fL0e7sVgsCgoK0vLly9W7d2+XCwVgXqX1OqsAAAAAAAAAUJaU1nO5Ll9m8Pfff9eAAQOUkpKiihUravz48erevbtq1aolSTp79qw2b96s+fPn6/Lly3rooYe0f/9+NWrUqMiKBwAAAAAAAAAAwM3N5ZVZw4cP12effaaWLVvqxx9/VJUqVey2u3z5su655x4dOnRIw4YN0yeffFKoggGYT2lN8wEAAAAAAACgLCmt53JdvmfWpk2bZLFY9NFHHzkMsiSpcuXK+vDDD2UYhjZu3OjqcAAAAAAAAAAAACiDXA6zYmNjFRgYqLZt2+bb9o477lBgYKBiY2NdHQ4AAAAAAAAAAABlkMthVo0aNZSZmel0+6ysLNWoUcPV4QAAAAAAAAAAAFAGuRxm9enTR8nJyfrpp5/ybbtp0yYlJSWpb9++rg4HAAAAAAAAAACAMshiGIbhSseLFy/qtttuk5+fnzZs2KBbb73Vbrs///xTvXr1Umpqqvbv36+qVasWqmAA5lNabxoIAAAAAAAAAGVJaT2X63KYtW3bNp04cUKTJ09WSkqKBg0apO7du6tWrVqSpLNnz2rz5s1atWqV/Pz89MYbbygsLMzuvjp37uz6OwDgdqX1GyAAAAAAAAAAlCWl9Vyuy2GWh4eHLBZL4QuwWJSRkVHo/QBwn9L6DRAAAAAAAAAAypLSei7XqzCdXczBinwfAAAAAAAAAAAAuDm5HGZlZWUVZR0AAAAAAAAAAABALh7uLgAAAAAAAAAAAABwhDALAAAAAAAAAAAApuVymNWgQQO98sorunTpUlHWAwAAAAAAAAAAANi4HGadOHFCzz77rOrUqaPBgwdr48aNRVkXAAAAAAAAAAAA4HqY9dxzz6lmzZpKT0/X6tWr1atXLzVo0EBz585ltRYAAAAAAAAAAACKhMUwDMPVzllZWfruu+80f/58ff/998rMzJTFYpGXl5cGDBigcePG6Z577inKegGYUHx8vEJCQhQXF6fg4GB3lwMAAAAAAAAAsKO0nsstVJiV3blz57Rw4UItWrRIUVFR13dusSgsLEyPP/64Ro0apapVqxbFUABMprR+AwQAAAAAAACAsqS0nsstsjDLyjAM/fDDD1qwYIG++eYbpaens1oLuMmV1m+AAAAAAAAAAFCWlNZzuUUeZmV37tw5DRs2TNu2bbs+mMUiSWrQoIGmTp2qsWPHytPTs7iGB1BCSus3QAAAAAAAAAAoS0rruVyP4tjpqVOnNGPGDN15553avn27pOtB1m233SZPT0/9+eefmjBhgtq3b6/o6OjiKAEAAAAAAAAAAAA3gSILszIzM7Vu3Tr16dNH9evX15w5c3T27FlVrFhRU6dO1R9//KF9+/bp9OnTevHFF1WuXDn9+uuveuaZZ4qqBAAAAAAAAAAAANxkCn2ZwZMnT+rDDz/U4sWLdeHCBVl316FDB02YMEGDBg2Sj49Prn579+5Vu3btVKNGDZ09e7YwJQBws9K6NBUAAAAAAAAAypLSei7Xy9WOq1ev1oIFC/TTTz/JMAwZhqGgoCANHz5cEyZMUPPmzfPs37ZtW1WvXl0XLlxwtQQAAAAAAAAAAADc5FwOswYPHmx7ftttt2nChAkaNmyYypUr5/Q+7K3YAgAAAAAAAAAAAKxcDrP8/Pw0ZMgQTZgwQe3atXNpHydPnnR1eAAAAAAAAAAAAJQBLodZ586dU/ny5YuwFAAAAAAAAAAAACAnD1c7fvXVV1q1apXT7deuXaulS5e6OhwAAAAAAAAAAADKIIthGIYrHT08PFSjRg2dPXvWqfZhYWE6ffq0MjIyXBkOgInFx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZklSQXMwF3MzAAAAAAAAAAAAlFGFCrMKIj4+Xj4+PiU1HAAAAAAAAAAAAG4CJRJm7dq1SzExMapVq1ZJDAcAAAAAAAAAAICbhJezDZcsWaIlS5bkeO3q1avq3r27wz6GYSg2NlYRERGyWCzq0aOH65UCAAAAAAAAAACgzHE6zDp58qS2bNmS47W0tLRcrznSqFEjhYeHF6A0AAAAAAAAAAAAlHVOh1ldu3bN8fXMmTMVGBioqVOnOuzj4eGh4OBgNW/eXF27dpWnp6fLhQIAAAAAAAAAAKDssRiGYbjS0cPDQ9WrV9e5c+eKuiYApUx8fLxCQkIUFxen4OBgd5dTopLSMtT0xQ2SpCOzeinAx8upbZcTU9R2ziZJ0t7ne6hyoF8JVl04eb0vq9NXr6nT3C2SpO3TuqpOxXIlWWKxyv7+t0/ranufJf3v6M5/B2fGttfWqrR95q2cfd/23rO1fUGOnT2ufO8oTN3umr9mmGfOHreimGdmeL/5Kevf+wHATBz9/1WAj1ep+5mPoufM52Pv8z1s/09ZFP+fWpp/v8V1rv7OUJjvHfmNeTN+rkryOHN8nT++N8v7L4jSei63YGdQsomMjGSlFQAAAAAAAAAAAIqVy2FWaGhoUdYBAAAAAAAAAAAA5OLh7gIAAAAAAAAAAAAARwizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmFWKRUeHi6LxaKuXbu6uxQ4MHz4cFksFq1YscLdpeRp/PjxslgsWrhwobtLAQAAAAAAAAAgF8IsuFVsbKzCw8MVHh6u2NhYd5fj0Lp16xQeHq5169Y51X7v3r367LPP1Lx5cw0ePDjPtsePH9czzzyjO+64Q1WqVJGPj4+qV6+uu+++WzNnztS5c+eK4B049uyzz8rHx0cvvviikpKSinUsAAAAAAAAAAAKijALbhUbG6uZM2dq5syZpg+zZs6c6XSYNXXqVBmGoRkzZshisdhtk5mZqaefflpNmjTRyy+/rL179yomJkaBgYGKjo7Wzp07FR4eroYNG+rVV18twneT0y233KLRo0fr3LlzxToOAAAAAAAAAACuIMwCitju3bu1bds2Va9eXQ8++KDdNllZWXr44Yf16quvKiMjQ71799bWrVuVmpqqq1evKjk5Wd9//706dOigpKQkPf3003rqqaeKrebx48dLkt5++22lpqYW2zgAAAAAAAAAABRUkYVZKSkpOn/+vE6dOpXnA7jZzZs3T5I0dOhQeXp62m0zZ84cffnll5Kk6dOna/369ercubOtvY+Pj3r16qXt27drxIgRkqR33nlHn3zySbHUfNttt6lZs2a6cuWKVq9eXSxjAAAAAAAAAADgikKFWUlJSQoPD1ejRo1Urlw51a5dW2FhYQ4f9erVK1SxK1as0H333adq1arJ29tb5cuXV8OGDfXAAw/ovffeU0pKSq4++/fv14gRIxQaGio/Pz9VqFBBHTp00JtvvulwBUp4eLgsFou6du3qsJYtW7bIYrHYvYTcjf03bdqk+++/X1WqVJGfn5+aNGmimTNn2q03u/Xr16tnz54qX768AgMD1apVK82dO1fp6el59nNVXFycZs2apdatWys4OFj+/v5q2LChJkyYoBMnTtjtc/LkSdtxOHnypMN9161bVxaLRYsXL7a91rVrV4WFhdm+DgsLs+3rxuO/ePFiWSwW1a1bV5L0448/6r777lOVKlXk7++vZs2aac6cOQ6P6ahRo2SxWDRq1CiHNd44hvS/f+clS5ZIkpYsWZKjRovFoi1bttjax8fHa+XKlZKkYcOG2R3n0qVLevnllyVJ3bp100svveSwJg8PDy1YsEBNmjSRJD3zzDNKS0vL0aaoPm/WehcsWJBnOwAAAAAAAAAASpLLYVZsbKzat2+v2bNn688//5RhGPk+srKyXC50zJgxGjp0qL7//ntdunRJfn5+Sk9P1/Hjx/X111/rySef1IULF3L0eeONN9SmTRt98sknOnXqlPz8/HTt2jXt2rVLkydPVrt27XT+/HmXa3LGf/7zH/Xs2VPr169XRkaG0tLSdOzYMYWHh6tPnz7KzMy028+6fePGjYqLi5O3t7eOHDmif/7zn7rnnntyBRqFFRERoebNm2vGjBnav3+/0tPT5e3trePHj2vevHlq2rSp1qxZU6RjVqxYUZUrV7Z9XblyZVWrVs32qFixot1+77//vnr16qXvv/9eGRkZysjI0JEjR/TCCy+oQ4cOiomJKbIafXx8VK1aNfn5+UmS/Pz8ctRYrVo1+fj42Npv3bpVycnJKleunFq3bm13nx9//LGSk5MlKc97aln5+vpq+vTpkqSzZ8/med8uVz9vktS5c2dJ0s8//6yEhIQ8awIAAAAAAAAAoKS4HGbNnj1bhw8flpeXl6ZMmaKtW7fqzz//VGRkZJ4PV+zYsUMff/yxPDw89Morr+jKlStKSEjQtWvXdPnyZW3YsEEjR47MESp88803mjJligzDUP/+/XXixAnFxsYqMTFRS5cuVVBQkA4ePKiBAwfmeYK/MH777TdNnz5d06dP16VLlxQTE6PY2Fi9+OKLkqTNmzfbVvxk99VXX2nmzJmSpEGDBunUqVOKiYlRfHy83nvvPe3evVsffPBBkdWZkJCgfv366cyZM6pVq5a+/fZbXbt2TfHx8Tpw4IDat2+v1NRUPfLII/rtt9+KbNy1a9fql19+sX39yy+/6MKFC7bH2rVrc/WJjo7W3//+dw0cODDHcfnggw/k6+ur/fv3a+zYsUVWY4cOHXThwgUNGTJEkjRkyJAcNV64cEEdOnSwtd+2bZskqXXr1g4vMfjTTz9JkipVqqQuXbo4VceAAQNsodfmzZvttnH182bVpk0beXl5KTMzUz///LNTdQEAAAAAAAAAUNxcDrPWrVsni8WiN998U6+++qo6deqk+vXrKzQ0NM+HK3bu3ClJuueeezRt2rQcK3YqVaqke++9V4sXL1bNmjVtr0+bNk2S1KlTJ61Zs8Z2OTsfHx89+uijWrZsmW3fX3zxhUt15Sc2NlYvvPCCXnrpJdsKpODgYM2cOVMPPfSQJOnzzz/P1e+ZZ56RJHXp0kXLly9XnTp1JEn+/v7661//qrfffluxsbFFVuf777+vyMhIeXt76/vvv1efPn3k4XH9o9GqVSv98MMPqlu3rlJTU/Xcc88V2biuSEpKUocOHXIdl/Hjx+u9996TJH3xxRc5QrKStGfPHknXj5sjERERkqTbb7/d6f0GBwfbLtN5+PBhu21c/bxZ+fv7q1GjRpKkXbt25VlPamqq4uPjczwAAAAAAAAAACgOLodZZ8+elYeHh0aPHl2U9dhVvnx5SddX5TiziurgwYM6evSoJOn555+3u0KmX79+ateunaS8T/AXhq+vr/7xj3/Y3da/f39brdkdPHhQR44ckXS9dmuolN24ceNUq1atIqtzxYoVkqSBAweqefPmubYHBQXZwsH169crLi6uyMZ2haPjMnr0aNWuXVuStHz58pIuS5J07tw5SVKVKlUctrly5Yqk60FsQVgDKmv/G7nyeXM0hvV9OPLvf/9bISEhtoc1WAQAAAAAAAAAoKi5HGZVrFhRQUFBtnsJFacePXrIz89P+/fvV6dOnbRw4cI8L1m4d+9eSZKXl1eel3Hr2bNnjvZFrVmzZgoMDLS7zbqK7OrVqzlez157p06d7Pb18PBQ165di6TGtLQ0W8Bxzz33OGxnPVZZWVn69ddfi2RsVzh7XIrr3zQ/0dHRkuTwfl/FyZXP242sdVvfhyPPPPOM4uLibI/Tp0+7UDEAAAAAAAAAAPlzOczq2LGj4uLidPbs2aKsx6769evro48+UmBgoHbt2qXHHntM9erVU9WqVTVkyBB9+eWXMgzD1v7SpUuSrq8y8fX1dbhf6yoea/uiFhQU5HCbl5eXJCkjIyPH6wWtvbCuXr1qW+2W12qv7OMV1/FyRn7Hxfoe3FVjSkqKJOVZo3VFlqMVVo5cvnw5R/8bufJ5u5G/v7+k/70PR3x9fRUcHJzjAQAAAAAAAABAcXA5zPrnP/8pLy8vzZ49uyjrceiRRx5RVFSU5s2bpyFDhqhOnTqKjo7WypUrNWDAAHXp0oX79sDtrEFTTEyMwzZNmzaVJO3fv9/p/cbHx+vEiROSrq/AKi7WlVsFvQQiAAAAAAAAAADFxeUwq02bNlq8eLGWLFmisWPH2k60F6eKFSvqiSee0PLly3Xq1CkdP35c06dPl8Vi0fbt2xUeHi5Jqlq1qqTrK1lSU1Md7u/MmTM52ltZV7HktTqluO4blb32tLQ0h+2KakVcxYoVbfcUsx4Pe7Jvy368rMdKKpnj5exxcde/qfVeWXldzq9Hjx6Srq/M2rJli1P7/eKLL2yrD7t37164IvNgrTuve34BAAAAAAAAAFCSXA6z6tWrp+eee06enp5avHixGjZsqCpVqqhevXoOH/Xr1y/K2lW/fn39+9//1rBhwyRJP/74oySpbdu2kq5fUm3r1q0O+2/cuFGSdMcdd+R4vUKFCpKU532A9uzZ43rheche+/bt2+22ycrKcjoEyY+Pj49atmwpSdq0aZPDdtZj5eHhodatW9tetx4ryfHx+uOPPxQbG2t3m4fH/z6C2S8V6Uhex8UwDNu/t/U43linq/+m1jrzq9G66iqvcHfUqFG2e83NmjUr332mpqbqlVdekXT93lcDBgzIs31hWO9F16RJk2IbAwAAAAAAAACAgnA5zDp58qROnjyppKQkGYYhwzB05coV2+uOHq7Ia3WV9L/7/FgDh5YtW9pChTlz5tjuCZXdd999Zwsv/vKXv+TY1qpVK0nSuXPn7AYcly5d0ocffljAd+Gcli1b2oKEf/3rX8rKysrVZtGiRXmuoiqooUOHSpJWr16tw4cP59qemJiouXPnSpL69OmjkJAQ27Zy5crZQso1a9bY3f+//vUvh2Nnv9eSo8DL3v7sHZclS5bYwqohQ4bk2Gb9N/3ll1/sBlpHjx7V2rVr860zvxo7d+4sSfrvf//rsE21atU0bdo0SdLmzZv13HPPOWyblZWlJ554QkePHpUkvfTSS/Lx8cmzBldFRkYqOjpaktSlS5diGQMAAAAAAAAAgIJyOcz6+OOPC/xYtGiRS2M9+eSTGjx4sNasWaNLly7ZXk9MTNS8efO0dOlSSdL9999v22ZdybJ9+3YNHDjQtuIkPT1dy5YtswVYHTp0yLXSpUOHDgoNDZUkjRw5Unv37pVhGLYVUV27drUbphQVa/izefNmDRs2zBZcpaSkaN68eXryySdVvnz5IhtvwoQJCgsLU3p6uu677z6tX7/e9v4OHTqkXr16KTIyUr6+vpozZ06u/tZjuWjRIr3//vtKTk6WdH0V1GOPPaYVK1YoICDA7tjly5dXrVq1JF3/TGVkZORZa0BAgHbs2JHruCxYsEATJkyQJPXv31/t2rXL0a9fv34KDAxUenq6Bg8erN9//13S9c/Dl19+qXvuuUflypVzOG7z5s0lXf88HTt2zGG7rl27SpKioqJ08eJFh+1mzJihvn37SpL+/e9/q0+fPtq+fbsteE1PT9cPP/ygzp07a8mSJZKkv/71rxo5cqTDfRaWNbitVq2aGjduXGzjAAAAAAAAAABQEF75N7GvOE+q3yg9PV2rVq3SqlWrJEmBgYHy8vLKsUqmY8eOOVa49O3bV6+//rqmTp2qdevWad26dSpfvrySkpJs91xq0aKFVq1aZbtnlJWHh4fmz5+vfv366ffff9cdd9yhgIAAZWVlKSUlRQ0bNtR7772Xa0VXUXnwwQf13HPP6V//+pdWrFihFStWqEKFCkpISFBGRoY6deqkjh076t///neRjBcUFKSvvvpKvXv31pkzZ9SnTx/5+fnJx8dH8fHxkiRfX199+umnthVO2f3zn//U2rVrdeTIEU2cOFGTJk1ScHCwYmNj5e3traVLl2r69OmKioqyO/748eP1wgsv6J133tGCBQtUtWpVeXh4qH379lq+fHmOtlWqVNHTTz+tSZMm2Y5LYmKi0tPTJV1fgbVw4cJcY4SEhOjNN9/UuHHjtHv3bjVu3FhBQUFKTU1VWlqa2rdvr+HDh+vJJ5+0W+PDDz+sZ599VtHR0WrSpIkqV65sC7+WL1+u9u3bS7p+eb5WrVrpt99+01dffaVx48bZ3Z+Hh4e++OILTZs2Te+8847Wr1+v9evXy9PTUyEhIYqNjbUFin5+fgoPD9c///lPu/sqKl999ZWk3CsVAQAAAAAAAABwJ5dXZpWkF154QW+//bYefPBBNW7cWF5eXkpMTFTVqlXVs2dPLVq0SFu2bMm1smby5Mnau3evhg8frjp16igpKUn+/v5q37693njjDf3yyy+qWbOm3TF79eql7du3q2/fvqpQoYIyMzNVp04dTZ8+Xfv27VP16tWL9T3PmTNH33zzjbp3767g4GClpqaqSZMmevnll7Vp06Yiv9Rc8+bNFRERofDwcN12223y8vJSamqq6tevr/HjxysiIkIDBw602zcwMFA7duzQlClTFBYWJi8vL3l7e+vhhx/Wrl27bJcxdOTZZ5/VW2+9pbZt28rb21tnzpxRVFSULly4YLf9xIkTtWHDBvXu3VseHh7y8PBQ48aNNWvWLO3atUuVKlWy22/s2LH69ttvbcc0IyNDt956q15++WVt3bo1z5VZFSpU0LZt2zR06FDVqlVLcXFxioqKUlRUlFJSUnK0feKJJyRJy5Yty/N9e3l56fXXX9eRI0c0bdo0tWnTRuXLl1dCQoIqVaqku+66SzNmzNDx48eLPchKTEzUl19+maN+AAAAAAAAAADMwOWVWSWpfv36mjRpkiZNmlTgvq1bt9Ynn3zi0rh33nmnvv76a7vbunbtKsMw7G4LDw9XeHh4nvvOq7/V/fffn+PSiQUdo6BCQkI0Y8YMzZgxo8B9K1SooNdee02vvfaa3e153S/Nw8NDTz31lJ566imnx+vZs6d69uxZ0DJ133336b777rO7bdSoURo1apTDvo0bN9bnn3+e7xjDhw/X9OnTtW3bNkVFRdkuWelIw4YNbZfFdEVRfN7Wrl2rpKQkdevWjUsMAgAAAAAAAABMpdArswzD0Nq1azVo0CCFhYWpXLlyKleunMLCwjR48GCtW7cu39AGuJkEBQVp+vTpMgyjUCFVScnKytLcuXMlSS+99JKbqwEAAAAAAAAAIKdChVkXL15U586dNWjQIK1du1ZRUVFKTk5WcnKyoqKitGbNGj388MPq0qWLw0vGATejyZMnq06dOlq4cKFOnz7t7nLytGrVKkVERGjQoEG2e38BAAAAAAAAAGAWLl9mMC0tTb169dKhQ4dkGIbatWunnj17qnbt2pKkM2fOaOPGjdqzZ49+/vln3Xffffrvf/8rb2/vIiseMCs/Pz8tXbpUW7Zs0alTp1SnTh13l+RQenq6ZsyYodGjR7u7FAAAAAAAAAAAcnE5zPrggw908OBBBQcH69NPP1Xfvn1ztZk9e7a+++47DRs2TAcPHtS8efNcuu8V8rdz50499NBDBerToUMHrV27tpgqQteuXdW1a1d3l5Gv4cOHu7sEAAAAAAAAAAAccvkygytXrpTFYtF7771nN8iy6tOnj9577z0ZhqHly5e7OhzykZaWposXLxbocfXqVXeX7bRRo0bJMAydPHnS3aUAAAAAAAAAAIASZDEMw3ClY8WKFZWUlKTExER5eeW9wCsjI0OBgYEKCAgoVQEKAOfEx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZiUnJysgICDfIEuSvLy8FBAQoOTkZFeHAwAAAAAAAAAAQBnkcphVrVo1xcXF6dSpU/m2PXnypGJjY1WtWjVXhwMAAAAAAAAAAEAZ5HKY1blzZxmGocmTJyuvKxUahqEpU6bIYrGoS5curg4HAAAAAAAAAACAMsjlMMsaUK1bt07du3fXpk2blJ6ebtuenp6ujRs3qlu3blq3bp0sFosmT55cJEUDAAAAAAAAAACgbLAYeS2ryscbb7yhqVOnymKxSLp+b6zKlStLki5fvqyMjAzbqq3XX39df//73wtfMQDTKa03DQQAAAAAAACAsqS0nst1eWWWJE2ePFlfffWVGjVqJMMwlJ6ervPnz+v8+fNKT0+XYRhq2rSpvv76a4IsAAAAAAAAAAAAFFihVmZld+jQIe3du1eXLl2SJFWtWlVt27ZVixYtimL3AEystKb5AAAAAAAAAFCWlNZzuV5FtaMWLVoQXAEAAAAAAAAAAKBIFeoygwAAAAAAAAAAAEBxIswCAAAAAAAAAACAaTl1mcHu3btLkkJDQ/Xxxx/neK0gLBaLNm3aVOB+AAAAAAAAAAAAKJucCrO2bNkiSWrcuHGu1wrCYrEUuA8AAAAAAAAAAADKLqfCrBkzZkiSKleunOs1AAAAAAAAAAAAoLhYDMMw3F0EgNItPj5eISEhiouLU3BwsLvLAQAAAAAAAADYUVrP5Xq4uwAAAAAAAAAAAADAEZfDrFmzZun11193uv3bb7+tWbNmuTocAAAAAAAAAAAAyiCXLzPo4eGh6tWr69y5c061DwsL06lTp5SZmenKcABMrLQuTQUAAAAAAACAsqS0nsvlMoMAAAAAAAAAAAAwrRILs65evSo/P7+SGg4AAAAAAAAAAAA3gRIJs1atWqWEhATdcsstJTEcAAAAAAAAAAAAbhJezjZ866239NZbb+V4LTo6WvXq1XPYxzAMxcbGKj4+XhaLRffff7/rlQIAAAAAAAAAAKDMcTrMio2N1cmTJ3O8lpmZmes1R3r06KEXX3yxILUBAAAAAAAAAACgjHM6zBowYIDq1q0r6fqKqzFjxigkJERvvvmmwz4eHh4KDg5W8+bNVb9+/cLWCgAAAAAAAAAAgDLGYhiG4UpHDw8PVa9eXefOnSvqmgCUMvHx8QoJCVFcXJyCg4PdXQ4AAAAAAAAAwI7Sei7X6ZVZN8rKyirKOgAAAAAAAAAAAIBcPNxdAAAAAAAAAAAAAOCIy2HW7t271bp1a02cODHfto899phat26tvXv3ujocAAAAAAAAAAAAyiCXw6zPPvtMv/32mzp16pRv2/bt2+vAgQP67LPPXB0OAAAAAAAAAAAAZZDLYdbWrVslSffee2++bR988EFJ0ubNm10dDgAAAAAAAAAAAGWQy2HWmTNnFBISoooVK+bbtlKlSgoJCdHZs2ddHQ4AAAAAAAAAAABlkMthVnJysrKyspxubxiGEhISXB0OAAAAAAAAAAAAZZDLYVbVqlWVkJCgc+fO5dv27Nmzio+PV+XKlV0dDgAAAAAAAAAAAGWQy2FW+/btJUnvvfdevm2tbe68805XhwMAAAAAAAAAAEAZ5HKYNXbsWBmGoblz52rBggUO282fP19z586VxWLR2LFjXR0OAAAAAAAAAAAAZZDFMAzD1c6DBw/W6tWrZbFY1Lx5c/Xt21ehoaGSpKioKH399deKiIiQYRh6+OGHtWrVqiIrHIB5xMfHKyQkRHFxcQoODnZ3OQAAAAAAAAAAO0rruVyvwnResmSJLBaLVq1apUOHDunw4cM5tltzsqFDh2rhwoWFGQoAAAAAAAAAAABlkMuXGZQkf39/rVixQhs3btSwYcMUGhoqX19f+fn5qW7dunrkkUf0008/6bPPPpO/v39R1QwAAAAAAAAAAIAyolCXGQQAqfQuTQUAAAAAAACAsqS0nsst1MosZ2VlZenrr7/WgAEDSmI4AAAAAAAAAAAA3CQKdc+s/Pz5559auHChli5dqosXLxbnUAAAAAAAAAAAALgJFXmYlZSUpJUrV2rhwoXauXOnJMl6JcMmTZoU9XAAAAAAAAAAAAC4iRVZmLV7924tXLhQK1euVGJioqTrIVbjxo01aNAgDRo0SM2bNy+q4QAAAAAAAAAAAFAGFCrMio6O1tKlS7Vo0SIdO3ZM0v9WYVksFv3yyy9q06ZN4asEAAAAAAAAAABAmVTgMMswDH333XdatGiRvvnmG2VkZMgwDPn7+2vAgAEaOXKkevfuLYnLCgIAAAAAAAAAAKBwnA6z/u///k+LFi3SkiVLdP78eRmGIYvFoo4dO2rEiBEaPHiwgoKCirNWAAAAAAAAAAAAlDFOh1kNGzaUxWKRYRgKCwvTiBEjNGLECIWFhRVnfQAAAAAAAAAAACjDCnyZwaeeekpz586Vj49PcdQDAAAAAAAAAAAA2Hg429DX11eGYeidd95RzZo1NXHiRO3evbs4awMAAAAAAAAAAEAZ53SYdf78eb399ttq2bKlrl69qg8++EB33323GjVqpJdeekmnTp0qzjoBAAAAAAAAAABQBlkMwzAK2mn//v366KOP9Pnnnys2NlYWi0UWi0WdO3fWo48+qrFjx8pisSghIUEBAQHFUTcAE4mPj1dISIji4uIUHBzs7nIAAAAAAAAAAHaU1nO5LoVZVqmpqVq9erUWLlyorVu3yjAMWSwW23/XrFmjvn37ysurwLfmAlCKlNZvgAAAAAAAAABQlpTWc7mFCrOyi4yM1KJFi7RkyRKdOXPm+s4tFoWEhKh///4aNGiQ7r33XoIt4CZUWr8BAgAAAAAAAEBZUlrP5RZZmGVlGIY2bNigjz76SF9//bXS09NlsVgkSeXLl9eVK1eKcjgAJlBavwECAAAAAAAAQFlSWs/lehT1Di0Wi3r37q3Vq1fr7NmzevXVV9WkSRMZhqHY2NiiHg4AAAAAAAAAAAA3sSIPs7KrXLmypkyZosOHD2vnzp0aO3ZscQ4HAAAAAAAAAACAm0yJ3cCqffv2at++fUkNBwAAAAAAAAAAgJtAsa7MAgAAAAAAAAAAAAqDMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJiWl7sLAFD6GYYhSYqPj3dzJQAAAAAAAAAAR6zncK3ndEsLwiwAhZaQkCBJqlOnjpsrAQAAAAAAAADkJyEhQSEhIe4uw2kWo7TFbwBMJysrS+fOnVNQUJAsFou7ywGcFh8frzp16uj06dMKDg52dzmAaTFXAOcwV4D8MU8A5zBXAOcwV4D83ThPDMNQQkKCatasKQ+P0nMnKlZmASg0Dw8P1a5d291lAC4LDg7mf3oBJzBXAOcwV4D8MU8A5zBXAOcwV4D8ZZ8npWlFllXpid0AAAAAAAAAAABQ5hBmAQAAAAAAAAAAwLQIswAAZZavr69mzJghX19fd5cCmBpzBXAOcwXIH/MEcA5zBXAOcwXI380yTyyGYRjuLgIAAAAAAAAAAACwh5VZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAoMUlJSVq/fr3mzJmjhx56SKGhobJYLLJYLAoPD3dqH6tXr1a/fv1Us2ZN+fj4qFy5cmrUqJHGjRunAwcOFLim8ePH22qoW7euw3Znz57V+++/r0GDBqlBgwby9/eXv7+/wsLC9Je//EU//fSTU+NdvHhRU6dOVaNGjeTv76+KFSuqU6dO+uijj2QYRoHrx82pNM+VourPXEF+bpZ5cuHCBb3wwgtq06aNKlasKH9/f4WGhqp37956+eWXlZ6e7rAv8wTOuBnmSmHHZ67AGe6cK+Hh4bax8nocP348z/F//fVXDR8+XLVr15avr69q1KihBx980OnfVTZv3qwHH3xQNWrUkK+vr2rXrq3hw4fr119/dao/yobSPFcOHjyof/3rX+rVq5dq1aolHx8fBQUFqXnz5nrqqaf0xx9/OFV/Yecabn6leZ7Yk56erpYtW9r6jho1Kt8+xTJPDAAASsjmzZsNSXYfM2bMyLNvSkqK0a9fvxx9AgMDDR8fH9vXHh4exuuvv+50PT/99JNhsVhs/UNDQ+22O3XqVI52koyAgADD398/x2tjxowxMjIyHI63d+9eo1KlSjnq9/Lysn3dq1cvIzU11en6cfMqrXOlqPozV+CMm2GeLF++3AgODrb18fPzy/G1JCMmJsZuX+YJnFWa50pRjM9cgbPcOVdmzJhhSDK8vb2NatWqOXxERkY6rOHDDz/M8dkOCQnJMdfyew/WGiQZFovFCAkJsX3t5eVlfPjhh/kcQZQVpXWufPrpp7nqDQkJMTw9PW1f+/j4GPPmzcvzPRR2rqFsKK3zxJHsPyMkGSNHjsyzfXHNE8IsAECJ2bx5s1GhQgWjR48extNPP218/vnnRvXq1Z36Qfbiiy/afuj99a9/Nc6cOWMYhmFkZmYae/fuNTp27Gj7xWvv3r351nLt2jWjfv36hre3t9G2bds8T6ZERkYakowePXoYS5YsMc6ePWsbOyIiwujfv7+ttueff97uPmJjY23vtXHjxsYvv/xiGIZhpKamGu+++67h7e1tSDImTJiQb+24+ZXWuVIU/ZkrcFZpnycrV640PDw8DEnG448/bkRERNi2xcfHG9u2bTMmT55sJCYm5urLPEFBlOa5UtjxmSsoCHfOFetJwi5durhU+86dO20n5AcMGGCcPn3aMAzDuHz5svHEE0/YaluxYoXd/itWrLC1eeKJJ4zLly8bhmEYp0+fNgYMGGBIMjw9PY2dO3e6VB9uLqV1rnz88ceGr6+vMXz4cOPbb7814uLiDMO4/jNh48aNRvPmzW1j//jjj3b3Udi5hrKjtM4Tew4ePGh4e3sb9erVM6pVq5ZvmFWc84QwCwBQYuytWgoNDXXqh3ndunXz/GEcGxtrBAYGGpKM6dOn51vL3//+d0OS8dxzzxkjR47M82RKbGyssW/fPof7ysrKMnr37m37a5nk5ORcbZ5//nlDkuHv72+cOHEi1/aXXnrJ9kvi77//nm/9uLmV1rlSFP2ZK3BWaZ4n586dMypUqGBIMl577bV8938j5gkKojTPlcKOz1xBQbhzrhT2xKP1xGaLFi2MtLS0XNt79eplSDLq1q2b631mZGTY3mfv3r1z9U1NTbWd5O/YsaNL9eHmUlrnyrFjx2x/mGpPTEyMLWzo0aOH3TaFmWsoW0rrPLlRRkaG7Q+QfvjhB9t7yCvMKs55wj2zAAAlxtPT0+W+58+flyS1bdvW7vaQkBDdeuutkqTExMQ897V79269/fbbuvXWW/X888/nO3ZISIhat27tcLvFYtGYMWNsYx89ejRXm6VLl0qShg4dqrCwsFzbJ02apMDAQGVmZmrZsmX51oSbW2mdK0XRn7kCZ5XmefL2228rJiZGt99+uyZPnlyAyq9jnqAgSvNcKez4zBUUhFnmSkGdOHFCO3bskCT94x//kLe3d642zzzzjCTp5MmT2rZtW45tW7duVVRUVI522fn4+Ogf//iHJGnHjh2KjIws0vpR+pTWudKoUSPVrFnT4fby5cvroYcekiT98ssvubYXdq6hbCmt8+RGr732mvbu3asRI0aoZ8+e+bYv7nlCmAUAKBXq1asnSdq3b5/d7XFxcbabtTr6gS9JqampGjNmjAzD0IIFC+Tn51ck9WXfT2ZmZo5tv//+u06dOiVJuu++++z2DwwMVKdOnSRJP/zwQ5HUhLLJLHPFlf7MFZQUd88T6wn24cOHy2KxFKR05glKlLvnSmHGZ66gJBXVXHHFjz/+aHveu3dvu206duyooKAgSbk/69b+QUFBuvvuu+32zz6HmCsoDHfOFWdYfz7d+Du9VPi5BjjLLPPkjz/+0IwZM1SlShW9/vrrTvUp7nlCmAUAKBUmTJggSdqyZYsmTpyos2fPSpIMw9Cvv/6qvn37KjExUXfddZeGDx/ucD+zZs3S0aNHNXbsWHXp0qXI6tuyZYuk63+5aP0LGavDhw/bnjdv3tzhPqzbjhw5UmR1oewxy1xxpT9zBSXFnfMkMjJS586dkyS1adNGhw4d0rBhw1SjRg35+vqqdu3aGjJkiH7++We7/ZknKEnu/plSmPGZKyhJRTVXIiIi1Lx5cwUEBCgwMFCNGjXSuHHjtH//fod9rJ/1qlWrqmrVqnbbeHp6qnHjxrYx7PVv0qSJw5UEVatWVZUqVez2BwrCnXPFGdbf61u0aJFrW2HnGuAsM8wTwzA0duxYpaSk6I033lClSpWcqr245wlhFgCgVJg4caKmTZsmDw8Pvf/++6pdu7aCgoLk5+enNm3a6Pjx45o+fbo2bdrk8Jew/fv3a+7cuapWrZr+85//FFltkZGRmjdvniRpyJAhCg4OzrHdetJSkmrVquVwP9Zt8fHxxb5UHDcvM8wVV/szV1BS3DlPrH9FKUk///yz2rZtq88//1xxcXHy8/PT2bNntXLlSnXq1EmzZ8/O1Z95gpLk7p8phRmfuYKSVBRzRZIuX76so0ePyt/fX6mpqfrjjz/00UcfqU2bNg4vz2n9rOf1Oc++PfvcKIr+QEG4c67kZ8WKFfr1118lSePGjcu1nbmCkmKGefLuu+9qx44d6tWrlx555BGnay/ueUKYBQAoFTw8PPTvf/9bixYtUmBgoKTr1wZOS0uTJKWkpCguLk7Xrl2z2z8jI0NjxoxRRkaG3n77bZUvX75I6kpOTtagQYOUlJSkypUr6+WXX87VJiEhwfY8ICDA4b6yb8veBygId8+VwvRnrqCkuHOexMTE2J6/8MILqlmzpn788UclJiYqLi5OERER6tq1qwzD0Isvvqi1a9fm6M88QUly98+UwozPXEFJKuxcadiwoebOnavff/9dKSkpunLliq5du6YNGzaoTZs2MgxD//rXv/Taa6/l6mv93Ob1Oc++/cbPeWH7AwXhzrmSlz/++EPjx4+XdP0SaKNGjcrVhrmCkuLueXLy5Ek988wzCggI0AcffFCg2ot7nhBmAQBKhcuXL6tHjx4aNWqU7rrrLu3YsUOxsbE6f/681q5dqypVquiDDz7QnXfeaVuCnd3LL7+sAwcOqG/fvho8eHCR1JSRkaFhw4Zp37598vb21rJly/K8oSxQEtw9V4pjrgFFzZ3zJCsry/bcMAytWbNG99xzjzw8rv9q1rRpU3399deqXr26JGnmzJmFeKdA4bj7Z0phxwdKSmE/q4888oiefvpp3XrrrfL29pZ0/fLl9957r3bs2KE77rhDkhQeHq64uLgSfW9AUTLjXLlw4YLuv/9+xcbGqmbNmvr8889t/18GuIO758m4ceN07do1zZo1S2FhYcX7ZguImQkAKBVGjhypLVu2qEuXLtqwYYPuvvtuhYSEqHr16nrwwQe1Y8cOVa5cWSdOnND06dNz9D1y5Ihmz56twMBAvf/++0VST2Zmph555BGtW7dOXl5e+uyzz3TvvffabWu9saUkJSUlOdxn9m3Z+wAF4c65Utj+zBWUFHfOk+yf2R49eqh169a52gQGBmrixImSpIMHD+rixYt2+zNPUNzc/f9fhRmfuYKSVJjPan78/Pz00ksvSbr+l/mbNm3Ksd36uc3rc559+42f88L2BwrCnXPFnkuXLqlHjx46fvy4qlWrpk2bNql27dp22zJXUFLcOU8++ugjbdy4Ua1bt9bf//73Atde3POEMAsAYHpHjx7Vd999J0maOnWqLBZLrjZVq1bViBEjJElr166VYRi2bRMnTlRaWpqee+45VahQQYmJiTkeGRkZkq7/hbz1tfT0dIf1ZGZmavjw4Vq5cqU8PT316aefauDAgQ7bZ1+tlddfDVu3BQcH25aSAwXh7rlS2P7MFZQEd8+T7NePb9KkicM6mzZtanseFRVle848QUlx91wp7PjMFZSUwn5WnXHXXXfZnp84cSLHNutnPb/VidbtN15JorD9AWe5e67c6NKlS+revbuOHDmiqlWr6qefflLjxo0dtmeuoCS4c57ExcXpH//4hzw8PPTmm28qOTk51/+/WcfKyMiwvZb9yhPFPU8IswAApnfkyBHb8/r16zts17BhQ0nX/8Lj0qVLttcjIyMlSc8884yCgoJyPZYtWyZJOnXqlO219957z+4Y1hVZy5cvtwVZQ4YMybP+5s2b254fPnzYYTvrtuwnMIGCcPdcKWx/5gpKgrvnSdOmTfO8UbNV9l9Ks/8SyzxBSXH3XCns+MwVlJTCflYLy/pZv3TpkqKjo+22yczM1LFjxyRJzZo1s9v/6NGjyszMtNs/+75v7A84y91zJbtLly6pW7duioiIsAVZ+f0cKOxcA5zhznkSExOjuLg4ZWVlqXPnznb//+3UqVOSpGXLltleO3jwoG0fxT1PCLMAAKaX/XrV2f86/UbZL8NUHH9Zm5mZqWHDhmnFihW2IGvo0KH59rv11lt1yy23SJK+//57u22uXbum7du3S5LDyxUC+THLXHEVcwUlwd3zxM/PT507d5Z0/cShI9ZfZC0Wi+rWrWt7nXmCkuLuuVLY8ZkrKCklMVd2795te37j/Ut69uxpe+7os/7zzz8rISFBUu7PurV/QkKCdu7cabd/9v0yV+Aqd8+V7Pvv1q1bjhVZzpxQL+xcA5xhlnniqmKfJwYAAG4UGhpqSDJmzJjhsM3JkycNSYYko1+/fnbbJCYmGvXq1TMkGS1btixQDSNHjjQkGaGhoQ7bZGRkGEOGDDEkGV5eXsby5csLNMbzzz9vSDICAgKMyMjIXNtfeeUVQ5Lh6elp/P777wXaN8qG0jJXCtufuYLCKC3zZOnSpYYkw2KxGPv27cu1PSEhwahevbohyWjfvn2u7cwTFFZpmCtFMT5zBYVVEnMlKysrzxpSUlKMO++805BklCtXzoiJicnVpmPHjoYko1WrVkZaWlqu7ffdd59tvmVkZOTYlpGRYXufffr0ydU3LS3NaNmypSHJ6NixY561ouwqLXPl4sWLRtOmTQ1JRrVq1YyIiIh831t2hZlrQGmZJ868h5EjRzpsU5zzhDALAFCirl69akRHR9sederUMSQZTz/9dI7XExIScvTr16+f7Qf68OHDjePHjxtZWVlGWlqa8fPPPxtt27a1bV+yZEmBasrvZEpGRoYxdOhQW5C1cuXKAr/v2NhY24nJpk2bGnv37jUMwzBSU1ON999/3/Dx8TEkGRMmTCjwvnFzKo1zpSj6M1dQEKV1nmRmZhrt2rUzJBl169Y1Nm7caGRmZhqGYRhHjhwxunXrZkgyPDw8jE2bNuXqzzxBQZXWuVLY8ZkrKCh3zJUtW7YYPXr0MJYuXWqcPn3a9npaWpqxceNG44477rD1feWVV+zW/fPPPxuenp6GJOOhhx4yzpw5YxiGYVy5csWYMGGCrf+KFSvs9l+xYoWtzYQJE4wrV64YhmEYZ86cMR566CFb6Ltz506Xjy1uLqVxrly6dMlo1qyZIcmoXr26ceTIkQK/78LONZQtpXGe5MeZMKs45wlhFgCgRFl/8OX3uPEHY3R0tNGmTZscbQICAgwvL68crz399NMFrim/kylbt2617d/b29uoVq1ang9Hq7b27t1rVKpUybavoKAgw9vb2/b1vffea6SkpBS4ftycSuNcKar+zBU4qzTPk/Pnz9v+Mtg6fkhISI6fNwsWLHDYn3mCgiitc6UoxmeuoCDcMVc2b96co42/v79RuXLlHJ9TDw8P49lnn82z9g8//DDHeOXLlzcsFovt67xWAhiGYcyYMcPW1mKxGOXLl7d97eXlZXz44YcFPZy4iZXGuTJz5kxbu3LlyuX7e/2pU6fs7qewcw1lR2mcJ86+p7zCLMMovnniJQAASoHKlStr9+7dWrJkiVatWqUDBw7o6tWr8vLy0i233KIOHTroiSeeUMeOHYt87KysLNvz9PT0HNcmtic5Odnu623atFFERIReeeUVffPNNzp9+rTKlSun5s2ba+TIkRozZkyO6yMDrnDnXCkqzBUUNzPMk+rVq+vXX3/Vu+++qxUrVuiPP/5QcnKy6tatq+7du2vy5Mm2GyjbwzxBSXD3XCmK8ZkrKAmF+ay2aNFCr776qnbt2qVDhw7p8uXLio2NVUBAgJo2bapOnTrp8ccfV4sWLfKs4bHHHlPr1q312muvaevWrYqOjlbVqlV11113adKkSerevXue/cPDw9W5c2e988472rVrl2JiYlSrVi116dJFU6ZMUZs2bQp1jADJvXMl++/1165d07Vr1/KsNTMz0+7rhZ1rQH7M8DOlsIprnlgMwzCKuFYAAAAAAAAAAACgSPDnRwAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAC4icVikcVi0ZYtW9xdSpHasmWL7b2h9HLX5zMtLU3169eXr6+vTp8+Xej97d69WxaLRZ07dy6C6gAAAOAOhFkAAAAA4ALriX5XHosXL3Z3+YBpvfPOOzpx4oQee+wx1alTp9D7a9++vXr16qXt27friy++KIIKAQAAUNK83F0AAAAAAJRG1apVs/t6YmKirl27lmcbf39/SVKjRo0kSQEBAcVQofsEBATY3htQEFevXtWcOXPk6+urZ555psj2Gx4erg0bNmj69Onq16+fvLw4HQIAAFCa8H9vAAAAAOCCCxcu2H09PDxcM2fOzLON1bFjx4q8LjNo167dTfveULwWLFig2NhYDRw4ULVr1y6y/bZv316tWrXSb7/9pnXr1mngwIFFtm8AAAAUPy4zCAAAAAAA3M4wDC1YsECSNHz48CLfv3Wf8+fPL/J9AwAAoHgRZgEAAACAm1jvobVly5Ycr588edK27eTJk4qKitK4ceN0yy23yM/PT/Xr19fzzz9vu5yhJB0+fFjDhw9XnTp15Ofnp4YNG2rOnDlKT0/Ps4aTJ0/q73//u5o1a6bAwEAFBASocePG+tvf/qZTp0659L62bNliq/9GixcvlsViUd26dSVJ+/bt0+DBg1WjRg35+vqqXr16mjJlimJiYlwaW5L27NmjRx55RGFhYfLz81O5cuUUGhqqLl26aPbs2Tpz5ozdfmlpaXr//ffVrVs3Va5cWT4+Pqpevbr69++v9evXOzXu6NGj1aBBAwUEBCg4OFhNmzbVmDFjtGHDBrt94uLiNGvWLLVu3VrBwcHy9/dXw4YNNWHCBJ04ccLhWNk/OwkJCXr++efVuHFj+fv7q1KlSurbt6/27NmTZ70xMTF6+umnVb9+ffn5+alGjRoaNGiQ9u3bl+97PXPmjCZPnqxmzZqpXLly8vX1Vc2aNdWmTRtNnjxZv/zyS777uNHGjRsVGRmp8uXLq0+fPg7bHTt2TI8//rhuvfVWBQQEyM/PT3Xq1FH79u317LPPOlwVOGzYMEnSpk2b8jy2AAAAMCEDAAAAAFBkZsyYYUgynPl1y9pu8+bNOV6PjIy0bVuzZo1Rvnx5Q5IRHBxseHp62rZ16tTJSEtLM7755hsjICDAkGSEhIQYFovF1mbIkCEOx//0008NX19fW1tfX1/D39/f9nVQUJCxYcOGAh+DzZs3OzwGH3/8sSHJCA0NNZYtW2Z4e3vb6vbw8LD1a9asmZGQkFDgsRcvXpzj/fv6+hrBwcG2ryUZH3/8ca5+J0+eNJo1a2ZrY7FYjJCQkBz9xo8fb3fMjIwM46mnnsrRtly5ckaFChVstYSEhOTqd/jwYaN27dq2Pn5+fkZQUFCO2levXm13TGubzz77zGjQoIGtv/VzIMnw8fFx+O8XGRlphIaG5mhrPU4+Pj7Gl19+6fDzeeDAAaNChQq27Z6enjneqyRj5MiRef0z2TVlyhRDktGrVy+HbX744Yccn1lvb2/b/LA+ZsyY4bB//fr1DUnG+++/X+D6AAAA4D6szAIAAAAAExs7dqzatGmjiIgIxcXFKSEhQW+//bY8PT21fft2zZo1S4888oj69eunkydPKjY2VvHx8XruueckSStWrNDGjRtz7ffHH3/UiBEjlJmZqWnTpikyMlLJycm6du2ajh07pkGDBikhIUGDBg1yeYVWXqKjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3boH2mZSUpEmTJskwDA0fPlzHjx9XSkqK4uLilJiYqL179+rpp59W1apVc/S7du2aevfurYiICHXt2lVbtmxRcnKyYmNjFRsbq9dff12BgYGaN2+e3nrrrVzjPvvss3r77bclSWPGjNHvv/+uxMREXb16VTExMVq3bp169+6do09CQoL69eunM2fOqFatWvr222917do1xcfH68CBA2rfvr1SU1P1yCOP6LfffnP4nidOnCgfHx/99NNPunbtmhITE/Xf//5XjRo1Ulpamh5//HFlZWXl6JOZmalBgwYpKipKFSpU0MqVK3Xt2jXFxcUpIiJCd955p0aOHOlwzKlTpyomJkatW7fWrl27lJ6erqtXryolJUV//PGHXn31VTVr1izff68bbdu2TdL1e645MmHCBKWmpuree+/VoUOHlJaWppiYGCUnJ+vw4cOaOXOmbdWfPXfeeackaevWrQWuDwAAAG7k7jQNAAAAAG4mRb0yq1mzZkZKSkquvo8++qitTc+ePY2srKxcbTp16mRIMsaOHZvj9czMTKNhw4aGJGP+/PkO63vggQcMScbf/va3fN9Lds6szFIeq3esK3QaNGhQoHH37NljWxWVnp7udL9Zs2YZkowuXboYaWlpdtusXbvWkGRUrlw5x75///1324qyadOmOT3myy+/bFtZdOjQoVzb4+Pjjbp16xqSjPvvvz/XdusxrFKlinHx4sVc2w8ePGhrs2PHjhzbVqxYYdu2cePGXH2vXbtmW8Fk7/NpXb23c+dOp99vflJTU22rDh2tRrt48aKtpnPnzrk0zn/+8x9DknHLLbcUplwAAACUMFZmAQAAAICJTZ48Wb6+vrle79Wrl+359OnT7d6fytrm4MGDOV7ftm2b/vzzT1WuXFmPPfaYw7FHjBghSQ7v91RYzz//vN3X+/fvL0k6fvy4kpKSnN5f+fLlJV2/99WVK1ec7rdw4UJJ0pQpU+Tt7W23zYABAxQcHKzLly/nuKfUkiVLlJWVpUqVKmnmzJlOj7lixQpJ0sCBA9W8efNc24OCgjRt2jRJ0vr16xUXF2d3P48//niulWaS1KJFC4WFhUnK/e+/fPlySdLdd9+tHj165OobEBBgG9se63E+f/68wzYFdenSJWVmZkqSqlSpYrdNUFCQPDw8CjV25cqVC9UfAAAA7kGYBQAAAAAm5uiSa9WqVbM9v+OOO/JsExMTk+P1n3/+WZIUFxenmjVrqnr16nYf48aNkyRFRUUV+n3cqGLFimrQoIHdbTVr1rQ9v7H2vNSvX1+NGzdWenq67rzzTr3yyis6cOCALSSx5+zZs7b3N3bsWIfHokaNGkpMTJSU83js3LlTktSzZ0/5+fk5VWdaWpotYLrnnnsctuvZs6ckKSsrS7/++qvdNtbL5tljPY5Xr17N8frevXslSd27d3fYN69tffv2lSSNHDlSU6dO1datWwsUOtoTHR1te16xYkW7bfz9/W3hW+/evfXiiy9qz549SktLc3oc677T09MVGxvresEAAAAoUYRZAAAAAGBiQUFBdl/38vJyuk16enqO18+dO2d7/eLFiw4f1iApOTm50O/jRo5qzl63vdrz4unpqeXLlyssLExRUVGaPn26br/9dgUHB6tnz5764IMPcoUu1mMhSZcvX87zeFjvPZV9HxcuXJAkhYaGOl3n1atXbQFbrVq1HLarXbu27fmlS5fstnHmON54DK37cnbsG82dO1fdunVTYmKiXn/9dXXt2lXBwcFq27atZsyYobNnzzrs60hKSortub2ViFYfffSRWrVqpejoaM2ePVvt27dXUFCQOnbsqP/85z+5grsb+fv72x0TAAAA5kaYBQAAAABljDVIufPOO2UYhlOP0qJVq1Y6duyY1qxZo8cff1zNmzdXcnKyNm7cqL/+9a9q3LixDh06ZGuffdXW0aNHnToWo0aNsvWxd3nHm1358uX1008/afv27Zo2bZruvvtueXl5ad++fZo1a5YaNmyozz//vED7rFSpku15XqvxbrnlFv3666/6/vvv9dRTT6lNmzbKysrSzz//rGnTpqlBgwb66aefHPbPHnZlHxMAAADmRpgFAAAAAGVM9erVJRXP5QPNwMfHRw899JDmz5+vQ4cOKTo6WvPmzVPFihV1+vRpjRw50tbWeiwk146HK8eyYsWK8vT0lCSdOXPGYbvs2+zdF8tV1n3ltYLKmdVVHTt21CuvvKIdO3YoNjZWX375pVq0aKHk5GSNGTNGFy9edLqm7PfJym91lYeHh3r16qW33npLe/fu1dWrV7Vs2TLdcsstiomJ0bBhwxxeetC675CQEIf3RwMAAID5EGYBAAAAQBlz9913S7p+iTzr/ZNuZpUqVdITTzyhV155RZK0f/9+XblyRZJUt25d2+X2vv766wLvu0OHDpKkH3/80enL1vn4+Khly5aSpE2bNjlst3HjRknXw5vWrVsXuDZH2rZtK0navHmzwzZ5rW6yx8/PTw888IDWrl0r6fol/Hbs2OF0/woVKtiCwRMnThRo7KCgIA0bNkwLFy6UJF28eDHH6rvsIiMjJUlNmjQp0BgAAABwL8IsAAAAAChjunXrpgYNGkiSJk+e7HAVi1V+K2XMIjU1Nc/t2e+X5OHxv1+Hx40bJ0lauHCh9u/fn+c+bjwWo0aNkqenp65cuaIZM2Y4XevQoUMlSatXr9bhw4dzbU9MTNTcuXMlSX369FFISIjT+87PkCFDJEk7duzQli1bcm1PTk7Wf/7zH7t9MzIybPcOs8fRMXZG586dJUn//e9/7W7P73PqzNh79uyRJHXp0qVAtQEAAMC9CLMAAAAAoIzx8vLSvHnz5OXlpR07dqhz587atGmT0tPTbW1OnDihefPm6Y477tD777/vxmqdt3z5ct19992aP39+jtU9mZmZ2rBhg6ZPny5Juuuuu1ShQgXb9qlTp6pFixZKSUlRt27d9O6779pWbklSbGys1q9frxEjRqhTp045xmzQoIGefvppSdLcuXP12GOP6c8//7Rtj4+P14oVK/Tggw/m6DdhwgSFhYUpPT1d9913n9avX28LiQ4dOqRevXopMjJSvr6+mjNnThEdoesefvhh20qvhx9+WGvWrLHdO+zo0aO67777FB0dbbfvmTNn1LBhQ82ZM0f79+9XRkaGbdvBgwc1fPhwSVK5cuUKHBh17dpV0v8Cpxvt3LlTLVu21BtvvKGjR4/ajpdhGNq5c6cmTJggSapdu7Zt5Vt2mZmZ2rdvnyTCLAAAgNLGy90FAAAAAABKXo8ePbRq1SqNGDFCe/bs0T333CNvb28FBwcrMTExxyqnAQMGuK/QArCGGjt37pQk+fr6KjAwUDExMbbgo2bNmlq0aFGOfoGBgfr+++/18MMPa/fu3Zo0aZKeeuophYSEKCsrS/Hx8ba21hVt2c2ZM0cJCQl67733tHDhQi1cuFCBgYHy9vZWbGysDMPItbIqKChIX331lXr37q0zZ86oT58+8vPzk4+Pj208X19fffrpp2rVqlWRHicvLy+tWrVKXbt21enTpzVw4ED5+vrKz89PcXFx8vHx0apVq9S/f3+7/U+cOKEXXnhBL7zwgjw9PRUSEqLExETbyikfHx8tXrxYFStWLFBdDz/8sP72t7/p2LFj+vPPP9WwYcNcbQ4dOqQpU6ZoypQpts9rXFycLVQLDg7WZ599ZrsnWXabNm3StWvXVLVqVd1zzz0Fqg0AAADuxcosAAAAACijBgwYoOPHj2vGjBlq166dAgMDFRsbK19fX7Vq1UqPPfaYvvjiC9vKI7N74IEHtHTpUo0ePVqtWrVSSEiI4uLiFBQUpHbt2mn27NmKiIhQ48aNc/WtWbOmduzYoc8//1wPPPCAatSooaSkJKWlpalu3brq16+f3nzzTW3bti1XX09PT7377rvasWOHHnnkEd1yyy1KT0+XYRhq2rSpxo4dqzVr1uTq17x5c0VERCg8PFy33XabvLy8lJqaqvr162v8+PGKiIjQwIEDi+VY1atXTwcOHNCUKVMUFhYmwzDk5+engQMHaufOnXrggQfs9qtVq5a++uorTZ48We3bt1eNGjWUmJgoLy8vNW3aVBMnTtThw4ddqrtq1aq2FWzLli3Ltf2OO+7QypUrNWHCBLVp00aVK1dWfHy8/Pz8dNttt2natGk6evRortVzVtZ9jh49Wt7e3gWuDwAAAO5jMQzDcHcRAAAAAAAA27ZtU5cuXVS/fn39+eefslgsRbLfa9eu2QLKP/74Q/Xq1SuS/QIAAKBksDILAAAAAACYQufOnXXvvffq//7v/7Rq1aoi2++7776rhIQEPfbYYwRZAAAApRArswAAAAAAgGkcOnRIt912m5o0aaKDBw/Kw6Nwf4ebmJiosLAwpaSk6Pjx46pWrVoRVQoAAICS4uXuAgAAAAAAAKxatGihhQsX6uTJkzp//rxq1apVqP2dPHlSEydO1O23306QBQAAUEqxMgsAAAAAAAAAAACmxT2zAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBa/w+EdmROGnWCgQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the actions from file\n", + "actions = nwbfile.get_acquisition(\"task_recording\").actions\n", + "action_types = nwbfile.get_lab_meta_data(\"task\").action_types\n", + "\n", + "# Plot the data\n", + "fig = plot_actions(\n", + " actions=actions[20:100],\n", + " action_types=action_types,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Actions\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "68ecfe11-c8f4-4449-a1f9-23a331258fea", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAFVCAYAAAD/gzyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyK0lEQVR4nOzde3zP9f//8dtr58229w4YZihKklPOIZskPlQkRDmkQqWPQ+VQyagcOig+KUIOHTQhkUpOY46hHDroyByH2fl8ev/+2G+v72YH23tjzP16ubwvba/n6fF8vd7vWXtcns+nYbVarYiIiIiIiIiIiIiIiIiUkF15ByAiIiIiIiIiIiIiIiLXJyWaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklERERERERERERERERsokSTiIiIiIiIiIiIiIiI2ESJJhEREREREREREREREbGJEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiIiIiIiISElZrVZWrlzJ559/zk8//cT58+ext7fHz8+P6tWr06pVKzp06MA999yDp6en2e69994jJiaGnj170rRp0ysS29UYQ0RERETkWmFYrVZreQchIiIiIiIiUlw5SZxt27aZ1xwcHPD09CQuLo6MjAzz+uLFixkyZIj5fZ06dQgPD893vSxdjTFERERERK4V2jpPREREREREriuDBg1i27Zt2Nvb8/zzz/Pnn3+SmprKxYsXSU5O5tChQ8ycOZMmTZqUd6giIiIiIhWets4TERERERGR68Zff/3FunXrAHj99deZMGFCnnIHBwcaN25M48aNGTduHMnJyeURpoiIiIjIDUMrmkREREREROS6cfDgQfPrBx988LL1XV1dAQgODsYwDMLDwwF4/PHHMQwjzyu3X375heDgYDp16kTdunVxdXXF09OTZs2a8corrxAZGZlvrJKOkWP9+vX07t0bf39/nJ2d8fb25u677+bDDz8kLS2t0LmFhITQrVs3/Pz8cHR0xMvLi1tuuYUHHniAuXPnkpKSctn7IyIiIiJSWlrRJCIiIiIiItelU6dO0aBBg2LVdXd3x8/PjwsXLpCVlYWnp6eZhCpIjx49zISRi4sLbm5uREdHc/DgQQ4ePMiSJUvYvHkz9evXt3mM5ORkBg0axMqVK81rnp6exMbGEhYWRlhYGMuWLePbb7/F29s7T9uhQ4eyePHiPGOnp6fz999/8/fff7Nu3Tq6d+9OnTp1inV/RERERERspRVNIiIiIiIict1o2bKluTIo53ym4njhhReIiIggICAAgNmzZxMREZHnlVvHjh1ZsmQJ4eHhJCcnc/HiRVJSUti0aROtWrXi9OnTDBgwoFRjDBs2jJUrV3LzzTfz2WefERsbS2xsLElJSXz99dfcfPPN7Nmzh6FDh+Zpt2PHDhYvXoydnR0zZ87k4sWLxMfHk5iYSGRkJBs2bGDw4ME4OTkV/8aKiIiIiNjIsFqt1vIOQkRERERERKS4hg0bxoIFCwAwDIOmTZvStm1bmjdvTqtWrWjYsGGh29TVqVOH8PBwFi9ezJAhQ2waPyEhgXr16nHu3DnCwsJo3759iccICwvj7rvvpmrVquzfv99MTuV26tQpbrvtNhITE/n5559p2rQpAG+++Sbjx4+nS5cubNiwwaY5iIiIiIiUFa1oEhERERERkevKBx98wKRJk6hUqRJWq5Wff/6ZDz74gCeeeIJGjRpRrVo1xo4dy7lz567I+O7u7nTs2BHIXl1ki0WLFgHw6KOPFphkAqhZsyZBQUEAeRJKXl5eAFy4cIHMzEybxhcRERERKStKNImIiIiIiMh1xcHBgalTp3L69Gk++eQTnnzySZo0aWJuFXf+/Hneffdd7rjjDn788Uebx/nmm2/o168fN998M5UqVcIwDPO1YsUKIHvVkS127twJZCecqlWrVuhr06ZNAOZ5UQD33HMPLi4u/Pzzz3To0IFFixZx7Ngxm+cpIiIiIlIaDuUdgIiIiIiIiIgtLBYLjz32GI899hgAKSkp7Nixgzlz5rBu3ToiIyPp3bs3f/31Fy4uLsXuNysri8cee4zly5eb1xwcHPD29jaTWbGxsaSkpJCYmGhT7GfOnAEgLi6OuLi4y9ZPSkoyv65bty4LFy5kxIgR7N69m927dwNQpUoVgoKCGDBgAA888ECh2weKiIiIiJQlrWgSERERERGRCsHFxYXOnTuzdu1aBg8eDGSvOPr+++9L1M+iRYtYvnw59vb2vPrqq/z111+kpqYSFRVFREQEERERPPzwwwDYeuxxzpZ3H374IVar9bKvJUuW5Gn/6KOPEh4ezrx58+jXrx8BAQFcuHCBFStW0LNnTzp27FisBJaIiIiISGkp0SQiIiIiIiIVzrBhw8yv//jjjxK1/eKLLwB48sknmTJlCvXq1cPOLu//PkdERJQqvmrVqgF5t8QrKR8fH4YPH84XX3zBiRMn+Pvvv5kwYQKGYRAWFkZwcHCpYhQRERERKQ4lmkRERERERKTCcXd3N792dnY2v85JGBW1EunkyZMANGvWrMDyhIQE9u7dW2j74ozRrl07IPscqLJSt25dpk+fzoABAwDYuHFjmfUtIiIiIlIYJZpERERERETkunHs2DH+/PPPy9ZbunSp+fWdd95pfu3p6QlATExMoW0tFgsAhw4dKrD8tddeIz4+vtD2xRkjZ8XVL7/8wocfflhoPYDExETS0tLM71NTU4us7+rqCpBvFZaIiIiIyJWg3zpFRERERETkuvHrr7/SoEEDunfvzrJlyzh+/LhZlp6ezs8//8zjjz/OrFmzAGjVqhXt27c369xxxx0ArFy5kujo6ALH6Nq1KwALFizgo48+MpM8ERERjBkzhjfffBNfX99CYyzOGB07duTxxx8H4Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dm/Pnz5tlI0eOpG/fvqxatSrP9YSEBObNm8eyZcsA6N69e6ExioiIiIiUFcNq68mlIiIiIiIiIlfZhg0bzERQDicnJ9zd3YmOjs6zXd2dd97JunXrqFGjhnlt+/btBAYGYrVasbe3p2rVqjg5OQGYSauYmBjatm3L0aNHgeyVQZ6ensTGxmK1Whk+fDgpKSksXbqUwYMHs2TJkjzxFGcMgLS0NJ599lkWLlxoXnN3d8fR0ZHY2FiysrLM66dOncLf3x+AIUOG5Fmx5e7ujoODQ54VVO3bt+f777+nUqVKxb21IiIiIiI2UaJJRERERERErit///033377LTt27OCXX37h1KlTJCYm4urqSo0aNWjWrBkPPfQQffr0KXD7uO+++45Zs2bx888/Ex0dbSZ0cv/vcXR0NFOnTmXNmjWcPn0ai8VCo0aNGDZsGI888oiZ7Cko0VTcMXLs3r2bjz76iLCwMM6cOUNGRga+vr7cdttt3H333Tz88MM0atTIrP/PP//w7bffsnXrVn7//XciIiJISEjAx8eHJk2a0L9/fwYNGoS9vX1pb7WIiIiIyGUp0SQiIiIiIiIiIiIiIiI20RlNIiIiIiIiIiIiIiIiYhMlmkRERERERERERERERMQmSjSJiIiIiIiIiIiIiIiITZRoEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbOJQ3gGIyI0jKyuLM2fO4OHhgWEY5R2OiIiIiIiIiIiIiBTAarUSHx9PjRo1sLMres2SEk0ictWcOXOGgICA8g5DRERERERERERERIrh5MmT1KxZs8g6SjSJyFXj4eEBZP9w8vT0LOdoRERERMrWHZM3APDLlPvKORIpip6TiEjZ0c9UuZw7Jm/Q+0PkOhUXF0dAQID5N92iKNEkIldNznZ5np6eSjSJiIhIhWPn7Aag33OucXpOIiJlRz9T5XLsnN30/hC5zhXnCJSiN9YTERERERERERERERERKYQSTSIiIiIiIiIiIiIiImITJZpERERERERERERERETEJjqjSeQKWLNmDQcPHqRp06b07NmzvMMpE8ePH2fJkiUABAcHl2ssIiIiIiIiIiIiInJt0IomkStgzZo1TJkyhTVr1pR3KGXm+PHjTJkyhSlTppR3KCIiIiIiIiIiIiJyjVCiSURERERERERERERERGyiRJOIiIiIiIiIiIiIiIjYRIkmuSGEhobSp08f/P39cXZ2pnLlytxzzz0sXryYzMzMfPWDg4MxDIPAwEAAVqxYQceOHfHx8aFSpUo0b96c999/P1/b0NBQDMNg6dKlACxduhTDMPK8QkNDSz2fiIgIXnzxRRo2bEilSpWoVKkSDRs2ZNy4cZw7d67Qe5ATQ1EKirNOnToEBQXlq5PzGjJkSKnnJCIiIiIiIiIiIiLXH4fyDkDkShs7dizvvvsukJ0gsVgsxMTEsGXLFrZs2cKnn37KmjVr8PDwKLD9+PHjefPNNzEMAy8vL1JSUvjpp5/46aef+Oabb/j6669xdnYGwMnJCT8/P2JjY0lJScHFxQWLxZKnPycnp1LNZ9u2bfTs2ZOYmBgAKlWqBMBvv/3Gb7/9xsKFC1m7di3t27cv1Ti5ValShbi4OKKjowHw8/PLU37pHEVERERERERERETkxqAVTVKhvf/++2aSadiwYZw5c4bo6GhiY2N59913cXBwYMuWLTz11FMFtj948CBvvvkmI0eO5Ny5c0RFRREdHc1rr72GYRhs2LCBiRMnmvXvuusuIiIi6NevHwD9+vUjIiIiz+uuu+6yeT4nT540k0y33347O3bsICEhgYSEBLZv3079+vWJjo7mwQcf5PTp0zaPc6l9+/axevVq8/tL5zR79uwyG0tERERERERERERErh9KNEmFlZyczOTJkwHo378/8+fPp1q1akD2KqDRo0cza9YsAEJCQjhw4EC+PmJjYxk4cCD/+9//qFKlCgCenp688sorvPzyywD873//48yZM1djSkybNo2YmBi8vb3ZvHkz7dq1M8s6dOjApk2b8PT0JCoqiunTp1+VmIqSmppKXFxcnpeIiIiIiIiIiIiIVBxKNEmFtXHjRqKiooDsM5cK8swzz1C9enUAPv/88wLrvPrqqwVef/HFF3F1dSUjI4NVq1aVPuDLsFqtrFixAoARI0aYSbPcatasyYgRIwD44osvrnhMlzN9+nQsFov5CggIKO+QRERERERERERERKQMKdEkFdb+/fsBCAgI4NZbby2wjr29PZ06dcpTP7eAgADq1atXYFtPT0+aN29eaNuyduzYMTNx1rlz50Lr3XvvvQBcvHiRY8eOXfG4ijJx4kRiY2PN18mTJ8s1HhEREREREREREREpWw7lHYDIlXL+/HkA/P39i6xXs2bNPPVzu1zbnPKC2pa13GMUFVfOfHLa3HTTTVc0rqI4Ozvj7OxcbuOLiIiIiIiIiIiIyJWlFU0iIiIiIiIiIiIiIiJiEyWapMKqWrUqAKdOnSqyXk55Tv3cTp8+XWTbnPKC2pa13GMUNafcZbnbODj83wLGlJSUAtvGxsaWJkQRERERERERERERucEo0SQVVosWLYDsxMuff/5ZYJ3MzEy2bt0KQMuWLfOVnzx5kn/++afAtvHx8Rw4cCDPWDns7LI/Wlar1bbgC3DTTTfh4+MDwObNmwutt2nTJgB8fX3zbJvn7e1tfl3YWUl79+4ttN+cOUHZzktERERERERERERErl9KNEmFde+99+Lr6wtAcHBwgXXmz5/PmTNnAOjfv3+BdV577bUCr7/zzjskJyfj4OBA796985R5enoCEBMTY0PkBTMMg379+gHZcUdEROSrc+bMGebPnw/kn8+tt96Kq6srAKtWrcrXNisri+nTpxc6fs6coGznJSIiIiIiIiIiIiLXLyWapMJydXU1E0zLly9nxIgRnDt3DoCkpCTmzJnD6NGjAejXrx/NmzfP14fFYmHp0qWMGjWKyMhIIHsl07Rp05g6dSoAzz77LDVq1MjT7o477gAgLCyMo0ePltmcXnrpJby8vIiKiqJz587s2rXLLNu5cyedO3cmJiYGHx8fJkyYkKeto6OjmRCbNm0aK1asIC0tDYA//viDXr16cfjw4ULHvvXWW3FycgJg4cKFWtUkIiIiIiIiIiIiIko0ScU2cuRIxowZA2SvAqpevTo+Pj5YLBZGjRpFeno6QUFBLFiwoMD2TZs2Zdy4ccyZM4eqVavi4+ODt7c3L7/8Mlarlc6dOzNjxox87Xr37k2VKlWIjo6mQYMGVKlShTp16lCnTh327Nlj83xq1qzJmjVrsFgs/Prrr7Rr1w53d3fc3d1p3749v//+O15eXqxZswZ/f/987adPn06NGjWIj4+nX79+uLu7Y7FYuO2229i6dSurV68udGw3NzcGDhwIwLhx43B3d6d27drUqVOHF154weY5iYiIiIiIiIiIiMj1S4kmqfBmzZrFli1b6N27N35+fiQkJODh4UFQUBAff/wxGzduxMPDo9D2M2fO5IsvvqB9+/ZYrVacnJxo2rQps2fP5vvvv8fFxSVfG29vb7Zv384jjzyCv78/sbGxhIeHEx4eTkpKSqnm07FjR37//Xeef/55GjRoQFZWFlarlQYNGvDCCy/w+++/06FDhwLb1qxZk7179/Lkk0+aiSh3d3cGDRrETz/9RMeOHYsce+7cuQQHB9OoUSMATpw4QXh4uLnaS0RERERERERERERuLA7lHYDI1RAUFERQUJDN7fv162eej1Rct912G8uXL7d5zKJUr16dt99+m7fffrvEbWvWrFnoCi6gyC3xnJ2dmTx5MpMnTy7xuCIiIiIiIiIiIiJS8WhFk4iIiIiIiIiIiIiIiNhEiSYRERERERERERERERGxiRJNIiIiIiIiIiIiIiIiYhOd0SRylYWEhDBq1KgStenXrx+zZ8++QhGJiIiIiIiIiIiIiNjGsFqt1vIOQuRGsmTJEh5//PEStRk8eDBLliy5MgFdRXFxcVgsFmJjY/H09CzvcKQCqjNhvc1tj8/oXoaRiIiIyPWoNL9LgH6fEBHJof83ExG5NpTm53FWahIn3+tbrL/lakWTyFU2ZMgQhgwZUt5hiIiIiIiIiIiIiIiUms5oEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbKJE0w3CMAwMwyA0NPSa7O9KCgwMxDAMgoODy7Tf4OBgDMMgMDCwTPu9XsYXEREREREREREREXEo7wBEJK+DBw+yZs0avLy8GD16dHmHIyIiIiIiIiIiIiJSKCWabhD169cHwM3NrZwjufpq1apF/fr1qVy5cnmHUiwHDx5kypQp1K5du8hEU+XKlalfvz61atW6esGJiIiIiIiIiIiIiOSiRNMN4ujRo+UdQrlZtmxZeYdwRYwcOZKRI0eWdxgiIiIiIiIiIiIicgPTGU0iIiIiIiIiIiIiIiJiEyWaSiAwMBDDMAgODiYtLY0ZM2bQuHFjKlWqhLe3N/feey/fffddgW0Nw8AwDEJDQ4vVf1Ht4+PjeeWVV7jttttwdXXF19eXHj16sHfv3kL7Lmr86OhoXn31Ve688048PT1xcnKiWrVqNG7cmBEjRrB58+Yi74st8RRXeno6lStXxjAM5syZU2Tdjz/+GMMw8PT0JCkpybxe1H3NsXr1anr06IGfnx9OTk74+fnRo0cPvvrqK5viTkpKYvny5QwaNIimTZtSpUoVnJ2dqVGjBj179izyffL4448DEB4ebj63nFfuOQQHB2MYBoGBgYXG8fPPPzNo0CBq166Ni4sL3t7e3HXXXbz33nukpqYW2GbJkiUYhkGdOnUAOHDgAH379qV69eo4Oztz8803M3bsWKKjo226NyIiIiIiIiIiIiJScWjrPBukpaXRuXNnwsLCcHBwwN3dnZiYGDZt2sSmTZuYPHlykUmN0jh79ix33nknf//9Ny4uLtjZ2REVFcX69evZuHEj69ato0uXLsXu79SpU7Rr144TJ04AYGdnh8ViITIyknPnznHkyBGOHj3KPffcc1XiuZSjoyOPPPIIc+fO5ZNPPuG///1voXU/+eQTAHr37l3ss6jS0tIYNGgQISEhQN75r1+/nvXr19O/f3+WLl2Ko6NjseNesWKFmTDKSX45ODhw9uxZvv76a77++muef/553n777Tzt/Pz8SE5OJi4uDjs7O6pUqZKn3N3dvdgxvPvuuzz//PNYrVYALBYLiYmJ7N69m927d7N48WK+//57qlevXmgfn3/+OUOGDCE9PR2LxUJGRgbHjh3j3Xff5YcffmDPnj0liklEREREREREREREKhataLLBBx98wI8//si8efOIj48nOjqaEydO8PDDDwMwZcoU1q5de0XGfvbZZ3FycmLLli0kJiaSkJDAjz/+SP369UlLS2PYsGFkZWUVu7/g4GBOnDhBnTp12LRpE2lpaURFRZGamsrx48f58MMPadOmzVWLpyCDBg0CYP/+/YWeNXXixAm2bduWp35xvPTSS4SEhGAYBpMmTeLixYtERUURGRnJSy+9BMDy5cuZNGlSiWL29vbmhRdeYMeOHSQkJBATE0NiYiJnzpxhypQpODo68s477+R7n0RERDB79mwAAgICiIiIyPN64YUXijX+N998w9ixY7FarTz44IP8+++/xMTEkJCQwLJly/Dw8ODw4cM8/PDDZGZmFtjHhQsXGDp0KIMHD+bEiRPExMQQHx/P+++/j6OjI7/++itvvvlmie6LiIiIiIiIiIiIiFQsSjTZIDY2lg8++IDhw4fj4uICZCcFQkJCuPvuuwHMJEVZc3BwYOvWrQQFBWFnZ4dhGLRs2ZIvv/wSyN5ubffu3cXub9euXQBMmzaNe+65B3t7ewDs7e2pXbs2I0aMYMaMGVctnoK0atWK+vXrA7Bs2bIC63z22WdYrVZq1apV5FZyuZ0+fdpM6kyYMIGpU6fi5eUFZCeK3njjDcaOHQvArFmzOHv2bLFjfvDBB3nrrbdo165dntVV1atX59VXX2XatGkAl90O0Fbjxo0DoEOHDqxatYqbbroJACcnJwYOHMhnn30GZD//wrYHTEpK4pFHHmHBggUEBAQA4ObmxrPPPstzzz0HZCfhipKamkpcXFyel4iIiIiIiIiIiIhUHEo02SAgIMDcFi03Ozs7XnnlFQB+/fVXjhw5UuZjDxs2jKpVq+a73qhRIzOZcPjw4WL3l5NYKUkS5UrGU5iBAwcC/5dQulTOtnmPPvoohmEUq89Vq1aRkZGBi4sLEyZMKLDOK6+8grOzM+np6axcudLG6PPr3r07ALt37y50RZGtDh8+zO+//w5kx5+TPMzt/vvvp1WrVkDRyaKc9/OlHnzwQQD+/vvvPOdhXWr69OlYLBbzlZOwEhEREREREREREZGKQYkmGwQGBhaazOjQoQMODtlHX+3fv7/Mx27dunWhZTVq1AAgKiqq2P316NEDyF7RM2zYML7//vsSrTop63gKM3DgQAzDyLNFXo4DBw6YiZWSbJuX83xatmyJp6dngXW8vb1p0aJFnvrFde7cOSZPnkzbtm3x9fXFwcEBwzAwDIPbb78dyF41FB0dXaJ+LycnTgcHBzp27FhovXvvvTdP/Uv5+PhQr169Astyni1QZPwTJ04kNjbWfJ08efKy8YuIiIiIiIiIiIjI9UOJJhv4+/sXWubi4oKvry8A58+fL/OxPTw8Ci3LSXClp6cXu78XX3yRvn37kp6ezoIFC+jWrRteXl40atSIF198kT/++OOqxlOYWrVqmUmTnNVLOXK+b9myJbfddlux+8x5PkU9T4CaNWvmqV8cu3fv5rbbbmPq1Kns2bOHqKgoXF1dqVq1Kn5+flSuXNmsm5iYWOx+iyMnzsqVK+Ps7FxovcvNqzjPFop+vs7Oznh6euZ5iYiIiIiIiIiIiEjFoUTTDc7R0ZGQkBAOHjzIq6++SqdOnXBzc+OXX37h7bffpmHDhrzzzjvlHSbwf6uVVq5cSXJyMgAZGRnm1m852+uVt4yMDPr3709MTAxNmzbl22+/JS4ujvj4eM6dO0dERAR79uwx6xe0FaCIiIiIiIiIiIiIyPVAiSYbnD59utCy1NRULl68CJDn7KKcc3JSUlIKbRsbG1tGEZZckyZNmDJlCps3byYmJoZNmzZx9913k5mZyYsvvsihQ4fKLbYcDz/8MK6ursTFxfH1118D8MMPP3D+/HkcHR3p379/ifrLeT6nTp0qsl5OeUFnURVk9+7dhIeHY29vzzfffEO3bt3yrQ6KiIgoUawlkRNnZGQkqamphdYr6bxERERERERERERERC6lRJMNtm3bVugqlLCwMDIyMgDMs30g+6wfoNAzauLj481zhsqbg4MD99xzD+vXr8fZ2Rmr1cqmTZvKOyw8PDzo2bMn8H/b5eX8t1u3bnm2oyuO3GcvFZbki4mJyXOWU3HkPOMqVaoUui1fUffTzi77Y2nrSqeceWVkZOQ7z6qgGIo7LxERERERERERERGRSynRZIMTJ06wdOnSfNezsrKYNm0aALfffjuNGjUyy5o0aQLAqlWrCuzz7bffLnL1yZVS1JjOzs7mSqyc5Ed5y9k+74cffuCvv/4yVzblXC+J3r174+DgQEpKCjNnziywzrRp00hNTcXR0ZHevXsXq1+LxQLAuXPnOHfuXL7yU6dOMWfOnELb55xjFBMTU6zxLtW4cWNuv/12AF5//XUyMzPz1fn222/Zu3cvQIlXgomIiIiIiIiIiIiI5Lg2sgfXGYvFwtNPP82CBQvMrfBOnjxJ//792bp1K5D9B/7ccv6Yv2HDBiZPnkxcXByQvb3ZSy+9xOuvv46Xl9fVm8T/V7t2bSZOnMiePXvyJJ3+/vtvHn30UZKSkrCzs+O+++676rEV5N5776VatWpkZGQwYMAAkpOT8fb2pkePHiXuy9/fn1GjRgEwY8YMJk+ebCZ3YmJimDRpEm+99RYAY8eOpXr16sXqt3379lSqVAmr1Urfvn35888/AcjMzGTDhg0EBgZiGEah7e+44w4A4uLiWLFiRYnnBZiJs7CwMB5++GGOHTsGQHp6Op999pn5frzrrrvMVWIiIiIiIiIiIiIiIiWlRJMNnnnmGVq0aMGwYcPw9PTEx8eHWrVqmUmBV155hV69euVpM2TIEIKCggCYOnUqXl5e+Pj4ULVqVWbMmMHMmTPNVU9X07lz55gxYwZt27bFzc0NHx8fXF1dueWWW/jyyy8xDIN33nnHXCFT3uzt7RkwYACAuaVd3759cXZ2tqm/adOm0bdvX6xWK1OnTsXX1xcfHx98fX3NZGH//v157bXXit2nxWLh7bffBmD79u3Ur18fDw8P3N3d6dq1K7GxsSxevLjQ9vXq1eOee+4BoF+/fnh6elKnTh3q1KnDe++9V6wYevTowaxZszAMgzVr1nDzzTfj7e2Nu7s7jz32GHFxcTRq1Igvv/zSXLUmIiIiIiIiIiIiIlJSSjTZwMnJic2bNzNt2jTq169PamoqFovFPNeooKSEvb0969evZ8qUKdx22204OTlhGAZdunRh48aNvPDCC+Uwk+wt6CZOnEiHDh0ICAggOTkZyE52PP744+zbt4/Ro0eXS2yFuXSbPFu2zcvh5ORESEgIK1eupFu3bvj6+hIfH4+vry/dunVj9erVfP755zg6Opao3xEjRrB+/XoCAwNxd3cnIyMDf39/nnvuOQ4dOpRnW8WCrFy5kjFjxnDrrbeSnp5OeHg44eHhJdpOb8yYMezfv5/HHnuMgIAAkpKScHV1pU2bNrz77rvs27ePGjVqlGheIiIiIiIiIiIiIiK5GVar1VraTrKysjhw4ADh4eEkJSWV6g//17LAwEC2bdvG5MmTCQ4OLu9wRK47cXFxWCwWYmNjzbOoRMpSnQnrbW57fEb3MoxERERErkel+V0C9PuEiEgO/b+ZiMi1oTQ/j7NSkzj5Xt9i/S231Cua/ve//1G9enXatGlDv379ePzxx/OUR0dHc8cdd3Dbbbdx7ty50g4nIiIiIiIiIiIiIiIi14hSJZqeffZZRo8ezYULF/Dw8MAwjHx1vL29ufPOO/nrr7/48ssvSzOciIiIiIiIiIiIiIiIXENsTjR9//33fPjhh7i7u/PVV18RExNDlSpVCqw7YMAArFYrmzZtsjlQERERERERERERERERubY42Npw3rx5GIbB1KlTefDBB4us27ZtWwCOHDli63BSAYwaNYqQkJAStZk9ezb9+vW7QhGJFC1nD9OKsD90cfdjvd7ner3Hb4vr+X16PccuIiIVk/5NunEV9vvyjfqe0P2Q0tJ7RaR86f+3JUdp3gNxcXFY3iteXZsTTXv37gVg6NChl61rsVjw9PQkIiLC1uGuCaGhoeUdwnUtNja2xOd0JScnX6FoRERERERERERERESktGxONEVFRWGxWPDw8ChWfTs7O7KysmwdTiqAJUuWsGTJkvIOQ0REREREREREREREyojNZzR5enoSFxdHenr6ZetGRUURGxtL5cqVbR1ORERERERERERERERErjE2J5oaNWqE1Wo1t9AryvLly7FarbRo0cLW4UREREREREREREREROQaY3Oi6eGHH8ZqtRIcHFzklniHDh3ilVdewTAM+vfvb+twIiIiIiIiIiIiIiIico2xOdH01FNPcfvtt7N161buvfdevvnmGzIzMwH466+/2LhxI//973+56667iI2NpU2bNvTp06fMAheR8hMYGIhhGAQHB5d3KCIiIiIiIiIiIiJSjhxsbejo6Mj69evp2rUrW7duJTQ01Cy77bbbzK+tViuNGjVi1apVGIZRqmBFRERERERERERERETk2mHziiaA2rVrc+DAAaZMmUKtWrWwWq15XjVq1CA4OJhdu3ZRrVq1sopZRERERERERERERERErgE2r2jK4ebmxqRJk5g0aRJnzpzhzJkzZGZmUq1aNWrXrl0WMYqIiIiIiIiIiIiIiMg1qNSJptxq1KhBjRo1yrJLERERERERERERERERuUaVaus8ketZYGAghmEQHBxMeno677zzDi1atMDLywvDMPKcO/bLL78wbNgwbrnlFtzc3HB3d6dx48a8/PLLREZG5uv7ueeewzAMHn744Xxl6enpeHh4YBgGVapUwWq15qtz3333YRgGkyZNynP92LFjzJw5k65du3LrrbdSqVIl3N3duf322xk9ejQnTpwok/lmZmbyv//9jzvvvJNKlSrh4+NDYGAgK1euLMadFREREREREREREZEbRalXNFmtVlavXs0XX3zB/v37OX/+PABVq1alRYsWPPLII/Tq1Qs7O+W05NqUkpJCYGAgu3btwsHBwUwC5XjzzTeZOHEiWVlZQPZ2kenp6Rw5coQjR46wePFi1q9fT7Nmzcw2QUFBvP/++4SGhmK1WvP09+OPP5KQkABAZGQkR44coXHjxmZ5eno6O3bsAKBTp055Yn388cfZtm0bAE5OTnh4eBAdHc3vv//O77//zpIlS/jmm29o3769zfNNTU3lwQcfZMOGDQDY2dnh5OTE9u3b2bZtG+PHjy/ZDRYRERERERERERGRCqtU2Z8TJ07Qtm1b+vbty+rVqwkPDyc5OZnk5GTCw8NZvXo1ffv2pU2bNoSHh5dVzCJlau7cuRw+fJjFixcTFxdHVFQUFy5coHHjxixatIjx48fj5ubGG2+8wdmzZ0lMTCQpKYn9+/fTqVMnzp49ywMPPGAmj+D/Vg9dvHiRQ4cO5Rlv69atAHh6egKwZcuWPOV79+4lKSkJZ2dn2rZtm6esadOmzJ07lz///JPk5GQiIyNJTU1l7969dO3aldjYWPr160dycrJN8wWYOHEiGzZswDAMXn/9daKjo4mOjiYiIoKnn36amTNncvDgQZvvt4iIiIiIiIiIiIhUHDavaIqNjaVjx46cOHECq9XKXXfdRadOnfD39wfg9OnTbN26lZ07d7J//36CgoL4+eefsVgsZRa8SFlISEhg7dq13H///eY1X19f4uPjeeGFFwBYuXIl9913n1lub29P8+bN2bBhA23atOHAgQMsXLiQ0aNHA+Dj40OTJk04ePAgW7ZsoWnTpmbbnMTS6NGjmTp1Klu2bDHb5S5v27YtLi4ueWJ977338sXv4OBAq1at+Oabb7jzzjs5fPgwq1at4rHHHivRfAHOnDnD//73PwBeeeUVXn75ZbNO1apV+eCDD4iJiWH58uUF9n2p1NRUUlNTze/j4uKK1U5ERERERERERERErg82r2h64403CA8Px9vbm40bN7Jjxw6mTp3K8OHDGT58OFOnTiUsLIzNmzfj4+NDeHg406ZNK8vYRcpEw4YN8yRdcqxatYqYmBiaNWuWJ8mUm4ODA/379wcwt5rLERQUBORdsZSamsru3bupVKkSY8eONbeky8zMNOvkrHjKaV9c9vb2dO3aFcDceq8ghc0XshNqGRkZuLq6mkm2SwUHBxc7punTp2OxWMxXQEBAsduKiIiIiIiIiIiIyLXP5kTTV199hWEYzJs3j3vuuafQekFBQcybNw+r1cqqVatsHU7kimnXrl2B13fu3AnA77//TrVq1Qp9TZ06FSDf9pA55yuFhYWZiaRdu3aRkpJC+/btsVgstG7dmtjYWA4cOABkn5+0e/duoPBEU1hYGEOGDOG2227D3d0dwzDM15tvvgnAqVOnSjxfgP379wPQokULc2u/S916663mysXLmThxIrGxsebr5MmTxWonIiIiIiIiIiIiItcHm7fOO3XqFE5OTjz00EOXrdurVy+cnZ05ffq0rcOJXDFVq1Yt8PqZM2eA7ORPSkrKZftJSkrK8/3dd9+Nvb09cXFx7Nu3jzZt2pirlXKSUJ06dSIsLIwtW7bQqlUrdu3aRWpqKq6urrRu3TrfGOPHjzeTSZC9isnb2xsnJycge1u8xMREEhMTSzxfgPPnzwNcNpFUs2bNYn2enZ2dcXZ2vmw9EREREREREREREbk+2byiydvbGxcXF+zsLt+Fvb09Li4ueHt72zqcyBVjb29f4PWcVUj9+vXDarVe9nX8+PE87T09PWnevDnwf9vn5fw3d6KpoPJ27dqZyaMcGzduNJNMzzzzDEeOHCE1NZWoqCgiIiKIiIhgzJgxAFit1hLPV0RERERERERERESkpGxONN11113ExcXx559/Xrbun3/+SWxsLO3bt7d1OJGrrlq1akD+LfFKIvc5TYmJifz44494eXlx5513AtCmTRtcXV3ZuXMnaWlp+RJRuX3xxRcA3HfffcydO5c77rgjX9IoIiLC5ljh/1Y7XW61klYnioiIiIiIiIiIiAiUItE0YcIEHB0deeaZZ0hNTS20XlpaGs888wyOjo5MmDDB1uFErrqcs4wOHDjA2bNnbeojJ9G0a9cuNm/eTHp6Oh07djRXAjo5OdGuXTuSkpLYtGkT+/bty9Mut5zzjZo1a1bgWFar1UxU2apFixZA9llNCQkJBdb566+/ijwDSkRERERERERERERuHDYnmlq0aMGKFSs4cOAATZs2ZfHixRw/fpz09HTS09M5fvw4ixcvplmzZvz000+sXLnSXMUhcj3o06cPXl5epKenM3bs2CK3o8vKyiImJibf9fbt2+Po6EhycjLTpk0D8q9WykkqTZ06lYyMDNzd3c2ET24WiwWAQ4cOFRjDvHnz+Pfff4s1t8L07t0be3t7kpOTefvttwusM3Xq1FKNISIiIiIiIiIiIiIVh82JJnt7e3r16mVun/fkk09St25dXFxccHFxoW7dujz55JMcPXqU2NhYevbsib29fb6Xg4NDWc5HpMx4eXnx3nvvAdnb1nXv3p29e/eSlZUFZCeXfv/9d9555x0aNmzIN998k6+PSpUq0apVKwD27t0L5E805XyfU96hQ4cCPxddu3YF4LvvvuO1114jMTERgJiYGKZNm8Zzzz2Hr69vqebs7+/Ps88+C8Brr73G9OnTiY+PB+DChQuMHDmSTz/91Ex6iYiIiIiIiIiIiMiNzeZEk9VqLbOXyLVq8ODBfPjhhzg5OfHdd9/Rpk0b3NzcqFy5Mi4uLtx+++288MILHD16FMMwCuwjd2KpatWq3HHHHXnKW7RogYeHh/l9QdvmAQwaNIgOHToA8Oqrr+Lh4YGPjw++vr68/PLLdO3alaeffrq0U2bmzJl07tyZrKwsXnrpJby9vfHx8cHPz4+5c+cyfvx4mjZtWupxREREREREREREROT6Z/Nyoq1bt5ZlHCLXrBEjRtC1a1fmzp3Lxo0bOXbsGDExMXh6elK3bl3atm3LAw88kG+lUo6goCBee+018+tLOTg40KFDB7799ttC6wA4Ojryww8/MGPGDJYvX87x48exWq20atWKwYMHM2zYsDLZ1s7FxYXvvvuODz74gMWLF/PHH39gtVrp0KEDI0eOpE+fPgQGBpZ6HBERERERERERERG5/hlWLSkSkaskLi4Oi8VCbGwsnp6e5R3OZdWZsB6A4zO6l3MkpZczl8upCHO90VzP79PrOXYRERGpWAr7fflG/T1F90NE5Pqm/9+WslCSv+XavHWeiIiIiIiIiIiIiIiI3NhsTjQNHTqUvXv3lmUsIiIiIiIiIiIiIiIich2xOdG0ZMkS7rrrLpo0acIHH3xAXFxcWcYlIiIiIiIiIiIiIiIi1zibz2jq0KEDO3fuzO7EMHB1daVfv34MGzaM1q1bl2mQIlIxXG9nNF1PLncGk/bkFRERub4V97xFuTz9XiS56QyL/OpMWK/7YYMb9ee03itSEVWEz7M+m1dXcd4z1+MzuSpnNIWFhfH7778zZswYfH19SUpKyrPK6cMPP9QqJxERERERERERERERkQrM5kQTQP369XnnnXc4deoUn3/+OYGBgQAcOXKEkSNHUqNGDZ544gmd5SQiIiIiIiIiIiIiIlIBlSrRlMPJyYlHHnmEzZs38+effzJu3DiqVq1KUlISixcv1ionERERERERERERERGRCqhMEk251a1blxkzZnDy5ElWrVpF69atsVqt/PLLL+Yqp2HDhvH777+X9dAiIiIiIiIiIiIiIiJyFZV5oilHWFgYK1as4ODBgxiGgdVqBSApKYlFixbRuHFjRo8eTVZW1pUKQURERERERERERERERK6gMk00XbhwgTfffJNbb72Vzp07ExISQmpqKnfeeScLFy4kOjqaL7/8kg4dOpCZmcn//vc/pk+fXpYhiMhVcPz4cQzDwDAMjh8/Xt7hiIiIiIiIiIiIiEg5KZNE08aNG+nTpw8BAQFMnDiRv//+G1dXV5544gn27dvHvn37GDp0KJ6envTu3ZvQ0FDmzZuH1WplyZIlZRGCiIiIiIiIiIiIiIiIXGUOtjaMiIjg448/ZtGiRRw/ftzcGu/2229nxIgRDBo0CE9Pz0LbDxs2jAkTJhAeHm5rCCIiIiIiIiIiIiIiIlKObE401apVi8zMTKxWK05OTvTu3ZsRI0bQoUOHYvfh6elJbGysrSGIiIiIiIiIiIiIiIhIObI50ZSRkcFNN93E8OHDGTp0KJUrVy5xHyEhIaSkpNgagoiIiIiIiIiIiIiIiJQjm89o+u677/jnn38YN26cTUkmgNatW9OxY0dbQyiW6OhoFi1aRN++fWnUqBE+Pj64uLhQu3ZtBgwYwJ49ewpsFxwcjGEYBAYGArB582a6d+9OlSpVcHFxoUGDBkyZMqXQRNmQIUMwDIMhQ4YAsHLlSgIDA/Hx8cHNzY2mTZsye/ZssrKyiow/NDSUPn364O/vj7OzM5UrV+aee+5h8eLFZGZmFmvsgixZsgTDMKhTp84Vi/3kyZOMGzeOpk2bYrFYcHV1pW7dujz44IMsW7as0Hu3c+dOHnvsMWrXro2LiwsWi4VWrVoxc+ZMEhISihyzuI4fP45hGBiGwfHjx/nnn38YNmwYN910E87OzvnuS1ZWFp999hn/+c9/8PPzw8nJiSpVqtClSxeWL19ubh2ZIzMzEy8vLwzD4Jtvvsk3/vLly83xX3jhhXzlZ8+eNcv/+eefPHFs3ryZ//73v7Rp04aaNWvi5OSEr68vHTt2ZN68eaSnp5fJnE+fPs3w4cMJCAjA2dmZmjVr8vjjj/P3338X8y6LiIiIiIiIiIiISEVn84qmBg0acPr0afz9/YtV/8yZM2RkZFCrVi1bh7TJ7NmzmTJlCgD29vbmuVEnTpzgxIkTfPHFF7z33nv897//LbSPt956i/HjxwNgsVhIS0vj6NGjBAcHs23bNjZu3Ii9vX2h7UeOHMncuXOxs7PD09OT5ORkDh06xOjRo/npp59YunRpge3Gjh3Lu+++C4BhGFgsFmJiYtiyZQtbtmzh008/Zc2aNXh4eNh0b4rD1tg/+eQThg0bZiaTnJyc8PDw4MSJE/z777+sXbuWxo0b07RpU7NNVlYWY8aMYc6cOeY1d3d3EhMT2bdvH/v27WPx4sVs2LCB2rVrl9kcd+3axfDhw0lISMDNzQ1HR8c85VFRUfTq1Yvt27eb1ywWC5GRkWzcuJGNGzfyxRdf8OWXX+Lk5ARkv9fuvvtu1q1bx5YtW+jRo0eePrds2VLg15deq1WrFnXr1jWvnzhxgs6dO5vfu7u74+bmRlRUFNu3b2f79u18/vnnbNiwAVdXV5vn/NNPP9G5c2eio6MBcHV1JTY2liVLlrB69WoWLFhQaN8iIiIiIiIiIiIicuOweUVTnTp1aNWqVbHrt2vXjptvvtnW4WxWo0YNJk+ezP79+0lKSiIqKork5GT+/fdfRo0aBWQndH7++ecC2x86dIgJEyYwYcIEzp8/T3R0NDExMbz66qsAbN26tdBkC8DatWtZsGABs2bNIjo6mujoaCIjI3nyyScBWLZsWYGJhvfff99MMg0bNowzZ84QHR1NbGws7777Lg4ODmzZsoWnnnqqVPenKLbGvn79egYPHkxKSgrt2rUjLCyM5ORkIiMjSUxMJCwsjKeeespMyuSYPHkyc+bMoWrVqsydO5eLFy8SHx9PcnIyW7dupVmzZvzxxx889NBDl11NVRLDhw+nYcOG7Nu3j8TERBISEvjhhx+A7JVJDz30ENu3b6dp06asW7eOxMREYmJiSEhIYOnSpVStWpW1a9eaycgcQUFBQMGJpK1btwLZ55QdOnSIqKioAstz+sjh4ODAo48+ytq1a837ExMTQ3x8PIsXL6ZGjRqEhYXx8ssv2zzn+Ph4evXqRXR0NLVq1eKHH34gMTGR+Ph4du3aRUBAAMOHDy/u7RURERERERERERGRCszmRBOQb7uwsq5fFoYNG0ZwcDDNmzc3ExuGYXDTTTfx3nvv8cwzz5CZmcncuXMLbB8TE8OkSZOYNm2auUWgp6cnU6ZM4aGHHgKyt0ErTHR0NPPnz2fMmDHmaipfX18WLFhA8+bNC2yfnJzM5MmTAejfvz/z58+nWrVqAFSqVInRo0cza9YsIPucqwMHDth0by7HltgzMjJ47rnnsFqttG/fni1bttC+fXvs7LLfak5OTrRv356PPvqI22+/3Wx3/Phxpk+fjqurKz/88APPPPMMPj4+ADg6OhIYGMi2bduoWbMmP/30E2vXri2zefr6+rJp0yZatGhhXrv11lsB+Pzzz9m2bRu33XYboaGh9OjRAzc3NyD7WQwaNIhvv/0WwzD44IMPOH/+vNlHp06dADh8+DAXL140r584cYJ//vmHunXr0qNHD7KysggNDc0TU05y6tJEU82aNfn000+5//77zfsD2SubhgwZwtdffw3ARx99VOT5Z0XN+cMPP+TEiRM4OTnx/fffc++992IYBgBt27Zl06ZN5veXk5qaSlxcXJ6XiIiIiIiIiIiIiFQcpUo0lURKSgoODjbv1HfFdO/eHYAdO3YUWO7s7FzgGToADz74IJCdSChMQEAAgwcPLrDsgQceKLD9xo0bzRUuwcHBBbZ95plnqF69OpCdDLkSbIl969atHDt2DIB3330336qlwixZsoTMzEy6du1KkyZNCqzj4eFBz549AdiwYUOx+i2OkSNH4u7uXmDZokWLAHj66aexWCwF1mnevDkNGzYkLS3NXIkE0LhxY3x9fbFarXmu53zdqVMnMxmVe9VTeHi4eQ8vTTRdTosWLahatSqJiYkcPHiw0HpFzfmLL74AoE+fPjRo0CBfebVq1RgxYkSx4pk+fToWi8V8BQQEFKudiIiIiIiIiIiIiFwfrkqi6cyZM1y4cAFfX9+rMVw+//77Ly+88ALNmzfHy8sLe3t7DMPAMAz+85//AHDq1KkC2zZs2LDQP8jXqFEDIN+2Z7m1bNmy0NUfhbXfv38/kJ3oyVllcil7e3szSZFTv6zZEvuuXbuA7GRE7tUyl7Nz504AfvjhB6pVq1boa/HixUB2MqastGvXrsDrmZmZ7NmzB8hO+BUV1x9//JEvLsMwCAwMBAo+k6lTp04Fbq+X8/XNN99c4JlmaWlpzJs3jy5dulCjRg2cnZ3N97NhGOaqqsLe00XNOS0tjSNHjpjxFaaostwmTpxIbGys+Tp58mSx2omIiIiIiIiIiIjI9aHYS4y2b9+eb3uvhIQEpk6dWmgbq9VKTEwM3377LVarldatW9scqK2++uor+vfvT2pqqnnN09MTFxcXDMMgLS2N6OhoEhMTC2zv4eFRaN85K7QyMjIKrVOc9unp6Xmu5yQK/P39C20L2duo5a5f1myJPSIiAoDatWuXaKwzZ84AkJiYWOizyC0pKalE/RelatWqBV6Piooy3zfR0dHF6uvSuIKCgli1alWeRFLuFU1Vq1aldu3a/P7770RERFCtWrVCz2eC7GfduXNnMxkE4OLiQuXKlbG3twfgwoULZGVlFXkfi5pzzvu5qPdfznvvcpydnXF2di5WXRERERERERERERG5/hQ70bR161amTJmSZ4VLYmIiU6ZMuWxbq9WKi4sLEydOtC1KG128eJEhQ4aQmppKp06dePXVV2nVqhWurq5mnc2bN9O5c+erGldFVtyzey6VmZkJwPjx45kxY0ZZhnRZOQmaS+XEBPDdd9/RtWvXEveds/Lnjz/+4MyZMyQlJXHy5EkaNmxoJns6derE4sWL2bJlCwMGDCgy0TRmzBiOHDmCr68vb731Ft26dTPP78oREBDAqVOnijwTrbA5i4iIiIiIiIiIiIiURLETTXXq1KFjx47m99u2bcPR0ZG2bdsW2sbOzg5PT0/uuOMOBg8eTL169UoXbQl9++23xMXF4e3tzbp163Bzc8tXJ2cFzrUkJwFR1NZnucsvXZ2Ss9ooJSWl0LaxsbGlCbFQOUmPkm5tl7P9XFluiVdavr6+ODg4kJGRYXNcDRo0oFq1akRERLBlyxZzxVPureeCgoLMRFOLFi3M53rp9nTp6emsXr0agPfff59HHnkk33iZmZlERkbaFCuAj48P9vb2ZGZmcvr06ULrFVUmIiIiIiIiIiIiIjeOYieaBg8ezODBg83v7ezs8PHxMVdfXItyzoOpX79+gUkmgE2bNl3NkIol52yjU6dO8eeffxZ4TlNmZqZ571u2bJmnzNvbG6DI83D27t1bVuHmcddddwHZCbz9+/cX+5ymdu3asW3bNjZt2kRKSgouLi5XJL6ScHR0pFWrVuzatYt169YxfPhwm/oJDAzkiy++YMuWLSQnJwN5k0g5X2/ZssV8lvXr16d69ep5+rlw4YKZPGzWrFmBY+3YsaPIBOPlODk50bhxY37++We2bt3K0KFDC6yXeytAEREREREREREREblx2dnacPHixbz33ntlGErZs1gsAPz5558F/vH94MGDfP7551c7rMu699578fX1BSA4OLjAOvPnzzfPNerfv3+esiZNmgCwb9++ApNNv//+u7kypqwFBQVx8803A9nbvKWlpRWr3dChQ3FwcCAyMpLJkycXWTctLY2EhIRSx1ocw4YNA7JXx3377bdF1o2Kiirweu5EUmhoKHZ2dgQGBprl/v7+3HLLLRw7dozFixcDBW+b5+npaW5NeOjQoXzlGRkZvPzyy5ef1GX069cPgC+//JI//vgjX/n58+eZN29eqccRERERERERERERkeufzYmmwYMH07dv37KMpcx16dIFOzs7oqKiePTRR83tvtLS0lixYgVdunTBw8OjnKPMz9XV1UwwLV++nBEjRnDu3DkAkpKSmDNnDqNHjwaykwLNmzfP0/7+++/H3d2d9PR0+vbtayYL0tPT+frrr+ncuTOVKlW6IrHb29vz/vvvYxgGO3bs4J577mHHjh1kZWUB2fc+NDSUxx57jN9++81sV7duXSZNmgTAm2++yaBBg/jll1/M8oyMDA4ePMjUqVOpV68eBw8evCLxX+qxxx6jc+fOWK1WevXqxeuvv24m+CD7nLKtW7fy7LPPmgm2S+UkjcLDw4mIiKBZs2Z4eXnlqZOTjMpZaVZQosnd3Z127doBMHbsWLZs2WLe119++YX//Oc/7N+/v9TP9umnn6ZmzZqkpqbStWtXNm/ebJ73tHfvXjp37myOKyIiIiIiIiIiIiI3NpsTTdeDW265hRdffBGA1atXU7NmTby8vHB3d6dfv364u7szZ86cco6yYCNHjmTMmDFA9uql6tWr4+Pjg8ViYdSoUaSnpxMUFMSCBQvytbVYLLz33nsYhsGePXu47bbb8PT0xN3dnZ49e1KrVi2mTp16xWLv1q0bS5YswdnZmR07dtChQwfc3NyoXLkylSpVIigoiM8++yzfaqdJkyYxadIkDMPgk08+oVGjRmY7FxcXmjVrxuTJkzl58qS5sudKs7e3Z9WqVfTo0YO0tDQmTZqEv78/FosFb29vPDw86NSpEx988AGJiYkF9lGvXj0CAgLM7y89ewnyJ5Zyr3jK7b333qNSpUqcPn2ae+65Bzc3Nzw9PWnUqBFbt25lwYIFVK5c2fYJk71y6quvvsLLy4vjx4/TuXNn3N3d8fDwoE2bNhw/fpz58+eXagwRERERERERERERqRgqdKIJYMaMGSxbtoxWrVrh6upKeno69erV46WXXuLnn3+mRo0a5R1ioWbNmsWWLVvo3bs3fn5+JCQk4OHhQVBQEB9//DEbN24sdEXWE088wfr16+nUqROenp5kZGRw6623MmPGDLZt23bFVjTlGDRoEEePHmX06NHcfvvtODg4kJycTO3atenZsyeffPIJDRo0yNPGMAymTp3K4cOHeeaZZ2jQoAH29vbExsbi7e3NXXfdxYsvvsiuXbvMlT1Xg6enJ+vWrePbb7+lX79+1KpVi9TUVJKSkvD396dLly5Mnz69wG3mcuROJBWWaMpJnjVs2JCqVasW2E/z5s358ccf6du3L5UrVyYrKwsPDw/69u3Lrl27GDhwYClnm61FixYcPnyYJ598En9/fzIyMrBYLAwePJiffvqJVq1alck4IiIiIiIiIiIiInJ9M6w5e2KJiFxhcXFxWCwWYmNj8fT0LO9wKpQ6E9YXWX58RverFImIiIhcCZf7t16KT78XSW45ny29L/5PnQnrdT9scKP+nNZ7RSqiivB51mfz6irOe+Z6fCYl+VtuhV/RJCIiIiIiIiIiIiIiIleGEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiK1OnjxJy5YtS9QmICCAffv2XaGIpLjumLwBO2e38g7jsq6VvVMr6j6vFd3V2tP5Wnn2tsz3Wom9IBVhT24Rufps/bmmf+tFyk5J/w2/UT5bJbkvuie2uVHu27VKv79fu2z5bJT389Tn+cop72d7peg9o0STXMcyMzM5d+5cidq4uLhcoWhERERERERERERERG48ZZJoOnz4MBs2bCA8PJzk5GQWLVpklqWnp3PhwgUMw6B69eplMZwIAHXq1MFqtZZ3GCIiIiIiIiIiIiIiN6xSJZpiY2MZOnQoa9asAcBqtWIYRr5EU5MmTYiOjubQoUM0bNiwVAGLiIiIiIiIiIiIiIjItcHO1obp6el069aNNWvW4ObmRvfu3QvclszNzY3HH3+crKwsVq5cWapgRURERERERERERERE5Nphc6Jp0aJF7Nmzh5tvvpk//viDtWvXYrFYCqzbu3dvALZv327rcCIiIiIiIiIiIiIiInKNsTnRtHz5cgzD4N1336VGjRpF1m3WrBl2dnYcPXrU1uGuKXXq1MEwDJYsWXJVx83MzGTWrFk0a9aMSpUqYRgGhmGYWxdWJMHBwRiGQWBgYLm0rygCAwMxDIPg4ODyDkVEREREREREREREKiCbz2g6cuQIhmHQpUuXy9Z1cnLCYrFw8eJFW4e7buT8QX/IkCHUqVOnTPsePXo077//PpB9T/38/AAK3LJQRERERERERERERETkSrM50ZSUlISHhwdOTk7Fqp+eno6Dg83DXVPq1q2Li4tLgVsFTpkyBcheSVKWiab4+Hjmz58PwJtvvskLL7yAYRhl1v+1pnLlytSvX59atWqVdygiIiIiIiIiIiIiIlIImzM/lStX5uzZsyQkJODu7l5k3WPHjpGQkEC9evVsHe6asnnz5qs+5tGjR0lPTwfg6aefrtBJJoCRI0cycuTI8g5DRERERERERERERESKYPMZTa1btwZg/fr1l637v//9D4AOHTrYOtwNLykpyfz6cok9ERERERERERERERGRq8HmRNPQoUOxWq1MmjSJM2fOFFpv/vz5zJ49G8MwGDZsmE1jNWrUCMMwzPOJctu9ezeGYWAYBg8//HC+8vT0dDw8PDAMI89KpD179jB+/Hg6dOhA7dq1cXFxwcvLizZt2jBz5kwSEhIKjadOnToYhsGSJUvMa0OGDMmzyigoKMiMyzAMm7fRW7JkCYZhEBgYaF7L3W/u6zlWr15Njx498PPzM89y6tGjB1999VWh4+TEP2TIEKxWKwsXLqR9+/b4+vrmm6stQkJC6NatG35+fjg6OuLl5cUtt9zCAw88wNy5c0lJSclTPzg4uND55fjuu++499578fLywt3dnSZNmvDmm2+aK78u5/jx44wePZqGDRvi7u6Om5sbt912G6NGjeLEiROlmW4eud8v8fHxTJw4kfr16+Pq6krlypXp2bMne/fuLbKPzMxMPv74Yzp16kTlypVxdnbG39+fPn36EBoaanNsS5cuxdHREcMwePnll/OVr1+/nt69e+Pv74+zszPe3t7cfffdfPjhh6Slpdk8roiIiIiIiIiIiIhUDDZvnde9e3d69+7NqlWraNGiBQMGDCA5ORmAjz76iPDwcL755ht++eUXrFYrTz31lLkKqqSCgoL45Zdf2LJlS77t1LZs2WJ+HRoaitVqzZPw+fHHH0lISMDZ2Zl27dqZ19u2bWt+7ebmhpubG9HR0ezdu5e9e/eybNkytm7dStWqVYsVo8Viwc/Pj3PnzgHg7e2d5/yqKlWqlGzS/5+rqyt+fn6kpaURHR0NgJ+fn1nu4+Njfp2WlsagQYMICQkBwM7ODovFQmRkJOvXr2f9+vX079/fTC4UxGq10qdPH1atWmW2t7OzOR8JZCclFy9ebH7v7u5Oeno6f//9N3///Tfr1q2je/fuJUrGBQcHm+dhAXh5efHbb78xfvx41q9fn+dZF+Szzz7jiSeeIDU1FQBnZ2fs7Oz4448/+OOPP1i8eDErV66kS5cuJZtsEaKjo2nZsiV//PEHTk5OuLi4cPHiRb7++mvWrVvHggULGDp0aL52sbGx9OzZ00wo2dvb4+HhwdmzZ1m5ciUrV67khRde4K233ipRPDNmzGDixInY2dnx/vvv8+yzz5plycnJDBo0iJUrV5rXPD09iY2NJSwsjLCwMJYtW8a3336Lt7e3bTdERERERERERERERK57pcogfPLJJzz66KNERETw7rvvEh8fD2SfITRjxgyOHDmC1Wpl6NChzJ071+ZxgoKCANi2bRtZWVl5yrZu3Qpk/xH84sWLHDp0qMDyNm3a4OLiYl6///77CQkJ4ezZsyQmJhIVFUVSUhKrV6+mfv36/Pbbb4wYMaLYMc6ePZuIiAjz+9WrVxMREWG+9u3bV7JJ/3/9+vUjIiKC1atXm9dy95v7+ksvvURISAiGYTBp0iQuXrxIVFQUkZGRvPTSSwAsX76cSZMmFTre6tWr+frrr3n77beJjo4mKiqK2NhY7rvvPpvi37FjB4sXL8bOzo6ZM2dy8eJF4uPjSUxMJDIykg0bNjB48OA8SbnLWbt2rZlk6tOnDydOnCA6Opq4uDjmzp3Lnj17+PDDDwttv3HjRgYNGkRmZibjxo3j2LFjJCcnk5iYyNGjR+nTpw/x8fFm32VlypQpnD9/nhUrVpCYmEhsbCy//fYbHTt2JCsri+HDh/PTTz/la/fEE08QGhqKk5MTc+bMIS4ujujoaM6cOWMmpt5++23mzZtXrDisViujRo1i4sSJODs7ExISkifJBDBs2DBWrlzJzTffzGeffUZsbCyxsbEkJSXx9ddfc/PNN7Nnz54CE2MiIiIiIiIiIiIicuMoVaLJxcWFTz75hO3btzNw4EDq1q2Lq6srTk5O1KpViwEDBhAaGsrChQtxcLB58RSBgYHY2dkRFRXFwYMHzeupqans2rULNzc3c1u+3Cuccn+fk6zKsXbtWvr27Uu1atXMa66urvTq1YvNmzfj7OzMmjVryjTRcCWdPn2a2bNnAzBhwgSmTp2Kl5cXkL266o033mDs2LEAzJo1i7NnzxbYT0JCArNmzeL555/H09MTyF6BVL16dZvi2rVrFwCdO3dm3LhxeVZg+fr60qVLF5YsWUKNGjWK3efEiRMB6NixI1988QUBAQFA9vN75plnmDNnDjExMQW2zcrK4tlnnyUrK4u5c+cyc+ZMc2s7wzCoX78+K1as4IEHHiAuLo5Zs2bZNO+CxMbG8uWXX9KnTx/z89CgQQO+++47brnlFjIyMvIlAffu3cuqVauA7LPOnnvuOdzc3ACoVq0aixYtonfv3gBMmjQp3xaEl0pLS+ORRx5hzpw5WCwWvv/++3xbToaFhfHpp59StWpVQkNDGTBggPlecHFx4YEHHmDbtm1UqlSJNWvW5PlMXio1NZW4uLg8LxERERERERERERGpOEq3J9r/1759e5YsWcKff/5JQkICycnJHDt2jE8//ZS777671P17e3vTpEkTIG8iac+ePSQnJ9OuXTu6du2arzw1NZXdu3cD+RNNRfH396dJkyZYrVYzUXKtW7VqFRkZGbi4uDBhwoQC67zyyis4OzuTnp6eZ0u03Ly9vRk+fHiZxZWT7Lpw4QKZmZml7u/w4cP89ttvQPZ8CtrW76mnnsLf37/A9tu3b+evv/6icuXKPPnkk4WOM2jQIAA2bNhQ6phztGvXjnvuuSffdVdXV1588UUAvv/+e2JjY82ynG0Qa9asWWi8r732GgCRkZFs3Lix0PHj4uLo2rUrK1asoHr16mzfvr3AM7AWLVoEwKOPPmom8S5Vs2ZN8zNV1D2aPn06FovFfBXWn4iIiIiIiIiIiIhcn8ok0XQ1dOrUCcibSMr5ulOnTtx11104OzsTFhZmJjR27dpFSkoKrq6utGnTJk9/WVlZfP755zzwwAPUqlULV1dXc1WLYRj8+OOPAJw6depqTK/U9u/fD0DLli3N1SeX8vb2pkWLFnnqX6ply5Yl2sbucu655x5cXFz4+eef6dChA4sWLeLYsWM295cTt4ODAx06dCiwjp2dXYEJFICdO3cC2auLatSoQbVq1Qp8PfXUUwCEh4fbHOulct7DRZVlZWXl2T4vZ75BQUGFnpXVoEEDM7FW2HM9e/YsHTt2ZOvWrdx6663s2rWLxo0bF1g35x4tWrSo0PtTrVo1Nm3aBBR9jyZOnGhuuxcbG8vJkycLrSsiIiIiIiIiIiIi1x+b97Ozs7OjevXqnD59ulj1b7rpJk6ePElGRoZN4wUFBfHOO+8QFhZGRkYGDg4O5vlLnTp1MpNJ27ZtY9++fbRp08Ysv+uuu/IkT5KSkujRo4dZDuDk5ISPjw+Ojo4AREVFkZ6eTmJiok3xXm3nz58HKHQlT46aNWvmqX+pqlWrlmlcdevWZeHChYwYMYLdu3ebK8yqVKlCUFAQAwYM4IEHHsAwjGL1lxN35cqVcXZ2LrRezjwvdebMGQDS09M5d+7cZcdLTk4uVlzFUdSzyV2W+9mU5LmePn260Of60UcfAdlb323atKnIlUU596i4W90lJSUVWubs7FzkcxIRERERERERERGR61upVjRZrdYrWj+3u+++GwcHBxISEvjxxx9JSkpi7969WCwWmjdvDuRf9VTY+UxvvPEGW7duxdXVlXfffZfw8HBSUlK4ePEiERERRERE0Lp161LHfD2yt7cv8z4fffRRwsPDmTdvHv369SMgIIALFy6wYsUKevbsSceOHa/a2T05q91at26N1Wot1qsi6NGjBxaLhZSUFB5//PEik0M59+jDDz8s1v1ZsmTJVZqFiIiIiIiIiIiIiFxrrtrWeWlpaYVu/VUcHh4eZkJpy5Yt7Nixg7S0NO6++24zOZKTUNqyZQuJiYnm9neXbln2xRdfAPDqq68yevRoatWqlW9FTUREhM2xloeclUiX2+ovp7ysVy5djo+PD8OHD+eLL77gxIkT/P3330yYMAHDMAgLCyM4OLhY/eTEHRkZSVpaWqH1CltpV61aNaBst8QrrqJW/+Uuy/1syuq5Nm/enE2bNuHt7c3mzZvp3r17oav1yvMeiYiIiIiIiIiIiMj15aokmmJiYjh//jze3t6l6id3Iin3tnk5WrdujZubG7t27WLz5s2kp6fj7u5Oy5Yt8/STc05Ms2bNChzn+PHj/P333zbFmJOwutorYXKfvRQbG1tgnZiYmDxnOZWnunXrMn36dAYMGADAxo0bi9UuZ54ZGRmEhYUVWCcrK4vQ0NACy9q1awdkJxILO8/oSsm9VWNhZXZ2dnnelznz3bp1K1lZWQW2PXr0qJmoKuq5tmjRgs2bN+Pj40NoaCjdunUjISEhX72ce/TNN99cZkYiIiIiIiIiIiIicqMrdqLp8OHDLFu2zHxB9vk1ua9d+lq6dCmzZ8/m/vvvJysrq9DETnHlJJV2797Nd999l+caZJ+z1K5dO5KTk5k2bRoA7du3x8Eh71FUFosFgEOHDhU4zoQJE2yO0dPTE8hO6lxNvXv3xsHBgZSUFGbOnFlgnWnTppGamoqjoyO9e/e+KnGlpqYWWe7q6gpQ7NVujRs3pkGDBkD2FogFJV8+/vjjQlcABQUFUa9ePQDGjBlT5KooyD6rq6zs2LGjwARYSkoK77zzDgD33XcfXl5eZtkjjzwCZK94WrhwYYH9vvrqq0D2uVWdO3cuMoZmzZqxZcsWKleuTFhYGF27diU+Pj5PnWHDhgHwyy+/8OGHHxbZX2Ji4mXvoYiIiIiIiIiIiIhUXMVONH311Vc8/vjj5gsgLi4uz7VLX0OHDmXs2LHs3LkTgLFjx5Yq2Hbt2uHk5ERKSgqHDh2iSpUqNGrUKE+dnMTT3r17gfznMwF07doVgNdff53Vq1eTkZEBwLFjxxgwYAArVqywefXVHXfcAcBnn31W5Dk4Zc3f359Ro0YBMGPGDCZPnmwmu2JiYpg0aRJvvfUWkP0cqlevflXiGjlyJH379mXVqlWcP3/evJ6QkMC8efPMpGX37t2L3ecbb7wBZK/yGTBggJlUSklJYd68eYwcOTJPsiY3BwcH5s2bh4ODAzt27ODuu+82V7/l+Pfff5k3bx4tW7bkgw8+KOmUC2WxWOjduzcrV64033NHjx6le/fuHD16FHt7e6ZOnZqnTatWrcyk4HPPPcf7779vvq8iIiJ46qmn+PLLLwF47bXXcHFxuWwcTZo0YcuWLVSpUoWdO3dy33335Tkjq2PHjuZn/Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dO89zFREREREREREREZEbi8Plq2Tz8vKiVq1a5vfh4eHY2dlRs2bNQtvY2dnh6enJHXfcwbBhw+jQoUOpgnVzc6N169bmlmmBgYH5zla6NLFUUKLp9ddfZ+PGjZw7d85cCVSpUiVzy7lp06axYcMGtm3bVuIYR4wYwc6dO1m1ahVr166latWqODg4ULNmTXbs2FHi/kpi2rRpnDx5khUrVjB16lRef/11LBYLsbGx5sqf/v3789prr13ROHJLT0/nyy+/NJMh7u7uODg45Fnx1b59e15++eVi99mrVy9efvll3njjDUJCQggJCcHb25v4+HgyMjLo0KED7du3Z/r06QW2v+eee/jyyy8ZNGgQe/fupXPnzjg6OuLp6UlCQkKeVVg9e/a0ad4FmTx5MvPnz6dPnz44Ozvj4uJivucMw+DDDz80t8rLbdGiRURGRrJt2zaee+45xowZg4eHBzExMeYWjS+88AIjRowodiyNGjUiNDSUTp06sXv3bu699142bNhgJujmzZuHvb09Cxcu5L333uO9997D3d0dR0fHPO+nnNhFRERERERERERE5MZU7BVNo0aN4tixY+YLoEqVKnmuXfr6559/+Pnnn/nkk09KnWTKkTtxlHvbvBwtWrQwt6/z9PTkzjvvzFendu3a7N+/nyeeeIIaNWoA4OLiQo8ePdiwYQMTJ060Ob7HHnuMTz75hPbt2+Pm5sbZs2cJDw8vdCu3suTk5ERISAgrV66kW7du+Pr6Eh8fj6+vL926dWP16tV8/vnnODo6XvFYckyaNIk5c+bQq1cvbrvtNhwcHEhISKBq1arce++9fPzxx4SGhlKpUqUS9fv666/zzTff0KlTJzw9PUlNTaVBgwbMmDGDzZs34+TkVGT7nj178vfffzN58mRatWqFu7s7MTExODs706RJE5588km++uorXnzxxdJMPw9vb29+/PFHJkyYQK1atUhNTcXHx4f777+fnTt38tRTTxXYzmKxsHnzZhYtWkRgYCAeHh4kJCRQrVo1evfuzdatW83VaiVx++23ExoaSvXq1fnxxx/p3Lkz0dHRQPZ7acGCBezatYshQ4ZQt25dMjMzzWcXGBjIq6++yuHDh/H39y/VfRERERERERERERGR65dhzVkSUUJTpkzB3d2d559/vqxjEqlQ6tSpQ3h4OIsXL2bIkCHlHU65iouLw2KxEDB6BXbObuUdzmUdn1H8LR2vpDoT1l+2zrUSq/yf4jy3snCtPHtb5nutxF6Qq/X8RKRisfXnmv6tFyk7Jf03/Eb5bJXkvuie2OZGuW/XKv3+fu2y5bNR3s9Tn+crp7yf7ZVSUd8zOX/LjY2NNRf3FKbYW+ddavLkybY2FRERERERERERERERkQqg2FvniYiIiIiIiIiIiIiIiORm84qm3Hbt2sWOHTs4deoUiYmJFLYbn2EYLFq0qCyGFBERERERERERERERkXJm8xlNAH/99RcDBgzgp59+ynPdarViGEaB1zIzM20d7rr30EMPsWvXrhK1Wb16NXfdddcViqj4rufYy0LLli05efJkidrs27ePgIAAndGUS0n29RQRERERERERERGR8nFVzmi6ePEinTp14vTp0/j5+dGxY0dWrFiBq6srvXv3JiIigr179xIfH0/lypXp3r1iHohVElFRUZw7d65EbdLS0q5QNCVzPcdeFi5cuFDi+eckVY8fP34FIhIRERERERERERERKX82J5ree+89Tp8+TevWrdm8eTNubm6sWLECi8XCsmXLAEhMTGTq1Km89dZbuLq68sEHH5RZ4Nej0NDQ8g7BZtdz7GVBySIRERERERERERERkfxsTjStX78ewzCYNm0abm5uBdapVKkSM2fOJC0tjTlz5hAUFESfPn1sDlZERERERERERERERESuHXa2Nvznn38wDIMOHTrkuV7QdmkTJkwA4KOPPrJ1OBEREREREREREREREbnG2JxoSk9Px9vbGweH/1sU5ebmRnx8fL66fn5+WCwWDh8+bOtwIiIiIiIiIiIiIiIico2xOdFUo0YNkpKS8lzz8/MjIyODf//9N8/19PR04uLiiI2NtXU4ERERERERERERERERucbYnGiqXbs2KSkpnDp1yrzWsmVLAD799NM8dZcsWUJWVhb+/v62DiciIiIiIiIiIiIiIiLXGJsTTTlnM4WGhprXBg4ciNVq5fXXX+fZZ59lwYIFjBw5kpEjR2IYBj179ixtvCIiIiIiIiIiIiIiInKNMKxWq9WWhr/++is9evQgMDCQxYsXm9cHDBjAF198gWEY5jWr1UqDBg3YtWsXFoul9FGLyHUpLi4Oi8VCbGwsnp6e5R2OiIiIiIiIiIiIiBSgJH/LtXlFU8OGDTl27FieJBPAZ599xvz58wkKCqJevXo0b96cV155RUkmuaZYrVYWL15M27Zt8fDwwGKx0Lp1az766COsVitDhgzBMAyGDBlSYPvVq1fTo0cP/Pz8cHJyws/Pjx49evDVV19dkXh/+OEHHnnkEWrXro2rqys+Pj40btyY5557jt27d+epGxwcjGEYBAYGFtpfaGgohmHkSQhfKj4+nhkzZtC2bVt8fHxwdnYmICCARx55JN+YIiIiIiIiIiIiInJjcijrDg3D4KmnnuKpp54q665FykRmZiaPPvooISEhQPZ71svLi/379/Pjjz8SGhqKk5NTgW3T0tIYNGiQ2dbOzg6LxUJkZCTr169n/fr19O/fn6VLl+Lo6FjqWJOSkhgyZAhffvmlec3Dw4OsrCyOHDnCkSNHCAsL4+DBg6UeK7eDBw9y//33m2ew2dvb4+bmxqlTpwgJCWHFihW88cYbTJw4sUzHFREREREREREREZHri80rmkSuV2+99ZaZKBo7diwXLlwgKiqK6Ohopk2bxhdffMHatWsLbPvSSy8REhKCYRhMmjSJixcvEhUVRWRkJC+99BIAy5cvZ9KkSWUS6+OPP86XX36JnZ0d48eP5+TJk8TFxRETE8OFCxf47LPPaNu2bZmMlePs2bPcd999nDp1ioceeoj9+/eTnJxMXFwc586dY9KkSdjb2/PSSy+xZs2aMh1bRERERERERERERK4vNiea7Ozs8Pf3L3b9m266CQeHMl9AJVIiiYmJTJ8+HYAnnniCd955B19fXwA8PT2ZOHEir776KtHR0fnanj59mtmzZwMwYcIEpk6dipeXFwDe3t688cYbjB07FoBZs2Zx9uzZUsW6efNmVqxYAcD777/PjBkzqFmzplleuXJlBgwYwIcffliqcS71yiuvcP78eQYMGMCqVato3ry5uTqratWqTJ06lTfffBPI3qZPRERERERERERERG5cpVrRZLVar2h9kbL2ww8/EBcXB8DLL79cYJ3nn38eNze3fNdXrVpFRkYGLi4uTJgwocC2r7zyCs7OzqSnp7Ny5cpSxfrxxx8DcMcdd/D000+Xqq/iSklJ4fPPPwdg/PjxhdYbNGgQAIcOHeLcuXOF1ktNTSUuLi7PS0REREREREREREQqjqu2dV5aWhp2dtqpT8rXTz/9BECtWrW46aabCqzj4eFB8+bN813fv38/AC1btsTT07PAtt7e3rRo0SJPfVvt2rULgB49epSqn5I4cOAAKSkpAHTp0oVq1aoV+GrYsKHZJjw8vND+pk+fjsViMV8BAQFXfA4iIiIiIiIiIiIicvVclb3sYmJiOH/+PN7e3ldjOJFCXbhwAYAaNWoUWa+gbSHPnz9faFluOdvb5dS3VUREBAC1a9cuVT8lcebMGfProlYq5ZaUlFRo2cSJE83tBAHi4uKUbBIRERERERERERGpQIqdaDp8+DAHDx7Mcy05OZlly5YV2sZqtRITE8PKlSvJysqiWbNmNgcqUpYMwyjvEC6rPGLMzMw0v05OTsbFxaVU/Tk7O+Ps7FzasERERERERERERETkGlXsRNNXX33F1KlT81yLi4vj8ccfv2xbq9WKYRh5VjaIlIcqVaoAeVfuFOT06dP5rlWtWhWAU6dOFdk2pzynvq2qVavGsWPHityariAODtkf65wt8AoSGxtb6Jg5wsPDqV+/fonGFhEREREREREREZEbS7EPTfLy8qJWrVrmC8DOzi7PtUtfderUoXHjxjz66KOEhoZy3333XbGJiBTHnXfeCWQnUY4fP15gnYSEBA4cOJDveu6zlwpL1MTExOQ5y6k07rrrLgDWrVtXonY5W1SePHmy0Dp79+4t8HrLli1xcnKyaVwRERERERERERERufEUO9E0atQojh07Zr4ge3VI7muXvv755x9+/vlnPvnkEzp06HDFJiFSXF26dMHT0xOAadOmFVjn3XffLfDcod69e+Pg4EBKSgozZ84ssO20adNITU3F0dGR3r17lyrWJ554AoBff/2VDz/8sNjtmjRpAmSv2ioooXT+/HkWLFhQYNtKlSoxYMAAAGbOnMmJEyeKHCsqKqrYcYmIiIiIiIiIiIhIxVPsRNOlJk+ezPPPP1+WsYhccZUqVWL8+PEALFiwgHHjxpnJkvj4eGbOnElwcLC5Kig3f39/Ro0aBcCMGTOYPHkyMTExQPZKpkmTJvHWW28BMHbsWKpXr16qWIOCgnjkkUcAGDlyJBMnTsyzbV9kZCQLFy40E1I57rrrLmrXrg3A4MGD2b9/P1arlaysLEJDQwkMDCQrK6vQcadNm0aNGjWIjIykbdu2fPLJJ8THx5vlFy5cYNWqVfTq1Yv+/fuXao4iIiIiIiIiIiIicn0zrFartbyDELmaMjIy6N+/PytXrgSyt4C0WCzExcWRmZnJwIEDMQyDZcuWMXz4cObNm2e2TUtLY+DAgaxYsSJP29jYWDN5079/f5YuXYqjo2OpY01KSmLgwIGsXr3avObp6YlhGOb2fU2aNOHgwYN52m3YsIH777+f9PR0ANzc3MjKyiIlJYVbbrmFqVOnmkmign4E/P777/Ts2ZM///zTnKeXlxepqakkJiaa9Tp37szGjRuLPZ+4uDjzfuWsLBMRERERERERERGRa0tJ/pZr84qmwqSlpbF27Vreeust5syZw44dO8p6CJFScXBwYMWKFSxcuJBWrVrh6upKRkYGLVq0YOHChSxbtsxcqeTl5ZWnrZOTEyEhIaxcuZJu3brh6+tLfHw8vr6+dOvWjdWrV/P555+XSZIJshNEq1at4ptvvqFXr17UqFGDlJQUHBwcaNy4Mf/973/56KOP8rW77777CAsLo0ePHnh7e5OZmUlAQAATJkzgwIEDVKtWrchxGzRowOHDh5k/fz5dunShcuXKxMXFYbVaqVevHn369OGjjz4yE24iIiIiIiIiIiIicmMq9oqm+Ph4vvrqKwD69euHs7Nzvjr79++nd+/eebb3AmjdujWrV6++7B+3Ra4FVquVWrVqcerUKZYtW8bAgQPLO6QKQyuaRERERERERERERK59V2RF0+bNmxkyZAjvvfdegUmm8+fP85///IdTp05htVrzvPbu3csDDzxQ8pmIlINPPvmEU6dO4eDgQOfOncs7HBERERERERERERGRa1axE01hYWEADBgwoMDymTNnEhkZCcDgwYPZuXMnhw4dYsyYMVitVg4cOGCeiSNS3nLOaMp5zwKcO3eOGTNm8NRTTwEwaNAgqlevXl4hioiIiIiIiIiIiIhc84q9dV6HDh3YtWsXhw4d4o477shXXq1aNS5cuMD999/PmjVr8pQ9/vjjLF26lH79+rF8+fIyCVykNLy8vIiNjQWyz0FydHQ0v4fs9/s333yj7d3KmLbOExEREREREREREbn2leRvuQ7F7fTs2bM4ODhw++235yv79ddfOX/+PIZh8N///jdf+ahRo1i6dCk///xzcYcTuaLmzJnDd999x88//8z58+dJSEigSpUqNG3alEceeYSBAwfi6OhY6nFOnjxJy5YtS9QmICCAffv2lXpsEREREREREREREZErrdiJpnPnzuHp6YmdXf7d9n788UcAnJycaN++fb7yO+64A8MwOHPmTClCFSk7gwYNYtCgQVd8nMzMTM6dO1eiNi4uLlcoGrmW1ZmwvtCy4zO6X8VIrk1F3Z/crta9Kk48Fe25XW7O1+N89bkTkavhRvw343pVZ8J6PYtrnD5PhauIv6uVht4r5Sfn3l+J+6vf3ysGfT4rLj3ba8uV/HlckGInmjIzM4mLiyuw7MCBAwA0aNAAJyen/IM4OODt7Z1nazKRG0GdOnUo5u6UIiIiIiIiIiIiIiLXnfzLkwpRtWpVMjIy+Oeff/KV7d69G8MwitwiLCEhgUqVKtkWpYiIiIiIiIiIiIiIiFxzip1ouvPOOwH46KOP8lz/66+/OHjwIAAdO3YssG14eDhpaWnUrFnTxjBFRERERERERERERETkWlPsRFP//v2xWq28++67vPXWW/zxxx9s3ryZPn36YLVaqVSpEvfff3+Bbbdv3w5kn9UkIiIiIiIiIiIiIiIiFUOxE019+vTh7rvvJiMjgwkTJnD77bfTpUsXjhw5gmEYjB07Fg8PjwLbhoSEYBgG7du3L7PARUREREREREREREREpHwVO9EE8PXXX9OjRw+sVqv5AnjyySd59dVXC2zz119/8f333wPwn//8p5ThSkUUHByMYRgEBgaWdygiIiIiIiIiIiIiIlICDiWpbLFYWLt2LX///bd5LlPLli2pXbt2oW0cHR35+uuvcXR05Oabby5VsCKS3/Hjx1myZAmQnbQTEREREREREREREblaSpRoylGvXj3q1atXrLp16tShTp06tgwjN4jKlStTv359atWqVd6hXJeOHz/OlClTACWaREREREREREREROTqsinRJFKWRo4cyciRI8s7DBERERERERERERERKaESndEkIiIiIiIiIiIiIiIikkOJpqskMDAQwzAIDg7GarWyYMECWrdujaenJx4eHrRt25ZPP/20yD5Wr15Njx498PPzw8nJCT8/P3r06MFXX31VZLsNGzbw0EMPUbNmTZycnPD09OTmm2+mS5cuvP3220RFRRXYLj4+nhkzZtC2bVt8fHxwdnYmICCARx55hN27d9t8Ly4VHByMYRgEBgbmKxsyZAiGYTBkyBAAVq5cSWBgID4+Pri5udG0aVNmz55NVlZWmcUDkJWVxYoVK+jZsyf+/v44OztTpUoVmjdvzvjx4/nll18KbGfLPTt+/DiGYWAYBsePH+fcuXOMGjWKm266CRcXF/z8/HjkkUc4evRovrZ16tQhKCjI/D6nn5xXzn0r6xj/+ecfhg0bxk033YSzs7O2xxQRERERERERERG5QWnrvKssMzOTXr168fXXX+Pg4ICbmxvx8fHs2bOHPXv28Ndff5nn7eRIS0tj0KBBhISEAGBnZ4fFYiEyMpL169ezfv16+vfvz9KlS3F0dMzTdurUqUyePNn83s3NDavVyrFjxzh27BgbN26kRYsW+ZI8Bw8e5P777+fUqVMA2Nvb4+bmxqlTpwgJCWHFihW88cYbTJw48QrcpYKNHDmSuXPnYmdnh6enJ8nJyRw6dIjRo0fz008/sXTp0jIZJzIykt69e7N9+3bzmpeXFykpKfz000/89NNP/PHHH6xZsyZPu7K4Z7/++itDhw7l/PnzuLm5AXD+/HlCQkL47rvv2L59O02aNDHrV6lShbi4OKKjowHw8/PL05/FYinzGHft2sXw4cNJSEjAzc0t33tORERERERERERERG4cWtF0lc2dO5fQ0FCWLFlCXFwcsbGxnDx5kvvvvx+A119/nb/++itPm5deeomQkBAMw2DSpElcvHiRqKgoIiMjeemllwBYvnw5kyZNytMuPDzcTFqNHTuW06dPk5iYSHx8PDExMYSFhfHMM8/g4eGRp93Zs2e57777OHXqFA899BD79+8nOTmZuLg4zp07x6RJk7C3t+ell17Kl2y5UtauXcuCBQuYNWsW0dHRREdHExkZyZNPPgnAsmXL2LJlS6nHycjIoGfPnmzfvh1nZ2dmzpzJ+fPniY6OJj4+ntOnTzN//nxuv/32PO3K6p4NHDiQW265hX379pGYmEhCQgIbN26kevXqxMXF8dxzz+Wpv2/fPlavXm1+HxERkec1e/bsMo9x+PDhNGzYME+MP/zwQ4F1U1NTiYuLy/MSERERERERERERkYpDiaarLDo6mq+++orBgwfj6uoKQM2aNfnyyy+pUaOGuWVbjtOnT5vJggkTJjB16lS8vLwA8Pb25o033mDs2LEAzJo1i7Nnz5pt9+7dS1ZWFrfeeivvvPMONWrUMMssFgvt27dn7ty5NG/ePE+Mr7zyCufPn2fAgAGsWrWK5s2bm6tWqlatytSpU3nzzTeB7G3vrobo6Gjmz5/PmDFj8PT0BMDX15cFCxaY8S9fvrzU4yxdupSdO3diGAarV69m3LhxVKlSxSyvUaMGw4YNY9q0aXnaldU98/PzM1eZATg4ONC5c2fmz58PQFhYmLkaqaTKKkZfX182bdpkxghw6623Flh3+vTpWCwW8xUQEGBT7CIiIiIiIiIiIiJybVKi6Spr165dnjN1cjg7O3PfffcBcPjwYfP6qlWryMjIwMXFhQkTJhTY5yuvvIKzszPp6emsXLnSvJ6TkIqPjycxMbFY8aWkpPD5558DMH78+ELrDRo0CIBDhw5x7ty5YvVdGgEBAQwePLjAsgceeADIe99s9fHHHwPwn//8h//85z/FalOW9+z55583E5C5devWDScnJwCOHDlSrLiuVIwjR47E3d29WONOnDiR2NhY83Xy5MkSRi4iIiIiIiIiIiIi1zKd0XSVtW7dutCynBVHUVFR5rX9+/cD0LJlS3Mlz6W8vb1p0aIFO3fuNOsDtGrVisqVK3P27Flat27NiBEj6Ny5M/Xr18cwjAL7OnDgACkpKQB06dKlWHMKDw/PdzZQWWvZsmWhMRd032yRkZHBvn37AMytDIujLO9ZYe8PBwcHqlSpwunTp22aZ1nG2K5du2KP6+zsjLOzc7Hri4iIiIiIiIiIiMj1RYmmq+zS85Byc3DIfhzp6enmtfPnzwPg7+9fZL81a9bMUx+yVzQtX76cAQMG8Ouvv5rn+1gsFu6++2769u1Lv379zO3TAM6cOWN+XdyVSklJScWqVxolvW+2uHjxotlH7dq1i92uLO/ZlZpnWcZYtWrVEo8vIiIiIiIiIiIiIhWTEk0VXOfOnTl27BirV69m8+bN7Nq1i7/++ot169axbt06ZsyYwYYNG8xEVmZmptk2OTkZFxeX8gr9qitsxdTlXA/3rCxjtLe3L4uQRERERERERERERKQC0BlN17ic1SOnTp0qsl5OeUGrTSpVqsTAgQNZsmQJf/75J6dOnWLmzJm4uLjkWekEUK1aNfPr8PDwspjCdcPHx8dc3VWSuV8P9+x6iFFERERERERERERErj9KNF3jWrRoAWSf1RQbG1tgnZiYmDxnOV2Ov78/48aN4/nnnwdg48aNZlnLli1xcnICYN26daWK/Xrj4OBAq1atgJLNvbzvmZ3d/32MrVZrgXXKO0YRERERERERERERqZiUaLrG9e7dGwcHB1JSUpg5c2aBdaZNm0ZqaiqOjo707t3bvJ6amlpk366urkDeREWlSpUYMGAAADNnzuTEiRNF9hEVFVWseVwvnnjiCQC+/fZbvv3222K1Ke975unpaX4dExNTYJ3yjlFEREREREREREREKiYlmq5x/v7+jBo1CoAZM2YwefJkM5kQExPDpEmTeOuttwAYO3Ys1atXN9vOnDmTbt268cknn+TZei81NZUVK1aY7bp3755nzGnTplGjRg0iIyNp27Ytn3zyCfHx8Wb5hQsXWLVqFb169aJ///5XZN7lZeDAgbRv3x6r1Urv3r156623iIyMNMvPnDnDu+++y/jx4/O0K897duutt5qrlRYuXFjoqqYb+bmKiIiIiIiIiIiIyJXhUN4ByOVNmzaNkydPsmLFCqZOncrrr7+OxWIhNjaWrKwsAPr3789rr72Wp11WVhbff/8933//PZC9gsnV1ZXo6GgzGdGgQQNmzZqVp1316tXZtGkTPXv25M8//2TQoEHY2dnh5eVFamoqiYmJZt3OnTtfyalfdQ4ODnz11Vc89NBDhIWFMW7cOMaPH4/FYiEjI4OEhAQAHnzwwTztyvOeubm5MXDgQBYtWsS4ceMIDg6mcuXKGIbBww8/zNtvv13uMYqIiIiIiIiIiIhIxaRE03XAycmJkJAQ+vbty6JFi9i/fz/R0dH4+vrSokULnnrqKXr16pWv3bBhw/D392fr1q0cOXKEs2fPEhsbi7e3Nw0bNqR3794MHz4cFxeXfG0bNGjA4cOHWbp0KatWreLgwYNERUXh5OREvXr1aNasGffeey8PP/zw1bgFV1XlypUJDQ1l+fLlfPbZZxw4cIDo6Gi8vb2pX78+9957LwMHDszXrjzv2dy5cwkICGDVqlX8888/5tZ4uVdjlXeMIiIiIiIiIiIiIlLxGNbC9tkSESljcXFx5mq83GdLCdSZsL7QsuMzuhdadqMo6v7kdrXuVXHiqWjP7XJzvh7nq8+diFwNN+K/GderOhPW61lc4/R5KlxF/F2tNPReKT859/5K3F/9/l4x6PNZcenZXlvK4udxSf6WqzOaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmziUdwBSMYwaNYqQkJAStZk9ezb9+vUr81h27drFQw89VKI2d911F6tXry7zWKRiKO75QKVxrexRezXmaotr6ewluHaeV25X+tldyTmX1/vuWnyOIlIx5P65pp81165L//0pq2d1rf4+VRGUx+fpenmeV/PeXA/3RD97r76yPpupoPeZnuv1S78blZ+r+TNbz/byKvLzUKJJykRsbCznzp0rUZvk5OQrEktaWlqJY4mKiroisYiIiIiIiIiIiIiIVGRKNEmZWLJkCUuWLCnvMAAIDAzEarWWdxgiIiIiIiIiIiIiIhWezmgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklKpE6dOhiGcdW3ycvMzGTWrFk0a9aMSpUqYRgGhmGwZs2aqxrH9WTIkCEYhsGQIUPKOxQRERERERERERERqaB0RpOUmeDgYCA7wVGnTp0y7Xv06NG8//77ADg5OeHn5weAi4tLmY4jIiIiIiIiIiIiIiLFp0STlEjdunVxcXHBYrHkK5syZQoAgYGBZZpoio+PZ/78+QC8+eabvPDCCxiGUWb9i4iIiIiIiIiIiIiIbZRokhLZvHnzVR/z6NGjpKenA/D0008rySQiIiIiIiIiIiIico3QGU1yzUtKSjK/dnd3L8dIREREREREREREREQkNyWarnGNGjXCMAzzfKLcdu/ejWEYGIbBww8/nK88PT0dDw8PDMPIsxJpz549jB8/ng4dOlC7dm1cXFzw8vKiTZs2zJw5k4SEhELjqVOnDoZhsGTJEvPakCFD8qwyCgoKMuMyDMPmbfSWLFmCYRgEBgaa13L3m/t6jtWrV9OjRw/8/PzMs5x69OjBV199Veg4OfEPGTIEq9XKwoULad++Pb6+vvnmWlKBgYEYhkFwcDBpaWnMmDGDxo0bU6lSJby9vbn33nv57rvvLtuPLfO6nB9++MF8fwwZMoSMjIw85Tt37uSxxx4z3yMWi4VWrVpd9j0iIiIiIiIiIiIiIjcObZ13jQsKCuKXX35hy5YtjBw5Mk/Zli1bzK9DQ0OxWq15Ej4//vgjCQkJODs7065dO/N627Ztza/d3Nxwc3MjOjqavXv3snfvXpYtW8bWrVupWrVqsWK0WCz4+flx7tw5ALy9vXFycjLLq1SpUrJJ/3+urq74+fmRlpZGdHQ0AH5+fma5j4+P+XVaWhqDBg0iJCQEADs7OywWC5GRkaxfv57169fTv39/li5diqOjY4HjWa1W+vTpw6pVq8z2dnZlk4tNS0ujc+fOhIWF4eDggLu7OzExMWzatIlNmzYxefJkgoODC2xX2nkV5NNPP2Xo0KGkp6czfvx4ZsyYYZZlZWUxZswY5syZY15zd3cnMTGRffv2sW/fPhYvXsyGDRuoXbu27TdFRERERERERERERK57WtF0jQsKCgJg27ZtZGVl5SnbunUrAJ6enly8eJFDhw4VWN6mTRtcXFzM6/fffz8hISGcPXuWxMREoqKiSEpKYvXq1dSvX5/ffvuNESNGFDvG2bNnExERYX6/evVqIiIizNe+fftKNun/r1+/fkRERLB69WrzWu5+c19/6aWXCAkJwTD+X3t3HhZlufAP/DswC4PAsCggIuK+a25puYChqaXmbilpuRX6tqhHXy0N10orLV8zyzxZJ3P3lL0dcwdFUsMlEfcEFXdkkWFf7t8f/uZ5GWYGhmHwYfT7ua65rmHu9Zn5Osjccz+PAnPnzsX9+/eRmpqKlJQUvPfeewCADRs2YO7cuRbH2759O3755Rd8+umnSEtLQ2pqKjIyMtCnTx+b5l/SqlWrcOzYMaxevRqZmZlIS0vDtWvXpJ1o8+fPx44dO0za2eO4Svv0008xZswYFBYW4vPPPzdaZAKAyMhIrFixAr6+vvjyyy9x//59ZGZmIicnBwcOHEC7du1w4cIFDBkyxCSTRERERERERERERPRk4UJTNRcaGgonJyekpqbi1KlT0uN5eXmIjY2Fq6srJk2aBMB4h1PJnw2LVQY7duzAiBEj4O/vLz2m1WoxePBg7Nu3DxqNBj///DOuXbtWRUdlXzdu3MAXX3wBAJg1axYWLFgAT09PAA93Vy1evBjTpk0DACxbtgy3bt0y249er8eyZcswffp0eHh4AHi4k6d27dqVnmNGRgZWrVqFN954Q1r0q1u3LjZt2oQePXoAgLRwZO/jMhBCYNq0aZgxYwZUKhU2bNiAd955x6hOUlISPvroI2i1WuzevRuTJ0+Wdo6pVCqEhoYiOjoagYGBOHHihNnFsZLy8vLw4MEDoxsRERERERERERERPT640FTNeXl5oW3btgCMF5KOHDmCnJwcdO3aFX379jUpz8vLwx9//AHAdKGpLHXq1EHbtm0hhEBsbKw9DqHKbdu2DYWFhXBxccGsWbPM1pkzZw40Gg0KCgqwdetWs3W8vLzwxhtvVMkc69ati9dff93kcScnJ8yZMwcAkJCQgPj4eKnMXscFPDwF3+jRo7F8+XK4u7vjP//5D0aOHGlSb926dSgqKkLfvn2l3JXm7u6OQYMGAQB27dplcUwA+Oijj6DT6aRb3bp1y6xPRERERERERERERI6FC00O4LnnngNgvJBkuP/cc8/h2WefhUajwaFDh1BUVAQAiI2NRW5uLrRaLbp06WLUX3FxMX766ScMHDgQQUFB0Gq1UCgU0u3YsWMAgOTk5EdxeJUWFxcHAOjUqZO0E6k0Ly8vdOzY0ah+aZ06dTK6tpQ9hYaGGl0/q6Tu3btDqVSazM1ex5WZmYkXX3wRGzZsgJ+fH6KjoxEWFma27uHDhwEAu3fvhr+/v8Xbd999BwC4evVqmcc9e/ZsZGRkSLfr16+XWZ+IiIiIiIiIiIiIHItS7glQ+Xr27InPPvsMhw4dQmFhIZRKpXT9peeee05aTIqOjsaff/6JLl26SOXPPvus0eJJdnY2+vfvL5UDgFqthre3N1QqFQAgNTUVBQUFyMrKeoRHabu7d+8CeLgbqyyBgYFG9Uvz9fW178RKKGtuLi4u8PHxwZ07d4zmZq/jKnktq19//RXt2rWz2NfNmzcBAFlZWVa9/tnZ2WWWazQaaDSacvshIiIiIiIiIiIiIsfEHU0OoEePHlAqldDr9Th27Biys7Nx9OhR6HQ6dOjQAYDpridL12davHgxDhw4AK1Wi+XLl+Pq1avIzc3F/fv3cfv2bdy+fRudO3cG8PCaPk8SZ2dnuadQJUJCQqRT1k2YMAH37t2zWNewI+6///u/IYQo9xYVFfUoDoGIiIiIiIiIiIiIqikuNDkAd3d3aUFp//79iImJQX5+Pnr06CEtjhgWlPbv34+srCzp9HeGBSiDjRs3AgA++OADvPvuuwgKCjI5pdvt27er9HjszbATqbxT/RnKq3LnkiU3btywWJaXl4f79+8DMJ6bvY4rODgYUVFRqFevHk6fPo2ePXta3P3k7+8PoPxT4hERERERERERERERAVxochglF5JKnjbPoHPnznB1dUVsbCz27duHgoICuLm5oVOnTkb9GK6RY+n0aUlJSbh8+bJNczQsWD3qnVAlr1GUkZFhtk56errRNY8etejoaIvPi+GUiMD/HUvJ+/Y4rgYNGiAqKgrBwcFISEhAaGio2QXFrl27AgD27t2L3NxcK46MiIiIiIiIiIiIiJ5kXGhyEIZFpT/++AM7d+40egx4eJ2lrl27IicnBx9++CEAoFu3blAqjS/DpdPpAAB//fWX2XFmzZpl8xw9PDwAPFz8eJSGDh0KpVKJ3NxcLFmyxGydDz/8EHl5eVCpVBg6dOgjnR8AXLt2Dd9//73J48XFxdLr1aJFC7Ru3Voqs/dxBQcHIzo6Gg0aNMC5c+cQGhqKW7duGdUZN24clEolUlJSEBkZWWZ/+fn50Ov1ZdYhIiIiIiIiIiIioscbF5ocRNeuXaFWq5Gbm4u//voLtWrVMlqUAP5v4eno0aMATK/PBAB9+/YFACxatAjbt2+XdtIkJiZi1KhR2Lx5M7y8vGyaY6tWrQAA69evR3Z2tk192KJOnTp45513AAAff/wxIiMjpcWu9PR0zJ07F5988gkAYNq0aahdu/Yjm5uBTqdDREQE1qxZI+0Uun79Ol555RVph9qiRYuM2lTFcQUFBSE6OhqNGjXChQsXEBISYnRav4YNG2Lu3LkAgKVLl2LMmDE4c+aMVF5YWIhTp05hwYIFaNSoEU6dOmXbE0JEREREREREREREjwUuNDkIV1dXdO7cWfo5NDTU5NpKpReWzC00LVq0CH5+fsjMzMTQoUOh1Wrh6emJBg0aYMOGDVi8eDHatGlj0xzffPNNAMC2bdvg6emJwMBABAcHo1u3bjb1VxEffvghRowYASEEFixYAB8fH3h7e8PHx0dawHnllVewcOHCKp+LOZMnT0bHjh0xadIkeHh4wNvbG0FBQdi8eTMAYM6cORg8eLBJu6o4rsDAQERHR6Np06a4dOkSQkJCpFMqAsDcuXMxd+5cKBQK/Otf/0Lr1q3h6uqKmjVrwsXFBe3atUNkZCSuX79ukkEiIiIiIiIiIiIierJwocmBlFw4KnnaPIOOHTtKp6/z8PBA+/btTerUq1cPcXFxGD9+PAICAgAALi4u6N+/P3bt2oXZs2fbPL/w8HD861//Qrdu3eDq6opbt27h6tWrSE5OtrlPa6nVamzatAlbt25Fv3794OPjg8zMTPj4+KBfv37Yvn07fvrpJ6hUqiqfi6X57du3Dx9++CGaNm2KvLw86HQ6hIWF4bfffrO4UFRVxxUQEICoqCg0b94cf//9N0JCQnD16lUAD6+1tWDBApw+fRqTJ09G8+bN4ezsjIyMDHh5eeHZZ5/FjBkzEBsbK13TiYiIiIiIiIiIiIieTMryq1B1MX/+fMyfP99iuWExoDyBgYH49ttvLZZHRUVZLEtKSiqz7/DwcISHh5c7h4oIDQ2FEMKqukOHDq3wNZjWrVuHdevW2TCzilGr1Zg9e7ZNi3lVcVz+/v44e/asxfJWrVrhyy+/rNCYRERERERERERERPRk4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim/AaTfRIDBkyBLGxsRVqs337djz77LNVNCPrOfLcqxvDtbYePHgg80wqpjgvu8rHqC7PyaM4Vls8qufH2uOvLq9XSVX92lXlMcuVu+r4OhLR46Hk+xrfa6qv0r9/7PVaVdf/Tz0O5Pj35Civ56N8bhzhOeF776NnyEVVvpfydXVc/L+RfB7lezZf2/I52uth6MPwmW5ZFMKaWkSVFBoaiujo6Aq1OXDgAEJDQ6tmQhXgyHOvbpKTk1G3bl25p0FEREREREREREREVrh+/ToCAwPLrMOFJiJ6ZIqLi3Hz5k24u7tDoVA88vEfPHiAunXr4vr16/Dw8Hjk49OTi9kjOTB3JAfmjuTA3JEcmDuSA3NHcmDuSA7MXfUghEBmZiYCAgLg5FT2VZh46jwiemScnJzKXf1+FDw8PPhLimTB7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+ZOfjqdzqp6ZS9DEREREREREREREREREVnAhSYiIiIiIiIiIiIiIiKyCReaiOiJodFoEBkZCY1GI/dU6AnD7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+bO8SiEEELuSRAREREREREREREREZHj4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiqjLZ2dnYuXMnFi1ahCFDhqBevXpQKBRQKBSYN2+eVX1s3boVAwYMQEBAANRqNWrUqIGmTZti4sSJOHXqVIXn9Oabb0pzCA4Otljvxo0bWLVqFYYPH45GjRpBq9VCq9Wifv36eOWVV7B//36rxrtz5w6mT5+Opk2bQqvVwtvbG927d8e3334LIUSF50/lc+Tc2as9cyePxyV7t2/fxty5c9GhQwd4e3tDq9WiXr166Nu3Lz7++GMUFBRYbMvsPXqPQ+4qOz5z9+jJmbt58+ZJY5V1u3z5cpnjnzhxAuHh4QgMDIRGo0Ht2rUxePBgq/+Pd+DAAQwePBi1a9eGRqNBYGAgwsPDceLECavaU8U5cu5Onz6NxYsXo0+fPqhTpw7UajXc3d3RqlUrvP3227h48aJV869sbqniHDl35hQUFKBNmzZS29dee63cNszdo/e45O7kyZOIiIhA06ZN4ebmBg8PDzRp0gQvv/wyNmzYUGZb5u7Rc/Tc5eTkYPny5ejevTt8fHygUqmg0+nQoUMHvP/++7h9+3a582fuKkkQEVWRAwcOCABmb5GRkWW2zc3NFQMGDDBq4+bmJtRqtfSzk5OTWLZsmdXz2b9/v1AoFFL7evXqma137do1o3oAhKurq9BqtUaPjRs3ThQWFlocLy4uTvj4+BjNX6lUSj/36dNH5OXlWT1/so6j5s5e7Zk7+TwO2du4caPw8PCQ2ri4uBj9DECkpaWZbcvsycORc2eP8Zk7eciZu8jISAFAqFQq4efnZ/GWmJhocQ5r1qwxyolOpzPKbXnHYJgDAKFQKIROp5N+ViqVYs2aNeU8g2QLR83djz/+aDJfnU4nnJ2dpZ/VarVYvXp1mcdQ2dySbRw1d5aUfP8CIMaOHVtmfeZOHo6eu+LiYjFjxgzh5OQkjenu7m70mUrbtm0ttmfu5OHIuUtKShKNGzc2+V1bMoM6nU5ER0dbPAbmrvK40EREVebAgQPCy8tLhIWFiRkzZogNGzYIf39/q96gP/jgA+nNfPLkySI5OVkIIURRUZGIi4sT3bp1k/64j4uLK3cuWVlZomHDhkKlUomOHTuW+eFXYmKiACDCwsLE999/L27cuCGNnZCQIF566SVpbnPmzDHbR3p6unSszZo1E3/++acQQoi8vDyxcuVKoVKpBAARERFR7typYhw1d/Zoz9zJy9Gzt3nzZuk/4pMmTRIJCQlS2YMHD8TBgwfF1KlThV6vN2nL7MnHkXNX2fGZO/nImTvDBxEhISE2zT02Nlb6gH/QoEHi+vXrQgghUlJSxBtvvCHNbdOmTWbbb9q0SarzxhtviJSUFCGEENevXxeDBg0SAISzs7OIjY21aX5kmaPm7rvvvhMajUaEh4eL3377TWRkZAghHr5X7d27V7Rq1Uoae8+ePWb7qGxuyXaOmjtzTp8+LVQqlWjQoIHw8/Mrd6GJuZOPo+furbfekhYali5dKm7duiWV3bt3T2zbtk3Mnz/fbFvmTj6OnLsePXoI4OEXN1auXCkyMzOFEA9/1/7yyy+iTp06AoDw8/MT2dnZJu2ZO/vgQhMRVRlzu33q1atn1S+p4ODgMn/JpKenCzc3NwFAzJo1q9y5vPvuuwKAeP/998XYsWPL/PArPT1dHD9+3GJfxcXFom/fvtJ/nHJyckzqzJkzRwAQWq1WXLlyxaT8ww8/lD6IuHDhQrnzJ+s5au7s0Z65k5cjZ+/mzZvCy8tLABCfffZZuf2XxuzJx5FzV9nxmTv5yJm7yn4QYfigo3Xr1iI/P9+kvE+fPgKACA4ONjnOwsJC6Tj79u1r0jYvL09aNOjWrZtN8yPLHDV358+fl764Zk5aWpr0QV5YWJjZOpXJLVWOo+autMLCQulLILt375aOoayFJuZOPo6cu507dwrg4c6UP/74o8LtmTv5OGrukpKSpIUgS/Pcu3evVOf33383KWfu7IPXaCKiKuPs7Gxz21u3bgEAOnbsaLZcp9OhSZMmAAC9Xl9mX0eOHMGKFSvQpEkTzJkzp9yxdTod2rdvb7FcoVBg3Lhx0tjnzp0zqfPDDz8AAF5++WXUr1/fpPytt96Cm5sbioqKsH79+nLnRNZz1NzZoz1zJy9Hzt6KFSuQlpaGdu3aYerUqRWY+UPMnnwcOXeVHZ+5k091yV1FXblyBTExMQCAf/zjH1CpVCZ1Zs+eDQBISkrCwYMHjcqio6Nx9epVo3olqdVq/OMf/wAAxMTEIDEx0a7zf9I5au6aNm2KgIAAi+Wenp4YMmQIAODPP/80Ka9sbqlyHDV3pX322WeIi4vDmDFj0Lt373LrM3fycuTczZ8/HwAwZcoUdOnSpUJtmTt5OWruDGOXNf7TTz8t3S89PnNnP1xoIqJqqUGDBgCA48ePmy3PyMiQLppr6RcJAOTl5WHcuHEQQuCbb76Bi4uLXeZXsp+ioiKjsgsXLuDatWsAgH79+plt7+bmhu7duwMAdu/ebZc5UeVVl9zZ0p65c2xyZ8/wgX14eDgUCkVFps7sOTC5c1eZ8Zk7x2Wv3Nliz5490v2+ffuardOtWze4u7sDMM2Nob27uzu6du1qtn3JPDJ31YecubOG4X2z9N8VQOVzS/KpLrm7ePEiIiMjUatWLSxbtsyqNsyd45Izd5cuXcKRI0cAAK+++mqF2zN3jkvO3BnGBoC4uDizdY4dOwYAcHJyQrt27YzKmDv74UITEVVLERERAICoqChMmTIFN27cAAAIIXDixAn0798fer0ezzzzDMLDwy32s2DBApw7dw7jx49HSEiI3eYXFRUF4OE3Vw3fyjA4c+aMdL9Vq1YW+zCUnT171m7zosqpLrmzpT1z59jkzF5iYiJu3rwJAOjQoQPi4+MxatQo1K5dGxqNBoGBgRg5ciQOHz5stj2z57jkfs+rzPjMneOyV+4SEhLQqlUruLq6ws3NDU2bNsXEiRNx8uRJi20MufH19YWvr6/ZOs7OzmjWrJk0hrn2zZs3t/itX19fX9SqVctse5KPnLmzhuFvi9atW5uUVTa3JJ/qkDshBMaPH4/c3FwsX74cPj4+Vs2duXNccubOsCtEpVKhTZs2+PXXX9GrVy94eXlBq9WiSZMmeOutt5CUlGS2PXPnuOTMna+vr7Qz+KOPPsKXX34p7VoqKCjAjh07MHbsWADA9OnTjRamAObOrh792fqI6Elm7fldi4qKxMyZM6UL0+P/Xw9JrVYLAMLf31/MmjXL7EX8DE6cOCGUSqXw8/MTaWlp0uO2XCunpCtXrghXV1cBQLz66qsm5StWrJDmbLjYrzmff/65VM9woUKqGo6UO1vbM3fVkyNk7/fff5fGXLx4sTSmVqsVHh4eUplCoRALFiwwac/sVT+OkLvKjs/cVT+PKneGc/gDEE5OTsLb21solUqj96r333/fbNshQ4YIAKJdu3ZlznHQoEECgOjQoYPR4+3btxcAxODBg8ts/9RTTwkAYujQoWXWo8pzhNyVZ+PGjVI/a9euNSmvbG7J/hwpd4bfl3369DF7DJau0cTcVT+OkLtZs2YJAMLX11fMmDFDauPh4SG0Wq3RfHbu3GnSnrmrfhwhd0IIkZqaKl1HyXDT6XTSfFq3bi3WrFljti1zZz/c0URE1ZKTkxM++ugj/POf/4SbmxuAh+dRzc/PBwDk5uYiIyMDWVlZZtsXFhZi3LhxKCwsxIoVK+Dp6WmXeeXk5GD48OHIzs5GzZo18fHHH5vUyczMlO67urpa7KtkWck2JB+5c1eZ9sydY5Mze2lpadL9uXPnIiAgAHv27IFer0dGRgYSEhIQGhoKIQQ++OADbN++3ag9s+e45H7Pq8z4zJ3jqmzuGjdujKVLl+LChQvIzc3F/fv3kZWVhV27dqFDhw4QQmDx4sX47LPPTNoaMlBWZkqWl85MZduTfOTMXVkuXryIN998E8DD0/K89tprJnWYO8cld+6SkpIwe/ZsuLq64quvvqrQ3Jk7xyVn7gx/V6SkpOCTTz7Bc889h7NnzyIjIwN6vR67d+9GUFAQ9Ho9RowYIV330IC5c1xyv995eXlh+/btmD59unQq+IyMDBQXF0tzSUlJMXuKWubOfrjQRETVUkpKCsLCwvDaa6/hmWeeQUxMDNLT03Hr1i1s374dtWrVwldffYXOnTtLW3JL+vjjj3Hq1Cn0798fI0aMsMucCgsLMWrUKBw/fhwqlQrr168v88K+5Hjkzl1V5JYcg5zZM/znG3h4aoNt27ahV69ecHJ6+N/EFi1a4Ndff4W/vz+A/7vALzk+ud/zKjs+OabKvu6jR4/GjBkz0KRJE+lizWq1Gs8//zxiYmLQqVMnAMC8efOQkZHxSI+Nqq/qmLvbt2/jxRdfRHp6OgICArBhwwbpdy89HuTO3cSJE5GVlYUFCxagfv36VXuwVG3ImTvD3xXFxcUICAjAr7/+iubNmwN4uBDRu3dvbN26FQqFApmZmVZfM4yqP7nf706ePIlmzZph+fLlmDx5MuLj45GVlYW///4bn3/+OVJTUzF79mwMGDDA6O9fsjMZd1MR0RPI2m23L7zwggAgQkJCRHFxsUn5nTt3RM2aNQUAER4eblSWkJAg1Gq1cHNzE9euXTNpa8up8woLC8WIESMEAKFUKsWWLVss1uXpfKofR8hdZdszd9WTI2Rvx44dUiZ69eplcY4LFy6U6t2+fVt6nNmrfhwhd5Udn7mrfh5F7qyxZ88e6TXftm2bURlPnff4cYTcmXPnzh3RokULAUD4+fmJc+fOWazLU/pUP46QuzVr1ggAon379qKwsNDiMfDUeY7DEXI3bdo0qWzRokUW+wgLCxMARLNmzYweZ+6qH0fI3YMHD4Sfn58AID744AOz7ffu3SsUCoUAIL799lujMubOfvh1GSKqds6dO4f//Oc/AGC07bUkX19fjBkzBgCwfft2CCGksilTpiA/Px/vv/8+vLy8oNfrjW6FhYUAHn5z3/BYQUGBxfkUFRUhPDwcmzdvhrOzM3788UcMGzbMYv2Su5zK+ga2oczDw0PaWkzykTt3lW3P3DkuubNXp04d6b7hG4fmtGjRQrpf8jQXzJ5jkjt3lR2fuXNMlX3drfHMM89I969cuWJUZshNeTvkDOWld65Xtj3JQ+7clXb37l3pdFK+vr7Yv3+/dIFxc5g7xyRn7jIyMvCPf/wDTk5O+Pzzz5GTk2Pye9owVmFhofRYyW/5M3eOSe73u4r+XVH61HnMnWOSO3c//vgj7ty5I41vTlhYGNq1awcA2LZtm1EZc2c/XGgiomrn7Nmz0v2GDRtarNe4cWMAQHZ2Nu7evSs9npiYCACYPXs23N3dTW7r168HAFy7dk167MsvvzQ7RlFREUaPHo2NGzdKi0wjR44sc/6tWrWS7p85c8ZiPUNZyQ9vST5y566y7Zk7xyV39lq0aAFnZ+dy51nyj4GSfzwwe45J7txVdnzmzjFV9nWvLENu7t69i3v37pmtU1RUhPPnzwMAWrZsabb9uXPnzJ7jv3TfpduTPOTOXUl3795Fz549kZCQIC0ylff+VNnckjzkzF1aWpp0bZIePXqY/T197do1AMD69eulx06fPi31wdw5Jrnf79q0aWNVPcPfFaUXJJg7xyR37gzj16pVCx4eHuWOb/g7xoC5sx8uNBFRtVPy3OSlv+FSkuEbCwCq5FvKRUVFGDVqFDZt2iQtMr388svltmvSpAmCgoIAAL///rvZOllZWTh06BAA4Pnnn7ffpMlm1SV3tmLuHJfc2XNxcUGPHj0APPzw1BLDf+AVCgWCg4Olx5k9xyR37io7PnPnmB5F7o4cOSLdL31Nkt69e0v3LeXm8OHD0kWeS+fG0D4zMxOxsbFm25fsl7mrHuTOXcn+e/bsabSTyZoPqyqbW5JHdcmdrZg7xyR37rp27YoaNWoAsO7vCnv/niZ5yJ07w/gpKSnIzs4ud3x3d3ejx5k7O3rU5+ojoiebNed3TUpKks69OmDAALN19Hq9aNCggQAg2rRpU6E5WHPdiMLCQjFy5EjpmkwbN26s0Bhz5swRAISrq6tITEw0KV+yZIkAIJydncWFCxcq1DdVnKPkrrLtmbvqx1Gy98MPPwgAQqFQiOPHj5uUZ2ZmCn9/fwFAdOnSxaSc2ateHCF39hifuateHkXuzJ3zv6Tc3FzRuXNnAUDUqFFDpKWlmdTp1q2bACDatm0r8vPzTcr79esnZbf0dU0KCwul43zhhRdM2ubn54s2bdoIAKJbt25lzpXsw1FyV/qaTAkJCeUeW0mVyS3Zn6PkzppjsHSNJiGYu+rGUXI3btw4AUAEBASIrKwsk/Jjx45J18qZNWuWSTlzV704Qu7WrVsnjf/ZZ5+Z7SM+Pl4olUoBQLz99tsm5cydfXChiYiqVGpqqrh37550q1u3rgAgZsyYYfR46Qt0DxgwQPpFER4eLi5fviyKi4tFfn6+OHz4sOjYsaNU/v3331doTuV9+FVYWChefvllaZFp8+bNFT7u9PR06UPZFi1aiLi4OCGEEHl5eWLVqlVCrVYLACIiIqLCfVP5HDF39mjP3MnPUbNXVFQknn76aQFABAcHi71794qioiIhhBBnz54VPXv2FACEk5OT2Ldvn0l7Zk9ejpq7yo7P3MlLjtxFRUWJsLAw8cMPP4jr169Lj+fn54u9e/eKTp06SW2XLFlidt6HDx8Wzs7OAoAYMmSISE5OFkIIcf/+fRERESG137Rpk9n2mzZtkupERESI+/fvCyGESE5Oli4m7ezsLGJjY21+bskyR8zd3bt3RcuWLQUA4e/vL86ePVvh465sbqlyHDF35bFmoYm5k5ej5i45OVnodDoBQISFhUnveUVFRWLPnj0iKChIABC+vr7i7t27Ju2ZO3k5Yu70er2oXbu2ACA0Go1YtGiRSElJkco2bNgglavVanHx4kWTPpg7++BCExFVKcN/YMu7lf4P7r1790SHDh2M6ri6ukrfQDDcZsyYUeE5lffhV3R0tNS/SqUSfn5+Zd4s7XaKi4sTPj4+Ul/u7u5CpVJJPz///PMiNze3wvOn8jli7uzVnrmTlyNn79atW9K3rQ3jG/5INLwffvPNNxbbM3vycdTc2WN85k4+cuTuwIEDRnW0Wq2oWbOm0Wvu5OQk3nvvvTLnvmbNGqPxPD09pW9XA2V/a1cIISIjI6W6CoVCeHp6Sj8rlUqxZs2aij6dZCVHzN38+fOlejVq1Cj3b4tr166Z7aeyuSXbOWLurD2mshaahGDu5OTIuTt48KDR70adTie0Wq30s6+vrzh69KjF9sydfBw1d0ePHhW1atUy6sfd3d0oN66urmLLli0W+2DuKo8LTURUpWz9JSWEEAUFBeLbb78Vffr0EX5+fkKlUgkXFxfRoEEDER4eLg4dOmTTnMr78Kv0L7nybt99953FsW7fvi2mTp0qGjduLFxcXISnp6fo1q2bWLNmjbRbgOzPEXNnz/bMnXwcPXu5ubni008/FZ06dRI6nU6o1WoRHBwsxo0bJ+Lj48ttz+zJw5FzZ4/xmTt5yJG7lJQU8emnn4qhQ4eKJk2aCG9vb6FUKoWHh4do27at+K//+i9x+vRpq+Z//PhxMWrUKFGnTh2hVquFn5+fGDRokNldm+bs27dPDBo0SPj5+Qm1Wi3q1KkjRo0aJe2so6rhiLkruTBpzc3cqUANKptbso0j5s7aYypvoUkI5k4ujp67mzdvimnTpommTZsKV1dX4erqKlq3bi3ee+89szuZSmPu5OHIuUtJSRELFy4UXbp0EV5eXsLZ2Vm4ubmJNm3aiKlTp4q///673D6Yu8pRCCEEiIiIiIiIiIiIiIiIiCrISe4JEBERERERERERERERkWPiQhMRERERERERERERERHZhAtNREREREREREREREREZBMuNBEREREREREREREREZFNuNBERERERERERERERERENuFCExEREREREREREREREdmEC01ERERERERERERERERkEy40ERERERERERERERERkU240EREREREREREREREREQ24UITERERERERERERERER2YQLTURERERERNWcQqGAQqFAVFSU3FOxq6ioKOnYyHHJlc/8/Hw0bNgQGo0G169fr3R/R44cgUKhQI8ePewwOyIiIqInBxeaiIiIiIiIqpDhQ3hbbuvWrZN7+kTV1v/8z//gypUrmDBhAurWrVvp/rp06YI+ffrg0KFD+Pe//22HGRIRERE9GZRyT4CIiIiIiOhx5ufnZ/ZxvV6PrKysMutotVoAQNOmTQEArq6uVTBD+bi6ukrHRlQRqampWLRoETQaDWbPnm23fufNm4ddu3Zh1qxZGDBgAJRKfmxCREREVB7+j4mIiIiIiKgK3b592+zj8+bNw/z588usY3D+/Hm7z6s6ePrppx/bY6Oq9c033yA9PR3Dhg1DYGCg3frt0qUL2rZti7/++gs///wzhg0bZre+iYiIiB5XPHUeERERERERETkMIQS++eYbAEB4eLjd+zf0+fXXX9u9byIiIqLHEReaiIiIiIiIqjnDNZuioqKMHk9KSpLKkpKScPXqVUycOBFBQUFwcXFBw4YNMWfOHOkUfQBw5swZhIeHo27dunBxcUHjxo2xaNEiFBQUlDmHpKQkvPvuu2jZsiXc3Nzg6uqKZs2a4Z133sG1a9dsOq6oqChp/qWtW7cOCoUCwcHBAIDjx49jxIgRqF27NjQaDRo0aIBp06YhLS3NprEB4OjRoxg9ejTq168PFxcX1KhRA/Xq1UNISAgWLlyI5ORks+3y8/OxatUq9OzZEzVr1oRarYa/vz9eeukl7Ny506pxX3/9dTRq1Aiurq7w8PBAixYtMG7cOOzatctsm4yMDCxYsADt27eHh4cHtFotGjdujIiICFy5csXiWCWzk5mZiTlz5qBZs2bQarXw8fFB//79cfTo0TLnm5aWhhkzZqBhw4ZwcXFB7dq1MXz4cBw/frzcY01OTsbUqVPRsmVL1KhRAxqNBgEBAejQoQOmTp2KP//8s9w+Stu7dy8SExPh6emJF154wWK98+fPY9KkSWjSpAlcXV3h4uKCunXrokuXLnjvvfcs7qYbNWoUAGDfvn1lPrdERERE9P8JIiIiIiIieuQiIyMFAGHNn2WGegcOHDB6PDExUSrbtm2b8PT0FACEh4eHcHZ2lsq6d+8u8vPzxf/+7/8KV1dXAUDodDqhUCikOiNHjrQ4/o8//ig0Go1UV6PRCK1WK/3s7u4udu3aVeHn4MCBAxafg++++04AEPXq1RPr168XKpVKmreTk5PUrmXLliIzM7PCY69bt87o+DUajfDw8JB+BiC+++47k3ZJSUmiZcuWUh2FQiF0Op1RuzfffNPsmIWFheLtt982qlujRg3h5eUlzUWn05m0O3PmjAgMDJTauLi4CHd3d6O5b9261eyYhjo//fSTaNSokdTekAMAQq1WW3z9EhMTRb169YzqGp4ntVotfvnlF4v5PHXqlPDy8pLKnZ2djY4VgBg7dmxZL5NZ06ZNEwBEnz59LNbZvXu3UWZVKpX078Nwi4yMtNi+YcOGAoBYtWpVhedHRERE9KThjiYiIiIiIqLHwPjx49GhQwckJCQgIyMDmZmZWLFiBZydnXHo0CEsWLAAo0ePxoABA5CUlIT09HQ8ePAA77//PgBg06ZN2Lt3r0m/e/bswZgxY1BUVISZM2ciMTEROTk5yMrKwvnz5zF8+HBkZmZi+PDhNu9sKsu9e/cwbtw4jB07FteuXUN6ejoyMzOxcuVKqFQqJCQkYOnSpRXqMzs7G2+99RaEEAgPD8fly5eRm5uLjIwM6PV6xMXFYcaMGfD19TVql5WVhb59+yIhIQGhoaGIiopCTk4O0tPTkZ6ejmXLlsHNzQ2rV6/GF198YTLue++9hxUrVgAAxo0bhwsXLkCv1yM1NRVpaWn4+eef0bdvX6M2mZmZGDBgAJKTk1GnTh389ttvyMrKwoMHD3Dq1Cl06dIFeXl5GD16NP766y+LxzxlyhSo1Wrs378fWVlZ0Ov1OHbsGJo2bYr8/HxMmjQJxcXFRm2KioowfPhwXL16FV5eXti8eTOysrKQkZGBhIQEdO7cGWPHjrU45vTp05GWlob27dvjjz/+QEFBAVJTU5Gbm4uLFy/i008/RcuWLct9vUo7ePAggIfX+LIkIiICeXl5eP755xEfH4/8/HykpaUhJycHZ86cwfz586XdcuZ07twZABAdHV3h+RERERE9ceRe6SIiIiIiInoS2XtHU8uWLUVubq5J21dffVWq07t3b1FcXGxSp3v37gKAGD9+vNHjRUVFonHjxgKA+Prrry3Ob+DAgQKAeOedd8o9lpKs2dGEMna9GHa2NGrUqELjHj16VNpNVFBQYHW7BQsWCAAiJCRE5Ofnm62zfft2AUDUrFnTqO8LFy5IO7Fmzpxp9Zgff/yxtCMnPj7epPzBgwciODhYABAvvviiSbnhOaxVq5a4c+eOSfnp06elOjExMUZlmzZtksr27t1r0jYrK0va+WMun4Zdb7GxsVYfb3ny8vKk3XqWdnHduXNHmtPNmzdtGueTTz4RAERQUFBlpktERET0ROCOJiIiIiIiosfA1KlTodFoTB7v06ePdH/WrFlmr4dkqHP69Gmjxw8ePIhLly6hZs2amDBhgsWxx4wZAwAWry9UWXPmzDH7+EsvvQQAuHz5MrKzs63uz9PTE8DDay3dv3/f6nZr164FAEybNg0qlcpsnUGDBsHDwwMpKSlG1zD6/vvvUVxcDB8fH8yfP9/qMTdt2gQAGDZsGFq1amVS7u7ujpkzZwIAdu7ciYyMDLP9TJo0yWSHFgC0bt0a9evXB2D6+m/cuBEA0LVrV4SFhZm0dXV1lcY2x/A837p1y2Kdirp79y6KiooAALVq1TJbx93dHU5OTpUau2bNmpVqT0RERPQk4UITERERERHRY8DSacT8/Pyk+506dSqzTlpamtHjhw8fBgBkZGQgICAA/v7+Zm8TJ04EAFy9erXSx1Gat7c3GjVqZLYsICBAul967mVp2LAhmjVrhoKCAnTu3BlLlizBqVOnpAUMc27cuCEd3/jx4y0+F7Vr14Zerwdg/HzExsYCAHr37g0XFxer5pmfny8t/vTq1ctivd69ewMAiouLceLECbN1DKeCM8fwPKampho9HhcXBwB47rnnLLYtq6x///4AgLFjx2L69OmIjo6u0IKgOffu3ZPue3t7m62j1WqlhbG+ffvigw8+wNGjR5Gfn2/1OIa+CwoKkJ6ebvuEiYiIiJ4AXGgiIiIiIiJ6DLi7u5t9XKlUWl2noKDA6PGbN29Kj9+5c8fizbDIk5OTU+njKM3SnEvO29zcy+Ls7IyNGzeifv36uHr1KmbNmoV27drBw8MDvXv3xldffWWyIGJ4LgAgJSWlzOfDcK2jkn3cvn0bAFCvXj2r55mamiotftWpU8divcDAQOn+3bt3zdax5nks/Rwa+rJ27NKWLl2Knj17Qq/XY9myZQgNDYWHhwc6duyIyMhI3Lhxw2JbS3Jzc6X75nbwGXz77bdo27Yt7t27h4ULF6JLly5wd3dHt27d8Mknn5gsqpWm1WrNjklEREREprjQRERERERERGYZFjk6d+4MIYRVN0fRtm1bnD9/Htu2bcOkSZPQqlUr5OTkYO/evZg8eTKaNWuG+Ph4qX7J3U7nzp2z6rl47bXXpDbmTln4uPP09MT+/ftx6NAhzJw5E127doVSqcTx48exYMECNG7cGBs2bKhQnz4+PtL9snaxBQUF4cSJE/j999/x9ttvo0OHDiguLsbhw4cxc+ZMNGrUCPv377fYvuRCVMkxiYiIiMgUF5qIiIiIiIjILH9/fwBVc0q86kCtVmPIkCH4+uuvER8fj3v37mH16tXw9vbG9evXMXbsWKmu4bkAbHs+bHkuvb294ezsDABITk62WK9kmbnrMNnK0FdZO4+s2ZXUrVs3LFmyBDExMUhPT8cvv/yC1q1bIycnB+PGjcOdO3esnlPJ6zKVtyvJyckJffr0wRdffIG4uDikpqZi/fr1CAoKQlpaGkaNGmXxdHqGvnU6ncXrcRERERHRQ1xoIiIiIiIiIrO6du0K4OFp3wzX63mc+fj44I033sCSJUsAACdPnsT9+/cBAMHBwdIp5H799dcK9/3ss88CAPbs2WP1qdjUajXatGkDANi3b5/Fenv37gXwcGGlffv2FZ6bJR07dgQAHDhwwGKdsnYFmePi4oKBAwdi+/btAB6eli4mJsbq9l5eXtKi3ZUrVyo0tru7O0aNGoW1a9cCAO7cuWO0a62kxMREAEDz5s0rNAYRERHRk4gLTURERERERGRWz5490ahRIwDA1KlTLe7+MChvh0l1kZeXV2Z5yevzODn935/NEydOBACsXbsWJ0+eLLOP0s/Fa6+9BmdnZ9y/fx+RkZFWz/Xll18GAGzduhVnzpwxKdfr9Vi6dCkA4IUXXoBOp7O67/KMHDkSABATE4OoqCiT8pycHHzyySdm2xYWFkrXqjLH0nNsjR49egAAjh07Zra8vJxaM/bRo0cBACEhIRWaGxEREdGTiAtNREREREREZJZSqcTq1auhVCoRExODHj16YN++fSgoKJDqXLlyBatXr0anTp2watUqGWdrvY0bN6Jr1674+uuvjXbFFBUVYdeuXZg1axYA4JlnnoGXl5dUPn36dLRu3Rq5ubno2bMnVq5cKe14AoD09HTs3LkTY8aMQffu3Y3GbNSoEWbMmAEAWLp0KSZMmIBLly5J5Q8ePMCmTZswePBgo3YRERGoX78+CgoK0K9fP+zcuVNawImPj0efPn2QmJgIjUaDRYsW2ekZemjo0KHSDqmhQ4di27Zt0rWqzp07h379+uHevXtm2yYnJ6Nx48ZYtGgRTp48icLCQqns9OnTCA8PBwDUqFGjwos5oaGhAP5vMai02NhYtGnTBsuXL8e5c+ek50sIgdjYWERERAAAAgMDpR1jJRUVFeH48eMAuNBEREREZA2l3BMgIiIiIiKi6issLAxbtmzBmDFjcPToUfTq1QsqlQoeHh7Q6/VGu4MGDRok30QrwLDgEBsbCwDQaDRwc3NDWlqatCgREBCAf/7zn0bt3Nzc8Pvvv2Po0KE4cuQI3nrrLbz99tvQ6XQoLi7GgwcPpLqGnWAlLVq0CJmZmfjyyy+xdu1arF27Fm5ublCpVEhPT4cQwmRHkru7O3bs2IG+ffsiOTkZL7zwAlxcXKBWq6XxNBoNfvzxR7Rt29auz5NSqcSWLVsQGhqK69evY9iwYdBoNHBxcUFGRgbUajW2bNmCl156yWz7K1euYO7cuZg7dy6cnZ2h0+mg1+ulHUdqtRrr1q2Dt7d3heY1dOhQvPPOOzh//jwuXbqExo0bm9SJj4/HtGnTMG3aNCmvGRkZ0oKXh4cHfvrpJ+kaWCXt27cPWVlZ8PX1Ra9evSo0NyIiIqInEXc0ERERERERUZkGDRqEy5cvIzIyEk8//TTc3NyQnp4OjUaDtm3bYsKECfj3v/8t7dip7gYOHIgffvgBr7/+Otq2bQudToeMjAy4u7vj6aefxsKFC5GQkIBmzZqZtA0ICEBMTAw2bNiAgQMHonbt2sjOzkZ+fj6Cg4MxYMAAfP755zh48KBJW2dnZ6xcuRIxMTEYPXo0goKCUFBQACEEWrRogfHjx2Pbtm0m7Vq1aoWEhATMmzcPTz31FJRKJfLy8tCwYUO8+eabSEhIwLBhw6rkuWrQoAFOnTqFadOmoX79+hBCwMXFBcOGDUNsbCwGDhxotl2dOnWwY8cOTJ06FV26dEHt2rWh1+uhVCrRokULTJkyBWfOnLFp3r6+vtLOr/Xr15uUd+rUCZs3b0ZERAQ6dOiAmjVr4sGDB3BxccFTTz2FmTNn4ty5cya7zgwMfb7++utQqVQVnh8RERHRk0YhhBByT4KIiIiIiIiIyFoHDx5ESEgIGjZsiEuXLkGhUNil36ysLGnx8OLFi2jQoIFd+iUiIiJ6nHFHExERERERERE5lB49euD555/H33//jS1bttit35UrVyIzMxMTJkzgIhMRERGRlbijiYiIiIiIiIgcTnx8PJ566ik0b94cp0+fhpNT5b5Lq9frUb9+feTm5uLy5cvw8/Oz00yJiIiIHm9KuSdARERERERERFRRrVu3xtq1a5GUlIRbt26hTp06leovKSkJU6ZMQbt27bjIRERERFQB3NFERERERERERERERERENuE1moiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiIiIiIiIiIiIiIiKyCReaiIiIiIiIiIiIiIiIyCZcaCIiIiIiIiIiIiIiIiKbcKGJiIiIiIiIiIiIiIiIbMKFJiIiIiIiIiIiIiIiIrIJF5qIiIiIiIiIiIiIiIjIJv8Pjm7X8BIZmQ4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the states from file\n", + "states = nwbfile.get_acquisition(\"task_recording\").states\n", + "state_types = nwbfile.get_lab_meta_data(\"task\").state_types\n", + "\n", + "# Plot the data\n", + "plot_states(states=states[20:100],\n", + " state_types=state_types,\n", + " marker_size=500)\n", + "plt.title(\"States\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d811ac1c-771a-4fc0-a995-613065ae60fd", + "metadata": {}, + "source": [ + "## Accessing the trials\n", + "\n", + "The `TrialsTable` is a column-based table to store information about trials, one trial per row.\n", + "The table can be accessed from the file as `nwbfile.trials`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c23cd956-7ccc-4104-8349-0275dd1c3e7e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "ca66b7b5-c6ac-405f-8297-8aeb6cc4d92e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

trials (TrialsTable)

description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", + "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", + "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", + "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", + "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", + "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", + "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", + "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", + "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", + "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", + "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", + "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", + "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", + "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", + "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", + "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", + "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", + "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", + "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", + ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", + "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", + "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", + "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", + "broke fixation on a subset of trials, in practice, block durations were variable.\n", + "
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.369254120

... and 362 more rows.

" + ], + "text/plain": [ + "trials ndx_structured_behavior.trials_table.TrialsTable at 0x5091712208\n", + "Fields:\n", + " colnames: ['start_time' 'stop_time' 'states' 'events' 'actions' 'reward_volume_ul'\n", + " 'previous_was_violation' 'is_warm_up' 'catch_percentage' 'changed'\n", + " 'time_increment_for_delay_to_reward' 'training_stage'\n", + " 'cumulative_reward_volume_ul' 'punish_sound_enabled'\n", + " 'auto_change_catch_probability' 'nose_in_center' 'block_type'\n", + " 'target_delay_to_reward' 'trials_in_stage' 'is_catch' 'delay_to_reward'\n", + " 'target_duration_for_nose_in_center' 'violation_time_out'\n", + " 'time_increment_for_nose_in_center']\n", + " columns: (\n", + " start_time ,\n", + " stop_time ,\n", + " states_index ,\n", + " states ,\n", + " events_index ,\n", + " events ,\n", + " actions_index ,\n", + " actions ,\n", + " reward_volume_ul ,\n", + " previous_was_violation ,\n", + " is_warm_up ,\n", + " catch_percentage ,\n", + " changed ,\n", + " time_increment_for_delay_to_reward ,\n", + " training_stage ,\n", + " cumulative_reward_volume_ul ,\n", + " punish_sound_enabled ,\n", + " auto_change_catch_probability ,\n", + " nose_in_center ,\n", + " block_type ,\n", + " target_delay_to_reward ,\n", + " trials_in_stage ,\n", + " is_catch ,\n", + " delay_to_reward ,\n", + " target_duration_for_nose_in_center ,\n", + " violation_time_out ,\n", + " time_increment_for_nose_in_center \n", + " )\n", + " description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", + "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", + "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", + "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", + "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", + "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", + "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", + "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", + "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", + "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", + "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", + "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", + "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", + "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", + "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", + "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", + "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", + "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", + "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", + ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", + "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", + "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", + "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", + "broke fixation on a subset of trials, in practice, block durations were variable.\n", + "\n", + " id: id " + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trials = nwbfile.trials\n", + "trials" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "cc9adeaf-ae23-403f-ad66-5a6ed695760f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechanged...auto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False...False0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4...[7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False...False0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 6...[15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False...False0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 8...[22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False...False0.846073High1.523027False5.369254120
418421.616518429.0515[24, 25, 26, 27, 28, 29][132, 133, 134, 135, 136, 137, 138, 139, 140, ...[29, 30, 31, 32, 33, 34, 35, 36]80FalseFalse0.15False...False0.838370High1.523028False1.220980120
\n", + "

5 rows × 24 columns

\n", + "
" + ], + "text/plain": [ + " start_time stop_time states \\\n", + "id \n", + "0 17950.0907 18395.7043 [0, 1, 2, 3, 4, 5] \n", + "1 18395.7043 18402.2559 [6, 7, 8, 9, 10, 11] \n", + "2 18402.2559 18410.3677 [12, 13, 14, 15, 16, 17] \n", + "3 18410.3677 18421.6165 [18, 19, 20, 21, 22, 23] \n", + "4 18421.6165 18429.0515 [24, 25, 26, 27, 28, 29] \n", + "\n", + " events \\\n", + "id \n", + "0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... \n", + "1 [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4... \n", + "2 [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 6... \n", + "3 [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 8... \n", + "4 [132, 133, 134, 135, 136, 137, 138, 139, 140, ... \n", + "\n", + " actions reward_volume_ul \\\n", + "id \n", + "0 [0, 1, 2, 3, 4, 5, 6] 20 \n", + "1 [7, 8, 9, 10, 11, 12, 13, 14] 80 \n", + "2 [15, 16, 17, 18, 19, 20, 21] 40 \n", + "3 [22, 23, 24, 25, 26, 27, 28] 20 \n", + "4 [29, 30, 31, 32, 33, 34, 35, 36] 80 \n", + "\n", + " previous_was_violation is_warm_up catch_percentage changed ... \\\n", + "id ... \n", + "0 False False 0.15 False ... \n", + "1 False False 0.15 False ... \n", + "2 False False 0.15 False ... \n", + "3 False False 0.15 False ... \n", + "4 False False 0.15 False ... \n", + "\n", + " auto_change_catch_probability nose_in_center block_type \\\n", + "id \n", + "0 False 0.869210 High \n", + "1 False 0.979292 High \n", + "2 False 0.835958 High \n", + "3 False 0.846073 High \n", + "4 False 0.838370 High \n", + "\n", + " target_delay_to_reward trials_in_stage is_catch delay_to_reward \\\n", + "id \n", + "0 1.5 23023 False 4.135600 \n", + "1 1.5 23025 False 1.264520 \n", + "2 1.5 23026 False 0.619385 \n", + "3 1.5 23027 False 5.369254 \n", + "4 1.5 23028 False 1.220980 \n", + "\n", + " target_duration_for_nose_in_center violation_time_out \\\n", + "id \n", + "0 1 2 \n", + "1 1 2 \n", + "2 1 2 \n", + "3 1 2 \n", + "4 1 2 \n", + "\n", + " time_increment_for_nose_in_center \n", + "id \n", + "0 0 \n", + "1 0 \n", + "2 0 \n", + "3 0 \n", + "4 0 \n", + "\n", + "[5 rows x 24 columns]" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trials[:].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "1b7a20f0-94c2-46ac-8619-f2a606cafae0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAANtCAYAAADM36WQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xW9f//8efF3hdLURG14f6490ow0ywrzdK0HC2ztI9l5iqTrBxlWpZlHzVHw3BlmjacqTlypC1X5VZQZCOb8/uDH9dX5AJBQMb1uN9u5xac93qdIeeKF+/3MRmGYQgAAAAAAAAAAACwAXalHQAAAAAAAAAAAABws5AcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXIMAAAAAAAAAAAANoPkGAAAAAAAAAAAAGwGyTEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBkkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcAwAAAAAAAAAAgM0gOQYAAAAARbRt2zbdd999qlatmkwmk1avXp2jPCEhQSNGjFD16tXl6uqqBg0aaO7cuTnq/PPPP+rdu7cqVaokLy8v9e3bVxEREVbHS0lJUdOmTWUymXTw4EHL/qNHjyokJEQBAQFycXHRrbfeqldffVVpaWn5xm8ymXJtX331laV8x44d6tChg/z8/OTq6qp69epp1qxZhTtJAABcx816ntaqVSvXc2/atGmW8tDQUKvPRnd39+sew6JFi9S4cWO5uLiocuXKGj58eI5ywzA0Y8YM1alTR87OzgoMDNRbb71VyDOFa93Mz2Lr1q1TmzZt5OrqKh8fH/Xq1StH+X//+1+1aNFCzs7Oatq0aYHiL8jYx44d0wMPPCB/f395eXmpY8eO2rJlS4H6L2/K0vW83ufk/OT1mV2SfvjhB7Vt21aenp6qVKmS+vTpo5MnTxaoXxQPkmMAAAAAUESJiYlq0qSJ5syZY7V81KhR+v777/X555/r8OHDeuGFFzRixAitWbPG0r5bt24ymUzavHmzfv75Z6Wmpuq+++5TZmZmrv7GjBmjatWq5drv6OioQYMG6ccff9TRo0f13nvvad68eZo0adJ1j2HhwoW6cOGCZbv6FwPu7u4aMWKEtm3bpsOHD+vVV1/Vq6++qv/9738FPEMAAFzfzXyeTp48Ocdz7/nnn7eUjR49OkfZhQsX1KBBAz388MP5xj9z5ky98sorGjdunP78809t3LhR3bt3z1Fn5MiRmj9/vmbMmKEjR45ozZo1at269Y2cLlzlZt07K1eu1MCBA/X444/r0KFD+vnnnzVgwIBc4z3xxBPq169fgWMvyNg9e/ZUenq6Nm/erP3796tJkybq2bOnwsPDC3OqyoWydj3z+5ycn7w+s584cUIPPPCAunTpooMHD+qHH35QZGSkHnzwwQL1i2JiAAAAAACKjSTj66+/zrGvYcOGxuTJk3Psa968ufHKK68YhmEYP/zwg2FnZ2fExsZaymNiYgyTyWRs2LAhR7v169cb9erVM/78809DkvHrr7/mG8+LL75odOzYsdAxX0/v3r2Nxx57rFBtAAAoqJJ8ntasWdOYNWtWgWM5ePCgIcnYtm1bnnWioqIMV1dXY+PGjXnW+euvvwwHBwfjyJEjBR4bhVdS905aWpoRGBhozJ8/v0BxTJo0yWjSpMl16xVk7EuXLuW6B+Pi4gxJuT4rVjSlfT1v5HOyYeT/mX358uWGg4ODkZGRYdm3Zs0aw2QyGampqYUeCzeGmWMAAAAAUMLat2+vNWvW6Ny5czIMQ1u2bNGxY8fUrVs3SVlLrphMJjk7O1vauLi4yM7OTjt27LDsi4iI0NNPP63PPvtMbm5u1x3377//1vfff6/OnTtft+7w4cPl7++v1q1b69NPP5VhGHnW/fXXX7Vz584C9QsAQHEpruepJE2bNk1+fn5q1qyZ3nnnHaWnp+c57vz581WnTh116tQpzzobNmxQZmamzp07p/r166t69erq27evzpw5Y6mzdu1a3Xrrrfr22291yy23qFatWnrqqacUFRV1o6cEBVQc986BAwd07tw52dnZqVmzZqpatap69OihP/74o0ixFWRsPz8/1a1bV0uWLFFiYqLS09P1ySefqHLlymrRokWRxi+Pbvb1LMznZOn6n9lbtGghOzs7LVy4UBkZGYqNjdVnn32mrl27ytHRsSinBoVAcgwAAAAAStgHH3ygBg0aqHr16nJyctLdd9+tOXPm6I477pAktW3bVu7u7ho7dqyuXLmixMREjR49WhkZGbpw4YKkrHeUDBkyRMOGDVPLli3zHa99+/ZycXFR7dq11alTJ02ePDnf+pMnT9ayZcu0YcMG9enTR88995w++OCDXPWqV68uZ2dntWzZUsOHD9dTTz11g2cEAIDCK47nqZT1TqivvvpKW7Zs0TPPPKMpU6ZozJgxVsdMTk7WF198oSeffDLf2P79919lZmZqypQpeu+997RixQpFRUXprrvuUmpqqqXOqVOntHz5ci1ZskSLFi3S/v379dBDDxXTGUJeiuPe+ffffyVlvZPu1Vdf1bfffisfHx8FBwcXKcFZkLFNJpM2btyoX3/9VZ6ennJxcdHMmTP1/fffy8fHp4hnp/y5mdezoJ+TsxXkM/stt9yiH3/8URMmTJCzs7O8vb119uxZLVu2rLhOEQqA5BgAAAAAlLAPPvhAu3fv1po1a7R//369++67Gj58uDZu3ChJqlSpkpYvX661a9fKw8NDZrNZMTExat68uezs7Cx9xMfHa/z48dcdLywsTAcOHNCXX36pdevWacaMGfnWnzhxojp06KBmzZpp7NixGjNmjN55551c9bZv3659+/Zp7ty5eu+997R06dIbOBsAANyY4nieSlnvKwoODlbjxo01bNgwvfvuu/rggw+UkpKSa8yvv/5a8fHxGjx4cL6xZWZmKi0tTbNnz1b37t3Vtm1bLV26VMePH9eWLVssdVJSUrRkyRJ16tRJwcHBWrBggbZs2aKjR48W45nCtYrj3sl+V9Urr7yiPn36qEWLFlq4cKFMJpOWL19+w7EVZGzDMDR8+HBVrlxZ27dv1y+//KJevXrpvvvuy5H4tRU383oW9HPy1bFd7zN7eHi4nn76aQ0ePFh79+7VTz/9JCcnJz300EPXnZWG4uNQ2gEAAAAAQEWWlJSkCRMm6Ouvv9a9994rSWrcuLEOHjyoGTNmqGvXrpKkbt266Z9//lFkZKQcHBzk7e2tKlWq6NZbb5Ukbd68Wbt27cqxPIwktWzZUo8++qgWL15s2RcUFCRJatCggTIyMjR06FC99NJLsre3L1DMbdq00RtvvKGUlJQc491yyy2SpEaNGikiIkKhoaHq37//DZ4ZAAAKrriep9a0adNG6enpOnnypOrWrZujbP78+erZs6cCAgLyja9q1aqSsp692SpVqiR/f3+dPn3aUsfBwUF16tSx1Klfv74k6fTp07nGRvEornvH2jV2dnbWrbfearnGN6ognwO//fZbRUdHy8vLS5L00UcfacOGDVq8eLHGjRtXpPHLk9K+nnl9Ts5WkM/sc+bMkdls1ttvv20p//zzzxUUFKQ9e/aobdu2N3h2UBgkxwAAAACgBKWlpSktLS3HX6xLkr29veUvVq/m7+8vKet/rC9evKj7779fkjR79my9+eablnrnz59X9+7dFRYWpjZt2uQ5fvZfsmdmZhY4OXbw4EH5+PhY/R/+q/u19hf2AACUhOJ6nlpz8OBB2dnZqXLlyjn2nzhxQlu2bNGaNWuuG1+HDh0kSUePHlX16tUlSVFRUYqMjFTNmjUtddLT0/XPP//otttukyQdO3ZMkix1UPyK695p0aKFnJ2ddfToUXXs2NHS98mTJ4vt+uU19pUrVyQp1zHY2dlZPYaKrLSv5/U+JxfkM/uVK1esxi/J5q5naSI5BgAAAABFlJCQoL///tvy/YkTJ3Tw4EH5+vqqRo0a6ty5s15++WW5urqqZs2a+umnn7RkyRLNnDnT0mbhwoWqX7++KlWqpF27dmnkyJF68cUXLX9FXqNGjRxjenh4SJJuu+02yy/hvvjiCzk6OqpRo0ZydnbWvn37NH78ePXr18/ycu+vv/5a48eP15EjRyRJa9euVUREhNq2bSsXFxdt2LBBU6ZM0ejRoy1jzZkzRzVq1FC9evUkSdu2bdOMGTP03//+t7hPJQDAht2M5+muXbu0Z88ehYSEyNPTU7t27dKLL76oxx57LNe7mz799FNVrVpVPXr0yBXrtc/TOnXq6IEHHtDIkSP1v//9T15eXho/frzq1aunkJAQSVLXrl3VvHlzPfHEE3rvvfeUmZmp4cOH66677soxmwyFdzPuHS8vLw0bNkyTJk1SUFCQatasaVle7+GHH7b08/fffyshIUHh4eFKSkrSwYMHJWXNUHJyctK5c+d05513asmSJWrdunWBxm7Xrp18fHw0ePBgvfbaa3J1ddW8efN04sQJy+ypiqSsXM+CfE7+5ZdfNGjQIG3atEmBgYEF+sx+7733atasWZo8ebL69++v+Ph4TZgwQTVr1lSzZs1K4IzCKgMAAAAAUCRbtmwxJOXaBg8ebBiGYVy4cMEYMmSIUa1aNcPFxcWoW7eu8e677xqZmZmWPsaOHWsEBAQYjo6ORu3atXOVX+vEiROGJOPXX3+17Pvqq6+M5s2bGx4eHoa7u7vRoEEDY8qUKUZSUpKlzsKFC42r/1fwu+++M5o2bWpp06RJE2Pu3LlGRkaGpc7s2bONhg0bGm5uboaXl5fRrFkz46OPPspRBwCAoroZz9P9+/cbbdq0Mcxms+Hi4mLUr1/fmDJlipGcnJwjloyMDKN69erGhAkTrMZ67fPUMAwjNjbWeOKJJwxvb2/D19fX6N27t3H69Okcdc6dO2c8+OCDhoeHhxEQEGAMGTLEuHz5clFOG4yb91ksNTXVeOmll4zKlSsbnp6eRteuXY0//vgjR53OnTtbjeXEiROGYfzfZ7gtW7YUauy9e/ca3bp1M3x9fQ1PT0+jbdu2xvr164vvJJYhZeV6FuRzcnas2df3WtY+sxuGYSxdutRo1qyZ4e7ublSqVMm4//77jcOHDxftxKFQTIbBG94AAAAAAAAAAABgG+yuXwUAAAAAAAAAAACoGEiOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDkGAAAAAAAAAAAAm0FyDAAAAAAAAAAAADaD5BgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAABQTqWkpCg0NFQpKSmlHQoAAOUWz1MUBfdPxcL1tB0mwzCM0g4CAAAAAFB4cXFxMpvNio2NlZeXV2mHAwBAucTzFEXB/VOxcD1tBzPHAAAAAAAAAAAAYDNIjgEAAAAAAAAAAMBmOJR2AABQ1mVkZOjYsWPy8PCQyWQq7XAAAAAs4uPjJUnnzp1TXFxcKUcDAED5xPMURcH9U7FwPcs/wzCUkJCgOnXqyN7ePs96vHMMAK7j8OHDatCgQWmHAQAAAAAAAAAogL/++kv169fPs5yZYwBwHVWrVpUk/fbbb/Lx8SnlaAAAAP5Penq6du3apXbt2snBgf+9AwDgWr///rvuueeefOusW7dOsbGxPE9xQ/g8VrFwPcu/+Ph4NWjQwPI73bxwdQHgOuzssl7PWK1aNfn5+ZVyNAAAAP8nLS1Nbm5uCgwMlKOjY2mHAwBAmXPx4sXr1qlcubLS0tJ4nuKG8HmsYuF6ln/Zy2Fm/043L/mXAgAAAAAAAAAAABUIyTEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBkkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXIMAAAAAAAAAAAANsOhtAMAUDasXr1aBw8eVNOmTdWrV6/SDqdYnDx5UosWLZIkhYaGlmosAAAAAAAAAICygZljACRlJcdef/11rV69urRDKTYnT57U66+/rtdff720QwEAAAAAAAAAlBEkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcA8qorVu36uGHH1ZgYKCcnZ3l7++vO++8UwsXLlRGRkau+qGhoTKZTAoODpYkLVu2TJ07d5avr6/c3d3VokULffjhh7nabt26VSaTSYsXL5YkLV68WCaTKce2devWIh9PeHi4Xn75ZTVs2FDu7u5yd3dXw4YNNWbMGEVEROR5DrJjyI+1OGvVqqWQkJBcdbK3IUOGFPmYAAAAAAAAAADlj0NpBwAgt1GjRmnWrFmSspI6ZrNZMTEx2rx5szZv3qzPP/9cq1evlqenp9X2Y8eO1dtvvy2TySRvb28lJyfrwIEDOnDggL799lt98803cnZ2liQ5OTkpICBAsbGxSk5OlouLi8xmc47+nJycinQ8P/30k3r16qWYmBhJkru7uyTpr7/+0l9//aX58+drzZo16tixY5HGuVqlSpUUFxen6OhoSVJAQECO8muPEQAAAAAAAABgG5g5BpQxH374oSUxNnToUJ0/f17R0dGKjY3VrFmz5ODgoM2bN+vpp5+22v7gwYN6++23NWLECEVERCgqKkrR0dF64403ZDKZ9MMPP2j8+PGW+u3bt1d4eLj69esnSerXr5/Cw8NzbO3bt7/h4zlz5owlMdagQQPt2LFDCQkJSkhI0LZt21S3bl1FR0frgQce0Llz5254nGvt3btXq1atsnx/7TG9//77xTYWAAAAAAAAAKD8IDkGlCFJSUmaNGmSJKl///765JNPVKVKFUlZs61eeOEFzZw5U5IUFham/fv35+ojNjZWAwcO1AcffKBKlSpJkry8vPTqq6/qlVdekSR98MEHOn/+/M04JE2ZMkUxMTHy8fHRpk2b1KFDB0tZp06dtHHjRnl5eSkqKkpTp069KTEBAAAAAAAAAGwXyTGgDNmwYYOioqIkZb1DzJrnnntOVatWlSR9+eWXVuu89tprVve//PLLcnV1VXp6ulauXFn0gK/DMAwtW7ZMkjRs2DBLou9q1atX17BhwyRJX331VYnHVBApKSmKi4vLsQEAAAAAAAAAKgaSY0AZsm/fPklSUFCQ6tSpY7WOvb29unTpkqP+1YKCgnT77bdbbevl5aUWLVrk2ba4nThxwpLs69q1a5717rrrLknS5cuXdeLEiRKP63qmTp0qs9ls2YKCgko7JAAAAAAAAABAMSE5BpQhFy9elCQFBgbmW6969eo56l/tem2zy621LW5Xj5FfXNnHc22b0jJ+/HjFxsZatjNnzpR2SAAAAAAAAACAYuJQ2gEAQFnj7OwsZ2fn0g4DAAAAAAAAAFACmDkGlCGVK1eWJJ09ezbfetnl2fWvdu7cuXzbZpdba1vcrh4jv2O6uuzqNg4O/5e/T05Otto2Nja2KCECAAAAAAAAAGwMyTGgDGnZsqWkrGTRsWPHrNbJyMjQli1bJEmtWrXKVX7mzBn9888/VtvGx8dr//79OcbKZmeX9ePAMIwbC96KW265Rb6+vpKkTZs25Vlv48aNkiQ/Pz/dcsstlv0+Pj6Wr/Na2nDPnj159pt9TFLxHhcAAAAAAAAAoPwiOQaUIXfddZf8/PwkSaGhoVbrfPLJJzp//rwkqX///lbrvPHGG1b3v/vuu0pKSpKDg4P69OmTo8zLy0uSFBMTcwORW2cymdSvXz9JWXGHh4fnqnP+/Hl98sknknIfT506deTq6ipJWrlyZa62mZmZmjp1ap7jZx+TVLzHBQAAAAAAAAAov0iOAWWIq6urJSm2dOlSDRs2TBEREZKkK1euaPbs2XrhhRckSf369VOLFi1y9WE2m7V48WKNHDlSkZGRkrJmjE2ZMkWTJ0+WJA0fPlzVqlXL0e4///mPJGn79u06cuRIsR3ThAkT5O3traioKHXt2lU7d+60lP3888/q2rWrYmJi5Ovrq3HjxuVo6+joaEniTZkyRcuWLVNqaqok6ejRo+rdu7d+++23PMeuU6eOnJycJEnz589n9hgAAAAAAAAAgOQYUNaMGDFCL774oqSs2VZVq1aVr6+vzGazRo4cqbS0NIWEhGjevHlW2zdt2lRjxozR7NmzVblyZfn6+srHx0evvPKKDMNQ165dNW3atFzt+vTpo0qVKik6Olr169dXpUqVVKtWLdWqVUu7d+++4eOpXr26Vq9eLbPZrD///FMdOnSQh4eHPDw81LFjRx0+fFje3t5avXq1AgMDc7WfOnWqqlWrpvj4ePXr108eHh4ym82qV6+etmzZolWrVuU5tpubmwYOHChJGjNmjDw8PFSzZk3VqlVLo0ePvuFjAgAAAAAAAACUXyTHgDJo5syZ2rx5s/r06aOAgAAlJCTI09NTISEh+vTTT7VhwwZ5enrm2X769On66quv1LFjRxmGIScnJzVt2lTvv/++vv/+e7m4uORq4+Pjo23btumRRx5RYGCgYmNjderUKZ06dUrJyclFOp7OnTvr8OHDeumll1S/fn1lZmbKMAzVr19fo0eP1uHDh9WpUyerbatXr649e/boqaeesiTPPDw8NGjQIB04cECdO3fOd+w5c+YoNDRUjRo1kiSdPn1ap06dssyqAwAAAAAAAADYFofSDgCAdSEhIQoJCbnh9v369bO876ug6tWrp6VLl97wmPmpWrWqZsyYoRkzZhS6bfXq1fOcKScp3+USnZ2dNWnSJE2aNKnQ4wIAAAAAAAAAKh5mjgEAAAAAAAAAAMBmkBwDAAAAAAAAAACAzSA5BgAAAAAAAAAAAJvBO8cAXFdYWJhGjhxZqDb9+vXT+++/X0IRAQAAAAAAAABwY0iOARVEaGioQkNDS6TvpKQkRUREFKpNbGxsicQCAAAAAAAAAEBRkBwDcF1DhgzRkCFDSjsMAAAAAAAAAACKjHeOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDkGAAAAAAAAAAAAm8E7xwAAAAAAAAAA13X8+HHFx8eXdhhlgqenp2rXrl3aYRQJ1zNLRbiW2bimUkJCQoHqkRwDAAAAAAAAUCF5enpet46Hh8dNiKT8O378uOrUqVPaYZQpx44dU61atUo7jBvC9czp2LFj5T5BxjUtHJJjAAAAAAAAACqk2rVr69ixY3nOpPD09FStWrV09OjRmxxZ+WPrs1GsKc/npDzHXhIqwvmoCMdwM5EcAwAAAAAAAFBhXW82SFpa2k2KBABQVtiVdgAAAAAAAAAAAADAzUJyDAAAAAAAAAAAADaD5BgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAAAAAAAAALAZJMcAAAAAAAAAAABgM0iOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDmGMstkMslkMmnr1q1lsr+SFBwcLJPJpNDQ0GLtNzQ0VCaTScHBwcXab3kZHwAAAAAAAAAAh9IOAED5d/DgQa1evVre3t564YUXSjscAAAAAAAAAADyRHIMZVbdunUlSW5ubqUcyc1Xo0YN1a1bV/7+/qUdSoEcPHhQr7/+umrWrJlvcszf319169ZVjRo1bl5wAAAAAAAAAABcheQYyqwjR46UdgilZsmSJaUdQokYMWKERowYUdphAAAAAAAAAABsGO8cAwAAAAAAAAAAgM0gOVbBBQcHy2QyKTQ0VKmpqZo2bZoaN24sd3d3+fj46K677tJ3331nta3JZJLJZNLWrVsL1H9+7ePj4/Xqq6+qXr16cnV1lZ+fn3r27Kk9e/bk2Xd+40dHR+u1115T8+bN5eXlJScnJ1WpUkWNGzfWsGHDtGnTpnzPy43EU1BpaWny9/eXyWTS7Nmz86376aefymQyycvLS1euXLHsz++8Zlu1apV69uypgIAAOTk5KSAgQD179tTXX399Q3FfuXJFS5cu1aBBg9S0aVNVqlRJzs7Oqlatmnr16pXvffL4449Lkk6dOmW5btnb1ccQGhoqk8mk4ODgPOP49ddfNWjQINWsWVMuLi7y8fFR+/bt9d577yklJcVqm0WLFslkMqlWrVqSpP3796tv376qWrWqnJ2ddeutt2rUqFGKjo6+oXMDAAAAAAAAAKg4WFbRRqSmpqpr167avn27HBwc5OHhoZiYGG3cuFEbN27UpEmT8k3EFMWFCxfUvHlz/f3333JxcZGdnZ2ioqK0bt06bdiwQWvXrlW3bt0K3N/Zs2fVoUMHnT59WpJkZ2cns9msyMhIRURE6Pfff9eRI0d055133pR4ruXo6KhHHnlEc+bM0Weffab//ve/edb97LPPJEl9+vQp8LvVUlNTNWjQIIWFhUnKefzr1q3TunXr1L9/fy1evFiOjo4FjnvZsmWWJFd2ws7BwUEXLlzQN998o2+++UYvvfSSZsyYkaNdQECAkpKSFBcXJzs7O1WqVClHuYeHR4FjmDVrll566SUZhiFJMpvNSkxM1K5du7Rr1y4tXLhQ33//vapWrZpnH19++aWGDBmitLQ0mc1mpaen68SJE5o1a5Z+/PFH7d69u1AxAQAAAAAAAAAqFmaO2YiPPvpIv/zyi+bOnav4+HhFR0fr9OnTeuihhyRJr7/+utasWVMiYw8fPlxOTk7avHmzEhMTlZCQoF9++UV169ZVamqqhg4dqszMzAL3FxoaqtOnT6tWrVrauHGjUlNTFRUVpZSUFJ08eVIff/yx2rZte9PisWbQoEGSpH379uX57rTTp0/rp59+ylG/ICZMmKCwsDCZTCZNnDhRly9fVlRUlCIjIzVhwgRJ0tKlSzVx4sRCxezj46PRo0drx44dSkhIUExMjBITE3X+/Hm9/vrrcnR01LvvvpvrPgkPD9f7778vSQoKClJ4eHiObfTo0QUa/9tvv9WoUaNkGIYeeOAB/fvvv4qJiVFCQoKWLFkiT09P/fbbb3rooYeUkZFhtY9Lly7piSee0ODBg3X69GnFxMQoPj5eH374oRwdHfXnn3/q7bffLtR5AQAAAAAAAABULCTHbERsbKw++ugjPfPMM3JxcZGUlcgICwvTHXfcIUmWxEpxc3Bw0JYtWxQSEiI7OzuZTCa1atVKy5cvl5S1FN+uXbsK3N/OnTslSVOmTNGdd94pe3t7SZK9vb1q1qypYcOGadq0aTctHmtat26tunXrSpKWLFlitc4XX3whwzBUo0aNfJcZvNq5c+csiahx48Zp8uTJ8vb2lpSV3Hrrrbc0atQoSdLMmTN14cKFAsf8wAMP6J133lGHDh1yzGKrWrWqXnvtNU2ZMkWSrrtU5I0aM2aMJKlTp05auXKlbrnlFkmSk5OTBg4cqC+++EJS1vXPa+nIK1eu6JFHHtG8efMUFBQkSXJzc9Pw4cP1/PPPS8pKHAIAAAAAAAAAbBfJMRsRFBRkWTLvanZ2dnr11VclSX/++ad+//33Yh976NChqly5cq79jRo1siRAfvvttwL3l50MKkzipyTjycvAgQMl/V8S7FrZSyo++uijMplMBepz5cqVSk9Pl4uLi8aNG2e1zquvvipnZ2elpaVpxYoVNxh9bvfee68kadeuXXnO3LpRv/32mw4fPiwpK/7shOfV7rvvPrVu3VpS/gmu7Pv5Wg888IAk6e+//87xfjdrUlJSFBcXl2MDAAAAAAAAAFQMJMdsRHBwcJ4JmE6dOsnBIev1c/v27Sv2sdu0aZNnWbVq1SRJUVFRBe6vZ8+ekrJmTg0dOlTff/99oZIXxR1PXgYOHCiTyZRj+cRs+/fvtySDCrOkYvb1adWqlby8vKzW8fHxUcuWLXPUL6iIiAhNmjRJ7dq1k5+fnxwcHGQymWQymdSgQQNJWbOzoqOjC9Xv9WTH6eDgoM6dO+dZ76677spR/1q+vr66/fbbrZZlX1tJ141/6tSpMpvNli17FhoAAAAAAAAAoPwjOWYjAgMD8yxzcXGRn5+fJOnixYvFPranp2eeZdlJubS0tAL39/LLL6tv375KS0vTvHnz1KNHD3l7e6tRo0Z6+eWXdfTo0ZsaT15q1KhhSfRkzxLLlv19q1atVK9evQL3mX198rueklS9evUc9Qti165dqlevniZPnqzdu3crKipKrq6uqly5sgICAuTv72+pm5iYWOB+CyI7Tn9/fzk7O+dZ73rHVZBrK13/+o4fP16xsbGW7cyZM/nWBwAAAAAAAACUHyTHUO44OjoqLCxMBw8e1GuvvaYuXbrIzc1Nf/zxh2bMmKGGDRvq3XffLe0wJf3frLAVK1YoKSlJkpSenm5ZFjB76cXSlp6erv79+ysmJkZNmzbV+vXrFRcXp/j4eEVERCg8PFy7d++21Le2TGRF4uzsLC8vrxwbAAAAAAAAAKBiIDlmI86dO5dnWUpKii5fvixJOd7Flf3ep+Tk5DzbxsbGFlOEhdekSRO9/vrr2rRpk2JiYrRx40bdcccdysjI0Msvv6xDhw6VWmzZHnroIbm6uiouLk7ffPONJOnHH3/UxYsX5ejoqP79+xeqv+zrc/bs2XzrZZdbe7eaNbt27dKpU6dkb2+vb7/9Vj169Mg1Cys8PLxQsRZGdpyRkZFKSUnJs15hjwsAAAAAAAAAgGuRHLMRP/30U56zfbZv36709HRJsryrSsp6d5WkPJeUi4+Pt7w3q7Q5ODjozjvv1Lp16+Ts7CzDMLRx48bSDkuenp7q1auXpP9bSjH7vz169MixVGFBXP0usbwSkzExMTneTVYQ2de4UqVKeS7ZmN/5tLPL+lFyozPKso8rPT091/vZrMVQ0OMCAAAAAAAAAOBaJMdsxOnTp7V48eJc+zMzMzVlyhRJUoMGDdSoUSNLWZMmTSRJK1eutNrnjBkz8p3lU1LyG9PZ2dky4y07YVPaspdW/PHHH3X8+HHLDLLs/YXRp08fOTg4KDk5WdOnT7daZ8qUKUpJSZGjo6P69OlToH7NZrMkKSIiQhEREbnKz549q9mzZ+fZPnvZwZiYmAKNd63GjRurQYMGkqQ333xTGRkZueqsX79ee/bskaRCz7gDAAAAAAAAACBb2cgeoMSZzWY9++yzmjdvnmWZxDNnzqh///7asmWLpKykxNWyExA//PCDJk2apLi4OElZS99NmDBBb775pry9vW/eQfx/NWvW1Pjx47V79+4cibK///5bjz76qK5cuSI7Ozt17979psdmzV133aUqVaooPT1dAwYMUFJSknx8fNSzZ89C9xUYGKiRI0dKkqZNm6ZJkyZZElIxMTGaOHGi3nnnHUnSqFGjVLVq1QL127FjR7m7u8swDPXt21fHjh2TJGVkZOiHH35QcHCwTCZTnu3/85//SJLi4uK0bNmyQh+XJEuyb/v27XrooYd04sQJSVJaWpq++OILy/3Yvn17y2w8AAAAAAAAAAAKi+SYjXjuuefUsmVLDR06VF5eXvL19VWNGjUsiYxXX31VvXv3ztFmyJAhCgkJkSRNnjxZ3t7e8vX1VeXKlTVt2jRNnz7dMrvsZoqIiNC0adPUrl07ubm5ydfXV66urqpdu7aWL18uk8mkd9991zITqbTZ29trwIABkmRZ7rBv375ydna+of6mTJmivn37yjAMTZ48WX5+fvL19ZWfn58lwdm/f3+98cYbBe7TbDZrxowZkqRt27apbt268vT0lIeHh+6++27FxsZq4cKFeba//fbbdeedd0qS+vXrJy8vL9WqVUu1atXSe++9V6AYevbsqZkzZ8pkMmn16tW69dZb5ePjIw8PDz322GOKi4tTo0aNtHz5csvsQAAAAAAAAAAACovkmI1wcnLSpk2bNGXKFNWtW1cpKSkym82W93RZS6TY29tr3bp1ev3111WvXj05OTnJZDKpW7du2rBhg0aPHl0KR5K1POH48ePVqVMnBQUFKSkpSVJWgubxxx/X3r179cILL5RKbHm5dgnFG1lSMZuTk5PCwsK0YsUK9ejRQ35+foqPj5efn5969OihVatW6csvv5Sjo2Oh+h02bJjWrVun4OBgeXh4KD09XYGBgXr++ed16NChHEtuWrNixQq9+OKLqlOnjtLS0nTq1CmdOnWqUEstvvjii9q3b58ee+wxBQUF6cqVK3J1dVXbtm01a9Ys7d27V9WqVSvUcQEAAAAAAAAAcDWTYRhGaQeBkhMcHKyffvpJkyZNUmhoaGmHA5RLcXFxMpvNioyMlJ+fX2mHAwAAYJGWlqb169frnnvuKfQfRwEAgCw8TwvmwIEDatGiRWmHUabs379fjRo1Kpf3D9czp/3796t58+bl+ucB1zSn2NhYeXl55VnOzDEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBkkxwAAAAAAAAAAAGAzHEo7AKAsGzlypMLCwgrV5v3331e/fv1KKCIAAAAAAAAAAFAUJMcquK1bt5Z2COVabGysIiIiCtUmKSmphKIBAAAAAAAAAABFRXIMyMeiRYu0aNGi0g4DAAAAAAAAAAAUE945BgAAAAAAAAAAAJtBcgwAAAAAAAAAAAA2g+QYAAAAAAAAAAAAbAbvHAMAAACAEnb8+HHFx8cXW3+enp6qXbt2sfUHAAAAALaE5BgAAAAAlKDjx4+rTp06xd7vsWPHVKtWrWLvFwAAwBpPT8/SDqHMKc/npDzHXhIqwvmoCMdwM5EcAwAAAIASVJwzxm5GvwAAANbUrl1bx44d4zPI/5c9kz8tLa20Q7khXM//U1FWZeCaZklISFDnzp2vW4/kGAAAAAAAAADguipCAgH/h+tZ8XBNpbi4uALVsyvhOAAAAAAAAAAAAIAyg+QYAAAAAAAAAAAAbAbJMQAAAAAAAAAAANgMkmMAAAAAAAAAAACwGSTHAAAAAAAAAAAAYDNIjgEAAAAAAAAAAMBmkBwDAAAAAAAAAACAzSA5BgAAAAAAAAAAAJtBcgyAzQgODpbJZFJoaGhphwIAAAAAAAAAKCUkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXIMKGeCg4NlMpkUGhqqtLQ0vfvuu2rZsqW8vb1lMpm0detWS90//vhDQ4cOVe3ateXm5iYPDw81btxYr7zyiiIjI3P1/fzzz8tkMumhhx7KVZaWliZPT0+ZTCZVqlRJhmHkqtO9e3eZTCZNnDgxx/4TJ05o+vTpuvvuu1WnTh25u7vLw8NDDRo00AsvvKDTp08Xy/FmZGTogw8+UPPmzeXu7i5fX18FBwdrxYoVBTizAAAAAAAAAABb4FDaAQC4McnJyQoODtbOnTvl4OBgSVxle/vttzV+/HhlZmZKktzc3JSWlqbff/9dv//+uxYuXKh169apWbNmljYhISH68MMPtXXrVhmGkaO/X375RQkJCZKkyMhI/f7772rcuLGlPC0tTTt27JAkdenSJUesjz/+uH766SdJkpOTkzw9PRUdHa3Dhw/r8OHDWrRokb799lt17Njxho83JSVFDzzwgH744QdJkp2dnZycnLRt2zb99NNPGjt2bOFOMAAAAAAAAACgQmLmGFBOzZkzR7/99psWLlyouLg4RUVF6dKlS2rcuLEWLFigsWPHys3NTW+99ZYuXLigxMREXblyRfv27VOXLl104cIF3X///ZaEl/R/s7QuX76sQ4cO5Rhvy5YtkiQvLy9J0ubNm3OU79mzR1euXJGzs7PatWuXo6xp06aaM2eOjh07pqSkJEVGRiolJUV79uzR3XffrdjYWPXr109JSUk3dLySNH78eP3www8ymUx68803FR0drejoaIWHh+vZZ5/V9OnTdfDgwRs+3wAAAAAAAACAioHkGFBOJSQk6Msvv9SQIUPk6uoqSfLz85Ojo6NGjx4tSVqxYoUmTJigKlWqSJLs7e3VokUL/fDDD2rRooXOnj2r+fPnW/r09fVVkyZNJOVOfmV//8ILL+Rb3q5dO7m4uOQoe++99/Tcc8+pdu3asrPL+rHj4OCg1q1b69tvv1Xjxo11/vx5rVy5stDH6+vrq/Pnz+uDDz6QJL366qt65ZVXLEm8ypUr66OPPlL//v0VGxt73fMqZc1Ci4uLy7EBAAAAAAAAACoGkmNAOdWwYUPdd999ufavXLlSMTExatasmbp37261rYODg/r37y9JlmUIs4WEhEjKmfxKSUnRrl275O7urlGjRlmWK8zIyLDUyZ5Zlt2+oOzt7XX33XdLkmVZRmvyOl4pKwmYnp4uV1dXS2LwWqGhoQWOaerUqTKbzZYtKCiowG0BAAAAAAAAAGUbyTGgnOrQoYPV/T///LMk6fDhw6pSpUqe2+TJkyVJp06dytE++31h27dvtyS/du7cqeTkZHXs2FFms1lt2rRRbGys9u/fLynrfWC7du2SlHdybPv27RoyZIjq1asnDw8PmUwmy/b2229Lks6ePVvo45Wkffv2SZJatmxpmTF2rTp16igwMDDPPq42fvx4xcbGWrYzZ84UqB0AAAAAAAAAoOxzKO0AANyYypUrW91//vx5SVkJq+Tk5Ov2c+XKlRzf33HHHbK3t1dcXJz27t2rtm3bWmaFZSfOunTpou3bt2vz5s1q3bq1du7cqZSUFLm6uqpNmza5xhg7dqwlASZlzRbz8fGRk5OTpKwlExMTE5WYmFjo45WkixcvStJ1k1/Vq1fXuXPn8q0jSc7OznJ2dr5uPQAAAAAAAABA+cPMMaCcsre3t7o/e7ZXv379ZBjGdbeTJ0/maO/l5aUWLVpI+r+lFbP/e3VyzFp5hw4dLAmvbBs2bLAkxp577jn9/vvvSklJUVRUlMLDwxUeHq4XX3xRkmQYRqGPFwAAAAAAAACAwiA5BlQwVapUkZR7ucTCuPq9Y4mJifrll1/k7e2t5s2bS5Latm0rV1dX/fzzz0pNTc2VPLvaV199JUnq3r275syZo//85z+5El3h4eE3HKv0f7PKrjcrrCCzxgAAAAAAAAAAFRvJMaCCyX431/79+3XhwoUb6iM7ObZz505t2rRJaWlp6ty5s+zssn5kODk5qUOHDrpy5Yo2btyovXv35mh3tez3dTVr1szqWIZhWJJrN6ply5aSst49lpCQYLXO8ePH832nGQAAAAAAAADANpAcAyqYhx9+WN7e3kpLS9OoUaPyXaowMzNTMTExufZ37NhRjo6OSkpK0pQpUyTlnhWWnQibPHmy0tPT5eHhYUlSXc1sNkuSDh06ZDWGuXPn6t9//y3QseWlT58+sre3V1JSkmbMmGG1zuTJk4s0BgAAAAAAAACgYiA5BlQw3t7eeu+99yRlLWl47733as+ePcrMzJSUlRA7fPiw3n33XTVs2FDffvttrj7c3d3VunVrSdKePXsk5U6OZX+fXd6pUyc5ODjk6uvuu++WJH333Xd64403lJiYKEmKiYnRlClT9Pzzz8vPz69IxxwYGKjhw4dLkt544w1NnTpV8fHxkqRLly5pxIgR+vzzzy2JOgAAAAAAAACA7SI5BlRAgwcP1scffywnJyd99913atu2rdzc3OTv7y8XFxc1aNBAo0eP1pEjR2Qymaz2cXUyrHLlyvrPf/6To7xly5by9PS0fG9tSUVJGjRokDp16iRJeu211+Tp6SlfX1/5+fnplVde0d13361nn322qIes6dOnq2vXrsrMzNSECRPk4+MjX19fBQQEaM6cORo7dqyaNm1a5HEAAAAAAAAAAOUbyTGggho2bJiOHj2q0aNHq0mTJnJ2dlZMTIxl+cPnn39eGzZsUP/+/a22vzrZZS3x5eDgYEl65VVHkhwdHfXjjz9q0qRJqlOnjhwdHWUYhlq3bq2PP/5Ya9askb29fRGPVnJxcdF3332n999/X02bNpWTk5MMw1CnTp20bNkyTZs2rchjAAAAAAAAAADKP5OR3wuJAACKi4uT2WxWZGRkkZeABAAAtufAgQNq0aJFsfe7f/9+NWrUSOvXr9c999wjR0fHYh8DAABbkJaWxvMUN4z7p2LhepZ/2b/LjY2NlZeXV571mDkGAAAAAAAAAAAAm0FyDAAAAAAAAAAAADaD5BgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAAAAAAAAALAZJMcAAAAAAAAAAABgM0iOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNcCjtAAAAAICSdPz4ccXHx5d2GLBhhw8fLu0QAJQAni9A+eHp6anatWuXdhgAgDKE5BgAAAAqrOPHj6tOnTqlHQZQIjw9PUs7BMBm8XwByp9jx46RIAMAWJAcAwAAQIXFX/SjLPn8889Vv379Yukr+y/g09LSiqU/AIXD8wUof/h3CwC4GskxAAAAALgJ6tevr+bNm5d2GAAAAABg8+xKOwAAAAAAAAAAAADgZiE5BgAAAAAAAAAAAJtBcgwAAAAAAAAAAAA2g+QYAAAAAAAAAAAAbAbJMQAAAAAAAAAAANgMkmMAAAAAAAAAAACwGSTHAAAAAAAAAAAAYDNIjgEAAAAAAAAAAMBmkBwDYBNOnjwpk8kkk8mkkydPlnY4AAAAAAAAAIBSQnIMAAAAAAAAAAAANoPkGAAAAAAAAAAAAGwGyTEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBkkx8qg6OhoLViwQH379lWjRo3k6+srFxcX1axZUwMGDNDu3buttgsNDZXJZFJwcLAkadOmTbr33ntVqVIlubi4qH79+nr99deVnJxstf2QIUNkMpk0ZMgQSdKKFSsUHBwsX19fubm5qWnTpnr//feVmZmZb/xbt27Vww8/rMDAQDk7O8vf31933nmnFi5cqIyMjAKNbc2iRYtkMplUq1atEov9zJkzGjNmjJo2bSqz2SxXV1fddttteuCBB7RkyZI8z93PP/+sxx57TDVr1pSLi4vMZrNat26t6dOnKyEhId8xC+rkyZMymUwymUw6efKk/vnnHw0dOlS33HKLnJ2dc52XzMxMffHFF7rnnnsUEBAgJycnVapUSd26ddPSpUtlGEaO+hkZGfL29pbJZNK3336ba/ylS5daxh89enSu8gsXLljK//nnnxxxbNq0Sf/973/Vtm1bVa9eXU5OTvLz81Pnzp01d+5cpaWlFcsxnzt3Ts8884yCgoLk7Oys6tWr6/HHH9fff/9dwLMMAAAAAAAAAKjwDJQ5kyZNMiQZkgx7e3vDx8fHcHZ2tuwzmUzG+++/n2e7zp07G2+//bZhMpkMk8lkeHt7GyaTydI+JCTESE9Pz9V+8ODBhiRj8ODBxvDhww1Jhp2dneHt7W1pK8kYNGhQnrG/+OKLOeL09vY27O3tLfu6dOlixMXF5Tt2XhYuXGhIMmrWrFkisS9ZssRwcXGx1HVycjL8/PwMBwcHy75ff/01R5uMjAzjv//9b44xPDw8chxz3bp1jZMnT+Y5bkGdOHHC0ucXX3xheHh4GJIMNzc3w93dPcd5uXz5snHHHXfkiMtsNuf4/v777zdSUlJyjHHfffcZkowXX3wx1/hPPfWUpW2zZs1ylX/++eeGJKNGjRp5xp19fq6NpVOnTsaVK1eKdMz79+83fHx8LPVdXV0t9b28vIywsDBL2YkTJwp17mNjYw1JRmRkZKHaAQBK3/79+3M8c9jYSnPbv39/sd/jqampxurVq43U1NRi7xtA3ni+sLGVvy2/5zDPUxQF90/FwvUs/7J/lxsbG5tvPWaOlUHVqlXTpEmTtG/fPl25ckVRUVFKSkrSv//+q5EjR0qSRo0apV9//dVq+0OHDmncuHEaN26cLl68qOjoaMXExOi1116TJG3ZskWLFy/Oc/w1a9Zo3rx5mjlzpqKjoxUdHa3IyEg99dRTkqQlS5Zo8+bNudp9+OGHmjVrliRp6NChOn/+vKKjoxUbG6tZs2bJwcFBmzdv1tNPP12k85OfG4193bp1Gjx4sJKTk9WhQwdt375dSUlJioyMVGJiorZv366nn35aTk5OOdpNmjRJs2fPVuXKlTVnzhxdvnxZ8fHxSkpK0pYtW9SsWTMdPXpUDz744HVnrRXGM888o4YNG2rv3r1KTExUQkKCfvzxR0lZM8AefPBBbdu2TU2bNtXatWuVmJiomJgYJSQkaPHixapcubLWrFmjsWPH5ug3JCREkqyeoy1btkiSvLy8dOjQIUVFRVktz+4jm4ODgx599FGtWbPGcn5iYmIUHx+vhQsXqlq1atq+fbteeeWVGz7m+Ph49e7dW9HR0apRo4Z+/PFHJSYmKj4+Xjt37lRQUJCeeeaZgp5eAAAAAAAAAEBFdpOSdShG2TOjnnzyyRz7r55xNmnSJKttH3zwQUOS0bVr11xl2bOvJBkLFy602r5FixaGJOOpp57Ksf/KlSuGr6+vIcno37+/1bazZ8+29L9v3z6rYxd15tiNxJ6WlmbccssthiSjY8eOuWZT5eXEiROGvb294erqahw8eNBqnbi4OKN69eqGJOPrr78uUL/5jZd9jDVr1jTi4+Ot1luyZIkhyahXr54RExNjtc6+ffsMk8lkODk5GREREZb9Bw8eNKSsWX9Xz5I6deqUIcm47bbbjAEDBhiSjJUrV+boM/scLlq0qFDHtXfvXkOS4e7ubiQlJd3QMU+fPt2Qsmb7/fXXX7nKL1y4kGNWGTPHAMB28Jf9bGVpY+YYUHHwfGFjK38bM8dQUrh/KhauZ/nHzLEK7N5775Uk7dixw2q5s7Oz1XdCSdIDDzwgSfrtt9/y7D8oKEiDBw+2Wnb//fdbbb9hwwbLTKLQ0FCrbZ977jlVrVpVkvTll1/mOX5R3EjsW7Zs0YkTJyRJs2bNyjU7LC+LFi1SRkaG7r77bjVp0sRqHU9PT/Xq1UuS9MMPPxSo34IYMWKEPDw8rJYtWLBAkvTss8/KbDZbrdOiRQs1bNhQqamplhlfktS4cWP5+fnJMIwc+7O/7tKli7p06SIp5+yyU6dOWc7htTPHrqdly5aqXLmyEhMTdfDgwTzr5XfMX331lSTp4YcfVv369XOVV6lSRcOGDStwTCkpKYqLi8uxAQAAAAAAAAAqBpJjZdS///6r0aNHq0WLFvL29pa9vb1MJpNMJpPuueceSdLZs2ettm3YsGGeSYRq1apJUq4l8a7WqlUrmUymQrXft2+fpKzkVJ06day2tbe3tyRWsusXtxuJfefOnZKyEigtW7Ys8Fg///yzJOnHH39UlSpV8twWLlwoKSuBVFw6dOhgdX9GRoZ2794tKStJmV9cR48ezRWXyWRScHCwpJzJr+yvu3TpYnXpxeyvb731VtWoUSNXXKmpqZo7d666deumatWqydnZ2XI/m0wmXbx4UVLe93R+x5yamqrff//dEl9e8iu71tSpU2U2my1bUFBQgdsCAAAAAAAAAMo2h9IOALl9/fXX6t+/v1JSUiz7vLy85OLiIpPJpNTUVEVHRysxMdFqe09Pzzz7dnDIuuTp6el51ilI+7S0tBz7s5MbgYGBebaVpOrVq+eoX9xuJPbw8HBJUs2aNQs11vnz5yVJiYmJeV6Lq125cqVQ/eencuXKVvdHRUVZ7pvo6OgC9XVtXCEhIVq5cmWO5NfVM8cqV66smjVr6vDhwwoPD1eVKlXyfN+YlHWtu3btaklgSZKLi4v8/f1lb28vSbp06ZIyMzPzPY/5HXP2/Zzf/Zd97xXE+PHjNWrUKMv3cXFxJMgAAAAAAAAAoIJg5lgZc/nyZQ0ZMkQpKSnq0qWLtm7dqitXrig2NlYREREKDw/X8uXLSzvMCiWvmWbXk5GRIUkaO3asDMO47rZ169Ziizk7qZRXTJL03XffFSiua5fBzJ5hdfToUZ0/f15///23zpw5o4YNG1oSVNcurZhfcuzFF1/U77//Lj8/P3366ae6cOGCkpKSdOnSJYWHhys8PNwyq88wjEIfc0lwdnaWl5dXjg0AAAAAAAAAUDGQHCtj1q9fr7i4OPn4+Gjt2rXq3LmzXF1dc9TJnulUlmQnTfJbFu/q8mtnAWXP6kpOTs6zbWxsbFFCzFOVKlUkFX7ZwxttV5L8/Pws5/JG46pfv77l2DZv3pxjScVsVy+teOzYMct1vXbpwrS0NK1atUqS9OGHH+rxxx+39J0tIyNDkZGRNxSrJPn6+loSZ+fOncuzXn5lAAAAAAAAAADbQXKsjDlz5owkqW7dunJzc7NaZ+PGjTczpALJflfX2bNndezYMat1MjIyLDOMWrVqlaPMx8dH0v8dvzV79uwpjlBzad++vaSspGNh3oWW/Q6sjRs35pvUu5kcHR3VunVrSdLatWtvuJ+r3zt29ZKK2a6eOZZdXrduXVWtWjVHP5cuXbKcm2bNmlkda8eOHUU6f05OTmrcuLGk/5vBZs3Vy0QCAAAAAAAAAGwXybEyxmw2S5KOHTtmNWFw8OBBffnllzc7rOu666675OfnJ0m5lunL9sknn1je09W/f/8cZU2aNJEk7d2712qC7PDhw5YZSMUtJCREt956q6SsJQBTU1ML1O6JJ56Qg4ODIiMjNWnSpHzrpqamKiEhocixFsTQoUMlZc1CXL9+fb51o6KirO6/Ovm1detW2dnZWRJmUta7vWrXrq0TJ05o4cKFkqwvqejl5WVZtvLQoUO5ytPT0/XKK69c/6Cuo1+/fpKk5cuX6+jRo7nKL168qLlz5xZ5HAAAAAAAAABA+UdyrIzp1q2b7OzsFBUVpUcffdSyFFxqaqqWLVumbt26ydPTs5SjzM3V1dWSFFu6dKmGDRumiIgISdKVK1c0e/ZsvfDCC5KyEhktWrTI0f6+++6Th4eH0tLS1LdvX0uCIy0tTd988426du0qd3f3Eond3t5eH374oUwmk3bs2KE777xTO3bsUGZmpqSsc79161Y99thj+uuvvyztbrvtNk2cOFGS9Pbbb2vQoEH6448/LOXp6ek6ePCgJk+erNtvv10HDx4skfiv9dhjj6lr164yDEO9e/fWm2++aUlKSlJiYqK2bNmi4cOHW5KC18pOdJ06dUrh4eFq1qyZvL29c9TJTqBlz+izlhzz8PCwzLAbNWqUNm/ebDmvf/zxh+655x7t27evyNf22WefVfXq1ZWSkqK7775bmzZtsry/bM+ePeratatlXAAAAAAAAACAbSM5VsbUrl1bL7/8siRp1apVql69ury9veXh4aF+/frJw8NDs2fPLuUorRsxYoRefPFFSVmzxKpWrSpfX1+ZzWaNHDlSaWlpCgkJ0bx583K1NZvNeu+992QymbR7927Vq1dPXl5e8vDwUK9evVSjRg1Nnjy5xGLv0aOHFi1aJGdnZ+3YsUOdOnWSm5ub/P395e7urpCQEH3xxRe5ZpVNnDhREydOlMlk0meffaZGjRpZ2rm4uKhZs2aaNGmSzpw5Y5lBVdLs7e21cuVK9ezZU6mpqZo4caICAwNlNpvl4+MjT09PdenSRR999JESExOt9nH77bcrKCjI8v217xKTcifDrp5ZdrX33ntP7u7uOnfunO688065ubnJy8tLjRo10pYtWzRv3jz5+/vf+AEra4ba119/LW9vb508eVJdu3aVh4eHPD091bZtW508eVKffPJJkcYAAAAAAAAAAFQMJMfKoGnTpmnJkiVq3bq1XF1dlZaWpttvv10TJkzQr7/+qmrVqpV2iHmaOXOmNm/erD59+iggIEAJCQny9PRUSEiIPv30U23YsCHPmW9PPvmk1q1bpy5dusjLy0vp6emqU6eOpk2bpp9++qnEZo5lGzRokI4cOaIXXnhBDRo0kIODg5KSklSzZk316tVLn332merXr5+jjclk0uTJk/Xbb7/pueeeU/369WVvb6/Y2Fj5+Pioffv2evnll7Vz507LDKqbwcvLS2vXrtX69evVr18/1ahRQykpKbpy5YoCAwPVrVs3TZ061eoShNmuTn7llRzLTvg1bNhQlStXttpPixYt9Msvv6hv377y9/dXZmamPD091bdvX+3cuVMDBw4s4tFmadmypX777Tc99dRTCgwMVHp6usxmswYPHqwDBw5Y3sUGAAAAAAAAALBtJiN77TEAgFVxcXEym82KjIy0vFsPAFA+HDhwINdyzkBp2b9/v5o3b16sfaalpWn9+vW655575OjoWKx9A8gbzxeg/MnvOczzFEXB/VOxcD3Lv+zf5cbGxsrLyyvPeswcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXIMAAAAAAAAAAAANsOhtAMAbMmZM2fUqlWrQrUJCgrS3r17SygiAAAAAAAAAABsC8kx4CbKyMhQREREodq4uLiUUDQAAAAAAAAAANgekmPATVSrVi0ZhlHaYQAAAAAAAAAAYLN45xgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAAAAAAAAALAZvHMMAACUacePH1d8fHxph4Fy6vDhw6UdAgDYrIr8DOf5AgAAUL6RHAMAAGXW8ePHVadOndIOAwCKhaenZ2mHANw0PMMBlDU8hwEAVyM5BgAAyqyK+tfmuPk+//xz1a9fv7TDgA3z9PRU7dq1SzsM4KaxlWc4zxegfOA5DAC4FskxAAAAVHj169dX8+bNSzsMAEAFw/MFAACgfLIr7QAAAAAAAAAAAACAm4XkGAAAAAAAAAAAAGwGyTEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBkkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXLMRtSqVUsmk0mLFi26qeNmZGRo5syZatasmdzd3WUymWQymbR69eqbGsfNEBoaKpPJpODg4FJpX1EEBwfLZDIpNDS0tEMBAAAAAAAAAFRADqUdAEpfdhJiyJAhqlWrVrH2/cILL+jDDz+UJDk5OSkgIECS5OLiUqzjAAAAAAAAAAAAFATJMRtx2223ycXFRWazOVfZ66+/Lilrxk5xJsfi4+P1ySefSJLefvttjR49WiaTqdj6L2v8/f1Vt25d1ahRo7RDAQAAAAAAAAAAeSA5ZiM2bdp008c8cuSI0tLSJEnPPvtshU6MSdKIESM0YsSI0g4DAAAAAAAAAADkg3eOocRcuXLF8rWHh0cpRgIAAAAAAAAAAJCF5FgJadSokUwmk+V9W1fbtWuXTCaTTCaTHnrooVzlaWlp8vT0lMlkyjHja/fu3Ro7dqw6deqkmjVrysXFRd7e3mrbtq2mT5+uhISEPOOpVauWTCaTFi1aZNk3ZMiQHLO5QkJCLHGZTKYbXmJx0aJFMplMCg4Otuy7ut+r92dbtWqVevbsqYCAAMu7yXr27Kmvv/46z3Gy4x8yZIgMw9D8+fPVsWNH+fn55TrWGxEWFqYePXooICBAjo6O8vb2Vu3atXX//fdrzpw5Sk5OzlE/NDQ0z+PL9t133+muu+6St7e3PDw81KRJE7399tuWGXbXc/LkSb3wwgtq2LChPDw85Obmpnr16mnkyJE6ffp0UQ43h6vvl/j4eI0fP15169aVq6ur/P391atXL+3ZsyffPjIyMvTpp5+qS5cu8vf3l7OzswIDA/Xwww9r69atNxzb4sWL5ejoKJPJpFdeeSVX+bp169SnTx8FBgbK2dlZPj4+uuOOO/Txxx8rNTX1hscFAAAAAAAAAFQMLKtYQkJCQvTHH39o8+bNuZba27x5s+XrrVu3yjCMHEmqX375RQkJCXJ2dlaHDh0s+9u1a2f52s3NTW5uboqOjtaePXu0Z88eLVmyRFu2bFHlypULFKPZbFZAQIAiIiIkST4+PnJycrKUV6pUqXAH/f+5uroqICBAqampio6OliQFBARYyn19fS1fp6amatCgQQoLC5Mk2dnZyWw2KzIyUuvWrdO6devUv39/S0LEGsMw9PDDD2vlypWW9nZ2Rcv7PvHEE1q4cKHlew8PD6Wlpenvv//W33//rbVr1+ree+8tVAIxNDTU8n43SfL29tZff/2lsWPHat26dTmutTVffPGFnnzySaWkpEiSnJ2dZWdnp6NHj+ro0aNauHChVqxYoW7duhXuYPMRHR2tVq1a6ejRo3JycpKLi4suX76sb775RmvXrtW8efP0xBNP5GoXGxurXr16WZJg9vb28vT01IULF7RixQqtWLFCo0eP1jvvvFOoeKZNm6bx48fLzs5OH374oYYPH24pS0pK0qBBg7RixQrLPi8vL8XGxmr79u3avn27lixZovXr18vHx+fGTggAAAAAAAAAoNxj5lgJCQkJkST99NNPyszMzFG2ZcsWSVm/uL98+bIOHTpktbxt27ZycXGx7L/vvvsUFhamCxcuKDExUVFRUbpy5YpWrVqlunXr6q+//tKwYcMKHOP777+v8PBwy/erVq1SeHi4Zdu7d2/hDvr/69evn8LDw7Vq1SrLvqv7vXr/hAkTFBYWJpPJpIkTJ+ry5cuKiopSZGSkJkyYIElaunSpJk6cmOd4q1at0jfffKMZM2YoOjpaUVFRio2NVffu3W8o/h07dmjhwoWys7PT9OnTdfnyZcXHxysxMVGRkZH64YcfNHjw4ByJxOtZs2aNJTH28MMP6/Tp04qOjlZcXJzmzJmj3bt36+OPP86z/YYNGzRo0CBlZGRozJgxOnHihJKSkpSYmKgjR47o4YcfVnx8vKXv4vL666/r4sWLWrZsmRITExUbG6u//vpLnTt3VmZmpp555hkdOHAgV7snn3xSW7dulZOTk2bPnq24uDhFR0fr/PnzlmTajBkzNHfu3ALFYRiGRo4cqfHjx8vZ2VlhYWE5EmOSNHToUK1YsUK33nqrvvjiC8XGxio2NlZXrlzRN998o1tvvVW7d++2mswDAAAAAAAAANgOkmMlJDg4WHZ2doqKitLBgwct+1NSUrRz5065ublp6NChknLOJLv6++wEW7Y1a9aob9++qlKlimWfq6urevfurU2bNsnZ2VmrV68u1uRISTp37pzef/99SdK4ceM0efJkeXt7S8qaxfbWW29p1KhRkqSZM2fqwoULVvtJSEjQzJkz9dJLL8nLy0tS1kyvqlWr3lBcO3fulCR17dpVY8aMyTHTzc/PT926ddOiRYtUrVq1Avc5fvx4SVLnzp311VdfKSgoSFLW9Xvuuec0e/ZsxcTEWG2bmZmp4cOHKzMzU3PmzNH06dMtyx6aTCbVrVtXy5Yt0/3336+4uDjNnDnzho7bmtjYWC1fvlwPP/ywHByyJprWr19f3333nWrXrq309PRcics9e/Zo5cqVkqQPPvhAzz//vNzc3CRJVapU0YIFC9SnTx9J0sSJE3MtT3mt1NRUPfLII5o9e7bMZrO+//77XMuRbt++XZ9//rkqV66srVu3asCAAZZ7wcXFRffff79++uknubu7a/Xq1Tn+TVqTkpKiuLi4HBsAAAAAAAAAoGIgOVZCfHx81KRJE0k5k1+7d+9WUlKSOnTooLvvvjtXeUpKinbt2iUpd3IsP4GBgWrSpIkMw7Akd8q6lStXKj09XS4uLho3bpzVOq+++qqcnZ2VlpaWY7m8q/n4+OiZZ54ptriyE3SXLl1SRkZGkfv77bff9Ndff0nKOh5rSz4+/fTTCgwMtNp+27ZtOn78uPz9/fXUU0/lOc6gQYMkST/88EORY87WoUMH3Xnnnbn2u7q66uWXX5Ykff/994qNjbWUZS+RWb169TzjfeONNyRJkZGR2rBhQ57jx8XF6e6779ayZctUtWpVbdu2zeo73RYsWCBJevTRRy2Jx2tVr17d8m/qeudo6tSpMpvNli2vPgEAAAAAAAAA5Q/JsRLUpUsXSTmTX9lfd+nSRe3bt5ezs7O2b99uScLs3LlTycnJcnV1Vdu2bXP0l5mZqS+//FL333+/atSoIVdXV8vsIZPJpF9++UWSdPbs2ZtxeEW2b98+SVKrVq0ss3yu5ePjo5YtW+aof61WrVoVaonD67nzzjvl4uKiX3/9VZ06ddKCBQt04sSJG+4vO24HBwd16tTJah07OzurSR9J+vnnnyVlzeKqVq2aqlSpYnV7+umnJUmnTp264VivlX0P51eWmZmZY2nF7OMNCQnJ891v9evXtyQD87quFy5cUOfOnbVlyxbVqVNHO3fuVOPGja3WzT5HCxYsyPP8VKlSRRs3bpR0/XM0fvx4y7KMsbGxOnPmTL71AQAAAAAAAADlh0NpB1CRhYSE6N1339X27duVnp4uBwcHy/vEunTpYkmA/fTTT9q7d6/atm1rKW/fvn2OhM+VK1fUs2dPS7kkOTk5ydfXV46OjpKkqKgopaWlKTEx8SYe5Y27ePGiJOU5Yypb9erVc9S/VuXKlYs1rttuu03z58/XsGHDtGvXLstMvkqVKikkJEQDBgzQ/fffL5PJVKD+suP29/eXs7NznvWyj/Na58+flySlpaUpIiLiuuMlJSUVKK6CyO/aXF129bUpzHU9d+5cntf1f//7n6SsZRE3btyY7+yt7HNU0CUQr1y5km+5s7NzvtcKAAAAAAAAAFB+MXOsBN1xxx1ycHBQQkKCfvnlF125ckV79uyR2WxWixYtJOWeXZbX+8beeustbdmyRa6urpo1a5ZOnTql5ORkXb58WeHh4QoPD1ebNm0kSYZh3KxDLBPs7e2Lvc9HH31Up06d0ty5c9WvXz8FBQXp0qVLWrZsmXr16qXOnTvftPdQZc8qbNOmjQzDKNBWEfTs2VNms1nJycl6/PHH801oZZ+jjz/+uEDnZ9GiRTfpKAAAAAAAAAAAZQ3JsRLk6elpSYJt3rxZO3bsUGpqqu644w5LQic7CbZ582YlJiZalka8djm7r776SpL02muv6YUXXlCNGjVyzVwKDw8v0eMpbtkzvq63DGR2eXHPELseX19fPfPMM/rqq690+vRp/f333xo3bpxMJpO2b9+u0NDQAvWTHXdkZKRSU1PzrHfu3Dmr+6tUqSKpeJdLLKi8Yrq27OprU1zXtUWLFtq4caN8fHy0adMm3XvvvXnOiizNcwQAAAAAAAAAKF9IjpWwq5NfVy+pmK1NmzZyc3PTzp07tWnTJqWlpcnDw0OtWrXK0U/2O4+aNWtmdZyTJ0/q77//vqEYs5NsN3vG0dXvEouNjbVaJyYmJse7yUrTbbfdpqlTp2rAgAGSpA0bNhSoXfZxpqena/v27VbrZGZmauvWrVbLOnToICkr+ZnX+7lKytXLeOZVZmdnl+O+zD7eLVu2KDMz02rbI0eOWJJr+V3Xli1batOmTfL19dXWrVvVo0cPJSQk5KqXfY6+/fbb6xwRAAAAAAAAAMDWkRwrYdmJsF27dum7777LsU/Kem9Yhw4dlJSUpClTpkiSOnbsKAeHnK+DM5vNkqRDhw5ZHWfcuHE3HKOXl5ekrETUzdSnTx85ODgoOTlZ06dPt1pnypQpSklJkaOjo/r06XNT4kpJScm33NXVVVJWUqggGjdurPr160vKWh7TWsLo008/zXOmVUhIiG6//XZJ0osvvpjv7DMp691zxWXHjh1Wk3bJycl69913JUndu3eXt7e3peyRRx6RlDWzbP78+Vb7fe211yRlvYeta9eu+cbQrFkzbd68Wf7+/tq+fbvuvvtuxcfH56gzdOhQSdIff/yhjz/+ON/+EhMTr3sOAQAAAAAAAAAVF8mxEtahQwc5OTkpOTlZhw4dUqVKldSoUaMcdbKTZXv27JGU+31jknT33XdLkt58802tWrVK6enpkqQTJ05owIABWrZsmXx8fG4oxv/85z+SpC+++CLf9zoVt8DAQI0cOVKSNG3aNE2aNMmSoIuJidHEiRP1zjvvSJJGjRqlqlWr3pS4RowYob59+2rlypW6ePGiZX9CQoLmzp2rJUuWSJLuvffeAvf51ltvScqaTTVgwABLIiw5OVlz587ViBEjciSYrubg4KC5c+fKwcFBO3bs0B133GGZZZjt33//1dy5c9WqVSt99NFHhT3kPJnNZvXp00crVqyw3HNHjhzRvffeqyNHjsje3l6TJ0/O0aZ169aWRObzzz+vDz/80HJfhYeH6+mnn9by5cslSW+88YZcXFyuG0eTJk20efNmVapUST///LO6d++e451vnTt31uOPPy5JGj58uF588UX9+++/lvKUlBTt3r1bY8aMUc2aNXNcVwAAAAAAAACAbSE5VsLc3NzUpk0by/fBwcG53hV2bTLMWnLszTffVEBAgOLj49WnTx+5urrK29tbt956q5YuXaq33npLjRs3vqEYhw0bJklauXKlvL29Vb16ddWqVUsdO3a8of4KY8qUKerbt68Mw9DkyZPl5+cnX19f+fn56c0335Qk9e/fX2+88UaJx5ItLS1Ny5cv10MPPaSAgAB5enrKx8dHnp6eevbZZ5WamqqOHTvqlVdeKXCfvXv3ttQPCwtTUFCQfH19LX22bt1azz77bJ7t77zzTi1fvlyenp7as2ePunbtKnd3d/n7+8vFxUW33Xabnn32We3bty/X/VUUkyZNUqVKlfTwww/Lw8ND3t7eql+/vjZv3iyTyaSPP/7Ysozi1RYsWKDOnTsrNTVVzz//vMxms3x9fVWtWjXLbLLRo0db7r2CaNSokbZu3aqAgADt2rVLd911V47ZjnPnztVTTz0lwzD03nvv6bbbbpOnp6d8fX3l5uamdu3a6Z133tHly5eL9RwBAAAAAAAAAMoXkmM3wdXJrquXVMzWsmVLy9KGXl5eat68ea46NWvW1L59+/Tkk0+qWrVqkiQXFxf17NlTP/zwg8aPH3/D8T322GP67LPP1LFjR7m5uenChQs6depUnsv8FScnJyeFhYVpxYoV6tGjh/z8/BQfHy8/Pz/16NFDq1at0pdffilHR8cSjyXbxIkTNXv2bPXu3Vv16tWTg4ODEhISVLlyZd1111369NNPtXXrVrm7uxeq3zfffFPffvutunTpIi8vL6WkpKh+/fqaNm2aNm3aJCcnp3zb9+rVS3///bcmTZqk1q1by8PDQzExMXJ2dlaTJk301FNP6euvv9bLL79clMPPwcfHR7/88ovGjRunGjVqKCUlRb6+vrrvvvv0888/6+mnn7bazmw2a9OmTVqwYIGCg4Pl6emphIQEValSRX369NGWLVssswILo0GDBtq6dauqVq2qX375RV27dlV0dLSkrHtp3rx52rlzp4YMGaLbbrtNGRkZlmsXHBys1157Tb/99psCAwOLdF4AAAAAAAAAAOWXyTAMo7SDAFC21KpVS6dOndLChQs1ZMiQ0g6n1MXFxclsNisyMlJ+fn6lHQ5gUw4cOKAWLVqUdhioAPbv32/1D5CA8i4tLU3r16/XPffcc1P/oAy4Hlt5hvN8ASoGnqcoCu6fioXrWf5l/y43NjbWMinJGmaOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDkGAAAAAAAAAAAAm+FQ2gGgbHvwwQe1c+fOQrVZtWqV2rdvX0IRFVx5jr04tGrVSmfOnClUm7179yooKKiEIgIAAAAAAAAAoPSRHEO+oqKiFBERUag2qampJRRN4ZTn2IvDpUuXCn38GRkZkqSTJ0+WQEQAAAAAAAAAAJQ+kmPI19atW0s7hBtWnmMvDiS4AAAAAAAAAADIjXeOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDkGAAAAAAAAAAAAm0FyDAAAlFlJSUmlHQIqCE9Pz9IOAQBsiq08w3m+AAAAlE8OpR0AAABAXlxdXSVJn3/+uerXr1/K0aC88vT0VO3atUs7DACwKbbwDOf5AgAAUH6RHAMAAGVe/fr11bx589IOAwAAFBLPcAAAAJRFLKsIAAAAAAAAAAAAm0FyDAAAAAAAAAAAADaD5BgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAAAAAAAAALAZJMcAAAAAAAAAAABgM0iOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDNIDkGAAAAAAAAAAAAm0FyDAAAAAAAAAAAADaD5BgAAAAAAAAAAABsBskxAAAAAAAAAAAA2AySYwAAAAAAAAAAALAZJMeAcsQwDC1cuFDt2rWTp6enzGaz2rRpo//9738yDENDhgyRyWTSkCFDrLZftWqVevbsqYCAADk5OSkgIEA9e/bU119/XSLx/vjjj3rkkUdUs2ZNubq6ytfXV40bN9bzzz+vXbt25agbGhoqk8mk4ODgPPvbunWrTCaTTCZTnnXi4+M1bdo0tWvXTr6+vnJ2dlZQUJAeeeSRXGMCAAAAAAAAAGyPQ2kHAKBgMjIy9OijjyosLEySZDKZ5O3trX379umXX37R1q1b5eTkZLVtamqqBg0aZGlrZ2cns9msyMhIrVu3TuvWrVP//v21ePFiOTo6FjnWK1euaMiQIVq+fLlln6enpzIzM/X777/r999/1/bt23Xw4MEij3W1gwcP6r777tPZs2clSfb29nJzc9PZs2cVFhamZcuW6a233tL48eOLdVwAAAAAAAAAQPnBzDGgnHjnnXcsya1Ro0bp0qVLioqKUnR0tKZMmaKvvvpKa9assdp2woQJCgsLk8lk0sSJE3X58mVFRUUpMjJSEyZMkCQtXbpUEydOLJZYH3/8cS1fvlx2dnYaO3aszpw5o7i4OMXExOjSpUv64osv1K5du2IZK9uFCxfUvXt3nT17Vg8++KD27dunpKQkxcXFKSIiQhMnTpS9vb0mTJig1atXF+vYAAAAAAAAAIDyg+QYUA4kJiZq6tSpkqQnn3xS7777rvz8/CRJXl5eGj9+vF577TVFR0fnanvu3Dm9//77kqRx48Zp8uTJ8vb2liT5+Pjorbfe0qhRoyRJM2fO1IULF4oU66ZNm7Rs2TJJ0ocffqhp06apevXqlnJ/f38NGDBAH3/8cZHGudarr76qixcvasCAAVq5cqVatGhhmQVXuXJlTZ48WW+//bakrCUcAQAAAAAAAAC2ieQYUA78+OOPiouLkyS98sorVuu89NJLcnNzy7V/5cqVSk9Pl4uLi8aNG2e17auvvipnZ2elpaVpxYoVRYr1008/lST95z//0bPPPlukvgoqOTlZX375pSRp7NixedYbNGiQJOnQoUOKiIjIs15KSori4uJybAAAAAAAAACAioHkGFAOHDhwQJJUo0YN3XLLLVbreHp6qkWLFrn279u3T5LUqlUreXl5WW3r4+Ojli1b5qh/o3bu3ClJ6tmzZ5H6KYz9+/crOTlZktStWzdVqVLF6tawYUNLm1OnTuXZ39SpU2U2my1bUFBQiR8DAAAAAAAAAODmcCjtAABc36VLlyRJ1apVy7deYGBgrn0XL17Ms+xq2UsfZte/UeHh4ZKkmjVrFqmfwjh//rzl6/xmhF3typUreZaNHz/estSkJMXFxZEgAwAAAAAAAIAKguQYUI6YTKbSDuG6SiPGjIwMy9dJSUlycXEpUn/Ozs5ydnYualgAAAAAAAAAgDKIZRWBcqBSpUqScs6QsubcuXO59lWuXFmSdPbs2XzbZpdn179RVapUkZT/soXWODhk5eqzl0e0JjY2Nt8xb2RcAAAAAAAAAIBtITkGlAPNmzeXlJX4OXnypNU6CQkJ2r9/f679V79LLK/kUkxMTI53kxVF+/btJUlr164tVDsfHx9J0pkzZ/Kss2fPHqv7W7VqJScnpxsaFwAAAAAAAABgW0iOAeVAt27d5OXlJUmaMmWK1TqzZs2y+h6tPn36yMHBQcnJyZo+fbrVtlOmTFFKSoocHR3Vp0+fIsX65JNPSpL+/PNPffzxxwVu16RJE0lZs+OsJcEuXryoefPmWW3r7u6uAQMGSJKmT5+u06dP5ztWVFRUgeMCAAAAAAAAAFQsJMeAcsDd3V1jx46VJM2bN09jxoyxJHji4+M1ffp0hYaGWmZfXS0wMFAjR46UJE2bNk2TJk1STEyMpKwZYxMnTtQ777wjSRo1apSqVq1apFhDQkL0yCOPSJJGjBih8ePH51jSMTIyUvPnz7ck0bK1b99eNWvWlCQNHjxY+/btk2EYyszM1NatWxUcHKzMzMw8x50yZYqqVaumyMhItWvXTp999pni4+Mt5ZcuXdLKlSvVu3dv9e/fv0jHCAAAAAAAAAAov0iOAeXEmDFj9NBDD0mS3nnnHVWqVEm+vr7y8fHRuHHj9Oijj+q+++6TJLm4uORoO2XKFPXt21eGYWjy5Mny8/OTr6+v/Pz89Oabb0qS+vfvrzfeeKNYYl2wYIEefPBBZWZmatq0aQoKCpLZbJa3t7cqVaqkp59+OtcSkHZ2dvrkk0/k6Oioo0ePqlWrVvLw8JC7u7tCQkKUnp6uOXPm5Dlm1apVtXHjRtWpU0fnz5/XoEGD5O3tLT8/P3l4eKhy5cp66KGHtHr16nyTbAAAAAAAAACAio3kGFBOODg4aNmyZZo/f75at24tV1dXpaenq2XLlpo/f76WLFlimRHm7e2do62Tk5PCwsK0YsUK9ejRQ35+foqPj5efn5969OihVatW6csvv5Sjo2OxxOrm5qaVK1fq22+/Ve/evVWtWjUlJyfLwcFBjRs31n//+1/973//y9Wue/fu2r59u3r27CkfHx9lZGQoKChI48aN0/79+1WlSpV8x61fv75+++03ffLJJ+rWrZv8/f0VFxcnwzB0++236+GHH9b//vc/LVu2rFiOEwAAAAAAAABQ/jiUdgAACs5kMunJJ5/MtSShJBmGoQMHDkiSGjZsaLV9nz59ivxOscK49957de+99xaqTZs2bbR27VqrZcHBwTIMI9/2zs7OGjp0qIYOHVqocQEAAAAAAAAAtoGZY0AF8dlnn+ns2bNycHBQ165dSzscAAAAAAAAAADKJJJjQDnSv39/rVixQpGRkZZ9ERERmjZtmp5++mlJ0qBBg1S1atXSChEAAAAAAAAAgDKNZRWBcuS7777TV199JSnrvV6Ojo6KjY21lHfq1EmzZs0qrfAAAAAAAAAAACjzSI4B5cjs2bP13Xff6ddff9XFixeVkJCgSpUqqWnTpnrkkUc0cOBAOTo6FnmcM2fOqFWrVoVqExQUpL179xZ5bAAAAAAAAAAAShLJMaAcGTRokAYNGlTi42RkZCgiIqJQbVxcXEooGgAAAAAAAAAAig/JMQC51KpVS4ZhlHYYAAAAAAAAAAAUO7vSDgAAAAAAAAAAAAC4WUiOAQAAAAAAAAAAwGaQHAMAAAAAAAAAAIDN4J1jAADA4vjx44qPjy/tMCwOHz5c2iEAAFCmlbVndzae4QBQukrq+eDp6anatWsXe78onWc61/PmuJnXlmtacCTHAACApKwPa3Xq1CntMKxKSkoq7RAAAChzyvKzOxvPcAC4+Ur6+XDs2DF++V7MSvOZzvUsWaVxbbmmBcOyigAAQJLK5F+dZ3N1dS3tEAAAKHPK8rM7G89wALj5Svr5UB6eP+VNaZ5TrmfJKo3zyzUtGJJjAAAAAAAAAAAAsBkkxwAAAAAAAAAAAGAzSI4BAAAAAAAAAADAZpAcAwAAAAAAAAAAgM0gOQYAAAAAAAAAAACbQXIMAAAAAAAAAAAANoPkGAAAAAAAAAAAAGwGyTEAAAAAAAAAAADYDJJjAAAAAAAAAAAAsBnFmhy7dOmS9u3bp23bthVnt0CZExoaKpPJpODg4NIOBQAAAAAAAAAAFIJDcXSyZs0ahYaG6tChQ5Ikk8mk9PR0S3l0dLT69+8vSQoLC5PZbC6OYQGUUydPntSiRYskZSUaAQAAAAAAAAC4WYo8c2zatGnq3bu3Dh48KMMwLNvVfHx85Orqqg0bNmjFihVFHRIodf7+/qpbt65q1KhR2qGUSydPntTrr7+u119/vbRDAQAAAAAAAADYmCIlx3bv3q1XXnlFDg4OmjVrliIjIxUQEGC17mOPPSbDMLRhw4aiDAmUCSNGjNCRI0e0ZMmS0g4FAAAAAAAAAAAUQpGWVXz//fclSePHj9fIkSPzrdu5c2dJ0q+//lqUIQEAAAAAAAAAAIAbVqSZYz///LOkrFk01+Pv7y93d3edP3++KEPiJgoODpbJZFJoaKgMw9C8efPUpk0beXl5ydPTU+3atdPnn3+ebx+rVq1Sz549FRAQICcnJwUEBKhnz576+uuv8233ww8/6MEHH1T16tXl5OQkLy8v3XrrrerWrZtmzJihqKgoq+3i4+M1bdo0tWvXTr6+vnJ2dlZQUJAeeeQR7dq164bPxbVCQ0NlMpkUHBycq2zIkCEymUwaMmSIJGnFihUKDg6Wr6+v3Nzc1LRpU73//vvKzMwstngkKTMzU8uWLVOvXr0UGBgoZ2dnVapUSS1atNDYsWP1xx9/WG13I+fs5MmTMplMMplMOnnypCIiIjRy5EjdcsstcnFxUUBAgB555BEdOXIkV9tatWopJCTE8n12P9lb9nkr7hj/+ecfDR06VLfccoucnZ1Vq1at659UAAAAAAAAAECFU6SZYxcvXpSnp6f8/f0LVN/Z2Vnx8fFFGRKlICMjQ71799Y333wjBwcHubm5KT4+Xrt379bu3bt1/PjxXO+OSk1N1aBBgxQWFiZJsrOzk9lsVmRkpNatW6d169apf//+Wrx4sRwdHXO0nTx5siZNmmT53s3NTYZh6MSJEzpx4oQ2bNigli1b5kpMHTx4UPfdd5/Onj0rSbK3t5ebm5vOnj2rsLAwLVu2TG+99ZbGjx9fAmfJuhEjRmjOnDmys7OTl5eXkpKSdOjQIb3wwgs6cOCAFi9eXCzjREZGqk+fPtq2bZtln7e3t5KTk3XgwAEdOHBAR48e1erVq3O0K45z9ueff+qJJ57QxYsX5ebmJinrZ0NYWJi+++47bdu2TU2aNLHUr1SpkuLi4hQdHS1JuZZiNZvNxR7jzp079cwzzyghIUFubm657jkAAAAAAAAAgO0o0swxd3d3XblyRRkZGdetm5CQoJiYGPn6+hZlSJSCOXPmaOvWrVq0aJHi4uIUGxurM2fO6L777pMkvfnmmzp+/HiONhMmTFBYWJhMJpMmTpyoy5cvKyoqSpGRkZowYYIkaenSpZo4cWKOdqdOnbIk2kaNGqVz584pMTFR8fHxiomJ0fbt2/Xcc8/J09MzR7sLFy6oe/fuOnv2rB588EHt27dPSUlJiouLU0REhCZOnCh7e3tNmDAhV4KopKxZs0bz5s3TzJkzFR0drejoaEVGRuqpp56SJC1ZskSbN28u8jjp6enq1auXtm3bJmdnZ02fPl0XL15UdHS04uPjde7cOX3yySdq0KBBjnbFdc4GDhyo2rVra+/evUpMTFRCQoI2bNigqlWrKi4uTs8//3yO+nv37tWqVass34eHh+fYspdrLc4Yn3nmGTVs2DBHjD/++GPhTjQAAAAAAAAAoEIoUnKsbt26ysjI0G+//XbduqtXr1ZmZqaaNm1alCFRCqKjo/X1119r8ODBcnV1lSRVr15dy5cvV7Vq1SzL+WU7d+6cJcExbtw4TZ48Wd7e3pIkHx8fvfXWWxo1apQkaebMmbpw4YKl7Z49e5SZmak6dero3XffVbVq1SxlZrNZHTt21Jw5c9SiRYscMb766qu6ePGiBgwYoJUrV6pFixaW2UGVK1fW5MmT9fbbb0vKWhLxZoiOjtYnn3yiF198UV5eXpIkPz8/zZs3zxL/0qVLizzO4sWL9fPPP8tkMmnVqlUaM2aMKlWqZCmvVq2ahg4dqilTpuRoV1znLCAgwDKbT5IcHBzUtWtXffLJJ5Kk7du3W2Z9FVZxxejn56eNGzdaYpSkOnXq5Fk/JSVFcXFxOTYAAAAAAAAAQMVQpOTY/fffL8MwNHXq1HzrnT17VuPGjZPJZFKfPn2KMiRKQYcOHXK8Iyqbs7OzunfvLkk5EqQrV65Uenq6XFxcNG7cOKt9vvrqq3J2dlZaWppWrFhh2Z+dRIuPj1diYmKB4ktOTtaXX34pSRo7dmye9QYNGiRJOnTokCIiIgrUd1EEBQVp8ODBVsvuv/9+SSpQYvl6Pv30U0nSPffco3vuuadAbYrznL300kuWpOnVevToIScnJ0nS77//XqC4SirGESNGyMPDo8BjT506VWaz2bIFBQUVInIAAAAAAAAAQFlWpHeOZb9PaeXKlRo0aJDGjBljKUtLS9PJkye1du1aTZ8+XZcuXVLdunXzTBag7GrTpk2eZdkzu6Kioiz79u3bJ0lq1aqVZcbUtXx8fNSyZUv9/PPPlvqS1Lp1a/n7++vChQtq06aNhg0bpq5du6pu3boymUxW+9q/f7+Sk5MlSd26dSvQMZ06dSrXu66KW6tWrfKM2dp5uxHp6enau3evJFmWuSyI4jxned0fDg4OqlSpks6dO3dDx1mcMXbo0KFQY48fP94yu1GS4uLiSJABAAAAAAAAQAVRpOSYh4eH1q5dq+7du+vzzz/XF198YSlzcXGxfG0YhqpVq6bVq1dblkRD+XHt+72u5uCQdQulpaVZ9l28eFGSFBgYmG+/1atXz1Ffypo5tnTpUg0YMEB//vmn5X1VZrNZd9xxh/r27at+/frluI/Onz9v+bqgM8KuXLlSoHpFUdjzdiMuX75s6aNmzZoFblec56ykjrM4Y6xcuXKhxnZ2dpazs3Oh2gAAAAAAAAAAyociLasoSU2bNtWhQ4f0+OOPy9nZWYZh5NgcHR01ZMgQ7du3T3Xr1i2OmFHBde3aVSdOnNCSJUs0ePBg1a5dW7GxsVq7dq0GDhyoZs2a6dy5c5b6GRkZlq+TkpJy3YPWtuDg4FI4suKX18y06ykP56w4Y7S3t79JUQMAAAAAAAAAyroiJ8ckqUqVKlqwYIGio6O1Y8cOLVu2TEuXLtWWLVsUFRWlTz/9VFWqVCmOoVAOZM/SOXv2bL71ssutzepxd3fXwIEDtWjRIh07dkxnz57V9OnT5eLikmNGmaQc99apU6eK4xDKDV9fX8ssusIce3k4Z+UhRgAAAAAAAABA+VMsybFszs7Oat++vR566CH169dPnTt3lpubW3EOgXKgZcuWkrLePRYbG2u1TkxMTI53k11PYGCgxowZo5deekmStGHDBktZq1at5OTkJElau3ZtkWIvbxwcHNS6dWtJhTv20j5ndnb/96PHMAyrdUo7RgAAAAAAAABAxVSk5NgTTzyhUaNGFbj+mDFj9OSTTxZlSJQDffr0kYODg5KTkzV9+nSrdaZMmaKUlBQ5OjqqT58+lv0pKSn59u3q6iopZ3LF3d1dAwYMkCRNnz5dp0+fzrePqKioAh1HeZH9b2r9+vVav359gdqU9jnz8vKyfB0TE2O1TmnHCAAAAAAAAAComIqUHFu0aJG++uqrAtdfvny5Fi1aVJQhUQ4EBgZq5MiRkqRp06Zp0qRJlgRITEyMJk6cqHfeeUeSNGrUKFWtWtXSdvr06erRo4c+++yzHMsypqSkaNmyZZZ29957b44xp0yZomrVqikyMlLt2rXTZ599pvj4eEv5pUuXtHLlSvXu3Vv9+/cvkeMuLQMHDlTHjh1lGIb69Omjd955R5GRkZby8+fPa9asWRo7dmyOdqV5zurUqWOZFTZ//vw8Z4/Z8nUFAAAAAAAAAJQMh5s5WF6/AEfFM2XKFJ05c0bLli3T5MmT9eabb8psNis2NlaZmZmSpP79++uNN97I0S4zM1Pff/+9vv/+e0lZM8VcXV0VHR1tuX/q16+vmTNn5mhXtWpVbdy4Ub169dKxY8c0aNAg2dnZydvbWykpKUpMTLTU7dq1a0ke+k3n4OCgr7/+Wg8++KC2b9+uMWPGaOzYsTKbzUpPT1dCQoIk6YEHHsjRrjTPmZubmwYOHKgFCxZozJgxCg0Nlb+/v0wmkx566CHNmDGj1GMEAAAAAAAAAFRMNzU5FhkZyTvIbISTk5PCwsLUt29fLViwQPv27VN0dLT8/PzUsmVLPf300+rdu3eudkOHDlVgYKC2bNmi33//XRcuXFBsbKx8fHzUsGFD9enTR88884xcXFxyta1fv75+++03LV68WCtXrtTBgwcVFRUlJycn3X777WrWrJnuuusuPfTQQzfjFNxU/v7+2rp1q5YuXaovvvhC+/fvV3R0tHx8fFS3bl3dddddGjhwYK52pXnO5syZo6CgIK1cuVL//POPZdnEq2e9lXaMAAAAAAAAAICKx2QUYTqXnZ2dqlSpovPnz+dbLzY2VvPnz9fLL7+sxo0b6+DBgzc6JADcdHFxcTKbzYqMjJSfn19phwOUmAMHDqhFixalHYZV+/fvV/PmzUs7DAAoc9LS0rR+/Xrdc889cnR0LO1wcJOV5Wd3Np7hAMqDivY8LennAz/bcyqO+6c0n+lcz5yK++dBaVxbW7+m2b/LjY2NlZeXV571CjVz7PXXX9fkyZNz7IuIiJC9vX2B2ptMJvXp06cwQwIAAAAAAAAAAADFptDLKl490cxkMhX4PWJOTk4aOHCgxo0bV9ghAQAAAAAAAAAAgGJRqOTYkCFDFBwcLCkrSdalSxf5+vpq5cqVebaxs7OTl5eX6tSpI1dX1yIFCwAAAAAAAAAAABRFoZJjNWvWVM2aNS3f16hRQwEBAercuXOxBwaUtJEjRyosLKxQbd5//33169ev2GPZuXOnHnzwwUK1ad++vVatWlXssQAAAAAAAAAAUJEVelnFq508ebKYwgBuvtjYWEVERBSqTVJSUonEkpqaWuhYoqKiSiQWAAAAAAAAAAAqsiIlx4DybNGiRVq0aFFphyFJCg4OLvD7+wAAAAAAAAAAwI0r1uTYxYsXdfbsWSUmJub7i/477rijOIcFAAAAAAAAAAAACqRYkmMffvihZs+erX/++ee6dU0mk9LT04tjWAAAAAAAAAAAAKBQipwce+SRR7R8+fICLwnH0nEAyqvff/9dXl5epR0GUGIOHz5c2iEAAG7QoUOHZGdnV9ph4Cbj2Q0AxauiPE95PpSOotw/XLOyp7h+HnBty64iJce++uorLVu2TGazWQsWLFCPHj3k7u6uKlWq6OzZswoPD9eGDRv01ltvKSYmRmFhYQoJCSmu2AHgpurRo4eSk5NLOwzAJnl6epZ2CABQJmWv3nHHHXcoKSmplKMBcuMZDqA84HlaOPxsz6m83z9cz5zK+/WUuKYFVaTk2KJFi2QymfTGG2/owQcfzFFmZ2enatWqafDgwerTp486d+6sXr16af/+/br99tuLFDQAACg5n3/+uerXr1/aYVh4enqqdu3apR0GAJRJCQkJpR0CyoCy9uzOxjMcQHlRUZ+nJfF84Gd7bsV5/9zsZzrXM7eS+nlws64t17TgipQc+/XXXyVJjz32WI79mZmZOb738PDQhx9+qA4dOmj69OmaN29eUYYFgP/H3p3Hx3j1/x9/TfZEkskigliC9la1Fa26raHUWtWi1hJdabVKN4omVFFVqi3VxV6U2qpF7UFtpdVaWv1WaycIsons8/sjv5k7aRZJZpJJeD8fj3nc47rO8jnXNZkrdz4954hIEapVqxYNGza0dxgiIiKST3p2i4hITvR8KH10z25furclj1WLZkZHR+Pl5YWPj4/lmLOzMzdu3MhW9r///S8eHh5s2bLFmi5FRERERERERERERERECs2q5Ji/vz8GgyHLMR8fHxISEoiOjs6xTmRkpDVdioiIiIiIiIiIiIiIiBSaVcmxoKAgYmNjs6zDaV43c/v27VnK/vLLLyQkJODh4WFNlyIiIiIiIiIiIiIiIiKFZlVyzLxG5oEDByzHOnfujMlk4rXXXuPAgQOkpKRw8OBBBg4ciMFgoFmzZtZFLCIiIiIiIiIiIiIiIlJIViXHzImwb775xnJsyJAhBAUFcfLkSZo0aYKbmxsPPvggx44dw8nJidGjR1sdtIiIiIiIiIiIiIiIiEhhWJUc69SpE9u3b2fQoEGWY56enmzbto3//ve/mEwmy6tKlSqsWrWKBx980OqgRURERERERERERERERArDyarKTk60atUq2/G7776b3bt3c+7cOc6ePYvRaKRWrVoYDAZruhMRERERERERERERERGxilXJsVupVKkSlSpVKsouRERERERERERERERERPLNqmUVn3rqKUaMGJHv8m+88QZPP/20NV2KFEpwcDAGg4H58+cXa79paWlMmzaNBg0aUKZMGQwGAwaDgTVr1hRrHKVJaGgoBoOB0NBQe4ciIiIiIiIiIiIiIrchq2aOzZ8/n/LlyzNt2rR8lf/mm284c+YMc+bMsaZbEZsKDw8HMpIywcHBNm37lVde4ZNPPgHAxcWFwMBAANzc3Gzaj4iIiIiIiIiIiIiI5E+RLqv4byaTqTi7E7GoUaMGbm5uGI3GbOfGjRsHQEhIiE2TY3FxcXz22WcATJkyhddee0377omIiIiIiIiIiIiI2FmxJseioqLw8PAozi5FANi6dWux93n8+HFSUlIAGDJkiBJjIiIiIiIiIiIiIiIlQLEkx2JiYvjyyy9JSEigXr16xdGliN0lJCRY3nt6etoxEhERERERERERERERMXMoSOFx48bh6OhoeQFcunQpy7GcXn5+frzxxhsYDAa6d+9eJAORkqVu3boYDAbLfluZ7d27F4PBgMFgoEePHtnOp6Sk4OXlhcFgyDLja9++fbz55pu0aNGCqlWr4ubmho+PD02aNOG9994jPj4+13iCg4MxGAzMnz/fciw0NDTLbK7WrVtb4jIYDIVeYnH+/PkYDAZCQkIsxzK3m/m42apVq+jSpQuBgYGWvcm6dOnC6tWrc+3HHH9oaCgmk4kvv/yS5s2b4+/vn22sBRUSEoLBYCA8PJzk5GQmT55MvXr1KFOmDL6+vrRr144NGzbcsp3CjOtWNm3aZPl8hIaGkpqamuX87t276d+/v+UzYjQaady48S0/IyIiIiIiIiIiIiJyZyjwzLHM+4YZDIZ87yPm4uLCk08+yciRIwvapZRCrVu35ujRo2zbto2hQ4dmObdt2zbL+4iICEwmU5Yk1U8//UR8fDyurq40a9bMcvy///2v5b2HhwceHh5cv36d/fv3s3//fhYuXMj27dspV65cvmI0Go0EBgZy6dIlAHx9fXFxcbGcDwgIKNig/z93d3cCAwNJTk7m+vXrAAQGBlrO+/n5Wd4nJyczYMAAli1bBoCDgwNGo5GoqCjWrVvHunXr6NOnDwsWLMDZ2TnH/kwmEz179mTlypWW+g4OBcp75yo5OZm2bduya9cunJyc8PT0JDo6mi1btrBlyxbCwsIIDw/PsZ6148rJV199xVNPPUVKSgpvvvkmkydPtpxLT09n+PDhfPTRR5Zjnp6e3LhxgwMHDnDgwAHmzZvHxo0bqVq1auEvioiIiIiIiIiIiIiUagX6C3poaCjbt29n+/btbNu2DZPJhJ+fn+VYTq8dO3Zw6NAhrl+/zhdffFGgP4RL6dW6dWsAduzYQXp6epZz27dvB8Db25urV6/y22+/5Xi+SZMmuLm5WY4/8sgjLFu2jIsXL3Ljxg2uXbtGQkICq1atombNmvz+++8MHjw43zHOmDGDyMhIy79XrVpFZGSk5XXgwIGCDfr/69WrF5GRkaxatcpyLHO7mY+/9dZbLFu2DIPBwNixY7l69SrXrl0jKiqKt956C4ClS5cyduzYXPtbtWoV3377LVOnTuX69etcu3aNmJgY2rdvX6j4M5s1axY//fQTs2fPJi4ujuvXr3PmzBnLjL9x48axdu3abPVsMa5/mzp1KgMGDCA1NZUPP/wwS2IMICwsjI8++ohy5coxc+ZMrl69SlxcHDdv3mT79u00aNCAP//8k8cffzzbZ1JERERERERERERE7hwFmjlWtWrVLDMuqlSpQmBgIK1atbJ5YFK6hYSE4ODgwLVr1/j1119p2LAhAElJSezZswcPDw+ee+45pk6dyrZt27jvvvssdc0zy8wJNrOckjDu7u489thjNG7cmBo1arBmzRrOnDlDlSpVim5wNnL+/HlmzJgBwMiRIxk/frzlnK+vL++++y6JiYlMmzaNadOmMWzYMCpUqJCtnfj4eD766CNeeuklyzFPT0+b7HMWExPDnDlzeOqppyzHKleuzLJly2jdujU7d+7krbfeomvXrjYfl5nJZOLVV19l+vTpuLi4sHDhQnr16pWlzKlTp5g0aRLu7u5s2rSJ+vXrW845OzsTEhLCjh07uPfee/nll19Yu3Yt3bp1s/byiIiIiIiIiIiIiEgpZNXaa6dOnWL//v22ikVuI76+vpYEReZlFPft28fNmzdp1qwZHTp0yHY+KSmJvXv3AtmTY3kJCgqifv36mEwm9uzZY4shFLmVK1eSmpqKm5tbrsuNjhkzBldXV1JSUlixYkWOZXx9fXn++eeLJMbKlSszaNCgbMcdHBwYM2YMAMeOHePIkSOWc7YaF2Qsz9ivXz+mT5+Ol5cX69evz5YYg4x93tLS0ujQoUOWxFhmXl5eloTYxo0bc+0TMj6HsbGxWV4iIiIiIiIiIiIicnuwzcZEubhy5Yr+qHwHa9OmDZA1+WV+36ZNG5o2bYqrqyu7du0iLS0NgD179pCYmIi7uztNmjTJ0l56ejpLliyha9euVKlSBXd3dwwGg+X1008/AXDu3LniGJ7VDh48CMADDzyAt7d3jmV8fX25//77s5T/twceeCDLXmm2FBISkmU/uMxatGiBk5NTtthsNa64uDg6d+7M0qVLCQwMZMeOHTz00EM5lt29ezcAmzZtonz58rm+5s2bB8Dp06fzHPekSZMwGo2WV+XKlfMsLyIiIiIiIiIiIiKlh82TY8nJybzxxhuULVuW8uXL4+vry1133cXs2bNt3ZWUcOaZX7t27SI1NRX4335ibdq0sSTAYmNjLft7mc83bdo0S8InISGBtm3b0q9fP7777jvOnj1Leno6fn5+BAYGEhgYaNnP7saNG8U2RmtcvnwZyJj1lpdKlSplKf9v5cqVs21gmeQVm5ubG/7+/kDW2Gw1rlWrVrFlyxYAvvvuOxo0aJBrWxcuXAAy7v2lS5dyfZk/GwkJCXnGNmrUKGJiYiyvs2fP5lleREREREREREREREqPAiXH9u7di6OjIwEBASQlJWU7bzKZ6Nq1Kx988AHXrl3DZDJhMpn4559/ePHFFxk9erTNApeSr2XLljg5OREfH89PP/1EQkIC+/fvx2g00qhRIyD77LLc9ht799132b59O+7u7kyfPp3Tp0+TmJjI1atXiYyMJDIykgcffBDI+BzeSRwdHe0dQpFo1aqVZcbWM888w5UrV3Ita555+Oabb1q+d/J6RURE5Nm3q6sr3t7eWV4iIiIiIiIiIiIicnsoUHJs165dmEwm+vTpg6ura7bzCxcuZNOmTUDGbJZnn32W4cOHU7VqVUwmE1OmTOHo0aO2iVxKPC8vL0sSbNu2bfz4448kJyfTsmVLS0LHnATbtm0bN27csCyNaE6amX399dcAvP3227zyyitUqVIl23J/kZGRRToeWzPP+LrVMpDm80U5Qyw358+fz/VcUlISV69eBbLGZqtxBQcHExERQdWqVTl8+DCtW7fOdZZZ+fLlgVsvlygiIiIiIiIiIiIiUqDk2I8//ojBYKBr1645nv/kk08ALH/M/uyzz/jggw84cuQIdevWJT09nfnz51sdtJQemZNfmZdUNHvwwQfx8PBgz549bN26lZSUFDw9PXnggQeytGNe1i63pfVOnTrFiRMnChWjOclW3DPOMu+5FRMTk2OZ6OjoLHt4FbcdO3bkel0yL5dpHkvm97YYV/Xq1YmIiCA4OJhjx44REhKSYxK0WbNmAGzZsoXExMR8jExERERERERERERE7lQFSo79888/AJbl6zK7cuUKP//8MwaDgVGjRmWZDeLp6cno0aMxmUz8+OOPVoYspYk5EbZ37142bNiQ5RiAi4sLzZo14+bNm0ycOBGA5s2b4+TklKUdo9EIwG+//ZZjPyNHjix0jOYl86KjowvdRmF0794dJycnEhMTee+993IsM3HiRJKSknB2dqZ79+7FGh/AmTNnWLBgQbbj6enplvt17733UrduXcs5W48rODiYHTt2UL16df744w9CQkK4ePFiljJPPfUUTk5OREVFERYWlmd7ycnJxMfH51lGRERERERERERERG5fBUqOXbp0CW9vb7y8vLKd27t3r+X9o48+mu18x44dAQo9u0dKp2bNmuHi4kJiYiK//fYbAQEBWRIp8L9k2f79+4Hs+40BdOjQAYAJEyawatUqy4ylkydP0rdvX5YvX46vr2+hYqxTpw4AixcvJiEhoVBtFEZQUBDDhg0DYPLkyYSFhVkSdNHR0YwdO5b3338fgBEjRlChQoVii83MaDQyZMgQvvjiC8uMrLNnz9KnTx/LTMAJEyZkqVMU46pSpQo7duzgrrvu4s8//6RVq1ZZlnysUaMGY8eOBWDKlCkMGDAgyxKuqamp/Prrr4wfP5677rqLX3/9tXAXRERERERERERERERKvQIlx2JiYkhLS8vx3M8//wxk/BE7pz2EvLy88PT0JC4urhBhSmnl4eGRZaZhSEhItr3C/p0Myyk5NmHCBAIDA4mLi6N79+64u7vj4+ND9erVWbp0Ke+++y716tUrVIyDBw8GYOXKlfj4+FCpUiWCg4Np3rx5odoriIkTJ/LEE09gMpkYP348/v7++Pn54e/vb0k69enTh3feeafIY8nJCy+8wP33389zzz2Ht7c3fn5+VKlSheXLlwMwZswYHnvssWz1imJclSpVYseOHdSsWZO//vqLVq1aWZbbBBg7dixjx47FYDCwaNEi6tati4eHB2XLlsXNzY0GDRoQFhbG2bNns30GRUREREREREREROTOUaDkmNFo5MaNG8TGxmY7d+DAASD3PaEgY28nR0fHAoYopV3mZFfmJRXN7r//fsvSht7e3jRs2DBbmapVq3Lw4EGefvppKlasCICbmxtdunRh48aNjBo1qtDx9e/fn0WLFtG8eXM8PDy4ePEip0+f5ty5c4VuM79cXFxYtmwZK1asoGPHjvj7+xMXF4e/vz8dO3Zk1apVLFmyBGdn5yKPJbf4tm7dysSJE6lZsyZJSUkYjUYeeugh1q1bl2tyq6jGVbFiRSIiIqhVqxZ///03rVq14vTp00DG98v48eM5fPgwL7zwArVq1cLR0ZGYmBh8fX1p2rQpr7/+Onv27LHsUSYiIiIiIiIiIiIidx6DyWQy5bdwixYt2LNnD/PmzWPAgAGW4wkJCQQGBpKQkMDkyZN5/fXXs9WNi4vDaDRSuXJlyx+zRaRkCgkJYceOHYSFhREeHm7vcOwuNjYWo9GIm5ubZXlJkdvZzz//nON/qCAiIiXPwYMHOX/+PH369OHmzZv2DkfsRM9uERHr3K7PUz0fioctPz+6Z/ZXVN8HurfFx/y33JiYGMuknJwUaOZYhw4dMJlMjBs3Lst+P2+//TY3btwAoGvXrjnW/emnnwCoWbNmQboUERERERERERERERERsRmnghR+/vnnmT59OqdOneKuu+7ivvvu48KFC5w7dw6DwUC7du1yTX59++23GAwGGjdubJPARURERERERERERERERAqqQDPHypYty7JlyyhTpgxJSUns37+fs2fPYjKZqFChAp999lmO9W7evMnSpUsBaNeunfVRi4iIiIiIiIiIiIiIiBRCgWaOATz00EMcO3aMzz77jF9//RWAxo0b8+KLL+Lv759jnZ9//pmQkBCcnZ1p0aKFVQGLFKfHH3+cPXv2FKjOqlWraNq0aRFFlH+lOXYRERERERERERERkaJS4OQYQOXKlZkwYUK+yzdv3pzmzZsXpisRu7p27RqXLl0qUJ3k5OQiiqZgrIk9IiKiCCISEREREREREREREbG/QiXHRO4UpTlJVJpjFxEREREREREREREpKgXac0xERERERERERERERESkNFNyTERERERERERERERERO4YSo6JiIiIiIiIiIiIiIjIHUPJMREREREREREREREREbljKDkmIiIiWXh5edk7BBERySdPT097hyAlgJ7dIiLWuV2fp3o+FA9bfn50z+yvqL4PdG9LHoPJZDLZOwgRkZIsNjYWo9HI9u3b8fb2tnc4IkXKy8uLu+++295hiIhIPqWkpLB+/XqCgoJwcNB/+3gn0rNbRMR6t+PzVM+H4mOrz4/uWclQFN8HurfFy/y33JiYmDz/lutUjDGJiJRqdevWxd/f395hiIiIiGRTv359nJ2d7R2GiIhIqabnqVhDn5/bi+7n7a9Aqc+3336bQ4cOFVUsIiIiIiIiIiIiIiIiIkWqQMsqOjg4YDAYCAoK4tFHH6Vr1660bt0aJydNQBOR25d5Km7XL7vy7dPf2jsckSIzbe80YpNi8Xb1ZsR/R5SIGOrMqkN8cjyeLp4cfeGoXWISEbFWUX6/9ljagyc9nmRRwiJW9Flh07al5CuJz24zPcNFpKTIz3fl7fY8Larngy3aLQnPLluzxefHHtfF2j5vx3sJtv8+KM7rpHuaIb/LKhYoOfbKK6+wdu1aTp06lVHZYMDb25tOnTrRtWtXOnXqpI3lROS2Y/5C9RjtwY0JN+wdjkiRqTStEufjzhPkFcS5EedKRAyGcQbLOVOYtkkVkdKpKL9fPSd4srjuYvod6Uf8mHibti0lX0l8dpvpGS4iJUV+vitvt+dpUT0fbNFuSXh22ZotPj/2uC7W9nk73kuw/fdBcV4n3dMM+U2OFWhZxQ8//JB//vmH3377jXHjxnHfffcRExPD0qVL6du3LwEBAXTo0IFPP/2U8+fPWz0IEREREREREREREREREVsqUHLMrG7duowdO5aff/6ZM2fO8Mknn/DQQw9hMpnYtGkTQ4cOpUqVKjzwwAO8++67HD2qJRRERERERERERERERETE/gqVHMusUqVKvPDCC2zatIkrV66wZMkSevbsiZeXFz///DNvv/029evXp0aNGrz66qvs2LGD9PR0W8QuIiIiIiIiIiIiIiIiUiBWJ8cy8/b2pnfv3nz99ddcuXKFjRs38vzzz1OxYkVOnjzJ9OnTadOmDYGBgQwaNIhDhw7ZsnsRERERERERERERERGRPNk0OZaZs7Mz7dq1Y9asWZw9e5YDBw4wevRo6tSpw9WrV1m4cCHfffddUXUvIiIiIiIiIiIiIiIikk2RJcf+rVGjRrzzzjv89ttv/P3333zwwQfUqlWruLqXUiY8PByDwUBISIi9Q5Fc9O/fH4PBwLJly+wdSp4GDx6MwWBgzpw59g5FREREREREREREREqAYkuOZVatWjVeeeUVevbsaY/uRYpNdHQ04eHhhIeHEx0dbe9wcrVmzRrCw8NZs2ZNvsofPHiQJUuWUKdOHZ544ok8y544cYJRo0bxwAMPEBAQgIuLC+XLl6dZs2aMGzeOCxcu2GAEuXvrrbdwcXHh7bffJiEhoUj7EhEREREREREREZGSzy7JMZE7RXR0NOPGjWPcuHElPjk2bty4fCfHXn31VUwmE2FhYRgMhhzLpKWl8frrr1OrVi0mT57MwYMHuX79Op6enly5coU9e/YQHh7O3XffzdSpU204mqyqVKnCoEGDuHDhQpH2IyIiIiIiIiIiIiKlg5JjIlIg+/btY+fOnZQvX57HHnssxzLp6el0796dqVOnkpqaSocOHdixYwdJSUlcu3aNmzdv8sMPP9C0aVMSEhJ4/fXXefnll4ss5sGDBwPw0UcfkZSUVGT9iIiIiIiIiIiIiEjJp+SYiBTI7NmzAejduzeOjo45lpkwYQLffvstACNHjmTDhg20bNnSUt7FxYX27duza9cuBgwYAMDHH3/MokWLiiTm++67j9q1a3P16lVWrFhRJH2IiIiIiIiIiIiISOmg5FgJsmzZMjp27EhgYCDOzs74+Phw991307VrV2bOnEliYmK2OocOHWLAgAFUrVoVNzc3fH19adq0KR9++GGuM2TCw8MxGAyEhITkGktERAQGgyHHJfP+XX/r1q107tyZgIAA3NzcqFWrFuPGjcsx3sw2bNhAu3bt8PHxwdPTk/r16zNlyhRSUlLyrFdYMTExjB8/noYNG+Lt7Y27uzt33303Q4YM4Z9//smxzqlTpyzX4dSpU7m2HRwcjMFgYP78+ZZjISEhVKtWzfLvatWqWdr69/WfP38+BoOB4OBgADZv3kzHjh0JCAjA3d2d2rVrM2HChFyvaWhoKAaDgdDQ0Fxj/Hcf8L/7vGDBAgAWLFiQJUaDwUBERISlfGxsLMuXLwegb9++OfZz+fJlJk+eDEDr1q2ZOHFirjE5ODjw+eefU6tWLQBGjRpFcnJyljK2+ryZ4/3888/zLCciIiIiIiIiIiIitzclx0qIp556it69e/PDDz9w+fJl3NzcSElJ4cSJE3z33XcMHTqUyMjILHWmT59Oo0aNWLRoEWfOnMHNzY0bN26wd+9ehg8fTuPGjbl48WKRxv3+++/Trl07NmzYQGpqKsnJyRw/fpzw8HA6depEWlpajvXM57ds2UJMTAzOzs78/vvvvPnmm7Rt2zZbgsRax44do06dOoSFhXHo0CFSUlJwdnbmxIkTzJ49m3vvvZeVK1fatE8/Pz/Kli1r+XfZsmUJDAy0vPz8/HKsN2vWLNq3b88PP/xAamoqqamp/P7774wdO5amTZty/fp1m8Xo4uJCYGAgbm5uALi5uWWJMTAwEBcXF0v5HTt2cPPmTcqUKUPDhg1zbHPevHncvHkTIM89ycxcXV0ZOXIkAOfPn89z37PCft4AWrZsCcDu3buJi4vLMyYRERERERERERERuX0pOVYC/Pjjj8ybNw8HBwfee+89rl69SlxcHDdu3CAqKoqNGzcycODALEmK77//nhEjRmAymXj00Uf5559/iI6OJj4+noULF+Ll5cXhw4fp0aNHngkDa/z222+MHDmSkSNHcvnyZa5fv050dDRvv/02ANu3b7fMSMps7dq1jBs3DoCePXty5swZrl+/TmxsLDNnzmTfvn18+umnNoszLi6ORx55hHPnzhEUFMS6deu4ceMGsbGx/PrrrzRp0oSkpCT69evHb7/9ZrN+V61axYEDByz/PnDgAJGRkZbXqlWrstW5cuUKr7zyCj169MhyXT799FNcXV05dOgQTz/9tM1ibNq0KZGRkfTq1QuAXr16ZYkxMjKSpk2bWsrv3LkTgIYNG+a6pOK2bdsA8Pf3p1WrVvmKo1u3bpYk2vbt23MsU9jPm1mjRo1wcnIiLS2N3bt35ysuEREREREREREREbn9KDlWAuzZsweAtm3b8sYbb2SZUeTv78/DDz/M/PnzqVixouX4G2+8AUCLFi1YuXKlZfk+FxcXnnzySRYvXmxpe/Xq1UUSd3R0NGPHjmXixImWGVLe3t6MGzeOxx9/HIClS5dmqzdq1CgAWrVqxddff03lypUBcHd354UXXuCjjz4iOjraZnHOmjWLkydP4uzszA8//ECnTp1wcMj46NevX59NmzYRHBxMUlISo0ePtlm/hZGQkEDTpk2zXZfBgwczc+ZMAFavXp0l6Vac9u/fD2Rct9wcO3YMgAYNGuS7XW9vb6pXrw7A0aNHcyxT2M+bmbu7OzVr1gRg7969ecaTlJREbGxslpeIiIiIiIiIiIiI3B6UHCsBfHx8gIxZQ/mZ5XX48GH++OMPAMaMGZPjDJ5HHnmExo0bA3knDKzh6urKa6+9luO5Rx991BJrZocPH+b3338HMmI3J6kye/bZZwkKCrJZnMuWLQOgR48e1KlTJ9t5Ly8vS7Jxw4YNxMTE2KzvwsjtugwaNIhKlSoB8PXXXxd3WABcuHABgICAgFzLXL16FchI7BaEOeFlrv9vhfm85daHeRy5mTRpEkaj0fIyJypFREREREREREREpPSzaXIsMTGRixcvcubMmTxfktVDDz2Em5sbhw4dokWLFsyZM4eTJ0/mWv7gwYMAODk55blsXbt27bKUt7XatWvj6emZ4znzLLdr165lOZ459hYtWuRY18HBgZCQEJvEmJycbEmYtG3bNtdy5muVnp7OL7/8YpO+CyO/16Wo7umtXLlyBSDX/dKKUmE+b/9mjts8jtyMGjWKmJgYy+vs2bOFiFhERERERERERERESiInaxtISEhgypQpLF26lBMnTtyyvMFgIDU11dpubys1atTgyy+/ZPDgwezdu9ey5FtAQACtW7emb9++dO3a1bIn0+XLl4GMWTCurq65tmueZWQub2teXl65nnNyyvho/fteFzR2a127ds0yGy+v2WiZ+yuq65Uft7ou5jHYK8bExESAPGP09/fn/Pnzuc4Ay01UVJSlfk4K83n7N3d3d+B/48iNq6trnmMUERERERERERERkdLLqplj0dHRNGnShHfeeYe//voLk8l0y1d6erqtYr+t9OvXj9OnTzN79mx69epF5cqVuXLlCsuXL6dbt260atVK+x6J3ZkTV9evX8+1zL333gvAoUOH8t1ubGws//zzD5AxQ6yomGeWFXTJRxERERERERERERG5fViVHHvnnXc4evQoTk5OjBgxgh07dvDXX39x8uTJPF+SMz8/P55//nm+/vprzpw5w4kTJxg5ciQGg4Fdu3YRHh4OQLly5YCMmTZJSUm5tnfu3Lks5c3Ms2zymj1TVPtuZY49OTk513Lnz5+3SX9+fn6WPdnM1yMnmc9lvl7mawXFc73ye13sdU/Ne43ltXzhQw89BGTsHRYREZGvdlevXo3JZAKgTZs21gWZB3Pcee2ZJiIiIiIiIiIiIiK3N6uSY2vWrMFgMPDhhx8ydepUWrRoQY0aNahatWqeL8mfGjVqMGnSJPr27QvA5s2bAbj//vuBjCXkduzYkWv9LVu2APDAAw9kOe7r6wuQ5z5K+/fvL3zgecgc+65du3Isk56enu+kyq24uLhQr149ALZu3ZprOfO1cnBwoGHDhpbj5msFuV+v//u//yM6OjrHcw4O//sRMyd/8pLXdTGZTJb7bb6O/46zsPfUHOetYjTPCjPP8spJaGgobm5uAIwfP/6WbSYlJfHee+8BGXuHdevWLc/y1jAn52vVqlVkfYiIiIiIiIiIiIhIyWZVcuz8+fM4ODgwaNAgW8VzR8pr9hf8b58kcwKjXr16liTFhAkTLHtqZbZ+/XpLMqRPnz5ZztWvXx+ACxcu5JgwuXz5Ml988UUBR5E/9erVsyQm3n333RyX2Zw7d26es7wKqnfv3gCsWLGCo0ePZjsfHx/PlClTAOjUqRNGo9FyrkyZMtSoUQOAlStX5tj+u+++m2vf3t7elve5JdByai+n67JgwQJL8qtXr15Zzpnv6YEDB3JMkP3xxx+sWrXqlnHeKsaWLVsC8NNPP+VaJjAwkDfeeAOA7du3M3r06FzLpqen8/zzz/PHH38AMHHiRFxcXPKMobBOnjzJlStXAGjVqlWR9CEiIiIiIiIiIiIiJZ9VyTE/Pz+8vLwss0SkcIYOHcoTTzzBypUruXz5suV4fHw8s2fPZuHChQB07tzZcs4802bXrl306NHDMiMmJSWFxYsXWxJiTZs2zTYTp2nTppYZfAMHDuTgwYOW/eAiIiIICQkp0r3hzMmk7du307dvX0siLDExkdmzZzN06FB8fHxs1t+QIUOoVq0aKSkpdOzYkQ0bNljGd+TIEdq3b8/JkydxdXVlwoQJ2eqbr+XcuXOZNWsWN2/eBDJmaT3zzDMsW7YMDw+PHPv28fEhKCgIgHnz5pGamppnrB4eHvz444/Zrsvnn3/OkCFDAHj00Udp3LhxlnqPPPIInp6epKSk8MQTT/Dnn38CGZ+Hb7/9lrZt21KmTJlc+61Tpw6Q8Xk6fvx4ruVCQkIAOH36NJcuXcq1XFhYGF26dAFg0qRJdOrUiV27dlkSuSkpKWzatImWLVuyYMECAF544QUGDhyYa5vWMieCAwMDueeee4qsHxEREREREREREREp2axKjjVv3pyYmBib7Q91p0pJSeGbb76hR48eBAYG4uXlha+vL15eXgwZMoTk5GSaN2+eZQZOly5dmDZtGgaDgTVr1lC9enV8fX3x9PSkf//+xMbGUrduXb755hvLnltmDg4OfPbZZzg7O/Pnn3/ywAMP4OnpSZkyZWjdujWpqanMnDmzyMb72GOPWcaybNkyKleubEm0DhkyhMaNG1sSQbbg5eXF2rVrCQoK4ty5c3Tq1IkyZcpgNBqpV68ee/bswdXVla+++soyAyuzN998k3vvvZeUlBRefPFFPD098fX1pUqVKixcuJD58+fnuYfV4MGDAfj444/x9PSkSpUqBAcHW2a0ZRYQEMD06dNZvny55bp4e3vz/PPPk5iYSP369ZkzZ062ekajkQ8//BCDwcC+ffu455578Pb2xtPTk27dulGlShXGjx+fa4zdu3cnICCA69evU6tWLQICAggODiY4OJh9+/ZZytWqVctyjdauXZtrew4ODqxevZrhw4fj5OTEhg0baNmyJa6urvj7++Pm5kb79u3ZvXs3bm5uTJ48uUg/c5nj/fdMShERERERERERERG5s1iVHHvzzTdxcnLinXfesVU8d6SxY8fy0Ucf8dhjj3HPPffg5OREfHw85cqVo127dsydO5eIiIhsM3+GDx/OwYMH6d+/P5UrVyYhIQF3d3eaNGnC9OnTOXDgABUrVsyxz/bt27Nr1y66dOmCr68vaWlpVK5cmZEjR/Lzzz9Tvnz5Ih3zhAkT+P7772nTpg3e3t4kJSVRq1YtJk+ezNatW22+tF6dOnU4duwY4eHh3HfffTg5OZGUlESNGjUYPHgwx44do0ePHjnW9fT05Mcff2TEiBFUq1YNJycnnJ2d6d69O3v37s0xyZXZW2+9xYwZM7j//vtxdnbm3LlznD59msjIyBzLv/jii2zcuJEOHTrg4OCAg4MD99xzD+PHj2fv3r34+/vnWO/pp59m3bp1lmuamprKf/7zHyZPnsyOHTvynDnm6+vLzp076d27N0FBQcTExHD69GlOnz5NYmJilrLPP/88AIsXL85z3E5OTkybNo3ff/+dN954g0aNGuHj40NcXBz+/v7897//JSwsjBMnTvDmm2/m2Za14uPj+fbbb7PELyIiIiIiIiIiIiJ3JidrKjdq1Ij58+fz1FNPkZKSwujRo6levbqtYrtj1KhRg5deeomXXnqpwHUbNmzIokWLCtXvgw8+yHfffZfjuZCQEEwmU47nwsPDCQ8Pz7PtvOqbde7cOctSkQXto6CMRiNhYWGEhYUVuK6vry8ffPABH3zwQY7nT506lWtdBwcHXn75ZV5++eV899euXTvatWtX0DDp2LEjHTt2zPFcaGgooaGhuda95557WLp06S376N+/PyNHjmTnzp2cPn3askRnbu6++27LMqCFYYvP26pVq0hISKB169ZaUlFERERERERERETkDmdVcsycCHN0dGT+/PnMnz/fsjxebgwGA3///bc13YqIHXl5eTFy5Ejeeust3nvvPWbNmmXvkPKUnp7OlClTAJg4caKdoxERERERERERERERe7MqOZbTbJmrV69y9erVXOsYDAZruhSREmD48OF8+umnzJkzh1GjRlG5cmV7h5Srb775hmPHjtGzZ0+aNGli73BERERERERERERExM6sSo7NmzfPVnGISCni5ubGwoULiYiI4MyZMyU6OZaSkkJYWBiDBg2ydygiIiIiIiIiIiIiUgJYlRwbOHCgreIQydOePXt4/PHHC1SnadOmrFq1qogikpCQEEJCQuwdxi3179/f3iGIiIiIiIiIiIiISAliVXJMpLgkJydz6dKlAtW5du1aEUVje6GhoYSGhto7DBERERERERERERGR256SY1IqhISEYDKZ7B2G3OHaVmtr7xBEitSI/44gNikWb1fvEhND7YDaxCfH4+niabeYRESsVZTfrx1qdMjyv3JnKYnPbjM9w0WkpMjPd+Xt9jwtqueDLdotCc8uW7PF58ce18XaPm/Hewm2/z4ozuuke1owBpMNMg4mk4nVq1ezdOlSDh48yOXLlwEoV64cDzzwAH379uXRRx/FYDBYHbCISHGLjY3FaDQSFRWFv7+/vcMRERERsUhJSWH9+vV06tQJZ2dne4cjIiJSKul5KtbQ5+f2ovtZ+pn/lhsTE4O3d+6JPqtnjl26dIkePXqwZ88egCyze06fPs2ZM2dYuXIlzZo1Y/ny5ZQvX97aLkVEREREREREREREREQKxarkWHJyMu3bt+fIkSOYTCYaN25Mu3btqFSpEgDnzp1jy5Yt7N+/n927d9OxY0d++uknZVxFRERERERERERERETELqxKjn366accPnwYb29vvvrqK7p06ZKtzDvvvMP69evp27cvhw8fZvbs2bz00kvWdCsiIiIiIiIiIiIiIiJSKA7WVF6+fDkGg4GZM2fmmBgz69SpEzNnzsRkMvH1119b06WIiIiIiIiIiIiIiIhIoVmVHPvjjz9wdnamV69etyzbq1cvXFxc+OOPP6zpUkRERERERERERERERKTQrEqO3bx5Ew8PD5ycbr06o5OTEx4eHty8edOaLkVEREREREREREREREQKzarkWGBgIDExMZw5c+aWZU+dOkV0dDSBgYHWdCkiIiIiIiIiIiIiIiJSaLee8pWHli1b8tVXXzF8+HBWrFiBwWDIsZzJZGLEiBEYDAZatWplTZciIiJyB3n0UYiJAaMRvv3W3tGIiJQM06ZBbCx4e8NLL9k7GpGc6RkuIqWB+ZlqNEL16vaORkoT/T52+8h8L0eMsHc0YguffJK/cgaTyWQqbCe//vorjRo1AjISZWPGjKFly5Y4OzsDkJKSwo4dO5gwYQI7d+7EwcGBgwcPct999xW2SxGRYhcbG4vRaCQqKgp/f397hyNyR3F0hPR0cHCAtDR7RyMiUjJUqgTnz0NQEJw8mcL69evp1KmT5f+HiZQEeoaLSGlgfqbWqJHCBx/oeSr5p9/Hbh+Z7+W5cxk5Dd3P0q1ixVguXjQSExODt7d3ruWsmjl23333MXXqVF599VV27tzJww8/jJOTE2XLlgUgKiqK1NRUzPm3qVOnKjEmIiIiIiIiIiIiIiIidmPVnmMAw4cPZ+3atdSsWROTyURKSgoXL17k4sWLpKSkYDKZuPfee/nuu+945ZVXbBCyiIiIiIiIiIiIiIiISOFYNXPMrEuXLnTp0oUjR45w8OBBLl++DEC5cuW4//77qVu3ri26EREREREREREREREREbGKTZJjZnXr1lUiTEREREREREREREREREosq5dVFMnNqVOnMBgMGAwGTp06Ze9wilxycjI1atTA1dWVs2fP2jscmwkJCcFgMBAeHm7vUHIVHh6OwWAgJCQk27kOHTpgMBjYtm1b8QcmIiIiIiIiIiIiIiWOkmNWWLNmDeHh4axZs6ZU91EY4eHhhIeH3xFJr/z6+OOP+eeff3jmmWeoXLlylnOZE4X5ec2fP98+g7gNmZN6r732Gunp6fYNRkRERERERERERETsLt/LKrZp0waAqlWrMm/evCzHCsJgMLB169YC1yuJ1qxZw4IFCxg4cCDdunUrtX0Uxrhx44CMWUXBwcE5lnF2dqZmzZqW97eza9euMWHCBFxdXRk1alSeZb29vXF3d8+zzK3OF6cqVapQs2ZNypYta+9QCqVJkya0b9+ejRs38tVXXzFgwAB7hyQiIiIiIiIiIiIidpTv5FhERAQA99xzT7ZjBWEwGApcR0qnoKAgjh8/bu8wisXnn39OdHQ0PXr0oFKlSnmWnTFjBqGhocUTmA0sXLjQ3iFYbfDgwWzcuJEpU6YoOSYiIiIiIiIiIiJyh8t3ciwsLAwgy+wR8zGRO5nJZOLzzz8HoH///naORnLSqVMn/Pz8OHbsGLt376ZZs2b2DklERERERERERERE7CTfe46FhYURFhbGiy++mO1YQV8l2bJly+jYsSOBgYE4Ozvj4+PD3XffTdeuXZk5cyaJiYlERERgMBhYsGABAAsWLMi2Z1TmWXWRkZF8/PHHPProo9SqVQuj0Yi7uzt33XUXzzzzDMeOHcsWR0H7MDt69CjPPfccd999Nx4eHnh6elKvXj1Gjx5NVFSU1dcnNDQ0y+y/1q1bZ4kp8xKLmffZ+vfeZObxmds6fPgwffr0oWLFiri7u1OrVi2mTp1Kamqqpc7u3bvp1q0bFSpUwM3NjTp16jBz5kxMJlOeMRfmmoSHh2MwGAgJCQFg5cqVPPzww5QrVw4HBwfLPlYAW7Zs4eTJk/j4+NCpU6d8XMWC2bNnD05OThgMBqZPn55jmXPnzuHv74/BYODZZ5/Nci4kJASDwUB4eDjJyclMnjyZevXqUaZMGXx9fWnXrh0bNmzItf/M9f8tODjYskdafHw8b7/9NnXr1sXLyyvH+75792769+9P1apVcXNzw2g00rhxY9577z3i4+PzvA4bNmygXbt2+Pj44OnpSf369ZkyZQopKSl51gNwcXGhe/fuAJZEpoiIiIiIiIiIiIjcmfI9c+xO8NRTT1n2UwPw9PQkJSWFEydOcOLECb777js6d+6Mi4sLgYGBxMTEkJiYaPkjf2YuLi6W9yNHjrQkuZycnPD29iYhIYG///6bv//+m6+++orFixdb/nhvrl+QPgCmTJnCqFGjSE9PB8DDw4OUlBSOHDnCkSNHmDdvHuvWraNBgwaFvkZGo5HAwEAuXboEgK+vb5Y4AgICCtzmhg0bePzxx0lMTMRoNJKUlMTx48d5/fXX+fnnn1m6dClffvklgwcPJj09HW9vb5KSkjh27BhDhw7l7NmzTJ48Oce2bXFNXn31VaZNm4bBYMDHxwcHh6w55R9++AGABx98sEj2VmvatClhYWG8/fbbjBw5kpCQkCzxpqen079/f65du0atWrWYMWNGju0kJyfTtm1bdu3ahZOTE56enkRHR7Nlyxa2bNlCWFhYjgmw/Lh69SqNGjXi//7v/3BxccHDwyPL+fT0dIYPH85HH31kOebp6cmNGzc4cOAABw4cYN68eWzcuJGqVatmaz88PNyyzx2Aj48Pv//+O2+++Sbr1q3L10ywli1b8sUXX7Bx48ZCjVFEREREREREREREbg/5njmWk/HjxzNt2rR8l//oo48YP368NV0WmR9//JF58+bh4ODAe++9x9WrV4mLi+PGjRtERUWxceNGBg4ciIuLC02bNiUyMpJevXoB0KtXLyIjI7O8mjZtamn7rrvu4v333+fIkSPcvHmTq1evkpSUxNGjR+nXrx9JSUkMHDiQCxcuWOoUtI85c+bw5ptv4uHhwbvvvsvFixe5ceMGCQkJHDx4kDZt2nDx4kW6du16yxk6eZkxYwaRkZGWf69atSpLTAcOHChwm3379uXRRx/l9OnTREdHExMTw6hRowD4+uuvmTx5Mi+88AIvvPACkZGRREdHc+3aNcu+Xe+//z7/93//l61dW1yTn3/+mWnTpvHmm29y6dIlrl27xo0bNxg0aJClzM6dOwFo3LhxgceeX6NHjyYkJITk5GR69+7NjRs3LOcmTJjAjh07cHV1ZenSpdkSU2azZs3ip59+Yvbs2cTFxXH9+nXOnDlDjx49ABg3bhxr164tVHzh4eHExsayevVq4uPjuX79OmfPnqVcuXJAxizTjz76iHLlyjFz5kzLz9fNmzfZvn07DRo04M8//+Txxx+3JDLN1q5da0mM9ezZkzNnznD9+nViY2OZOXMm+/bt49NPP71ljA8++CAAly5dumP2whMRERERERERERGRHJisYDAYTBUqVMh3+eDgYJODg4M1XRaZ9957zwSYHn744XzXGThwoAkwDRw40Kq+O3fubAJM77zzTqH6iI2NNfn4+JgA0w8//JBjmZSUFFOjRo1MgGn69OlWxWsymUyACTBt37491zInT560lDt58mSWc9u3b7eca9eunSk9PT1b/RYtWljKPPPMM9nOp6ammqpVq5bjtbP2moSFhVn6HjFiRK5jTEpKMjk6OpoA04oVK3Itl/laeHt7mwIDA/N85eTcuXMmf39/E2AKDQ01mUwm048//mjpf8aMGTnWa9WqlaXvOXPmZDuflpZmatmypQkw1a5dO9f6YWFh2c5VrVrVBJgcHR1Nv/zyS65jd3R0NLm7u5t+/fXXHMvExsaaKlWqZAJMq1evznLu3nvvNQGmVq1amdLS0rLVnT17tmV8rVq1yrF9M09PTxNgmjt3bp7l/i0mJsYEmKKiogpUT0Ss5+BgMkHG/4qISIagoIzvxqAgkyk5Odm0Zs0aU3Jysr3DEslCz3ARKQ3Mz9QaNfQ8lYLR72O3j8z30mTS/bwdVKiQ8bfcmJiYPMtZNXPsduLj4wPAlStXSEtLK9a+O3fuDGTMXiuMlStXEh0dTYMGDWjfvn2OZZycnOjTpw9AiVtW7s0338yyj5lZ5rGYZ5Jl5ujoyEMPPQRk7FmWma2uiYODA2+++WausV++fNnyecnvkpKxsbFcunQpz1dOgoKCmDt3LgDz58/n008/pW/fvqSlpdGlSxdefvnlPPutXLlylhlvmcc4ZswYAI4dO8aRI0fyNY7MOnTokOvSlPPnzyctLY0OHTpQv379HMt4eXnRrVs3IOu9OHz4ML///jsAY8aMybakJcCzzz5LUFBQvuL09/cHyDJLMydJSUnExsZmeYmIiIiIiIiIiIjI7aFY9xy7du0abm5uxdllvj300EO4ublx6NAhWrRowdNPP02bNm2oVq2aTdr/7bff+Oyzz/jxxx85deoU8fHxmEymLGXOnTtXqLZ3794NwB9//EH58uVzLXfz5k0ATp8+Xah+ikpuyxEGBgYC4OfnR/Xq1fMsc/369SzHbXVN7rrrLsvSgDm5cuWK5b2fn1+u5TKbN2+eZUnIguratStDhw7lk08+4YUXXgCgQoUKWfbKy01ISEiOSUiAFi1a4OTkRGpqKgcPHqRu3boFiiuvPb/M92LTpk153gvz0paZ78XBgweBjERmixYtcqzn4OBASEgIixcvvmWcfn5+nD59Ost9y8mkSZOy7HEmIiIiIiIiIiIiIrePYkuOffPNN8TFxVGzZs3i6rJAatSowZdffsngwYPZu3cve/fuBTJmA7Vu3Zq+ffvStWvXXJMLefnkk08YNmyYZS8lg8GA0WjE1dUVyEjQxMbGZtlHqiDMs2ASExNJTEy8ZfmEhIRC9VNUvLy8cjzu5OSU5/nMZVJSUrIct9U1ySsxZm7fzHw/i9rUqVNZvXo158+fB2Du3LmULVv2lvXyml3l5uaGv78/ly5d4vLlywWOKa/rZL4XN27cyNdnPPO9MMdStmzZPK9vpUqV8hWnu7s7wC0/E6NGjWLEiBGWf8fGxlK5cuV89SEiIiIiIiIiIiIiJVuBllWcMWMG1atXt7wgY+ZM5mP/flWrVg1fX1969+6NwWCwLCFYEvXr14/Tp08ze/ZsevXqReXKlbly5QrLly+nW7dutGrVqsDLq/3xxx+88sorpKen07NnT3766ScSExO5fv06kZGRREZGMm3aNIBsM8nyy7ysX69evTCZTLd8nTp1qlD9lCa2uiaOjo559mNepg+yz14rKuvWrbMkxgB27NhRLP3mJa/rZL4Xb775Zr7uRURERJHFee3aNSDrfcuJq6sr3t7eWV4iIiIiIiIiIiIicnso0Myx6OjobEmEtLS0fCdbHnroId5+++2CdFns/Pz8eP7553n++ecB+Pvvv/nyyy9577332LVrF+Hh4ZZkVn6sWLGCtLQ0atWqxddff53jnkmRkZFWxWxeqq6kLZdoT8V1TTLvM2ZOvBSls2fP8swzzwBQr149Dh8+zJQpU2jXrh1t2rTJs27mhNq/JSUlcfXqVeDWs+UKqnz58vz555+FuhfmWKKiokhOTsbFxSXHcnmNLTPzPcrv/nAiIiIiIiIiIiIicvspUHKsW7duBAcHAxmznJ566imMRiMffvhhrnUcHBzw9vamTp061KhRw5pY7aJGjRpMmjSJs2fPsnjxYjZv3mw5Z0505TXj6+zZswDUr18/x8QYwJYtW3Ktn58+mjVrxoIFC/j555+5ePEiFSpUyH1ANmIwGCwzfUqi4romvr6+lC9fnsjISP75558i6cMsLS2Nfv36cf36de6991727dtHv379WL16NU8++SSHDx/Oc0bUjh07MJlMOS4NumvXLlJTUwG4//77bRp3s2bN2LFjB1u2bCExMbFA+w6aY0lNTWXXrl089NBD2cqkp6fna7ZZXFwcUVFRANSqVSvfMYiIiIiIiIiIiIjI7aVAyyrWr1+fgQMHMnDgQEJDQ4GMPXzMx3J6Pfnkkzz66KMlPjGWlJSU53nzXkWZE1zmpdaio6NzrWc0GgE4cuRIjomkDRs25PmH/fz00bNnT3x8fEhJSWHEiBF5JqzS09PzbCu/8hOXPRXnNWnZsiUAP/30U6HbyI8JEyawa9cuXF1d+frrr3F3d+fLL7+kUqVKXLhwgUGDBuVZ/8yZMyxYsCDb8fT0dCZOnAjAvffeS926dW0a91NPPYWTkxNRUVGEhYXlWTY5OZn4+HjLv+vVq2dJZL377ruWffsymzt3LufOnbtlHAcPHiQ9PR0nJyeaNWtWwFGIiIiIiIiIiIiIyO2iQMmxf0tPT+fChQu2isWuhg4dyhNPPMHKlSu5fPmy5Xh8fDyzZ89m4cKFAFn2TKtTpw6QMevm+PHjObbboUMHAI4dO8aLL75oWdbtxo0bfPbZZ/To0SPP2T756cPHx8cye+/rr7+mc+fO7N+/35JISE9P548//uCDDz6gdu3afP/997e8Hrdijmvx4sUkJCRY3Z6tFec1CQkJAWD//v3Whp2r3bt388477wDw/vvvWxJYfn5+fPXVVzg4OPDdd9/xySef5NqG0WhkyJAhfPHFFyQmJgIZMxv79OnD9u3bgYwEnK3VqFGDsWPHAjBlyhQGDBjA0aNHLedTU1P59ddfGT9+PHfddRe//vprlvrvvvsuANu3b6dv376WRFhiYiKzZ89m6NCh+Pj43DIO8/1p2LAhnp6eNhiZiIiIiIiIiIiIiJRGViXHbicpKSl888039OjRg8DAQLy8vPD19cXLy4shQ4aQnJxM8+bNGT16tKVO9+7dCQgI4Pr169SqVYuAgACCg4MJDg5m3759QMY+a7179wbg008/xd/fH19fX4xGI4MHD6ZWrVqEh4fnGld++gAYOHAgn376KS4uLmzYsIEmTZrg4eFB2bJlcXNz49577+W1117j+PHjOS6rV1CDBw8GYOXKlfj4+FCpUiWCg4Np3ry51W3bSnFdk+7du+Ps7Mzx48f566+/bll+2LBhlC9fPs/XsGHDLOWjo6Pp27cvaWlpdOnShZdeeilLe61atbJ8Ll9//XWOHDmSY78vvPAC999/P8899xze3t74+flRpUoVli9fDsCYMWN47LHHCnsZ8jR27FjGjh2LwWBg0aJF1K1bN8u9aNCgAWFhYZw9ezbbvXjssccs41u2bBmVK1fGz8/P8rPZuHFjhgwZcssY1q5dC0Dfvn1tP0ARERERERERERERKTWsSo7t27ePhg0b8uKLL96y7DPPPEPDhg05ePCgNV0WmbFjx/LRRx/x2GOPcc899+Dk5ER8fDzlypWjXbt2zJ07l4iICMqUKWOp4+vry86dO+nduzdBQUHExMRw+vRpTp8+bZmZAxmzqz788EPq1auHq6sraWlp1K1bl0mTJrF79+48Z7Hktw/ISFj9+eefvPbaa9SvXx9XV1eio6Px9PTk/vvv56WXXmLz5s306dPH6uvVv39/Fi1aRPPmzfHw8ODixYucPn06X8vbFafiuCblypWzJJUWL158y/KxsbFcunQpz1dMTIyl/LPPPsuZM2coX748c+fOzbHNsLAwmjZtSmJiIr179+bmzZvZyri4uLB161YmTpxIzZo1SUpKwmg08tBDD7Fu3TrLzLSiYDAYGD9+PIcPH+aFF16gVq1aODo6EhMTg6+vL02bNuX1119nz549OS55OGHCBL7//nvatGmDt7c3SUlJ1KpVi8mTJ7N161ZcXFzy7P+ff/5h7969uLu7M2DAgKIapoiIiIiIiIiIiIiUAgZTXpsx3cLLL7/MzJkzWbx4sWV2VG6+/PJLnnvuOV555RWmTZtW2C5FSqSdO3fSqlUratSowV9//WWT2Xm2EhISwo4dOwgLC8tzluLtbPz48YSFhTFo0KBcE4x5iY2NxWg0EhUVlecyqCJie46OkJ4ODg6QlmbvaERESoZKleD8eQgKgpMnU1i/fj2dOnXC2dnZ3qGJWOgZLiKlgfmZWqNGCh98oOep5J9+H7t9ZL6X585lrDCn+1m6VawYy8WLRmJiYvD29s61nFUzx3bs2AHAww8/fMuy5pk15r2NRG4nLVu25OGHH+bvv//mm2++sXc4ksmNGzf4+OOPcXV1JSwszN7hiIiIiIiIiIiIiIidWZUcO3fuHEajET8/v1uW9ff3x2g0cv78eWu6FCmxpk6dioODA+PHjyc9Pd3e4cj/98knnxAVFcXLL79M1apV7R2OiIiIiIiIiIiIiNiZkzWVb968ecu9fjIzmUzExcVZ06VIiVW3bl3mzJnDqVOnuHjxIkFBQfYOSYAyZcoQHh7OK6+8Yu9QRERERERERERERKQEsCo5Vq5cOc6ePcuFCxeoWLFinmXPnz9PbGysEgYlSPny5QtcJzIysggiuX2EhobaOwT5l6FDh9o7BBEREREREREREREpQaxKjjVp0oSzZ88yc+ZM3n333TzLzpw5E4AHH3zQmi7Fhi5dumTvEKQYRERE2DsEEREREREREREREZESw6o9x55++mlMJhNTpkzh888/z7XcZ599xpQpUzAYDDz99NPWdCk2ZDKZCvwSEREREREREREREREpzayaOdauXTt69OjBihUrGDJkCDNnzqRLly5UrVoVgNOnT/Pdd99x7NgxTCYT3bt3p2PHjjYJXERERG5/XbpATAwYjfaORESk5BgxAmJjwdvb3pGI5E7PcBEpDczPVH1XSUHp97Hbh+7l7WfoUBg9+tblrEqOASxYsACDwcA333zDkSNHOHr0aJbz5tlGvXv3Zs6cOdZ2JyIiIneQb7+1dwQiIiXPiBH/e5+SYr84RPKiZ7iIlAbmZ2pKCqxfb99YpHTR72O3j8z3Um4P+U2OWbWsIoC7uzvLli1jy5Yt9O3bl6pVq+Lq6oqbmxvBwcH069ePbdu2sWTJEtzd3a3tTkRERERERERERERERKTQrJ45ZtamTRvatGljq+ZEREREREREREREREREbM7qmWP5lZ6eznfffUe3bt2Kq0sRERERERERERERERGRLGw2cyw3f/31F3PmzGHhwoVcunSpqLsTERERERERERERERERyVWRJMcSEhJYvnw5c+bMYc+ePQCYTCYAatWqVRRdioiIiIiIiIiIiIiIiNySTZNj+/btY86cOSxfvpz4+HggIyl2zz330LNnT3r27EmdOnVs2aWIiIiIiIiIiIiIiIhIvlmdHLty5QoLFy5k7ty5HD9+HPjfLDGDwcCBAwdo1KiRtd2IiIiI2My0aRAbC97eMGLE/45t3Jjxvn37/x0v7XIaq4gUr0cfhZgYMBrh22/tHU3Jk9t3cmGPFXdZEREp2TI/h1u1uvX3uK2fSwV5zoiISPExmMyZrAIwmUysX7+euXPn8v3335OamorJZMLd3Z1u3boxcOBAOnTogMFgIC4uDg8Pj6KIXUSkWMTGxmI0GomKisLf39/e4YiIDVSqBOfPQ1AQnDuX9RhkPV7a5TRWESlejo6Qng4ODpCWZtu2U1JSWL9+PZ06dcLZ2dm2jReTvL6TC3OsuMuKiEjJlvk5XKFCzt/jmZ+n1ao52/S5VJDnjJROt8PvY/I/up+ln/lvuTExMXh7e+darkAzx/7++2/mzp3LggULuHjxIiaTCYPBQPPmzRkwYABPPPEEXl5eVgcvIiIiIiIiIiIiIiIiUhQKlBy7++67MRgMmEwmqlWrxoABAxgwYADVqlUrqvhEREREREREREREREREbKZQe469/PLLTJkyBRcXF1vHIyIiIiIiIiIiIiIiIlJkHApS2NXVFZPJxMcff0zFihV58cUX2bdvX1HFJiIiIiIiIiIiIiIiImJTBUqOXbx4kY8++oh69epx7do1Pv30U5o1a0bNmjWZOHEiZ86cKao4RURERERERERERERERKxWoOSYj48PQ4cO5dChQ/z8888MGTIEo9HIX3/9xdixY6levTpt2rRh3rx5RRXvHSc0NBSDwUBoaKjN2961axedO3cmICAAR0dHDAYD3bp1s3k/UjIEBwdjMBiYP3++Xfrv378/BoOBZcuWFWu/HTp0wGAwsG3btmLtV0RERERERERERERKpgIlxzJr0KABM2fO5OLFiyxatIhWrVphMpmIiIjgmWeesZTbtGkTqampNglWbGffvn20adOG9evXc/XqVfz8/AgMDMTX1xeA8PBwwsPDOXXqlH0DtYNTp05Zxi+2cfDgQZYsWUKdOnV44oknsp03J+6KIglsvo+vvfYa6enpNm9fREREREREREREREqXQifHzFxdXenXrx/btm3jxIkTjB49mqCgIABMJhPdu3enXLlyDBo0iPXr1ytRVkJ8+OGHpKam0qxZM6Kiorhy5QqRkZGWWX/jxo1j3Lhxd2xyzDx+sY1XX30Vk8lEWFgYBoOhWPtu0qQJ7du359ChQ3z11VfF2reIiIiIiIiIiIiIlDxWJ8cyq1atGu+88w6nT59m/fr1PP744zg5OREdHc3ChQt55JFHCAwMtGWXUkhHjhwBoHfv3vj5+dk5Grmd7du3j507d1K+fHkee+wxu8QwePBgAKZMmWKX/kVERERERERERESk5LBpcszMYDDQoUMHVqxYwfnz55k6dSq1atXCZDIRHR1dFF1KASUkJADg6elp50jkdjd79mwgIxHr6Oholxg6deqEn58fx44dY/fu3XaJQURERERERERERERKhiJJjmVWtmxZRowYwdGjR9mzZw9PP/10UXd5Rzl16hSvvPIKtWvXxtPTEw8PD+655x6GDRvGmTNnspU3GAwYDAbLcomDBg2yHDPv+ZR52bvWrVtnOR8cHGxVvCEhIRgMBsLDw0lOTmby5MnUq1ePMmXK4OvrS7t27diwYcMt21m1ahVdunQhMDAQFxcXAgMD6dKlC6tXr861jnlsoaGhmEwmvvzyS5o3b46/vz8Gg4H58+cTHBxM69atLXUyj90We2KZ24mIiCAyMpKhQ4dSrVo13NzcKF++PP369eP48eN5tpGYmMiHH35I06ZN8fX1xc3NjapVqzJgwAB+/fXXQsf27rvvYjAYcHR0tCS0zNLT01m8eDGdOnWyXPOAgAAefvhhli5dislkyrHN2NhYli9fDkDfvn0LFVfm+wawYsUKQkJC8PPzw8PDg/vuu48ZM2bkuZ+Yi4sL3bt3B+Dzzz8vVBwiIiIiIiIiIiIicntwKs7OmjRpQpMmTYqzy9va4sWLefrpp0lKSgIy9n9zcHDgzz//5M8//2TevHmsWLGChx9+2FLHvKzllStXSE9Px9vbG3d3d8t5R0dHAgMDuXTpEgC+vr64uLhYzgcEBNgk9uTkZNq2bcuuXbtwcnLC09OT6OhotmzZwpYtWwgLCyM8PDzHegMGDGDZsmUAODg4YDQaiYqKYt26daxbt44+ffqwYMECnJ2dc+zbZDLRs2dPVq5caanv4OBgGV9sbCzXr18HyLYMqNFotMn4T548SZ8+fYiMjMTd3R1nZ2cuXbrEkiVLWLVqFatXr6ZDhw7Z6p0/f54OHTpw9OhRAJydnfHw8ODMmTMsWrSIxYsX8+GHH/LSSy/lO5b09HRefvllZs6ciZubG0uWLMmy/OG1a9d47LHH2Llzp+WY+Zpv3ryZzZs38/XXX/PNN99k+awA7Nixg5s3b1KmTBkaNmxY0MuUzdChQ5k5cyYODg54e3tz8+ZNfvvtN1555RV++eUXFixYkGvdli1b8sUXX7Bx40ar4xARERERERERERGR0qvIZ45J0di8eTMDBgwgLS2NN954g5MnT3Lz5k1u3LjB8ePH6dmzJ3FxcfTs2TPLDLLIyEgiIyOpXLkyADNmzLAci4yMZM6cOURGRlrKr1q1Ksv5AwcO2CT+WbNm8dNPPzF79mzi4uK4fv06Z86coUePHgCMGzeOtWvXZqv31ltvsWzZMgwGA2PHjuXq1atcu3aNqKgo3nrrLQCWLl3K2LFjc+171apVfPvtt0ydOpXr169z7do1YmJiaN++PQcOHGDVqlXZrpf5NWPGDJuMf/jw4bi4uLBp0yZu3LhBXFwc+/fvp27duiQmJtKrVy/OnTuXpU5aWhrdu3fn6NGjGI1GvvrqK+Lj44mOjubvv/+mS5cupKenM2zYsHzNvgNISkriiSeeYObMmfj4+LBp06YsibG0tDQef/xxdu7cyX333cd3333HjRs3iI6OJj4+ngULFlCuXDnWrl3Lm2++ma19c0KtYcOGVi+puHbtWr744gumTZvG9evXuX79OlFRUTzzzDMALFy4kG3btuVa/8EHHwTg0qVLt5ydJyIiIiIiIiIiIiK3LyXHSqH09HRefPFF0tPTmTlzJu+99x7BwcGWJftq1qzJ8uXL6dq1K7GxsUybNs3eIWcTExPDrFmzeP7553FzcwOgcuXKLFu2jJYtWwJYkl1m58+ftySnRo4cyfjx4/Hx8QEyZri9++67jBgxAoBp06Zx8eLFHPuOj49n2rRpvPrqq3h7ewMZe69VqFDB5uPMzc2bN/nhhx9o166dZRnLxo0bs2XLFvz8/IiNjWXSpElZ6qxYsYL9+/cDsHz5cvr162eZqVW9enVWr17Ngw8+iMlk4o033rhlDOaE4MqVKwkKCmLXrl20aNEiS5klS5awY8cO7rnnHiIiIujSpQseHh4AlClThgEDBrB+/XoMBgOzZs3i8uXLWeqb461fv34hrlJW169f57PPPmP48OGW++bv788XX3xBo0aNgIzEaG7uvvtuyx57e/fuzbOvpKQkYmNjs7xERERERERERERE5Pag5FgptHPnTv766y/Kli1rmTWTkwEDBgCUyGXkKleuzKBBg7Idd3BwYMyYMQAcO3aMI0eOWM6tXLmS1NRU3NzcGDlyZI7tjhkzBldXV1JSUlixYkWOZXx9fXn++edtMIrC69mzJ7Vq1cp2vFy5cgwePBjAsnSkmfnf//3vf7MslWnm5OREWFgYAEePHs1y7f7twoULtGjRwpL42rNnD3Xq1MlWbs6cOQAMGTIk1yUlGzVqRO3atUlOTmb79u3Z+gHbLMdZuXJlBg4cmOO5rl27AnD48OE82/D3988SV24mTZqE0Wi0vMwzLUVERERERERERESk9FNyrBTavXs3kDHzp2LFipQvXz7H17PPPgvA6dOn7RlujkJCQiwzpv6tRYsWODllbId38OBBy3Hz+wceeMAyc+jffH19uf/++7PVzeyBBx7ItjdWcWvTps0tz129epWTJ09ajpvH07Zt21zrtm7d2rJ8YW7jP378OE2bNuXIkSP897//Zffu3VSpUiVbubS0NPbt2wdAeHh4rp+z8uXL8+effwLZP2tXrlwBwM/PL9eY8+uBBx7I9TNTsWJFIGN/tLyY4zDHlZtRo0YRExNjeZ09e7YQEYuIiIiIiIiIiIhISeRk7wCk4MyzXlJSUrh06dIty9+8ebOoQyqwoKCgXM+5ubnh7+/PpUuXsizTZ36fV12ASpUqZSn/b+XKlStouDaX1xgyn7t8+TLVqlWzvL9VXTc3N8qWLZvt2mX23nvvARAYGMimTZssSw3+27Vr10hKSgIyljTMj4SEhCz/TkxMBMDV1TVf9fPi5eWV6zlzMjUlJSXPNtzd3bPElRtXV1ebxCwiIiIiIiIiIiIiJY9mjpVCaWlpAJb9pfLzkv8xz6y6U/Xs2RMXFxcuXbrEkCFDLJ+nf8t8fMOGDfn6nIWHh2dpw7yMYX6Ta0XNPLPMHJeIiIiIiIiIiIiI3HmUHCuFypcvD5TM5RLz6/z587meS0pK4urVq0DWWV7m9+fOncuzbfP5kjBDLDd5jT/zuYKOPzExMcdrl1mnTp1YvXo1rq6ufPXVVzz55JM5Jsj8/f0tM7IK+1kz7zV2q+UOi4s5DlvsgSYiIiIiIiIiIiIipVOBkmNVq1Zl2LBhbN26NdfZJlL0mjVrBkBkZGSu+0pZy7y3U1HNOtuxY0eube/atYvU1FQAy/5hmd8fPHiQmJiYHOtGR0dn2ZusMBwc/vdjUVTj3759+y3P+fn5WZZUhP+Nf+vWrbnWjYiIsFy7vMbfqVMnvv32W9zc3Fi6dCl9+/a11DNzdnamcePGAHz33Xe3GFHO7r33XgD++eefQtW3pbi4OKKiogCoVauWnaMREREREREREREREXspUHLs7NmzfPLJJzz88MMEBATQv39/vvnmG+Lj44sqPslB69atueuuuwAYPnw4ycnJeZYvzKwdb29vICPZVBTOnDnDggULsh1PT09n4sSJQEZipW7dupZz3bt3x8nJicTERMu+Wf82ceJEkpKScHZ2pnv37oWKzTx2KLrxf/PNN/z555/ZjkdFRfHZZ58B0KtXryznevfuDcDevXvZtGlTtrqpqamMHz8egDp16lCnTp08Y2jfvj1r167F3d2d5cuX07t372x7dj333HMArF+/nvXr1+fZXk6fs5YtWwLw008/5Vm3OBw8eJD09HScnJwsCWYRERERERERERERufMUKDl26NAh3n77berXr090dDRLliyhd+/eBAQE0KlTJ2bPns2FCxeKKlb5/5ycnJg9ezZOTk78+OOPtGzZkq1bt2ZJbPzzzz/Mnj2bBx54gFmzZhW4D3NiZfHixSQkJNgsdjOj0ciQIUP44osvSExMBDKSr3369LHMnJowYUKWOkFBQQwbNgyAyZMnExYWZkleRUdHM3bsWN5//30ARowYQYUKFQoV23/+8x9cXFwA+PLLL4tk9pibmxsdOnRgy5YtlvYPHDhA27ZtiYqKwsvLi5EjR2ap0717dx588EEAnnjiCZYsWWK55ydPnqR79+7s3bsXgClTpuQrjnbt2vH999/j4eHBypUreeKJJ7IkW/v370/btm0xmUw89thjTJgwIcvP+I0bN9i+fTsvvvgi1atXz9Z+SEgIkLEs46VLl/J5dYrG/v37AWjYsCGenp52jUVERERERERERERE7KdAybH69esTFhbGL7/8wunTp/noo49o3bo1aWlp/PDDD7z44otUqVKFBx98kEmTJnHs2LGiivuO99BDD/HNN9/g5eXF/v37adu2LWXKlKFs2bK4ublRo0YNhgwZwsGDBy1LJBbE4MGDAVi5ciU+Pj5UqlSJ4OBgmjdvbpP4X3jhBe6//36ee+45vL298fPzo0qVKixfvhyAMWPG8Nhjj2WrN3HiRJ544glMJhPjx4/H398fPz8//P39Lcm0Pn368M477xQ6Ng8PD5588kkA3njjDTw9PalatSrBwcG89tprhW43s+nTp5OYmEi7du3w9PTEy8uLxo0b89tvv+Hq6srSpUupUqVKljqOjo6sXLmS2rVrExMTQ79+/fD09MTX15fq1auzdu1aHBwcmDFjBh07dsx3LG3atGH9+vWUKVOGNWvW0L17d0uCzNxnly5dSE5OZuzYsQQFBWE0GvH19cXLy4s2bdowa9Ysbty4ka3tWrVqUb9+fQDWrl1rxRWznrn/vn372jUOEREREREREREREbGvAiXHMqtcuTJDhw5ly5YtXLlyhcWLF9OjRw/KlCnDgQMHGDNmDPXq1ePuu+/m9ddfZ9euXUW2f9Odqlu3bpw4cYKwsDAaN26Mp6cn0dHRuLq6Ur9+fZ555hlWr17N66+/XuC2+/fvz6JFi2jevDkeHh5cvHiR06dPc+7cOZvE7uLiwtatW5k4cSI1a9YkKSkJo9HIQw89xLp163JNbrm4uLBs2TJWrFhBx44d8ff3Jy4uDn9/fzp27MiqVatYsmQJzs7OVsU3c+ZMwsPDLcs6njlzhtOnT1v2rLJWtWrVOHToEC+++CIBAQEkJydTrlw5+vTpw6FDh+jcuXOO9YKCgjh48CDTpk2jSZMmuLu7k5CQQOXKlXnyySf5+eefefnllwscT6tWrfjhhx/w8vLi+++/p1u3biQlJQEZy0x+9913rF+/nl69elGlShWSkpJISEggKCiIhx9+mEmTJuW4TCTA888/D2TMQrSXf/75h7179+Lu7s6AAQPsFoeIiIiIiIiIiIiI2J/BZOOMVUpKCtu2bWPNmjV89913liXYDAYD/v7+dOnSha5du9K+fXvc3d1t2bWUAiEhIezYsYOwsDDCw8PtHU6xM8/i2759u2XJwdtdXFwclSpVIi4ujpMnT1K1atVij2H8+PGEhYUxaNAg5s6dW+D6sbGxGI1GoqKi8Pf3L4IIRaS4VaoE589DUBCY/7sP8zHIery0y2msIlK8HB0hPR0cHCAtzbZtp6SksH79ejp16mT1fyBmL3l9JxfmWHGXFRGRki3zc7hChZy/xzM/T6tVc7bpc6kgzxkpnW6H38fkf3Q/Sz/z33JjYmLw9vbOtVyhZ47lxtnZmfbt2/Ppp59y7tw59u/fz6hRo7j33nuJiopi/vz5dO/enYCAAObNm2fr7kWkhDHvn2YymXjvvfeKvf8bN27w8ccf4+rqSlhYWLH3LyIiIiIiIiIiIiIli82TY//2wAMP8O6773LkyBFOnDjBBx98QLNmzUhKSuLs2bNF3b2IlADDhw+ncuXKzJkzp9h/7j/55BOioqJ4+eWX7TJrTURERERERERERERKFqfi7Kx69eoMHz6c4cOHc/XqVa5du1ac3YuInbi5ubFw4UIiIiI4c+YMlStXLra+y5QpQ3h4OK+88kqx9SkiIiIiIiIiIiIiJVexJscy8/f31949pdTjjz/Onj17ClRn1apVNG3atIgiKl7ly5cvcJ3IyMgiiKR0CQkJscs+a0OHDi32PkVERERERERERESk5LJbckxKr2vXrnHp0qUC1UlOTgYgIiKiCCIqXgUde2Ymk8mGkYiIiIiIiIiIiIiISEEpOSYFdjskuKyhBJeISOk3YgTExoK3d9ZjGzdmvG/f3j5xFYWcxioixatLF4iJAaPR3pGUTLl9Jxf2WHGXFRGRki3zc7hVq1t/j9v6uVSQ54yIiBQfg0l/6RcRyVNsbCxGo5GoqCgtBysiIiIlSkpKCuvXr6dTp044OzvbOxwREZFSSc9TsYY+P7cX3c/Sz/y33JiYGLzz+K8QHIoxJhERERERERERERERERG7UnJMRERERERERERERERE7hhKjomIiIiIiIiIiIiIiMgdQ8kxERERERERERERERERuWNYlRxzcHAgKCgo3+WrVauGk5OTNV2KiIiIiIiIiIiIiIiIFJrVM8dMJlORlhcRERERERERERERERGxlWJdVjE5ORkHB63kKCIiIiIiIiIiIiIiIvZRbGscRkdHc/nyZXx9fYurSxERKWLTpkFsLHh7w4gR9o6m5MjpuuR2rQpSVkRERESyy8/vUwX5XaywfYqIiIhI6WEwFWCdw8OHD/Prr79a/h0aGorRaGTGjBm51jGZTERHR7NixQr27NlD27Zt2bhxo1VBi4gUp9jYWIxGI1FRUfj7+9s7nBKlUiU4fx6CguDcOXtHU3LkdF1yu1YFKSsiIvJvKSkprF+/nk6dOuHs7GzvcETsIj+/TxXkd7HC9ikipZeep2INfX5uL7qfpZ/5b7kxMTF4e3vnWq5AM8dWr17N+PHjs3U0aNCgW9Y1mUwYDAZG6D+pEhERERERERERERERETspUHLMx8eHKlWqWP59+vRpHBwcqFSpUq51HBwc8Pb2pk6dOjz33HO0aNGi8NGKiIiIiIiIiIiIiIiIWKFAybFhw4YxbNgwy78dHBwICAjg5MmTNg9MRERERERERERERERExNYKlBz7t7CwMDw9PW0Vi4iIiIiIiIiIiIiIiEiRcrCmclhYGK+++qqtYimRIiIiMBgMGAwGm7cdHh6OwWAgJCTE5m1L6WTvz8TWrVsxGAx07NjRLv3b2uTJkzEYDIwdO9beoYiIiIiIiIiIiIhICWFVckzsa82aNYSHh7NmzRp7h2IXH374IeHh4fz666/2DuW2kJ6ebkl2jxs3Ls+yiYmJfPbZZ3Tp0oUqVarg7u6O0WikVq1aPPfcc2zfvr1IYz116hTh4eGEh4fnWW7o0KGULVuWadOmcf78+SKNSURERERERERERERKB6uWVTT7+++/Wb58OYcPH+batWukpKTkWtZgMLB161ZbdFssPDw8qFmzpr3DyNGaNWtYsGABAwcOpFu3bvYOp9h9+OGHnD59muDgYO677z57h1PqLViwgN9++43OnTvTuHHjXMtt3ryZp556inPnzlmOeXt7k5SUxPHjxzl+/DhffPEFHTt2ZNGiRfj7+9s81lOnTlkSeHklyDw9PXn11VcZNWoUY8eOZe7cuTaPRURERERERERERERKF6uTY+PGjWPChAmkp6djMpluWb4olicsSo0bN+b48eP2DkOkyE2ZMgWAIUOG5Fpm2bJl9O/fn9TUVIKCghg3bhyPP/44vr6+ABw/fpzPPvuMTz75hA0bNtCkSRN2795NuXLlimUMOXnmmWcYO3YsixYt4t1336VChQp2i0VERERERERERERE7M+q5NjixYstszcqVqxI+/btqVixIk5ONpmQJiLFJCIiguPHjxMQEED79u1zLPPHH3/w1FNPkZqaSt26ddm6dSsBAQFZytxzzz1Mnz6ddu3a8dhjj3HixAn69u3Lli1bimMYOSpbtizt27dn3bp1zJ07l9GjR9stFhERERERERERERGxP6v2HJs5cyYAXbt25Z9//mHOnDm88847hIWF5fkqKUJCQjAYDISHh5OSksIHH3zA/fffj4+PDwaDgYiICCIiIjAYDHnOeDty5Ai9evWifPnyuLm5Ub16dV566SUuX76cr/pmW7dupXPnzgQEBODm5katWrUYN24ciYmJWcqZ21ywYAGQsRyeuQ/zKyIiotDXZf78+RgMBoKDg4GMZfQ6duxIQEAA7u7u1K5dmwkTJmSL69/+/vtvhgwZwt133427uzve3t40bNiQ8ePHExsbm2Odf1+vQ4cO0a9fPypVqoSzszMhISGEh4djMBg4ffo0AIMGDco2fmuEhoZiMBgIDQ3FZDIxe/ZsGjdujLe3N97e3jRv3pwlS5bcsp2IiAh69uxJUFAQrq6ulC1bloceeoh58+aRlpZWqNgOHTpE+fLlMRgMtG/fnvj4+Cznjx49ynPPPcfdd9+Nh4cHnp6e1KtXj9GjRxMVFZVru1988QUAPXv2zDW5PWbMGBISEnB1deWbb77JlhjLrFOnTowZMwbI+FyvW7cuy/n8/lzk9HkODg6mdevW2cqYX6Ghodna6du3b5ZxioiIiIiIiIiIiMidy6rk2NGjRzEYDMyaNQsXFxdbxVTsEhMTCQkJ4bXXXuO3337DwcEh3wmW1atX06hRI5YvX86lS5dwdnbm4sWLfPLJJ9x3332cOnUqX+28//77tGvXjg0bNpCamkpycjLHjx8nPDycTp06ZUmmuLi4EBgYiJubGwBubm4EBgZmednqfsyaNYv27dvzww8/kJqaSmpqKr///jtjx46ladOmXL9+Pcd6y5cvp3bt2syePZsTJ07g7OxMcnIyhw4dIiwsjDp16vDHH3/k2ffKlSt58MEHWbJkCXFxcZakjaenJ4GBgTg4ZHx8vb29s43fVvr06cOQIUP4+eefcXJyIj4+nt27d9OvXz+eeuqpXJcSHTFiBK1bt2bFihVcvHgRDw8PoqOj2bZtG0899RQPP/wwcXFxBYply5YttGrVikuXLtG/f3++//57PD09LeenTJlC/fr1+eKLLzhx4gQGg4GUlBSOHDnCxIkTqVevHocOHcrWrslkYuPGjQC0aNEix74vXrzImjVrLNckP/vwDR8+HC8vL+B/iXRbCAgIsCzjCGS790ajMVudli1bAnD69Olbfu5ERERERERERERE5PZmVXLMYDDg7e1NxYoVbRWPXcycOZPDhw8zb948YmNjuXbtGleuXKFevXp51vvnn3/o378/KSkpNGzYkIMHDxIXF0dCQgKbN2/GxcWFESNG3LL/3377jZEjRzJy5EguX77M9evXiY6O5u233wZg+/btllliAE2bNiUyMpJevXoB0KtXLyIjI7O8mjZtasUVyXDlyhVeeeUVevTowZkzZ7h+/TqxsbF8+umnuLq6cujQIZ5++uls9X755Rf69+9PUlISzZo14/Dhw8TGxpKQkMDatWupUKECZ8+e5ZFHHsk28ymz0NBQ2rVrxx9//EFMTAw3b97kiy++4LXXXiMyMpLKlSsDMGPGjGzjt4U1a9awfPly3nnnHa5fv861a9e4dOkSQ4cOBWDevHl8/PHH2ep98sknTJ8+HYDnnnuOCxcucP36dWJiYpg+fTpOTk5s27aNZ599Nt+xLF26lM6dOxMXF8err77KwoULcXZ2tpyfM2cOb775Jh4eHrz77rtcvHiRGzdukJCQwMGDB2nTpg0XL16ka9eu2a7577//ztWrV4GMPfZyEhERQXp6OgDdu3fPV8yenp48/PDDAOzatYvU1NR8jzcvBw4cYNWqVZZ///vez5gxI1udSpUqWb6nduzYYZM4RERERERERERERKR0sio5ds8995CQkEBSUpKt4rGL+Ph4lixZQmhoKO7u7gD4+/vj5+eXZ72JEyeSkJBAuXLl2Lx5M40aNQIykoZt27Zl48aNJCQk3LL/6Ohoxo4dy8SJEylbtiyQMRtq3LhxPP7440BGcqS4JSQk0LRpU77++mtLIsrd3Z3BgwdbZgKtXr2aAwcOZKk3evRoUlJSuOuuu9i0aRN169YFwMHBgUceeYR169bh5OTE33//zezZs3Pt/95772Xt2rXcc889lmN33323rYeZq5iYGMaMGcOYMWPw9vYGMmYtffzxx/Tv3x8g27KXN2/etCwd2qdPHz777DPKly8PQJkyZXjllVeYNm0aAMuWLePnn3++ZRzTpk2jX79+lqU/p06dmmVmY1xcHK+99hoAK1as4K233rL06ejoSKNGjdi4cSONGjXi3LlzfPnll1na379/PwBeXl5Ur149xxiOHTtmed+gQYNbxmx23333ARk/Y+ZlMO3FHPfevXvtGoeIiIiIiIiIiIiI2JdVybFnnnmGlJQUvvnmG1vFYxe1a9fmkUceKVAdk8nEypUrARgyZEiOibSaNWvyxBNP3LItV1dXS3Lj3x599FEADh8+XKD4bGXMmDGW5QszGzRoEJUqVQLg66+/thyPjo62LNH3+uuv4+Hhka1ugwYN8pX0e/3113F0dLQqfmu4u7vnel/Ms/quXbvG5s2bLcc3b97MtWvXAAgPD8+x7gsvvECFChUA8ty7zGQy8frrr/Pqq6/i5OTEV199leNMxJUrVxIdHU2DBg1o3759jm05OTnRp08fAMv9Mbtw4QKAJTGbE/PMMshIHOdX5jYzt2EP5ljM481LUlISsbGxWV4iIiIiIiIiIiIicnuwKjn27LPP0rVrV15++WV27txpq5iKXbNmzQpc559//iE6OhqAVq1a5VouJCTklm3Vrl07y95RmZmXgjMnXIqTk5NTrntQOTg4WMZ28OBBy/FffvnFsg9X27Ztc227Xbt2QEbSLyUlJccyhbkvtnT//fdbZoz92913321JDmYev/l95cqV+c9//pNjXUdHR9q0aZOtbmYpKSkMGDCAqVOn4unpybp16+jbt2+OZXfv3g3AH3/8Qfny5XN9jR8/HiDbDK4rV64A3HKmZGlnHp95vHmZNGkSRqPR8jLPnBQRERERERERERGR0s/Jmsrjx4+nfv367Nq1i9atW9OsWTMefPBBvLy88qxnnnVTUpQrV67AdTL/gT2vPdeCgoJu2VZe18vJKeMW2Wq/poIoW7Ysrq6uuZ43j+3y5cuWY5nf5zV2c2IpNTWVa9euERgYmK1MYe6LLd3q3gUFBXHu3Lkcx3+ruubxZ66b2Z49e9izZw+QsbeZOZmYE/NMqMTExCxLPObm30t9muvkda8zzxa7evVqvj7XAFFRUTm2YQ/mJVPzc41GjRqVZZZebGysEmQiIiIiIiIiIiIitwmrkmPh4eGWvY9MJhM//vijZRZLXkpacszapfsy7/8ktmPPJRXtrW7duhgMBg4fPsyIESNo0KABNWrUyLFsWloaAL169cqyxGV+mZNW169fz7XMvffea3n/yy+/5Ds5dujQIQA8PT2pWrVqgWOzJfPsy/wk6VxdXfNMFoqIiIiIiIiIiIhI6WVVcqxly5Z3bGIoICDA8v7ChQu5LqF3/vz54grJ5qKiokhOTsbFxSXH8+axZZ7hlfn9uXPnck3onDt3DsiYGVdSl/O71b3La/zm8eXGfD632XF+fn6sXLmStm3b8uuvv9KqVSu2bduW4+esfPnyQPblEvPL/FnOa+nO1q1b4+DgQHp6OitXrszXHn3x8fGW/dhatGhhmQUJZHmfmJiIm5tbtvoxMTH5HkN+mMeX+WdXRERERERERERERO48ViXHIiIibBRG6VO9enV8fHyIjo4mIiIi173FivIaOThkbBln3uPL1lJTU9m1axcPPfRQtnMmk4kdO3YAGXtzmTVs2NCSRNm6dWuuybEtW7YAUL9+fZydnQsVX1GP/+DBg8THx+e4H9yJEycsCa7M4ze/P3fuHP/3f/+XYzIrLS2N7du3A/DAAw/k2r+/vz9bt26lXbt2/PLLL4SEhLB9+3Zq1qyZpVyzZs1YsGABP//8MxcvXqRChQoFGqd5VtiVK1dyHW+FChV49NFHWb16NV9//TWjRo3KFse/TZ8+nbi4OABeeOGFLOd8fX0t78+ePcvdd9+drf7+/ftzbdt87yHj/ucnSX/y5EkAatWqdcuyIiIiIiIiIiIiInL7crh1EcmJwWDg8ccfB2D27Nk5Lkn3119/sXz58iKLwdvbG4Do6Ogi6+Pdd98lPT092/EFCxZw9uxZIGM5PzMfHx/at28PwPvvv59tfyuA3377jZUrVwLQp0+fQsdW1OO/efMmU6dOzfHchAkTgIwZXpn3A2vXrp1l2b7w8PAc63722WeWfcJuNX4/Pz+2bt3KAw88wMWLFwkJCeGPP/7IUqZnz574+PiQkpLCiBEj8kwWpqenZ7teTZs2xdHRkfT0dA4ePJhr3XfeeQd3d3eSkpLo2bNnlv3E/m3Dhg2Wa9S6dWs6d+6c5fx//vMfyx5g5s/Cv+OcNGlSru2b7z3k7/4nJSXx22+/AdCqVatblhcRERERERERERGR25eSY1YYNWoU7u7uXLp0iYcfftiyv5LJZGLbtm20b98eDw+PIuu/Tp06AOzatYvjx4/bvH0PDw9+/PFH+vbta5kllZiYyOeff86QIUMAePTRR2ncuHGWehMmTMDZ2ZkTJ07Qvn17jhw5AmQkPNavX0+nTp1ITU2lRo0aPP/884WOzzz+FStW5LlfVmEZjUbeeecdJk2aZJkBFRUVxbBhw1iwYAEAY8eOzbIkoLu7uyUptnTpUgYPHsylS5cASEhI4KOPPuKVV14BMpKKjRo1umUcPj4+bN68mSZNmhAZGUlISAhHjx7Ncv7DDz8E4Ouvv6Zz587s37/fktRMT0/njz/+4IMPPqB27dp8//33Wdr38vKyxJHXbK3atWvz5Zdf4ujoyJEjR2jQoAFz587Nkpz6v//7P0aMGEHXrl1JTk6mevXqLFmyJNvMLmdnZ7p37w7AxIkTWb58OcnJyQD8+eefPPbYYxw+fDjXWP7zn/9Ylvv88ssvbzl78NChQyQnJ+Pk5ESzZs3yLCsiIiIiIiIiIiIitzebJccOHz7M+++/z9ChQ3n66aeznEtJSeHChQtcvHjRVt2VCHfddRcLFy7EycmJgwcP0rBhQ7y9vfH09OShhx4iOTmZadOmAeDq6mrz/rt3705AQADXr1+nVq1aBAQEEBwcTHBwMPv27bO6/YCAAKZPn87y5cupXLkyfn5+eHt78/zzz5OYmEj9+vWZM2dOtnoNGzZk0aJFuLi48OOPP1KvXj2MRiNlypShc+fOXLhwgcqVK/Pdd9/luIRffj333HMYDAb27NlDQEAAFStWtIzfFrp160bPnj1566238PX1xc/Pj3LlyvHRRx8BMGDAAF5++eVs9YYOHcrw4cOBjFliFSpUwM/PD6PRyLBhw0hJSaF169Z88cUX+Y7FaDSyadMmmjZtyuXLl2ndunWW5NHAgQP59NNPcXFxYcOGDTRp0gQPDw/Kli2Lm5sb9957L6+99hrHjx/PcQlC8wy2tWvX5hlH3759+f7776lYsSLnzp3j6aefxtfXFx8fH9zd3alZsybTp08nNTWVhx9+mH379ln2RPu3SZMmUbFiReLi4ujVqxeenp4YjUbuuecetm/fzqpVq3KNw8PDgyeffBKAN954A09PT6pWrUpwcDCvvfZatvLmcXXp0gUvL688xygiIiIiIiIiIiIitzerk2MxMTF0796dBg0aMHLkSGbNmsX8+fOzlElJSaF+/fpUrlyZY8eOWdtlidKjRw8OHjxIz549CQgIICkpicDAQIYNG8ahQ4cwGo1AxuweW/P19WXnzp307t2boKAgYmJiOH36NKdPnyYxMdEmfbz44ots3LiRDh064ODggIODA/fccw/jx49n7969liUE/61Xr14cO3aM559/nho1apCUlISTkxP33Xcf48aN4+jRo1bv/dSyZUvWrVtH27Zt8fHx4dKlS5bx28rSpUuZNWsWDRo0IDU1lTJlyvDf//6XhQsXsmDBgix7X2U2bdo0tm3bRvfu3QkMDCQ+Ph4vLy9at27N3Llz2bx5c4GTNF5eXmzcuJEWLVoQFRVFmzZtLLMVAQYPHsyff/7Ja6+9Rv369XF1dSU6OhpPT0/uv/9+XnrpJTZv3pzjUo4DBw7Ezc2NPXv2WPbmyk2HDh04ceIEs2bNolOnTgQFBZGYmIizszP/+c9/ePrpp9myZQsbN24kICAg13YqVarE/v37eeaZZwgKCgLA09OTAQMG8Msvv9xy+cOZM2cSHh5O3bp1AThz5gynT5/OttyjyWRiyZIlAFbNVBQRERERERERERGR24PBdKv1yPKQkpJCq1at2L9/Px4eHrRu3ZotW7aQlJREWlpalrJvvPEGU6dOJSwsjLCwMKsDLy1Gjx7NxIkTadOmDVu3brV3OPkyf/58Bg0aRNWqVTl16pS9wyl2oaGhLFiwgIEDB2ZL9N7OnnrqKebNm8e4ceN4++237R2OzezcuZNWrVpRo0YN/vrrrxxnzt1KbGwsRqORqKioXBPCd6pKleD8eQgKgv+/+qqQ83XJ7VoVpKyIiMi/paSkWJYud3Z2tnc4InaRn9+nCvK7WGH7FJHSS89TsYY+P7cX3c/Sz/y33JiYGLy9vXMtZ9XMsTlz5rBv3z6qV6/On3/+ydq1ay0zpf7NvL/Qzp07remyVLly5QpffvklkDHbRqQke/vtt3F1deWTTz7hxo0b9g7HZiZNmgRk7IVXmMSYiIiIiIiIiIiIiNxerEqOLV26FIPBwPTp06lYsWKeZRs0aICDgwPHjx+3pssS56OPPmLy5MmcOHGC1NRUAJKSkli/fj0tW7bk8uXLBAQE8NRTT9k5UpG8BQcH89JLL3HlyhVmzpxp73BsYv/+/fzwww80btyYXr162TscERERERERERERESkBnKypfOTIEQwGAw8//PAty7q4uGA0Grl69ao1XZY4//zzDzNmzGDUqFE4OjpiNBqJjY21JMqMRiPLly/XUmxSKowePRpPT0/KlClj71Bs4sqVK4SFhfHYY49p1piIiIiIiIiIiIiIAFYmxxISEvDy8sLFxSVf5VNSUnBysqrLEmfgwIE4Ojqyc+dOzp8/z9WrV3F3d6datWq0b9+eYcOGERQUVOxxLVu2jGHDhhWoTq9evZgxY0YRRVS8hg0bxrJlywpUZ8aMGXf87CIfH5/bak/ALl260KVLF3uHISIiIiIiIiIiIiIliFWZqrJly3Lx4kXi4+Px9PTMs+zJkyeJj4/nrrvusqbLEqdBgwY0aNDA3mFkc/PmTS5dulSgOjExMQCEhoYSGhpaBFEVn5iYmAKP/+bNmwDMnz+f+fPnF0FUIiIiIiIiIiIiIiJib1btOfbggw8CsG7duluW/fjjjwFo0aKFNV1KPoWGhmIymQr0up0SQvPnzy/w+Et7QlBERERERERERERERG7NqpljTz31FKtXr2bs2LG0aNGCihUr5ljus88+Y8aMGRgMBp577jlruhQRkRJkxAiIjQVvb3tHUrLkdF1yu1YFKSsiIiIi2eXn96mC/C5W2D5FREREpPSwKjnWuXNnunfvzsqVK7n//vvp27evZWm6zz//nNOnT/P9999z9OhRTCYTzz77rGW2mYiIlH4jRtg7gpIpp+uS27UqSFkRERERyS4/v08V5HexwvYpIiIiIqWHVckxgEWLFuHm5sbixYuZPn265fiQIUMAMJlMQMYss5kzZ1rbnYiIiIiIiIiIiIiIiEihWbXnGICbmxuLFi1i586dPPnkk9SoUQN3d3dcXFyoUqUKffv2JSIigi+//BInJ6tzcSIiIiIiIiIiIiIiIiKFZrNsVfPmzWnevLmtmhMRERERERERERERERGxOatnjomIiIiIiIiIiIiIiIiUFlYlx9q1a8dXX31FQkKCreIRERERERERERERERERKTJWJce2bt3KwIEDKV++PKGhoWzZssVWcYmIiIiIiIiIiIiIiIjYnFV7jvXv35/Vq1cTHx/PokWLWLRoERUrVqR///7079+f2rVr2ypOEREREZuaNg1iY8HbG0aMyDj26KMQEwNGI3z7rX3js6Wcxioixcf8M3joEDRooJ/FnOT2PZXT8fweK4r6+j4VESl9pk2DjRsz3rdvn//vc2ueIdY+f0REpOgZTCaTyZoGEhISWL16NQsXLmTbtm2kpaVhMBgAuO+++xg4cCB9+vQhICDAJgGLiBS32NhYjEYjUVFR+Pv72zscEbGRSpXg/HkICoJz5zKOOTpCejo4OEBamn3js6Wcxioixcf8M+jgkPEdY8ufxZSUFNavX0+nTp1wdna2TaN2kNv3VE7H83usKOrr+1REpPQxf3dD7t/nOT1PrXmGWPv8kdLldvl9TDLofpZ+5r/lxsTE4O3tnWs5q5ZVBPDw8KBfv35s3LiRs2fP8v7771OvXj1MJhOHDh1i+PDhBAUF8cgjj7B8+XKSkpKs7VJERERERERERERERESkUKxOjmVWvnx5Xn31VQ4dOsThw4d57bXXqFixIqmpqaxbt44+ffpQoUIFW3YpIiIiIiIiIiIiIiIikm82TY5lVqdOHaZMmcKZM2fYvHkz999/PyaTiZiYmKLqUkRERERERERERERERCRPTkXZ+MWLF1myZAmLFi3iyJEjRdmViIiIiIiIiIiIiIiIyC3ZPDl28+ZNVq1axcKFC9m2bRvp6emYTCYAGjZsyIABA2zdpYiIiIiIiIiIiIiIiEi+2GxZxS1btjBw4EACAwMZMGAAmzdvJi0tjaCgIN58802OHj3KwYMHefnll23VZYkSGhqKwWAgNDTU5m3v2rWLzp07ExAQgKOjIwaDgW7dutm8HykZgoODMRgMzJ8/3y799+/fH4PBwLJly+zSvy2lp6dTu3ZtnJ2d+fPPP+0djoiIiIiIiIiIiIiUAFbNHDt69CiLFi1iyZIlXLhwAQCTyYSnpyePP/44Tz75JG3atMFgMNgk2DvRvn37aNOmDampqRgMBvz9/XF0dMTX1xeA8PBwICM5FxwcbL9A7eDUqVOWBJL5Ooh1Dh48yJIlS6hTpw5PPPFEnmVPnDjBnDlz2LJlC6dOnSImJgY/Pz9q1KjBww8/zLPPPkvFihWLLNY1a9bw66+/ct999+WaLHZwcGDs2LH06dOHN954g2+//bbI4hERERERERERERGR0sGq5Fi9evUwGAyYTCYcHBxo06YNAwYM4PHHH8fDw8NWMd7RPvzwQ1JTU2nWrBlr167Fz88vy/lx48YBEBISckcmx8zjV3LMNl599VVMJhNhYWG5JrXT0tIYOXKk5bMJ4OjoiLe3N1euXOHSpUvs2bOHKVOmMG7cOF577bUiiXXNmjUsWLCAgQMH5jmT8oknnuCdd95h7dq17Ny5k5YtWxZJPCIiIiIiIiIiIiJSOli9rOK9997Le++9x5kzZ9i0aRP9+/dXYsyGjhw5AkDv3r2zJcZEbGnfvn3s3LmT8uXL89hjj+VYJj09ne7duzN16lRSU1Pp0KEDO3bsICkpiWvXrnHz5k1++OEHmjZtSkJCAq+//rrdl1J1cHDg2WefBWDKlCl2jUVERERERERERERE7M+q5Ngvv/zCkSNHeP3114t0+bQ7WUJCAgCenp52jkRud7NnzwYyErGOjo45lpkwYYJlacKRI0eyYcMGWrZsaSnv4uJC+/bt2bVrFwMGDADg448/ZtGiRcUwgtz16dMHR0dHNmzYwJkzZ+wai4iIiIiIiIiIiIjYl1XJsfvuu89GYdz+Tp06xSuvvELt2rXx9PTEw8ODe+65h2HDhuX4x3qDwYDBYODUqVMADBo06P+xd+dhUZf7/8efwzogOyIUkltmLuWuZS64F1q55O5R61Qu2THNSkuP6DG15XjSsqw0tXLNLVPMpURNzbSstCN9MxVXMGRHVpnfH/xmDgiDoMCwvB7XNVf4+dzL+74/A2O8ve/bcs1gMDBq1Kg829517tw5z/3b3WIxODgYg8FAaGgoGRkZzJs3j/vvv59q1arh7e1N9+7d2b59+03b2bhxI71798bf3x8nJyf8/f3p3bs3mzZtslrHPLZRo0ZhMplYsmQJ7du3x9fXF4PBwPLly6lduzadO3e21Mk9dnPd22FuJzw8nKioKMaPH0+dOnUwGo0EBAQwbNgwIiIiCm0jLS2Nd955h3bt2uHt7Y3RaKRWrVqMGDGCn3/++ZZje/311zEYDNjb21sSWmbZ2dmsXLmSkJAQy5z7+fnRo0cPVq9ejclkKrDNxMRE1q1bB8DQoUMLLHPlyhXmzZsH5Lzf5syZYzVGOzs7PvroIxo2bAjA1KlTycjIyFMm93O2Zvny5fnez+Hh4RgMBlasWAHAihUr8j3/8PDwPO34+/vTpUsXsrOzWbp0qdX+RERERERERERERKTyu+1tFYvDvG1bVbNy5UruvfdeFixYwH//+1/LOU2///47CxcupEmTJuzcuTNPHX9/f/z9/bGzy3lEHh4elmv+/v7Y29vj7+9vKe/t7Z3nvp+fX4nEnpGRQbdu3Zg6dSonT57EycmJ+Ph4du/eTUhIiNWzvjIyMhg8eDD9+/dn27ZtxMTE4ObmRkxMDNu2baNfv34MHTqUzMxMq32bTCYGDBjAM888w6FDhyxn2wH4+fnh7e1tKZt77P7+/nh6epbI+M+cOUPz5s1ZtGgR0dHRODo6Eh0dzapVq2jevDlff/11gfUuXrxI69atmThxIocOHSIlJQWj0ci5c+f47LPPaNmyJe+++26xYsnOzmb8+PFMmzYNo9HI+vXrGTNmjOV+bGwsnTt3Zvjw4Wzfvp0rV67g6upKTEwMu3btYujQofTp0ydfkgpg7969pKamUq1aNVq0aFFg/8uWLSM1NRWg0DPJzJydnZkyZYplPjZv3lys8VpjTrIajUYAjEZjvufv5OSUr575rDFrz0xEREREREREREREqoZiJcfs7OwIDAws8N7EiRP5+9//Xmj9vn370qVLl+J0WeHt2rWLESNGcP36dV5++WXOnDlDamoqKSkpREREMGDAAJKSkhgwYECeFWRRUVFERUURFBQEwIIFCyzXoqKiWLp0KVFRUZbyGzduzHP/yJEjJRL/+++/zw8//MDixYtJSkoiLi6Oc+fO8cQTTwAwc+ZMtmzZkq/eq6++ytq1azEYDEyfPp2rV68SGxtLTEwMr776KgCrV69m+vTpVvveuHEjX375JW+//TZxcXHExsaSkJBAz549OXLkCBs3bsw3X+bXggULSmT8EydOxMnJiZ07d5KSkkJSUhKHDx/mvvvuIy0tjUGDBnHhwoU8da5fv07//v05ceIEnp6efP755yQnJxMfH8+ff/5J7969yc7OZsKECUVafQeQnp7OwIEDWbRoEV5eXuzcuTPPuWDXr1+nX79+7Nu3j2bNmvHVV1+RkpJCfHw8ycnJrFixgho1arBlyxZeeeWVfO2bk9YtWrSwuqXit99+C4Cvry+dOnUqUtx9+vSxJNH27NlTpDo3065dO6Kiohg0aBAAgwYNyvf827Vrl69e27ZtgZztYJOTk0skFhERERERERERERGpeIq9cszatmxr1qxh+fLlt1y/MsrOzua5554jOzubRYsW8cYbb1C7dm3L1m8NGjRg3bp1PPbYYyQmJjJ//nxbh5xPQkIC77//PqNHj7as1AkKCmLt2rWWlTjmZJfZxYsXLcmpKVOmMGvWLLy8vICcFW6vv/46kyZNAmD+/Plcvny5wL6Tk5OZP38+L774Ih4eHkDO2Wt33HFHiY/TmtTUVL7++mu6d+9uSfK0adOG3bt34+PjQ2JiInPnzs1TZ/369Rw+fBiAdevWMWzYMMtKprp167Jp0ybatm2LyWTi5ZdfvmkM5oTghg0bCAwMZP/+/XTo0CFPmVWrVrF3717uvfdewsPD6d27N66urgBUq1aNESNGEBYWhsFg4P333+fKlSt56pvjbdq0qdU4fvvtNwCaN29+05jNPDw8qFu3LgAnTpwocr3SYI47Kyvrpsnj9PR0EhMT87xEREREREREREREpHIo020Vq5p9+/bxxx9/UL16dZ5++mmr5UaMGAHAjh07yiq0IgsKCuLJJ5/Md93Ozo5p06YBOUmT48ePW+5t2LCBrKwsjEajZVu9G02bNg1nZ2cyMzNZv359gWW8vb0ZPXp0CYzi1g0YMMByblZuNWrUsGxpuHbt2jz3zH9+8MEH6dGjR766Dg4OzJgxA8hJGOWeuxtdunSJDh06WBJfBw8epEmTJvnKmc/RGjt2rNUtJVu2bEnjxo3JyMjIt4rr0qVLAIVux3n16lUgZ+VYcVSvXj1PfVvx8fGxbMtpHq81c+fOxdPT0/Iyr+AUERERERERERERkYpPybFSdODAASBn5c+dd95JQEBAga9nnnkGgMjISFuGW6Dg4GCrZ0t16NABBwcHAI4ePWq5bv66devWlhVfN/L29qZVq1b56ubWunXrAs+OKkuFbQNqvnf16lXOnDljuW4eT7du3azW7dy5s2X7Qmvjj4iIoF27dhw/fpwHH3yQAwcOcNddd+Urd/36db7//nsAQkNDrb7PAgIC+P3334H877W//voLyEkgVVZ2dnaWxKF5vNZMnTqVhIQEy+v8+fNlEaKIiIiIiIiIiIiIlAEHWwdQmZlXp2RmZhIdHX3T8qmpqaUdUrFZO2MOwGg04uvrS3R0dJ5t+sxfF1YXoGbNmnnK36hGjRrFDbfEFTaG3PeuXLlCnTp1G790/QAAr95JREFULF/frK7RaKR69er55i63N954AwB/f3927tyJm5tbgeViY2NJT08HIC4urpDR/M+1a9fy/DktLQ0AZ2dnq3V8fX25ePFisVeAxcTEWOrbmouLC3FxcZbxWuPs7FzoXIiIiIiIiIiIiIhIxaWVY6Xo+vXrAJbzpYrykv8xr6yqqgYMGICTkxPR0dGMHTvW8n66Ue7r27dvL9L7LDQ0NE8b5sRVYcm1Ro0aAXDs2LEijyExMZHTp08D0Lhx4yLXKy2xsbFA+UjUiYiIiIiIiIiIiIhtKDlWigICAoDyuV1iUV28eNHqvfT0dMsqotyrvMxfX7hwodC2zffLwwoxawobf+57xR1/WlpagXOXW0hICJs2bcLZ2ZnPP/+cv/3tbwUmyHx9fS3bW97qe8181pg5eVSQrl27AjnbSIaHhxep3U2bNlmSvjduUWmOubBVXAkJCUXqpyhSU1MtfRV2tpqIiIiIiIiIiIiIVG5KjpWihx56CICoqCir50rdLvN5YKW16mzv3r1W296/fz9ZWVkAlvPDcn999OhRq8mN+Pj4PGeT3Qo7u/+9fUtr/Hv27LnpPR8fH8uWivC/8X/zzTdW64aHh1vmrrDxh4SE8OWXX2I0Glm9ejVDhw611DNzdHSkTZs2AHz11Vc3GVHBzKvCzKu8CjJq1CiMRiMAs2bNuumcp6enW7aGvPPOO+nTp0+e+97e3gCFnud1+PBhq/fMz7+ozz73uXANGzYsUh0RERERERERERERqXyUHCtFnTt35u677wZg4sSJZGRkFFq+sFU71nh4eAA5yabScO7cOVasWJHvenZ2NnPmzAFyEiv33Xef5V7//v1xcHAgLS3Nkhy50Zw5c0hPT8fR0ZH+/fvfUmzmsUPpjf+LL77g999/z3c9JiaGDz/8EIBBgwbluTd48GAADh06xM6dO/PVzcrKYtasWQA0adKEJk2aFBpDz5492bJlCy4uLqxbt47BgweTmZmZp8yzzz4LQFhYGGFhYYW2V9D7rGPHjgD88MMPVuv5+/vz8ssvAzmJwddee81q2ezsbEaPHs3JkyeBnOft5OSUp0zTpk0BOHLkSIEJspMnT7Jx40arfRT3vW9OtPn7+9OgQYMi1RERERERERERERGRyqfYybHo6Gjs7e3zva5cuQJQ4D3zKzo6usQHUJ45ODiwePFiHBwc+O677+jYsSPffPNNnsTG6dOnWbx4Ma1bt+b9998vdh/mxMrKlSu5du1aicVu5unpydixY/n4448tW9KdP3+eIUOGWFZOzZ49O0+dwMBAJkyYAMC8efOYMWOGJYERHx/P9OnTeeuttwCYNGkSd9xxxy3Fds8991gSLkuWLCmV1WNGo5GHH36Y3bt3W9o/cuQI3bp1IyYmBnd3d6ZMmZKnTv/+/Wnbti0AAwcOZNWqVZZnfubMGfr378+hQ4cAePPNN4sUR/fu3dm6dSuurq5s2LCBgQMH5km2Dh8+nG7dumEymejbty+zZ8/m0qVLlvspKSns2bOH5557jrp16+ZrPzg4GMjZlrGw79MZM2bQu3dvAObOnUtISAj79++3bPeYmZnJzp076dixoyWpOm7cOEaOHJmvrUcffRQ3NzcyMzMZOHCgJQmZmZnJl19+Sbdu3ahWrZrVWMzv/f379xMREWG1nJk5OdapU6eblhURERERERERERGRyqvYyTGTyXTLr6qoa9eufPHFF7i7u3P48GHLL/yrV6+O0WikXr16jB07lqNHj1q2SCyOMWPGALBhwwa8vLyoWbMmtWvXpn379iUS/7hx42jVqhXPPvssHh4e+Pj4cNddd7Fu3ToApk2bRt++ffPVmzNnDgMHDsRkMjFr1ix8fX3x8fHB19fXkkwbMmQI//rXv245NldXV/72t78B8PLLL+Pm5katWrWoXbs2kydPvuV2c/vPf/5DWloa3bt3x83NDXd3d9q0acMvv/yCs7Mzq1ev5q677spTx97eng0bNtC4cWMSEhIYNmwYbm5ueHt7U7duXbZs2YKdnR0LFizgkUceKXIsXbp0ISwsjGrVqrF582b69+9vSZCZ++zduzcZGRlMnz6dwMBAPD098fb2xt3dnS5duvD++++TkpKSr+2GDRtaVnJt2bLFagx2dnZs2rSJiRMn4uDgwPbt2+nYsSPOzs74+vpiNBrp2bMnBw4cwGg0Mm/ePBYtWlRgW56enrzzzjsYDAa+//577r33Xjw8PHBzc6NPnz7cddddlhV2Benfvz9+fn7ExcXRsGFD/Pz8qF27NrVr1+b777/PUzY7O5tt27YBMHTo0MInWkREREREREREREQqNYfiFJ4xY0ZpxVGp9enTh1OnTvH++++zfft2/vjjD+Lj46lWrRr33nsvrVu3plevXoSEhBS77eHDhwPw4Ycfcvz4cS5fvkx2dnaJxe7k5MQ333zDv//9b1atWsXp06fx9PSkVatWTJo0yWrMTk5OrF27loEDB7J06VKOHj1KXFwcvr6+tGrVimeeeabApFpxLVq0iKCgIDZs2MCff/7JuXPngJxtD0tCnTp1OHbsGLNnz2br1q1cvnyZGjVq0LVrV6ZPn2717KrAwECOHj3KBx98wLp16zh58iTXrl0jKCiI4OBgJk2aRLNmzYodT6dOnfj6668JCQlh69at9OnTh02bNuHs7IyHhwdfffUV27dvZ8WKFRw6dIjo6GhMJhOBgYE0atSIzp07M3DgwALbHj16NOPGjWPlypU888wzVmNwcHBg/vz5jB07liVLlvDNN99w9uxZEhMT8fX15e6776ZHjx4888wzBAYGFjqev//979x55528/fbbHD16lMzMTO655x6GDx/OxIkTWbVqldW63t7e7Nu3j5kzZ7J//36uXLliee7mVY5me/fu5cKFCwQGBlpWvomIiIiIiIiIiIhI1WQwVdUlXVKo4OBg9u7dy4wZMwgNDbV1OGXOvIpvz549li0HK7ukpCRq1qxJUlISZ86coVatWrYOqcQ89dRTLFu2jJkzZ/LPf/6z2PUTExPx9PQkJiYGX1/fUohQRGyhZk24eBECA+HChZxr9vaQnQ12dvD/d4ytFAoaq4iUHfP3oJ1dzs+YkvxezMzMJCwsjJCQEBwdHUumURuw9nOqoOtFvVYa9fXzVESk4jH/7AbrP88L+jy9nc+Q2/38kYqlsvx9THLoeVZ85t/lJiQk4OHhYbVcsbdVFJHKyXx+mslk4o033rB1OCXm/PnzrFy5Ej8/P1544QVbhyMiIiIiIiIiIiIiNqbkmIhYTJw4kaCgIJYuXcr58+dtHU6JmDNnDhkZGYSGhhb6LwVEREREREREREREpGoo1pljIlK5GY1GPv30U8LDwzl37hxBQUG2Dum2ZGdnc9dddzF79myeffZZW4cjIiIiIiIiIiIiIuWAkmOVWL9+/Th48GCx6mzcuJF27dqVUkRlKyAgoNh1oqKiSiGSiiU4OLjSnLNmZ2fH1KlTbR2GiIiIiIiIiIiIiJQjSo5VYrGxsURHRxerTkZGBgDh4eGlEFHZKu7YczOZTCUYiYiIiIiIiIiIiIiIlBdKjlVilSHBdTuU4BIRkcJMmgSJiZD7OMLevSEhATw9bRdXaShorCJSdszfg8eOQfPm+l4siLWfUwVdL+q10qivn6ciIhXPpEmwY0fO1z17/u/azX6e385nyO1+/oiISOkzmJRBEBEpVGJiIp6ensTExODr62vrcEREREQsMjMzCQsLIyQkBEdHR1uHIyIiUiHp81Ruh94/lYueZ8Vn/l1uQkICHoX86wO7MoxJRERERERERERERERExKaUHBMREREREREREREREZEqQ8kxERERERERERERERERqTKUHBMREREREREREREREZEqQ8kxERERERERERERERERqTKUHBMREREREREREREREZEqQ8kxERERERERERERERERqTIcbB2AiIiIiEhpmT8fEhPBwwMmTbJ1NCIiUlno80VERESkYlNyTEREREQqrfnz4eJFCAzULy9FRKTk6PNFREREpGLTtooiIiIiIiIiIiIiIiJSZSg5JiIiIiIiIiIiIiIiIlWGkmMiIiIiIiIiIiIiIiJSZSg5JiIiIiIiIiIiIiIiIlWGkmMit+Hs2bMYDAYMBgNnz561dTilLiMjg3r16uHs7Mz58+dLvb/r168zf/58mjdvTrVq1SxzvXnzZkuZa9euMX36dBo2bIiLi4ulzM8//0xycjJ+fn54e3tz9erVUo9XRERERERERERERMo/B1sHIOXb5s2b+fnnn2nWrBl9+vSpsH3citDQUABGjRpF7dq1bRpLefHuu+9y+vRpxo0bR1BQUKFl9+7dy6pVq9i3bx+XL18mLS0NPz8/7r//fnr37s2oUaNwcXEptI0XXniB9957DwAnJyf8/f0BMBqNljKDBg1i69atALi4uFjKODo64ubmxosvvsjUqVOZNWsWCxYsuOWxi4iIiIiIiIiIiEjloJVjUqjNmzczc+bMPCt1KmIft2LmzJnMnDmz0BVhjo6ONGjQgAYNGuDo6Fh2wdlAbGwss2fPxtnZmalTp1otd/XqVXr16kVwcDAfffQRERERpKWlYTQauXDhAmFhYYwbN4769euza9cuq+0kJSXx4YcfAvDmm2+SlpZGVFQUUVFRPPzwwwBERERYEmNr167l2rVrljKNGzcGYPz48VSvXp0PPviAU6dOldR0iIiIiIiIiIiIiEgFpeSYyG0IDAwkIiKCiIgIAgMDbR1Oqfroo4+Ij4/n0UcfpWbNmgWWiY6O5oEHHiAsLAx7e3uef/55fvvtN9LS0oiPjycuLo5ly5YRFBTExYsXCQkJYd26dQW2FRERQWZmJgBjx47FYDDkK3P8+HEAfH19GThwYIHtuLm5MWzYMDIzM3nnnXduYeQiIiIiIiIiIiIiUpkoOSYiN2Uymfjoo48AGD58uNUyQ4cO5dSpUzg6OrJp0yYWLlxIo0aNLGW8vLwYNWoUx44do2nTpmRlZfHUU08RERGRr71r165ZvnZzcyuwT3MZa/fNzDF//vnnedoVERERERERERERkapHybEqaO3atTzyyCP4+/vj6OiIl5cX9evX57HHHmPRokWkpaURHh6OwWBgxYoVAKxYsQKDwZDnFR4ebmkzKiqKd999l8cff5yGDRvi6emJi4sLd999N08//TS//fZbvjiK24fZiRMnePbZZ6lfvz6urq64ublx//3389prrxETE3Pb8zNq1Kg8q5Q6d+6cJ6bc54+dPXvWcv3G7RfN4zO39euvvzJkyBDuvPNOXFxcaNiwIW+//TZZWVmWOgcOHKBPnz7ccccdGI1GmjRpwqJFizCZTIXGfCtzEhoaisFgIDg4GIANGzbQo0cPatSogZ2dneXMNYDdu3dz5swZvLy8CAkJKbC9rVu38u233wLw2muv8eijj1qN19fXly+++AKj0UhKSgrTp0+33Fu+fHmeuIA88x8cHGyJfdSoUQBERkbmKWO+btaqVSvq169PQkICa9eutRqXiIiIiIiIiIiIiFR+DrYOQMrWU089xbJlyyx/dnNzIzMzk1OnTnHq1Cm++uorevXqhZOTE/7+/iQkJFjOi/L09MzTlpOTk+XrKVOmWJJcDg4OeHh4cO3aNf7880/+/PNPPv/8c1auXEn//v3z1C9OH5Bz9tTUqVPJzs4GwNXVlczMTI4fP87x48dZtmwZ27Zto3nz5rc8R56envj7+xMdHQ2At7d3njj8/PyK3eb27dvp168faWlpeHp6kp6eTkREBC+99BI//vgjq1evZsmSJYwZM4bs7Gw8PDxIT0/nt99+Y/z48Zw/f5558+YV2HZJzMmLL77I/PnzMRgMeHl5YWeXN2/+9ddfA9C2bVurZ6u9//77ALi7u/Piiy/edE7q16/PkCFDWLZsGRs3biQqKoqAgABcXFzw9/cnIyODuLg4APz9/S31fHx8cHNzw9/fn9TUVBITE7Gzs8vzXG58HwF07NiRP/74g6+//ponn3zypvGJiIiIiIiIiIiISOWklWNVyHfffceyZcuws7PjjTfe4OrVqyQlJZGSkkJMTAw7duxg5MiRODk50a5dO6Kiohg0aBAAgwYNIioqKs+rXbt2lrbvvvtu3nrrLY4fP05qaipXr14lPT2dEydOMGzYMNLT0xk5ciSXLl2y1CluH0uXLuWVV17B1dWV119/ncuXL5OSksK1a9c4evQoXbp04fLlyzz22GMkJyff8jwtWLCAqKgoy5/NiRvz68iRI8Vuc+jQoTz++ONERkYSHx9PQkICU6dOBWDNmjXMmzePcePGMW7cOKKiooiPjyc2NtayAuqtt97i//7v//K1WxJz8uOPPzJ//nxeeeUVoqOjiY2NJSUlJU8Cad++fQC0adOmwDaysrLYv38/AD169LjpNodm/fr1AyA7O5u9e/cC/3sfbNy40VIu9/xv3LiRyZMnExUVxYIFCwAICgrKU8Z8Pbe2bdvmGYuIiIiIiIiIiIiIVE1KjlUhBw8eBKBbt268/PLL+Pj4WO75+vrSo0cPli9fzp133lnstqdNm8bkyZNp0qQJDg45CxLt7Oxo3Lgxn3/+Ob169SIlJYVPPvnklmJPSkpi8uTJAKxfv55XX32VgIAAAOzt7WnZsiU7duygZcuWXLhwgSVLltxSP6WldevWrF69mrvuugvIWV01Z84cOnToAMDUqVMZOXIkCxcupEaNGkDOirUlS5ZQp04dsrOzWbduXZ42S2pOkpOTmTRpEvPmzbOsvnJ2dqZWrVoAZGRkcOzYMQCaNm1aYBtnz54lJSUFoFir9po1a2b5+sSJE0WudyvMcUVFRXHmzJlS7UtEREREREREREREyi8lx6oQLy8vAP766y+uX79epn336tULyFm9dis2bNhAfHw8zZs3p2fPngWWcXBwYMiQIQDs2LHj1gItJa+88kqec8zMco/FvJIsN3t7e7p27QrknFmWW0nNiZ2dHa+88orV2K9cuWJ5v1jbUvLq1auWr319fa22daPq1asX2EZpyN1X7hWMBUlPTycxMTHPS0REREREREREREQqB505VoV07doVo9HIsWPH6NChA3//+9/p0qULderUKZH2f/nlFz788EO+++47zp49S3JyMiaTKU+ZCxcu3FLbBw4cAODkyZOW1VEFSU1NBSAyMvKW+ikt1rYjNJ+l5ePjQ926dQstYz5/y6yk5uTuu++2rFYryF9//WX5Ovdqw4omd+y5x1SQuXPnMnPmzNIOSURERERERERERERsQMmxKqRevXosWbKEMWPGcOjQIQ4dOgTkrAbq3LkzQ4cO5bHHHitwhdPNvPfee0yYMIHs7GwADAYDnp6eODs7AzkJmsTERMvWe8VlXumTlpZGWlraTctfu3btlvopLe7u7gVeN29Bae1+7jKZmZl5rpfUnBSWGDO3b2Z+njfKvVqsOCvAYmJiCmyjNLi4uFi+vtl8TZ06lUmTJln+nJiYSFBQUKnFJiIiIiIiIiIiIiJlR9sqVjHDhg0jMjKSxYsXM2jQIIKCgvjrr79Yt24dffr0oVOnTsXeQu7kyZO88MILZGdnM2DAAH744QfS0tKIi4sjKiqKqKgo5s+fD5BvJVlRmbf1GzRoECaT6aavs2fP3lI/FUlJzYm9vX2h/eROWt24es2sVq1aVKtWDYCffvqpyGMwn2UG0Lhx4yLXuxWxsbGWr2+WiHN2dsbDwyPPS0REREREREREREQqByXHqiAfHx9Gjx7NmjVrOHfuHKdOnWLKlCkYDAb2799PaGhosdpbv349169fp2HDhqxZs4bWrVvj5OSUp0xUVNRtxWzeNrC8bZdoS2U1J7nPGcudYMrN0dGRDh06ALBz506SkpKK1PbGjRuBnHPPgoODby/Qm8gdu7Wz00RERERERERERESk8lNyTKhXrx5z585l6NChAOzatctyz84u5y1S2Iqv8+fPA9C0aVNL+Rvt3r3bav2i9PHQQw8B8OOPP3L58mWr5UqSeXvJW13tVtrKak68vb0tibjTp09bLTd27FgAkpOTLSsFC/PHH3+wZs0aAPr27VvouWkl4cyZM0DONpX169cv1b5EREREREREREREpPxScqwKSU9PL/S++Uym3Aku83Zy8fHxVut5enoCcPz48QITSdu3byc8PNxq/aL0MWDAALy8vMjMzGTSpEmFJqyys7MLbauoihKXLZXlnHTs2BGAH374wWqZRx991LL66/XXX2fr1q1Wy169epUBAwaQlpaGq6sr//rXv245tqI6fPgwAC1btrRsASkiIiIiIiIiIiIiVY+SY1XI+PHjGThwIBs2bODKlSuW68nJySxevJhPP/0UgF69elnuNWnSBID9+/cTERFRYLsPP/wwAL/99hvPPfecZfu6lJQUPvzwQ5544olCz3gqSh9eXl688847AKxZs4ZevXpx+PBhsrOzgZzkz8mTJ/n3v/9N48aNC03MFJU5rpUrV3Lt2rXbbq+kleWcmJNe5gRTQQwGA6tXr6Zu3bpkZmbSt29fJkyYwMmTJy1lEhISWLFiBS1atOCXX37B3t6eJUuW0LBhw1uOrajMsXfq1KnU+xIRERERERERERGR8kvJsSokMzOTL774gieeeAJ/f3/c3d3x9vbG3d2dsWPHkpGRQfv27Xnttdcsdfr374+fnx9xcXE0bNgQPz8/ateuTe3atfn+++8B6Nq1K4MHDwbggw8+wNfXF29vbzw9PRkzZgwNGzYs9ByzovQBMHLkSD744AOcnJzYvn07DzzwAK6urlSvXh2j0UijRo2YPHkyERERli0Rb8eYMWMA2LBhA15eXtSsWZPatWvTvn372267pJTVnPTv3x9HR0ciIiL4448/rJYLCAjg+++/p2fPnmRlZbFw4UIaNWqEi4sL3t7eeHl5MWrUKM6dO8cdd9zB1q1bGTJkyC3HVVSJiYns3bsXwLJ9qIiIiIiIiIiIiIhUTUqOVSHTp09n4cKF9O3bl3vvvRcHBweSk5OpUaMG3bt355NPPiE8PDzPlnPe3t7s27ePwYMHExgYSEJCApGRkURGRpKWlmYpt3LlSt555x3uv/9+nJ2duX79Ovfddx9z587lwIEDuLm5WY2rqH1ATsLq999/Z/LkyTRt2hRnZ2fi4+Nxc3OjVatWPP/88+zatatEEi7Dhw/ns88+o3379ri6unL58mUiIyO5cOHCbbddkspiTmrUqEHfvn2BnGddGD8/P77++mu+/fZbnn76aRo0aICTkxOpqakEBgbyyCOPsGjRIk6dOmVZdVjaNmzYQFpaGm3btqVp06Zl0qeIiIiIiIiIiIiIlE8GU2EHFYmI/H/79u2jU6dO1KtXjz/++KNEVueVlS5durBnzx5WrFjBiBEjil0/MTERT09PYmJiCt0iVEREyp+aNeHiRQgMhHL271tESkRmZiZhYWGEhITg6Oho63BEqgx9vohULvo8lduh90/loudZ8Zl/l5uQkICHh4fVclo5JiJF0rFjR3r06MGff/7JF198Yetwiuzw4cPs2bOHxo0bM2zYMFuHIyIiIiIiIiIiIiI2puSYiBTZ22+/jZ2dHbNmzSI7O9vW4RSJ+by7N998E3t7e9sGIyIiIiIiIiIiIiI252DrAESk4rjvvvtYunQpZ8+e5fLlywQGBto6pEIlJyfzwAMP8PDDDxMSEmLrcERERERERERERESkHFByTCq1gICAYteJiooqhUgqj1GjRtk6hCJzc3NjxowZtg5DRERERERERERERMoRJcekUouOjrZ1CCIiIiIiIiIiIiIiUo4oOSaVmslksnUIIiIiIiIiIiIiIiJSjig5JiIiIiKV1qRJkJgIHh62jkRERCoTfb6IiIiIVGxKjomIiIhIpTVpkq0jEBGRykifLyIiIiIVm52tAxAREREREREREREREREpK0qOiYiIiIiIiIiIiIiISJWh5JiIiIiIiIiIiIiIiIhUGUqOiYiIiIiIiIiIiIiISJWh5JiIiIiIiIiIiIiIiIhUGUqOiYiIiIiIiIiIiIiISJXhYOsARERERKyZPx8SE8HDAyZNsnU0IiIiUlT6DBcRERGR8kzJMRERESm35s+HixchMFC/WBMREalI9BkuIiIiIuWZtlUUERERERERERERERGRKkPJMREREREREREREREREakylBwTERERERERERERERGRKkPJMREREREREREREREREakylBwTERERERERERERERGRKkPJMZEScPbsWQwGAwaDgbNnz9o6nFKXkZFBvXr1cHZ25vz587YOx6rs7GwaN26Mo6Mjv//+u63DEREREREREREREZFyQMkxKZLNmzcTGhrK5s2bK3QftyI0NJTQ0NAqkfQqqnfffZfTp0/z9NNPExQUVGjZvXv3Mnr0aBo2bIiXlxdGo5GgoCB69erFBx98QGpqaqnFaWdnx/Tp08nKyuLll18utX5EREREREREREREpOJQckyKZPPmzcycObPUk2Ol3cetmDlzJjNnziw0Oebo6EiDBg1o0KABjo6OZRecDcTGxjJ79mycnZ2ZOnWq1XJXr16lV69eBAcH89FHHxEREUFaWhpGo5ELFy4QFhbGuHHjqF+/Prt27Sq1eAcOHEijRo3YsmUL+/btK7V+RERERERERERERKRiUHJMpAQEBgYSERFBREQEgYGBtg6nVH300UfEx8fz6KOPUrNmzQLLREdH88ADDxAWFoa9vT3PP/88v/32G2lpacTHxxMXF8eyZcsICgri4sWLhISEsG7dulKJ187OjmeeeQaAN998s1T6EBEREREREREREZGKQ8kxESkyk8nERx99BMDw4cOtlhk6dCinTp3C0dGRTZs2sXDhQho1amQp4+XlxahRozh27BhNmzYlKyuLp556ioiIiFKJe8iQIdjb27N9+3bOnTtXKn2IiIiIiIiIiIiISMWg5FgVtnbtWh555BH8/f1xdHTEy8uL+vXr89hjj7Fo0SLS0tIIDw/HYDCwYsUKAFasWIHBYMjzCg8Pt7QZFRXFu+++y+OPP07Dhg3x9PTExcWFu+++m6effprffvstXxzF7cPsxIkTPPvss9SvXx9XV1fc3Ny4//77ee2114iJibnt+Rk1ahQGg8Hy586dO+eJqXbt2pZ7Z8+etVy/cftF8/jMbf36668MGTKEO++8ExcXFxo2bMjbb79NVlaWpc6BAwfo06cPd9xxB0ajkSZNmrBo0SJMJlOhMd/KnISGhmIwGAgODgZgw4YN9OjRgxo1amBnZ0doaKil7O7duzlz5gxeXl6EhIQU2N7WrVv59ttvAXjttdd49NFHrcbr6+vLF198gdFoJCUlhenTp+crExwcjMFgIDQ0FJPJxMcff0zbtm3x8PDA3d2dBx98kM8//7zQefH396dLly5kZ2ezdOnSQsuKiIiIiIiIiIiISOXmYOsAxDaeeuopli1bZvmzm5sbmZmZnDp1ilOnTvHVV1/Rq1cvnJyc8Pf3JyEhwXJelKenZ562nJycLF9PmTLFkuRycHDAw8ODa9eu8eeff/Lnn3/y+eefs3LlSvr375+nfnH6gJzt8aZOnUp2djYArq6uZGZmcvz4cY4fP86yZcvYtm0bzZs3v+U58vT0xN/fn+joaAC8vb3zxOHn51fsNrdv306/fv1IS0vD09OT9PR0IiIieOmll/jxxx9ZvXo1S5YsYcyYMWRnZ+Ph4UF6ejq//fYb48eP5/z588ybN6/AtktiTl588UXmz5+PwWDAy8sLO7u8+fOvv/4agLZt21o9W+39998HwN3dnRdffPGmc1K/fn2GDBnCsmXL2LhxI1FRUQQEBOQrd/36dfr27cuXX36Jg4MDrq6uJCUl8f333/P999/zxx9/MHPmTKv9dOzYkV27dvH1118XWk5EREREREREREREKjetHKuCvvvuO5YtW4adnR1vvPEGV69eJSkpiZSUFGJiYtixYwcjR47EycmJdu3aERUVxaBBgwAYNGgQUVFReV7t2rWztH333Xfz1ltvcfz4cVJTU7l69Srp6emcOHGCYcOGkZ6ezsiRI7l06ZKlTnH7WLp0Ka+88gqurq68/vrrXL58mZSUFK5du8bRo0fp0qULly9f5rHHHiM5OfmW52nBggVERUVZ/mxO3JhfR44cKXabQ4cO5fHHHycyMpL4+HgSEhKYOnUqAGvWrGHevHmMGzeOcePGERUVRXx8PLGxsYwaNQqAt956i//7v//L125JzMmPP/7I/PnzeeWVV4iOjiY2NpaUlBSefPJJS5l9+/YB0KZNmwLbyMrKYv/+/QD06NEDNze3Is1Lv379AMjOzmbv3r0Fllm0aBHh4eEsX76cxMREEhISOH/+vGVl2uzZs/njjz+s9tG2bVsAfvrpp9t6X4iIiIiIiIiIiIhIxabkWBV08OBBALp168bLL7+Mj4+P5Z6vry89evRg+fLl3HnnncVue9q0aUyePJkmTZrg4JCzMNHOzo7GjRvz+eef06tXL1JSUvjkk09uKfakpCQmT54MwPr163n11Vctq4zs7e1p2bIlO3bsoGXLlly4cIElS5bcUj+lpXXr1qxevZq77roLyFldNWfOHDp06ADA1KlTGTlyJAsXLqRGjRpAzoq1JUuWUKdOHbKzs1m3bl2eNktqTpKTk5k0aRLz5s2zrIpzdnamVq1aAGRkZHDs2DEAmjZtWmAbZ8+eJSUlBaBYq/aaNWtm+frEiRMFlomLi2PTpk2MHDkSFxcXAGrWrMkXX3zBnXfeWeDc5GaOJysr66aJzfT0dBITE/O8RERERERERERERKRyUHKsCvLy8gLgr7/+4vr162Xad69evYCc1Wu3YsOGDcTHx9O8eXN69uxZYBkHBweGDBkCwI4dO24t0FLyyiuv5DnHzCz3WMwryXKzt7ena9euQM6ZZbmV1JzY2dnxyiuvWI39ypUrlveLtS0lr169avna19fXals3ql69eoFt5PbQQw/RuXPnfNednZ0t475xbnLz8fGxbBOZe+ViQebOnYunp6flFRQUdNMxiIiIiIiIiIiIiEjFoDPHqqCuXbtiNBo5duwYHTp04O9//ztdunShTp06JdL+L7/8wocffsh3333H2bNnSU5OxmQy5Slz4cKFW2r7wIEDAJw8ebLAc6nMUlNTAYiMjLylfkqLte0I/f39gZwETt26dQstExcXl+d6Sc3J3XffbVmtVpC//vrL8nXu1YZlxbwtYkHMqxxjY2OtlrGzs8PT05O4uLg8YynI1KlTmTRpkuXPiYmJSpCJiIiIiIiIiIiIVBJKjlVB9erVY8mSJYwZM4ZDhw5x6NAhIGc1UOfOnRk6dCiPPfZYgSucbua9995jwoQJZGdnA2AwGPD09MTZ2RnISdAkJiZatt4rLvOKn7S0NNLS0m5a/tq1a7fUT2lxd3cv8Lp5C0pr93OXyczMzHO9pOaksMSYuX0z8/O8Ue7VYtZWgBUkJiamwDZyu5W5uZGLiwtxcXE3nSdnZ2erYxQRERERERERERGRik3bKlZRw4YNIzIyksWLFzNo0CCCgoL466+/WLduHX369KFTp07FPmfp5MmTvPDCC2RnZzNgwAB++OEH0tLSiIuLIyoqiqioKObPnw+QbyVZUZm39Rs0aBAmk+mmr7Nnz95SPxVJSc2Jvb19of3kTlrduHrNrFatWlSrVg2An376qchjMJ9lBtC4ceMi1ysu88qy4mz5KCIiIiIiIiIiIiKVi5JjVZiPjw+jR49mzZo1nDt3jlOnTjFlyhQMBgP79+8nNDS0WO2tX7+e69ev07BhQ9asWUPr1q1xcnLKUyYqKuq2YjZvG1jetku0pbKak9znjFnbvtDR0ZEOHToAsHPnTpKSkorU9saNG4GcrQ+Dg4NvL1ArUlNTLSvGrJ2ZJiIiIiIiIiIiIiKVn5JjYlGvXj3mzp3L0KFDAdi1a5flnp1dzlulsBVf58+fB6Bp06aW8jfavXu31fpF6eOhhx4C4Mcff+Ty5ctWy5Uk8/aSt7rarbSV1Zx4e3tbEnGnT5+2Wm7s2LEAJCcnW1YKFuaPP/5gzZo1APTt27fQc9Nux5kzZyxfN2zYsFT6EBEREREREREREZHyT8mxKig9Pb3Q+y4uLgB5ElweHh4AxMfHW63n6ekJwPHjxwtMJG3fvp3w8HCr9YvSx4ABA/Dy8iIzM5NJkyYVmrDKzs4utK2iKkpctlSWc9KxY0cAfvjhB6tlHn30Ucvqr9dff52tW7daLXv16lUGDBhAWloarq6u/Otf/7rl2G7m8OHDAPj7+9OgQYNS60dEREREREREREREyjclx6qg8ePHM3DgQDZs2MCVK1cs15OTk1m8eDGffvopAL169bLca9KkCQD79+8nIiKiwHYffvhhAH777Teee+45y9Z7KSkpfPjhhzzxxBOFnvVUlD68vLx45513AFizZg29evXi8OHDZGdnAznJn5MnT/Lvf/+bxo0bF5qYKSpzXCtXruTatWu33V5JK8s5MSe9zImmghgMBlavXk3dunXJzMykb9++TJgwgZMnT1rKJCQksGLFClq0aMEvv/yCvb09S5YsKdUVXeaYO3XqVGp9iIiIiIiIiIiIiEj5p+RYFZSZmckXX3zBE088gb+/P+7u7nh7e+Pu7s7YsWPJyMigffv2vPbaa5Y6/fv3x8/Pj7i4OBo2bIifnx+1a9emdu3afP/99wB07dqVwYMHA/DBBx/g6+uLt7c3np6ejBkzhoYNGxZ6jllR+gAYOXIkH3zwAU5OTmzfvp0HHngAV1dXqlevjtFopFGjRkyePJmIiAjLloi3Y8yYMQBs2LABLy8vatasSe3atWnfvv1tt11SympO+vfvj6OjIxEREfzxxx9WywUEBPD999/Ts2dPsrKyWLhwIY0aNcLFxQVvb2+8vLwYNWoU586d44477mDr1q0MGTLkluO6mezsbLZt2wZg2TZURERERERERERERKomJceqoOnTp7Nw4UL69u3Lvffei4ODA8nJydSoUYPu3bvzySefEB4eTrVq1Sx1vL292bdvH4MHDyYwMJCEhAQiIyOJjIwkLS3NUm7lypW888473H///Tg7O3P9+nXuu+8+5s6dy4EDB3Bzc7MaV1H7gJyE1e+//87kyZNp2rQpzs7OxMfH4+bmRqtWrXj++efZtWtXiSRchg8fzmeffUb79u1xdXXl8uXLREZGcuHChdtuuySVxZzUqFGDvn37AjnPujB+fn58/fXXfPvttzz99NM0aNAAJycnUlNTCQwM5JFHHmHRokWcOnXKsuqwtOzdu5cLFy4QGBhI7969S7UvERERERERERERESnfDKbCDigSEbnBvn376NSpE/Xq1eOPP/4okdV5pe2pp55i2bJlzJw5k3/+85/Frp+YmIinpycxMTGFbg0qIiWvZk24eBECA6Gc/ZsEEZFyITMzk7CwMEJCQnB0dLR1OCIW+gwXkYpEn6dyO/T+qVz0PCs+8+9yExIS8PDwsFpOK8dEpFg6duxIjx49+PPPP/niiy9sHc5NnT9/npUrV+Ln58cLL7xg63BERERERERERERExMaUHBORYnv77bexs7Nj1qxZZGdn2zqcQs2ZM4eMjAxCQ0ML/ZcCIiIiIiIiIiIiIlI1ONg6ABGpeO677z6WLl3K2bNnuXz5MoGBgbYOqUDZ2dncddddzJ49m2effdbW4YiIiIiIiIiIiIhIOaDkmFQJAQEBxa4TFRVVCpFUHqNGjbJ1CDdlZ2fH1KlTbR2GiIiIiIiIiIiIiJQjSo5JlRAdHW3rEEREREREREREREREpBxQckyqBJPJZOsQRETkFkyaBImJoCMDRUREKhZ9houIiIhIeabkmIiIiJRbkybZOgIRERG5FfoMFxEREZHyzM7WAYiIiIiIiIiIiIiIiIiUFSXHREREREREREREREREpMpQckxERERERERERERERESqDCXHREREREREREREREREpMpQckxERERERERERERERESqDCXHREREREREREREREREpMpQckxERERERERERERERESqDAdbByAiIiLlw/z5kJgIHh4waZKtoxEREZGb0We3iIgUpLQ/H6ri509lndPK+izL07jKOpbyNPbyzmAymUy2DkJEpDxLTEzE09OTmJgYfH19bR2OSKmpWRMuXoTAQLhwwdbRiIhIUWRmZhIWFkZISAiOjo62DkfKmD67RURKRmX7PC3tz4eq+PlT2JhL4v1jqzmtrM/ydsZV0j8PynqOK+szLQ7z73ITEhLw8PCwWk7bKoqIiIiIiIiIiIiIiEiVoeSYiIiIiIiIiIiIiIiIVBlKjomIiIiIiIiIiIiIiEiVoeSYiIiIiIiIiIiIiIiIVBlKjolUEbVr18ZgMLB8+XKb9D98+HAMBgNr164t034ffvhhDAYD3377bZn2KyIiIiIiIiIiIiLlk5JjFczy5csJDQ0lPDzc1qFUWmfPniU0NJTQ0FBbh1JpHD16lFWrVtGkSRMGDhyY7745cTdq1KgS79v8HCdPnkx2dnaJty8iIiIiIiIiIiIiFYuSYxXM8uXLmTlzppJjpejs2bPMnDmTmTNn2jqUSuPFF1/EZDIxY8YMDAZDmfb9wAMP0LNnT44dO8bnn39epn2LiIiIiIiIiIiISPmj5JiIlKrvv/+effv2ERAQQN++fW0Sw5gxYwB48803bdK/iIiIiIiIiIiIiJQfSo6JSKlavHgxAIMHD8be3t4mMYSEhODj48Nvv/3GgQMHbBKDiIiIiIiIiIiIiJQPSo79f+fPn+fll1+mWbNmeHp64uLiQr169Xj88cf59NNPSUtLy1fnwIEDDB8+nFq1amE0GvH09KRNmza88cYbJCcnF9jPqFGj8pyttH79eoKDg/Hx8cHV1ZVmzZqxYMGCfGcjLV++HIPBwN69ewGYOXMmBoMhz+vs2bMlHqPJZGLJkiW0b98eX19fDAYDy5cvL/rE3iA4OBiDwUBoaCgZGRnMmzeP+++/n2rVquHt7U337t3Zvn37TdvZuHEjvXv3xt/fHycnJ/z9/enduzebNm2yWqco46pduzadO3e21Llxjm/3TCxzO+Hh4URFRTF+/Hjq1KmD0WgkICCAYcOGERERUWgbaWlpvPPOO7Rr1w5vb2+MRiO1atVixIgR/Pzzz7cc2+uvv47BYMDe3t6S0DLLzs5m5cqVhISEWObcz8+PHj16sHr1akwmU4FtJiYmsm7dOgCGDh16S3Hd6vdMbk5OTvTv3x+Ajz766JbiEBEREREREREREZHKwcHWAZQHn332Gc8++6wlAebk5IS7uzvnzp3j9OnTbNmyhfvvv59mzZoBOYmCiRMnsnDhQksbbm5upKSkcOTIEY4cOcKyZcvYsWMHtWrVstrv+PHjWbRoEXZ2dnh4eJCamsovv/zCCy+8wE8//cSKFSssZV1cXPD39yc2NpbMzEyqVauGm5tbnvZyr8opiRhNJhMDBgxgw4YN2NnZ4enpiZ1dyeRTMzIy6NatG/v378fBwQE3Nzfi4+PZvXs3u3fvZsaMGYSGhhZYb8SIEaxduxbAEldMTAzbtm1j27ZtDBkyhBUrVuDo6Fjscfn5+ZGYmEhcXBwA/v7+eep6enqWyPjPnDnDkCFDiIqKwsXFBUdHR6Kjo1m1ahUbN25k06ZNPPzww/nqXbx4kYcffpgTJ04A4OjoiKurK+fOneOzzz5j5cqVvPPOOzz//PNFjiU7O5t//OMfLFq0CKPRyKpVq/JsfxgbG0vfvn3Zt2+f5Zp5znft2sWuXbtYs2YNX3zxBU5OTnna3rt3L6mpqVSrVo0WLVoUd5ryKc73zI06duzIxx9/zI4dO247DhERERERERERERGpuKr8yrFt27YxcuRI0tLSeOihh9i/fz+pqanExMSQkpLC/v37eeaZZ/L80n/GjBksXLiQGjVqsGjRIq5evUpSUhKpqans2bOH5s2b8/vvv9OvXz+rq1m2bNnCxx9/zPz584mLiyMuLo6YmBiefvppAD799FO+/fZbS/lBgwYRFRVFu3btAJg8eTJRUVF5XkFBQSUa48aNG/nyyy95++23iYuLIzY2loSEBHr27Hnb8/7+++/zww8/sHjxYpKSkoiLi+PcuXM88cQTQM7KuC1btuSr9+qrr7J27VoMBgPTp0/n6tWrxMbGEhMTw6uvvgrA6tWrmT59utW+CxvXkSNH2Lhxo6XsjXO8YMGC2x47wMSJE3FycmLnzp2kpKSQlJTE4cOHue+++0hLS2PQoEFcuHAhT53r16/Tv39/Tpw4gaenJ59//jnJycnEx8fz559/0rt3b7Kzs5kwYUKRVt8BpKenM3DgQBYtWoSXlxc7d+7Mkxi7fv06/fr1Y9++fTRr1oyvvvqKlJQU4uPjSU5OZsWKFdSoUYMtW7bwyiuv5GvfnFBr0aLFbW+pWNzvmRu1bdsWgOjo6JuuzhMRERERERERERGRSsxUhWVmZprq1KljAkzt27c3paen37TOmTNnTPb29iYXFxfTzz//XGCZxMREU82aNU2AadOmTXnujRw50gSYANOyZcsKrN+yZUsTYHr66afz3evUqZMJMM2YMaNMYly4cKHVfm6FOX7AtHTp0nz3r1+/burYsaMJMDVu3DjPvQsXLpgcHBxMgGnq1KkFtj9p0iQTYHJ0dDRdunQpz72ijmvPnj2WciXN3K6Tk5Ppv//9b7770dHRJh8fHxNgGjduXJ57a9assdTfsWNHvrqZmZmmtm3bmgBTkyZN8t2vVatWnvddfHy85XkEBgaajh8/nq/Op59+agJM9957ryk+Pr7AMR09etRkMBhMTk5Opujo6Dz3OnToYAJM48ePtzonuWMbOXJkvnu3+z2Tm5ubmwkwffLJJ4WWu1FCQoIJMMXExBSrnkhFExhoMkHOf0VEpGLIyMgwbd682ZSRkWHrUMQG9NktIlIyKtvnaWl/PlTFz5/CxlwS7x9bzWllfZa3M66S/nlQ1nNcWZ9pcZh/l5uQkFBouSq9cmzPnj2cOXMGgP/85z/5toQryPLly7l+/ToPP/wwTZs2LbCMu7s7ffr0AbC6hVtQUBAjR44s8N5jjz0GwK+//nrTeEozRm9vb0aPHn1LMdxMUFAQTz75ZL7rdnZ2TJs2DYDffvuN48ePW+5t2LCBrKwsjEYjU6ZMKbDdadOm4ezsTGZmJuvXry+wTGmOq6gGDBhAw4YN812vUaMGY8aMAbBsHWlm/vODDz5Ijx498tV1cHBgxowZAJw4cSLP3N3o0qVLdOjQgb1793Lvvfdy8OBBmjRpkq/c0qVLARg7dqzVLSVbtmxJ48aNycjIYM+ePfn6gZztKm9XSXzP+Pr65onLmvT0dBITE/O8RERERERERERERKRyqNJnjh08eBCAgIAAWrVqVaQ6Bw4cAGDnzp0EBARYLZecnAxAZGRkgfdbt26NwWAo8N6dd94J5Jz1dCtKMsaiJAxvRXBwsNXxd+jQAQcHB7Kysjh69Cj33XcfAEePHrXE5eHhUWBdb29vWrVqxYEDByzlb1Sa4yqqLl26FHpvzpw5XL16lTNnzlCnTh3gf+Pv1q2b1bqdO3fG3t6e69ev55m73CIiIggNDSUyMpIHH3yQrVu34uPjk6/c9evX+f777wEIDQ1lzpw5Vvs1v1dvfC/99ddfAAW2X1wl8T3j4+NDZGSkJS5r5s6dy8yZM28tUBEREREREREREREp16p0ciwqKgqAWrVqFbmOecVJSkoKKSkpNy1/7dq1Aq+7u7tbrePgkPNYMjMzixxXbiUVY40aNW6p/6IIDAy0es9oNOLr60t0dDRXrlyxXDd/XVhdgJo1a+Ypf6PSHFdRFTaG3PeuXLliSY4VZfxGo5Hq1avnm7vc3njjDQD8/f3ZuXMnbm5uBZaLjY0lPT0dgLi4uEJG8z83vpfS0tIAcHZ2LlL9wpTE94yLi0ueuKyZOnUqkyZNsvw5MTExz5l+IiIiIiIiIiIiIlJxVeltFa2tQinM9evXAXjllVcwmUw3fYWHh5dw1GUXo729fRlGXXYq67iKasCAATg5OREdHc3YsWMt75cb5b6+ffv2Ir2XQkND87Rh3sawqMm10mZeWWaOyxpnZ2c8PDzyvERERERERERERESkcqjSyTHzloPWthUsqTplrSLEePHiRav30tPTuXr1KpB3lZf56wsXLhTatvl+eVghZk1h4899r7jjT0tLK3DucgsJCWHTpk04Ozvz+eef87e//a3ABJmvr69lRdatvpfMZ43d6hahJc0cR0mcgSYiIiIiIiIiIiIiFVOVTo61a9cOyNle0dr5VDd66KGHANi9e/dNt2YrDXZ2OY/MZDJZLWPrGIti7969Vsewf/9+srKyAPKcBWf++ujRoyQkJBRYNz4+Ps/ZZLfCPMdQ+Dzfjj179tz0no+Pj2VLRfjf+L/55hurdcPDwy1zV9j4Q0JC+PLLLzEajaxevZqhQ4da6pk5OjrSpk0bAL766qubjKhgjRo1AuD06dO3VL8kJSUlERMTA0DDhg1tHI2IiIiIiIiIiIiI2EqVTo517tyZunXrAjBx4kQyMjJuWuepp57CwcGBmJgYZsyYUWjZjIwMkpOTSyRWM/P2bvHx8VbL2DrGojh37hwrVqzIdz07O5s5c+YAOYmV++67z3Kvf//+ODg4kJaWZjk360Zz5swhPT0dR0dH+vfvf0ux5d5Cr7B5vh1ffPEFv//+e77rMTExfPjhhwAMGjQoz73BgwcDcOjQIXbu3JmvblZWFrNmzQKgSZMmNGnSpNAYevbsyZYtW3BxcWHdunUMHjw435ldzz77LABhYWGEhYUV2l5Bq8M6duwIwA8//FBo3bJw9OhRsrOzcXBwsCSQRURERERERERERKTqqdLJMXt7e9577z0MBgPfffcdXbt25bvvviM7OxvISRyFh4czfPhw/vvf/wJQr149pk+fDsCbb77JiBEjOHHihKXNrKwsfv75Z2bNmsXdd9/Nzz//XKIxmxMeYWFhVrfms3WMReHp6cnYsWP5+OOPLavbzp8/z5AhQywrp2bPnp2nTmBgIBMmTABg3rx5zJgxw5K8io+PZ/r06bz11lsATJo0iTvuuOOWYrvnnntwcnICYMmSJaWyesxoNPLwww+ze/duS/tHjhyhW7duxMTE4O7uzpQpU/LU6d+/P23btgVg4MCBrFq1ypLMOnPmDP379+fQoUNAznMviu7du7N161ZcXV3ZsGEDAwcOzJMkHj58ON26dcNkMtG3b19mz57NpUuXLPdTUlLYs2cPzz33nCXRnFtwcDCQsy1jdHR0EWendBw+fBiAFi1a4ObmZtNYRERERERERERERMR2qnRyDOCRRx5h+fLlODs7891339GhQwdcXV2pXr061apVo3PnzqxcuTJPwmD69OlMnz4dg8HAZ599xn333WepYzQaad68OTNmzOD8+fMYDIYSjXfkyJEYjUZOnTrFXXfdRUBAALVr16Z27dp5zqKyZYxFMW7cOFq1asWzzz6Lh4cHPj4+3HXXXaxbtw6AadOm0bdv33z15syZw8CBAzGZTMyaNQtfX198fHzw9fW1JNOGDBnCv/71r1uOzdXVlb/97W8AvPzyy7i5uVGrVi1q167N5MmTb7nd3P7zn/+QlpZG9+7dcXNzw93dnTZt2vDLL7/g7OzM6tWrueuuu/LUsbe3Z8OGDTRu3JiEhASGDRuGm5sb3t7e1K1bly1btmBnZ8eCBQt45JFHihxLly5dCAsLo1q1amzevJn+/ftb3u/mPnv37k1GRgbTp08nMDAQT09PvL29cXd3p0uXLrz//vukpKTka7thw4Y0bdoUgC1bttzGjN0+c/9Dhw61aRwiIiIiIiIiIiIiYltVPjkGMGLECCIiInjhhRdo1KgRDg4OpKamUqtWLfr06cNnn32W54wig8HArFmz+PXXXxk3bhwNGzbE3t6ehIQEvL29adeuHS+99BIHDx4s8e3b6tevz549e3jsscfw8/Pj6tWrREZGEhkZmefMKFvGWBROTk588803zJkzhwYNGpCeno6npyddu3Zl27ZtVpNbTk5OrF27lvXr1/PII4/g6+tLUlISvr6+PPLII2zcuJFVq1bh6Oh4W/EtWrSI0NBQy7aO586dIzIy0nJm1e2qU6cOx44d47nnnsPPz4+MjAxq1KjBkCFDOHbsGL169SqwXmBgIEePHmX+/Pk88MADuLi4cO3aNYKCgvjb3/7Gjz/+yD/+8Y9ix9OpUye+/vpr3N3d2bp1K3369CE9PR3I2Wbyq6++IiwsjEGDBnHXXXeRnp7OtWvXCAwMpEePHsydO7fAbSIBRo8eDcDKlSuLHVdJOX36NIcOHcLFxYURI0bYLA4RERERERERERERsT2DqTT2jBOxIjg4mL179zJjxgxCQ0NtHU6ZM6/S27Nnj2XLwcouKSmJmjVrkpSUxJkzZ6hVq1aZxzBr1ixmzJjBk08+ySeffFLs+omJiXh6ehITE4Ovr28pRChSPtSsCRcvQmAg5FqMLCIi5VhmZiZhYWGEhITc9j8Qk4pHn90iIiWjsn2elvbnQ1X8/ClszCXx/rHVnFbWZ3k74yrpnwdlPceV9ZkWh/l3uQkJCXh4eFgtp5VjIlKqzOenmUwm3njjjTLvPyUlhXfffRdnZ2dmzJhR5v2LiIiIiIiIiIiISPmi5JiIlLqJEycSFBTE0qVLOX/+fJn2/d577xETE8M//vEPm6xaExEREREREREREZHyxcHWAYhI5Wc0Gvn0008JDw/n3LlzBAUFlVnf1apVIzQ0lBdeeKHM+hQRERERERERERGR8kvJMSm2fv36cfDgwWLV2bhxI+3atSuliMpWQEBAsetERUWVQiQVS3BwsE3OWRs/fnyZ9ykiIiIiIiIiIiIi5ZeSY1JssbGxREdHF6tORkYGAOHh4aUQUdkq7thzM5lMJRiJiIiIiIiIiIiIiIgUl5JjUmyVIcF1O5TgEhERERERERERERGpuJQcExEREQAmTYLERPDwsHUkIiIiUhT67BYRkYKU9udDVfz8qaxzWlmfZXkaV1nHUp7GXt4ZTFoGIyJSqMTERDw9PYmJicHX19fW4YiIiIhYZGZmEhYWRkhICI6OjrYOR0REpELS56ncDr1/Khc9z4rP/LvchIQEPArJEtqVYUwiIiIiIiIiIiIiIiIiNqXkmIiIiIiIiIiIiIiIiFQZSo6JiIiIiIiIiIiIiIhIlaHkmIiIiIiIiIiIiIiIiFQZSo6JiIiIiIiIiIiIiIhIlaHkmIiIiIiIiIiIiIiIiFQZDrYOQERERKS45s+HxETw8IBJk2wdjYiIiBSXPstFRCqesvzZXZ4/J8pzbMVRUuMor/NRWnGV1/HC7cdWnsdWGgwmk8lk6yBERMqzxMREPD09iYmJwdfX19bhiAhQsyZcvAiBgXDhgq2jERGxnczMTMLCwggJCcHR0dHW4YgUmT7LRaQ80edp0ZTlz+7y/DlxY2wV9f1TUnNcXp/VrcZ1s+dZXscLtx9beR5bcZh/l5uQkICHh4fVctpWUURERERERERERERERKoMJcdERERERERERERERESkylByTERERERERERERERERKoMJcdERERERERERERERESkylByTERERERERERERERERKoMJcdEypnatWtjMBhYvny5TfofPnw4BoOBtWvX2qT/kpSdnU3jxo1xdHTk999/t3U4IiIiIiIiIiIiIlIOKDlWSpYvX05oaCjh4eG2DqXSOnv2LKGhoYSGhto6lErj6NGjrFq1iiZNmjBw4MBCy546dYqpU6fSunVr/Pz8cHJyIiAggIceeoiZM2dy6dKlUo118+bNhIaGsnnzZqtl7OzsmD59OllZWbz88sulGo+IiIiIiIiIiIiIVAxKjpWS5cuXM3PmTCXHStHZs2eZOXMmM2fOtHUolcaLL76IyWRixowZGAyGAstcv36dl156iYYNGzJv3jyOHj1KXFwcbm5u/PXXXxw8eJDQ0FDq16/P22+/XWqxbt68mZkzZxaaHAMYOHAgjRo1YsuWLezbt6/U4hERERERERERERGRikHJMREB4Pvvv2ffvn0EBATQt2/fAstkZ2fTv39/3n77bbKysnj44YfZu3cv6enpxMbGkpqaytdff027du24du0aL730Ev/4xz/KeCR52dnZ8cwzzwDw5ptv2jQWEREREREREREREbE9JcdEBIDFixcDMHjwYOzt7QssM3v2bL788ksApkyZwvbt2+nYsaOlvJOTEz179mT//v2MGDECgHfffZfPPvusDEZg3ZAhQ7C3t2f79u2cO3fOprGIiIiIiIiIiIiIiG1VuOTY+fPnefnll2nWrBmenp64uLhQr149Hn/8cT799FPS0tLy1Tlw4ADDhw+nVq1aGI1GPD09adOmDW+88QbJyckF9jNq1CgMBgOjRo0CYP369QQHB+Pj44OrqyvNmjVjwYIFZGdn56m3fPlyDAYDe/fuBWDmzJkYDIY8r7Nnz5Z4jCaTiSVLltC+fXt8fX0xGAwsX7686BN7g+DgYAwGA6GhoWRkZDBv3jzuv/9+qlWrhre3N927d2f79u03bWfjxo307t0bf39/nJyc8Pf3p3fv3mzatMlqnaKMq3bt2nTu3NlS58Y5Nj+3W2VuJzw8nKioKMaPH0+dOnUwGo0EBAQwbNgwIiIiCm0jLS2Nd955h3bt2uHt7Y3RaKRWrVqMGDGCn3/++ZZje/311zEYDNjb21sSWmbZ2dmsXLmSkJAQy5z7+fnRo0cPVq9ejclkKrDNxMRE1q1bB8DQoUMLLHPlyhXmzZsHQOfOnZkzZ47VGO3s7Pjoo49o2LAhAFOnTiUjIyNPmRu/xwpi/n6qXbu25Vp4eDgGg4EVK1YAsGLFinzP/8btTP39/enSpQvZ2dksXbrUan8iIiIiIiIiIiIiUvlVqOTYZ599xj333MNbb73FL7/8QlpaGtWqVePcuXNs2bKFkSNH5klYZGdnM2HCBNq3b8/KlSs5d+4cjo6OpKSkcOTIEaZMmUKrVq2IjIwstN/x48czYMAA9u/fj8lkIjU1lV9++YUXXniBJ598Mk9ZFxcX/P39cXR0BKBatWr4+/vneeVelVMSMZpMJgYMGMAzzzzDoUOHMJlM2NmVzKPNyMigW7duTJ06lZMnT+Lk5ER8fDy7d+8mJCSE0NBQq/UGDx5M//792bZtGzExMbi5uRETE8O2bdvo168fQ4cOJTMz85bG5efnh7e3t6XsjXPs6elZIuM/c+YMzZs3Z9GiRURHR+Po6Eh0dDSrVq2iefPmfP311wXWu3jxIq1bt2bixIkcOnSIlJQUjEYj586d47PPPqNly5a8++67xYolOzub8ePHM23aNIxGI+vXr2fMmDGW+7GxsXTu3Jnhw4ezfft2rly5gqurKzExMezatYuhQ4fSp0+ffEkqgL1795Kamkq1atVo0aJFgf0vW7aM1NRUgELPJDNzdnZmypQplvm42dlgRWVOshqNRgCMRmO+5+/k5JSvXseOHQGsPjMRERERERERERERqRoqTHJs27ZtjBw5krS0NB566CH2799PamoqMTExpKSksH//fp555pk8vxSfMWMGCxcupEaNGixatIirV6+SlJREamoqe/bsoXnz5vz+++/069cv3wowsy1btvDxxx8zf/584uLiiIuLIyYmhqeffhqATz/9lG+//dZSftCgQURFRdGuXTsAJk+eTFRUVJ5XUFBQica4ceNGvvzyS95++23i4uKIjY0lISGBnj173va8v//++/zwww8sXryYpKQk4uLiOHfuHE888QSQszJuy5Yt+eq9+uqrrF27FoPBwPTp07l69SqxsbHExMTw6quvArB69WqmT59ute/CxnXkyBE2btxoKXvjHC9YsOC2xw4wceJEnJyc2LlzJykpKSQlJXH48GHuu+8+0tLSGDRoEBcuXMhT5/r16/Tv358TJ07g6enJ559/TnJyMvHx8fz555/07t3bkhQtyuo7gPT0dAYOHMiiRYvw8vJi586dec4Fu379Ov369WPfvn00a9aMr776ipSUFOLj40lOTmbFihXUqFGDLVu28Morr+Rrf9++fQC0aNHC6paK5ve5r68vnTp1KlLcffr0sSTR9uzZU6Q6N9OuXTuioqIYNGgQ8L/vudwv8/dfbm3btgXgp59+sroaU0REREREREREREQqvwqRHMvKyuL555/HZDLRvn17vv32W9q3b29ZReTk5ET79u356KOPaNSoEQBnz55l7ty5uLi4sHPnTsaNG4ePjw8Ajo6OBAcHs3fvXmrWrMlPP/1UYIIHIC4ujg8//JCJEyfi4eEB5CQHPv74Y1q2bAnkJHluRUnFmJyczPz583nxxRctMbq5uXHHHXfcUly5JSQk8P777zN69GjLSp2goCDWrl1rWYljTnaZXbx40ZKcmjJlCrNmzcLLywsAb29vXn/9dSZNmgTA/PnzuXz5cpmPq6hSU1P5+uuv6d69uyXJ06ZNG3bv3o2Pjw+JiYnMnTs3T53169dz+PBhANatW8ewYcMsSdu6deuyadMm2rZti8lk4uWXX75pDOaE4IYNGwgMDGT//v106NAhT5lVq1axd+9e7r33XsLDw+nduzeurq5AzurFESNGEBYWhsFg4P333+fKlSt56pvjbdq0qdU4fvvtNwCaN29+05jNPDw8qFu3LgAnTpwocr3SYI47KyuLI0eOFFo2PT2dxMTEPC8RERERERERERERqRwqRHJsz549nDlzBoD//Oc/BW6ZdqPly5dz/fp1Hn74Yau/8Hd3d6dPnz4A7Nixo8AyQUFBjBw5ssB7jz32GAC//vrrTeMpzRi9vb0ZPXr0LcVwM0FBQfm2joScM6WmTZsG5CRNjh8/brm3YcMGsrKyMBqNlm31bjRt2jScnZ3JzMxk/fr1BZYpzXEV1YABAyznZuVWo0YNy5aGa9euzXPP/OcHH3yQHj165Kvr4ODAjBkzgJyEUe65u9GlS5fo0KGDJfF18OBBmjRpkq+c+RytsWPHWt1SsmXLljRu3JiMjIx8q7guXboE5GxXac3Vq1eBnORwcVSvXj1PfVvx8fGxJNTN47Vm7ty5eHp6Wl65V3uKiIiIiIiIiIiISMXmYOsAiuLgwYMABAQE0KpVqyLVOXDgAAA7d+4kICDAajnz9mrWzvRq3bq11bOV7rzzTiDnrKdbUZIxFiVheCuCg4Otjr9Dhw44ODiQlZXF0aNHue+++wA4evSoJS7ziq8beXt706pVKw4cOGApf6PSHFdRdenSpdB7c+bM4erVq5w5c4Y6deoA/xt/t27drNbt3Lkz9vb2XL9+Pc/c5RYREUFoaCiRkZE8+OCDbN261bKyMLfr16/z/fffAxAaGsqcOXOs9mt+r974Xvrrr78ACmy/srCzs8PT05O4uDjLeK2ZOnWqZXUjQGJiohJkIiIiIiIiIiIiIpVEhUiORUVFAVCrVq0i1zGvDElJSSElJeWm5a9du1bgdXd3d6t1HBxypi8zM7PIceVWUjHWqFHjlvovisDAQKv3jEYjvr6+REdH59mmz/x1YXUBatasmaf8jUpzXEVV2Bhy37ty5YolOVaU8RuNRqpXr55v7nJ74403APD392fnzp24ubkVWC42Npb09HQgZxvQorjxvZSWlgaAs7Oz1Tq+vr5cvHix2CvAYmJiLPVtzcXFhbi4OMt4rXF2di50LkRERERERERERESk4qoQ2ypaW7lUmOvXrwPwyiuvYDKZbvoKDw8v4ajLLkZ7e/syjLrsVNZxFdWAAQNwcnIiOjqasWPHWt4vN8p9ffv27UV6L4WGhuZpw5y4Kiy5Zj7P79ixY0UeQ2JiIqdPnwagcePGRa5XWswr58pDok5EREREREREREREbKNCJMfMWw5a21awpOqUtYoQ48WLF63eS09Pt6wiyr3Ky/z1hQsXCm3bfL88rBCzprDx575X3PGnpaUVOHe5hYSEsGnTJpydnfn888/529/+VmCCzNfX17KK8VbfS+azxgrbIrRr165AztlhRU0mb9q0CZPJBOTfotIcc2GruBISEorUT1GkpqZa+irsbDURERERERERERERqdwqRHKsXbt2QM72itbOp7rRQw89BMDu3btvuoVaabCzy5lac2KgILaOsSj27t1rdQz79+8nKysLIM9ZcOavjx49ajW5ER8fn+dsslthnmMofJ5vx549e256z8fHx7KlIvxv/N98843VuuHh4Za5K2z8ISEhfPnllxiNRlavXs3QoUMt9cwcHR1p06YNAF999dVNRlQw86ow8yqvgowaNQqj0QjArFmzbjrn6enplq0h77zzTvr06ZPnvre3NwDnz5+32sbhw4et3ivK91huZ86csXzdsGHDItURERERERERERERkcqnQiTHOnfuTN26dQGYOHEiGRkZN63z1FNP4eDgQExMDDNmzCi0bEZGBsnJySUSq5mHhweQkwSyxtYxFsW5c+dYsWJFvuvZ2dnMmTMHyEms3HfffZZ7/fv3x8HBgbS0NEty5EZz5swhPT0dR0dH+vfvf0uxmecYCp/n2/HFF1/w+++/57seExPDhx9+CMCgQYPy3Bs8eDAAhw4dYufOnfnqZmVlMWvWLACaNGlCkyZNCo2hZ8+ebNmyBRcXF9atW8fgwYPznXP37LPPAhAWFkZYWFih7RW0Oqxjx44A/PDDD1br+fv78/LLLwM5icHXXnvNatns7GxGjx7NyZMngZzn7eTklKdM06ZNAThy5EiBCbKTJ0+yceNGq30U5XssN3Oizd/fnwYNGhSpjoiIiIiIiIiIiIhUPhUiOWZvb897772HwWDgu+++o2vXrnz33XdkZ2cDOYmj8PBwhg8fzn//+18A6tWrx/Tp0wF48803GTFiBCdOnLC0mZWVxc8//8ysWbO4++67+fnnn0s0ZnPCIywszOrWfLaOsSg8PT0ZO3YsH3/8sWV12/nz5xkyZIhl5dTs2bPz1AkMDGTChAkAzJs3jxkzZlgSGPHx8UyfPp233noLgEmTJnHHHXfcUmz33HOPJeGyZMmSUlk9ZjQaefjhh9m9e7el/SNHjtCtWzdiYmJwd3dnypQpeer079+ftm3bAjBw4EBWrVplSWadOXOG/v37c+jQISDnuRdF9+7d2bp1K66urmzYsIGBAwfmSRIPHz6cbt26YTKZ6Nu3L7Nnz+bSpUuW+ykpKezZs4fnnnvOkmjOLTg4GMjZljE6OtpqHDNmzKB3794AzJ07l5CQEPbv32/Z7jEzM5OdO3fSsWNHS1J13LhxjBw5Ml9bjz76KG5ubmRmZjJw4EBLEjIzM5Mvv/ySbt26Ua1aNauxmL/H9u/fT0REhNVyZubkWKdOnW5aVkREREREREREREQqMVMFsmLFCpOzs7MJMAEmZ2dnk6+vr8nBwcFy7dixY5by2dnZpunTp5sMBoPlvouLi8nX19dkb29vuQaYvvvuuzx9jRw50gSYRo4caTWeZcuWmQBTrVq18t37v//7P5PRaDQBJjs7O5O/v7+pVq1aplq1apnOnz9fZjHeqk6dOpkA09SpU03t27c3ASZHR0eTt7d3npimTZtWYP309HTTwIEDLeXs7OxM3t7eJjs7O8u1IUOGmDIyMvLVLc64/v73v1vac3V1Nd11112mWrVqmV588cXbGr+5zU8++cQUEBBgad/NzS3P+2/r1q0F1r9w4YKpcePGlrJOTk4mLy+vPPOxYMGCAuvWqlXLBJiWLVuW7154eLipWrVqJsDUu3dvU3p6uuVeQkKCqXfv3nmej4eHh8nLyyvP+8vBwaHAfps2bWoCTB999FGhc5OZmWmaOHFinu87e3t7k4+PT57nazQaTfPmzSu0rSVLluSJzd3d3eTk5GQCTA888IDpvffes/o9Fhsba/Lz87PUrV69uuV77NChQ3nKXr9+3VSzZk0TYNq8eXOhMRUkISHBBJhiYmKKXVdESkdgoMkEOf8VEanKMjIyTJs3by7w79Ui5Zk+y0WkPNHnadGU5c/u8vw5cWNsFfX9U1JzXF6f1a3GdbPnWV7HazLdfmzleWzFYf5dbkJCQqHlKsTKMbMRI0YQERHBCy+8QKNGjXBwcCA1NZVatWrRp08fPvvsszxnCRkMBmbNmsWvv/7KuHHjaNiwIfb29iQkJODt7U27du146aWXOHjwoOX8r5JSv3599uzZw2OPPYafnx9Xr14lMjKSyMjIPGdG2TLGonBycuKbb75hzpw5NGjQgPT0dDw9PenatSvbtm3jX//6l9V6a9euZf369TzyyCP4+vqSlJSEr68vjzzyCBs3bmTVqlU4OjreVnyLFi0iNDTUsq3juXPniIyMJCYm5rbaNatTpw7Hjh3jueeew8/Pj4yMDGrUqMGQIUM4duwYvXr1KrBeYGAgR48eZf78+TzwwAO4uLhw7do1goKC+Nvf/saPP/7IP/7xj2LH06lTJ77++mvc3d3ZunUrffr0IT09HcjZZvCrr74iLCyMQYMGcdddd5Gens61a9cIDAykR48ezJ07t8BtIgFGjx4NwMqVKwuNwcHBgfnz5/Pf//6Xl19+mZYtW+Ll5WV5vg8++CAzZszg1KlTvPLKK4W29fe//51t27bRpUsXPDw8yMrK4p577mHevHns3bu30JVj3t7e7Nu3j8GDBxMYGEhCQoLle+zGM/z27t3LhQsXCAwMtKx8ExEREREREREREZGqyWAylcJedFLhBQcHs3fvXmbMmEFoaKitwylzBoMByDlby7zlYGWXlJREzZo1SUpK4syZM9SqVcvWIZWYp556imXLljFz5kz++c9/Frt+YmIinp6exMTE4OvrWwoRikhx1awJFy9CYCBcuGDraEREbCczM5OwsDBCQkJu+x+eiZQlfZaLSHmiz9OiKcuf3eX5c+LG2Crq+6ek5ri8Pqtbjetmz7O8jhduP7byPLbiMP8uNyEhAQ8PD6vlKtTKMREpPebz00wmE2+88Yatwykx58+fZ+XKlfj5+fHCCy/YOhwRERERERERERERsTElx0TEYuLEiQQFBbF06VLOnz9v63BKxJw5c8jIyCA0NLTQfykgIiIiIiIiIiIiIlWDg60DEJHyw2g08umnnxIeHs65c+cICgqydUi3JTs7m7vuuovZs2fz7LPP2jocERERERERERERESkHlByrxPr168fBgweLVWfjxo20a9eulCIqWwEBAcWuExUVVQqRVCzBwcGV5pw1Ozs7pk6dauswRERERERERERERKQcUXKsEouNjSU6OrpYdTIyMgAIDw8vhYjKVnHHnpvJZCrBSEREREREREREREREpLxQcqwSqwwJrtuhBJeISOU1aRIkJoKOEhQREamY9FkuIlLxlOXP7vL8OVGeYyuOkhpHeZ2P0oqrvI4Xbj+28jy20mAwKYMgIlKoxMREPD09iYmJwdfX19bhiIiIiFhkZmYSFhZGSEgIjo6Otg5HRESkQtLnqdwOvX8qFz3Pis/8u9yEhAQ8Csn02ZVhTCIiIiIiIiIiIiIiIiI2peSYiIiIiIiIiIiIiIiIVBlKjomIiIiIiIiIiIiIiEiVoeSYiIiIiIiIiIiIiIiIVBlKjomIiIiIiIiIiIiIiEiVoeSYiIiIiIiIiIiIiIiIVBlKjomIiIiIiIiIiIiIiEiV4WDrAEREpGKaPx8SE8HDAyZNsnU05YO1OSnoelGviYiIiIh1N/79qSz+3qW/s4mIiIhUfAaTyWSydRAiIuVZYmIinp6exMTE4Ovra+twyo2aNeHiRQgMhAsXbB1N+WBtTgq6XtRrIiIihcnMzCQsLIyQkBAcHR1tHY5Imbvx709l8fcu/Z1NpPLR56ncDr1/Khc9z4rP/LvchIQEPDw8rJbTtooiIiIiIiIiIiIiIiJSZSg5JiIiIiIiIiIiIiIiIlWGkmMiIiIiIiIiIiIiIiJSZSg5JiIiIiIiIiIiIiIiIlWGkmM2Eh4ejsFgwGAwlHjboaGhGAwGgoODS7xtqZhs/Z745ptvMBgMPPLII2Xa75o1azAYDPztb38r035FREREREREREREpPxSckzy2bx5M6GhoWzevNnWodjEO++8Q2hoKD///LOtQ6kUsrOzefHFFwGYOXNmvvvmxF1pJIoHDhxIo0aNWLlyJT/99FOJty8iIiIiIiIiIiIiFY+SYzbi6upKgwYNaNCgga1DyWfz5s3MnDmzSifHZs6cqeRYCVmxYgW//PILvXr1ok2bNmXat52dHdOnT8dkMjF58uQy7VtEREREREREREREyiclx2ykTZs2REREEBERYetQRErVm2++CcDYsWNt0v8TTzxB9erV2bNnD0ePHrVJDCIiIiIiIiIiIiJSfig5JiKlJjw8nIiICPz8/OjZs6dNYnBwcGDQoEEAfPjhhzaJQURERERERERERETKDyXHSkFwcDAGg4HQ0FAyMzP597//TatWrfDy8sJgMBAeHk54ePhNz1k6fvw4gwYNIiAgAKPRSN26dXn++ee5cuVKkeqbffPNN/Tq1Qs/Pz+MRiMNGzZk5syZpKWl5SlnbnPFihVAznZ45j7Mr/Dw8Fuel+XLl2MwGKhduzYAu3bt4pFHHsHPzw8XFxcaN27M7Nmz88V1oz///JOxY8dSv359XFxc8PDwoEWLFsyaNYvExMQC69w4X8eOHWPYsGHUrFkTR0dHgoODLWdfRUZGAvDkk0/mG//tGDVqFAaDgVGjRmEymVi8eDFt2rTBw8MDDw8P2rdvz6pVq27aTnh4OAMGDCAwMBBnZ2eqV69O165dWbZsGdevX7+l2I4dO0ZAQAAGg4GePXuSnJyc5/6JEyd49tlnqV+/Pq6urri5uXH//ffz2muvERMTY7Xdjz/+GIABAwbg4OBQ7LhufG6nTp3iqaeeIigoCGdnZ2rWrMkzzzzDxYsXC21n6NChAKxevTrf2ERERERERERERESkalFyrBSlpaURHBzM5MmT+eWXX7CzsytygmXTpk20bNmSdevWER0djaOjI5cvX+a9996jWbNmnD17tkjtvPXWW3Tv3p3t27eTlZVFRkYGERERhIaGEhISkieZ4uTkhL+/P0ajEQCj0Yi/v3+el5OTU7HnoSDvv/8+PXv25OuvvyYrK4usrCz++9//Mn36dNq1a0dcXFyB9datW0fjxo1ZvHgxp06dwtHRkYyMDI4dO8aMGTNo0qQJJ0+eLLTvDRs20LZtW1atWkVSUpIlaePm5oa/vz92djnfFh4eHvnGX1KGDBnC2LFj+fHHH3FwcCA5OZkDBw4wbNgwnnrqKUwmU4H1Jk2aROfOnVm/fj2XL1/G1dWV+Ph4vv32W5566il69OhBUlJSsWLZvXs3nTp1Ijo6muHDh7N161bc3Nws9998802aNm3Kxx9/zKlTpzAYDGRmZnL8+HHmzJnD/fffz7Fjx/K1azKZ2LFjBwAdOnQoVkwF2bNnD82bN2fZsmUkJCSQnZ3NxYsXWbJkCW3atCk0Qda6dWuMRiMpKSns37//tmMRERERERERERERkYpLybFStGjRIn799VeWLVtGYmIisbGx/PXXX9x///2F1jt9+jTDhw8nMzOTFi1acPToUZKSkrh27Rq7du3CycmJSZMm3bT/X375hSlTpjBlyhSuXLlCXFwc8fHx/POf/wRykg3mVWIA7dq1IyoqyrIF3aBBg4iKisrzateu3W3MSI6//vqLF154gSeeeIJz584RFxdHYmIiH3zwAc7Ozhw7doy///3v+er99NNPDB8+nPT0dB566CF+/fVXEhMTuXbtGlu2bOGOO+7g/PnzPProo4WuDho1ahTdu3fn5MmTJCQkkJqayscff8zkyZOJiooiKCgIgAULFuQbf0nYvHkz69at41//+hdxcXHExsYSHR3N+PHjAVi2bBnvvvtuvnrvvfce//nPfwB49tlnuXTpEnFxcSQkJPCf//wHBwcHvv32W5555pkix7J69Wp69epFUlISL774Ip9++imOjo6W+0uXLuWVV17B1dWV119/ncuXL5OSksK1a9c4evQoXbp04fLlyzz22GP55vy///0vV69eBXLO2Ltd/fv3p0uXLpw8eZLExERSUlJYu3Yt7u7uXLp0ialTp1qt6+joSIsWLQDYu3fvbcciIiIiIiIiIiIiIhWXkmOlKDk5mVWrVjFq1ChcXFwA8PX1xcfHp9B6c+bM4dq1a9SoUYNdu3bRsmVLAAwGA926dWPHjh1cu3btpv3Hx8czffp05syZQ/Xq1YGc1VAzZ86kX79+QE5ypKxdu3aNdu3asWbNGksiysXFhTFjxrBo0SIgZ+XckSNH8tR77bXXyMzM5O6772bnzp3cd999ANjZ2fHoo4+ybds2HBwc+PPPP1m8eLHV/hs1asSWLVu49957Ldfq169f0sO0KiEhgWnTpjFt2jQ8PDwA8PPz491332X48OEA+ba9TE1NZcaMGUDOqrMPP/yQgIAAAKpVq8YLL7zA/PnzAVi7di0//vjjTeOYP38+w4YNs2z9+fbbb+dZ2ZiUlMTkyZMBWL9+Pa+++qqlT3t7e1q2bMmOHTto2bIlFy5cYMmSJXnaP3z4MADu7u7UrVu3+BN1g2bNmrFp0ybLc3NycmLgwIG8/vrrlhizsrKs1m/evDkAhw4duu1YRERERERERERERKTiUnKsFDVu3JhHH320WHVMJhMbNmwAYOzYsQUm0ho0aMDAgQNv2pazs7MluXGjxx9/HIBff/21WPGVlGnTplm2L8ztySefpGbNmgCsWbPGcj0+Pt6yRd9LL72Eq6trvrrNmzcvUtLvpZdewt7e/rbivx0uLi5Wn4t5VV9sbCy7du2yXN+1axexsbEAhIaGFlh33Lhx3HHHHQCFnl1mMpl46aWXePHFF3FwcODzzz8vcCXihg0biI+Pp3nz5vTs2bPAthwcHBgyZAiA5fmYXbp0CcCSmL1dr776aoHvGfN7OTU1lT/++MNqfXMc5rgKk56eTmJiYp6XiIiIiIiIiIiIiFQOSo6VooceeqjYdU6fPk18fDwAnTp1slouODj4pm01btw4z9lRud15550AloRLWXJwcLB6BpWdnZ1lbEePHrVc/+mnnyzncHXr1s1q2927dwdykn6ZmZkFlrmV51KSWrVqZVkxdqP69etbkoO5x2/+OigoiHvuuafAuvb29nTp0iVf3dwyMzMZMWIEb7/9Nm5ubmzbto2hQ4cWWPbAgQMAnDx5koCAAKuvWbNmARAZGZmn/l9//QVw05WSRdW2bdsCr5vfy1D4+9kchzmuwsydOxdPT0/Ly7zCUUREREREREREREQqPgdbB1CZ1ahRo9h1cv/iPvcv/W8UGBh407bc3d2t3nNwyHn0hW1DV1qqV6+Os7Oz1fvmsV25csVyLffXhY3dnFjKysoiNjYWf3//fGVu5bmUpJs9u8DAQC5cuFDg+G9W1zz+3HVzO3jwIAcPHgRyzjYzJxMLYl5hlZaWlmeLR2tu3OrTXKewZ10c1t7P5vcyYDUhCli2Ni3KWKZOnZpnNV1iYqISZCIiIiIiIiIiIiKVhFaOlaLb3bov9/lPUnJsuaWird13333cf//9AEyaNIk///zTatnr168DMGjQIEwm001fZ8+ezVPf19cXgLi4uNIZTDGZV5WZ4yqMs7MzHh4eeV4iIiIiIiIiIiIiUjkoOVbO+Pn5Wb4u7GykixcvlkU4pSImJoaMjAyr981jy73CK/fXFy5csFrXfM/BwaHEtvMraTd7doWNv7Cx575vbXWcj48P3377Lc2aNeP8+fN06tSJ//u//yuwbEBAAJB/u8SiMr+XbbF1Z0HMceT+HhMRERERERERERGRqkfJsXKmbt26eHl5ARAeHm61XGH3bpedXc7bwnzGV0nLyspi//79Bd4zmUzs3bsXyDmby6xFixaWuL755hurbe/evRuApk2b4ujoeEvxlfb4jx49SnJycoH3Tp06ZUlw5R6/+esLFy5YTWZdv36dPXv2ANC6dWur/fv6+vLNN9/QokULLl68SHBwML///nu+cuaz2X788UcuX75chJHl1ahRIyBnq1Br4y1LZ86cAaBhw4Y2jkREREREREREREREbEnJsXLGYDDQr18/ABYvXlzglnR//PEH69atK7UYzFvIxcfHl1ofr7/+OtnZ2fmur1ixgvPnzwM52/mZeXl50bNnTwDeeuutfOdbAfzyyy9s2LABgCFDhtxybKU9/tTUVN5+++0C782ePRvIWeGV+zyw7t27W7YDDA0NLbDuhx9+aFlteLPx+/j48M0339C6dWsuX75McHAwJ0+ezFNmwIABeHl5kZmZyaRJkwpNFmZnZ+ebr3bt2mFvb092djZHjx4tNJ6ycPjwYQA6depk40hERERERERERERExJaUHCuHpk6diouLC9HR0fTo0YNjx44BOSuZvv32W3r27Imrq2up9d+kSRMA9u/fT0RERIm37+rqynfffcfQoUMtq6TS0tL46KOPGDt2LACPP/44bdq0yVNv9uzZODo6curUKXr27Mnx48eBnMRMWFgYISEhZGVlUa9ePUaPHn3L8ZnHv379+lI5L8vT05N//etfzJ07l6SkJCBnq8kJEyawYsUKAKZPn47RaLTUcXFxsSTFVq9ezZgxY4iOjgbg2rVrLFy4kBdeeAHISSq2bNnypnF4eXmxa9cuHnjgAaKioggODubEiRN57r/zzjsArFmzhl69enH48GFLUjM7O5uTJ0/y73//m8aNG7N169Y87bu7u1viMCembCUqKopz584BSo6JiIiIiIiIiIiIVHVKjpVDd999N59++ikODg4cPXqUFi1a4OHhgZubG127diUjI4P58+cD4OzsXOL99+/fHz8/P+Li4mjYsCF+fn7Url2b2rVr8/333992+35+fvznP/9h3bp1BAUF4ePjg4eHB6NHjyYtLY2mTZuydOnSfPVatGjBZ599hpOTE9999x33338/np6eVKtWjV69enHp0iWCgoL46quvcHNzu+X4nn32WQwGAwcPHsTPz48777zTMv6S0KdPHwYMGMCrr76Kt7c3Pj4+1KhRg4ULFwIwYsQI/vGPf+SrN378eCZOnAjkrBK744478PHxwdPTkwkTJpCZmUnnzp35+OOPixyLp6cnO3fupF27dly5coXOnTvz66+/Wu6PHDmSDz74ACcnJ7Zv384DDzyAq6sr1atXx2g00qhRIyZPnkxERAQGgyFf++YVbFu2bCnWHJU0c//NmjXTtooiIiIiIiIiIiIiVZySY+XUE088wdGjRxkwYAB+fn6kp6fj7+/PhAkTOHbsGJ6engCW88lKkre3N/v27WPw4MEEBgaSkJBAZGQkkZGRpKWllUgfzz33HDt27ODhhx/Gzs4OOzs77r33XmbNmsWhQ4csWwjeaNCgQfz222+MHj2aevXqkZ6ejoODA82aNWPmzJmcOHHitpMfHTt2ZNu2bXTr1g0vLy+io6Mt4y8pq1ev5v3336d58+ZkZWVRrVo1HnzwQT799FNWrFhhOffsRvPnz+fbb7+lf//++Pv7k5ycjLu7O507d+aTTz5h165duLu7FysWd3d3duzYQYcOHYiJiaFLly6W1YoAY8aM4ffff2fy5Mk0bdoUZ2dn4uPjcXNzo1WrVjz//PPs2rWrwK0cR44cidFo5ODBg5Yzv2xh5cqVALe1olBEREREREREREREKgcHWwdQGYWHh9+0THBwcKFnOAE0bdrU6tli5jOcGjdunO9eaGio1XOpitr/vffey+rVqwtt43Z17949z7laRXX33XezePHiYtUpynzn9sgjj/DII48UN7QiMxgMjB071rKNZHF07tyZzp07F6vOzd4Tbm5u7Nu3z+r92rVr89ZbbxWrT8hJtA4ZMoRly5bx2Wef8c9//rNYsRX1uRVW5uzZs+zfvx8PDw+GDRtW5NhFREREREREREREpHLSyrEK6K+//mLJkiUAPPzwwzaORqRw//znP3F2dua9994jJSWlzPt/4403MJlMTJ06tdir6kRERERERERERESk8lFyrJxauHAh8+bN49SpU2RlZQGQnp5OWFgYHTt25MqVK/j5+fHUU0/ZOFKRwtWuXZvnn3+ev/76i0WLFpVp3+fPn+eTTz7hrrvu4oUXXijTvkVERERERERERESkfNK2iuXU6dOnWbBgAVOnTsXe3h5PT08SExMtiTJPT0/WrVtn9WwukfLktddew83NjWrVqpVpv5GRkUydOpXOnTtjNBrLtG8RERERERERERERKZ+UHCunRo4cib29Pfv27ePixYtcvXoVFxcX6tSpQ8+ePZkwYQKBgYFlHtfatWuZMGFCseoMGjSIBQsWlFJEZWvChAmsXbu2WHUWLFjAoEGDSimiisHLy4sZM2aUeb/t27enffv2Zd6viIiIiIiIiIiIiJRfSo6VU82bN6d58+a2DiOf1NRUoqOji1UnISEBgFGjRjFq1KhSiKrsJCQkFHv8qampACxfvpzly5eXQlQiIiIiIiIiIiIiIlJUSo5JsVSGBNftUIJLRERERERERERERKRiU3JMRERuyaRJkJgIHh62jqT8sDYnBV0v6jURERERse7Gvz+Vxd+79Hc2ERERkYrPYDKZTLYOQkSkPEtMTMTT05OYmBh8fX1tHY6IiIiIRWZmJmFhYYSEhODo6GjrcERERCokfZ7K7dD7p3LR86z4zL/LTUhIwKOQf81kV4YxiYiIiIiIiIiIiIiIiNiUtlUUESmitLQ0UlNTbR2GiIiIiEVWVhYA0dHR2Nvb2zgaERGRiun69etAzv/3mz9bRYpKfx+rXPTzoOIr6u9vlRwTESmiyMhI4uLibB2GiIiIiEVCQgIAy5YtIzs728bRiIiIVEzu7u7Uq1ePM2fOYGenjbakePT3scpFPw8qvuTk5CKV09MVERERERGpoMz/slVERERunYOD1g/IrdPfxyoX/TyoOpQcExERERERERERERERkSpDyTERERERERERERERERGpMpQcExERERERERERERERkSpDyTERERERERERERERERGpMpQcExERERERERERERERkSpDyTERERERERERERERERGpMpQcExERERERERERERERkSpDyTERERERERERERERERGpMhxsHYCIiIhIZWRvb0/9+vVxcHAgPT2dP/74o9Dyvr6+eHp64uzsDEBWVhbXrl0jOjqarKyssghZREREboOLiwvPPfcc1apVIzY2lnfffTdfmRkzZty0nTNnzvDpp5+WRogiIoUq6v/DODg44Ofnh5ubG46OjgBkZGSQmJhITEwM2dnZZRm2lKCifJYBGI1GOnTowL333ouHhwfp6elERkayb98+oqOjyzhqya1OnTpUq1bN6v2zZ8+SnJyc77qXlxc+Pj44OztjMplITU3lypUrpKamlma4NqXkmIiIiEgpCAgIwN7e/qbl7O3tqV27Ni4uLmRmZlr+kurs7Iy3tzdxcXFKjomIiFQAPXr0wNXVtdAyP//8s9V79evXp1q1apw7d66EIxMRKZqi/D+Mk5MTdevWxcHBgYyMDJKSkrCzs8PV1ZUaNWrg4eHB6dOnlSCroIryWebm5saTTz6Jj48PSUlJnDp1Cjc3Nxo2bMg999zD6tWrOX36dBlFLNYkJCQU+H2YmZmZ71pAQADVq1cnOzub5ORkDAYDbm5uuLm5ce7cOZKSksoi5DKn5JiIiIhICatWrRre3t7Exsbi4+NTaNmgoCBcXFy4cuUKV65cyXPP0dFR/1MpIiJSAdSpU4dmzZrx448/0rJlS6vlvvzyywKvOzs706RJEwB+/fXXUolRRKQwRf1/GH9/fxwcHLh69SqXL1+2XLezs6N27dq4urpSvXr1fP9vI+VfUT/LevfujY+PD3/88QdffPGFJdnSoEEDBg4cSL9+/Vi4cCEZGRllFboUICoqqsBE2I2qVatG9erVycrK4vTp05bn5uLiQp06dahZsya///7/2rvzuKjq/X/gr2FWBhhWQVBBNqXcdysLtVwyUUu9LXo1lzT1W5ZdzbaLmtU1W20zzczuNVs0La+pqYlGLqVlKmmJiiIqIPsMMwwMn98f/OZcRmZggEGWeT0fj3k8hnM+n8/5nHOGOWc+7/P5fP5skW0TnHOMiIiIyIVkMhnCwsJgMplw7dq1atPqdDp4e3ujoKDA7o/H0tJSWCyWhqoqERERuYBCocDIkSORlZWFAwcO1KmMTp06QaFQID09Hbm5uS6uIRFR9WrzG8Y6XFt2drbN8vLycmmZp6dnw1SUGoyz1zKdToeOHTvCYrFg27ZtNsGXP//8EydPnoSXlxd69OhxI6pNLhAUFASg4n+6ckDTaDQiNzcXcrkc/v7+jVW9BsXgGBEREZELBQcHQ6VS4fLlyxBCVJvW+kRmTk7OjagaERERNYD4+Hj4+/tj27ZtdX6opUuXLgDYa4yIGkdtfsPUtB4AH/Brhpy9loWGhgIA8vPzUVBQUGV9WloagIpeZNT0yWQyKeBt73wWFhYCqAiKtkQMjhERERG5iFqtRlBQEPLz81FcXFxjeq1WK010q1arERwcjLCwMLRq1QoajeYG1JiIiIjqIzg4GLfccguOHTtW57nCdDodIiIiYLFYkJKS4uIaEhFVr7a/YaxzJLdq1cpmuYeHh7QsLy/P9RWlBlOba5lSqQRQ0avIHuvykJAQ11aSas3f3x+hoaEIDQ1FQECAdO4qU6vV8PDwQFlZmd25zq3nU61WN3h9GwPnHCMiIiJykTZt2sBiseDq1as1plWpVPDw8EBpaSkCAwMREhICmUwmrQ8ODkZOTo5TZREREVHjGDVqFEwmE3bt2lXnMrp27QqZTIYzZ844bGwkImootfkNAwCZmZnw9PREYGAgfHx8YDQapd4n5eXlSE9Ph8FgaOBakyvV5lpmDaD6+fnZXW9drtVqoVQqnZrzihpGcHCwzd/WoU8rD4lqDZg5Ok9CCFgsFigUCnh4eLS4eccYHCMiIiJygcDAQGi1Wly6dMmpYUTkcjmAirHdW7dujZycHFy7dg3l5eXw8fFBWFgYgoKCYDabOfcIERFRE9SvXz+0adMGW7ZsqVdQi0MqElFjqe1vGAAoKyvD+fPn0bZtW/j4+EClUknr9Ho9g/zNTG2vZRkZGSgrK4O3tzeio6Nx9uxZm/Xdu3eX3qvVagbHGoHBYEBubi6Ki4tRVlYGpVIJX19ftGrVCiEhISgvL5emdvDwqBhYsLqgV3l5OeRyeYsMjnFYRSIiIqJ6UiqVCA4OhsFgQH5+fq3yymQyFBUV4cqVKygtLYXFYkF+fr705Ob1w5UQERFR49PpdBg0aBDS0tLw+++/17mc1q1bIzg4GEajEX/99ZcLa0hEVL26/oZRq9WIiYmBWq3GhQsX8Mcff+D06dO4cuUKfHx8EBUVZRMwo6arLteykpIS/PLLLwCAMWPGIC4uDmq1GoGBgRg7diyCgoKktM7MT0eul5WVhYKCApSWlkIIAbPZjOzsbGnIzODgYJtRa9wZe44RERER1VNoaChkMhkyMjKczlP5iSt7Y/Ln5eUhLCwMSqUSKpUKZrPZJXUlIiKi+hsxYgTkcjn++9//1qucrl27AgD++OMPp3ttEBG5Ql1+wwBAeHg4FAoFzp49C5PJBAA2PVFCQ0MREhKC9PR0l9eZXKuu17I9e/ZAp9OhU6dOuP/++6XlZWVl2LFjB+655x4AkD4f1DTo9XoUFxdDq9VCq9XCYDBI7RLWHmT2ONO7rLlicIyIiIionnQ6HSwWC9q0aWOz3Po0llKpRGRkJAAgPT0dZWVlNsNL2BtqQgiBsrIyKBQKaQhGIiIiaho6duwIo9GIkSNH2ixXKCqaWXx8fDB58mQAwMaNG+3OvyOTydC5c2cAHFKRiG68uvyG0Wq1UKvVKCkpsRv4KCwsRGhoKLRabcPvANVbXa9lFosFGzduxM8//4yYmBhotVoUFhbi5MmTUm+xnJwcPvTRBJnNZmi1WukcW9sirHOPXU8mk0Eul6OsrIzBMSIiIiKyTy6Xw8vLy+46Dw8PaZ31x2Z5eTnMZjNUKpXD4FdLfkKLiIioufP09ET79u3trlMqldI6awPU9SIjI+Hj44P8/HxpqCMiohuptr9hrA3ojn6fWIMhfLiv+ajPtezixYtVrl/WHtEXLlxwaT3JNaz/m9b/4ZKSEpSXl0OhUEChUKCsrMwmvaenp5SuJWJwjIiIiKieTp48aXe5UqlEx44dUVJSgjNnzlRZX1hYiKCgIHh5eUGv19us8/T0lCa85ZCKRERETcvixYvtLvf19cUTTzyB3NxcvPPOO9WWYW1AZK8xImoMdfkNY204V6lU0m+VyqwN6fZGxqCmxxXXsuv16dMHAHD06NF6149cSy6XS706jUYjgIoRawwGA3x8fODr6ysNj2ql0+kAVLRdtESOB5MkIiIiogaVk5OD8vJyBAQESD8kgYqb1tDQUAAVc49xImMiIqKWRaFQIC4uDgCDY0TUfBQXF6OsrEz6vWLtUQZUfK9Zf8MUFBQ0VhXpBtDpdFWGzlQoFEhISEDbtm3x22+/4fLly41UO/fm6ekJHx+fKsuVSiXCw8Mhl8tRWFho00Ps2rVrAIBWrVpBpVLZlBUQEACLxWJ3nvSWgD3HiIiIiBpJaWkpLl++jDZt2iAyMhJGoxEWi0UaA9xoNCIzM7Oxq0lEREQuFhcXB7VajYyMjCpPaRMRNVVCCGRkZCA8PBz+/v7w9vaG0WiETCaDVquFXC6H0WiUGtupZYqMjERCQgIuX76MgoICKJVKtGvXDlqtFqmpqdi2bVtjV9FtqdVqtG3bFqWlpTCZTLBYLFAqldLINCaTCRkZGTZ5DAYDrl27hqCgIMTExECv10Mmk8Hb2xtAxZyDLXWqBwbHiIiIiBpRfn4+SktLERQUBK1WC5lMBrPZjJycHFy7do29xoiIiFogDqlIRM1VUVERzp49Kw0P7+3tDSEEzGYzCgoKkJOTw98wLdyVK1fwxx9/oG3btmjdujUsFgsyMzNx7NgxHDt2rLGr59aMRiNycnKg1Wrh6ekJuVyO8vJymEwmFBQUIDc31+7/59WrV2EymRAYGCj9T+v1emRlZUlDMLZEMsFvKyKiahUWFsLX1xc//fSTNNYuERERUVOQm5uLvLw8HD9+vMU+0UlERNTQ/P39ERERgcjISHh4cBYaqh3ej7Us/D5o/vR6PW655RYUFBRU25bLs0tERERERERERERERERug8ExIiIiIiIiIiIiIiIichsMjhEREREREREREREREZHbYHCMiIiIiIiIiIiIiIiI3AaDY0REREREREREREREROQ2GBwjIiIiIiIiIiIiIiIit8HgGBEREREREREREREREbkNBseIiIiIiIiIiIiIiIjIbTA4RkRERERERERERERERG6DwTEiIiIiIiIiIiIiIiJyGwyOERERERERERERERERkdtgcIyIiIiIiIiIiIiIiIjcBoNjRERERERERERERERE5DYUjV0BIqKmTggBADAYDPDw4DMFRERE1HQYDAYUFxfDZDKhvLy8satDRETULJlMJhQXF0Ov1/N3P9Ua78daFn4fNH8GgwHA/9p0HWFwjIioBjk5OQCAoUOHNnJNiIiIiIiIiIiIiKgmRUVF8PX1dbiewTEiohoEBAQAAC5evFjtFyoRERHRjVZYWIh27dohPT0dOp2usatDRETULPF6SvXBz0/LwvPZ/AkhUFRUhLCwsGrTMThGRFQDaxdqX19fXhSJiIioSdLpdLxPISIiqideT6k++PlpWXg+mzdnOjhw0EwiIiIiIiIiIiIiIiJyGwyOERERERERERERERERkdtgcIyIqAZqtRqJiYlQq9WNXRUiIiIiG7xPISIiqj9eT6k++PlpWXg+3YdMCCEauxJERERERERERERERERENwJ7jhEREREREREREREREZHbYHCMiIiIiIiIiIiIiIiI3AaDY0REREREREREREREROQ2GBwjonorLi7G9u3bsXTpUtx3332IiIiATCaDTCbDokWLnCpj48aNSEhIQFhYGFQqFby8vNCxY0c88sgjOHbsWI35v/32WyQkJKB169ZQqVQIDQ3F6NGjsX379mrzpaam4vXXX0dCQgIiIiKgVqvh5eWFDh06YNq0aTh69KhT9beW9dRTT6Fz587w9fWFl5cXoqKiMGbMGLz//vtOl3O9srIyrFmzBkOGDEFwcDCUSiV8fHzQpUsXzJ07F2fPnnWY9+rVq/jyyy+xcOFCDBkyBIGBgdK5SUpKqnOdiIiImovmfJ/iyN133y3tw8CBAx2m27p1K/7xj39g0KBBiI6Ohk6ng0qlQlhYGO6++26sXbsWZWVldaoDAAwcOFCqh6NX27Zt7eYtKCjAe++9hylTpqBnz55o06YN1Go1vL29ERcXh+nTp+OXX36pc92IiMj1mvM19eGHH67xmiWTyexeFxctWuRUXutr3759Th0LR7755huMHz8e4eHh0Gg0CAwMRLdu3fDoo4/i4MGDDZ6/ITTnz05ldWn3uRHtMiUlJXjnnXcwYMAA+Pv7Q6PRoH379pg+fTr++OOPGvPn5uZiyZIl6Nu3L/z8/KBUKhEQEIBbb70Vr7zyCgoLC23Su/P5rM93SV3l5eUhLCzM6WNc2/Pp1gQRUT3t3btXALD7SkxMrDavyWQSCQkJNnm8vb2FSqWS/vbw8BBvvPGG3fxlZWViwoQJUlqZTCb8/f2FXC6Xlj322GN28yYnJ1epr4+PT5Vtv/DCCzUegzfffFOo1Wopn1arFd7e3tLfvr6+NZZhT25urujXr1+VOioUCulvtVotvvzyS7v5ExMTHZ6bvXv31qlOREREzUlzvU9xZO3atTb1iY+Pd5i2U6dOVe4hNBqNzbKePXuKq1ev1qoOVvHx8QKA8PLyEiEhIXZfPXr0sJv3l19+samHh4eH8Pf3Fx4eHjbH65lnnqlT3YiIyPWa8zV18uTJAoDQaDQOr1khISGirKysSt7ly5dXmyckJETaD7VaLXJycmp1XK3y8/PF0KFDq+xj5d//c+fObbD8Dak5f3as6tru09DtMleuXBE9evSQylQqlcLf39+mzWj9+vUO8//6668iJCTE5vj4+voKmUwmLWvTpo1ISUmR8rjz+azPd0ldWbfpzDGuy/l0ZwyOEVG97d27V/j7+4s777xTzJ8/X2zYsEG0bt3aqYviP//5T+nLefbs2eLSpUtCCCEsFos4cuSIGDBggPRlfuTIkSr5Fy5caHOTd+3aNSGEEHq9Xrz22mvSTeDbb79tt95yuVyMGTNGfPXVV1LesrIy8fPPP0vbBiA++ugjh/vw+uuvCwBCoVCIZ555Rpw7d05al5ubK3bs2CGeeuqpGo+jPZMmTZLqsGjRIps6JiUlSY1enp6e0rGrbNGiRaJdu3Zi9OjRYsmSJWL16tUuvQkjIiJq6prrfYo9V65cEf7+/sLPz0/cdNNNNQbHEhMTxapVq0RKSoooLi6WlmdkZIjFixdLgahhw4Y5tf3rWYNjNR1He1JTU8X8+fPFli1bREZGhtSAUFpaKg4dOiSGDBkiHbsNGzbUqX5ERORazfmaam1cnjx5cr2OgT0lJSUiMDBQABAPPPBAncowmUyid+/eAoCIjIwUGzZsEEVFRUKIit//aWlp4sMPPxSffvppg+RvaM35syNE/dp9GrJdpry8XNx6661Su9Dq1auF0WgUQghx+fJlqU1JqVTaPTalpaUiKipKABD+/v5i/fr1Un6j0SjWrVsndDqdACC6du0q5XPn89mQ3yX27NixQwCQznN1x7iu59OdMThGRPVm72mIiIgIpy6K7du3r7ZhJz8/X3pyY+HChTbrsrOzpac8xowZYzf/008/LQAIPz8/UVBQYLMuPT1d/PXXXw7rVlJSIrp27SoAiOjoaLtpjh8/LpRKpQAgNm7cWM2e1p7JZJL2z9FFNzU1Vbo4rly5ssr668/N+fPnGRwjIiK30lzvU+y59957BQCxevVqKTBVXXCsJs8884x0X5Cenl7r/PUJjtXEZDJJx/+uu+5yeflERFR7zfma2pAN2p9//rl0Pd29e3edyrDWPyoqSmRlZd3w/A2tOX926tvu05DtMlu3bpXKeuutt+ym6d+/vwAgBg8eXGVdUlKSlH/t2rV283/00UdSmtOnT9vdJyHc53zeyOBYYWGhCA8PFyqVSqSkpNQYHKvr+XRnnHOMiOpNLpfXOe+VK1cAAL1797a73tfXFx06dAAA6PV6m3V79uxBSUkJAGD+/Pl28y9YsAAAkJ+fjy1bttisa9u2LWJjYx3WTaVSYeLEiQCAs2fPIi8vr0qal19+GaWlpRgzZgzGjh3rsKy6yMvLk/bP0fGJjo5GQEAAgKrHB6jfuSEiImoJmut9yvW+/PJLbN68GfHx8Zg2bZrT+1Cd/v37S+8zMjJcUqarqNVq9OjRAwBw6dKlRq4NEREBLeea6mpr1qwBAERFRWHw4MG1zp+Xl4cVK1YAAN544w20atXqhua/EZrzZ6e+7T4N2S6zbds2AICXlxdmz55tN411v3/44QdcvHjRZp312AKOj2/fvn2l99bj687n80Z6+umncfHiRSxcuBA333xzjenrej7dGYNjRNSooqKiAABHjx61u76goAB//fUXgKpf7BcuXJDeO7pIBAQEIDg4GADw/fff17p+Go1Gem+xWGzWGQwGbNq0CQDw97//vdZl1yQkJAReXl4AgCNHjthNc/bsWeTm5gJwfOEjIiKiumkq9yk5OTl47LHHoFarsWrVKshkMud3oho//vgjAEAmk0n72lQUFxdLxz06OrqRa0NERPXVVK6prnbhwgXs2bMHADB16tQ6XaM3btwIo9EIPz8/jBw58obnb+oa87PT0O0+9WXdv5iYGCiVSrtpbrrpJun99ftX+f7PUbvTzz//DKAiABcXF1ev+lbeJs9n9fbt24eVK1ciLi4Ozz77rFN5GuN8NncMjhFRo5o1axYAICkpCXPmzJGeWhZC4Ndff8XIkSOh1+txyy23SL247Lk+cGVv3YkTJ2pdv6SkJABAaGgoAgMDbdb9/PPPKC0tBQD06tULycnJGD16NFq1agWNRoPIyEhMmTIFJ0+erPV2gYqGqpkzZwIA1q1bh8WLFyMnJ0fap3379mH06NEAgPHjxyM+Pr5O2yEiIiL7msp9yuOPP46srCy88MIL0pO0daXX63Hy5EksWLAAr7/+OoCKxoH6PGW+fv16tG/fHmq1Gn5+fujduzeee+45XL58uVblCCGQlZWFnTt3Yvjw4dLTzfPmzatz3YiIqGloKtfUPXv2oEOHDtBoNNDpdOjSpQueeOIJnDlzpi67hY8//hjl5eWQy+WYMmVKncpITk4GAHTv3h1CCLz11lvo0aMHvLy8oNPp0Lt3b7zyyisoKipqkPxNXWN+dhq63cdVnNk3oOr+9enTRwpAzZs3D5999hlMJhMAwGQy4d///rd0H7Zs2TLpAe76aCnn09XfJZUZjUZMnz4dALBq1Sqo1Wqn8jXG+Wz2Gm9ERyJqyZwda9hisYgFCxZIE8IDEN7e3kKlUgkAonXr1mLhwoU2k8hbffHFF1KepKQku+VfuXJFShMUFFSrfThw4IBUrxdeeKHK+pUrV0plv/rqq0Imk0n1t46PjP8/8enHH39cq21bGY1GaQJV60un00kTjEZFRYlly5bZHe/ZHs45RkRE1LzuU7799lsBQHTu3FmYzWZpeW3mHDt48KDNvYT1JZfLxdSpU+3W3xnWOljvd/z9/aX7Ies9y9dff11jOTNnzrRbv8DAQPH555/XqW5ERHRjNJdrqnWeIOv1z9/fX8jlcmmZSqUS77//fq323WKxiPDwcAFAjBw5slZ5K7POCZWQkCDuuOMOAUDIZDLh7+8v/fYHIGJjY8W5c+dcnr+xNIfPTkO0+7iyXWbWrFkCgNBoNMJoNNpNs2HDBml748aNq7L+woULonfv3lIamUwm/Pz8pH3t37+/2Lx5c411cZfz2RDfJdebN2+eACBmzJhhs9y6jeqOsavOp7tgzzEialQeHh545ZVX8PHHH8Pb2xtAxRPNZrMZQMWTDQUFBTAYDFXyDh48WHp64qWXXrJbfuXlhYWFTtcrOzsbDz74IMrLyxEbGyuNWVxZ5TnIFi5ciG7duuHw4cMoKipCUVERDh06hK5du6K0tBQzZsyQui7XhkajwUcffYTly5dLXeQLCwtRVlYGoGLIodzcXGnMZSIiInKdxr5PKSgowKOPPgoPDw+sXr3a4XA5NVGpVAgJCUFISAhUKpW0fObMmUhMTISnp2edyh04cCDWrl2LjIwMlJSUIDc3F3l5eVi7di2Cg4NRWFiI+++/H4cOHaq2HF9fX4SEhNj00g8MDMTrr7+OMWPG1KluRETUtDT2NbVnz5549913kZaWJl2zCgsLsWnTJkRHR8NsNmP27NnSkGvO+P7776VezvWZD9TatrBt2zbs378fjz/+ODIzM6U6rly5EhqNBmfOnMF9992H8vJyl+Zv6hrzs3Mj2n3qY8SIEQAqjoF1RIDKLBYL/vWvf0l/2/vfCA8Px/fff48JEyYAqOjBlZ+fDyEEgIpjnZWV5bI6N/fz2RDfJZUdPnwYb731FkJDQ7Fs2bJa57/R57PZa9zYHBG1VM4+MZKdnS0GDhwoAIghQ4aI5ORkkZ+fL65cuSK+/vprERsbK/WQunTpUpX88+fPl56GmDBhgjh16pQwm83iwoUL4umnnxYymUwolUrpSRpnFBUVSU9e+fj4iGPHjtlN99JLL0nb1mq1IiMjo0qaixcvCk9PTwFAjBo1yqntV3bu3DnRpUsXAUA88MAD4siRI6KoqEhcvHhRfPLJJyI0NFQAEL169RJFRUU1lseeY0RERM3nPmXatGkCgPi///u/Kutq03OsMovFIs6cOSPmzJkjPDw8hLe3t/jmm29qVYYzUlNThZ+fnwAgbr/9dqfzGQwGsWvXLtG3b18BQPTt21dcuXLF5fUjIiLXaC7X1Opcu3ZNREZGCgAiIiJClJeXO5Vv3LhxUk+X0tLSWm2zMuu+AxCjR4+2m+a1116T0lzfK7u++RtLc/jsNES7jyvbZcrLy0W/fv0EAKFQKMRLL70kLl++LMxmszh27Ji45557pJ5QAMTw4cOrlLFz507h7+8v1Gq1SExMFKdPnxYGg0GcPn1aJCYmCrVabbcX0/Xc9XxWVtfvEquSkhJx8803CwBi48aNVdZb617dMXbV+XQXDI4RUYNw9qI4YsQIqWHH3kUjMzNTBAUFCQBi4sSJVdaXlpaKBx54QLpAXP/q37+/ePTRRwUAERoaWmO99Xq9NAyBt7e3+PHHHx2mXbFihbSd6dOnO0xnbdjy8vJyevhDIYQoKyuTAmOTJk2ymyYlJUW6sD3//PM1lsngGBERUfO4T9m1a5cAINq2bSsKCwurlF3X4Fhlr7/+unTPc/ny5TqX48hzzz0nDedy7dq1WuUtKSkRvXr1EgDE2LFjXV43IiJyjeZwTXXG6tWrpbKOHj1aY/qsrCxpGLinn3661turrGfPntK2k5OT7aYpKSmRGuwfffRRl+ZvLM3hs9MQ7T6ubpfJyMgQ3bp1c7h/c+bMkYbZe/DBB23yXrhwQfpcOBpGcM2aNVJZu3fvdlgPdz2f16vtd0ll1ntnR0HumoJjrjyf7oLDKhJRozl16hS+++47AMBTTz0FmUxWJU1wcDAmTZoEAPj666+lbsBWCoUCGzZswLZt23D//fcjLi4OERERuP3227FixQrs378fxcXFAFDjBPYGgwH33HMP9u/fDy8vL2zbtg0DBgxwmL5NmzbS+5tuuslhuptvvlkqPycnp9o6VPb9999Lk4f+4x//cFj2PffcAwB17rJNREREVTX2fcojjzwCAHj11Vchk8mg1+ttXtaJxi0WS5Vlzpo9ezbUajX0ej02bNhQq7zOuOWWWwAAQgicP3++VnlVKhXmzJkDoOIeJzc31+X1IyKiG6Oxr6nOsF6zAODcuXM1pv/3v/8tDQNXnyEVAefaFlQqFWJiYgAAFy5ccGn+pqyxPzsN3e7jCmFhYTh8+DBWrlyJYcOGITo6GtHR0UhISMC3336Ld999VxpG7/r9e++992A0GhEYGIgpU6bYLX/q1KkICAgAUP92J3c4n7X9LrFKTU3FsmXL4OXlhWXLllW599fr9VJas9lcZRlw489nS6Bo7AoQkfv6448/pPfR0dEO08XGxgKomF8rKysLISEhVdKMGDFCGmv5ekeOHAEA3HrrrQ63YQ2M7du3D1qtFtu2bcMdd9xRbf27du1a7Xqryhdyexd+R2p7fGrb6ERERESONfZ9SlpaGgDgoYceqraeycnJ8PHxAQBs3ry5VnN0aTQaBAQE4MqVK0hNTXU6341SuQEjNTUVffv2bcTaEBFRXTX2NbUhrFmzBgAQHx8v1buuunbtiq1bt9aYztq2cH27Qn3zN2WN/dlp6HYfV1Gr1Zg5cyZmzpxZZV1WVpY0N971+2c9vlFRUdWWHxsbi8OHD9e73Ynn07FLly6hrKwMZWVliIuLqzbtK6+8gldeeQVAxTxqfn5+AG78+WwJ2HOMiBqNh8f/voKqe3IpMzNTem+drNNZv/32m3RxsD55cj2DwYARI0Zg37598PLywnfffYf4+Pgay46JiZEuOKdOnXKYzrp9nU5nM9F8TWp7fKwNY0RERFR/TeU+pSEVFRUhOzsbQMPcRxw6dAhARaNC+/bta52/8tO2vM8hImq+msM11XrNAoDIyMhq0x48eFDaVn17jQHA0KFDpfeO2hbMZjPOnj1rt371zd+UNfZnp6HbfW6E9evXA6h46Gjw4ME266zHt6behK5qd3KH81mb7xJXu9HnsyVgcIyIGk3Pnj2l9x988IHdNAaDAZ9++imAiic8vLy8nC6/uLgYs2bNAgCMGzfO7pMX1sCYdShFZwNjVg8//DAA4LPPPsPly5errE9PT5eGKRoxYoTNjUBNnDk+V69exebNmwHYdt0mIiKi+mns+xRRMT+0w5f1fiU+Pl5aVrnXWFlZWY11WL58uZRu4MCBTtfdWr/qnD9/Hu+99x6Aiqd2g4KCbNbXVD+9Xo933nkHANC6dWt07NixVvUjIqKmoylcU6uTm5uLl19+GQDQrl079OjRo9r01l5jfn5+GDdunNP1dGTAgAFST5nly5fbTbNixQoYjUYAQEJCgkvzN2WN/dkBGrbdp6GdPXsWL774IgDgmWeegUJhO4ic9fhmZWXh66+/tlvGjh07pBEN6tvu1NzPp6u/SyobOHBgjff/VomJidIya68x4MafzxahoSc1IyL3kJubK7Kzs6VXu3btBAAxf/58m+VFRUU2+RISEqSJICdOnChSU1NFeXm5MJvN4qeffpImDQUg1q1bV2W7hw4dEi+99JJISUkRJSUlQoiKiWa3b98uevToIQCIdu3aiczMzCp5DQaDGDhwoDQR/f79+2u933q9Xpp0tHv37uLw4cPSusOHD4uuXbsKAMLT01P88ccfVfJPnjxZ2r/rWSwWaVJVmUwmnnzySZGRkSGEEMJoNIrt27eL2NhYaX1SUpLdMiof/19//VXa3pYtW2zWmUymWu8/ERFRc9Ac71NqEh8fL01mbs8nn3wiEhISxKZNm2zKt1gs4vfffxePPPKIVPfbbrvN7oTo1m1ERERUWffyyy+LSZMmie+++07k5eVJywsKCsS6detE69atBQChVCpFcnJylfyjR48W8+fPF4cOHRJGo1FartfrxTfffCPdQwEQq1atcv7AEBFRg2qO19RPP/1U3HvvvWLjxo0264uLi8XmzZtFhw4dpG1//vnn1e5/UVGR8Pb2FgDE7NmznT5u1vInT55sd/3WrVulNHPnzhXZ2dlCiIrf/itXrhQajUYAEAMHDmyQ/DdCc/zsCFH/dp/6tstUdz8mhBDr1q0Tq1atEunp6cJisQghhMjPzxcfffSRCA4OFgDE8OHD7d7rpaenC61WKwAIX19f8cEHH4j8/HypjPfee0/odDoBQAQEBIjc3FwprzueT1d8l1i37egevjrWshMTE+2ur8/5dFcMjhGRS1i/3Gt6XX8jmJ2dLXr16mWTRqvVCoVCYbNs/vz5dre7efNmKY1MJhMBAQFCLpdLyzp37izOnz9vN++6deukdBqNRoSEhFT7+umnn+yWc+rUKdGmTRupLG9vb+lm2fr31q1b7eatLjgmhBCpqakiKirK5lh4e3sLDw8P6W+5XC7efvttu/nPnz/v1HkBINauXWu3DCIiouauOd6n1KSm4NjatWtt6ujl5SWCgoKESqWyWT548GCRk5NT7TbsNcYkJibalOPj4yMCAgJs7lF8fX3Fpk2bqi0bgPDw8BB+fn7C399fyGQyablKpRLLli2r0/EhIqKG0RyvqfauiYGBgTb51Wq1eO+992rc/48++kjK8+uvvzp93Bwdl8refPNNqU7WfVQqlVLePn36iKysrAbL39Ca42fHqj7tPvVtl6kpODZ37lwpv1KpFH5+fjb3U+PGjbN5EOl63377rc2+AJACKNZXQEBAlQfK3fF8uuK7pCGDY0LU/Xy6K9u+lEREN1hQUBAOHTqEdevW4auvvsKxY8eQm5sLhUKB8PBw3HrrrZg5cyYGDBhgN3+vXr0wf/587N+/H2lpacjNzUVgYCC6du2Kv/3tb5gyZUqVbuNW5eXl0nuTyQSTyVRtXc1ms93lcXFxSElJwRtvvIEtW7bg3LlzsFgs6NixI4YNG4Z58+YhIiLCySNiKzo6GsePH8fq1avxzTff4OTJk8jPz4dGo0F4eDji4+Mxe/ZspycVJSIiIuc15n1Kfd1zzz1YvXo1kpKScOzYMWRmZiIvLw+enp6IiopCnz598MADDzicyLwm48ePhxACBw8eRGpqKnJyclBYWAh/f3/cdNNNGDp0KGbMmGF3AnUAeP3117F9+3bs378fZ8+eRVZWFkwmEwICAtChQwcMGjQIU6dOrXaydiIiaj4a85o6aNAgvPTSSzh48CBOnTqFnJwcFBQUQKfTISYmBoMHD8bMmTOdmh/IOqRiz549azVkmjOeeOIJDBgwAG+//Tb27duHzMxMeHl5oUuXLnjwwQcxbdo0qFSqBsvfVDWF+7GGbPepr/vvvx/FxcU4ePAgMjIyUFxcjLZt2+LWW2/FlClTMGzYsGrzJyQkICUlBe+//z527dqF1NRUGAwG+Pr6okOHDhg+fDjmzJnj8J6utprz+XTld0lDudHns7mTCVHDYJlERERERERERERERERELUTTmSGQiIiIiIiIiIiIiIiIqIExOEZERERERERERERERERug8ExIiIiIiIiIiIiIiIichsMjhEREREREREREREREZHbYHCMiIiIiIiIiIiIiIiI3AaDY0REREREREREREREROQ2GBwjIiIiIiIiIiIiIiIit8HgGBEREREREREREREREbkNBseIiIiIiIiIiIiIiIjIbTA4RkRERERERERERERERG6DwTEiIiIiIiIiIiIiIiJyGwyOERERERERUYOQyWSQyWRISkpq7Kq4VFJSkrRv1Hw11ufTbDYjOjoaarUa6enp9S7v0KFDkMlkuOOOO1xQOyIiIiL3wOAYERERERERVWENHNTl9cknnzR29YmarHfeeQfnzp3D9OnT0a5du3qX179/fwwbNgw//vgjNm/e7IIaEhEREbV8isauABERERERETU9ISEhdpfr9XoYDIZq03h6egIAOnbsCADQarUNUMPGo9VqpX0jqo3c3FwsXboUarUazzzzjMvKXbRoEXbu3ImFCxciISEBCgWbe4iIiIiqw7slIiIiIiIiquLq1at2ly9atAiLFy+uNo3V6dOnXV6vpqBv374tdt+oYa1atQr5+fkYN24c2rZt67Jy+/fvj27duuH333/Hli1bMG7cOJeVTURERNQScVhFIiIiIiIiIqIGJoTAqlWrAAATJ050efnWMj/88EOXl01ERETU0jA4RkRERERERA3COgdZUlKSzfK0tDRpXVpaGi5cuIBHHnkE4eHh0Gg0iI6OxvPPPy8N3wgAJ0+exMSJE9GuXTtoNBrExsZi6dKlKC0trbYOaWlpeOKJJ9CpUyd4e3tDq9UiLi4Oc+fOxcWLF+u0X0lJSVL9r/fJJ59AJpOhffv2AICjR4/ib3/7G0JDQ6FWqxEVFYV58+YhLy+vTtsGgMOHD2PChAmIjIyERqOBl5cXIiIiEB8fjxdffBGXLl2ym89sNuP999/HoEGDEBQUBJVKhdatW2P06NHYvn27U9udMmUKYmJioNVqodPpcPPNN2Pq1KnYuXOn3TwFBQVYsmQJevbsCZ1OB09PT8TGxmLWrFk4d+6cw21V/uwUFRXh+eefR1xcHDw9PREYGIiRI0fi8OHD1dY3Ly8P8+fPR3R0NDQaDUJDQzF+/HgcPXq0xn29dOkSnnzySXTq1AleXl5Qq9UICwtDr1698OSTT+KXX36psYzr7d69G+fPn4efnx9GjBjhMN3p06cxY8YMdOjQAVqtFhqNBu3atUP//v3x7LPPOuy1+NBDDwEA9uzZU+2xJSIiIiIAgoiIiIiIiMhJiYmJAoBw5uekNd3evXttlp8/f15at2nTJuHn5ycACJ1OJ+RyubTu9ttvF2azWfz3v/8VWq1WABC+vr5CJpNJae6//36H2//Pf/4j1Gq1lFatVgtPT0/pbx8fH7Fz585aH4O9e/c6PAZr164VAERERIRYv369UCqVUr09PDykfJ06dRJFRUW13vYnn3xis/9qtVrodDrpbwBi7dq1VfKlpaWJTp06SWlkMpnw9fW1yffoo4/a3WZZWZl4/PHHbdJ6eXkJf39/qS6+vr5V8p08eVK0bdtWyqPRaISPj49N3Tdu3Gh3m9Y0n332mYiJiZHyWz8HAIRKpXJ4/s6fPy8iIiJs0lqPk0qlEt98843Dz+exY8eEv7+/tF4ul9vsKwAxefLk6k6TXfPmzRMAxLBhwxym+f77720+s0qlUvr/sL4SExMd5o+OjhYAxPvvv1/r+hERERG5E/YcIyIiIiIiokYzbdo09OrVCykpKSgoKEBRURFWrFgBuVyOH3/8EUuWLMGECROQkJCAtLQ05Ofno7CwEM899xwA4IsvvsDu3burlLtr1y5MmjQJFosFCxYswPnz52E0GmEwGHD69GmMHz8eRUVFGD9+fJ17kFUnOzsbU6dOxeTJk3Hx4kXk5+ejqKgI7777LpRKJVJSUvDqq6/Wqszi4mI89thjEEJg4sSJSE1NhclkQkFBAfR6PY4cOYL58+cjODjYJp/BYMDw4cORkpKCgQMHIikpCUajEfn5+cjPz8cbb7wBb29vrFy5Em+//XaV7T777LNYsWIFAGDq1Kn4888/odfrkZubi7y8PGzZsgXDhw+3yVNUVISEhARcunQJbdq0wbZt22AwGFBYWIhjx46hf//+KCkpwYQJE/D777873Oc5c+ZApVLhhx9+gMFggF6vx88//4yOHTvCbDZjxowZKC8vt8ljsVgwfvx4XLhwAf7+/vjyyy9hMBhQUFCAlJQU9OvXD5MnT3a4zaeeegp5eXno2bMnDh48iNLSUuTm5sJkMuGvv/7Ca6+9hk6dOtV4vq63f/9+ABVz1jkya9YslJSUYOjQoThx4gTMZjPy8vJgNBpx8uRJLF68WOqVaE+/fv0AAPv27at1/YiIiIjcSmNH54iIiIiIiKj5cHXPsU6dOgmTyVQl79///ncpzZAhQ0R5eXmVNLfffrsAIKZNm2az3GKxiNjYWAFAfPjhhw7rN2rUKAFAzJ07t8Z9qcyZnmOopneRtQdRTExMrbZ7+PBhqddWaWmp0/mWLFkiAIj4+HhhNpvtpvn6668FABEUFGRT9p9//in1eFuwYIHT2/zXv/4l9Xw6ceJElfWFhYWiffv2AoC45557qqy3HsNWrVqJzMzMKuuPHz8upUlOTrZZ98UXX0jrdu/eXSWvwWCQeljZ+3xaexceOHDA6f2tSUlJidQr0lFvuczMTKlOly9frtN2li9fLgCI8PDw+lSXiIiIqMVjzzEiIiIiIiJqNE8++STUanWV5cOGDZPeL1y40O78XtY0x48ft1m+f/9+nDlzBkFBQZg+fbrDbU+aNAkAHM6XVV/PP/+83eWjR48GAKSmpqK4uNjp8vz8/ABUzB2Wk5PjdL41a9YAAObNmwelUmk3zZgxY6DT6XDt2jWbObnWrVuH8vJyBAYGYvHixU5v84svvgAAjBs3Dp07d66y3sfHBwsWLAAAbN++HQUFBXbLmTFjRpWecADQpUsXREZGAqh6/j///HMAwG233YY777yzSl6tVitt2x7rcb5y5YrDNLWVlZUFi8UCAGjVqpXdND4+PvDw8KjXtoOCguqVn4iIiMhdMDhGREREREREjcbREHMhISHS+z59+lSbJi8vz2b5Tz/9BAAoKChAWFgYWrdubff1yCOPAAAuXLhQ7/24XkBAAGJiYuyuCwsLk95fX/fqREdHIy4uDqWlpejXrx+WLVuGY8eOSUEXezIyMqT9mzZtmsNjERoaCr1eD8D2eBw4cAAAMGTIEGg0GqfqaTabpYDVXXfd5TDdkCFDAADl5eX49ddf7aaxDhNoj/U45ubm2iw/cuQIAGDw4MEO81a3buTIkQCAyZMn46mnnsK+fftqFcS0Jzs7W3ofEBBgN42np6cUzBs+fDj++c9/4vDhwzCbzU5vx1p2aWkp8vPz615hIiIiohaOwTEiIiIiIiJqND4+PnaXKxQKp9OUlpbaLL98+bK0PDMz0+HLGpgyGo313o/rOapz5Xrbq3t15HI5Pv/8c0RGRuLChQtYuHAhevToAZ1OhyFDhuCDDz6oEsSxHgsAuHbtWrXHwzp3V+Uyrl69CgCIiIhwup65ublSwK5NmzYO07Vt21Z6n5WVZTeNM8fx+mNoLcvZbV/v1VdfxaBBg6DX6/HGG29g4MCB0Ol06N27NxITE5GRkeEwryMmk0l6b6+npNVHH32Ebt26ITs7Gy+++CL69+8PHx8fDBgwAMuXL68SCLyep6en3W0SERERkS0Gx4iIiIiIiKhFsQZm+vXrByGEU6/molu3bjh9+jQ2bdqEGTNmoHPnzjAajdi9ezdmz56NuLg4nDhxQkpfuVfZqVOnnDoWDz/8sJTH3nCWLZ2fnx9++OEH/Pjjj1iwYAFuu+02KBQKHD16FEuWLEFsbCw2bNhQqzIDAwOl99X1FgwPD8evv/6KHTt24PHHH0evXr1QXl6On376CQsWLEBMTAx++OEHh/krB88qb5OIiIiIbDE4RkRERERERC1K69atATTMcIlNgUqlwn333YcPP/wQJ06cQHZ2NlauXImAgACkp6dj8uTJUlrrsQDqdjzqciwDAgIgl8sBAJcuXXKYrvI6e/OK1ZW1rOp6eDnT+2vAgAFYtmwZkpOTkZ+fj2+++QZdunSB0WjE1KlTkZmZ6XSdKs8zVlPvLw8PDwwbNgxvv/02jhw5gtzcXKxfvx7h4eHIy8vDQw895HCoRWvZvr6+DueXIyIiIiIGx4iIiIiIiKiFue222wBUDAlonX+qJQsMDMTMmTOxbNkyAMBvv/2GnJwcAED79u2l4QW3bt1a67JvvfVWAMCuXbucHqZPpVKha9euAIA9e/Y4TLd7924AFcGgnj171rpujvTu3RsAsHfvXodpqut9ZY9Go8GoUaPw9ddfA6gYsjA5Odnp/P7+/lKg8dy5c7Xato+PDx566CGsWbMGAJCZmWnTO7Cy8+fPAwBuuummWm2DiIiIyN0wOEZEREREREQtyqBBgxATEwMAePLJJx32srGqqSdPU1FSUlLt+srzTXl4/O/n/iOPPAIAWLNmDX777bdqy7j+WDz88MOQy+XIyclBYmKi03V94IEHAAAbN27EyZMnq6zX6/V49dVXAQAjRoyAr6+v02XX5P777wcAJCcnIykpqcp6o9GI5cuX281bVlYmzb1mj6Nj7Iw77rgDAPDzzz/bXV/T59SZbR8+fBgAEB8fX6u6EREREbkbBseIiIiIiIioRVEoFFi5ciUUCgWSk5Nxxx13YM+ePSgtLZXSnDt3DitXrkSfPn3w/vvvN2Jtnff555/jtttuw4cffmjT+8hisWDnzp1YuHAhAOCWW26Bv7+/tP6pp55Cly5dYDKZMGjQILz77rtSzzIAyM/Px/bt2zFp0iTcfvvtNtuMiYnB/PnzAQCvvvoqpk+fjjNnzkjrCwsL8cUXX+Dee++1yTdr1ixERkaitLQUd999N7Zv3y4FnU6cOIFhw4bh/PnzUKvVWLp0qYuOUIWxY8dKPdHGjh2LTZs2SXOvnTp1CnfffTeys7Pt5r106RJiY2OxdOlS/PbbbygrK5PWHT9+HBMnTgQAeHl51ToANXDgQAD/C2Bd78CBA+jatSvefPNNnDp1SjpeQggcOHAAs2bNAgC0bdtW6plXmcViwdGjRwEwOEZERERUE0VjV4CIiIiIiIjI1e6880589dVXmDRpEg4fPoy77roLSqUSOp0Oer3ephfWmDFjGq+itWANkhw4cAAAoFar4e3tjby8PCmQEhYWho8//tgmn7e3N3bs2IGxY8fi0KFDeOyxx/D444/D19cX5eXlKCwslNJae9xVtnTpUhQVFeG9997DmjVrsGbNGnh7e0OpVCI/Px9CiCo9v3x8fPDtt99i+PDhuHTpEkaMGAGNRgOVSiVtT61W4z//+Q+6devm0uOkUCjw1VdfYeDAgUhPT8e4ceOgVquh0WhQUFAAlUqFr776CqNHj7ab/9y5c3jhhRfwwgsvQC6Xw9fXF3q9XurZpVKp8MknnyAgIKBW9Ro7dizmzp2L06dP48yZM4iNja2S5sSJE5g3bx7mzZsnfV4LCgqkIJ1Op8Nnn30mzelW2Z49e2AwGBAcHIy77rqrVnUjIiIicjfsOUZEREREREQt0pgxY5CamorExET07dsX3t7eyM/Ph1qtRrdu3TB9+nRs3rxZ6hnV1I0aNQqffvoppkyZgm7dusHX1xcFBQXw8fFB37598eKLLyIlJQVxcXFV8oaFhSE5ORkbNmzAqFGjEBoaiuLiYpjNZrRv3x4JCQl46623sH///ip55XI53n33XSQnJ2PChAkIDw9HaWkphBC4+eabMW3aNGzatKlKvs6dOyMlJQWLFi1C9+7doVAoUFJSgujoaDz66KNISUnBuHHjGuRYRUVF4dixY5g3bx4iIyMhhIBGo8G4ceNw4MABjBo1ym6+Nm3a4Ntvv8WTTz6J/v37IzQ0FHq9HgqFAjfffDPmzJmDkydP1qnewcHBUg+79evXV1nfp08ffPnll5g1axZ69eqFoKAgFBYWQqPRoHv37liwYAFOnTpVpXeflbXMKVOmQKlU1rp+RERERO5EJoQQjV0JIiIiIiIiIqKWbv/+/YiPj0d0dDTOnDkDmUzmknINBoMU8Pzrr78QFRXlknKJiIiIWir2HCMiIiIiIiIiugHuuOMODB06FGfPnsVXX33lsnLfffddFBUVYfr06QyMERERETmBPceIiIiIiIiIiG6QEydOoHv37rjppptw/PhxeHjU77llvV6PyMhImEwmpKamIiQkxEU1JSIiImq5FI1dASIiIiIiIiIid9GlSxesWbMGaWlpuHLlCtq0aVOv8tLS0jBnzhz06NGDgTEiIiIiJ7HnGBEREREREREREREREbkNzjlGREREREREREREREREboPBMSIiIiIiIiIiIiIiInIbDI4RERERERERERERERGR22BwjIiIiIiIiIiIiIiIiNwGg2NERERERERERERERETkNhgcIyIiIiIiIiIiIiIiIrfB4BgRERERERERERERERG5DQbHiIiIiIiIiIiIiIiIyG0wOEZERERERERERERERERu4/8BOaR0Q96qb6YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot trial 46 - 50\n", + "plot_trials(\n", + " trials=trials[46:51],\n", + " states=states, state_types=state_types,\n", + " actions=actions, action_types=action_types,\n", + " events=events, event_types=event_types,\n", + " figsize=None,\n", + " fontsize=18,\n", + " rectangle_height=1,\n", + " marker_size=500)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6720ee9e-9bd5-4145-8631-2f5e507b5794", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From d2af4c9f815361b78ebf9c4a891ff4fa02b28cb9 Mon Sep 17 00:00:00 2001 From: weiglszonja Date: Wed, 28 Aug 2024 13:41:47 +0200 Subject: [PATCH 02/18] add example notebook --- .../tutorials/mah_2024_example_notebook.ipynb | 2009 ++++------------- 1 file changed, 477 insertions(+), 1532 deletions(-) diff --git a/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb index 937b4c2..679799b 100644 --- a/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb +++ b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb @@ -25,14 +25,6 @@ "![NWB mapping](../mah_2024_uml.png)\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "7a7155cb-4876-4ff4-9e87-18be6ee3707c", - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "id": "173c17e4-7ee4-4e58-884e-2353a4ee46d5", @@ -45,999 +37,258 @@ }, { "cell_type": "code", - "execution_count": 5, "id": "52d493c5-1c7a-487f-971c-4e3ef6442abe", + "metadata": { + "ExecuteTime": { + "end_time": "2024-08-28T11:41:17.442258Z", + "start_time": "2024-08-28T11:41:15.123900Z" + } + }, + "source": [ + "from pynwb import NWBHDF5IO\n", + "import ndx_structured_behavior\n", + "\n", + "nwbfile_path = \"/Volumes/T9/Constantinople/nwbfiles/C005_RWTautowait_20190909_1456292.nwb\"\n", + "\n", + "io = NWBHDF5IO(nwbfile_path, \"r\")\n", + "nwbfile = io.read()" + ], + "outputs": [], + "execution_count": 1 + }, + { + "cell_type": "markdown", + "id": "750d82d9-13df-404e-8512-960613255b88", + "metadata": { + "ExecuteTime": { + "end_time": "2024-08-28T08:55:08.865637Z", + "start_time": "2024-08-28T08:55:07.711552Z" + } + }, + "source": [ + "## Accessing the task metadata\n", + "\n", + "The task-related general metadata is stored in a `Task` object which can be accessed as `nwbfile.lab_meta_data[\"task\"]`.\n", + "\n", + "The `EventTypesTable` is a column-based table to store the type of events that occur during the task (e.g. port poke from the animal), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].event_types`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "662468a8-23c6-4d90-8070-0575579b7e44", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "
\n", + "\n", - " \n", - " \n", - "

root (NWBFile)

session_description: We developed a temporal wagering task for rats, in which they were offered one of several water rewards on each trial, the volume of which (5, 10, 20, 40, 80μL) was indicated by a tone. The reward was assigned randomly to one of two ports, indicated by an LED. The rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate the trial by poking in the other port (opt-out). Wait times were defined as how long rats waited before opting out. Trial initiation times were defined as the time from opting out or consuming reward to initiating a new trial. Reward delays were drawn from an exponential distribution, and on 15–25 percent of trials, rewards were withheld to force rats to opt-out, providing a continuous behavioral readout of subjective value. We used a high-throughput facility to train 291 rats using computerized, semi-automated procedures. The task contained latent structure; rats experienced blocks of 40 completed trials (hidden states) in which they were presented with low (5, 10, or 20μL) or high (20, 40, or 80μL) rewards. These were interleaved with “mixed\" blocks which offered all rewards. 20μL was present in all blocks, so comparing behavior on trials offering this reward revealed contextual effects (i.e., effects of hidden states). The hidden states differed in their average reward and therefore in their opportunity costs, or what the rat might miss out on by continuing to wait.
identifier: 85da9943-6b94-4995-b357-1dfa562fed25
session_start_time2019-09-09 15:03:58-04:00
timestamps_reference_time2019-09-09 15:03:58-04:00
file_create_date
02024-08-26 16:38:50.004510+02:00
experimenter('Mah, Andrew',)
related_publications('https://doi.org/10.1038/s41467-023-43250-x', 'https://doi.org/10.5281/zenodo.10031483')
acquisition
task_recording
events
description: Contains the onset times of events in the task.
table\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - "
timestampevent_typevalueevent_name
id
018321.21483Instate_timer
118321.27333Inleft_port_poke
218388.10323Incenter_port_poke
318392.69483Inright_port_poke

... and 9941 more rows.

states
description: Contains the start and end times of each state in the task.
table\n", + "
\n", + "
" + ], + "text/plain": [ + " event_name\n", + "id \n", + "0 state_timer\n", + "1 left_port_poke\n", + "2 center_port_poke\n", + "3 right_port_poke" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].event_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "d8035e39-8405-42c2-92cf-758b51845c77", + "metadata": {}, + "source": [ + "The `ActionTypesTable` is a column-based table to store the type of actions that occur during the task (e.g. sound output from the acquisition system), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].action_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2c1a5c0e-e4b6-4c16-af8a-fdaef0ffa353", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - "
start_timestop_timestate_typeaction_name
id
017950.090718390.37210
118390.372118391.24131
218391.241318391.24332
318391.243318395.37893sound_output

... and 1786 more rows.

actions
description: Contains the onset times of the task output actions (e.g. LED turned on/off).
table\n", + "
\n", + "
" + ], + "text/plain": [ + " action_name\n", + "id \n", + "0 sound_output" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nwbfile.lab_meta_data[\"task\"].action_types[:]" + ] + }, + { + "cell_type": "markdown", + "id": "99b05bc7-d23e-4a19-8e5f-2a228702dc59", + "metadata": {}, + "source": [ + "The `StateTypesTable` is a column-based table to store the type of states that occur during the task (e.g. while the animal is waiting for reward), one type per row.\n", + "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].state_types`." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "3ecfb7c9-e58f-4856-8916-e73d16bb326e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timestampaction_typevaluestate_name
id
017950.09080Onwait_for_poke
117950.09090Onnose_in_center
218391.24340Ongo_cue
318391.24350On

... and 2476 more rows.

epoch_tagsset()
devices
bpod
description: State Machine Version: Bpod 2.0
manufacturer: Sanworks
intervals
trials
description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", - "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", - "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", - "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", - "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", - "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", - "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", - "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", - "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", - "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", - "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", - "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", - "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", - "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", - "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", - "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", - "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", - "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", - "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", - ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", - "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", - "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", - "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", - "broke fixation on a subset of trials, in practice, block durations were variable.\n", - "
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.369254120

... and 362 more rows.

subject
age: P6M/P24M
age__reference: birth
sex: U
species: Rattus norvegicus
subject_id: C005
lab_meta_data
task
event_types
description: Contains the name of the events in the task.
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
event_name
id
0state_timer
1left_port_poke
2center_port_poke
3right_port_poke
state_types
description: Contains the name of the states in the task.
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
state_name
id
0wait_for_poke
1nose_in_center
2go_cue
3wait_for_side_poke

... and 4 more rows.

action_types
description: Contains the name of the task output actions.
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
action_name
id
0sound_output
task_arguments
description: Task arguments for the task.
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
argument_nameargument_descriptionexpressionexpression_typeoutput_type
id
0reward_volume_ulThe volume of reward in microliters.20integernumeric
1nose_in_centerThe time in seconds when the animal is required to maintain center port to initiate the trial (uniformly drawn from 0.8 - 1.2 seconds).0.8692142692974026doublenumeric
2time_increment_for_nose_in_centerThe time increment for nose in center in seconds.0doublenumeric
3target_duration_for_nose_in_centerThe goal for how long the animal must poke center in seconds.1doublenumeric

... and 24 more rows.

trials
description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", - "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", - "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", - "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", - "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", - "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", - "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", - "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", - "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", - "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", - "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", - "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", - "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", - "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", - "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", - "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", - "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", - "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", - "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", - ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", - "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", - "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", - "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", - "broke fixation on a subset of trials, in practice, block durations were variable.\n", - "
table\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
id
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.135600120
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.264520120
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385120
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.369254120

... and 362 more rows.

experiment_description: The value of the environment determines animals’ motivational states and sets expectations for error-based learning.\n", - "How are values computed? Reinforcement learning systems can store or cache values of states or actions that are \n", - "learned from experience, or they can compute values using a model of the environment to simulate possible futures.\n", - "These value computations have distinct trade-offs, and a central question is how neural systems decide which \n", - "computations to use or whether/how to combine them. Here we show that rats use distinct value computations for \n", - "sequential decisions within single trials. We used high-throughput training to collect statistically powerful \n", - "datasets from 291 rats performing a temporal wagering task with hidden reward states. Rats adjusted how quickly they\n", - "initiated trials and how long they waited for rewards across states, balancing effort and time costs against \n", - "expected rewards. Statistical modeling revealed that animals computed the value of the environment differently when\n", - "initiating trials versus when deciding how long to wait for rewards, even though these decisions were only seconds\n", - "apart. Moreover, value estimates interacted via a dynamic learning rate. Our results reveal how distinct value \n", - "computations interact on rapid timescales, and demonstrate the power of using high-throughput training to \n", - "understand rich, cognitive behaviors.\n", - "
session_id: RWTautowait-20190909-145629
lab: Constantinople
institution: NYU Center for Neural Science
source_script: Created using NeuroConv v0.5.1
source_script_file_name: /Users/weian/catalystneuro/neuroconv/src/neuroconv/basedatainterface.py
" - ], - "text/plain": [ - "root pynwb.file.NWBFile at 0x5092437648\n", - "Fields:\n", - " acquisition: {\n", - " task_recording \n", - " }\n", - " devices: {\n", - " bpod \n", - " }\n", - " experiment_description: The value of the environment determines animals’ motivational states and sets expectations for error-based learning.\n", - "How are values computed? Reinforcement learning systems can store or cache values of states or actions that are \n", - "learned from experience, or they can compute values using a model of the environment to simulate possible futures.\n", - "These value computations have distinct trade-offs, and a central question is how neural systems decide which \n", - "computations to use or whether/how to combine them. Here we show that rats use distinct value computations for \n", - "sequential decisions within single trials. We used high-throughput training to collect statistically powerful \n", - "datasets from 291 rats performing a temporal wagering task with hidden reward states. Rats adjusted how quickly they\n", - "initiated trials and how long they waited for rewards across states, balancing effort and time costs against \n", - "expected rewards. Statistical modeling revealed that animals computed the value of the environment differently when\n", - "initiating trials versus when deciding how long to wait for rewards, even though these decisions were only seconds\n", - "apart. Moreover, value estimates interacted via a dynamic learning rate. Our results reveal how distinct value \n", - "computations interact on rapid timescales, and demonstrate the power of using high-throughput training to \n", - "understand rich, cognitive behaviors.\n", - "\n", - " experimenter: ['Mah, Andrew']\n", - " file_create_date: [datetime.datetime(2024, 8, 26, 16, 38, 50, 4510, tzinfo=tzoffset(None, 7200))]\n", - " identifier: 85da9943-6b94-4995-b357-1dfa562fed25\n", - " institution: NYU Center for Neural Science\n", - " intervals: {\n", - " trials \n", - " }\n", - " lab: Constantinople\n", - " lab_meta_data: {\n", - " task \n", - " }\n", - " related_publications: ['https://doi.org/10.1038/s41467-023-43250-x'\n", - " 'https://doi.org/10.5281/zenodo.10031483']\n", - " session_description: We developed a temporal wagering task for rats, in which they were offered one of several water rewards on each trial, the volume of which (5, 10, 20, 40, 80μL) was indicated by a tone. The reward was assigned randomly to one of two ports, indicated by an LED. The rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate the trial by poking in the other port (opt-out). Wait times were defined as how long rats waited before opting out. Trial initiation times were defined as the time from opting out or consuming reward to initiating a new trial. Reward delays were drawn from an exponential distribution, and on 15–25 percent of trials, rewards were withheld to force rats to opt-out, providing a continuous behavioral readout of subjective value. We used a high-throughput facility to train 291 rats using computerized, semi-automated procedures. The task contained latent structure; rats experienced blocks of 40 completed trials (hidden states) in which they were presented with low (5, 10, or 20μL) or high (20, 40, or 80μL) rewards. These were interleaved with “mixed\" blocks which offered all rewards. 20μL was present in all blocks, so comparing behavior on trials offering this reward revealed contextual effects (i.e., effects of hidden states). The hidden states differed in their average reward and therefore in their opportunity costs, or what the rat might miss out on by continuing to wait.\n", - " session_id: RWTautowait-20190909-145629\n", - " session_start_time: 2019-09-09 15:03:58-04:00\n", - " source_script: Created using NeuroConv v0.5.1\n", - " source_script_file_name: /Users/weian/catalystneuro/neuroconv/src/neuroconv/basedatainterface.py\n", - " subject: subject pynwb.file.Subject at 0x5090802448\n", - "Fields:\n", - " age: P6M/P24M\n", - " age__reference: birth\n", - " sex: U\n", - " species: Rattus norvegicus\n", - " subject_id: C005\n", - "\n", - " timestamps_reference_time: 2019-09-09 15:03:58-04:00\n", - " trials: trials " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pynwb import NWBHDF5IO\n", - "import ndx_structured_behavior\n", - "\n", - "nwbfile_path = \"/Volumes/T9/Constantinople/nwbfiles/C005_RWTautowait_20190909_1456292.nwb\"\n", - "\n", - "io = NWBHDF5IO(nwbfile_path, \"r\")\n", - "nwbfile = io.read()\n", - "nwbfile" - ] - }, - { - "cell_type": "markdown", - "id": "750d82d9-13df-404e-8512-960613255b88", - "metadata": { - "ExecuteTime": { - "end_time": "2024-08-28T08:55:08.865637Z", - "start_time": "2024-08-28T08:55:07.711552Z" - } - }, - "source": [ - "## Accessing the task metadata\n", - "\n", - "The task-related general metadata is stored in a `Task` object which can be accessed as `nwbfile.lab_meta_data[\"task\"]`.\n", - "\n", - "The `EventTypesTable` is a column-based table to store the type of events that occur during the task (e.g. port poke from the animal), one type per row.\n", - "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].event_types`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "662468a8-23c6-4d90-8070-0575579b7e44", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
event_name
id
0state_timer
1left_port_poke
2center_port_poke
3right_port_poke
\n", - "
" - ], - "text/plain": [ - " event_name\n", - "id \n", - "0 state_timer\n", - "1 left_port_poke\n", - "2 center_port_poke\n", - "3 right_port_poke" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nwbfile.lab_meta_data[\"task\"].event_types[:]" - ] - }, - { - "cell_type": "markdown", - "id": "d8035e39-8405-42c2-92cf-758b51845c77", - "metadata": {}, - "source": [ - "The `ActionTypesTable` is a column-based table to store the type of actions that occur during the task (e.g. sound output from the acquisition system), one type per row.\n", - "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].action_types`." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "2c1a5c0e-e4b6-4c16-af8a-fdaef0ffa353", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
action_name
id
0sound_output
\n", - "
" - ], - "text/plain": [ - " action_name\n", - "id \n", - "0 sound_output" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nwbfile.lab_meta_data[\"task\"].action_types[:]" - ] - }, - { - "cell_type": "markdown", - "id": "99b05bc7-d23e-4a19-8e5f-2a228702dc59", - "metadata": {}, - "source": [ - "The `StateTypesTable` is a column-based table to store the type of states that occur during the task (e.g. while the animal is waiting for reward), one type per row.\n", - "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].state_types`." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "3ecfb7c9-e58f-4856-8916-e73d16bb326e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
state_name
id
0wait_for_poke
1nose_in_center
2go_cue
3wait_for_side_poke
4announce_reward
5reward
6punish_violation
7opt_outwait_for_side_poke
4announce_reward
5reward
6punish_violation
7opt_out
\n", @@ -1679,597 +930,360 @@ " On\n", " sound_output\n", " \n", - " \n", - " 4\n", - " 18390.3722\n", - " 0\n", - " On\n", - " sound_output\n", - " \n", - " \n", - "\n", - "
" - ], - "text/plain": [ - " timestamp action_type value action_name\n", - "0 17950.0908 0 On sound_output\n", - "1 17950.0909 0 On sound_output\n", - "2 18391.2434 0 On sound_output\n", - "3 18391.2435 0 On sound_output\n", - "4 18390.3722 0 On sound_output" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.merge(\n", - " nwbfile.acquisition[\"task_recording\"].actions[:],\n", - " nwbfile.lab_meta_data[\"task\"].action_types[:],\n", - " left_on=\"action_type\",\n", - " right_on=\"id\",\n", - ").head()" - ] - }, - { - "cell_type": "markdown", - "id": "4d47f67a-a13c-4f46-a703-6ab6753fe62b", - "metadata": {}, - "source": [ - "The `StatesTable` is a column-based table to store the information about the states (e.g. the duration while nose is in center port). This table can be accessed as `nwbfile.acquisition[\"task_recording\"].states`." - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "id": "a4fd969f-8b11-4bbd-986a-b275413c8079", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
start_timestop_timestate_typestate_name
017950.090718390.37210wait_for_poke
118390.372118391.24131nose_in_center
218391.241318391.24332go_cue
318391.243318395.37893wait_for_side_poke
418395.378918395.47434announce_reward
\n", - "
" - ], - "text/plain": [ - " start_time stop_time state_type state_name\n", - "0 17950.0907 18390.3721 0 wait_for_poke\n", - "1 18390.3721 18391.2413 1 nose_in_center\n", - "2 18391.2413 18391.2433 2 go_cue\n", - "3 18391.2433 18395.3789 3 wait_for_side_poke\n", - "4 18395.3789 18395.4743 4 announce_reward" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.merge(\n", - " nwbfile.acquisition[\"task_recording\"].states[:],\n", - " nwbfile.lab_meta_data[\"task\"].state_types[:],\n", - " left_on=\"state_type\",\n", - " right_on=\"id\",\n", - ").head()" - ] - }, - { - "cell_type": "markdown", - "id": "d983e620-b3d4-424b-bb53-cd64c5ec6cd8", - "metadata": {}, - "source": [ - "### Plot the events, actions, and states\n", - "\n", - "The ``plot_events``, ``plot_actions``, and ``plot_states`` functions can consume both the raw table as well as a subset of the table as a pandas DataFrame created through slicing, e.g., via ``events[:100]`` will plot only the first 100 rows from the events table.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "id": "9e145e47-ebd3-4eb3-93c5-6e9d036c111b", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAAGiCAYAAAC7/hjYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0tUlEQVR4nOzdeVzU1f7H8dewg+yIkIiS5jVcU0vLXHBfM5fcTdFbblmmWWlqopnack0rzUpTyyXNLXPJLVFzK8tKvWJZgisoKiAg68zvD34zF2RHEJf38/GYxx2+37N8zvkOkw8+95xjMJlMJkRERERERERERERERETuA1alHYCIiIiIiIiIiIiIiIjI7aLkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSYyIiIiIiIiIiIiIiInLfUHJMRERERERERERERERE7htKjomIiIiIiIiIiIiIiMh9Q8kxERERERERERERERERuW8oOSYiIiIiIiIiIiIiIiL3DSXHRERERERERERERERE5L6h5JiIiIiIiIiIiIiIiIjcN5QcExERERERESkhISEhGAyGAr/uBbNnzyYkJITffvuttEMREREREcmRTWkHICIiIiIiInI/8PHxKe0QbovZs2cTERFBQEAAjzzySGmHIyIiIiKSjZJjIiIiIiIiIrdBZGRkaYcgIiIiIiJoW0URERERERERERERERG5jyg5JiIiIiIiInIHOXLkiOUMsj/++CPPsgMGDMBgMNCyZcsc72/atInu3bvj5+eHvb09Hh4eNG3alE8++YSUlJQc6wQFBWEwGAgJCcFkMvH555/TsGFDXF1dcXFx4YknnmDp0qXZ6pnPV4uIiABg0KBBeZ6pdu3aNd58803q1auHq6srdnZ2+Pr6Urt2bYYNG8bOnTsLMl0iIiIiIoWmbRVFRERERERE7iB169alRo0aHD9+nK+++or33nsvx3IJCQmsXbsWyEiSZXbjxg0GDBjA6tWrLddcXV2JjY1l79697N27ly+//JLNmzfj4eGRY/vp6el07dqVb7/9FhsbG5ycnLh+/ToHDx7k4MGD/PXXX0yZMsVS3tnZGR8fHy5fvozRaMTV1RVHR8cc2z537hxPPvkkZ86cAcDKygo3Nzeio6OJiori6NGjhIWF5Zr0ExERERG5FVo5JiIiIiIiInKHMSe7li9fjtFozLHMunXrSEhIoEyZMnTv3j3LvSFDhrB69WoqV67MsmXLiI2NJTY2lsTERL799lsqV67MwYMHGTx4cK4xzJ07l9DQUBYvXkxcXByxsbGcPXuWp556CoBp06bx119/WcqPHTuWyMhI/P39AZgzZw6RkZFZXmYhISGcOXOGgIAAduzYQUpKClevXiU5OZnw8HA++eQTHn/88aJNnoiIiIhIPpQcExEREREREbkNfH1983yNGjXKUrZfv35YWVlx4cIFduzYkWN7X331FQBdu3bF2dnZcn3v3r0sXbqUcuXKERoaSt++fXF1dQXAwcGBzp07s3v3bsqUKcP69ev57bffcmz/2rVrrFu3joEDB1pWgFWoUIFvvvmG8uXLYzQaWbVqVZHmYv/+/QBMnz6dli1bYm1tDYC1tTWVKlVi2LBhzJw5s0hti4iIiIjkR8kxERERERERkdsgKioqz1dsbKylrJ+fHy1atAD+lwTL7OLFi5YzuZ599tks9xYuXAhkJNjMq7huVqFCBZo3bw7A1q1bcyzz5JNPWspkZm9vT9u2bQHyPRMtN+7u7kDGOEREREREbjedOSYiIiIiIiJyG5hMpkKVHzBgADt27MiyfaLZ8uXLSU9Pp3z58rRq1SpLvX379gEZSbLly5fn2r45GRcREZHj/YYNG+Zat3z58gBcvXq1YIO5SadOnThw4ADjxo0jLCyMbt260ahRI8sKNxERERGRkqSVYyIiIiIiIiJ3oG7duuHs7ExCQgJr167Ncs+8msy8/WJmFy5cACAuLi7PlWpJSUkAJCYm5ti/i4tLrrHZ2GT8f21TU1OLNLZXX32Vnj17kpqayueff0779u1xd3enVq1avPrqq5w8ebJI7YqIiIiIFISSYyIiIiIiIiJ3oDJlytCtWzcAvvzyS8v1o0eP8vvvvwPZt1QESE9PB+CTTz7BZDLl+1q8eHHJD+Ymtra2rFy5kt9++40333yTFi1a4OTkxLFjx3j//fepUaMG//nPf257XCIiIiJyf1ByTEREREREROQOZU5+/fDDD5w/fx7436qxRx55hFq1amWr4+vrC+S+XeKdpE6dOkyZMoWdO3cSExPDjh07aNq0Kenp6bz66quWJKCIiIiISHFSckxERERERETkDtWiRQsqVKiA0Whk+fLllv+FjDPJcvLkk08CsHHjxtsWZ2bmbR4Le8aajY0NLVu2ZNOmTdjb22MymdixY0dJhCgiIiIi9zklx0RERERERETuUFZWVvTr1w/IWDFmXkFmbW1N3759c6wzZMgQAI4dO8Ynn3ySZ/sJCQmkpKQUa8yurq4AxMTE5FomOTk513v29vZYW1sDZDtPTURERESkOOhfmSIiIiIiIiJ3MPPWikePHmX8+PEAtGnTBh8fnxzLN2vWjEGDBgHwwgsvMHr0aP755x/L/eTkZA4ePMhrr71GpUqVuHTpUrHGW7NmTQBWr17NtWvXcixTqVIlxo8fz8GDB7Mkyk6dOkW/fv1ITEzEysqKtm3bFmtsIiIiIiIANqUdgIiIiIiIiMj9wHwWWF7Wrl1Lo0aNslyrUaMG9erV49dff+Xw4cNA7lsqms2fPx9ra2sWLFjA7NmzmT17Ns7Oztja2hIbG4vRaLSUNRgMRRhN7oYMGcLy5cvZv38/3t7elCtXDjs7OwDCw8MBiIqKYubMmcycORMrKyvc3Ny4ceMGSUlJlpj+85//UL169WKNTUREREQElBwTERERERERuS2ioqLyLZPbFocDBgzg119/BTK2LXz66afzbMfOzo7PP/+cwYMH89lnn7F3714uXLhAcnIy5cqV4+GHH6Zp06Y888wz+Pn5FX4weWjatCmbNm1i1qxZHDlyhKioqCzJOIBt27axa9cufvzxR86cOWOZm4ceeogmTZrwwgsvUL9+/WKNS0RERETEzGAq7Am5IiIiIiIiIiIiIiIiIncpnTkmIiIiIiIiIiIiIiIi9w0lx0REREREREREREREROS+oeSYiIiIiIiIiIiIiIiI3DeUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuGzalHYCIyJ3OaDRy4cIFXFxcMBgMpR2OiIiIiIiIiIiIiOTAZDJx/fp1ypcvj5VV7uvDlBwTEcnHhQsX8Pf3L+0wRERERERERERERKQAzp49S4UKFXK9r+SYiEg+XFxcgIwvVFdX11KO5v51JT6JZu/tBmD3q83wcnYo5YhEii4xJY0Gb+8E4KcJLXGy0z/JpHTou/XOpe8JESkO9+r3vL4jRe4c9+r3jMjdSv+NhLi4OPz9/S1/083N/TczIiKFZN5K0dXVVcmxUpRiZYeVvRMALq6uuOof3HIXs0lJs3yeXV1d78t/rMqdQd+tdy59T4hIcbhXv+f1HSly57hXv2dE7lb6b+T/5Hc8Tu4bLoqIiIiIiIiIiIiIiIjcY5QcExERERERERERERERkfuGkmNSYsLDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZs6UdTrEJCgrCYDAQEhJS2qHkKiQkBIPBQFBQULZ77dq1w2Aw8MMPP9z+wERERERERERERETkjqPk2C1Yv349ISEhrF+//q7uoyhCQkIICQm5L5JeBfXRRx/xzz//8Nxzz+Hv75/lXuZEYUFeixcvLp1B3IPMSb2xY8diNBpLNxgRERERERERERERKXX372lsxWD9+vUsWbKEgQMH0qVLl7u2j6KYMmUKkLGqKCAgIMcytra2VKtWzfL+Xnb16lWmTZuGvb0948ePz7Osq6srjo6OeZbJ7/7tVLFiRapVq0bZsmVLO5Qiefzxx2nbti1bt25l6dKlDBgwoLRDEhEREREREREREZFSpOSYlBg/Pz/CwsJKO4zb4rPPPiMmJoZnnnmGChUq5Fl2zpw5BAcH357AisGXX35Z2iHcsmHDhrF161beffddJcdERERERERERERE7nPaVlHkFplMJj777DMA+vfvX8rRSE46dOiAp6cnx48fZ9++faUdjoiIiIiIiIiIiIiUIiXHbrJy5Urat2+Pj48Ptra2uLu7U7VqVTp37szcuXNJSkoiNDQUg8HAkiVLAFiyZEm2M6NCQ0MtbUZGRvLRRx/x9NNPExgYiJubG46Ojjz00EM899xzHD9+PFsche3D7NixYwwZMoSqVavi5OSEs7MztWvXZsKECURHR9/y/AQHB2MwGCw/N2/ePEtMmbdYzHzO1s1nk5nHZ27rjz/+oE+fPpQvXx5HR0cCAwN5//33SUtLs9TZt28fXbp04YEHHsDBwYGaNWsyd+5cTCZTnjEXZU5CQkIwGAwEBQUBsGbNGtq0aUO5cuWwsrKynGMFsGPHDk6fPo27uzsdOnQowCwWzv79+7GxscFgMPDBBx/kWObcuXN4eXlhMBh4/vnns9wLCgrCYDAQEhJCSkoKM2fOpHbt2pQpUwYPDw9at27Nli1bcu0/c/2bBQQEWM5Ii4+P580336RWrVq4uLjk+Nz37dtH//79qVSpEg4ODri5udGgQQPeeecd4uPj85yHLVu20Lp1a9zd3XF2dqZOnTq8++67pKam5lkPwM7Oju7duwNYEpkiIiIiIiIiIiIicn/StoqZDB48mEWLFll+dnZ2JjU1lVOnTnHq1Cm+++47OnbsiJ2dHT4+PsTGxpKUlGT5I39mdnZ2lvfjxo2zJLlsbGxwdXUlMTGRv//+m7///pulS5eybNkyyx/vzfUL0wfAu+++y/jx4zEajQA4OTmRmprK0aNHOXr0KIsWLWLTpk3UrVu3yHPk5uaGj48PUVFRAHh4eGSJw9vbu9BtbtmyhW7dupGUlISbmxvJycmEhYXx6quv8ssvv7BixQoWLFjAsGHDMBqNuLq6kpyczPHjxxk5ciRnz55l5syZObZdHHPyyiuvMGvWLAwGA+7u7lhZZc0pf//99wA0bNiwRM5Wa9SoEZMnT+bNN99k3LhxBAUFZYnXaDTSv39/rl69SmBgIHPmzMmxnZSUFFq1asXevXuxsbHB2dmZmJgYduzYwY4dO5g8eXKOCbCCuHLlCvXr1+fPP//Ezs4OJyenLPeNRiOjR4/mww8/tFxzdnYmISGBn3/+mZ9//plFixaxdetWKlWqlK39kJAQyzl3AO7u7vz3v//l9ddfZ9OmTTz55JP5xti0aVM+//xztm7dWqQxioiIiIiIiIiIiMi9QSvH/t+PP/7IokWLsLKy4p133uHKlStcv36dhIQEoqOj2bp1KwMHDsTOzo5GjRoRGRlJr169AOjVqxeRkZFZXo0aNbK0/dBDD/Hee+9x9OhRbty4wZUrV0hOTubYsWP069eP5ORkBg4cyIULFyx1CtvHwoULef3113FycuLtt9/m4sWLJCQkkJiYyOHDh2nRogUXL16kc+fO+a7QycucOXOIjIy0/Lx27dosMf3888+FbrNv3748/fTTREREEBMTQ2xsLOPHjwfg66+/ZubMmYwYMYIRI0YQGRlJTEwMV69etZzb9d577/Hnn39ma7c45uSXX35h1qxZvP7660RFRXH16lUSEhIYNGiQpcyePXsAaNCgQaHHXlATJkwgKCiIlJQUevfuTUJCguXetGnT2L17N/b29qxYsSJbYsps3rx5/PTTT8yfP5/r169z7do1zpw5wzPPPAPAlClT2LBhQ5HiCwkJIS4ujnXr1hEfH8+1a9c4e/Ys5cqVA2Dy5Ml8+OGHlCtXjrlz51p+v27cuMGuXbuoW7cuJ0+epFu3bpZEptmGDRssibEePXpw5swZrl27RlxcHHPnzuXgwYN88skn+cbYsGFDAKKiou6bs/BEREREREREREREJDslx/7f/v37AWjVqhWvvfYanp6elnteXl60adOGxYsXU758+UK3PXHiRMaOHUvNmjWxsclYrGdlZUWNGjVYunQpHTt2JCEhgS+++KJIsV+/fp2xY8cCsHr1at544w18fX0BsLa2pn79+mzdupX69etz7tw5FixYUKR+Sspjjz3GihUrqFixIgAuLi5Mnz6dJk2aADB+/HgGDhxoSa5Axoq1BQsW8OCDD2I0Glm1alWWNotrTuLj4xkzZgwzZ860rIqzt7e3rG5KSUnhyJEjANSpU6dA4x01ahS+vr55vm5mZWXF0qVL8fLy4s8//2TkyJFAxjaFU6dOBTJWyeUVQ2xsLPPmzWPo0KE4ODgA4O/vz8qVK2natCkAb7zxRoHGcLMbN26wefNmunTpYlk9V6FCBZycnAgPD2fGjBk4Ojqybds2RowYYfn9srW1JSgoiN27d1OhQgV+/fXXbAk6c6K0WbNmfP311/j7+wPg6OjIiBEj+PDDD4mJick3xqpVq+Ls7AzAgQMH8iybnJxMXFxclpeIiIiIiIiIiIiI3BuUHPt/7u7uAFy+fJn09PTb2nfHjh2BjNVrRbFmzRpiYmKoW7cubdu2zbGMjY0Nffr0AbjjtpV7/fXXs5xjZpZ5LOYESWbW1ta0bNkSyDizLLPimhMrKytef/31XGO/dOmS5fNS0C0l4+LiiIqKyvOVEz8/P0sCdfHixXzyySf07duX9PR0OnXqxEsvvZRnv/7+/llWvGUe48SJEwE4fvw4R48eLdA4MmvXrl2uW1MuXryY9PR02rVrl2vyzsXFhS5dugBZn8Uff/zBf//7XyAjyXzzlpYAzz//PH5+fgWK08vLCyDLKs2czJgxAzc3N8vLnJATERERERERERERkbufzhz7fy1btsTBwYEjR47QpEkT/v3vf9OiRQsefPDBYmn/999/59NPP+XHH38kPDyc+Ph4TCZTljLnzp0rUtv79u0D4MSJEzmuOjK7ceMGABEREUXqp6Tkth2hj48PAJ6enlSuXDnPMteuXctyvbjm5KGHHrKsVsvJ5cuXLe8zrzbMy6JFiyxbQhZW586dGTlyJB9//DEjRowA4IEHHshyVl5ugoKCckxCAjRp0gQbGxvS0tI4fPgwtWrVKlRceZ35ZX4W27Zty/NZmLe2zPwsDh8+DGQkMs0rCW9mZWVFUFAQy5YtyzdOT09PIiIisjy3nIwfP54xY8ZYfo6Li1OCTEREREREREREROQeoeTY/6tSpQoLFixg2LBhHDhwwLLtmre3N82bN6dv37507tw51+RCXj7++GNGjRplOUvJYDDg5uaGvb09kJGgiYuLy3KOVGGYV8EkJSWRlJSUb/nExMQi9VNSXFxccrxu3oIyt/uZy6Smpma5XlxzkldizNy+mfl5lrT333+fdevWcf78eQC++OILypYtm2+9vFZXOTg44OXlRVRUFJcuXSp0THnNk/lZJCQkFOgznvlZmGMpW7ZsnvNboUKFAsXp6OgIkO9nwt7e/rY9TxERERERERERERG5vbStYib9+vUjIiKC+fPn06tXL/z9/bl8+TKrVq2iS5cuNGvWrNBnD504cYKXX34Zo9FIjx49+Omnn0hKSuLatWtERkYSGRnJrFmzALKtJCso87Z+vXr1wmQy5fsKDw8vUj93k+KaE2tr6zz7MW/TB9lXr5WUTZs2WRJjALt3774t/eYlr3kyP4vXX3+9QM8iNDS0xOK8evUqkPW5iYiIiIiIiIiIiMj9Rcmxm3h6ejJ06FC+/vprzpw5w6lTpxg3bhwGg4G9e/cSEhJSqPZWr15Neno6gYGBfP311zz22GPY2dllKRMZGXlLMZu3qrvTtkssTbdrTjKfM2ZOvJSks2fP8txzzwFQu3ZtAN59911++OGHfOtmTqjdLDk5mStXrgD5r5YrrFt5FuZYoqOjSUlJybVcXmPLzPyMCno+nIiIiIiIiIiIiIjce5Qcy0eVKlWYMWMGffv2BWD79u2We1ZWGdOX14qvs2fPAlCnTh1L+Zvt2LEj1/oF6cN83tMvv/zCxYsXcy1XnMzbSxZ1tVtJu11z4uHhYUn+/PPPPyXWD2SswOrXrx/Xrl2jevXqHDx4kK5du2I0Gnn22Wctya3c7N69O9fntXfvXtLS0gB49NFHizVu87PYsWNHgba4zMwcS1paGnv37s2xjNFoLNBqs+vXrxMdHQ1AYGBgoeIQERERERERERERkXuHkmP/Lzk5Oc/75rOKMie4XF1dAYiJicm1npubGwBHjx7NMTGxZcuWPP+wX5A+evTogbu7O6mpqYwZMybPhJXRaMyzrYIqSFyl6XbOSdOmTQH46aefitxGQUybNo29e/dib2/P119/jaOjIwsWLKBChQpcuHCBQYMG5Vn/zJkzLFmyJNt1o9HI9OnTAahevTq1atUq1rgHDx6MjY0N0dHRTJ48Oc+yKSkpxMfHW36uXbu2JZH19ttvW87ty+yLL77g3Llz+cZx+PBhjEYjNjY2loSdiIiIiIiIiIiIiNx/lBz7fyNHjqRnz56sWbOGS5cuWa7Hx8czf/58vvzySwA6duxouVezZk0gY9VNWFhYju22a9cOgOPHj/PCCy9YtnVLSEjg008/5Zlnnsnz/KOC9OHu7s7s2bMB+Prrr+nYsSOHDh2yJBKMRiMnTpzgP//5DzVq1GDjxo35zkd+zHEtW7aMxMTEW26vuN3OOQkKCgLg0KFDtxp2rvbt28dbb70FwHvvvWdJYHl6erJ06VKsrKz47rvv+Pjjj3Ntw83NjeHDh/P5559bVnCdPXuWPn36sGvXLiAjAVfcqlSpwqRJk4CMLSAHDBjAsWPHLPfT0tL47bffmDp1Kg899BC//fZblvpvv/02ALt27aJv376WRFhSUhLz589n5MiRuLu75xuH+fnUq1cPZ2fnYhiZiIiIiIiIiIiIiNyNlBz7f6mpqXzzzTc888wz+Pj44OLigoeHBy4uLgwfPpyUlBQaN27MhAkTLHW6d++Ot7c3165dIzAwEG9vbwICAggICODgwYMAtGzZkt69ewPwySef4OXlhYeHB25ubgwbNozAwMA8zzErSB8AAwcO5JNPPsHOzo4tW7bw+OOP4+TkRNmyZXFwcKB69eqMHTuWsLAwy5aIt2LYsGEArFmzBnd3dypUqEBAQACNGze+5baLy+2ak+7du2Nra0tYWBh//fVXvuVHjRqFr69vnq9Ro0ZZysfExNC3b1/S09Pp1KkTL774Ypb2mjVrZvlcvvrqqxw9ejTHfkeMGMGjjz7KkCFDcHV1xdPTk4oVK7Jq1SoAJk6cSNeuXYs6DXmaNGkSkyZNwmAw8NVXX1GrVq0sz6Ju3bpMnjyZs2fPZnsWXbt2tYxv5cqV+Pv74+npafndbNCgAcOHD883hg0bNgBYtkgVERERERERERERkfuTkmP/b9KkSXz44Yd07dqVhx9+GBsbG+Lj4ylXrhytW7fmiy++IDQ0lDJlyljqeHh4sGfPHnr37o2fnx+xsbFEREQQERGR5WylZcuWMXv2bGrXro29vT3p6enUqlWLGTNmsG/fvjxXsRS0D8hIWJ08eZKxY8dSp04d7O3tiYmJwdnZmUcffZQXX3yR7du306dPn1uer/79+/PVV1/RuHFjnJycuHjxIhEREQXa3u52uh1zUq5cOUtSadmyZfmWj4uLIyoqKs9XbGyspfzzzz/PmTNn8PX15YsvvsixzcmTJ9OoUSOSkpLo3bs3N27cyFbGzs6OnTt3Mn36dKpVq0ZycjJubm60bNmSTZs2WVamlQSDwcDUqVP5448/GDFiBIGBgVhbWxMbG4uHhweNGjXi1VdfZf/+/TlueTht2jQ2btxIixYtcHV1JTk5mcDAQGbOnMnOnTuxs7PLs/9//vmHAwcO4OjoyIABA0pqmCIiIiIiIiIiIiJyFzCY8jqMSUQKZM+ePTRr1owqVarw119/FcvqvOISFBTE7t27mTx5cp6rFO9lU6dOZfLkyQwaNCjXBGNe4uLicHNzIzY21nLentx+0fFJPDptJwCHJ7akrLNDKUckUnSJKWlUf3MrAP+d2hYnO5tSjkjuV/puvXPpe0JEisO9+j2v70iRO8e9+j0jcrfSfyML/rdcrRwTKQZNmzalTZs2/P3333zzzTelHY5kkpCQwEcffYS9vT2TJ08u7XBEREREREREREREpJQpOSZSTN5//32srKyYOnUqRqOxtMOR//fxxx8THR3NSy+9RKVKlUo7HBEREREREREREREpZfffmjqRElKrVi0WLlxIeHg4Fy9exM/Pr7RDEqBMmTKEhITw8ssvl3YoIiIiIiIiIiIiInIHUHLsPubr61voOpGRkSUQyb0jODi4tEOQm4wcObK0QxARERERERERERGRO4iSY/exqKio0g5BboPQ0NDSDkFERERERERERERE5I5hMJlMptIOQkTkThYXF4ebmxuxsbG4urqWdjgiIiIiIiIiIiIikoOC/i3X6jbGJCIiIiIiIiIiIiIiIlKqlBwTERERERERERERERGR+4aSYyIiIiIicldKTEkjYNwmyysxJS3bdfO1vK6LlLbCfmbz+iwX9Z5IUej7VsxK6nupuL8HC3JfRETuD0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJcdERERERERERERERETkvqHkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSY3e44OBgDAYDwcHBxd723r176dixI97e3lhbW2MwGOjSpUux9yN3hoCAAAwGA4sXLy6V/vv374/BYGDlypW3td927dphMBj44Ycfbmu/IiIiIiIiIiIiInJnUnLsPnXw4EFatGjB5s2buXLlCp6envj4+ODh4QFASEgIISEhhIeHl26gpSA8PNwyfikehw8fZvny5dSsWZOePXtmu29O3JVEEtj8HMeOHYvRaCz29kVERERERERERETk7mJT2gFI6Zg9ezZpaWk8+eSTbNiwAU9Pzyz3p0yZAkBQUBABAQGlEGHpCQ8Pt4xfCbLi8corr2AymZg8eTIGg+G29v3444/Ttm1btm7dytKlSxkwYMBt7V9ERERERERERERE7ixaOXafOnr0KAC9e/fOlhgTKU4HDx5kz549+Pr60rVr11KJYdiwYQC8++67pdK/iIiIiIiIiIiIiNw5lBy7TyUmJgLg7OxcypHIvW7+/PlARiLW2tq6VGLo0KEDnp6eHD9+nH379pVKDCIiIiIiIiIiIiJyZ1By7C4XHh7Oyy+/TI0aNXB2dsbJyYmHH36YUaNGcebMmWzlDQYDBoPBcpbYoEGDLNfMZz5l3vauefPmWe7f6haLQUFBGAwGQkJCSElJYebMmdSuXZsyZcrg4eFB69at2bJlS77trF27lk6dOuHj44OdnR0+Pj506tSJdevW5VrHPLbg4GBMJhMLFiygcePGeHl5YTAYWLx4MQEBATRv3txSJ/PYi+NMLHM7oaGhREZGMnLkSB588EEcHBzw9fWlX79+hIWF5dlGUlISs2fPplGjRnh4eODg4EClSpUYMGAAv/32W5Fje/vttzEYDFhbW1sSWmZGo5Fly5bRoUMHy5x7e3vTpk0bVqxYgclkyrHNuLg4Vq1aBUDfvn2LFFfm5wawevVqgoKC8PT0xMnJiUceeYQ5c+bkeZ6YnZ0d3bt3B+Czzz4rUhwiIiIiIiIiIiIicm/QmWN3sWXLlvHvf/+b5ORkAOzt7bGysuLkyZOcPHmSRYsWsXr1atq0aWOp4+PjA8Dly5cxGo24urri6OhouW9tbY2Pjw9RUVEAeHh4YGdnZ7nv7e1dLLGnpKTQqlUr9u7di42NDc7OzsTExLBjxw527NjB5MmTczzvKyUlhQEDBrBy5UoArKyscHNzIzo6mk2bNrFp0yb69OnDkiVLsLW1zbFvk8lEjx49WLNmjaW+lZWVZXxxcXFcu3YN+N98mbm5uRXL+E+fPk2fPn2IjIzE0dERW1tboqKiWL58OWvXrmXdunW0a9cuW73z58/Trl07jh07BoCtrS1OTk6cOXOGr776imXLljF79mxefPHFAsdiNBp56aWXmDt3Lg4ODixfvjzL9odXr16la9eu7Nmzx3LNPOfbt29n+/btfP3113zzzTdZPisAu3fv5saNG5QpU4Z69eoVdpqyGTlyJHPnzsXKygpXV1du3LjB77//zssvv8yvv/7KkiVLcq3btGlTPv/8c7Zu3XrLcYiIiIiIiIiIiIjI3Usrx+5S27dvZ8CAAaSnp/Paa69x+vRpbty4QUJCAmFhYfTo0YPr16/To0ePLCvIIiMjiYyMxN/fH4A5c+ZYrkVGRrJw4UIiIyMt5deuXZvl/s8//1ws8c+bN4+ffvqJ+fPnc/36da5du8aZM2d45plnAJgyZQobNmzIVu+NN95g5cqVGAwGJk2axJUrV7h69SrR0dG88cYbAKxYsYJJkybl2vfatWv59ttvef/997l27RpXr14lNjaWtm3b8vPPP7N27dps82V+zZkzp1jGP3r0aOzs7Ni2bRsJCQlcv36dQ4cOUatWLZKSkujVqxfnzp3LUic9PZ3u3btz7Ngx3NzcWLp0KfHx8cTExPD333/TqVMnjEYjo0aNKtDqO4Dk5GR69uzJ3LlzcXd3Z9u2bVkSY+np6XTr1o09e/bwyCOP8N1335GQkEBMTAzx8fEsWbKEcuXKsWHDBl5//fVs7ZsTavXq1bvlLRU3bNjA559/zqxZs7h27RrXrl0jOjqa5557DoAvv/ySH374Idf6DRs2BCAqKirf1XkiIiIiIiIiIiIicu9ScuwuZDQaeeGFFzAajcydO5d33nmHgIAAy5Z91apVY9WqVXTu3Jm4uDhmzZpV2iFnExsby7x58xg6dCgODg4A+Pv7s3LlSpo2bQpgSXaZnT9/3pKcGjduHFOnTsXd3R3IWOH29ttvM2bMGABmzZrFxYsXc+w7Pj6eWbNm8corr+Dq6gpknL32wAMPFPs4c3Pjxg2+//57WrdubdnGskGDBuzYsQNPT0/i4uKYMWNGljqrV6/m0KFDAKxatYp+/fpZVmpVrlyZdevW0bBhQ0wmE6+99lq+MZgTgmvWrMHPz4+9e/fSpEmTLGWWL1/O7t27efjhhwkNDaVTp044OTkBUKZMGQYMGMDmzZsxGAzMmzePS5cuZalvjrdOnTpFmKWsrl27xqeffsro0aMtz83Ly4vPP/+c+vXrAxmJ0dxUrVrVcsbegQMH8uwrOTmZuLi4LC8RERERERERERERuTcoOXYX2rNnD3/99Rdly5a1rJrJyYABAwDuyG3k/P39GTRoULbrVlZWTJw4EYDjx49z9OhRy701a9aQlpaGg4MD48aNy7HdiRMnYm9vT2pqKqtXr86xjIeHB0OHDi2GURRdjx49CAwMzHa9XLlyDBs2DMCydaSZ+ecnnngiy1aZZjY2NkyePBmAY8eOZZm7m124cIEmTZpYEl/79++nZs2a2cotXLgQgOHDh+e6pWT9+vWpUaMGKSkp7Nq1K1s/UDzbcfr7+zNw4MAc73Xu3BmAP/74I882vLy8ssSVmxkzZuDm5mZ5mVdaioiIiIiIiIiIiMjdT8mxu9C+ffuAjJU/5cuXx9fXN8fX888/D0BERERphpujoKAgy4qpmzVp0gQbm4zj8A4fPmy5bn7/2GOPWVYO3czDw4NHH300W93MHnvssWxnY91uLVq0yPfelStXOH36tOW6eTytWrXKtW7z5s0t2xfmNv6wsDAaNWrE0aNHeeKJJ9i3bx8VK1bMVi49PZ2DBw8CEBISkuvnzNfXl5MnTwLZP2uXL18GwNPTM9eYC+qxxx7L9TNTvnx5ION8tLyY4zDHlZvx48cTGxtreZ09e7YIEYuIiIiIiIiIiIjIncimtAOQwjOveklNTSUqKirf8jdu3CjpkArNz88v13sODg54eXkRFRWVZZs+8/u86gJUqFAhS/mblStXrrDhFru8xpD53qVLl3jwwQct7/Or6+DgQNmyZbPNXWbvvPMOAD4+Pmzbts2y1eDNrl69SnJyMpCxpWFBJCYmZvk5KSkJAHt7+wLVz4uLi0uu98zJ1NTU1DzbcHR0zBJXbuzt7YslZhERERERERERERG582jl2F0oPT0dwHK+VEFe8j/mlVX3qx49emBnZ0dUVBTDhw+3fJ5ulvn6li1bCvQ5CwkJydKGeRvDgibXSpp5ZZk5LhERERERERERERG5/yg5dhfy9fUF7sztEgvq/Pnzud5LTk7mypUrQNZVXub3586dy7Nt8/07YYVYbvIaf+Z7hR1/UlJSjnOXWYcOHVi3bh329vYsXbqUZ599NscEmZeXl2VFVlE/a+azxvLb7vB2McdRHGegiYiIiIiIiIiIiMjdScmxu9CTTz4JQGRkZK7nSt0q89lOJbXqbPfu3bm2vXfvXtLS0gAs54dlfn/48GFiY2NzrBsTE5PlbLKisLL6369FSY1/165d+d7z9PS0bKkI/xv/zp07c60bGhpqmbu8xt+hQwe+/fZbHBwcWLFiBX379rXUM7O1taVBgwYAfPfdd/mMKGfVq1cH4J9//ilS/eJ0/fp1oqOjAQgMDCzlaERERERERERERESktCg5dhdq3rw5Dz30EACjR48mJSUlz/JFWbXj6uoKZCSbSsKZM2dYsmRJtutGo5Hp06cDGYmVWrVqWe51794dGxsbkpKSLOdm3Wz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t0725ldQ4YMAWDz5s1s3rw5z/Zy+pw1bdoUgJ9++inPurfD4cOHMRqN2NjYWBLMIiIiIiIiIiIiInL/UXLsLmRjY8P8+fOxsbHhxx9/pGnTpuzcuTNLYuOff/5h/vz5PPbYY8ybN6/QfZgTK8uWLSMxMbHYYjdzc3Nj+PDhfP755yQlJQFw9uxZ+vTpY1k5NW3atCx1/Pz8GDVqFAAzZ85k8uTJluRVTEwMkyZN4r333gNgzJgxPPDAA0WK7V//+hd2dnYALFiwoERWjzk4ONCuXTt27Nhhaf/nn3+mVatWREdH4+Liwrhx47LU6d69Ow0bNgSgZ8+eLF++3PLMT58+Tffu3Tlw4AAA7777boHiaN26NRs3bsTJyYk1a9bQs2fPLMnW/v3706pVK0wmE127dmXatGlcuHDBcj8hIYFdu3bxwgsvULly5WztBwUFARnbMkZFRRVwdkrGoUOHAKhXrx7Ozs6lGouIiIiIiIiIiIiIlB4lx+5SLVu25JtvvsHFxYVDhw7RqlUrypQpQ9myZXFwcKBKlSoMHz6cw4cPW7ZILIxhw4YBsGbNGtzd3alQoQIBAQE0bty4WOIfMWIEjz76KEOGDMHV1RVPT08qVqzIqlWrAJg4cSJdu3bNVm/69On07NkTk8nE1KlT8fLywtPTEy8vL0syrU+fPrz11ltFjs3JyYlnn30WgNdeew1nZ2cqVapEQEAAY8eOLXK7mX3wwQckJSXRunVrnJ2dcXFxoUGDBvz+++/Y29uzYsUKKlasmKWOtbU1a9asoUaNGsTGxtKvXz+cnZ3x8PCgcuXKbNiwASsrK+bMmUP79u0LHEuLFi3YvHkzZcqUYf369XTv3t2SIDP32alTJ1JSUpg0aRJ+fn64ubnh4eGBi4sLLVq0YN68eSQkJGRrOzAwkDp16gCwYcOGW5ixW2fuv2/fvqUah4iIiIiIiIiIiIiULiXH7mJdunTh1KlTTJ48mQYNGuDs7ExMTAz29vbUqVOH5557jnXr1vHqq68Wuu3+/fvz1Vdf0bhxY5ycnLh48SIRERGcO3euWGK3s7Nj586dTJ8+nWrVqpGcnIybmxstW7Zk06ZNuSa37OzsWLlyJatXr6Z9+/Z4eXlx/fp1vLy8aN++PWvXrmX58uXY2treUnxz584lJCTEsq3jmTNniIiIsJxZdasefPBBjhw5wgsvvIC3tzcpKSmUK1eOPn36cOTIETp27JhjPT8/Pw4fPsysWbN4/PHHcXR0JDExEX9/f5599ll++eUXXnrppULH06xZM77//ntcXFzYuHEjXbp0ITk5GcjYZvK7775j8+bN9OrVi4oVK5KcnExiYiJ+fn60adOGGTNm5LhNJMDQoUOBjFWIpeWff/7hwIEDODo6MmDAgFKLQ0RERERERERERERKn01pByB5W7x4MYsXL871frly5QgJCSEkJKRQ7YaHh+dbpn///vTv379Q7RaGnZ0d48ePZ/z48YWu271790KfKZbfXGZmb2/P5MmTmTx5cqFjKyhfX18+/vhjPv7440LVc3BwYPTo0YwePbpQ9fJ75o0bNyYuLi7X++3bty/UijSz/v37M27cOPbs2UNERASVKlUqVGwFeW7BwcEEBwfnen/p0qVAxrltHh4eBQlbRERERERERERERO5RWjkmIiXKfH6ayWTinXfeue39JyQk8NFHH1kSniIiIiIiIiIiIiJyf1NyTERK3OjRo/H392fhwoWcPXv2tvb98ccfEx0dzUsvvZTjqjURERERERERERERub9oW0URKXEODg58+eWXhIaGcubMGfz9/W9b32XKlCEkJISXX375tvUpIiIiIiIiIiIiIncuJcek0Lp168b+/fsLVWft2rU0atSohCK6vXx9fQtdJzIysgQiubsEBQURFBR02/sdOXLkbe9TRERERERERERERO5cSo5JoV29epWoqKhC1UlJSQEgNDS0BCK6vQo79sxMJlMxRiIiIiIiIiIiIiIiIoVlMOmv9SIieYqLi8PNzY3Y2FhcXV1LOxwRERERERERERERyUFB/5ZrdRtjEhERERERERERERERESlVSo6JiIiIiIiIiIiIiIjIfUPJMRERERERuWslpqQRMG6T5ZWYkpbjPfP1nK6JlLa8Ppf5fWaLUle/B1Kc9DkTs5L4vrrVurfSp4iI3NuUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuG0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJceKSXBwMAaDgeDg4GJve+/evXTs2BFvb2+sra0xGAx06dKl2PuRO0NAQAAGg4HFixeXSv/9+/fHYDCwcuXKUum/OBmNRmrUqIGtrS0nT54s7XBERERERERERERE5A5gU9oBSN4OHjxIixYtSEtLw2Aw4OXlhbW1NR4eHgCEhIQAGcm5gICA0gu0FISHh1sSSOZ5kFtz+PBhli9fTs2aNenZs2eeZU+dOsXChQvZsWMH4eHhxMbG4unpSZUqVWjTpg3PP/885cuXL7FY169fz2+//cYjjzySa7LYysqKSZMm0adPH1577TW+/fbbEotHRERERERERERERO4OWjl2h5s9ezZpaWk8+eSTREdHc/nyZSIjI1m0aBEAU6ZMYcqUKYSHh5duoKUgPDzcMn4pHq+88gomk4nJkydjMBhyLJOens6rr75KYGAgM2fO5PDhw1y7dg1nZ2cuX77M/v37CQkJoWrVqrz//vslFuv69euZMmUK69evz7Ncz549qV69Ohs2bGDPnj0lFo+IiIiIiIiIiIiI3B2UHLvDHT16FIDevXvj6elZytHIvezgwYPs2bMHX19funbtmmMZo9FI9+7def/990lLS6Ndu3bs3r2b5ORkrl69yo0bN/j+++9p1KgRiYmJvPrqq7z00ku3eSRZWVlZ8fzzzwPw7rvvlmosIiIiIiIiIiIiIlL6lBy7wyUmJgLg7OxcypHIvW7+/PlARiLW2to6xzLTpk2zbE04btw4tmzZQtOmTS3l7ezsaNu2LXv37mXAgAEAfPTRR3z11Ve3YQS569OnD9bW1mzZsoUzZ86UaiwiIiIiIiIiIiIiUrqUHLtNwsPDefnll6lRowbOzs44OTnx8MMPM2rUqBz/WG8wGDAYDJbtEgcNGmS5ZjAYCA4OzrLtXfPmzbPcv9Xzx4KCgjAYDISEhJCSksLMmTOpXbs2ZcqUwcPDg9atW7Nly5Z821m7di2dOnXCx8cHOzs7fHx86NSpE+vWrcu1jnlswcHBmEwmFixYQOPGjfHy8sJgMLB48WICAgJo3ry5pU7msZvr3gpzO6GhoURGRjJy5EgefPBBHBwc8PX1pV+/foSFheXZRlJSErNnz6ZRo0Z4eHjg4OBApUqVGDBgAL/99luRY3v77bcxGAxYW1tbElpmRqORZcuW0aFDB8uce3t706ZNG1asWIHJZMqxzbi4OFatWgVA3759cyxz6dIlZs6cCWR83qZPn55rjFZWVnz22WcEBgYCMH78eFJSUrKUyfycc7N48eJsn+fQ0FAMBgNLliwBYMmSJdmef2hoaJZ2fHx8aNGiBUajkYULF+ban4iIiIiIiIiIiIjc+5Qcuw2WLVvGww8/zJw5c/jvf/9LWloaACdPnuTDDz+kZs2abNu2LUsdHx8ffHx8sLLKeESurq6Waz4+PlhbW+Pj42Mp7+HhkeW+t7d3scSekpJCq1atGD9+PCdOnMDOzo6YmBh27NhBhw4dCAkJybVe79696d69O5s2bSI6OhpnZ2eio6PZtGkT3bp1o2/fvqSmpubat8lkokePHjz//PMcOHAAk8lkmQ9vb288PDwsZTOP3cfHBzc3t2IZ/+nTp6lbty5z584lKioKW1tboqKiWL58OXXr1uX777/Psd758+d57LHHGD16NAcOHCAhIQEHBwfOnDnDV199Rf369fnoo48KFYvRaGTkyJFMnDgRBwcHVq9ezbBhwyz3r169SvPmzenfvz9btmzh0qVLODk5ER0dzfbt2+nbty9dunTJlqQC2L17Nzdu3KBMmTLUq1cvx/4XLVrEjRs3API8k8zM3t6ecePGWeYjv7PBCsqcZHVwcADAwcEh2/O3s7PLVq9p06YAuT4zEREREREREREREbk/KDlWwrZv386AAQNIT0/ntdde4/Tp09y4cYOEhATCwsLo0aMH169fp0ePHllWkEVGRhIZGYm/vz8Ac+bMsVyLjIxk4cKFREZGWsqvXbs2y/2ff/65WOKfN28eP/30E/Pnz+f69etcu3aNM2fO8MwzzwAwZcoUNmzYkK3eG2+8wcqVKzEYDEyaNIkrV65w9epVoqOjeeONNwBYsWIFkyZNyrXvtWvX8u233/L+++9z7do1rl69SmxsLG3btuXnn39m7dq12ebL/JozZ06xjH/06NHY2dmxbds2EhISuH79OocOHaJWrVokJSXRq1cvzp07l6VOeno63bt359ixY7i5ubF06VLi4+OJiYnh77//plOnThiNRkaNGlWg1XcAycnJ9OzZk7lz5+Lu7s62bduynAuWnp5Ot27d2LNnD4888gjfffcdCQkJxMTEEB8fz5IlSyhXrhwbNmzg9ddfz9b+nj17AKhXr16uWyr+8MMPAHh5edGsWbMCxd2lSxdLEm3Xrl0FqpOfRo0aERkZSa9evQDo1atXtuffqFGjbPUaNmwIwK+//kp8fHyxxCIiIiIiIiIiIiIidx8lx0qQ0WjkhRdewGg0MnfuXN555x0CAgIsW79Vq1aNVatW0blzZ+Li4pg1a1Zph5xNbGws8+bNY+jQoZaVOv7+/qxcudKyEsec7DI7f/68JTk1btw4pk6diru7O5Cxwu3tt99mzJgxAMyaNYuLFy/m2Hd8fDyzZs3ilVdewdXVFcg4e+2BBx4o9nHm5saNG3z//fe0bt3akuRp0KABO3bswNPTk7i4OGbMmJGlzurVqzl06BAAq1atol+/fpaVTJUrV2bdunU0bNgQk8nEa6+9lm8M5oTgmjVr8PPzY+/evTRp0iRLmeXLl7N7924efvhhQkND6dSpE05OTgCUKVOGAQMGsHnzZgwGA/PmzePSpUtZ6pvjrVOnTq5xHD9+HIC6devmG7OZq6srlStXBuDYsWMFrlcSzHGnpaXlmzxOTk4mLi4uy0tERERERERERERE7g1KjpWgPXv28Ndff1G2bFmee+65XMsNGDAAgK1bt96u0ArM39+fQYMGZbtuZWXFxIkTgYykydGjRy331qxZQ1paGg4ODpZt9W42ceJE7O3tSU1NZfXq1TmW8fDwYOjQocUwiqLr0aOH5dyszMqVK2fZ0nDlypVZ7pl/fuKJJ2jTpk22ujY2NkyePBnISBhlnrubXbhwgSZNmlgSX/v376dmzZrZypnP0Ro+fHiuW0rWr1+fGjVqkJKSkm0V14ULFwDy3I7zypUrQMbKscIoW7ZslvqlxdPT07Itp3m8uZkxYwZubm6Wl3kFp4iIiIiIiIiIiIjc/ZQcK0H79u0DMlb+lC9fHl9f3xxfzz//PAARERGlGW6OgoKCcj1bqkmTJtjY2ABw+PBhy3Xz+8cee8yy4utmHh4ePProo9nqZvbYY4/leHbU7dSiRYt87125coXTp09brpvH06pVq1zrNm/e3LJ9YW7jDwsLo1GjRhw9epQnnniCffv2UbFixWzl0tPTOXjwIAAhISG5fs58fX05efIkkP2zdvnyZSAjgXSvsrKysiQOzePNzfjx44mNjbW8zp49eztCFBEREREREREREZHbwKa0A7iXmVenpKamEhUVlW/5GzdulHRIhebn55frPQcHB7y8vIiKisqyTZ/5fV51ASpUqJCl/M3KlStX2HCLXV5jyHzv0qVLPPjgg5b3+dV1cHCgbNmy2eYus3feeQcAHx8ftm3bhrOzc47lrl69SnJyMgDXrl3LYzT/k5iYmOXnpKQkAOzt7XOt4+Xlxfnz5wu9Aiw6OtpSv7Q5Ojpy7do1y3hzY29vn+dciIiIiIiIiIiIiMjdSyvHSlB6ejqA5Xypgrzkf8wrq+5XPXr0wM7OjqioKIYPH275PN0s8/UtW7YU6HMWEhKSpQ1z4iqv5Fr16tUBOHLkSIHHEBcXxz///ANAjRo1ClyvpFy9ehW4MxJ1IiIiIiIiIiIiIlI6lBwrQb6+vsCduV1iQZ0/fz7Xe8nJyZZVRJlXeZnfnzt3Ls+2zffvhBViuclr/JnvFXb8SUlJOc5dZh06dGDdunXY29uzdOlSnn322RwTZF5eXpbtLYv6WTOfNWZOHuWkZcuWQMY2kqGhoQVqd926dZak781bVJpjzmsVV2xsbIH6KYgbN25Y+srrbDURERERERERERERubfdcnLs3LlzjBkzhho1auDs7Gz5g7fZtWvXmD59OjNmzCAtLe1Wu7urPPnkkwBERkbmeq7UrTKfB1ZSq852796da9t79+61PFPz+WGZ3x8+fDjX5EZMTEyWs8mKwsrqfx/fkhr/rl278r3n6elp2VIR/jf+nTt35lo3NDTUMnd5jb9Dhw58++23ODg4sGLFCvr27Zvt98jW1pYGDRoA8N133+UzopyZV4WZV3nlJDg4GAcHBwCmTp2a75wnJydbtoYsX748Xbp0yXLfw8MDIM/zvA4dOpTrPfPzL+izz3wuXGBgYIHqiIiIiIiIiIiIiMi955aSY9u3b6dWrVrMmTOHEydOkJiYmO0P1R4eHqxfv56JEyeyefPmWwr2btO8eXMeeughAEaPHk1KSkqe5fNatZMbV1dXICPZVBLOnDnDkiVLsl03Go1Mnz4dyEis1KpVy3Kve/fu2NjYkJSUZEmO3Gz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t2b1NTULGWGDBkCwObNm/P9Pcvpc9a0aVMAfvrpp1zr+fj48NprrwEZicEJEybkWtZoNDJ06FBOnDgBZDxvOzu7LGXq1KkDwM8//5xjguzEiROsXbs21z4K+9k3J9p8fHyoVq1ageqIiIiIiIiIiIiIyL2nyMmxs2fP8swzzxAbG8tTTz3F6tWrLStBbjZ48GBMJhObNm0qcqB3IxsbG+bPn4+NjQ0//vgjTZs2ZefOnVkSG//88w/z58/nscceY968eYXuw5xYWbZsGYmJicUWu5mbmxvDhw/n888/t2xJd/bsWfr06WNZOTVt2rQsdfz8/Bg1ahQAM2fOZPLkyZYERkxMDJMmTeK9994DYMyYMTzwwANFiu1f//qXJeGyYMGCElk95uDgQLt27dixY4el/Z9//plWrVoRHR2Ni4sL48aNy1Kne/fuNGzYEICePXuyfPlyyzM/ffo03bt358CBAwC8++67BYqjdevWbNy4EScnJ9asWUPPnj2zJFv79+9Pq1atMJlMdO3alWnTpnHhwgXL/YSEBHbt2sULL7xA5cqVs7UfFBQEZGzLGBUVlWsckydPplOnTgDMmDGDDh06sHfvXst2j6mpqWzbto2mTZtakqojRoxg4MCB2dp66qmncHZ2JjU1lZ49e1qSkKmpqXz77be0atWKMmXK5BqL+bO/d+9ewsLCci1nZk6ONWvWLN+yIiIiIiIiIiIiInLvKnJy7D//+Q/Xr1+nZ8+erF+/nm7dumVbGWLWtm1bICOpcL9p2bIl33zzDS4uLhw6dMjyB/+yZcvi4OBAlSpVGD58OIcPH7ZskVgYw4YNA2DNmjW4u7tToUIFAgICaNy4cbHEP2LECB599FGGDBmCq6srnp6eVKxYkVWrVgEwceJEunbtmq3e9OnT6dmzJyaTialTp+Ll5YWnpydeXl6WZFqfPn146623ihybk5MTzz77LACvvfYazs7OVKpUiYCAAMaOHVvkdjP74IMPSEpKonXr1jg7O+Pi4kKDBg34/fffsbe3Z8WKFVSsWDFLHWtra9asWUONGjWIjY2lX79+ODs74+HhQeXKldmwYQNWVlbMmTOH9u3bFziWFi1asHnzZsqUKcP69evp3r27JUFm7rNTp06kpKQwadIk/Pz8cHNzw8PDAxcXF1q0aMG8efNISEjI1nZgYKBlJdeGDRtyjcHKyop169YxevRobGxs2LJlC02bNsXe3h4vLy8cHBxo27Yt+/btw8HBgZkzZzJ37twc23Jzc2P27NkYDAYOHjzIww8/jKurK87OznTp0oWKFStaVtjlpHv37nh7e3Pt2jUCAwPx9vYmICCAgIAADh48mKWs0Wi0JOf79u2b90SLiIiIiIiIiIiIyD2tyMmxrVu3YjAYCpTcePDBB7G3t89y5s/9pEuXLpw6dYrJkyfToEEDnJ2diYmJwd7enjp16vDcc8+xbt06Xn311UK33b9/f7766isaN26Mk5MTFy9eJCIignPnzhVL7HZ2duzcuZPp06dTrVo1kpOTcXNzo2XLlmzatCnX529nZ8fKlStZvXo17du3x8vLi+vXr+Pl5UX79u1Zu3Yty5cvx9bW9pbimzt3LiEhIZZtHc+cOUNERATR0dG31K7Zgw8+yJEjR3jhhRfw9vYmJSWFcuXK0adPH44cOULHjh1zrOfn58fhw4eZNWsWjz/+OI6OjiQmJuLv78+zzz7LL7/8wksvvVToeJo1a8b333+Pi4sLGzdupEuXLiQnJwMZ2wx+9913bN68mV69elGxYkWSk5NJTEzEz8+PNm3aMGPGjBy3iQQYOnQokLEKMS82NjbMmjWL//73v7z22mvUr18fd3d3y/N94oknmDx5MqdOneL111/Ps61///vfbNq0iRYtWuDq6kpaWhr/+te/mDlzJrt3785z5ZiHhwd79uyhd+/e+Pn5ERsbS0REBBEREZZVjma7d+/m3Llz+Pn5WVa+iYiIiIiIiIiIiMj9yaaoFc+cOYOjoyNVq1YtUHlnZ2diY2OL2t0db/HixSxevDjX++XKlSMkJISQkJBCtRseHp5vmf79+9O/f/9CtVsYdnZ2jB8/nvHjxxe6bvfu3Qt9plh+c5mZvb09kydPZvLkyYWOraB8fX35+OOP+fjjjwtVz8HBgdGjRzN69OhC1cvvmTdu3Ji4uLhc77dv375QK9LM+vfvz7hx49izZw8RERFUqlQpz/JVq1bN9Uy5wsgr3uDgYIKDg3Ot+/DDD7NixYp8+/jqq6+AjLPZrK2tixSniIiIiIiIiIiIiNwbirxyzMrKCqPRWKCyaWlpxMXF4erqWtTuRKSEmc9PM5lMxZL0ulOcPXuWZcuW4e3tzcsvv1za4YiIiIiIiIiIiIhIKStycqxSpUokJydz5syZfMvu2bOH1NTUAq8yE5HSMXr0aPz9/Vm4cCFnz54t7XCKxfTp00lJSSEkJEQJehEREREREREREREpenKsVatWAMyfPz/PcqmpqUyYMAGDwVCkrd5E5PZxcHDgyy+/ZPz48QVKfN/pjEYjFStWZNq0aQwZMqS0wxERERERERERERGRO0CRzxwbPXo0n376Kf/5z3+oUqUK//73v7OV+fXXXxk9ejSHDh3C1dWVESNG3FKwUjjdunVj//79haqzdu1aGjVqVEIR3V6+vr6FrhMZGVkCkdxdgoKCCAoKKu0wioWVlVWRzsoTERERERERERERkXtXkZNjlSpVYsGCBQwcOJAhQ4bwxhtvEBsbC0CjRo2IiIggMjISk8mEjY0NX375JWXLli22wCV/V69eJSoqqlB1UlJSAAgNDS2BiG6vwo49M5PJVIyRiIiIiIiIiIiIiIjIncJgusUswPbt23nhhRc4depUjvcfeugh5s+fT4sWLW6lGxGRUhMXF4ebmxuxsbE6t0xERERERERERETkDlXQv+UWeeWYWevWrTl58iR79uxh3759XLhwgfT0dHx9fXnyySdp3rw51tbWt9qNiIiIiIiIiIiIiIiIyC275ZVjIiL3Oq0cExEREREREREREbnzFfRvuVa3MSYRERGRO05iShoB4zYRMG4TiSlpxdJmdHySpc3o+KQS7+9ukNe4c7t3v86ViIiIiIiIiJSsW95WESAlJYXt27dz+PBhLl26BEC5cuV49NFHad26NXZ2dsXRjYiIiIiIiIiIiIiIiMgtueXk2Mcff8yUKVO4evVqjvc9PT158803efHFF2+1KxEREREREREREREREZFbckvJseeee45FixZhPrasQoUK+Pn5AXD+/HnOnTvHlStXePnllzly5AhffPHFrUcsIiIiIiIiIiIiIiIiUkRFPnNsxYoVfPHFF5hMJvr378+ff/7JmTNnOHDgAAcOHODMmTP89ddfDBgwAJPJxJIlS1i+fHlxxi4iIiIiIiIiIiIiIiJSKEVOjs2bNw+DwcCLL77Il19+yUMPPZStTJUqVVi8eDEvvvgiJpOJefPm3VKwIiIiIiIiIiIiIiIiIreiyMmxP/74A4PBwJtvvplv2TfffBODwcDRo0eL2p2IiIiIiIiIiIiIiIjILStycgzA3d0dLy+vfMt5eXnh7u6OwWC4le5KRWhoKAaDoURiDwkJwWAwEBQUVOxty92ptD8TO3fuxGAw0L59+1Lpv7jNnDkTg8HApEmTSjsUEREREREREREREblDFDk5Vq1aNWJjY4mPj8+3bHx8PHFxcVSrVq2o3UkO1q9fT0hICOvXry/tUErF7NmzCQkJ4bfffivtUO4JRqORV155BYApU6bkWTYpKYlPP/2UTp06UbFiRRwdHXFzcyMwMJAhQ4awa9euEo01PDyckJAQQkJC8iw3cuRIypYty6xZszh//nyJxiQiIiIiIiIiIiIid4ciJ8cGDx5Meno6H330Ub5lP/74Y9LT0xk8eHBRuys1Tk5OVKtW7Y5M7K1fv54pU6bc18mxKVOmKDlWTJYsWcLvv/9Ox44dadCgQa7ltm/fTtWqVRk2bBibNm3i7Nmz2NnZkZycTFhYGJ9//jktWrSgQ4cOXLlypURiDQ8PZ8qUKfkm8ZydnXnllVdITEzU6jERERERERERERERAW4hOTZs2DB69erFpEmTmDJlSo4ryBITE5k6dSqTJk2id+/eDB069JaCLQ0NGjQgLCyMsLCw0g5FpES9++67AAwfPjzXMitXrqRDhw6cO3cOPz8/FixYwNWrV4mNjSUpKYkTJ07w8ssvY2Njw5YtW3j88ce5dOnS7RpCjp577jlsbGz46quvuHjxYqnGIiIiIiIiIiIiIiKlz6aoFQcPHoyjoyMuLi5MnTqV9957j0cffRQ/Pz8Azp8/z+HDh7lx4wZubm44ODjkuHLMYDCwcOHCoo9ARG5ZaGgoYWFheHt707Zt2xzLnDhxgsGDB5OWlkatWrXYuXMn3t7eWco8/PDDfPDBB7Ru3ZquXbty6tQp+vbty44dO27HMHJUtmxZ2rZty6ZNm/jiiy+YMGFCqcUiIiIiIiIiIiIiIqWvyCvHFi9ezJIlS4iNjcVkMpGYmMiePXtYsWIFK1asYM+ePSQmJmIymYiJiWHJkiUsXrzY8sr8c2kJCgrCYDAQEhJCamoq//nPf3j00Udxd3fHYDAQGhpKaGgoBoMBg8GQaztHjx6lV69e+Pr64uDgQOXKlXnxxRe5dOlSgeqb7dy5k44dO+Lt7Y2DgwOBgYFMmTKFpKSkLOXMbS5ZsgTI2A7P3If5FRoaWuR5Wbx4MQaDgYCAACBjG7327dvj7e2No6MjNWrUYNq0adniutnff//N8OHDqVq1Ko6Ojri6ulKvXj2mTp1KXFxcjnVunq8jR47Qr18/KlSogK2tLUFBQYSEhGAwGIiIiABg0KBB2cZ/K4KDgzEYDAQHB2MymZg/fz4NGjTA1dUVV1dXGjduzPLly/NtJzQ0lB49euDn54e9vT1ly5alZcuWLFq0iPT09CLFduTIEXx9fTEYDLRt2zbbis1jx44xZMgQqlatipOTE87OztSuXZsJEyYQHR2da7uff/45AD169MDGJuec+cSJE0lMTMTe3p5vvvkmW2Issw4dOjBx4kQg43O9adOmLPcL+nuR0+c5ICCA5s2bZytjfgUHB2drp2/fvlnGKSIiIiIiIiIiIiL3ryKvHBswYMAtJyHuFElJSQQFBbF//35sbGxwcXEp8NjWrVtHr169SE1NBTLOOLp48SIff/wxa9asYfr06QVq57333uP1118HwM3NjZSUFMLCwggJCWH37t1s374da2trAOzs7PDx8bFsZefg4ICbm1uW9uzs7Ao6/DzNmzePkSNHYjKZcHd3Jy0tjf/+979MmjSJtWvXsnPnTjw8PLLVW7VqFQMGDCA5ORkAFxcXUlJSOHLkCEeOHGHBggVs3bqVwMDAXPtes2YNffr0ITU1FVdXV0vSxtnZGR8fHy5fvozRaMTV1RVHR8diGe/N+vTpw8qVK7GyssLNzY2YmBj27dvHvn372LFjBwsXLszxszJmzBg++OADICN5Y677ww8/8MMPP7B06VLWr1+Pi4tLgWPZsWMH3bp14/r16/Tv358vvvgCW1tby/13332X8ePHYzQagYzz8lJTUzl69ChHjx5l0aJFbNq0ibp162Zp12QysXXrVgCaNGmSY98XL160nG3Xp0+fAp3BN3r0aN577z2uX7/O3Llz6dixY4HHmhdvb2/i4uK4du0aAD4+Plnu3/y7ANC0aVMAIiIiOHHiRJ6fOxERERERERERERG5x5nuY82aNTMBJmdnZ5Ozs7Np0aJFpsTERJPJZDJFR0ebrly5Ytq1a5cJMOU0VX///bfJycnJBJjq1atnOnz4sMlkMpmMRqNp+/btpkqVKpk8PDxyrT958mQTYHJ3dzdZWVmZxo8fb7p8+bLJZDKZYmNjTW+++aal7sKFC7PVHzhwoAkwDRw4sBhnxWRatGiRCTA5OTmZbG1tTT169DCdOXPGZDKZTImJiaZPPvnEZG9vbwJMXbt2zVb/l19+Mdna2poA05NPPmn6448/TCaTyZSenm7asGGD6YEHHjABpipVqpiuX7+epW7m+XZ2djZ16NDBdOLECcv9P//80/K+UqVKJsC0aNGiYh2/eV7d3NxMBoPB9NZbb5liY2NNJpPJdOnSJdPIkSMtMc6ZMydb/Y8++shyf8iQIaaLFy+aTCaTKT4+3vTBBx+YbGxsTICpV69e2eqaPxPNmjXLcn358uUmOzs7E2B65ZVXTEajMcv9BQsWWObs7bfftvSZlpZmOnz4sKlFixYmwFShQoVsc37s2DFLvH///XeOc7J8+XJLme+++65gE2kymbp3726JKzU11XI9r9+rzMxldu3aleV6QetnVr58eRNg+uSTTwpcxyw2NtYEWD4HInJvSUhONVV6faOp0usbTQnJqflXKIDL129Y2rx8/UaJ93c3yGvcud27X+dKRERERERERIqmoH/LLfK2iveS+Ph4li9fTnBwsGUFkpeXF56ennnWmz59OomJiZQrV47t27dTv359IGOlUKtWrdi6dSuJiYn59h8TE8OkSZOYPn06ZcuWBcDV1ZUpU6bQrVs3AFasWHErQyySxMREGjVqxNdff42/vz8Ajo6ODBs2jLlz5wIZK+d+/vnnLPUmTJhAamoqDz30ENu2baNWrVoAWFlZ8dRTT7Fp0yZsbGz4+++/mT9/fq79V69enQ0bNvDwww9brlWtWrW4h5mr2NhYJk6cyMSJE3F1dQUyVi199NFH9O/fHyDbtpc3btxg8uTJQMYKq08//RRfX18AypQpw8svv8ysWbMAWLlyJb/88ku+ccyaNYt+/fpZtv58//33s6xWu379OmPHjgVg9erVvPHGG5Y+ra2tqV+/Plu3bqV+/fqcO3eOBQsWZGn/0KFDQMbqvsqVK+cYw/Hjxy3vb155lpdHHnkEyPgdM2+DWVrMcR84cCDfssnJycTFxWV5iYiIiIiIiIiIiMi9ocjJsT179hRnHKWqRo0aPPXUU4WqYzKZWLNmDQDDhw/PMZFWrVo1evbsmW9b9vb2luTGzZ5++mkA/vjjj0LFV1wmTpyIlVX2j8mgQYOoUKECAF9//bXlekxMjGWLvldffRUnJ6dsdevWrVugpN+rr75q2UqyNDg6Oub6XN58800Arl69yvbt2y3Xt2/fztWrVwEICQnJse6IESN44IEHAPI8u8xkMvHqq6/yyiuvYGNjw9KlSxkzZky2cmvWrCEmJoa6devStm3bHNuysbGhT58+AJbnY3bhwgUAS2I2J1euXLG89/LyyrXczTK3mbmN0mCOxTzevMyYMQM3NzfLy5wcFhEREREREREREZG7X5GTY0FBQVSvXp3Zs2dbkgF3qyeffLLQdf755x9iYmIAaNasWa7lgoKC8m2rRo0aODs753ivfPnyAKUyxzY2NrmeQWVlZWUZ2+HDhy3Xf/31V0wmEwCtWrXKte3WrVsDGUk/83ltNyvKcylOjz76qGXF2M2qVq1qSQ5mHr/5vb+/P//6179yrGttbU2LFi2y1c0sNTWVAQMG8P777+Ps7MymTZvo27dvjmX37dsHwIkTJ/D19c31NXXqVIBsK7guX74MkO9KybudeXzm8eZl/PjxxMbGWl5nz54t6fBERERERERERERE5Da5pW0Vw8LCeOWVV6hQoQLPPvvsXbuarFy5coWuk/kP7OYEVk78/PzybcvFxSXXezY2NgCkpaUVIrriUbZsWezt7XO9bx7bpUuXLNcyv89r7ObEUlpaWq6Jv6I8l+KU37PLa/z51TWPP3PdzPbv38/SpUsBWLRokSWZmBPzSqikpCSioqJyfZm3Brx5q0/ztpB5PevMq8UKswIsOjo6xzZKg3nL1MzbYObG3t4eV1fXLC8RERERERERERERuTcUOTn2119/8dprr1GuXDmSkpJYvnw5zZs3vytXk93q1n2Zz3+S4lOaWyqWtlq1alG7dm0AxowZw99//51r2fT0dAB69eqFyWTK9xUeHp6lvjlpde3atVz7qF69uuX9r7/+WuBxHDlyBABnZ2cqVapU4HolwfydVNpJOhEREREREREREREpXUVOjlWpUoWZM2dy9uxZVq9eTevWrTEYDPfMarL8eHt7W97ndYbR+fPnb0c4JSI6OpqUlJRc75vHlnmFV+b3586dy7Wu+Z6Njc0du51ffs8ur/HnNfbM93NbHefp6ckPP/zAI488wtmzZ2nWrBl//vlnjmV9fX2B7NslFpT5s5xXQrt58+aWs+fMZ+3lJz4+3nIeW5MmTSyrIIEs73NbyRUbG1ugfgrKPL7Mv7siIiIiIiIiIiIicv+5pW0VIeOP3N26deP777/nn3/+YcKECZQvX56kpCSWLVt2164my0/lypVxd3cHIDQ0NNdyed27VeZkhfmMr+KWlpbG3r17c7xnMpnYvXs3kHE2l1m9evUsce3cuTPXtnfs2AFAnTp1sLW1LVJ8JT3+w4cPEx8fn+O9U6dOWRJcmcdvfn/u3Llck1np6ens2rULgMceeyzX/r28vNi5cyf16tXj/PnzBAUFcfLkyWzlzGez/fLLL1y8eLEAI8vKvCrs8uXLuY73gQce4Omnnwbg66+/zjGOm33wwQdcv34dgBEjRmS55+HhYXmf23lehw4dyrVt87OHgj//06dPAxAYGFig8iIiIiIiIiIiIiJyb7rl5FhmFStW5K233iIiIoJvv/2Wp556Cisrq2yryfbt21ec3ZYKg8FAt27dAJg/f36OW9L99ddfrFq1qsRiMJ+DFBMTU2J9vP322xiNxmzXlyxZYklq9OrVy3Ld3d2dtm3bAvDee+9lO98K4Pfff7esPurTp0+RYyvp8d+4cYP3338/x3vTpk0DMlZ4ZT4PrHXr1pZt+0JCQnKs++mnn1pWG+Y3fk9PT3bu3Mljjz3GxYsXCQoK4sSJE1nK9OjRA3d3d1JTUxkzZkyeySKj0Zhtvho1aoS1tTVGo5HDhw/nWvett97C0dGR5ORkevTokeU8sZtt2bLFMkfNmzenY8eOWe7/61//spwBltNKNKPRyIwZM3JtP/MZYAV5/snJyfz+++8ANGvWLN/yIiIiIiIiIiIiInLvKtbkmKVRKyueeuophg8fTsOGDTEYDJhMJstqsqZNm/Lkk0/y888/l0T3t8348eNxdHQkKiqKNm3aWM5XMplM/PDDD7Rt2xYnJ6cS679mzZoA7N27l7CwsGJv38nJiR9//JG+fftaVkklJSXx2WefMXz4cACefvppGjRokKXetGnTsLW15dSpU7Rt25ajR48CGQmPzZs306FDB9LS0qhSpQpDhw4tcnzm8a9evTrP87KKys3NjbfeeosZM2ZYVkBFR0czatQolixZAsCkSZNwcHCw1HF0dLQkxVasWMGwYcOIiooCIDExkQ8//JCXX34ZyEgq1q9fP9843N3d2b59O48//jiRkZEEBQVx7NixLPdnz54NZKzq6tixI4cOHbIkNY1GIydOnOA///kPNWrUYOPGjVnad3FxscSR12qtGjVqsGDBAqytrTl69Ch169bliy++yJKc+vPPPxkzZgydO3cmJSWFypUrs3z58mzn8tna2tK9e3cApk+fzqpVqyxbeJ48eZKuXbvyxx9/5BrLv/71L+zs7ABYsGBBvqvHjhw5QkpKCjY2NpaVdiIiIiIiIiIiIiJyfyr25NjFixeZNm0alStXpmPHjuzfvx+TyUTjxo2ZM2cOHTt2xGAwcODAARo3blyi2w6WtIceeogvv/wSGxsbDh8+TL169XB1dcXZ2ZmWLVuSkpLCrFmzALC3ty/2/rt37463tzfXrl0jMDAQb29vAgICCAgI4ODBg7fcvre3Nx988AGrVq3C398fT09PXF1dGTp0KElJSdSpU4eFCxdmq1evXj2++uor7Ozs+PHHH6lduzZubm6UKVOGjh07cuHCBfz9/fnuu+9wdnYucnxDhgzBYDCwf/9+vL29KV++vGX8xaFLly706NGDN954Aw8PDzw9PSlXrhwffvghAAMGDOCll17KVm/kyJGMHj0ayFgl9sADD+Dp6YmbmxujRo0iNTWV5s2b8/nnnxc4Fjc3N7Zt20ajRo24dOkSzZs3z5I8GjhwIJ988gl2dnZs2bKFxx9/HCcnJ8qWLYuDgwPVq1dn7NixhIWFZUtUwf9WsG3YsCHPOPr27cvGjRspX748586d49///jceHh64u7vj6OhItWrV+OCDD0hLS6NNmzYcPHjQcibazWbMmEH58uW5fv06vXr1wtnZGTc3Nx5++GF27drF2rVrc43DycmJZ599FoDXXnsNZ2dnKlWqREBAAGPHjs1W3jyuTp064eLikucYRUREREREREREROTeVizJMZPJxKZNm+jSpQuVKlVi8uTJhIeH4+LiwgsvvMDRo0fZs2cPL774It999x1//vknrVu3JjU1lUmTJhVHCKXmmWee4fDhw/To0QNvb2+Sk5Px8fFh1KhRHDlyBDc3NwDL+WTFycPDgz179tC7d2/8/PyIjY0lIiKCiIgIkpKSiqWPF154ga1bt9KuXTusrKywsrLi4YcfZurUqRw4cMCyheDNevXqxfHjxxk6dChVqlQhOTkZGxsbHnnkEaZMmcKxY8du+eynpk2bsmnTJlq1aoW7uztRUVGW8ReXFStWMG/ePOrWrUtaWhplypThiSee4Msvv2TJkiVZzr7KbNasWfzwww90794dHx8f4uPjcXFxoXnz5nzxxRds37690EkaFxcXtm7dSpMmTYiOjqZFixaW1YoAw4YN4+TJk4wdO5Y6depgb29PTEwMzs7OPProo7z44ots3749x60cBw4ciIODA/v377eczZWbdu3acerUKebNm0eHDh3w8/MjKSkJW1tb/vWvf/Hvf/+bHTt2sHXrVry9vXNtp0KFChw6dIjnnnsOPz8/AJydnRkwYAC//vprvtsfzp07l5CQEGrVqgXAmTNniIiIyLbdo8lkYvny5QC3tFJRRERERERERERERO4NBlN++5Hl4dy5cyxcuJAvvviCc+fOWbY2q1evHsOGDaNv3765bisYFxdHuXLlsLe3JzY2tqgh3PEmTJjA9OnTadGiBTt37iztcApk8eLFDBo0iEqVKhEeHl7a4dx2wcHBLFmyhIEDB7J48eLSDue2GTx4MIsWLWLKlCm8+eabpR1OsdmzZw/NmjWjSpUq/PXXXzmunMtPXFwcbm5uxMbGZjnvTETuDYkpaVR/cysA/53aFic7m1tuMzo+iUenZfx3//DElpR1/t8WvCXR390gr3Hndu9+nSsRERERERERKZqC/i23yCvHOnXqxIMPPsjUqVM5e/Ysjo6ODBo0iEOHDnH48GGee+65PM/bcnV1xdfXl/j4+KKGcMe7fPkyCxYsADJW24jcyd58803s7e35+OOPSUhIKO1wis2MGTOAjLPwipIYExEREREREREREZF7S5GTY5s3byY9PZ2HH36Y2bNnc/78eRYuXMhjjz1W4DaeeeYZBgwYUNQQ7ggffvghM2fO5NSpU6SlpQGQnJzM5s2badq0KZcuXcLb25vBgweXcqQieQsICODFF1/k8uXLzJ07t7TDKRaHDh3i+++/p0GDBvTq1au0wxERERERERERERGRO0CR96bp1asXw4YNy/dcoLy8//77Ra57p/jnn3+YM2cO48ePx9raGjc3N+Li4iyJMjc3N1atWpXr2Vwid5IJEybg7OxMmTJlSjuUYnH58mUmT55M165dtWpMRERERERERERERIBbSI6tWLGiOOO4aw0cOBBra2v27NnD+fPnuXLlCo6Ojjz44IO0bduWUaNG4efnd9vjWrlyJaNGjSpUnV69ejFnzpwSiuj2GjVqFCtXrixUnTlz5tz3q4vc3d2ZPHlyaYdRbDp16kSnTp1KOwwRERERERERERERuYMUOTnWokULvLy8+OabbwpUvk+fPly6dImdO3cWtcs7Ut26dalbt25ph5HNjRs3iIqKKlSd2NhYAIKDgwkODi6BqG6f2NjYQo//xo0bACxevJjFixeXQFQiIiIiIiIiIiIiIlLaDCaTyVSUilZWVvj6+nLhwoUClX/wwQc5c+YM6enpRelORKTUxMXF4ebmRmxsLK6urqUdjoiIiIiIiIiIiIjkoKB/y7W6XQEZjUad+SMiIiIiIiIiIiIiIiKl6rYkx9LT07l06RJlypS5Hd2JiIiIiIiIiIiIiIiI5KjAZ47FxcURExOT5Vp6ejpnz54lt50ZTSYTMTExLFq0iOTkZGrXrn1LwYqIiIjciRJT0qj+5lYA/ju1LU52RT7WVUSKSL+HIiKlQ9+/IiIicjcq8L9YPvjgA6ZOnZrlWnR0NAEBAQWqbzAYePbZZwsVnIiIiIiIiIiIiIiIiEhxKtT/nSfzCjGDwZDrirGb+fn5MWzYMEaOHFm46ERERERERERERERERESKUYGTYy+//DLBwcFARpKscuXKeHt789NPP+Vax8rKCldXV9zc3G45UBEREREREREREREREZFbVeDkmJubW5YkV9OmTSlbtiyVKlUqkcBEREREREREREREREREiluRT0kNDQ0txjBERERERERERERERERESp5VaQcgIiIiIiIiIiIiIiIicrsoOSZyC8LDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZsyXeX3p6OrNmzaJu3bqUKVPGMtfr16+3lElMTGTSpEkEBgbi6OhoKfPbb78RHx+Pt7c3Hh4eXLlypcTjFREREREREREREZE7X5G3VZT7w/r16/ntt9945JFH6NKly13bR1GEhIQAEBwcTEBAQKnGcqf46KOP+OeffxgxYgT+/v55lt29ezfLly9nz549XLx4kaSkJLy9valduzadOnUiODgYR0fHPNt4+eWX+fjjjwGws7PDx8cHAAcHB0uZXr16sXHjRgAcHR0tZWxtbXF2duaVV15h/PjxTJ06lTlz5hR57CIiIiIiIiIiIiJyb9DKMcnT+vXrmTJlSpaVOndjH0UxZcoUpkyZkueKMFtbW6pVq0a1atWwtbW9fcGVgqtXrzJt2jTs7e0ZP358ruWuXLlCx44dCQoK4rPPPiMsLIykpCQcHBw4d+4cmzdvZsSIEVStWpXt27fn2s7169f59NNPAXj33XdJSkoiMjKSyMhI2rVrB0BYWJglMbZy5UoSExMtZWrUqAHAyJEjKVu2LJ988gmnTp0qrukQERERERERERERkbuUkmMit8DPz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq3JsKywsjNTUVACGDx+OwWDIVubo0aMAeHl50bNnzxzbcXZ2pl+/fqSmpjJ79uwijFxERERERERERERE7iVKjolIvkwmE5999hkA/fv3z7VM3759OXXqFLa2tqxbt44PP/yQ6tWrW8q4u7sTHBzMkSNHqFOnDmlpaQwePJiwsLBs7SUmJlreOzs759inuUxu983MMS9dujRLuyIiIiIiIiIiIiJy/1Fy7D60cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwcJZVSs2bN88SU+bzx8LDwy3Xb95+0Tw+c1t//PEHffr0oXz58jg6OhIYGMj7779PWlqapc6+ffvo0qULDzzwAA4ODtSsWZO5c+diMpnyjLkocxISEoLBYCAoKAiANWvW0KZNG8qVK4eVlZXlzDWAHTt2cPr0adzd3enQoUOO7W3cuJEffvgBgAkTJvDUU0/lGq+XlxfffPMNDg4OJCQkMGnSJMu9xYsXZ4kLyDL/QUFBltiDg4MBiIiIyFLGfN3s0UcfpWrVqsTGxrJy5cpc4xIRERERERERERGRe59NaQcgt9fgwYNZtGiR5WdnZ2dSU1M5deoUp06d4rvvvqNjx47Y2dnh4+NDbGys5bwoNze3LG3Z2dlZ3o8bN86S5LKxscHV1ZXExET+/vtv/v77b5YuXcqyZcvo3r17lvqF6QMyzp4aP348RqMRACcnJ1JTUzl69ChHjx5l0aJFbNq0ibp16xZ5jtzc3PDx8SEqKgoADw+PLHF4e3sXus0tW7bQrVs3kpKScHNzIzk5mbCwMF599VV++eUXVqxYwYIFCxg2bBhGoxFXV1eSk5M5fvw4I0eO5OzZs8ycOTPHtotjTl555RVmzZqFwWDA3d0dK6usefPvv/8egIYNG+Z6ttq8efMAcHFx4ZVXXsl3TqpWrUqfPn1YtGgRa9euJTIyEl9fXxwdHfHx8SElJYVr164B4OPjY6nn6emJs7MzPj4+3Lhxg7i4OKysrLI8l5s/RwBNmzblr7/+4vvvv2fQoEH5xiciIiIiIiIiIiIi96YirxyzsrIq1BlLDz74IDY2ysWVph9//JFFixZhZWXFO++8w5UrV7h+/ToJCQlER0ezdetWBg4ciJ2dHY0aNSIyMpJevXoB0KtXLyIjI7O8GjVqZGn7oYce4r333uPo0aPcuHGDK1eukJyczLFjx+jXrx/JyckMHDiQCxcuWOoUto+FCxfy+uuv4+TkxNtvv83FixdJSEggMTGRw4cP06JFCy5evEjnzp2Jj48v8jzNmTOHyMhIy8/mxI359fPPPxe6zb59+/L0008TERFBTEwMsbGxjB8/HoCvv/6amTNnMmLECEaMGEFkZCQxMTFcvXrVsgLqvffe488//8zWbnHMyS+//MKsWbN4/fXXiYqK4urVqyQkJGRJIO3ZsweABg0a5NhGWloae/fuBaBNmzb5bnNo1q1bNwCMRiO7d+8G/vc5WLt2raVc5vlfu3YtY8eOJTIykjlz5gDg7++fpYz5emYNGzbMMhYRERERERERERERuT/d0raK+W31dqvlpXjt378fgFatWvHaa6/h6elpuefl5UWbNm1YvHgx5cuXL3TbEydOZOzYsdSsWdOSBLWysqJGjRosXbqUjh07kpCQwBdffFGk2K9fv87YsWMBWL16NW+88Qa+vr4AWFtbU79+fbZu3Ur9+vU5d+4cCxYsKFI/JeWxxx5jxYoVVKxYEchYXTV9+nSaNGkCwPjx4xk4cCAffvgh5cqVAzJWrC1YsIAHH3wQo9HIqlWrsrRZXHMSHx/PmDFjmDlzpmX1lb29PZUqVQIgJSWFI0eOAFCnTp0c2wgPDychIQGgUKv2HnnkEcv7Y8eOFbheUZjjioyM5PTp03mWTU5OJi4uLstLRERERERERERERO4Nt+3MsZSUlGxbtcnt5e7uDsDly5dJT0+/rX137NgRyFi9VhRr1qwhJiaGunXr0rZt2xzL2NjY0KdPHwC2bt1atEBLyOuvv57lHDOzzGMxryTLzNrampYtWwIZZ5ZlVlxzYmVlxeuvv55r7JcuXbJ8XnLbUvLKlSuW915eXrm2dbOyZcvm2EZJyNxX5hWMOZkxYwZubm6Wl7+/f4nGJiIiIiIiIiIiIiK3z23Z5zAmJoZLly7h4eFxO7qTXLRs2RIHBweOHDlCkyZN+Pe//02LFi148MEHi6X933//nU8//ZQff/yR8PBw4uPjs60WPHfuXJHa3rdvHwAnTpywrI7KyY0bNwCIiIgoUj8lJbftCM1naXl6elK5cuU8y5jP3zIrrjl56KGHLKvVcnL58mXL+8yrDe82mWPPPKacjB8/njFjxlh+jouLU4JMRERERERERERE5B5R4OTYH3/8wW+//Zbl2o0bN/jyyy9zrWMymYiJiWH16tUYjcZCbbcmxa9KlSosWLCAYcOGceDAAQ4cOABkrAZq3rw5ffv2pXPnzjmucMrPxx9/zKhRozAajQAYDAbc3Nywt7cHMj4rcXFxlq33Csu80icpKYmkpKR8yycmJhapn5Li4uKS43XzFpS53c9cJjU1Ncv14pqTvBJj5vbNzM/zZplXixVmBVh0dHSObZQER0dHy/v85sve3j7XsYqIiIiIiIiIiIjI3a3AybF169YxderULNfi4uIYNGhQvnVNJhMGgyHLSgwpHf369aN9+/Z888037Nq1i/3793P27FlWrVrFqlWraNKkCRs3bsTV1bXAbZ44cYKXX34Zo9FIjx49ePXVV6lTpw52dnaWMgsXLuS5554r8rlz5m39evXqxddff12kNu41xTUn1tbWed7PnLS6efWaWaVKlShTpgwJCQn8+uuvBe7bfJYZQI0aNQpcryiuXr1qeV/SiTgRERERERERERERuXMVODnm7u5OxYoVLT9HRERgZWVFhQoVcq1jZWWFq6srNWvWZMiQITRp0uTWopVi4enpydChQxk6dCgAf//9NwsWLOCdd95h7969hISEMGvWrAK3t3r1atLT0wkMDOTrr7/O8Wy5yMjIW4rZvG3gnbZdYmm6XXOS+ZyxzAmmzGxtbWnSpAnff/8927Zt4/r163muhjNbu3YtkPFdERQUVCzx5iZz7LmdnSYiIiIiIiIiIiIi977sWYxcjBo1itOnT1tekPEH5szXbn79/fffHDlyhK+++kqJsTtYlSpVmDFjBn379gVg+/btlnvmRFdeK77Onj0LQJ06dXJMjAHs2LEj1/oF6ePJJ58E4JdffuHixYu5litO5u0li7raraTdrjnx8PCwJOL++eefXMsNHz4cgPj4+AIlV//66y/LireuXbvmeW5acTB/b9nY2FC1atUS7UtERERERERERERE7lwFTo7dbPLkybzyyivFGYuUsOTk5Dzvm89kypzgMm+vGBMTk2s9Nzc3AI4ePZpjImnLli2EhobmWr8gffTo0QN3d3dSU1MZM2ZMngkro9GYZ1sFVZC4StPtnJOmTZsC8NNPP+Va5qmnnrKs/nr77bfZuHFjrmWvXLlCjx49SEpKwsnJibfeeqvIsRXUoUOHAKhfvz5lypQp8f5ERERERERERERE5M6k5Nh9ZOTIkfTs2ZM1a9Zw6dIly/X4+Hjmz5/Pl19+CUDHjh0t92rWrAnA3r17CQsLy7Hddu3aAXD8+HFeeOEFy/Z1CQkJfPrppzzzzDN5nvFUkD7c3d2ZPXs2AF9//TUdO3bk0KFDGI1GICP5c+LECf7zn/9Qo0aNPBMzBWWOa9myZSQmJt5ye8Xtds6JOellTjDlxGAwsGLFCipXrkxqaipdu3Zl1KhRnDhxwlImNjaWJUuWUK9ePX7//Xesra1ZsGABgYGBRY6toMyxN2vWrMT7EhEREREREREREZE7V5GTY3L3SU1N5ZtvvuGZZ57Bx8cHFxcXPDw8cHFxYfjw4aSkpNC4cWMmTJhgqdO9e3e8vb25du0agYGBeHt7ExAQQEBAAAcPHgSgZcuW9O7dG4BPPvkELy8vPDw8cHNzY9iwYQQGBhISEpJrXAXpA2DgwIF88skn2NnZsWXLFh5//HGcnJwoW7YsDg4OVK9enbFjxxIWFmbZEvFWDBs2DIA1a9bg7u5OhQoVCAgIoHHjxrfcdnG5XXPSvXt3bG1tCQsL46+//sq1nK+vLwcPHqRt27akpaXx4YcfUr16dRwdHfHw8MDd3Z3g4GDOnDnDAw88wMaNG+nTp0+R4yqouLg4du/eDWDZPlRERERERERERERE7k82t9rA33//zapVq/jjjz+4evUqqampuZY1GAzs3LnzVruUIpo0aRL169dn165dnDhxgsjISOLj4ylXrhx16tShT58+DBgwAGtra0sdDw8P9uzZw5QpU9i7dy+XLl0iOjoagKSkJEu5ZcuW8fjjj/PFF19w8uRJ0tPTqVWrFr169WL06NGsWLEi17gK2gdkJKzatWvH3Llz2b59O6dPnyYmJgZXV1eqVKnCE088QefOnWnRosUtz1f//v0B+PTTTzl69CgXL160rMq6k9yOOSlXrhxdu3Zl1apVLFu2LM9kp7e3N99//z27du1i+fLl7N27l4sXL3Ljxg38/PyoXbs2nTp1Ijg4GCcnpyLHVBhr1qwhKSmJhg0bUqdOndvSp4iIiIiIiIiIiIjcmQymvA4qyseUKVOYNm0aRqMxz/OOLJ0ZDKSnpxe1OxEpRXv27KFZs2ZUqVKFv/76q1hW590uLVq0YNeuXSxZsoQBAwYUun5cXBxubm7ExsZazqITEcksMSWN6m9uBeC/U9viZHfL//8jESkk/R6KiJQOff+KiIjInaSgf8st8r9Yli1bxpQpUwAoX748bdu2pXz58tjY6B9BIveipk2b0qZNG7Zt28Y333xDz549SzukAjl06BC7du2iRo0a9OvXr7TDEREREREREREREZFSVuRM1ty5cwHo3Lkzq1atws7OrtiCEpE70/vvv88jjzzC1KlTeeaZZ7CyuvOPLTRvAfnuu+9m2TJURERERERERERERO5PRU6OHTt2DIPBwLx585QYE7lP1KpVi4ULFxIeHs7Fixfx8/Mr7ZDyFB8fz+OPP067du3o0KFDaYcjIiIiIiIiIiIiIneAIifHDAYDrq6ulC9fvjjjESlWvr6+ha4TGRlZApHcO4KDg0s7hAJzdnZm8uTJpR2GiIiIiIiIiIiIiNxBipwce/jhh/ntt99ITk7G3t6+OGMSKTZRUVGlHYKIiIiIiIiIiIiIiNxBDCaTyVSUip9//jlDhw7lyy+/pH///sUdl4jIHSMuLg43NzdiY2NxdXUt7XBEREREREREREREJAcF/VuuVVE7eP755+ncuTMvvfQSe/bsKWozIiIiIiIiIiIiIiIiIrdNkbdVnDp1KnXq1GHv3r00b96cJ598koYNG+Li4pJnvTfffLOoXYqIiIiIiIiIiIiIiIjckiJvq2hlZYXBYADA3IT557ykp6cXpTsRkVKjbRXvDIkpaVR/cysA/53aFie7Iv//O0RE5P/pu1VE5N6m73kRKWn6nhGRO01B/5Zb5G+rpk2bFigZJiIiIiIiIiIiIiIiInKnKHJyLDQ0tBjDEBERERERERERERERESl5VqUdgIiIiIiIiIiIiIiIiMjtouSYiIiIiIiIiIiIiIiI3DeK5YTEP/74g61btxIREcGNGzdYuHCh5V5qaiqXL1/GYDDwwAMPFEd3IiIiIiIiIiIiIiIiIkVyS8mx2NhYBg8ezPr16wEwmUwYDIZsybE6depw7do1fv/9d2rUqHFLAYuIiIiIiIiIiIiIiIgUVZG3VUxNTaV9+/asX78eJycnOnbsiIODQ7ZyTk5ODBo0CKPRyOrVq28pWJE7VXh4OAaDAYPBQHh4eGmHU+JSUlKoUqUK9vb2nD17trTDyZXRaKRGjRrY2tpy8uTJ0g5HRERERERERERERO4ARU6OLVy4kIMHD1K5cmVOnjzJhg0bcHNzy7Fs9+7dAdizZ09Ru5NStn79ekJCQiyrBO/WPooiJCSEkJCQ+yLpVVAfffQR//zzD8899xz+/v55lt29ezdDhw4lMDAQd3d3HBwc8Pf3p2PHjnzyySfcuHGjxOK0srJi0qRJpKWl8dprr5VYPyIiIiIiIiIiIiJy9yhycmzFihUYDAY++OADypcvn2fZunXrYmVlRVhYWFG7k1K2fv16pkyZUuLJsZLuoyimTJnClClT8kyO2draUq1aNapVq4atre3tC64UXL16lWnTpmFvb8/48eNzLXflyhU6duxIUFAQn332GWFhYSQlJeHg4MC5c+fYvHkzI0aMoGrVqmzfvr3E4u3ZsyfVq1dnw4YNStCLiIiIiIiIiIiISNGTY0ePHsVgMNCmTZt8y9rZ2eHm5saVK1eK2p3IHc3Pz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq0okXisrK55//nkA3n333RLpQ0RERERERERERETuHkVOjiUmJuLi4oKdnV2ByqempmJjY1PU7kTkDmAymfjss88A6N+/f65l+vbty6lTp7C1tWXdunV8+OGHVK9e3VLG3d2d4OBgjhw5Qp06dUhLS2Pw4MEltrq0T58+WFtbs2XLFs6cOVMifYiIiIiIiIiIiIjI3aHIybGyZcsSFxdHfHx8vmVPnz5NfHx8vtsvyu21cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwMAaDwfJz8+bNs8QUEBBguRceHm65fvP2i+bxmdv6448/6NOnD+XLl8fR0ZHAwEDef/990tLSLHX27dtHly5deOCBB3BwcKBmzZrMnTsXk8mUZ8xFmZOQkBAMBgNBQUEArFmzhjZt2lCuXDmsrKwICQmxlN2xYwenT5/G3d2dDh065Njexo0b+eGHHwCYMGECTz31VK7xenl58c033+Dg4EBCQgKTJk3KViYoKAiDwUBISAgmk4nPP/+chg0b4urqiouLC0888QRLly7Nc158fHxo0aIFRqORhQsX5llWRERERERERERERO5tRU6ONWzYEIBNmzblW/ajjz4CoEmTJkXtTorZ4MGD6d27N99//z2XLl3CwcGB1NRUTp06xXfffcfIkSOJjIzEzs4OHx8fHBwcAHBwcMDHxyfLK/PqwXHjxvHSSy+xYcMGTv1fe/cdHVXx/nH8vekJKSQQQg8IqPRqQ7o0EZWOFAmiglhpIiiYgIhYvqgoigrSpEpRBJEeuihNAUFFekko6b3d3x+c3V9CsmFDGkk+r3P2nOXOzJ3n3t3ZDXkyMydP4uDgQEpKCv/99x9z5syhadOmrFy5MkMsOe0DbiyP17BhQ7755htOnjyJyWQiOTmZI0eOMHXqVBo0aMChQ4dydY+8vLzw8/Oz/Nvb2ztDTL6+vjk+5/r163nggQdYunQpcXFxJCYmcuLECV5//XWefvppAGbPnk3r1q1Zs2YN8fHxJCYmcuzYMV5++eVs9/jKi3syevRoevXqxebNm0lJScHOLuNHxC+//ALcGP/W9lb74osvAPDw8GD06NG3vCe1atWiX79+AKxatYqQkJAs66WmptK9e3eGDh3KwYMHMZlMxMTE8Ouvv/L0008TGBiYbT+tWrXKcA0iIiIiIiIiIiIiUjLddnJsyJAhGIbBxIkTuXTpktV6X331FZ9++ikmk4mhQ4febneSh3bt2sXcuXOxs7Pj/fff5/r160RHRxMbG8u1a9fYsGEDAQEBODk50bx5c0JCQujbty8Affv2JSQkJMOjefPmlnPXrFmTDz/8kCNHjhAfH8/169dJTEzk6NGjDBgwgMTERAICAjK8Z3Lax5w5c3jjjTdwc3Pj3Xff5fLly8TGxhIXF8f+/ftp164dly9f5oknnrBpZqM1n376aYZEjTlxY378/vvvOT5n//79efLJJzl79iwRERFERkZaEl5Lly5l2rRpvPjii7z44ouEhIQQERFBWFgYgwcPBuDDDz/kn3/+yXTevLgnBw4cYPr06bzxxhuEhoYSFhZGbGwszzzzjKXOjh07ALj//vuzPEdKSgo7d+4EoGPHjri7u9t0X3r06AFAWloa27dvz7LOzJkzCQ4OZt68eURFRREZGcn58+ctM9OmTJnCv//+a7UPc0L/4MGDuXpfiIiIiIiIiIiIiEjRdtvJsccee4yePXty8uRJmjVrxpgxY4iPjwfg66+/5q233qJhw4a8+OKLGIbBc889Z/nltBSuPXv2ANC+fXvGjh2Lj4+PpaxMmTJ07NiRefPm3dYymBMmTGDMmDHUq1fPssecnZ0ddevW5bvvvuOxxx4jNjaWb7/99rZij46OZsyYMQCsWLGCN998k/LlywNgb29P06ZN2bBhA02bNuXChQvMnj37tvrJL/fddx9LliyhatWqwI3ZVVOnTrXMqhw/fjwBAQHMmDGDcuXKATdmrM2ePZvq1auTlpbG8uXLM5wzr+5JTEwMo0aNYtq0aZZZcc7Ozvj7+wOQlJRkmXnWsGHDLM9x5swZYmNjAWjcuLHN96VRo0aW50ePHs2yTnh4OKtXryYgIABXV1cAKleuzPfff0/FihWzvDfpmeNJSUm5ZWIzMTGRqKioDA8RERERERERERERKR5uOzkGsHDhQgYMGEBISAgff/wx0dHRAAwfPpxp06Zx5MgRDMNgyJAhzJw5M08CltwrXbo0AFevXiU1NbVA+37ssceAG7PXbsfKlSuJiIigcePGdOrUKcs6Dg4OlmX6NmzYcHuB5pM33ngjwz5mZumvJaulE+3t7XnkkUeAG3uWpZdX98TOzo433njDauxXrlyxvF+sLSl5/fp1y/MyZcpYPdfNypYtm+U50nv44Ydp27ZtpuPOzs6W67753qTn4+NjWSYyu9muAO+99x5eXl6WR5UqVW55DSIiIiIiIiIiIiJSNDjkprGLiwsLFy5k2LBhzJ49mz179nDp0iVSU1MpX748Dz/8MEOHDrXs9SN3hkceeQQXFxcOHTpEy5YtefbZZ2nXrh3Vq1fPk/P/8ccffPXVV+zatYszZ84QExODYRgZ6ly4cOG2zr17924Ajh8/bpkdlRXzLMazZ8/eVj/5xdpyhOa9zXx8fLjrrruyrRMeHp7heF7dk5o1a1pmq2Xl6tWrlufpZxsWlOxmnppnOYaFhVmtY2dnh5eXF+Hh4RmuJSvjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTOQqOWbWokULWrRokRenkgJQo0YNZs+ezQsvvMDevXvZu3cvcGM2UNu2benfvz9PPPFEljOcbuXzzz/ntddeIy0tDQCTyYSXlxfOzs7AjQRNVFSUZem9nDLP+ElISCAhIeGW9ePi4m6rn/zi4eGR5XHzEpTWytPXSU5OznA8r+5Jdokx8/nNzK/nzdLPFrM2Aywr165dy/Ic6d3OvbmZq6sr4eHht7xPzs7OVq9RRERERERERERERIq2XC2rKEXXgAEDOHv2LLNmzaJv375UqVKFq1evsnz5crp160br1q1zvM/S8ePHGTFiBGlpafTu3ZvffvuNhIQEwsPDCQkJISQkhOnTpwNkmklmK/Oyfn379sUwjFs+zpw5c1v9FCV5dU/s7e2z7Sd90urm2Wtm/v7+lCpVCoCDBw/afA3mvcwA6tata3O7nDLPLMvJko8iIiIiIiIiIiIiUrzcdnKsQ4cOfPfdd3fczByxnY+PD8OGDWPp0qWcO3eOkydPMm7cOEwmEzt37iQoKChH51uxYgWpqanUrl2bpUuXct999+Hk5JShTkhISK5iNi8beKctl1iYCuqepN9nzNryhY6OjrRs2RKAjRs3WvYhvJVVq1YBN5Y+bNOmTe4CtSI+Pt4yY8zanmkiIiIiIiIiIiIiUvzddnJsy5YtBAQEUL58eQYPHszmzZvzMi4pBDVq1OC9996jf//+AGzatMlSZmd3462S3Yyv8+fPA9CwYUNL/Ztl9z6xpY+HH34YgAMHDnD58mWr9fKSeXnJ253tlt8K6p54e3tbEnGnTp2yWm/48OEAxMTEWGYKZufff/9l6dKlAHTv3j3bfdNy4/Tp05bntWvXzpc+REREREREREREROTOd9vJsYEDB+Lm5kZMTAwLFy6kU6dOVKlShfHjx3Ps2LG8jFHyWGJiYrblrq6uABkSXJ6engBERERYbefl5QXAkSNHskwkrV+/nuDgYKvtbemjd+/elC5dmuTkZEaNGpVtwiotLS3bc9nKlrgKU0Hek1atWgHw22+/Wa3z+OOPW2Z/vfvuu6xdu9Zq3evXr9O7d28SEhJwc3PjnXfeue3YbmXfvn0A+Pn5cc899+RbPyIiIiIiIiIiIiJyZ7vt5NiCBQsIDQ1l4cKFtG/fHjs7Oy5evMgHH3xAgwYNaNq0KTNmzODq1at5Ga/kgZdffpk+ffqwcuVKrly5YjkeExPDrFmzWLBgAQCPPfaYpaxevXoA7Ny5kxMnTmR53s6dOwNw7NgxXnrpJcvSe7GxsXz11Vf06tUr272ebOmjdOnSfPLJJwAsXbqUxx57jH379pGWlgbcSP4cP36c//3vf9StWzfbxIytzHEtWrTojlxGtCDviTnpZU40ZcVkMrFkyRLuuusukpOT6d69O6+99hrHjx+31ImMjGT+/Pk0adKEP/74A3t7e2bPnp2vM7rMMbdu3Trf+hARERERERERERGRO99tJ8cA3NzcGDBgABs2bOD8+fN8+OGHNGjQAMMwOHToECNHjqRSpUo8/vjjLF++/JYzlqRgJCcn8/3339OrVy/8/Pzw8PDA29sbDw8Phg8fTlJSEi1atOCtt96ytOnZsye+vr6Eh4dTu3ZtfH19qVatGtWqVePXX38F4JFHHuGpp54C4Msvv6RMmTJ4e3vj5eXFCy+8QO3atbPdx8yWPgACAgL48ssvcXJyYv369Tz44IO4ublRtmxZXFxcqFOnDmPGjOHEiROWJRFz44UXXgBg5cqVlC5dmsqVK1OtWjVatGiR63PnlYK6Jz179sTR0ZETJ07w77//Wq1Xvnx5fv31Vzp16kRKSgozZsygTp06uLq64u3tTenSpRk8eDDnzp2jQoUKrF27ln79+t12XLeSlpbGunXrACzLhoqIiIiIiIiIiIhIyZSr5Fh65cuXZ/To0Rw6dIg///yTMWPGULFiRVJSUli3bh39+vWjQoUKedWd5MLEiROZMWMG3bt3595778XBwYGYmBjKlStHhw4d+PbbbwkODqZUqVKWNt7e3uzYsYOnnnqKSpUqERkZydmzZzl79iwJCQmWeosWLeKTTz6hQYMGODs7k5qaSv369XnvvffYvXs37u7uVuOytQ+4kbD6+++/GTNmDA0bNsTZ2ZmIiAjc3d1p1qwZr7zyCps2bcqThMvAgQNZuHAhLVq0wM3NjcuXL3P27FkuXLiQ63PnpYK4J+XKlaN79+7Ajdc6O76+vvzyyy9s3bqV5557jnvuuQcnJyfi4+OpVKkSjz76KDNnzuTkyZOWWYf5Zfv27Vy4cIFKlSrRtWvXfO1LRERERERERERERO5sJiO7DYpyyTAMtm7dyvjx49m/fz8mk4nU1NT86k5ECsCOHTto3bo1NWrU4N9//82T2Xn5bciQIcydO5dJkybx9ttv57h9VFQUXl5eREZGWvagk4IXl5RCnbc3APDX5E64OTkUckQiIkWfPltFRIo3fc6LSH7T54yI3Gls/V1uns0cu9nly5eZPn06o0eP5sCBA/nVjYgUsFatWtGxY0f+++8/vv/++8IO55bOnz/PokWL8PX1ZcSIEYUdjoiIiIiIiIiIiIgUsjxN5cfHx7Nq1SoWLFjA1q1bSUtLwzwxrUmTJgwaNCgvuxORQvLRRx/RqFEjJk+eTK9evbCzy7c8e65NnTqVpKQkgoKCNOtLRERERERERERERPImObZ582YWLlzI6tWriY2NtSTEKleuzIABA3j66aepU6dOXnQlIneA+vXrM2fOHM6cOcPly5epVKlSYYeUpbS0NKpWrcqUKVMYOnRoYYcjIiIiIiIiIiIiIneA206OHT16lIULF7J48WIuXboE3NhjzN3dnR49evD000/Trl27IrEfkRR/5cuXz3GbkJCQfIik+Bg8eHBhh3BLdnZ2jB8/vrDDEBEREREREREREZE7yG0nxxo0aIDJZMIwDOzs7GjXrh2DBg2iR48euLm55WWMIrkWGhpa2CGIiIiIiIiIiIiIiMgdwGSY10DMITs7O+rWrcugQYMYMGAAFStWzOvYRETuCFFRUXh5eREZGal9y0RERERERERERETuULb+Lve2Z44dPHiQRo0a3W5zERERERERERERERERkQJnd7sNlRgTERERERERERERERGRoua2k2M59euvv7Jjx46C6k5ERHIpLimFauPWUW3cOuKSUgo7HBGRIkmfpSIiJZM+/0UkP+kzRkQk92xeVtHOzo4KFSpw8eLFTGUjR44kKiqKOXPmWG3fvXt3rl69SkqKPrBFRERERERERERERESkcORo5phhGFkeX7p0KfPmzbvt9iIiIiIiIiIiIiIiIiIFocCWVRQREREREREREREREREpbEqOiYiIiIiIiIiIiIiISImh5JiIiIiIiIiIiIiIiIiUGEqOiYiIiIiIiIiIiIiISImh5JhICVGtWjVMJhPz5s0rlP4HDhyIyWRi2bJlBdpv586dMZlMbN26tUD7FREREREREREREZE7k5JjRcy8efMICgoiODi4sEMpts6cOUNQUBBBQUGFHUqxsX//fhYvXky9evXo06dPpnJz4m7w4MF53rf5dRwzZgxpaWl5fn4RERERERERERERKVqUHCti5s2bx6RJk5Qcy0dnzpxh0qRJTJo0qbBDKTZGjx6NYRgEBgZiMpkKtO8HH3yQTp06cejQIb777rsC7VtERERERERERERE7jw5So6FhoZib2+f6XHlyhWALMvMj9DQ0Hy5ABG5s/3666/s2LGD8uXL071790KJ4YUXXgDggw8+KJT+RUREREREREREROTOkaPkmGEYt/0QkZJp1qxZADz11FPY29sXSgxdunTBx8eHY8eOsXv37kKJQURERERERERERETuDDYnxwIDA3P9ePvtt/PzWnLl/PnzjB07lkaNGuHl5YWrqys1atTgySefZMGCBSQkJGRqs3v3bgYOHIi/vz8uLi54eXlx//338/777xMTE5NlP4MHD86wt9KKFSto06YNPj4+uLm50ahRIz799NNMeyPNmzcPk8nE9u3bAZg0aRImkynD48yZM3keo2EYzJ49mxYtWlCmTBlMJhPz5s2z/cbepE2bNphMJoKCgkhKSmLatGk0aNCAUqVK4e3tTYcOHVi/fv0tz7Nq1Sq6du2Kn58fTk5O+Pn50bVrV1avXm21jS3XVa1aNdq2bWtpc/M9zu2eWObzBAcHExISwssvv0z16tVxcXGhfPnyDBgwgBMnTmR7joSEBD755BOaN2+Ot7c3Li4u+Pv7M2jQIA4fPnzbsb377ruYTCbs7e0tCS2ztLQ0Fi1aRJcuXSz33NfXl44dO7JkyRKrCfCoqCiWL18OQP/+/W8rrtsdM+k5OTnRs2dPAL7++uvbikNEREREREREREREigcHWysGBgbmZxyFauHChQwdOtSSAHNycsLDw4Nz585x6tQp1qxZQ4MGDWjUqBFwI1EwcuRIZsyYYTmHu7s7sbGx/P777/z+++/MnTuXDRs24O/vb7Xfl19+mZkzZ2JnZ4enpyfx8fH88ccfjBgxgoMHDzJ//nxLXVdXV/z8/AgLCyM5OZlSpUrh7u6e4XzpZ+XkRYyGYdC7d29WrlyJnZ0dXl5e2NnlzTZ1SUlJtG/fnp07d+Lg4IC7uzsRERFs3ryZzZs3ExgYSFBQUJbtBg0axLJlywAscV27do1169axbt06+vXrx/z583F0dMzxdfn6+hIVFUV4eDgAfn5+Gdp6eXnlyfWfPn2afv36ERISgqurK46OjoSGhrJ48WJWrVrF6tWr6dy5c6Z2Fy9epHPnzhw9ehQAR0dH3NzcOHfuHAsXLmTRokV88sknvPLKKzbHkpaWxquvvsrMmTNxcXFh8eLFGZY/DAsLo3v37uzYscNyzHzPN23axKZNm1i6dCnff/89Tk5OGc69fft24uPjKVWqFE2aNMnpbcokJ2PmZq1ateKbb75hw4YNuY5DRERERERERERERIquvMl0FGHr1q0jICCAhIQEHn74YXbu3El8fDzXrl0jNjaWnTt38vzzz2f4pX9gYCAzZsygXLlyzJw5k+vXrxMdHU18fDzbtm2jcePG/P333/To0cPqbJY1a9bwzTffMH36dMLDwwkPD+fatWs899xzACxYsICtW7da6vft25eQkBCaN28OwJgxYwgJCcnwqFKlSp7GuGrVKn788Uc++ugjwsPDCQsLIzIykk6dOuX6vn/xxRf89ttvzJo1i+joaMLDwzl37hy9evUCbsyMW7NmTaZ2b775JsuWLcNkMjFx4kSuX79OWFgY165d48033wRgyZIlTJw40Wrf2V3X77//zqpVqyx1b77Hn376aa6vHWDkyJE4OTmxceNGYmNjiY6OZt++fdSvX5+EhAT69u3LhQsXMrRJTU2lZ8+eHD16FC8vL7777jtiYmKIiIjgv//+o2vXrqSlpfHaa6/ZNPsOIDExkT59+jBz5kxKly7Nxo0bMyTGUlNT6dGjBzt27KBRo0b89NNPxMbGEhERQUxMDPPnz6dcuXKsWbOGN954I9P5zQm1Jk2a5HpJxZyOmZs98MADwI29E281O09EREREREREREREijGjBEtOTjaqV69uAEaLFi2MxMTEW7Y5ffq0YW9vb7i6uhqHDx/Osk5UVJRRuXJlAzBWr16doSwgIMAADMCYO3dulu2bNm1qAMZzzz2Xqax169YGYAQGBhZIjDNmzLDaz+0wxw8Yc+bMyVSemppqtGrVygCMunXrZii7cOGC4eDgYADG+PHjszz/qFGjDMBwdHQ0Ll26lKHM1uvatm2bpV5eM5/XycnJ+OuvvzKVh4aGGj4+PgZgvPjiixnKli5damm/YcOGTG2Tk5ONBx54wACMevXqZSr39/fP8L6LiIiwvB6VKlUyjhw5kqnNggULDMC49957jYiIiCyvaf/+/YbJZDKcnJyM0NDQDGUtW7Y0AOPll1+2ek/SxxYQEJCpLLdjJj13d3cDML799tts6yUkJBiRkZGWx/nz5w3AiIyMzLZdcRObmGz4v7HW8H9jrRGbmFzY4YiIFEn6LBURKZn0+S8i+UmfMSIi1kVGRtr0u9wSPXNs27ZtnD59GoCPP/4405JwWZk3bx6pqal07tyZhg0bZlnHw8ODbt26AVhdwq1KlSoEBARkWfbEE08A8Oeff94ynvyM0dvbm2HDht1WDLdSpUoVnnnmmUzH7ezsmDBhAgDHjh3jyJEjlrKVK1eSkpKCi4sL48aNy/K8EyZMwNnZmeTkZFasWJFlnfy8Llv17t2b2rVrZzperlw5XnjhBQDL0pFm5n8/9NBDdOzYMVNbBwcHy/KnR48ezXDvbnbp0iVatmzJ9u3buffee9mzZw/16tXLVG/OnDkADB8+3OqSkk2bNqVu3bokJSWxbdu2TP3AjeUqcysvxkyZMmUyxGXNe++9h5eXl+WRflamiIiIiIiIiIiIiBRtNu85Vhzt2bMHgPLly9OsWTOb2uzevRuAjRs3Ur58eav1YmJiADh79myW5ffddx8mkynLsooVKwI39nq6HXkZoy0Jw9vRpk0bq9ffsmVLHBwcSElJYf/+/dSvXx+A/fv3W+Ly9PTMsq23tzfNmjVj9+7dlvo3y8/rslW7du2yLZs6dSrXr1/n9OnTVK9eHfj/62/fvr3Vtm3btsXe3p7U1NQM9y69EydOEBQUxNmzZ3nooYdYu3YtPj4+meqlpqby66+/AhAUFMTUqVOt9mt+r978Xrp69SpAlufPqbwYMz4+Ppw9e9YSlzXjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTJTo5FhISAgA/v7+NrcxzziJjY0lNjb2lvXj4uKyPO7h4WG1jYPDjZclOTnZ5rjSy6sYy5Urd1v926JSpUpWy1xcXChTpgyhoaFcuXLFctz8PLu2AJUrV85Q/2b5eV22yu4a0pdduXLFkhyz5fpdXFwoW7ZspnuX3vvvvw+An58fGzduxN3dPct6YWFhJCYmAhAeHp7N1fy/m99LCQkJADg7O9vUPjt5MWZcXV0zxGWNs7NznsQsIiIiIiIiIiIiIneeEr2sorVZKNlJTU0F4I033sAwjFs+goOD8zjqgovR3t6+AKMuOMX1umzVu3dvnJycCA0NZfjw4Zb3y83SH1+/fr1N76WgoKAM5zAvY2hrci2/mWeWmeMSERERERERERERkZKnRCfHzEsOWltWMK/aFLSiEOPFixetliUmJnL9+nUg4ywv8/MLFy5ke25z+Z0wQ8ya7K4/fVlOrz8hISHLe5dely5dWL16Nc7Oznz33Xc8/fTTWSbIypQpY5mRdbvvJfNeY7e7RGheM8eRF3ugiYiIiIiIiIiIiEjRVKKTY82bNwduLK9obX+qmz388MMAbN68+ZZLs+UHO7sbL5lhGFbrFHaMtti+fbvVa9i5cycpKSkAGfaCMz/fv38/kZGRWbaNiIjIsDfZ7TDfY8j+PufGtm3bblnm4+NjWVIR/v/6t2zZYrVtcHCw5d5ld/1dunThxx9/xMXFhSVLltC/f39LOzNHR0fuv/9+AH766adbXFHW6tSpA8CpU6duq31eio6O5tq1awDUrl27kKMRERERERERERERkcJSopNjbdu25a677gJg5MiRJCUl3bLNkCFDcHBw4Nq1awQGBmZbNykpiZiYmDyJ1czT0xO4kQSyprBjtMW5c+eYP39+puNpaWlMnToVuJFYqV+/vqWsZ8+eODg4kJCQYNk362ZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdqza+jQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+y7ZtQdi/fz9paWk4ODhYEsgiIiIiIiIiIiIiUvKU6OSYvb09n3/+OSaTiV27dvHII4+wa9cu0tLSgBuJo+DgYAYOHMhff/0FQI0aNZg4cSIAH3zwAYMGDeLo0aOWc6akpHD48GEmT55MzZo1OXz4cJ7GbE54/Pzzz1aX5ivsGG3h5eXF8OHD+eabbyyz286fP0+/fv0sM6emTJmSoU2lSpV47bXXAJg2bRqBgYGW5FVERAQTJ07kww8/BGDUqFFUqFDhtmK7++67cXJyAmD27Nn5MnvMxcWFzp07s3nzZsv5f//9d9q3b8+1a9fw8PBg3LhxGdr07NmTBx54AIA+ffqwePFiSzLr9OnT9OzZk7179wI3XndbdOjQgbVr1+Lm5sbKlSvp06dPhiTxwIEDad++PYZh0L17d6ZMmcKlS5cs5bGxsWzbto2XXnrJkmhOr02bNsCNZRlDQ0NtvDv5Y9++fQA0adIEd3f3Qo1FRERERERERERERApPiU6OATz66KPMmzcPZ2dndu3aRcuWLXFzc6Ns2bKUKlWKtm3bsmjRogwJg4kTJzJx4kRMJhMLFy6kfv36ljYuLi40btyYwMBAzp8/j8lkytN4AwICcHFx4eTJk1StWpXy5ctTrVo1qlWrlmEvqsKM0RYvvvgizZo1Y+jQoXh6euLj40PVqlVZvnw5ABMmTKB79+6Z2k2dOpU+ffpgGAaTJ0+mTJky+Pj4UKZMGUsyrV+/frzzzju3HZubmxtPP/00AGPHjsXd3R1/f3+qVavGmDFjbvu86X388cckJCTQoUMH3N3d8fDw4P777+ePP/7A2dmZJUuWULVq1Qxt7O3tWblyJXXr1iUyMpIBAwbg7u6Ot7c3d911F2vWrMHOzo5PP/2URx991OZY2rVrx88//0ypUqX44Ycf6Nmzp+X9bu6za9euJCUlMXHiRCpVqoSXlxfe3t54eHjQrl07vvjiC2JjYzOdu3bt2jRs2BCANWvW5OKO5Z65//79+xdqHCIiIiIiIiIiIiJSuEp8cgxg0KBBnDhxghEjRlCnTh0cHByIj4/H39+fbt26sXDhwgx7FJlMJiZPnsyff/7Jiy++SO3atbG3tycyMhJvb2+aN2/O66+/zp49e/J8+bZatWqxbds2nnjiCXx9fbl+/Tpnz57l7NmzGfaMKswYbeHk5MSWLVuYOnUq99xzD4mJiXh5efHII4+wbt06q8ktJycnli1bxooVK3j00UcpU6YM0dHRlClThkcffZRVq1axePFiHB0dcxXfzJkzCQoKsizreO7cOc6ePWvZsyq3qlevzqFDh3jppZfw9fUlKSmJcuXK0a9fPw4dOsRjjz2WZbtKlSqxf/9+pk+fzoMPPoirqytxcXFUqVKFp59+mgMHDvDqq6/mOJ7WrVvzyy+/4OHhwdq1a+nWrRuJiYnAjWUmf/rpJ37++Wf69u1L1apVSUxMJC4ujkqVKtGxY0fee++9LJeJBBg2bBgAixYtynFceeXUqVPs3bsXV1dXBg0aVGhxiIiIiIiIiIiIiEjhMxn5sWaciBVt2rRh+/btBAYGEhQUVNjhFDjzLL1t27ZZlhws7qKjo6lcuTLR0dGcPn0af3//Ao9h8uTJBAYG8swzz/Dtt9/muH1UVBReXl5ERkZm2JOuuItLSqHO2xsA+GtyJ9ycHAo5IhGRokefpSIiJZM+/0UkP+kzRkTEOlt/l6uZYyKSr8z7pxmGwfvvv1/g/cfGxvLZZ5/h7OxMYGBggfcvIiIiIiIiIiIiIncWJcdEJN+NHDmSKlWqMGfOHM6fP1+gfX/++edcu3aNV199tVBmrYmIiIiIiIiIiIjInUVzbkUk37m4uLBgwQKCg4M5d+4cVapUKbC+S5UqRVBQECNGjCiwPkVERERERERERETkzqXkmORYjx492LNnT47arFq1iubNm+dTRAWrfPnyOW4TEhKSD5EULW3atCmUfdZefvnlAu9TRERERERERERERO5cSo5JjoWFhREaGpqjNklJSQAEBwfnQ0QFK6fXnp5hGHkYiYiIiIiIiIiIiIiI5JTJ0G/rRUSyFRUVhZeXF5GRkXh6ehZ2OCIiIiIiIiIiIiKSBVt/l2tXgDGJiIiIiIiIiIiIiIiIFColx0RERERERERERERERKTEUHJMRERERPJdXFIK1cato9q4dcQlpdz2cRERERERkZvl5f83bPm/iK3/X8mqnv6vI3JnUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHKskAQHB2MymTCZTHl+7qCgIEwmE23atMnzc0vRVNjviS1btmAymXj00UcLtN+lS5diMpl4+umnC7RfEREREREREREREblzKTkmmfzwww8EBQXxww8/FHYoheKTTz4hKCiIw4cPF3YoxUJaWhqjR48GYNKkSZnKzYm7/EgU9+nThzp16rBo0SIOHjyY5+cXERERERERERERkaJHybFC4ubmxj333MM999xT2KFk8sMPPzBp0qQSnRybNGmSkmN5ZP78+fzxxx889thj3H///QXat52dHRMnTsQwDMaMGVOgfYuIiIiIiIiIiIjInUnJsUJy//33c+LECU6cOFHYoYjkqw8++ACA4cOHF0r/vXr1omzZsmzbto39+/cXSgwiIiIiIiIiIiIicudQckxE8k1wcDAnTpzA19eXTp06FUoMDg4O9O3bF4CvvvqqUGIQERERERERERERkTuHkmP5oE2bNphMJoKCgkhOTuZ///sfzZo1o3Tp0phMJoKDgwkODr7lPktHjhyhb9++lC9fHhcXF+666y5eeeUVrly5YlN7sy1btvDYY4/h6+uLi4sLtWvXZtKkSSQkJGSoZz7n/PnzgRvL4Zn7MD+Cg4Nv+77MmzcPk8lEtWrVANi0aROPPvoovr6+uLq6UrduXaZMmZIprpv9999/DB8+nFq1auHq6oqnpydNmjRh8uTJREVFZdnm5vt16NAhBgwYQOXKlXF0dKRNmzaWva/Onj0LwDPPPJPp+nNj8ODBmEwmBg8ejGEYzJo1i/vvvx9PT088PT1p0aIFixcvvuV5goOD6d27N5UqVcLZ2ZmyZcvyyCOPMHfuXFJTU28rtkOHDlG+fHlMJhOdOnUiJiYmQ/nRo0cZOnQotWrVws3NDXd3dxo0aMBbb73FtWvXrJ73m2++AaB37944ODjkOK6bX7eTJ08yZMgQqlSpgrOzM5UrV+b555/n4sWL2Z6nf//+ACxZsiTTtYmIiIiIiIiIiIhIyaLkWD5KSEigTZs2jBkzhj/++AM7OzubEyyrV6+madOmLF++nNDQUBwdHbl8+TKff/45jRo14syZMzad58MPP6RDhw6sX7+elJQUkpKSOHHiBEFBQXTp0iVDMsXJyQk/Pz9cXFwAcHFxwc/PL8PDyckpx/chK1988QWdOnXil19+ISUlhZSUFP766y8mTpxI8+bNCQ8Pz7Ld8uXLqVu3LrNmzeLkyZM4OjqSlJTEoUOHCAwMpF69ehw/fjzbvleuXMkDDzzA4sWLiY6OtiRt3N3d8fPzw87uxrDw9PTMdP15pV+/fgwfPpwDBw7g4OBATEwMu3fvZsCAAQwZMgTDMLJsN2rUKNq2bcuKFSu4fPkybm5uREREsHXrVoYMGULHjh2Jjo7OUSybN2+mdevWhIaGMnDgQNauXYu7u7ul/IMPPqBhw4Z88803nDx5EpPJRHJyMkeOHGHq1Kk0aNCAQ4cOZTqvYRhs2LABgJYtW+Yopqxs27aNxo0bM3fuXCIjI0lLS+PixYvMnj2b+++/P9sE2X333YeLiwuxsbHs3Lkz17GIiIiIiIiIiIiISNGl5Fg+mjlzJn/++Sdz584lKiqKsLAwrl69SoMGDbJtd+rUKQYOHEhycjJNmjRh//79REdHExcXx6ZNm3BycmLUqFG37P+PP/5g3LhxjBs3jitXrhAeHk5ERARvv/02cCPZYJ4lBtC8eXNCQkIsS9D17duXkJCQDI/mzZvn4o7ccPXqVUaMGEGvXr04d+4c4eHhREVF8eWXX+Ls7MyhQ4d49tlnM7U7ePAgAwcOJDExkYcffpg///yTqKgo4uLiWLNmDRUqVOD8+fM8/vjj2c4OGjx4MB06dOD48eNERkYSHx/PN998w5gxYwgJCaFKlSoAfPrpp5muPy/88MMPLF++nHfeeYfw8HDCwsIIDQ3l5ZdfBmDu3Ll89tlnmdp9/vnnfPzxxwAMHTqUS5cuER4eTmRkJB9//DEODg5s3bqV559/3uZYlixZwmOPPUZ0dDSjR49mwYIFODo6WsrnzJnDG2+8gZubG++++y6XL18mNjaWuLg49u/fT7t27bh8+TJPPPFEpnv+119/cf36deDGHnu51bNnT9q1a8fx48eJiooiNjaWZcuW4eHhwaVLlxg/frzVto6OjjRp0gSA7du35zoWERERERERERERESm6lBzLRzExMSxevJjBgwfj6uoKQJkyZfDx8cm23dSpU4mLi6NcuXJs2rSJpk2bAmAymWjfvj0bNmwgLi7ulv1HREQwceJEpk6dStmyZYEbs6EmTZpEjx49gBvJkYIWFxdH8+bNWbp0qSUR5erqygsvvMDMmTOBGzPnfv/99wzt3nrrLZKTk6lZsyYbN26kfv36ANjZ2fH444+zbt06HBwc+O+//5g1a5bV/uvUqcOaNWu49957Lcdq1aqV15dpVWRkJBMmTGDChAl4enoC4Ovry2effcbAgQMBMi17GR8fT2BgIHBj1tlXX31F+fLlAShVqhQjRoxg+vTpACxbtowDBw7cMo7p06czYMAAy9KfH330UYaZjdHR0YwZMwaAFStW8Oabb1r6tLe3p2nTpmzYsIGmTZty4cIFZs+eneH8+/btA8DDw4O77ror5zfqJo0aNWL16tWW183JyYk+ffrw7rvvWmJMSUmx2r5x48YA7N2795Z9JSYmEhUVleEhIiIiIiIiIiIiIsWDkmP5qG7dujz++OM5amMYBitXrgRg+PDhWSbS7rnnHvr06XPLczk7O1uSGzd78sknAfjzzz9zFF9emTBhgmX5wvSeeeYZKleuDMDSpUstxyMiIixL9L3++uu4ubllatu4cWObkn6vv/469vb2uYo/N1xdXa2+LuZZfWFhYWzatMlyfNOmTYSFhQEQFBSUZdsXX3yRChUqAGS7d5lhGLz++uuMHj0aBwcHvvvuuyxnIq5cuZKIiAgaN25Mp06dsjyXg4MD/fr1A7C8PmaXLl0CsCRmc+vNN9/M8j1jfi/Hx8fz77//Wm1vjsMcV3bee+89vLy8LA9zEldEREREREREREREij4lx/LRww8/nOM2p06dIiIiAoDWrVtbrdemTZtbnqtu3boZ9o5Kr2LFigCWhEtBcnBwsLoHlZ2dneXa9u/fbzl+8OBByz5c7du3t3ruDh06ADeSfsnJyVnWuZ3XJS81a9bMMmPsZrVq1bIkB9Nfv/l5lSpVuPvuu7Nsa29vT7t27TK1TS85OZlBgwbx0Ucf4e7uzrp16+jfv3+WdXfv3g3A8ePHKV++vNXH5MmTATh79myG9levXgW45UxJWz3wwANZHje/lyH797M5DnNc2Rk/fjyRkZGWx/nz53MYrYiIiIiIiIiIiIjcqRwKO4DirFy5cjluk/4X9+l/6X+zSpUq3fJcHh4eVsscHG689NktQ5dfypYti7Ozs9Vy87VduXLFciz98+yu3ZxYSklJISwsDD8/v0x1bud1yUu3eu0qVarEhQsXsrz+W7U1X3/6tunt2bOHPXv2ADf2NjMnE7NinmGVkJCQYYlHa25e6tPcJrvXOiesvZ/N72XAakIUsCxtasu1ODs751ncIiIiIiIiIiIiInJn0cyxfJTbpfvS7/8keacwl1QsbPXr16dBgwYAjBo1iv/++89q3dTUVAD69u2LYRi3fJw5cyZD+zJlygAQHh6ePxeTQ+ZZZea4RERERERERERERKRkUnLsDuPr62t5nt3eSBcvXiyIcPLFtWvXSEpKslpuvrb0M7zSP79w4YLVtuYyBweHPFvOL6/d6rXL7vqzu/b05dZmx/n4+LB161YaNWrE+fPnad26Nf/880+WdcuXLw9kXi7RVub3cmEs3ZkVcxzpx5iIiIiIiIiIiIiIlDxKjt1h7rrrLkqXLg1AcHCw1XrZleWWnd2Nt4V5j6+8lpKSws6dO7MsMwyD7du3Azf25jJr0qSJJa4tW7ZYPffmzZsBaNiwIY6OjrcVX35f//79+4mJicmy7OTJk5YEV/rrNz+/cOGC1WRWamoq27ZtA+C+++6z2n+ZMmXYsmULTZo04eLFi7Rp04a///47Uz3z3mwHDhzg8uXLNlxZRnXq1AFuLBVq7XoL0unTpwGoXbt2IUciIiIiIiIiIiIiIoVJybE7jMlkokePHgDMmjUryyXp/v33X5YvX55vMXh6egIQERGRb328++67pKWlZTo+f/58zp8/D9xYzs+sdOnSdOrUCYAPP/ww0/5WAH/88QcrV64EoF+/frcdW35ff3x8PB999FGWZVOmTAFuzPBKvx9Yhw4dLMsBBgUFZdn2q6++ssw2vNX1+/j4sGXLFu677z4uX75MmzZtOH78eIY6vXv3pnTp0iQnJzNq1Khsk4VpaWmZ7lfz5s2xt7cnLS2N/fv3ZxtPQdi3bx8ArVu3LuRIRERERERERERERKQwKTl2Bxo/fjyurq6EhobSsWNHDh06BNyYybR161Y6deqEm5tbvvVfr149AHbu3MmJEyfy/Pxubm7s2rWL/v37W2ZJJSQk8PXXXzN8+HAAnnzySe6///4M7aZMmYKjoyMnT56kU6dOHDlyBLiRmPn555/p0qULKSkp1KhRg2HDht12fObrX7FiRb7sl+Xl5cU777zDe++9R3R0NHBjqcnXXnuN+fPnAzBx4kRcXFwsbVxdXS1JsSVLlvDCCy8QGhoKQFxcHDNmzGDEiBHAjaRi06ZNbxlH6dKl2bRpEw8++CAhISG0adOGo0ePZij/5JNPAFi6dCmPPfYY+/btsyQ109LSOH78OP/73/+oW7cua9euzXB+Dw8PSxzmxFRhCQkJ4dy5c4CSYyIiIiIiIiIiIiIlnZJjd6CaNWuyYMECHBwc2L9/P02aNMHT0xN3d3ceeeQRkpKSmD59OgDOzs553n/Pnj3x9fUlPDyc2rVr4+vrS7Vq1ahWrRq//vprrs/v6+vLxx9/zPLly6lSpQo+Pj54enoybNgwEhISaNiwIXPmzMnUrkmTJixcuBAnJyd27dpFgwYN8PLyolSpUjz22GNcunSJKlWq8NNPP+Hu7n7b8Q0dOhSTycSePXvw9fWlYsWKluvPC926daN37968+eabeHt74+PjQ7ly5ZgxYwYAgwYN4tVXX83U7uWXX2bkyJHAjVliFSpUwMfHBy8vL1577TWSk5Np27Yt33zzjc2xeHl5sXHjRpo3b86VK1do27Ytf/75p6U8ICCAL7/8EicnJ9avX8+DDz6Im5sbZcuWxcXFhTp16jBmzBhOnDiByWTKdH7zDLY1a9bk6B7lNXP/jRo10rKKIiIiIiIiIiIiIiWckmN3qF69erF//3569+6Nr68viYmJ+Pn58dprr3Ho0CG8vLwALPuT5SVvb2927NjBU089RaVKlYiMjOTs2bOcPXuWhISEPOnjpZdeYsOGDXTu3Bk7Ozvs7Oy49957mTx5Mnv37rUsIXizvn37cuzYMYYNG0aNGjVITEzEwcGBRo0aMWnSJI4ePZrr5EerVq1Yt24d7du3p3Tp0oSGhlquP68sWbKEL774gsaNG5OSkkKpUqV46KGHWLBgAfPnz7fse3az6dOns3XrVnr27Imfnx8xMTF4eHjQtm1bvv32WzZt2oSHh0eOYvHw8GDDhg20bNmSa9eu0a5dO8tsRYAXXniBv//+mzFjxtCwYUOcnZ2JiIjA3d2dZs2a8corr7Bp06Ysl3IMCAjAxcWFPXv2WPb8KgyLFi0CyNWMQhEREREREREREREpHhwKO4DiKDg4+JZ12rRpk+0eTgANGza0ureYeQ+nunXrZioLCgqyui+Vrf3fe++9LFmyJNtz5FaHDh0y7Ktlq5o1azJr1qwctbHlfqf36KOP8uijj+Y0NJuZTCaGDx9uWUYyJ9q2bUvbtm1z1OZW7wl3d3d27NhhtbxatWp8+OGHOeoTbiRa+/Xrx9y5c1m4cCFvv/12jmKz9XXLrs6ZM2fYuXMnnp6eDBgwwObYRURERERERERERKR40syxIujq1avMnj0bgM6dOxdyNCLZe/vtt3F2dubzzz8nNja2wPt///33MQyD8ePH53hWnYiIiIiIiIiIiIgUP0qO3aFmzJjBtGnTOHnyJCkpKQAkJiby888/06pVK65cuYKvry9Dhgwp5EhFsletWjVeeeUVrl69ysyZMwu07/Pnz/Ptt99StWpVRowYUaB9i4iIiIiIiIiIiMidScsq3qFOnTrFp59+yvjx47G3t8fLy4uoqChLoszLy4vly5db3ZtL5E7y1ltv4e7uTqlSpQq037NnzzJ+/Hjatm2Li4tLgfYtIiIiIiIiIiIiIncmJcfuUAEBAdjb27Njxw4uXrzI9evXcXV1pXr16nTq1InXXnuNSpUqFXhcy5Yt47XXXstRm759+/Lpp5/mU0QF67XXXmPZsmU5avPpp5/St2/ffIqoaChdujSBgYEF3m+LFi1o0aJFgfcrIiIiIiIiIiIiIncuJcfuUI0bN6Zx48aFHUYm8fHxhIaG5qhNZGQkAIMHD2bw4MH5EFXBiYyMzPH1x8fHAzBv3jzmzZuXD1GJiIiIiIiIiIiIiIitTIZhGIUdhIjInSwqKgovLy8iIyPx9PQs7HBEREREREREREREJAu2/i7XrgBjEhERERERERERERERESlUSo6JiIiIiIiIiIiIiIhIiaHkmIiIFGlxSSlUG7eOauPWEZeUUtjhiIgUG/p8FREpnvT5LiIFRZ83InInU3JMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJM5A5TrVo1TCYT8+bNK5T+Bw4ciMlkYtmyZYXSf15KS0ujbt26ODo68vfffxd2OCIiIiIiIiIiIiJyB1ByLJ/MmzePoKAggoODCzuUYuvMmTMEBQURFBRU2KEUG/v372fx4sXUq1ePPn36ZFv35MmTjB8/nvvuuw9fX1+cnJwoX748Dz/8MJMmTeLSpUv5GusPP/xAUFAQP/zwg9U6dnZ2TJw4kZSUFMaOHZuv8YiIiIiIiIiIiIhI0aDkWD6ZN28ekyZNUnIsH505c4ZJkyYxadKkwg6l2Bg9ejSGYRAYGIjJZMqyTmpqKq+//jq1a9dm2rRp7N+/n/DwcNzd3bl69Sp79uwhKCiIWrVq8dFHH+VbrD/88AOTJk3KNjkG0KdPH+rUqcOaNWvYsWNHvsUjIiIiIiIiIiIiIkWDkmMiAsCvv/7Kjh07KF++PN27d8+yTlpaGj179uSjjz4iJSWFzp07s337dhITEwkLCyM+Pp5ffvmF5s2bExcXx+uvv86rr75awFeSkZ2dHc8//zwAH3zwQaHGIiIiIiIiIiIiIiKFT8kxEQFg1qxZADz11FPY29tnWWfKlCn8+OOPAIwbN47169fTqlUrS30nJyc6derEzp07GTRoEACfffYZCxcuLIArsK5fv37Y29uzfv16zp07V6ixiIiIiIiIiIiIiEjhKnLJsfPnzzN27FgaNWqEl5cXrq6u1KhRgyeffJIFCxaQkJCQqc3u3bsZOHAg/v7+uLi44OXlxf3338/7779PTExMlv0MHjwYk8nE4MGDAVixYgVt2rTBx8cHNzc3GjVqxKeffkpaWlqGdvPmzcNkMrF9+3YAJk2ahMlkyvA4c+ZMnsdoGAazZ8+mRYsWlClTBpPJxLx582y/sTdp06YNJpOJoKAgkpKSmDZtGg0aNKBUqVJ4e3vToUMH1q9ff8vzrFq1iq5du+Ln54eTkxN+fn507dqV1atXW21jy3VVq1aNtm3bWtrcfI/Nr9vtMp8nODiYkJAQXn75ZapXr46Liwvly5dnwIABnDhxIttzJCQk8Mknn9C8eXO8vb1xcXHB39+fQYMGcfjw4duO7d1338VkMmFvb29JaJmlpaWxaNEiunTpYrnnvr6+dOzYkSVLlmAYRpbnjIqKYvny5QD0798/yzpXrlxh2rRpALRt25apU6dajdHOzo6vv/6a2rVrAzB+/HiSkpIy1Ll5jGXFPJ6qVatmORYcHIzJZGL+/PkAzJ8/P9Prf/Nypn5+frRr1460tDTmzJljtT8RERERERERERERKf6KVHJs4cKF3H333Xz44Yf88ccfJCQkUKpUKc6dO8eaNWsICAjIkLBIS0vjtddeo0WLFixatIhz587h6OhIbGwsv//+O+PGjaNZs2acPXs2235ffvllevfuzc6dOzEMg/j4eP744w9GjBjBM888k6Guq6srfn5+ODo6AlCqVCn8/PwyPNLPysmLGA3DoHfv3jz//PPs3bsXwzCws8ublzYpKYn27dszfvx4jh8/jpOTExEREWzevJkuXboQFBRktd1TTz1Fz549WbduHdeuXcPd3Z1r166xbt06evToQf/+/UlOTr6t6/L19cXb29tS9+Z77OXllSfXf/r0aRo3bszMmTMJDQ3F0dGR0NBQFi9eTOPGjfnll1+ybHfx4kXuu+8+Ro4cyd69e4mNjcXFxYVz586xcOFCmjZtymeffZajWNLS0nj55ZeZMGECLi4urFixghdeeMFSHhYWRtu2bRk4cCDr16/nypUruLm5ce3aNTZt2kT//v3p1q1bpiQVwPbt24mPj6dUqVI0adIky/7nzp1LfHw8QLZ7kpk5Ozszbtw4y/241d5gtjInWV1cXABwcXHJ9Po7OTllateqVSsAq6+ZiIiIiIiIiIiIiJQMRSY5tm7dOgICAkhISODhhx9m586dxMfHc+3aNWJjY9m5cyfPP/98hl+KBwYGMmPGDMqVK8fMmTO5fv060dHRxMfHs23bNho3bszff/9Njx49Ms0AM1uzZg3ffPMN06dPJzw8nPDwcK5du8Zzzz0HwIIFC9i6daulft++fQkJCaF58+YAjBkzhpCQkAyPKlWq5GmMq1at4scff+Sjjz4iPDycsLAwIiMj6dSpU67v+xdffMFvv/3GrFmziI6OJjw8nHPnztGrVy/gxsy4NWvWZGr35ptvsmzZMkwmExMnTuT69euEhYVx7do13nzzTQCWLFnCxIkTrfad3XX9/vvvrFq1ylL35nv86aef5vraAUaOHImTkxMbN24kNjaW6Oho9u3bR/369UlISKBv375cuHAhQ5vU1FR69uzJ0aNH8fLy4rvvviMmJoaIiAj+++8/unbtakmK2jL7DiAxMZE+ffowc+ZMSpcuzcaNGzPsC5aamkqPHj3YsWMHjRo14qeffiI2NpaIiAhiYmKYP38+5cqVY82aNbzxxhuZzr9jxw4AmjRpYnVJRfP7vEyZMrRu3dqmuLt162ZJom3bts2mNrfSvHlzQkJC6Nu3L/D/Yy79wzz+0nvggQcAOHjwoNXZmCIiIiIiIiIiIiJS/BWJ5FhKSgqvvPIKhmHQokULtm7dSosWLSyziJycnGjRogVff/01derUAeDMmTO89957uLq6snHjRl588UV8fHwAcHR0pE2bNmzfvp3KlStz8ODBLBM8AOHh4Xz11VeMHDkST09P4EZy4JtvvqFp06bAjSTP7cirGGNiYpg+fTqjR4+2xOju7k6FChVuK670IiMj+eKLLxg2bJhlpk6VKlVYtmyZZSaOOdlldvHiRUtyaty4cUyePJnSpUsD4O3tzbvvvsuoUaMAmD59OpcvXy7w67JVfHw8v/zyCx06dLAkee6//342b96Mj48PUVFRvPfeexnarFixgn379gGwfPlyBgwYYEna3nXXXaxevZoHHngAwzAYO3bsLWMwJwRXrlxJpUqV2LlzJy1btsxQZ/HixWzfvp17772X4OBgunbtipubG3Bj9uKgQYP4+eefMZlMfPHFF1y5ciVDe3O8DRs2tBrHsWPHAGjcuPEtYzbz9PTkrrvuAuDo0aM2t8sP5rhTUlL4/fffs62bmJhIVFRUhoeIiIiIiIiIiIiIFA9FIjm2bds2Tp8+DcDHH3+c5ZJpN5s3bx6pqal07tzZ6i/8PTw86NatGwAbNmzIsk6VKlUICAjIsuyJJ54A4M8//7xlPPkZo7e3N8OGDbutGG6lSpUqmZaOhBt7Sk2YMAG4kTQ5cuSIpWzlypWkpKTg4uJiWVbvZhMmTMDZ2Znk5GRWrFiRZZ38vC5b9e7d27JvVnrlypWzLGm4bNmyDGXmfz/00EN07NgxU1sHBwcCAwOBGwmj9PfuZpcuXaJly5aWxNeePXuoV69epnrmfbSGDx9udUnJpk2bUrduXZKSkjLN4rp06RJwY7lKa65fvw7cSA7nRNmyZTO0Lyw+Pj6WhLr5eq1577338PLysjzSz/YUERERERERERERkaLNobADsMWePXsAKF++PM2aNbOpze7duwHYuHEj5cuXt1rPvLyatT297rvvPqt7K1WsWBG4sdfT7cjLGG1JGN6ONm3aWL3+li1b4uDgQEpKCvv376d+/foA7N+/3xKXecbXzby9vWnWrBm7d++21L9Zfl6Xrdq1a5dt2dSpU7l+/TqnT5+mevXqwP9ff/v27a22bdu2Lfb29qSmpma4d+mdOHGCoKAgzp49y0MPPcTatWstMwvTS01N5ddffwUgKCiIqVOnWu3X/F69+b109epVgCzPX1zY2dnh5eVFeHi45XqtGT9+vGV2I0BUVJQSZCIiIiIiIiIiIiLFRJFIjoWEhADg7+9vcxvzzJDY2FhiY2NvWT8uLi7L4x4eHlbbODjcuH3Jyck2x5VeXsVYrly52+rfFpUqVbJa5uLiQpkyZQgNDc2wTJ/5eXZtASpXrpyh/s3y87psld01pC+7cuWKJTlmy/W7uLhQtmzZTPcuvffffx8APz8/Nm7ciLu7e5b1wsLCSExMBG4sA2qLm99LCQkJADg7O1ttU6ZMGS5evJjjGWDXrl2ztC9srq6uhIeHW67XGmdn52zvhYiIiIiIiIiIiIgUXUViWUVrM5eyk5qaCsAbb7yBYRi3fAQHB+dx1AUXo729fQFGXXCK63XZqnfv3jg5OREaGsrw4cMt75ebpT++fv16m95LQUFBGc5hTlxll1wz7+d36NAhm68hKiqKU6dOAVC3bl2b2+UX88y5OyFRJyIiIiIiIiIiIiKFo0gkx8xLDlpbVjCv2hS0ohDjxYsXrZYlJiZaZhGln+Vlfn7hwoVsz20uvxNmiFmT3fWnL8vp9SckJGR579Lr0qULq1evxtnZme+++46nn346ywRZmTJlLLMYb/e9ZN5rLLslQh955BHgxt5htiaTV69ejWEYQOYlKs0xZzeLKzIy0qZ+bBEfH2/pK7u91URERERERERERESkeCsSybHmzZsDN5ZXtLY/1c0efvhhADZv3nzLJdTyg53djVtrTgxkpbBjtMX27dutXsPOnTtJSUkByLAXnPn5/v37rSY3IiIiMuxNdjvM9xiyv8+5sW3btluW+fj4WJZUhP+//i1btlhtGxwcbLl32V1/ly5d+PHHH3FxcWHJkiX079/f0s7M0dGR+++/H4CffvrpFleUNfOsMPMsr6wMHjwYFxcXACZPnnzLe56YmGhZGrJixYp069YtQ7m3tzcA58+ft3qOffv2WS2zZYyld/r0acvz2rVr29RGRERERERERERERIqfIpEca9u2LXfddRcAI0eOJCkp6ZZthgwZgoODA9euXSMwMDDbuklJScTExORJrGaenp7AjSSQNYUdoy3OnTvH/PnzMx1PS0tj6tSpwI3ESv369S1lPXv2xMHBgYSEBEty5GZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdrnbujQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+s9rOz8+PsWPHAjcSg2+99ZbVumlpaQwbNozjx48DN15vJyenDHUaNmwIwO+//55lguz48eOsWrXKah+2jLH0zIk2Pz8/7rnnHpvaiIiIiIiIiIiIiEjxUySSY/b29nz++eeYTCZ27drFI488wq5du0hLSwNuJI6Cg4MZOHAgf/31FwA1atRg4sSJAHzwwQcMGjSIo0ePWs6ZkpLC4cOHmTx5MjVr1uTw4cN5GrM54fHzzz9bXZqvsGO0hZeXF8OHD+ebb76xzG47f/48/fr1s8ycmjJlSoY2lSpV4rXXXgNg2rRpBAYGWhIYERERTJw4kQ8//BCAUaNGUaFChduK7e6777YkXGbPnp0vs8dcXFzo3Lkzmzdvtpz/999/p3379ly7dg0PDw/GjRuXoU3Pnj154IEHAOjTpw+LFy+2JLNOnz5Nz5492bt3L3DjdbdFhw4dWLt2LW5ubqxcuZI+ffpkSBIPHDiQ9u3bYxgG3bt3Z8qUKVy6dMlSHhsby7Zt23jppZcsieb02rRpA9xYljE0NNRqHIGBgXTt2hWA9957jy5durBz507Lco/Jycls3LiRVq1aWZKqL774IgEBAZnO9fjjj+Pu7k5ycjJ9+vSxJCGTk5P58ccfad++PaVKlbIai3mM7dy5kxMnTlitZ2ZOjrVu3fqWdUVERERERERERESkGDOKkPnz5xvOzs4GYACGs7OzUaZMGcPBwcFy7NChQ5b6aWlpxsSJEw2TyWQpd3V1NcqUKWPY29tbjgHGrl27MvQVEBBgAEZAQIDVeObOnWsAhr+/f6ayf/75x3BxcTEAw87OzvDz8zP8/f0Nf39/4/z58wUW4+1q3bq1ARjjx483WrRoYQCGo6Oj4e3tnSGmCRMmZNk+MTHR6NOnj6WenZ2d4e3tbdjZ2VmO9evXz0hKSsrUNifX9eyzz1rO5+bmZlStWtXw9/c3Ro8enavrN5/z22+/NcqXL285v7u7e4b339q1a7Nsf+HCBaNu3bqWuk5OTkbp0qUz3I9PP/00y7b+/v4GYMydOzdTWXBwsFGqVCkDMLp27WokJiZayiIjI42uXbtmeH08PT2N0qVLZ3h/OTg4ZNlvw4YNDcD4+uuvs703ycnJxsiRIzOMO3t7e8PHxyfD6+vi4mJMmzYt23PNnj07Q2weHh6Gk5OTARgPPvig8fnnn1sdY2FhYYavr6+lbdmyZS1jbO/evRnqpqamGpUrVzYA44cffsg2pqxERkYagBEZGZnjtpL/YhOTDf831hr+b6w1YhOTCzscEZFiQ5+vIiLFkz7fRaSg6PNGRAqDrb/LLRIzx8wGDRrEiRMnGDFiBHXq1MHBwYH4+Hj8/f3p1q0bCxcuzLCXkMlkYvLkyfz555+8+OKL1K5dG3t7eyIjI/H29qZ58+a8/vrr7Nmzx7L/V16pVasW27Zt44knnsDX15fr169z9uxZzp49m2HPqMKM0RZOTk5s2bKFqVOncs8995CYmIiXlxePPPII69at45133rHabtmyZaxYsYJHH32UMmXKEB0dTZkyZXj00UdZtWoVixcvxtHRMVfxzZw5k6CgIMuyjufOnePs2bNcu3YtV+c1q169OocOHeKll17C19eXpKQkypUrR79+/Th06BCPPfZYlu0qVarE/v37mT59Og8++CCurq7ExcVRpUoVnn76aQ4cOMCrr76a43hat27NL7/8goeHB2vXrqVbt24kJiYCN5YZ/Omnn/j555/p27cvVatWJTExkbi4OCpVqkTHjh157733slwmEmDYsGEALFq0KNsYHBwcmD59On/99Rdjx46ladOmlC5d2vL6PvTQQwQGBnLy5EneeOONbM/17LPPsm7dOtq1a4enpycpKSncfffdTJs2je3bt2c7c8zb25sdO3bw1FNPUalSJSIjIy1j7OY9/LZv386FCxeoVKmSZeabiIiIiIiIiIiIiJRMJsPIh7XopMhr06YN27dvJzAwkKCgoMIOp8CZTCbgxt5a5iUHi7vo6GgqV65MdHQ0p0+fxt/fv7BDyjNDhgxh7ty5TJo0ibfffjvH7aOiovDy8iIyMjLDXndyZ4hLSqHO2xsA+GtyJ9ycHAo5IhGR4kGfryIixZM+30WkoOjzRkQKg62/yy1SM8dEJP+Y908zDIP333+/sMPJM+fPn2fRokX4+voyYsSIwg5HRERERERERERERAqZkmMiYjFy5EiqVKnCnDlzOH/+fGGHkyemTp1KUlISQUFBmvUlIiIiIiIiIiIiImguq4hYuLi4sGDBAoKDgzl37hxVqlQp7JByJS0tjapVqzJlyhSGDh162+cxrz4bFRWVV6FJHopLSiEtMQ648RqlaJkGEZE8oc9XEZHiSZ/vIlJQ9HkjIoXB/DvcW+0opk+kYqxHjx7s2bMnR21WrVpF8+bN8ymiglW+fPkctwkJCcmHSIqWNm3aFJt91uzs7Bg/fnyuzxMdHQ1Q5JOFJUGFTwo7AhGR4kmfryIixZM+30WkoOjzRkQKWnR0NF5eXlbLlRwrxsLCwggNDc1Rm6SkJACCg4PzIaKCldNrT+9WWWUpWSpWrMj58+fx8PDAZDIVdjg5FhUVRZUqVTh//ryWlhTJhsaKiO00XkRso7EiYhuNFRHbaKyI2EZjpWQzDIPo6GgqVqyYbT0lx4qx4pDgyg0luCSv2NnZUbly5cIOI9c8PT31A4GIDTRWRGyn8SJiG40VEdtorIjYRmNFxDYaKyVXdjPGzOwKIA4RERERERERERERERGRO4KSYyIiIiIiIiIiIiIiIlJiKDkmIlLMOTs7ExgYiLOzc2GHInJH01gRsZ3Gi4htNFZEbKOxImIbjRUR22isiC1MhjZmEhERERERERERERERkRJCM8dERERERERERERERESkxFByTEREREREREREREREREoMJcdERERERERERERERESkxFByTEREREREREREREREREoMJcdERPJYXFwc69evZ8qUKfTo0QN/f39MJhMmk4mgoCCbzrFixQoef/xxKlasiJOTE6VKleKee+7h+eef5/Dhw1bbbd++nbfeeotOnTpRq1YtvL29cXR0pFy5crRt25YZM2YQHx+fbd+pqaksXLiQDh06ULZsWZydnalcuTL9+vVj7969NsV/8OBBBg4cSOXKlXF2dqZChQp0796drVu32tReSoaSPFbatGljuVZrj8qVK9t0D6T4K8yxYs0LL7xgiaFatWq3rB8aGsro0aO55557cHV1xcfHh5YtWzJ79mwMw7hl+//++49hw4ZRvXp1XFxc8PX1pVOnTqxcuTLHsUvxVpLHy+DBg2/53WIymUhJScnxNUjxU5THSkREBD/++CNvv/02Xbt2pUKFCpZ28+bNs7k/fbeILUryWNH3iuREUR4rFy9e5IsvvqB3797UrFkTV1dXXF1dqV69Ov369bP5d1m5/T+PFAJDRETy1LZt2wwgy0dgYGC2bRMSEozHH388Qxt3d3fDycnJ8m87Oztj+vTpWbZ/7LHHMrQtVaqUUapUqQzHqlevbvz9999Zto+Ojjbat29vqWtvb294e3sbdnZ2lr4/+OCDbK/hm2++MRwcHCzn8PLyMkwmk833QEqOkjxWWrdubenXz88vy0fjxo1tvpdSvBXmWMnK1q1bM3yu+/v7Z1t///79RpkyZTL0n/57olOnTkZiYqLV9uvWrTPc3Nws9T09PS1jDTCeeeYZIy0tzeb4pXgryeMlICDAAAwXFxer3y1+fn5GSkqKzfFL8VWUx8rcuXOtxj537lyb+tN3i9iqJI8Vfa9IThTVsXLu3LkM9QDDzc3NcHV1zXBsyJAh2b7Xc/t/HikcmjkmIpIPvL29eeSRR3j99ddZsmQJ5cuXt6nd1KlT+emnnwB48cUXuXDhAtHR0cTHx7N//35atGhBWloao0eP5sCBA5nat2/fnhkzZnDw4EGioqKIiYkhJiaGa9euMWPGDFxdXTl9+jTdu3cnLS0tU/vnn3+ezZs3Y2dnx9SpUwkPDycsLIxr164xduxY0tLSGDt2LGvWrMky/r179/LCCy+QkpJCt27dOH/+PBEREVy9epVhw4YBMGnSJJYvX27rrZRirqSOFbMxY8YQEhKS5ePgwYM23QspGQprrNwsLi6O559/HgcHB5o1a3bL+pGRkXTt2pXr169z77338vvvvxMdHU1sbCyff/45jo6ObNiwgREjRmTZ/vTp0/Tp04e4uDgefvhh/v77byIjI4mMjOTtt98GYO7cuXz44Yc23Q8pGUrqeDHr27ev1e+WkJAQ7O3tbbofUvwV1bECUL58eR599FHeeustVq1aZVMbM323SE6V1LFipu8VsVVRHCupqakYhsEjjzzC/PnzuXjxIrGxscTExHDs2DGefPJJAL799lurM+Dy6mc4KQSFnZ0TESlusvpLEn9/f5v+WqZatWoGYLRu3TrL8oiICMPd3d0AjHHjxuU4tq+++sryVyu7du3KUPbnn39aykaMGJFl+759+xqAUbNmTSM1NTVTeYsWLQzAqF+/vpGUlJSpvFOnTgZgVKtWTX9dJiV6rJhnjmkmpdjiThorI0aMMADjrbfesvw1cXZ/sTxhwgQDMFxdXY1Tp05lKp86daoBN2ZfZjVTc+DAgQZglC9f3ggPD89UPnToUMtf/IeFhd0yfin+SvJ4MfcREBBwy9hEivJYySp2889mtsyG0XeL5ERJHiv6XpGcKKpjJSIiwjhw4IDVc6WlpRmdO3e2zAaLj4/PVCe3P8NJ4dHMMRGRPJabv5q6fPkygNW/bPHy8uLuu+8GICYmJsfnf/DBBy3PL1y4kKHs559/tjx//fXXs2w/duxYAE6ePMmuXbsylJ06dcpybMyYMTg6OmZqP378eADOnDnDjh07chy/FC8ldayI5NSdMlZ+/fVXZsyYwd13382ECRNs6n/BggUAPPXUU1SvXj1T+SuvvIK7uzupqaksWrQoQ1lsbKxl35fhw4dTunTpTO3N3ytRUVH88MMPNsUkxVtJHS8iOVWUx0puYtd3i+RUSR0rIjlVVMeKl5cXTZo0sVpuMpkYMmSIpe/jx49nqqOf4YouJcdERO4gd911F4DVaeKRkZH8888/gPUfGrKzc+dOy/MaNWpkKDt79ixw4weDihUrZtn+3nvvxWQyAbBx48YMZZs2bbI879y5c5btW7RogYeHR5btRXKiKI8VkYKUV2MlMTGRIUOGYBgGX3/9NS4uLrfs+++//+bcuXMAPProo1nWcXd3p2XLlkDmsbJr1y7i4+OzbV+tWjVq166dZXuRnCrK40WkIBXmWMktfbdIQSrKY0WkIN3pYyX9eVJTUzOU6We4ok3JMRGRO8jw4cMBCA4O5qWXXuLixYsAGIbBwYMH6dq1KzExMTz00EMMHDjQpnPGx8fz77//MnXqVEaPHg1Aq1atrP5AkdX+SunLDMMA4MiRIxnKjh49CkC5cuUoV65clu3t7e259957ATh27JhN8YtkpSiPlfQWLVpEtWrVcHZ2pnTp0jRr1oy33nqLS5cu2RSzyK3k1ViZPHkyx48f59lnn6V169Y29W3+XgCoV6+e1Xrmsr/++itX7fW9IrlVlMdLelu2bOHuu+/GxcUFT09P6tevz4gRI/j3339tikXkVgpzrOSWvlukIBXlsZKevlckv93pYyU4OBgAJycnyww2s7z8GU4KnpJjIiJ3kJdeeomxY8diZ2fHF198QeXKlfHw8MDFxYWmTZty8uRJxo0bx5YtW7Kdsh4SEoLJZMJkMuHm5sbdd9/NW2+9RWJiIo8//jirV6/O1KZatWoAREdHW2bG3Cz9l/7Nv7w3/7tSpUrZXqO5XL/8l9woymMlvZMnT3Lp0iVKlSpFVFQUBw4cYOrUqdSuXTvLvkVyKi/GyqFDh/jggw/w8/Pjww8/tLnv9O/97L4bzGVRUVEZlkkxt/f29sbV1fWW7fW9IrlVlMdLehcuXODUqVO4ubkRFxfH0aNH+fTTT6lXrx5ffvmlzTGJWFOYYyW39N0iBakoj5X09L0i+e1OHiunT59m1qxZAPTt2xdPT88M5Xn5M5wUPCXHRETuIHZ2drz33nt8++23uLu7AzfWNE5KSgIgISGByMhIYmNjsz2Pvb09fn5++Pn5ZZj+3bt3bz744AN8fHwytUk//XvKlClZnvfdd9+1PI+KispQFh0dDYCbm1u2sZnLzfVFbkdRHisAbdq0Ye7cuVy8eJHExETCwsIIDw9n7ty5lCtXjqioKPr27cuvv/6abfwit5LbsZKSksKQIUNISUlhxowZWe7NYk36z/nsvhvSl6Vvo+8VKWhFebwANGnShM8//5wzZ85YvluioqJYuXIlNWrUICkpiRdffNGy35LI7SrMsZJb+m6RglSUxwroe0UKzp06VuLj4+nduzdxcXGULVuWadOmZaqTFz/DSeFRckxE5A5y7do1HnnkEQYPHsxDDz3Erl27iIiI4PLly6xatQpfX1++/PJLHnjgAcs086z4+voSEhJCSEgIcXFxnD9/nrfeeouffvqJBg0a8PXXX2dqU79+fXr37g3A7NmzGTVqFGfOnCE5OZl//vmHIUOGsHbtWhwdHYEbP7yIFJaiPlaCgoIYPHgwFStWtOxN5uXlxeDBg9mzZw+lS5cmOTmZsWPH5sXtkhIst2Nl2rRpHD58mK5du9KnT59CuAKRglPUx8urr77KSy+9hL+/v+Wvqt3c3OjRowf79u2zbBA/evRoy9K/IrejqI8VkYJS1MeKvlekoNyJYyUlJYX+/ftz4MABHB0dWbRokdU9x6UIM0REJN/5+/sbgBEYGJhtvS5duhiA0bp1ayMtLS1TeWhoqFG2bFkDMAYOHJjjOFauXGkAhp2dnXH48OFM5VFRUUa7du0MIMvHk08+aXTr1s0AjIceeihD2x49ehiA0bhx42xjMLdv2rRpjuOX4q8kjBVbvPXWWwZgmEwm49q1azluL8VfQYyVY8eOGU5OToa7u7tx7ty5TG0DAgIMwPD398+y7xkzZljGRGRkpNUYP/nkE0u96Ohoy/FRo0YZgOHt7Z3tNY4YMcIAjDJlymRbT0qukjBebPHNN99Y2h44cCBHbaVkKApjxRrze3vu3LnZ1tN3i+SFkjBWbKHvFbmVojpWUlJSjD59+hiA4eDgYHz//fdW6xbEz3CSf/Rn/yIid4jjx4/z888/Azf+8so8myS9cuXKMWjQIABWrVqV47/O6tGjB1WrViUtLY05c+ZkKvfw8GDTpk0sXryYJ598klq1alGtWjXat2/P/PnzWb16NWFhYQCZNiE1/wVNdrN00pfrL27kdhX1sWKLhx56CLixAfHp06dz3F4Ecj9WXnrpJZKSknjrrbfw9vYmJiYmwyMlJQW48T41H0tOTra0T/85n913g7nM09PTsoxK+vbh4eHEx8ffsr2+VyQ3ivp4sYX5uwXg1KlTOWorYlbYYyW39N0iBaWojxVb6HtF8sKdNlZSU1MZOHAgy5cvx97enu+++45evXpZrV8QP8NJ/lFyTETkDvHXX39ZnteoUcNqvVq1agEQFxfHlStXctyPeRPQkydPZlluZ2dHv379+OGHH/jnn384ffo0mzZtYtCgQaSmpvLHH38A0Lx58wzt6tWrB8CVK1e4evVqludOTU3lxIkTANStWzfHsYtA0R8rIgUlt2PFnJgdP348Hh4emR6LFi0C4Ny5c5ZjM2fOtLQ3fy8AHD161Gr/5rI6depkOJ7T9vpekdwo6uNFpKAU9ljJLX23SEEp6mNFpKDcSWMlNTWVAQMGsHTpUktirG/fvtnGr5/hijYlx0RE7hDp9yU6e/as1XqhoaGW5zn9a5P0s1A8PDxyGCH89NNPREZG4urqatlzyaxDhw6W57/88kuW7Xfv3m3ZeLRjx4457l8Eiv5YscWvv/4KgMlkolq1ajluLwIFM1ayc/fdd1O1alXA+vdCbGwsO3fuBDJ/L7Ro0QJXV9ds2589e5bjx49n2V4kJ4r6eLGF+bsFsOwTI5JThT1WckvfLVJQivpYsYW+VyQv3CljJTU1lf79+7Ns2TJLYuypp566ZbuC+BlO8o+SYyIid4gmTZpYnn/55ZdZ1omNjWXBggUANGjQgFKlSlnKzFPFszN37lxCQkIAaNOmTY7iu3r1KmPGjAFuTFv39vbOUH7XXXfRokULAP73v/9lOU192rRpAPj7+9OqVasc9S9iVtTHyq2WeDx9+rTlL9maN29O2bJlc9S/iFlux8qZM2cwDMPqIyAgALjxmW4+NmLECEt7k8lkWf5k6dKlnDlzJlP/M2fOJCYmBnt7ewYMGJChrFSpUvTs2dMSf2RkZKb277//PnAjid2tW7db3BER64r6eLnVd0tYWBhTp04FoEqVKjRu3Djb+iLWFPZYyS19t0hBKepjRd8rUlDuhLFinjG2fPlyHBwcWLRokU2JMcj9z3BSyPJg3zIREblJWFiYcfXqVcujSpUqBmC8/vrrGY7fvAnn448/btmgc+DAgcbJkyeNtLQ0Iykpydi9e7fRrFkzS/n8+fMztN22bZvRsmVLY8GCBcb58+czlP3zzz/GG2+8YTg4OBiAUaNGDSMuLi5T3GvXrjU++eQT4+TJk0ZKSophGIYRGxtrLF++3KhRo4YBGA0bNsyyrWEYxu7duw17e3sDMHr06GFcuHDBMAzDuH79ujF8+HBL7MuWLbvteyvFS0kcK1OnTjUGDRpk/Pzzz0Z4eLjleGRkpDF//nyjfPnyBmA4Ojoau3btut1bK8VMYYyVW7Flc+uIiAjLe7pOnTrG/v37DcMwjMTEROOLL74wnJycDMAYPnx4lu1PnTpllCpVygCMli1bGv/8849hGIYRExNjTJo0yTCZTAZgvP/++zmKXYq3kjheFixYYHTv3t1YsWKFERoaajkeFxdnrF692rj77rstsS9dujRHsUvxVVTHimEYGeK7evWqpb/PPvssw/HY2NhMbfXdIjlVEseKvlfkdhTFsZKSkmI89dRTBmA4ODgYy5cvz/F15/b/PFJ4lBwTEckH/v7+li/u7B4BAQEZ2l29etVo2rRphjpubm6WX9SbH6+//nqmPrdt25ahjouLi1G2bFnD1dU1w/GGDRsap0+fzjLujz/+2FLP3t7e8Pb2Nuzs7CzHWrVqZVy/fj3ba//mm28yxFu6dGnLfzABIzAw8DbvqhRHJXGsBAYGZujHw8PD8PHxydDey8vLWLlyZW5vrxQjhTFWbsXWX8rs37/fKFOmTIb3vKOjo+XfHTt2NBISEqy2X7duneHm5pZhfJj/EAMwnnnmGSMtLS3H8UvxVRLHy9y5czPEWKpUKaNMmTIZxoqzs7Mxc+bMHMcuxVdRHiu2xJ3d/z303SI5URLHir5X5HYUxbGyfft2y/kdHR0NPz+/bB/WksG5/T+PFA4HRETkjlG2bFl+/fVX5s+fz/fff8/hw4cJCwvDwcGBqlWr0rx5c4YNG2ZZvjC9pk2bsnDhQoKDg9m/fz8hISFcv34dZ2dnatSoQZMmTejZsye9evXC3t4+y/47dOjAK6+8wq5duzh//jxRUVH4+flx3333MWDAAHr37o3JZMr2Gp577jmaNGnC//73P7Zv387Vq1cpV64cDz30EK+88grt2rXLk3slJVtRHiu9e/fGMAz27t3LyZMnuX79OlFRUXh7e1O7dm06duzI0KFD8fPzy9N7JiVTbsZKXmnatCnHjh3j/fffZ+3atZw/f55SpUpRr149AgICGDJkSIa9Bm7WpUsX/vzzT95//302bdrE5cuX8fb2pnHjxgwbNsyyPJZIbhXl8dK2bVveffdd9u7dy/Hjx7l+/TqRkZF4enpSs2ZN2rVrx7Bhw7QnjOSJO2Gs5Ja+W6QgFOWxou8VKUiFOVbS0tIsz5OTkzPsbZaV+Pj4LI/n9v88UjhMhnGLRWRFREREREREREREREREigmlK0VERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERCRfmEwmTCYTwcHBhR1KngoODrZcmxRdhfX+TEpKokaNGjg7O3P+/Plcn+/XX3/FZDLRqlWrPIhOREREpGRQckxEREREREQyMScObucxb968wg5f5I712WefcerUKZ577jmqVKmS6/M9+OCDdOrUiZ07d7J69eo8iFBERESk+HMo7ABERERERETkzuPn55fl8ZiYGGJjY7Ot4+rqCsA999wDgJubWz5EWHjc3Nws1yaSE2FhYUyZMgVnZ2fGjx+fZ+cNCgpiw4YNjBs3jscffxwHB/26R0RERCQ7+mlJREREREREMgkJCcnyeFBQEJMmTcq2jtmJEyfyPK47wf33319sr03y19dff01ERAS9evWicuXKeXbeBx98kIYNG/LHH3/www8/0KtXrzw7t4iIiEhxpGUVRURERERERETymWEYfP311wAMHDgwz89vPudXX32V5+cWERERKW6UHBMREREREZF8Yd6DLDg4OMPxM2fOWMrOnDnD2bNnef7556latSouLi7UqFGDCRMmWJZvBDh69CgDBw6kSpUquLi4UKtWLaZMmUJycnK2MZw5c4YRI0ZQt25d3N3dcXNz49577+W1117j3Llzt3VdwcHBlvhvNm/ePEwmE9WqVQPgwIED9OnThwoVKuDs7Mxdd93FqFGjCA8Pv62+Afbt28eAAQOoXr06Li4ulCpVCn9/f1q3bs0777zDhQsXsmyXlJTEF198Qdu2bSlbtixOTk6UL1+eJ598kvXr19vU7zPPPEPNmjVxc3PD09OTOnXqMGTIEDZs2JBlm8jISCZPnkyTJk3w9PTE1dWVWrVqMXz4cE6dOmW1r/TvnejoaCZMmMC9996Lq6srZcqUoWvXruzbty/beMPDw3n99depUaMGLi4uVKhQgd69e3PgwIFbXuuFCxcYOXIkdevWpVSpUjg7O1OxYkWaNm3KyJEj+f333295jptt3ryZ06dPU7p0abp06WK13okTJxg6dCh33303bm5uuLi4UKVKFR588EHefPNNq7MW+/fvD8CWLVuyvbciIiIiAhgiIiIiIiIiNgoMDDQAw5b/Tprrbdu2LcPx06dPW8pWrlxplC5d2gAMT09Pw97e3lLWsmVLIykpyVi7dq3h5uZmAIaXl5dhMpksdfr27Wu1/++++85wdna21HV2djZcXV0t//bw8DA2bNiQ43uwbds2q/dg7ty5BmD4+/sbixYtMhwdHS1x29nZWdrVrVvXiI6OznHf8+bNy3D9zs7Ohqenp+XfgDF37txM7c6cOWPUrVvXUsdkMhleXl4Z2r3wwgtZ9pmSkmK8+uqrGeqWKlXK8Pb2tsTi5eWVqd3Ro0eNypUrW9q4uLgYHh4eGWJfsWJFln2a6yxevNioWbOmpb35fQAYTk5OVl+/06dPG/7+/hnqmu+Tk5OT8eOPP1p9fx4+fNjw9va2lNvb22e4VsAICAjI7mXK0qhRowzA6NSpk9U6GzduzPCedXR0tIwP8yMwMNBq+xo1ahiA8cUXX+Q4PhEREZGSRDPHREREREREpNA8++yzNG3alGPHjhEZGUl0dDQzZszA3t6enTt3MnnyZAYMGMDjjz/OmTNniIiIICoqirfeeguAZcuWsXnz5kzn3bRpE4MGDSI1NZWxY8dy+vRp4uPjiY2N5cSJE/Tu3Zvo6Gh69+592zPIsnP16lWGDBlCQEAA586dIyIigujoaD7//HMcHR05duwYH3zwQY7OGRcXxyuvvIJhGAwcOJCTJ0+SkJBAZGQkMTEx7N+/n9dff51y5cplaBcbG0vnzp05duwYbdq0ITg4mPj4eCIiIoiIiGD69Om4u7sza9YsPv3000z9vvnmm8yYMQOAIUOG8PfffxMTE0NYWBjh4eH88MMPdO7cOUOb6OhoHn/8cS5cuEClSpVYt24dsbGxREVFcfjwYR588EESExMZMGAAf/zxh9Vrfumll3BycmLr1q3ExsYSExPDb7/9xj333ENSUhJDhw4lLS0tQ5vU1FR69+7N2bNn8fb2Zvny5cTGxhIZGcmxY8d44IEHCAgIsNrn6NGjCQ8Pp0mTJuzdu5fk5GTCwsJISEjgn3/+4aOPPqJu3bq3fL1utmPHDuDGnnXWDB8+nMTERDp27MiRI0dISkoiPDyc+Ph4jh49yqRJkyyzErPywAMPALB9+/YcxyciIiJSohR2dk5ERERERESKjryeOVa3bl0jISEhU9unn37aUqdDhw5GWlpapjotW7Y0AOPZZ5/NcDw1NdWoVauWARhfffWV1fieeOIJAzBee+21W15LerbMHCOb2UXmGUQ1a9bMUb/79u2zzNpKTk62ud3kyZMNwGjdurWRlJSUZZ1Vq1YZgFG2bNkM5/77778tM97Gjh1rc5/Tpk2zzHw6cuRIpvKoqCijWrVqBmA89thjmcrN99DX19cIDQ3NVP7nn39a6uzatStD2bJlyyxlmzdvztQ2NjbWMsMqq/eneXbhnj17bL7eW0lMTLTMirQ2Wy40NNQS06VLl26rnw8//NAAjKpVq+YmXBEREZFiTzPHREREREREpNCMHDkSZ2fnTMc7depkeT5u3Lgs9/cy1/nzzz8zHN+xYwf//vsvZcuW5bnnnrPa96BBgwCs7peVWxMmTMjy+JNPPgnAyZMniYuLs/l8pUuXBm7sHXb9+nWb282ZMweAUaNG4ejomGWdbt264enpybVr1zLsyTV//nzS0tIoU6YMkyZNsrnPZcuWAdCrVy/q1auXqdzDw4OxY8cCsH79eiIjI7M8z9ChQzPNhAOoX78+1atXBzK//kuXLgXg4Ycf5pFHHsnU1s3NzdJ3Vsz3+fLly1br5NSVK1dITU0FwNfXN8s6Hh4e2NnZ5arvsmXL5qq9iIiISEmh5JiIiIiIiIgUGmtLzPn5+Vme33fffdnWCQ8Pz3B89+7dAERGRlKxYkXKly+f5eP5558H4OzZs7m+jpv5+PhQs2bNLMsqVqxoeX5z7NmpUaMG9957L8nJyTzwwAO8//77HD582JJ0ycrFixct1/fss89avRcVKlQgJiYGyHg/9uzZA0CHDh1wcXGxKc6kpCRLwqp9+/ZW63Xo0AGAtLQ0Dh48mGUd8zKBWTHfx7CwsAzH9+/fD0C7du2sts2urGvXrgAEBAQwevRotm/fnqMkZlauXr1qee7j45NlHVdXV0syr3Pnzrz99tvs27ePpKQkm/sxnzs5OZmIiIjbD1hERESkmFNyTERERERERAqNh4dHlscdHBxsrpOcnJzh+KVLlyzHQ0NDrT7Mian4+PhcX8fNrMWcPu6sYs+Ovb09S5cupXr16pw9e5Zx48bRuHFjPD096dChA19++WWmJI75XgBcu3Yt2/th3rsr/TlCQkIA8Pf3tznOsLAwS8KuUqVKVutVrlzZ8vzKlStZ1rHlPt58D83nsrXvm33wwQe0bduWmJgYpk+fTps2bfD09KRZs2YEBgZy8eJFq22tSUhIsDzPaqak2ezZs2nYsCFXr17lnXfe4cEHH8TDw4MWLVrw4YcfZkoE3szV1TXLPkVEREQkIyXHREREREREpFgxJ2YeeOABDMOw6VFUNGzYkBMnTrBy5UqGDh1KvXr1iI+PZ/Pmzbz44ovce++9HDlyxFI//ayy48eP23QvBg8ebGmT1XKWxV3p0qXZunUrO3fuZOzYsTz88MM4ODhw4MABJk+eTK1atViyZEmOzlmmTBnL8+xmC1atWpWDBw/yyy+/8Oqrr9K0aVPS0tLYvXs3Y8eOpWbNmmzdutVq+/TJs/R9ioiIiEhGSo6JiIiIiIhIsVK+fHkgf5ZLvBM4OTnRo0cPvvrqK44cOcLVq1eZNWsWPj4+nD9/noCAAEtd872A27sft3MvfXx8sLe3B+DChQtW66Uvy2pfsdtlPld2M7xsmf3VokUL3n//fXbt2kVERAQ//vgj9evXJz4+niFDhhAaGmpzTOn3GbvV7C87Ozs6derEp59+yv79+wkLC2PRokVUrVqV8PBw+vfvb3WpRfO5vby8rO4vJyIiIiJKjomIiIiIiEgx8/DDDwM3lgQ07z9VnJUpU4Zhw4bx/vvvA3Do0CGuX78OQLVq1SzLC/700085Pnfz5s0B2LRpk83L9Dk5OdGgQQMAtmzZYrXe5s2bgRvJoCZNmuQ4NmuaNWsGwLZt26zWyW72VVZcXFx44oknWLVqFXBjycJdu3bZ3N7b29uSaDx16lSO+vbw8KB///7MmTMHgNDQ0AyzA9M7ffo0ALVr185RHyIiIiIljZJjIiIiIiIiUqy0bduWmjVrAjBy5Eirs2zMbjWT506RmJiYbXn6/abs7P7/v/vPP/88AHPmzOHQoUPZnuPmezF48GDs7e25fv06gYGBNsf61FNPAbBixQqOHj2aqTwmJoYPPvgAgC5duuDl5WXzuW+lb9++AOzatYvg4OBM5fHx8Xz44YdZtk1JSbHsvZYVa/fYFq1atQLgt99+y7L8Vu9TW/ret28fAK1bt85RbCIiIiIljZJjIiIiIiIiUqw4ODgwa9YsHBwc2LVrF61atWLLli0kJydb6pw6dYpZs2Zx33338cUXXxRitLZbunQpDz/8MF999VWG2Uepqals2LCBcePGAfDQQw/h7e1tKR89ejT169cnISGBtm3b8vnnn1tmlgFERESwfv16Bg0aRMuWLTP0WbNmTV5//XUAPvjgA5577jn+/fdfS3lUVBTLli2je/fuGdoNHz6c6tWrk5yczKOPPsr69estSacjR47QqVMnTp8+jbOzM1OmTMmjO3RDz549LTPRevbsycqVKy17rx0/fpxHH32Uq1evZtn2woUL1KpViylTpnDo0CFSUlIsZX/++ScDBw4EoFSpUjlOQLVp0wb4/wTWzfbs2UODBg34+OOPOX78uOV+GYbBnj17GD58OACVK1e2zMxLLzU1lQMHDgBKjomIiIjcikNhByAiIiIiIiKS1x555BG+//57Bg0axL59+2jfvj2Ojo54enoSExOTYRZWt27dCi/QHDAnSfbs2QOAs7Mz7u7uhIeHWxIpFStW5Ntvv83Qzt3dnV9++YWePXvy66+/8sorr/Dqq6/i5eVFWloaUVFRlrrmGXfpTZkyhejoaGbOnMmcOXOYM2cO7u7uODo6EhERgWEYmWZ+eXh4sGbNGjp37syFCxfo0qULLi4uODk5Wfpzdnbmu+++o2HDhnl6nxwcHPj+++9p06YN58+fp1evXjg7O+Pi4kJkZCROTk58//33PPnkk1m2P3XqFBMnTmTixInY29vj5eVFTEyMZWaXk5MT8+bNw8fHJ0dx9ezZk9dee40TJ07w77//UqtWrUx1jhw5wqhRoxg1apTl/RoZGWlJ0nl6erJ48WLLnm7pbdmyhdjYWMqVK0f79u1zFJuIiIhISaOZYyIiIiIiIlIsdevWjZMnTxIYGMj999+Pu7s7ERERODs707BhQ5577jlWr15tmRl1p3viiSdYsGABzzzzDA0bNsTLy4vIyEg8PDy4//77eeeddzh27Bj33ntvprYVK1Zk165dLFmyhCeeeIIKFSoQFxdHUlIS1apV4/HHH+eTTz5hx44dmdra29vz+eefs2vXLgYMGEDVqlVJTk7GMAzq1KnDs88+y8qVKzO1q1evHseOHSMoKIhGjRrh4OBAYmIiNWrU4IUXXuDYsWP06tUrX+7VXXfdxeHDhxk1ahTVq1fHMAxcXFzo1asXe/bs4YknnsiyXaVKlVizZg0jR47kwQcfpEKFCsTExODg4ECdOnV46aWXOHr06G3FXa5cOcsMu0WLFmUqv++++1i+fDnDhw+nadOmlC1blqioKFxcXGjUqBFjx47l+PHjmWb3mZnP+cwzz+Do6Jjj+ERERERKEpNhGEZhByEiIiIiIiIiUtzt2LGD1q1bU6NGDf79919MJlOenDc2NtaS8Pznn3+466678uS8IiIiIsWVZo6JiIiIiIiIiBSAVq1a0bFjR/777z++//77PDvv559/TnR0NM8995wSYyIiIiI20MwxEREREREREZECcuTIERo1akTt2rX5888/sbPL3d8tx8TEUL16dRISEjh58iR+fn55FKmIiIhI8eVQ2AGIiIiIiIiIiJQU9evXZ86cOZw5c4bLly9TqVKlXJ3vzJkzvPTSSzRu3FiJMREREREbaeaYiIiIiIiIiIiIiIiIlBjac0xERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKjP8DsIExolcsqtcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from matplotlib import pyplot as plt\n", - "from ndx_structured_behavior.plot import plot_events, plot_actions, plot_states, plot_trials\n", - "\n", - "# Get the events from file\n", - "events = nwbfile.get_acquisition(\"task_recording\").events\n", - "event_types = nwbfile.get_lab_meta_data(\"task\").event_types\n", - "\n", - "# Plot the data\n", - "fig = plot_events(\n", - " events=events[20:100],\n", - " event_types=event_types,\n", - " show_event_values=True,\n", - " figsize=(18,4),\n", - " marker_size=500,\n", - ")\n", - "plt.title(\"Events\", fontsize=18)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "id": "b14f720f-2e2e-423a-ac16-35940f92e775", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABrMAAAGiCAYAAABEXD06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkHklEQVR4nO3dd3hUVf7H8c+kJ6TQO4ZQpIMCIiIdEUQQVNoiUkVhEXeBlcVKKOsqa6+AgoCidLEiClKlrCAIBFD5EUKHAKmkJ/f3B8/MJmQmmUzK3JD363nmcTL3nHu+c5mTmPvJuddiGIYhAAAAAAAAAAAAwIQ83F0AAAAAAAAAAAAA4AhhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAJLCw8NlsVjUtWtXd5cCAAAAIBvCLAAAAACA28TExMjf318Wi0UWi0V//vlnkY9x4MABhYeH68033yzyfQMAAAAofoRZAAAAAAC3WbZsmVJSUmxfL1q0qMjHOHDggGbOnJlvmFW5cmU1atRIt9xyS5HXAAAAAMB1hFkAAAAAALdZuHChJGnSpEmSpCVLligzM9MttTz55JM6duyYli5d6pbxAQAAANhHmAUAAAAAcItff/1VBw4cUPny5TV37lyFhYXp/Pnz+u6779xdGgAAAAATIcwCAAAAALiFdVXWkCFD5OfnpxEjRkhy7lKDP/zwg4YOHarQ0FD5+/urYsWKatmypSZNmqRdu3bZ2lksFo0ePVqSFBUVZbs3l/URHh5uaxseHi6LxaKuXbs6HHf//v0aMWKEQkND5efnpwoVKqhDhw568803lZqaarfP4sWLZbFYVLduXUnSvn37NHjwYNWoUUO+vr6qV6+epkyZopiYGIfj7tmzR4888ojCwsLk5+encuXKKTQ0VF26dNHs2bN15syZfI8ZAAAAUFp5ubsAAAAAAEDZk5KSos8++0ySbCHWiBEjNGvWLH3zzTe6ePGiqlWrlqtfUlKSRo0apVWrVtleCwoKUlZWlg4dOqRDhw5p+/btOnDggCSpWrVqSk5OVnx8vDw8PFSlSpUc+wsMDHS65jfeeENTp06VYRiSpJCQEF27dk27du3Srl279PHHH+v7779XjRo1HO7js88+06hRo5Senq6QkBBlZGQoMjJSb7zxhn744Qft3r07V01LlizR6NGjbeP6+vrKy8tLp06d0qlTp7Rt2zbVqVNHo0aNcvq9AAAAAKUJK7MAAAAAACVuzZo1io2NVYMGDdShQwdJUr169dSxY0dlZGQ4vG/V6NGjtWrVKnl4eOif//ynTp8+rfj4eMXGxio6OlrLli3TXXfdZWt/4cIFvfXWW5KkOnXq6MKFCzke//jHP5yq95tvvtGUKVNkGIb69++vEydOKDY2VomJiVq6dKmCgoJ08OBBDRw40OE9v6KjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3bo4+SUlJmjRpkgzD0PDhw3X8+HGlpKQoLi5OiYmJ2rt3r55++mlVrVrVqfcBAAAAlEaEWQAAAACAEme9xKB1VZZVXpca3LRpk1auXClJevfdd/Xyyy+rdu3atu2VK1fWsGHD9MEHHxR5vdOmTZMkderUSWvWrFFYWJgkycfHR48++qiWLVsmSdq5c6e++OILu/tISkrS0KFD9eGHH6pOnTqSpICAAE2cOFGTJk2SJH3++ec5+hw+fFgJCQkqV66cPv74Y9WvX9+2rVy5cmrTpo3mzp2rPn36FO0bBgAAAEyEMAsAAAAAUKJOnDihLVu2yGKx6NFHH82xbfDgwfL399exY8e0c+fOHNusAVfz5s01YcKEEqv34MGDOnr0qCTp+eefl6enZ642/fr1U7t27STlDqSye/755+2+3r9/f0nS8ePHlZSUZHu9fPnykqS0tDRduXLFpfoBAACA0o4wCwAAAABQoj7++GMZhqFOnTqpbt26ObYFBwdrwIABkv63esvKGm717du3JMq02bt3ryTJy8tLXbp0cdiuZ8+eOdrfqGLFimrQoIHdbTVr1rQ9j4mJsT2vX7++GjdurPT0dN1555165ZVXdODAAYeXMgQAAABuRoRZAAAAAIASk5WVpcWLF0vKfYlBq5EjR0qSVq5cqcTERNvrFy5ckCSFhoYWb5E3uHTpkqTrlzH09fV12M56yUNr+xsFBQU57Ovl5WV7np6ebnvu6emp5cuXKywsTFFRUZo+fbpuv/12BQcHq2fPnvrggw9yrOQCAAAAbkaEWQAAAACAErNhwwadOXNGkvTYY4/JYrHkevTu3VuSlJiYaLtHliRZLBa31OxurVq10rFjx7RmzRo9/vjjat68uZKTk7Vx40b99a9/VePGjXXo0CF3lwkAAAAUG8IsAAAAAECJufHSgQVpX716dUlSVFRUkdaUn6pVq0qSLl++rNTUVIftrCGdtX1R8vHx0UMPPaT58+fr0KFDio6O1rx581SxYkWdPn3atpoNAAAAuBkRZgEAAAAASkR0dLS++uorSdLq1auVkJDg8PHf//5X0vX7ZP3++++SpA4dOkiSvv766wKN6+Fx/VdfwzBcqrtt27aSpIyMDG3dutVhu40bN0qS7rjjDpfGKYhKlSrpiSee0CuvvCJJ2r9/v65cuVLs4wIAAADuQJgFAAAAACgRn3zyidLT0xUSEqJ+/fopMDDQ4eOOO+5Q48aNJf1vddbYsWMlSREREfrggw+cHjc4OFiSFBsb61LdLVu2VNOmTSVJc+bMUWZmZq423333nfbs2SNJ+stf/uLSOPbktRJMkvz9/W3PraEdAAAAcLPh/3QBAAAAACXCGkr1799fPj4++bYfNGiQJGnp0qXKyMhQt27dNHToUEnSk08+qWeeecZ2aT/p+mUAP/roI1voZdW8eXNJUnx8fI57cBWEdQXU9u3bNXDgQEVGRkqS0tPTtWzZMluA1aFDBw0YMMClMexZvny57r77bs2fP18nTpywvZ6ZmakNGzZo+vTpkqS77rpLFSpUKLJxAQAAADMhzAIAAAAAFLvdu3fryJEjkv4XUuXH2u7ixYv69ttvJV0PxB566CFlZWXp5ZdfVp06dRQSEqLy5curSpUqGjdunPbt25djPw0aNFCPHj0kSUOGDFFwcLDq1q2runXr6s0333Sqlr59++r111+XxWLRunXrVK9ePVWoUEGBgYEaPny44uPj1aJFC61atUqenp5O7dMZhmFo586dGj9+vOrXry8/Pz9VrlxZPj4+6t27t86cOaOaNWtq0aJFRTYmAAAAYDaEWQAAAACAYmddlRUSEqJ7773XqT4tWrRQkyZNcvQPCAjQmjVr9M033+jBBx9UzZo1lZKSIi8vL7Vs2VJPPfWUFixYkGtfq1ev1uTJk3XrrbcqPT1dUVFRioqKKtClBydPnqy9e/dq+PDhqlOnjpKSkuTv76/27dvrjTfe0C+//KKaNWs6vT9nPPDAA1q6dKlGjx6tVq1aKSQkRHFxcQoKClK7du00e/ZsRURE2C7JCAAAANyMLIard8AFAAAAAAAAAAAAihkrswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0/JydwEASr+srCydO3dOQUFBslgs7i4HAAAAAAAAAGCHYRhKSEhQzZo15eFRetY7EWYBKLRz586pTp067i4DAAAAAAAAAOCE06dPq3bt2u4uw2mEWQAKLSgoSNL1b4DBwcFurgYAAAAAAAAAYE98fLzq1KljO6dbWhBmASg066UFg4ODCbMAAAAAAAAAwORK2+1iSs8FEQEAAAAAAAAAAFDmEGYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLS8imInBw8e1IYNGxQVFaXk5GQtXLjQti09PV3R0dGyWCyqUaNGUQwHAAAAAAAAAACAMqJQYVZcXJzGjBmjdevWSZIMw5DFYskVZrVq1UoxMTH67bff1KxZs0IVDAAAAAAAAAAAgLLD5csMpqen67777tO6desUEBCg+++/X35+frnaBQQEaPTo0crKytLq1asLVSwAAAAAAAAAAADKFpfDrIULF2r37t2qV6+efv/9d3311VcKCQmx2/bhhx+WJG3bts3V4QAAAAAAAAAAAFAGuRxmff7557JYLHrjjTdUs2bNPNvefvvt8vDw0LFjx1wdDgAAAAAAAAAAAGWQy2HWoUOHZLFYdO+99+bb1sfHRyEhIbpy5YqrwwEAAAAAAAAAAKAMcjnMSkpKUlBQkHx8fJxqn56eLi8vL1eHAwAAAAAAAAAAQBnkcphVuXJlxcfHKzExMd+2kZGRSkxMzPdyhAAAAAAAAAAAAEB2LodZd955pyTp22+/zbftO++8I0nq1KmTq8MBAAAAAAAAAACgDHI5zBozZowMw9ALL7ygc+fOOWw3f/58vfXWW7JYLHr88cddHQ4AAAAAAAAAAABlkMs3sbr//vv18MMPa82aNWrbtq2GDRum5ORkSdKCBQsUFRWlb775RocPH5ZhGBo3bpxtNRcAAAAAAAAAAADgDIthGIarnVNSUjRu3DgtW7ZMFosl13brrseMGaN58+bJy8vl7AyAicXHxyskJERxcXEKDg52dzkAAAAAAAAAADtK67lcly8zKEl+fn765JNPtG3bNj366KOqX7++/P395ePjo1tuuUXDhg3Tli1b9NFHHxFkAQAAAAAAAAAAoMAKtTILAKTSm+YDAAAAAAAAQFlSWs/lFmplFgAAAAAAAAAAAFCcivTaf1FRUbp06ZIkqWrVqgoNDS3K3QMAAAAAAAAAAKCMKfTKrHPnzmnSpEmqWrWq6tWrp/bt26t9+/aqV6+eqlSpokmTJunMmTNFUSsAAAAAAAAAAADKmELdM+uHH37QkCFDFB8fL0e7sVgsCgoK0vLly9W7d2+XCwVgXqX1OqsAAAAAAAAAUJaU1nO5Ll9m8Pfff9eAAQOUkpKiihUravz48erevbtq1aolSTp79qw2b96s+fPn6/Lly3rooYe0f/9+NWrUqMiKBwAAAAAAAAAAwM3N5ZVZw4cP12effaaWLVvqxx9/VJUqVey2u3z5su655x4dOnRIw4YN0yeffFKoggGYT2lN8wEAAAAAAACgLCmt53JdvmfWpk2bZLFY9NFHHzkMsiSpcuXK+vDDD2UYhjZu3OjqcAAAAAAAAAAAACiDXA6zYmNjFRgYqLZt2+bb9o477lBgYKBiY2NdHQ4AAAAAAAAAAABlkMthVo0aNZSZmel0+6ysLNWoUcPV4QAAAAAAAAAAAFAGuRxm9enTR8nJyfrpp5/ybbtp0yYlJSWpb9++rg4HAAAAAAAAAACAMshiGIbhSseLFy/qtttuk5+fnzZs2KBbb73Vbrs///xTvXr1Umpqqvbv36+qVasWqmAA5lNabxoIAAAAAAAAAGVJaT2X63KYtW3bNp04cUKTJ09WSkqKBg0apO7du6tWrVqSpLNnz2rz5s1atWqV/Pz89MYbbygsLMzuvjp37uz6OwDgdqX1GyAAAAAAAAAAlCWl9Vyuy2GWh4eHLBZL4QuwWJSRkVHo/QBwn9L6DRAAAAAAAAAAypLSei7XqzCdXczBinwfAAAAAAAAAAAAuDm5HGZlZWUVZR0AAAAAAAAAAABALh7uLgAAAAAAAAAAAABwhDALAAAAAAAAAAAApuVymNWgQQO98sorunTpUlHWAwAAAAAAAAAAANi4HGadOHFCzz77rOrUqaPBgwdr48aNRVkXAAAAAAAAAAAA4HqY9dxzz6lmzZpKT0/X6tWr1atXLzVo0EBz585ltRYAAAAAAAAAAACKhMUwDMPVzllZWfruu+80f/58ff/998rMzJTFYpGXl5cGDBigcePG6Z577inKegGYUHx8vEJCQhQXF6fg4GB3lwMAAAAAAAAAsKO0nsstVJiV3blz57Rw4UItWrRIUVFR13dusSgsLEyPP/64Ro0apapVqxbFUABMprR+AwQAAAAAAACAsqS0nsstsjDLyjAM/fDDD1qwYIG++eYbpaens1oLuMmV1m+AAAAAAAAAAFCWlNZzuUUeZmV37tw5DRs2TNu2bbs+mMUiSWrQoIGmTp2qsWPHytPTs7iGB1BCSus3QAAAAAAAAAAoS0rruVyP4tjpqVOnNGPGDN15553avn27pOtB1m233SZPT0/9+eefmjBhgtq3b6/o6OjiKAEAAAAAAAAAAAA3gSILszIzM7Vu3Tr16dNH9evX15w5c3T27FlVrFhRU6dO1R9//KF9+/bp9OnTevHFF1WuXDn9+uuveuaZZ4qqBAAAAAAAAAAAANxkCn2ZwZMnT+rDDz/U4sWLdeHCBVl316FDB02YMEGDBg2Sj49Prn579+5Vu3btVKNGDZ09e7YwJQBws9K6NBUAAAAAAAAAypLSei7Xy9WOq1ev1oIFC/TTTz/JMAwZhqGgoCANHz5cEyZMUPPmzfPs37ZtW1WvXl0XLlxwtQQAAAAAAAAAAADc5FwOswYPHmx7ftttt2nChAkaNmyYypUr5/Q+7K3YAgAAAAAAAAAAAKxcDrP8/Pw0ZMgQTZgwQe3atXNpHydPnnR1eAAAAAAAAAAAAJQBLodZ586dU/ny5YuwFAAAAAAAAAAAACAnD1c7fvXVV1q1apXT7deuXaulS5e6OhwAAAAAAAAAAADKIIthGIYrHT08PFSjRg2dPXvWqfZhYWE6ffq0MjIyXBkOgInFx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZklSQXMwF3MzAAAAAAAAAAAAlFGFCrMKIj4+Xj4+PiU1HAAAAAAAAAAAAG4CJRJm7dq1SzExMapVq1ZJDAcAAAAAAAAAAICbhJezDZcsWaIlS5bkeO3q1avq3r27wz6GYSg2NlYRERGyWCzq0aOH65UCAAAAAAAAAACgzHE6zDp58qS2bNmS47W0tLRcrznSqFEjhYeHF6A0AAAAAAAAAAAAlHVOh1ldu3bN8fXMmTMVGBioqVOnOuzj4eGh4OBgNW/eXF27dpWnp6fLhQIAAAAAAAAAAKDssRiGYbjS0cPDQ9WrV9e5c+eKuiYApUx8fLxCQkIUFxen4OBgd5dTopLSMtT0xQ2SpCOzeinAx8upbZcTU9R2ziZJ0t7ne6hyoF8JVl04eb0vq9NXr6nT3C2SpO3TuqpOxXIlWWKxyv7+t0/ranufJf3v6M5/B2fGttfWqrR95q2cfd/23rO1fUGOnT2ufO8oTN3umr9mmGfOHreimGdmeL/5Kevf+wHATBz9/1WAj1ep+5mPoufM52Pv8z1s/09ZFP+fWpp/v8V1rv7OUJjvHfmNeTN+rkryOHN8nT++N8v7L4jSei63YGdQsomMjGSlFQAAAAAAAAAAAIqVy2FWaGhoUdYBAAAAAAAAAAAA5OLh7gIAAAAAAAAAAAAARwizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmFWKRUeHi6LxaKuXbu6uxQ4MHz4cFksFq1YscLdpeRp/PjxslgsWrhwobtLAQAAAAAAAAAgF8IsuFVsbKzCw8MVHh6u2NhYd5fj0Lp16xQeHq5169Y51X7v3r367LPP1Lx5cw0ePDjPtsePH9czzzyjO+64Q1WqVJGPj4+qV6+uu+++WzNnztS5c+eK4B049uyzz8rHx0cvvviikpKSinUsAAAAAAAAAAAKijALbhUbG6uZM2dq5syZpg+zZs6c6XSYNXXqVBmGoRkzZshisdhtk5mZqaefflpNmjTRyy+/rL179yomJkaBgYGKjo7Wzp07FR4eroYNG+rVV18twneT0y233KLRo0fr3LlzxToOAAAAAAAAAACuIMwCitju3bu1bds2Va9eXQ8++KDdNllZWXr44Yf16quvKiMjQ71799bWrVuVmpqqq1evKjk5Wd9//706dOigpKQkPf3003rqqaeKrebx48dLkt5++22lpqYW2zgAAAAAAAAAABRUkYVZKSkpOn/+vE6dOpXnA7jZzZs3T5I0dOhQeXp62m0zZ84cffnll5Kk6dOna/369ercubOtvY+Pj3r16qXt27drxIgRkqR33nlHn3zySbHUfNttt6lZs2a6cuWKVq9eXSxjAAAAAAAAAADgikKFWUlJSQoPD1ejRo1Urlw51a5dW2FhYQ4f9erVK1SxK1as0H333adq1arJ29tb5cuXV8OGDfXAAw/ovffeU0pKSq4++/fv14gRIxQaGio/Pz9VqFBBHTp00JtvvulwBUp4eLgsFou6du3qsJYtW7bIYrHYvYTcjf03bdqk+++/X1WqVJGfn5+aNGmimTNn2q03u/Xr16tnz54qX768AgMD1apVK82dO1fp6el59nNVXFycZs2apdatWys4OFj+/v5q2LChJkyYoBMnTtjtc/LkSdtxOHnypMN9161bVxaLRYsXL7a91rVrV4WFhdm+DgsLs+3rxuO/ePFiWSwW1a1bV5L0448/6r777lOVKlXk7++vZs2aac6cOQ6P6ahRo2SxWDRq1CiHNd44hvS/f+clS5ZIkpYsWZKjRovFoi1bttjax8fHa+XKlZKkYcOG2R3n0qVLevnllyVJ3bp100svveSwJg8PDy1YsEBNmjSRJD3zzDNKS0vL0aaoPm/WehcsWJBnOwAAAAAAAAAASpLLYVZsbKzat2+v2bNn688//5RhGPk+srKyXC50zJgxGjp0qL7//ntdunRJfn5+Sk9P1/Hjx/X111/rySef1IULF3L0eeONN9SmTRt98sknOnXqlPz8/HTt2jXt2rVLkydPVrt27XT+/HmXa3LGf/7zH/Xs2VPr169XRkaG0tLSdOzYMYWHh6tPnz7KzMy028+6fePGjYqLi5O3t7eOHDmif/7zn7rnnntyBRqFFRERoebNm2vGjBnav3+/0tPT5e3trePHj2vevHlq2rSp1qxZU6RjVqxYUZUrV7Z9XblyZVWrVs32qFixot1+77//vnr16qXvv/9eGRkZysjI0JEjR/TCCy+oQ4cOiomJKbIafXx8VK1aNfn5+UmS/Pz8ctRYrVo1+fj42Npv3bpVycnJKleunFq3bm13nx9//LGSk5MlKc97aln5+vpq+vTpkqSzZ8/med8uVz9vktS5c2dJ0s8//6yEhIQ8awIAAAAAAAAAoKS4HGbNnj1bhw8flpeXl6ZMmaKtW7fqzz//VGRkZJ4PV+zYsUMff/yxPDw89Morr+jKlStKSEjQtWvXdPnyZW3YsEEjR47MESp88803mjJligzDUP/+/XXixAnFxsYqMTFRS5cuVVBQkA4ePKiBAwfmeYK/MH777TdNnz5d06dP16VLlxQTE6PY2Fi9+OKLkqTNmzfbVvxk99VXX2nmzJmSpEGDBunUqVOKiYlRfHy83nvvPe3evVsffPBBkdWZkJCgfv366cyZM6pVq5a+/fZbXbt2TfHx8Tpw4IDat2+v1NRUPfLII/rtt9+KbNy1a9fql19+sX39yy+/6MKFC7bH2rVrc/WJjo7W3//+dw0cODDHcfnggw/k6+ur/fv3a+zYsUVWY4cOHXThwgUNGTJEkjRkyJAcNV64cEEdOnSwtd+2bZskqXXr1g4vMfjTTz9JkipVqqQuXbo4VceAAQNsodfmzZvttnH182bVpk0beXl5KTMzUz///LNTdQEAAAAAAAAAUNxcDrPWrVsni8WiN998U6+++qo6deqk+vXrKzQ0NM+HK3bu3ClJuueeezRt2rQcK3YqVaqke++9V4sXL1bNmjVtr0+bNk2S1KlTJ61Zs8Z2OTsfHx89+uijWrZsmW3fX3zxhUt15Sc2NlYvvPCCXnrpJdsKpODgYM2cOVMPPfSQJOnzzz/P1e+ZZ56RJHXp0kXLly9XnTp1JEn+/v7661//qrfffluxsbFFVuf777+vyMhIeXt76/vvv1efPn3k4XH9o9GqVSv98MMPqlu3rlJTU/Xcc88V2biuSEpKUocOHXIdl/Hjx+u9996TJH3xxRc5QrKStGfPHknXj5sjERERkqTbb7/d6f0GBwfbLtN5+PBhu21c/bxZ+fv7q1GjRpKkXbt25VlPamqq4uPjczwAAAAAAAAAACgOLodZZ8+elYeHh0aPHl2U9dhVvnx5SddX5TiziurgwYM6evSoJOn555+3u0KmX79+ateunaS8T/AXhq+vr/7xj3/Y3da/f39brdkdPHhQR44ckXS9dmuolN24ceNUq1atIqtzxYoVkqSBAweqefPmubYHBQXZwsH169crLi6uyMZ2haPjMnr0aNWuXVuStHz58pIuS5J07tw5SVKVKlUctrly5Yqk60FsQVgDKmv/G7nyeXM0hvV9OPLvf/9bISEhtoc1WAQAAAAAAAAAoKi5HGZVrFhRQUFBtnsJFacePXrIz89P+/fvV6dOnbRw4cI8L1m4d+9eSZKXl1eel3Hr2bNnjvZFrVmzZgoMDLS7zbqK7OrVqzlez157p06d7Pb18PBQ165di6TGtLQ0W8Bxzz33OGxnPVZZWVn69ddfi2RsVzh7XIrr3zQ/0dHRkuTwfl/FyZXP242sdVvfhyPPPPOM4uLibI/Tp0+7UDEAAAAAAAAAAPlzOczq2LGj4uLidPbs2aKsx6769evro48+UmBgoHbt2qXHHntM9erVU9WqVTVkyBB9+eWXMgzD1v7SpUuSrq8y8fX1dbhf6yoea/uiFhQU5HCbl5eXJCkjIyPH6wWtvbCuXr1qW+2W12qv7OMV1/FyRn7Hxfoe3FVjSkqKJOVZo3VFlqMVVo5cvnw5R/8bufJ5u5G/v7+k/70PR3x9fRUcHJzjAQAAAAAAAABAcXA5zPrnP/8pLy8vzZ49uyjrceiRRx5RVFSU5s2bpyFDhqhOnTqKjo7WypUrNWDAAHXp0oX79sDtrEFTTEyMwzZNmzaVJO3fv9/p/cbHx+vEiROSrq/AKi7WlVsFvQQiAAAAAAAAAADFxeUwq02bNlq8eLGWLFmisWPH2k60F6eKFSvqiSee0PLly3Xq1CkdP35c06dPl8Vi0fbt2xUeHi5Jqlq1qqTrK1lSU1Md7u/MmTM52ltZV7HktTqluO4blb32tLQ0h+2KakVcxYoVbfcUsx4Pe7Jvy368rMdKKpnj5exxcde/qfVeWXldzq9Hjx6Srq/M2rJli1P7/eKLL2yrD7t37164IvNgrTuve34BAAAAAAAAAFCSXA6z6tWrp+eee06enp5avHixGjZsqCpVqqhevXoOH/Xr1y/K2lW/fn39+9//1rBhwyRJP/74oySpbdu2kq5fUm3r1q0O+2/cuFGSdMcdd+R4vUKFCpKU532A9uzZ43rheche+/bt2+22ycrKcjoEyY+Pj49atmwpSdq0aZPDdtZj5eHhodatW9tetx4ryfHx+uOPPxQbG2t3m4fH/z6C2S8V6Uhex8UwDNu/t/U43linq/+m1jrzq9G66iqvcHfUqFG2e83NmjUr332mpqbqlVdekXT93lcDBgzIs31hWO9F16RJk2IbAwAAAAAAAACAgnA5zDp58qROnjyppKQkGYYhwzB05coV2+uOHq7Ia3WV9L/7/FgDh5YtW9pChTlz5tjuCZXdd999Zwsv/vKXv+TY1qpVK0nSuXPn7AYcly5d0ocffljAd+Gcli1b2oKEf/3rX8rKysrVZtGiRXmuoiqooUOHSpJWr16tw4cP59qemJiouXPnSpL69OmjkJAQ27Zy5crZQso1a9bY3f+//vUvh2Nnv9eSo8DL3v7sHZclS5bYwqohQ4bk2Gb9N/3ll1/sBlpHjx7V2rVr860zvxo7d+4sSfrvf//rsE21atU0bdo0SdLmzZv13HPPOWyblZWlJ554QkePHpUkvfTSS/Lx8cmzBldFRkYqOjpaktSlS5diGQMAAAAAAAAAgIJyOcz6+OOPC/xYtGiRS2M9+eSTGjx4sNasWaNLly7ZXk9MTNS8efO0dOlSSdL9999v22ZdybJ9+3YNHDjQtuIkPT1dy5YtswVYHTp0yLXSpUOHDgoNDZUkjRw5Unv37pVhGLYVUV27drUbphQVa/izefNmDRs2zBZcpaSkaN68eXryySdVvnz5IhtvwoQJCgsLU3p6uu677z6tX7/e9v4OHTqkXr16KTIyUr6+vpozZ06u/tZjuWjRIr3//vtKTk6WdH0V1GOPPaYVK1YoICDA7tjly5dXrVq1JF3/TGVkZORZa0BAgHbs2JHruCxYsEATJkyQJPXv31/t2rXL0a9fv34KDAxUenq6Bg8erN9//13S9c/Dl19+qXvuuUflypVzOG7z5s0lXf88HTt2zGG7rl27SpKioqJ08eJFh+1mzJihvn37SpL+/e9/q0+fPtq+fbsteE1PT9cPP/ygzp07a8mSJZKkv/71rxo5cqTDfRaWNbitVq2aGjduXGzjAAAAAAAAAABQEF75N7GvOE+q3yg9PV2rVq3SqlWrJEmBgYHy8vLKsUqmY8eOOVa49O3bV6+//rqmTp2qdevWad26dSpfvrySkpJs91xq0aKFVq1aZbtnlJWHh4fmz5+vfv366ffff9cdd9yhgIAAZWVlKSUlRQ0bNtR7772Xa0VXUXnwwQf13HPP6V//+pdWrFihFStWqEKFCkpISFBGRoY6deqkjh076t///neRjBcUFKSvvvpKvXv31pkzZ9SnTx/5+fnJx8dH8fHxkiRfX199+umnthVO2f3zn//U2rVrdeTIEU2cOFGTJk1ScHCwYmNj5e3traVLl2r69OmKioqyO/748eP1wgsv6J133tGCBQtUtWpVeXh4qH379lq+fHmOtlWqVNHTTz+tSZMm2Y5LYmKi0tPTJV1fgbVw4cJcY4SEhOjNN9/UuHHjtHv3bjVu3FhBQUFKTU1VWlqa2rdvr+HDh+vJJ5+0W+PDDz+sZ599VtHR0WrSpIkqV65sC7+WL1+u9u3bS7p+eb5WrVrpt99+01dffaVx48bZ3Z+Hh4e++OILTZs2Te+8847Wr1+v9evXy9PTUyEhIYqNjbUFin5+fgoPD9c///lPu/sqKl999ZWk3CsVAQAAAAAAAABwJ5dXZpWkF154QW+//bYefPBBNW7cWF5eXkpMTFTVqlXVs2dPLVq0SFu2bMm1smby5Mnau3evhg8frjp16igpKUn+/v5q37693njjDf3yyy+qWbOm3TF79eql7du3q2/fvqpQoYIyMzNVp04dTZ8+Xfv27VP16tWL9T3PmTNH33zzjbp3767g4GClpqaqSZMmevnll7Vp06Yiv9Rc8+bNFRERofDwcN12223y8vJSamqq6tevr/HjxysiIkIDBw602zcwMFA7duzQlClTFBYWJi8vL3l7e+vhhx/Wrl27bJcxdOTZZ5/VW2+9pbZt28rb21tnzpxRVFSULly4YLf9xIkTtWHDBvXu3VseHh7y8PBQ48aNNWvWLO3atUuVKlWy22/s2LH69ttvbcc0IyNDt956q15++WVt3bo1z5VZFSpU0LZt2zR06FDVqlVLcXFxioqKUlRUlFJSUnK0feKJJyRJy5Yty/N9e3l56fXXX9eRI0c0bdo0tWnTRuXLl1dCQoIqVaqku+66SzNmzNDx48eLPchKTEzUl19+maN+AAAAAAAAAADMwOWVWSWpfv36mjRpkiZNmlTgvq1bt9Ynn3zi0rh33nmnvv76a7vbunbtKsMw7G4LDw9XeHh4nvvOq7/V/fffn+PSiQUdo6BCQkI0Y8YMzZgxo8B9K1SooNdee02vvfaa3e153S/Nw8NDTz31lJ566imnx+vZs6d69uxZ0DJ133336b777rO7bdSoURo1apTDvo0bN9bnn3+e7xjDhw/X9OnTtW3bNkVFRdkuWelIw4YNbZfFdEVRfN7Wrl2rpKQkdevWjUsMAgAAAAAAAABMpdArswzD0Nq1azVo0CCFhYWpXLlyKleunMLCwjR48GCtW7cu39AGuJkEBQVp+vTpMgyjUCFVScnKytLcuXMlSS+99JKbqwEAAAAAAAAAIKdChVkXL15U586dNWjQIK1du1ZRUVFKTk5WcnKyoqKitGbNGj388MPq0qWLw0vGATejyZMnq06dOlq4cKFOnz7t7nLytGrVKkVERGjQoEG2e38BAAAAAAAAAGAWLl9mMC0tTb169dKhQ4dkGIbatWunnj17qnbt2pKkM2fOaOPGjdqzZ49+/vln3Xffffrvf/8rb2/vIiseMCs/Pz8tXbpUW7Zs0alTp1SnTh13l+RQenq6ZsyYodGjR7u7FAAAAAAAAAAAcnE5zPrggw908OBBBQcH69NPP1Xfvn1ztZk9e7a+++47DRs2TAcPHtS8efNcuu8V8rdz50499NBDBerToUMHrV27tpgqQteuXdW1a1d3l5Gv4cOHu7sEAAAAAAAAAAAccvkygytXrpTFYtF7771nN8iy6tOnj9577z0ZhqHly5e7OhzykZaWposXLxbocfXqVXeX7bRRo0bJMAydPHnS3aUAAAAAAAAAAIASZDEMw3ClY8WKFZWUlKTExER5eeW9wCsjI0OBgYEKCAgoVQEKAOfEx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZiUnJysgICDfIEuSvLy8FBAQoOTkZFeHAwAAAAAAAAAAQBnkcphVrVo1xcXF6dSpU/m2PXnypGJjY1WtWjVXhwMAAAAAAAAAAEAZ5HKY1blzZxmGocmTJyuvKxUahqEpU6bIYrGoS5curg4HAAAAAAAAAACAMsjlMMsaUK1bt07du3fXpk2blJ6ebtuenp6ujRs3qlu3blq3bp0sFosmT55cJEUDAAAAAAAAAACgbLAYeS2ryscbb7yhqVOnymKxSLp+b6zKlStLki5fvqyMjAzbqq3XX39df//73wtfMQDTKa03DQQAAAAAAACAsqS0nst1eWWWJE2ePFlfffWVGjVqJMMwlJ6ervPnz+v8+fNKT0+XYRhq2rSpvv76a4IsAAAAAAAAAAAAFFihVmZld+jQIe3du1eXLl2SJFWtWlVt27ZVixYtimL3AEystKb5AAAAAAAAAFCWlNZzuV5FtaMWLVoQXAEAAAAAAAAAAKBIFeoygwAAAAAAAAAAAEBxIswCAAAAAAAAAACAaTl1mcHu3btLkkJDQ/Xxxx/neK0gLBaLNm3aVOB+AAAAAAAAAAAAKJucCrO2bNkiSWrcuHGu1wrCYrEUuA8AAAAAAAAAAADKLqfCrBkzZkiSKleunOs1AAAAAAAAAAAAoLhYDMMw3F0EgNItPj5eISEhiouLU3BwsLvLAQAAAAAAAADYUVrP5Xq4uwAAAAAAAAAAAADAEZfDrFmzZun11193uv3bb7+tWbNmuTocAAAAAAAAAAAAyiCXLzPo4eGh6tWr69y5c061DwsL06lTp5SZmenKcABMrLQuTQUAAAAAAACAsqS0nsvlMoMAAAAAAAAAAAAwrRILs65evSo/P7+SGg4AAAAAAAAAAAA3gRIJs1atWqWEhATdcsstJTEcAAAAAAAAAAAAbhJezjZ866239NZbb+V4LTo6WvXq1XPYxzAMxcbGKj4+XhaLRffff7/rlQIAAAAAAAAAAKDMcTrMio2N1cmTJ3O8lpmZmes1R3r06KEXX3yxILUBAAAAAAAAAACgjHM6zBowYIDq1q0r6fqKqzFjxigkJERvvvmmwz4eHh4KDg5W8+bNVb9+/cLWCgAAAAAAAAAAgDLGYhiG4UpHDw8PVa9eXefOnSvqmgCUMvHx8QoJCVFcXJyCg4PdXQ4AAAAAAAAAwI7Sei7X6ZVZN8rKyirKOgAAAAAAAAAAAIBcPNxdAAAAAAAAAAAAAOCIy2HW7t271bp1a02cODHfto899phat26tvXv3ujocAAAAAAAAAAAAyiCXw6zPPvtMv/32mzp16pRv2/bt2+vAgQP67LPPXB0OAAAAAAAAAAAAZZDLYdbWrVslSffee2++bR988EFJ0ubNm10dDgAAAAAAAAAAAGWQy2HWmTNnFBISoooVK+bbtlKlSgoJCdHZs2ddHQ4AAAAAAAAAAABlkMthVnJysrKyspxubxiGEhISXB0OAAAAAAAAAAAAZZDLYVbVqlWVkJCgc+fO5dv27Nmzio+PV+XKlV0dDgAAAAAAAAAAAGWQy2FW+/btJUnvvfdevm2tbe68805XhwMAAAAAAAAAAEAZ5HKYNXbsWBmGoblz52rBggUO282fP19z586VxWLR2LFjXR0OAAAAAAAAAAAAZZDFMAzD1c6DBw/W6tWrZbFY1Lx5c/Xt21ehoaGSpKioKH399deKiIiQYRh6+OGHtWrVqiIrHIB5xMfHKyQkRHFxcQoODnZ3OQAAAAAAAAAAO0rruVyvwnResmSJLBaLVq1apUOHDunw4cM5tltzsqFDh2rhwoWFGQoAAAAAAAAAAABlkMuXGZQkf39/rVixQhs3btSwYcMUGhoqX19f+fn5qW7dunrkkUf0008/6bPPPpO/v39R1QwAAAAAAAAAAIAyolCXGQQAqfQuTQUAAAAAAACAsqS0nsst1MosZ2VlZenrr7/WgAEDSmI4AAAAAAAAAAAA3CQKdc+s/Pz5559auHChli5dqosXLxbnUAAAAAAAAAAAALgJFXmYlZSUpJUrV2rhwoXauXOnJMl6JcMmTZoU9XAAAAAAAAAAAAC4iRVZmLV7924tXLhQK1euVGJioqTrIVbjxo01aNAgDRo0SM2bNy+q4QAAAAAAAAAAAFAGFCrMio6O1tKlS7Vo0SIdO3ZM0v9WYVksFv3yyy9q06ZN4asEAAAAAAAAAABAmVTgMMswDH333XdatGiRvvnmG2VkZMgwDPn7+2vAgAEaOXKkevfuLYnLCgIAAAAAAAAAAKBwnA6z/u///k+LFi3SkiVLdP78eRmGIYvFoo4dO2rEiBEaPHiwgoKCirNWAAAAAAAAAAAAlDFOh1kNGzaUxWKRYRgKCwvTiBEjNGLECIWFhRVnfQAAAAAAAAAAACjDCnyZwaeeekpz586Vj49PcdQDAAAAAAAAAAAA2Hg429DX11eGYeidd95RzZo1NXHiRO3evbs4awMAAAAAAAAAAEAZ53SYdf78eb399ttq2bKlrl69qg8++EB33323GjVqpJdeekmnTp0qzjoBAAAAAAAAAABQBlkMwzAK2mn//v366KOP9Pnnnys2NlYWi0UWi0WdO3fWo48+qrFjx8pisSghIUEBAQHFUTcAE4mPj1dISIji4uIUHBzs7nIAAAAAAAAAAHaU1nO5LoVZVqmpqVq9erUWLlyorVu3yjAMWSwW23/XrFmjvn37ysurwLfmAlCKlNZvgAAAAAAAAABQlpTWc7mFCrOyi4yM1KJFi7RkyRKdOXPm+s4tFoWEhKh///4aNGiQ7r33XoIt4CZUWr8BAgAAAAAAAEBZUlrP5RZZmGVlGIY2bNigjz76SF9//bXS09NlsVgkSeXLl9eVK1eKcjgAJlBavwECAAAAAAAAQFlSWs/lehT1Di0Wi3r37q3Vq1fr7NmzevXVV9WkSRMZhqHY2NiiHg4AAAAAAAAAAAA3sSIPs7KrXLmypkyZosOHD2vnzp0aO3ZscQ4HAAAAAAAAAACAm0yJ3cCqffv2at++fUkNBwAAAAAAAAAAgJtAsa7MAgAAAAAAAAAAAAqDMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJiWl7sLAFD6GYYhSYqPj3dzJQAAAAAAAAAAR6zncK3ndEsLwiwAhZaQkCBJqlOnjpsrAQAAAAAAAADkJyEhQSEhIe4uw2kWo7TFbwBMJysrS+fOnVNQUJAsFou7ywGcFh8frzp16uj06dMKDg52dzmAaTFXAOcwV4D8MU8A5zBXAOcwV4D83ThPDMNQQkKCatasKQ+P0nMnKlZmASg0Dw8P1a5d291lAC4LDg7mf3oBJzBXAOcwV4D8MU8A5zBXAOcwV4D8ZZ8npWlFllXpid0AAAAAAAAAAABQ5hBmAQAAAAAAAAAAwLQIswAAZZavr69mzJghX19fd5cCmBpzBXAOcwXIH/MEcA5zBXAOcwXI380yTyyGYRjuLgIAAAAAAAAAAACwh5VZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAoMUlJSVq/fr3mzJmjhx56SKGhobJYLLJYLAoPD3dqH6tXr1a/fv1Us2ZN+fj4qFy5cmrUqJHGjRunAwcOFLim8ePH22qoW7euw3Znz57V+++/r0GDBqlBgwby9/eXv7+/wsLC9Je//EU//fSTU+NdvHhRU6dOVaNGjeTv76+KFSuqU6dO+uijj2QYRoHrx82pNM+VourPXEF+bpZ5cuHCBb3wwgtq06aNKlasKH9/f4WGhqp37956+eWXlZ6e7rAv8wTOuBnmSmHHZ67AGe6cK+Hh4bax8nocP348z/F//fVXDR8+XLVr15avr69q1KihBx980OnfVTZv3qwHH3xQNWrUkK+vr2rXrq3hw4fr119/dao/yobSPFcOHjyof/3rX+rVq5dq1aolHx8fBQUFqXnz5nrqqaf0xx9/OFV/Yecabn6leZ7Yk56erpYtW9r6jho1Kt8+xTJPDAAASsjmzZsNSXYfM2bMyLNvSkqK0a9fvxx9AgMDDR8fH9vXHh4exuuvv+50PT/99JNhsVhs/UNDQ+22O3XqVI52koyAgADD398/x2tjxowxMjIyHI63d+9eo1KlSjnq9/Lysn3dq1cvIzU11en6cfMqrXOlqPozV+CMm2GeLF++3AgODrb18fPzy/G1JCMmJsZuX+YJnFWa50pRjM9cgbPcOVdmzJhhSDK8vb2NatWqOXxERkY6rOHDDz/M8dkOCQnJMdfyew/WGiQZFovFCAkJsX3t5eVlfPjhh/kcQZQVpXWufPrpp7nqDQkJMTw9PW1f+/j4GPPmzcvzPRR2rqFsKK3zxJHsPyMkGSNHjsyzfXHNE8IsAECJ2bx5s1GhQgWjR48extNPP218/vnnRvXq1Z36Qfbiiy/afuj99a9/Nc6cOWMYhmFkZmYae/fuNTp27Gj7xWvv3r351nLt2jWjfv36hre3t9G2bds8T6ZERkYakowePXoYS5YsMc6ePWsbOyIiwujfv7+ttueff97uPmJjY23vtXHjxsYvv/xiGIZhpKamGu+++67h7e1tSDImTJiQb+24+ZXWuVIU/ZkrcFZpnycrV640PDw8DEnG448/bkRERNi2xcfHG9u2bTMmT55sJCYm5urLPEFBlOa5UtjxmSsoCHfOFetJwi5durhU+86dO20n5AcMGGCcPn3aMAzDuHz5svHEE0/YaluxYoXd/itWrLC1eeKJJ4zLly8bhmEYp0+fNgYMGGBIMjw9PY2dO3e6VB9uLqV1rnz88ceGr6+vMXz4cOPbb7814uLiDMO4/jNh48aNRvPmzW1j//jjj3b3Udi5hrKjtM4Tew4ePGh4e3sb9erVM6pVq5ZvmFWc84QwCwBQYuytWgoNDXXqh3ndunXz/GEcGxtrBAYGGpKM6dOn51vL3//+d0OS8dxzzxkjR47M82RKbGyssW/fPof7ysrKMnr37m37a5nk5ORcbZ5//nlDkuHv72+cOHEi1/aXXnrJ9kvi77//nm/9uLmV1rlSFP2ZK3BWaZ4n586dMypUqGBIMl577bV8938j5gkKojTPlcKOz1xBQbhzrhT2xKP1xGaLFi2MtLS0XNt79eplSDLq1q2b631mZGTY3mfv3r1z9U1NTbWd5O/YsaNL9eHmUlrnyrFjx2x/mGpPTEyMLWzo0aOH3TaFmWsoW0rrPLlRRkaG7Q+QfvjhB9t7yCvMKs55wj2zAAAlxtPT0+W+58+flyS1bdvW7vaQkBDdeuutkqTExMQ897V79269/fbbuvXWW/X888/nO3ZISIhat27tcLvFYtGYMWNsYx89ejRXm6VLl0qShg4dqrCwsFzbJ02apMDAQGVmZmrZsmX51oSbW2mdK0XRn7kCZ5XmefL2228rJiZGt99+uyZPnlyAyq9jnqAgSvNcKez4zBUUhFnmSkGdOHFCO3bskCT94x//kLe3d642zzzzjCTp5MmT2rZtW45tW7duVVRUVI522fn4+Ogf//iHJGnHjh2KjIws0vpR+pTWudKoUSPVrFnT4fby5cvroYcekiT98ssvubYXdq6hbCmt8+RGr732mvbu3asRI0aoZ8+e+bYv7nlCmAUAKBXq1asnSdq3b5/d7XFxcbabtTr6gS9JqampGjNmjAzD0IIFC+Tn51ck9WXfT2ZmZo5tv//+u06dOiVJuu++++z2DwwMVKdOnSRJP/zwQ5HUhLLJLHPFlf7MFZQUd88T6wn24cOHy2KxFKR05glKlLvnSmHGZ66gJBXVXHHFjz/+aHveu3dvu206duyooKAgSbk/69b+QUFBuvvuu+32zz6HmCsoDHfOFWdYfz7d+Du9VPi5BjjLLPPkjz/+0IwZM1SlShW9/vrrTvUp7nlCmAUAKBUmTJggSdqyZYsmTpyos2fPSpIMw9Cvv/6qvn37KjExUXfddZeGDx/ucD+zZs3S0aNHNXbsWHXp0qXI6tuyZYuk63+5aP0LGavDhw/bnjdv3tzhPqzbjhw5UmR1oewxy1xxpT9zBSXFnfMkMjJS586dkyS1adNGhw4d0rBhw1SjRg35+vqqdu3aGjJkiH7++We7/ZknKEnu/plSmPGZKyhJRTVXIiIi1Lx5cwUEBCgwMFCNGjXSuHHjtH//fod9rJ/1qlWrqmrVqnbbeHp6qnHjxrYx7PVv0qSJw5UEVatWVZUqVez2BwrCnXPFGdbf61u0aJFrW2HnGuAsM8wTwzA0duxYpaSk6I033lClSpWcqr245wlhFgCgVJg4caKmTZsmDw8Pvf/++6pdu7aCgoLk5+enNm3a6Pjx45o+fbo2bdrk8Jew/fv3a+7cuapWrZr+85//FFltkZGRmjdvniRpyJAhCg4OzrHdetJSkmrVquVwP9Zt8fHxxb5UHDcvM8wVV/szV1BS3DlPrH9FKUk///yz2rZtq88//1xxcXHy8/PT2bNntXLlSnXq1EmzZ8/O1Z95gpLk7p8phRmfuYKSVBRzRZIuX76so0ePyt/fX6mpqfrjjz/00UcfqU2bNg4vz2n9rOf1Oc++PfvcKIr+QEG4c67kZ8WKFfr1118lSePGjcu1nbmCkmKGefLuu+9qx44d6tWrlx555BGnay/ueUKYBQAoFTw8PPTvf/9bixYtUmBgoKTr1wZOS0uTJKWkpCguLk7Xrl2z2z8jI0NjxoxRRkaG3n77bZUvX75I6kpOTtagQYOUlJSkypUr6+WXX87VJiEhwfY8ICDA4b6yb8veBygId8+VwvRnrqCkuHOexMTE2J6/8MILqlmzpn788UclJiYqLi5OERER6tq1qwzD0Isvvqi1a9fm6M88QUly98+UwozPXEFJKuxcadiwoebOnavff/9dKSkpunLliq5du6YNGzaoTZs2MgxD//rXv/Taa6/l6mv93Ob1Oc++/cbPeWH7AwXhzrmSlz/++EPjx4+XdP0SaKNGjcrVhrmCkuLueXLy5Ek988wzCggI0AcffFCg2ot7nhBmAQBKhcuXL6tHjx4aNWqU7rrrLu3YsUOxsbE6f/681q5dqypVquiDDz7QnXfeaVuCnd3LL7+sAwcOqG/fvho8eHCR1JSRkaFhw4Zp37598vb21rJly/K8oSxQEtw9V4pjrgFFzZ3zJCsry/bcMAytWbNG99xzjzw8rv9q1rRpU3399deqXr26JGnmzJmFeKdA4bj7Z0phxwdKSmE/q4888oiefvpp3XrrrfL29pZ0/fLl9957r3bs2KE77rhDkhQeHq64uLgSfW9AUTLjXLlw4YLuv/9+xcbGqmbNmvr8889t/18GuIO758m4ceN07do1zZo1S2FhYcX7ZguImQkAKBVGjhypLVu2qEuXLtqwYYPuvvtuhYSEqHr16nrwwQe1Y8cOVa5cWSdOnND06dNz9D1y5Ihmz56twMBAvf/++0VST2Zmph555BGtW7dOXl5e+uyzz3TvvffabWu9saUkJSUlOdxn9m3Z+wAF4c65Utj+zBWUFHfOk+yf2R49eqh169a52gQGBmrixImSpIMHD+rixYt2+zNPUNzc/f9fhRmfuYKSVJjPan78/Pz00ksvSbr+l/mbNm3Ksd36uc3rc559+42f88L2BwrCnXPFnkuXLqlHjx46fvy4qlWrpk2bNql27dp22zJXUFLcOU8++ugjbdy4Ua1bt9bf//73Atde3POEMAsAYHpHjx7Vd999J0maOnWqLBZLrjZVq1bViBEjJElr166VYRi2bRMnTlRaWpqee+45VahQQYmJiTkeGRkZkq7/hbz1tfT0dIf1ZGZmavjw4Vq5cqU8PT316aefauDAgQ7bZ1+tlddfDVu3BQcH25aSAwXh7rlS2P7MFZQEd8+T7NePb9KkicM6mzZtanseFRVle848QUlx91wp7PjMFZSUwn5WnXHXXXfZnp84cSLHNutnPb/VidbtN15JorD9AWe5e67c6NKlS+revbuOHDmiqlWr6qefflLjxo0dtmeuoCS4c57ExcXpH//4hzw8PPTmm28qOTk51/+/WcfKyMiwvZb9yhPFPU8IswAApnfkyBHb8/r16zts17BhQ0nX/8Lj0qVLttcjIyMlSc8884yCgoJyPZYtWyZJOnXqlO219957z+4Y1hVZy5cvtwVZQ4YMybP+5s2b254fPnzYYTvrtuwnMIGCcPdcKWx/5gpKgrvnSdOmTfO8UbNV9l9Ks/8SyzxBSXH3XCns+MwVlJTCflYLy/pZv3TpkqKjo+22yczM1LFjxyRJzZo1s9v/6NGjyszMtNs/+75v7A84y91zJbtLly6pW7duioiIsAVZ+f0cKOxcA5zhznkSExOjuLg4ZWVlqXPnznb//+3UqVOSpGXLltleO3jwoG0fxT1PCLMAAKaX/XrV2f86/UbZL8NUHH9Zm5mZqWHDhmnFihW2IGvo0KH59rv11lt1yy23SJK+//57u22uXbum7du3S5LDyxUC+THLXHEVcwUlwd3zxM/PT507d5Z0/cShI9ZfZC0Wi+rWrWt7nXmCkuLuuVLY8ZkrKCklMVd2795te37j/Ut69uxpe+7os/7zzz8rISFBUu7PurV/QkKCdu7cabd/9v0yV+Aqd8+V7Pvv1q1bjhVZzpxQL+xcA5xhlnniqmKfJwYAAG4UGhpqSDJmzJjhsM3JkycNSYYko1+/fnbbJCYmGvXq1TMkGS1btixQDSNHjjQkGaGhoQ7bZGRkGEOGDDEkGV5eXsby5csLNMbzzz9vSDICAgKMyMjIXNtfeeUVQ5Lh6elp/P777wXaN8qG0jJXCtufuYLCKC3zZOnSpYYkw2KxGPv27cu1PSEhwahevbohyWjfvn2u7cwTFFZpmCtFMT5zBYVVEnMlKysrzxpSUlKMO++805BklCtXzoiJicnVpmPHjoYko1WrVkZaWlqu7ffdd59tvmVkZOTYlpGRYXufffr0ydU3LS3NaNmypSHJ6NixY561ouwqLXPl4sWLRtOmTQ1JRrVq1YyIiIh831t2hZlrQGmZJ868h5EjRzpsU5zzhDALAFCirl69akRHR9sederUMSQZTz/9dI7XExIScvTr16+f7Qf68OHDjePHjxtZWVlGWlqa8fPPPxtt27a1bV+yZEmBasrvZEpGRoYxdOhQW5C1cuXKAr/v2NhY24nJpk2bGnv37jUMwzBSU1ON999/3/Dx8TEkGRMmTCjwvnFzKo1zpSj6M1dQEKV1nmRmZhrt2rUzJBl169Y1Nm7caGRmZhqGYRhHjhwxunXrZkgyPDw8jE2bNuXqzzxBQZXWuVLY8ZkrKCh3zJUtW7YYPXr0MJYuXWqcPn3a9npaWpqxceNG44477rD1feWVV+zW/fPPPxuenp6GJOOhhx4yzpw5YxiGYVy5csWYMGGCrf+KFSvs9l+xYoWtzYQJE4wrV64YhmEYZ86cMR566CFb6Ltz506Xjy1uLqVxrly6dMlo1qyZIcmoXr26ceTIkQK/78LONZQtpXGe5MeZMKs45wlhFgCgRFl/8OX3uPEHY3R0tNGmTZscbQICAgwvL68crz399NMFrim/kylbt2617d/b29uoVq1ang9Hq7b27t1rVKpUybavoKAgw9vb2/b1vffea6SkpBS4ftycSuNcKar+zBU4qzTPk/Pnz9v+Mtg6fkhISI6fNwsWLHDYn3mCgiitc6UoxmeuoCDcMVc2b96co42/v79RuXLlHJ9TDw8P49lnn82z9g8//DDHeOXLlzcsFovt67xWAhiGYcyYMcPW1mKxGOXLl7d97eXlZXz44YcFPZy4iZXGuTJz5kxbu3LlyuX7e/2pU6fs7qewcw1lR2mcJ86+p7zCLMMovnniJQAASoHKlStr9+7dWrJkiVatWqUDBw7o6tWr8vLy0i233KIOHTroiSeeUMeOHYt87KysLNvz9PT0HNcmtic5Odnu623atFFERIReeeUVffPNNzp9+rTKlSun5s2ba+TIkRozZkyO6yMDrnDnXCkqzBUUNzPMk+rVq+vXX3/Vu+++qxUrVuiPP/5QcnKy6tatq+7du2vy5Mm2GyjbwzxBSXD3XCmK8ZkrKAmF+ay2aNFCr776qnbt2qVDhw7p8uXLio2NVUBAgJo2bapOnTrp8ccfV4sWLfKs4bHHHlPr1q312muvaevWrYqOjlbVqlV11113adKkSerevXue/cPDw9W5c2e988472rVrl2JiYlSrVi116dJFU6ZMUZs2bQp1jADJvXMl++/1165d07Vr1/KsNTMz0+7rhZ1rQH7M8DOlsIprnlgMwzCKuFYAAAAAAAAAAACgSPDnRwAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAC4icVikcVi0ZYtW9xdSpHasmWL7b2h9HLX5zMtLU3169eXr6+vTp8+Xej97d69WxaLRZ07dy6C6gAAAOAOhFkAAAAA4ALriX5XHosXL3Z3+YBpvfPOOzpx4oQee+wx1alTp9D7a9++vXr16qXt27friy++KIIKAQAAUNK83F0AAAAAAJRG1apVs/t6YmKirl27lmcbf39/SVKjRo0kSQEBAcVQofsEBATY3htQEFevXtWcOXPk6+urZ555psj2Gx4erg0bNmj69Onq16+fvLw4HQIAAFCa8H9vAAAAAOCCCxcu2H09PDxcM2fOzLON1bFjx4q8LjNo167dTfveULwWLFig2NhYDRw4ULVr1y6y/bZv316tWrXSb7/9pnXr1mngwIFFtm8AAAAUPy4zCAAAAAAA3M4wDC1YsECSNHz48CLfv3Wf8+fPL/J9AwAAoHgRZgEAAACAm1jvobVly5Ycr588edK27eTJk4qKitK4ceN0yy23yM/PT/Xr19fzzz9vu5yhJB0+fFjDhw9XnTp15Ofnp4YNG2rOnDlKT0/Ps4aTJ0/q73//u5o1a6bAwEAFBASocePG+tvf/qZTp0659L62bNliq/9GixcvlsViUd26dSVJ+/bt0+DBg1WjRg35+vqqXr16mjJlimJiYlwaW5L27NmjRx55RGFhYfLz81O5cuUUGhqqLl26aPbs2Tpz5ozdfmlpaXr//ffVrVs3Va5cWT4+Pqpevbr69++v9evXOzXu6NGj1aBBAwUEBCg4OFhNmzbVmDFjtGHDBrt94uLiNGvWLLVu3VrBwcHy9/dXw4YNNWHCBJ04ccLhWNk/OwkJCXr++efVuHFj+fv7q1KlSurbt6/27NmTZ70xMTF6+umnVb9+ffn5+alGjRoaNGiQ9u3bl+97PXPmjCZPnqxmzZqpXLly8vX1Vc2aNdWmTRtNnjxZv/zyS777uNHGjRsVGRmp8uXLq0+fPg7bHTt2TI8//rhuvfVWBQQEyM/PT3Xq1FH79u317LPPOlwVOGzYMEnSpk2b8jy2AAAAMCEDAAAAAFBkZsyYYUgynPl1y9pu8+bNOV6PjIy0bVuzZo1Rvnx5Q5IRHBxseHp62rZ16tTJSEtLM7755hsjICDAkGSEhIQYFovF1mbIkCEOx//0008NX19fW1tfX1/D39/f9nVQUJCxYcOGAh+DzZs3OzwGH3/8sSHJCA0NNZYtW2Z4e3vb6vbw8LD1a9asmZGQkFDgsRcvXpzj/fv6+hrBwcG2ryUZH3/8ca5+J0+eNJo1a2ZrY7FYjJCQkBz9xo8fb3fMjIwM46mnnsrRtly5ckaFChVstYSEhOTqd/jwYaN27dq2Pn5+fkZQUFCO2levXm13TGubzz77zGjQoIGtv/VzIMnw8fFx+O8XGRlphIaG5mhrPU4+Pj7Gl19+6fDzeeDAAaNChQq27Z6enjneqyRj5MiRef0z2TVlyhRDktGrVy+HbX744Yccn1lvb2/b/LA+ZsyY4bB//fr1DUnG+++/X+D6AAAA4D6szAIAAAAAExs7dqzatGmjiIgIxcXFKSEhQW+//bY8PT21fft2zZo1S4888oj69eunkydPKjY2VvHx8XruueckSStWrNDGjRtz7ffHH3/UiBEjlJmZqWnTpikyMlLJycm6du2ajh07pkGDBikhIUGDBg1yeYVWXqKjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3boH2mZSUpEmTJskwDA0fPlzHjx9XSkqK4uLilJiYqL179+rpp59W1apVc/S7du2aevfurYiICHXt2lVbtmxRcnKyYmNjFRsbq9dff12BgYGaN2+e3nrrrVzjPvvss3r77bclSWPGjNHvv/+uxMREXb16VTExMVq3bp169+6do09CQoL69eunM2fOqFatWvr222917do1xcfH68CBA2rfvr1SU1P1yCOP6LfffnP4nidOnCgfHx/99NNPunbtmhITE/Xf//5XjRo1Ulpamh5//HFlZWXl6JOZmalBgwYpKipKFSpU0MqVK3Xt2jXFxcUpIiJCd955p0aOHOlwzKlTpyomJkatW7fWrl27lJ6erqtXryolJUV//PGHXn31VTVr1izff68bbdu2TdL1e645MmHCBKWmpuree+/VoUOHlJaWppiYGCUnJ+vw4cOaOXOmbdWfPXfeeackaevWrQWuDwAAAG7k7jQNAAAAAG4mRb0yq1mzZkZKSkquvo8++qitTc+ePY2srKxcbTp16mRIMsaOHZvj9czMTKNhw4aGJGP+/PkO63vggQcMScbf/va3fN9Lds6szFIeq3esK3QaNGhQoHH37NljWxWVnp7udL9Zs2YZkowuXboYaWlpdtusXbvWkGRUrlw5x75///1324qyadOmOT3myy+/bFtZdOjQoVzb4+Pjjbp16xqSjPvvvz/XdusxrFKlinHx4sVc2w8ePGhrs2PHjhzbVqxYYdu2cePGXH2vXbtmW8Fk7/NpXb23c+dOp99vflJTU22rDh2tRrt48aKtpnPnzrk0zn/+8x9DknHLLbcUplwAAACUMFZmAQAAAICJTZ48Wb6+vrle79Wrl+359OnT7d6fytrm4MGDOV7ftm2b/vzzT1WuXFmPPfaYw7FHjBghSQ7v91RYzz//vN3X+/fvL0k6fvy4kpKSnN5f+fLlJV2/99WVK1ec7rdw4UJJ0pQpU+Tt7W23zYABAxQcHKzLly/nuKfUkiVLlJWVpUqVKmnmzJlOj7lixQpJ0sCBA9W8efNc24OCgjRt2jRJ0vr16xUXF2d3P48//niulWaS1KJFC4WFhUnK/e+/fPlySdLdd9+tHj165OobEBBgG9se63E+f/68wzYFdenSJWVmZkqSqlSpYrdNUFCQPDw8CjV25cqVC9UfAAAA7kGYBQAAAAAm5uiSa9WqVbM9v+OOO/JsExMTk+P1n3/+WZIUFxenmjVrqnr16nYf48aNkyRFRUUV+n3cqGLFimrQoIHdbTVr1rQ9v7H2vNSvX1+NGzdWenq67rzzTr3yyis6cOCALSSx5+zZs7b3N3bsWIfHokaNGkpMTJSU83js3LlTktSzZ0/5+fk5VWdaWpotYLrnnnsctuvZs6ckKSsrS7/++qvdNtbL5tljPY5Xr17N8frevXslSd27d3fYN69tffv2lSSNHDlSU6dO1datWwsUOtoTHR1te16xYkW7bfz9/W3hW+/evfXiiy9qz549SktLc3oc677T09MVGxvresEAAAAoUYRZAAAAAGBiQUFBdl/38vJyuk16enqO18+dO2d7/eLFiw4f1iApOTm50O/jRo5qzl63vdrz4unpqeXLlyssLExRUVGaPn26br/9dgUHB6tnz5764IMPcoUu1mMhSZcvX87zeFjvPZV9HxcuXJAkhYaGOl3n1atXbQFbrVq1HLarXbu27fmlS5fstnHmON54DK37cnbsG82dO1fdunVTYmKiXn/9dXXt2lXBwcFq27atZsyYobNnzzrs60hKSortub2ViFYfffSRWrVqpejoaM2ePVvt27dXUFCQOnbsqP/85z+5grsb+fv72x0TAAAA5kaYBQAAAABljDVIufPOO2UYhlOP0qJVq1Y6duyY1qxZo8cff1zNmzdXcnKyNm7cqL/+9a9q3LixDh06ZGuffdXW0aNHnToWo0aNsvWxd3nHm1358uX1008/afv27Zo2bZruvvtueXl5ad++fZo1a5YaNmyozz//vED7rFSpku15XqvxbrnlFv3666/6/vvv9dRTT6lNmzbKysrSzz//rGnTpqlBgwb66aefHPbPHnZlHxMAAADmRpgFAAAAAGVM9erVJRXP5QPNwMfHRw899JDmz5+vQ4cOKTo6WvPmzVPFihV1+vRpjRw50tbWeiwk146HK8eyYsWK8vT0lCSdOXPGYbvs2+zdF8tV1n3ltYLKmdVVHTt21CuvvKIdO3YoNjZWX375pVq0aKHk5GSNGTNGFy9edLqm7PfJym91lYeHh3r16qW33npLe/fu1dWrV7Vs2TLdcsstiomJ0bBhwxxeetC675CQEIf3RwMAAID5EGYBAAAAQBlz9913S7p+iTzr/ZNuZpUqVdITTzyhV155RZK0f/9+XblyRZJUt25d2+X2vv766wLvu0OHDpKkH3/80enL1vn4+Khly5aSpE2bNjlst3HjRknXw5vWrVsXuDZH2rZtK0navHmzwzZ5rW6yx8/PTw888IDWrl0r6fol/Hbs2OF0/woVKtiCwRMnThRo7KCgIA0bNkwLFy6UJF28eDHH6rvsIiMjJUlNmjQp0BgAAABwL8IsAAAAAChjunXrpgYNGkiSJk+e7HAVi1V+K2XMIjU1Nc/t2e+X5OHxv1+Hx40bJ0lauHCh9u/fn+c+bjwWo0aNkqenp65cuaIZM2Y4XevQoUMlSatXr9bhw4dzbU9MTNTcuXMlSX369FFISIjT+87PkCFDJEk7duzQli1bcm1PTk7Wf/7zH7t9MzIybPcOs8fRMXZG586dJUn//e9/7W7P73PqzNh79uyRJHXp0qVAtQEAAMC9CLMAAAAAoIzx8vLSvHnz5OXlpR07dqhz587atGmT0tPTbW1OnDihefPm6Y477tD777/vxmqdt3z5ct19992aP39+jtU9mZmZ2rBhg6ZPny5Juuuuu1ShQgXb9qlTp6pFixZKSUlRt27d9O6779pWbklSbGys1q9frxEjRqhTp045xmzQoIGefvppSdLcuXP12GOP6c8//7Rtj4+P14oVK/Tggw/m6DdhwgSFhYUpPT1d9913n9avX28LiQ4dOqRevXopMjJSvr6+mjNnThEdoesefvhh20qvhx9+WGvWrLHdO+zo0aO67777FB0dbbfvmTNn1LBhQ82ZM0f79+9XRkaGbdvBgwc1fPhwSVK5cuUKHBh17dpV0v8Cpxvt3LlTLVu21BtvvKGjR4/ajpdhGNq5c6cmTJggSapdu7Zt5Vt2mZmZ2rdvnyTCLAAAgNLGy90FAAAAAABKXo8ePbRq1SqNGDFCe/bs0T333CNvb28FBwcrMTExxyqnAQMGuK/QArCGGjt37pQk+fr6KjAwUDExMbbgo2bNmlq0aFGOfoGBgfr+++/18MMPa/fu3Zo0aZKeeuophYSEKCsrS/Hx8ba21hVt2c2ZM0cJCQl67733tHDhQi1cuFCBgYHy9vZWbGysDMPItbIqKChIX331lXr37q0zZ86oT58+8vPzk4+Pj208X19fffrpp2rVqlWRHicvLy+tWrVKXbt21enTpzVw4ED5+vrKz89PcXFx8vHx0apVq9S/f3+7/U+cOKEXXnhBL7zwgjw9PRUSEqLExETbyikfHx8tXrxYFStWLFBdDz/8sP72t7/p2LFj+vPPP9WwYcNcbQ4dOqQpU6ZoypQpts9rXFycLVQLDg7WZ599ZrsnWXabNm3StWvXVLVqVd1zzz0Fqg0AAADuxcosAAAAACijBgwYoOPHj2vGjBlq166dAgMDFRsbK19fX7Vq1UqPPfaYvvjiC9vKI7N74IEHtHTpUo0ePVqtWrVSSEiI4uLiFBQUpHbt2mn27NmKiIhQ48aNc/WtWbOmduzYoc8//1wPPPCAatSooaSkJKWlpalu3brq16+f3nzzTW3bti1XX09PT7377rvasWOHHnnkEd1yyy1KT0+XYRhq2rSpxo4dqzVr1uTq17x5c0VERCg8PFy33XabvLy8lJqaqvr162v8+PGKiIjQwIEDi+VY1atXTwcOHNCUKVMUFhYmwzDk5+engQMHaufOnXrggQfs9qtVq5a++uorTZ48We3bt1eNGjWUmJgoLy8vNW3aVBMnTtThw4ddqrtq1aq2FWzLli3Ltf2OO+7QypUrNWHCBLVp00aVK1dWfHy8/Pz8dNttt2natGk6evRortVzVtZ9jh49Wt7e3gWuDwAAAO5jMQzDcHcRAAAAAAAA27ZtU5cuXVS/fn39+eefslgsRbLfa9eu2QLKP/74Q/Xq1SuS/QIAAKBksDILAAAAAACYQufOnXXvvffq//7v/7Rq1aoi2++7776rhIQEPfbYYwRZAAAApRArswAAAAAAgGkcOnRIt912m5o0aaKDBw/Kw6Nwf4ebmJiosLAwpaSk6Pjx46pWrVoRVQoAAICS4uXuAgAAAAAAAKxatGihhQsX6uTJkzp//rxq1apVqP2dPHlSEydO1O23306QBQAAUEqxMgsAAAAAAAAAAACmxT2zAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBa/w+EdmROGnWCgQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Get the actions from file\n", - "actions = nwbfile.get_acquisition(\"task_recording\").actions\n", - "action_types = nwbfile.get_lab_meta_data(\"task\").action_types\n", - "\n", - "# Plot the data\n", - "fig = plot_actions(\n", - " actions=actions[20:100],\n", - " action_types=action_types,\n", - " figsize=(18,4),\n", - " marker_size=500,\n", - ")\n", - "plt.title(\"Actions\", fontsize=18)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "id": "68ecfe11-c8f4-4449-a1f9-23a331258fea", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAFVCAYAAAD/gzyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyK0lEQVR4nOzde3zP9f//8dtr58229w4YZihKklPOIZskPlQkRDmkQqWPQ+VQyagcOig+KUIOHTQhkUpOY46hHDroyByH2fl8ev/+2G+v72YH23tjzP16ubwvba/n6fF8vd7vWXtcns+nYbVarYiIiIiIiIiIiIiIiIiUkF15ByAiIiIiIiIiIiIiIiLXJyWaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklERERERERERERERERsokSTiIiIiIiIiIiIiIiI2ESJJhEREREREREREREREbGJEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiIiIiIiISElZrVZWrlzJ559/zk8//cT58+ext7fHz8+P6tWr06pVKzp06MA999yDp6en2e69994jJiaGnj170rRp0ysS29UYQ0RERETkWmFYrVZreQchIiIiIiIiUlw5SZxt27aZ1xwcHPD09CQuLo6MjAzz+uLFixkyZIj5fZ06dQgPD893vSxdjTFERERERK4V2jpPREREREREriuDBg1i27Zt2Nvb8/zzz/Pnn3+SmprKxYsXSU5O5tChQ8ycOZMmTZqUd6giIiIiIhWets4TERERERGR68Zff/3FunXrAHj99deZMGFCnnIHBwcaN25M48aNGTduHMnJyeURpoiIiIjIDUMrmkREREREROS6cfDgQfPrBx988LL1XV1dAQgODsYwDMLDwwF4/PHHMQwjzyu3X375heDgYDp16kTdunVxdXXF09OTZs2a8corrxAZGZlvrJKOkWP9+vX07t0bf39/nJ2d8fb25u677+bDDz8kLS2t0LmFhITQrVs3/Pz8cHR0xMvLi1tuuYUHHniAuXPnkpKSctn7IyIiIiJSWlrRJCIiIiIiItelU6dO0aBBg2LVdXd3x8/PjwsXLpCVlYWnp6eZhCpIjx49zISRi4sLbm5uREdHc/DgQQ4ePMiSJUvYvHkz9evXt3mM5ORkBg0axMqVK81rnp6exMbGEhYWRlhYGMuWLePbb7/F29s7T9uhQ4eyePHiPGOnp6fz999/8/fff7Nu3Tq6d+9OnTp1inV/RERERERspRVNIiIiIiIict1o2bKluTIo53ym4njhhReIiIggICAAgNmzZxMREZHnlVvHjh1ZsmQJ4eHhJCcnc/HiRVJSUti0aROtWrXi9OnTDBgwoFRjDBs2jJUrV3LzzTfz2WefERsbS2xsLElJSXz99dfcfPPN7Nmzh6FDh+Zpt2PHDhYvXoydnR0zZ87k4sWLxMfHk5iYSGRkJBs2bGDw4ME4OTkV/8aKiIiIiNjIsFqt1vIOQkRERERERKS4hg0bxoIFCwAwDIOmTZvStm1bmjdvTqtWrWjYsGGh29TVqVOH8PBwFi9ezJAhQ2waPyEhgXr16nHu3DnCwsJo3759iccICwvj7rvvpmrVquzfv99MTuV26tQpbrvtNhITE/n5559p2rQpAG+++Sbjx4+nS5cubNiwwaY5iIiIiIiUFa1oEhERERERkevKBx98wKRJk6hUqRJWq5Wff/6ZDz74gCeeeIJGjRpRrVo1xo4dy7lz567I+O7u7nTs2BHIXl1ki0WLFgHw6KOPFphkAqhZsyZBQUEAeRJKXl5eAFy4cIHMzEybxhcRERERKStKNImIiIiIiMh1xcHBgalTp3L69Gk++eQTnnzySZo0aWJuFXf+/Hneffdd7rjjDn788Uebx/nmm2/o168fN998M5UqVcIwDPO1YsUKIHvVkS127twJZCecqlWrVuhr06ZNAOZ5UQD33HMPLi4u/Pzzz3To0IFFixZx7Ngxm+cpIiIiIlIaDuUdgIiIiIiIiIgtLBYLjz32GI899hgAKSkp7Nixgzlz5rBu3ToiIyPp3bs3f/31Fy4uLsXuNysri8cee4zly5eb1xwcHPD29jaTWbGxsaSkpJCYmGhT7GfOnAEgLi6OuLi4y9ZPSkoyv65bty4LFy5kxIgR7N69m927dwNQpUoVgoKCGDBgAA888ECh2weKiIiIiJQlrWgSERERERGRCsHFxYXOnTuzdu1aBg8eDGSvOPr+++9L1M+iRYtYvnw59vb2vPrqq/z111+kpqYSFRVFREQEERERPPzwwwDYeuxxzpZ3H374IVar9bKvJUuW5Gn/6KOPEh4ezrx58+jXrx8BAQFcuHCBFStW0LNnTzp27FisBJaIiIiISGkp0SQiIiIiIiIVzrBhw8yv//jjjxK1/eKLLwB48sknmTJlCvXq1cPOLu//PkdERJQqvmrVqgF5t8QrKR8fH4YPH84XX3zBiRMn+Pvvv5kwYQKGYRAWFkZwcHCpYhQRERERKQ4lmkRERERERKTCcXd3N792dnY2v85JGBW1EunkyZMANGvWrMDyhIQE9u7dW2j74ozRrl07IPscqLJSt25dpk+fzoABAwDYuHFjmfUtIiIiIlIYJZpERERERETkunHs2DH+/PPPy9ZbunSp+fWdd95pfu3p6QlATExMoW0tFgsAhw4dKrD8tddeIz4+vtD2xRkjZ8XVL7/8wocfflhoPYDExETS0tLM71NTU4us7+rqCpBvFZaIiIiIyJWg3zpFRERERETkuvHrr7/SoEEDunfvzrJlyzh+/LhZlp6ezs8//8zjjz/OrFmzAGjVqhXt27c369xxxx0ArFy5kujo6ALH6Nq1KwALFizgo48+MpM8ERERjBkzhjfffBNfX99CYyzOGB07duTxxx8H4Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dm/Pnz5tlI0eOpG/fvqxatSrP9YSEBObNm8eyZcsA6N69e6ExioiIiIiUFcNq68mlIiIiIiIiIlfZhg0bzERQDicnJ9zd3YmOjs6zXd2dd97JunXrqFGjhnlt+/btBAYGYrVasbe3p2rVqjg5OQGYSauYmBjatm3L0aNHgeyVQZ6ensTGxmK1Whk+fDgpKSksXbqUwYMHs2TJkjzxFGcMgLS0NJ599lkWLlxoXnN3d8fR0ZHY2FiysrLM66dOncLf3x+AIUOG5Fmx5e7ujoODQ54VVO3bt+f777+nUqVKxb21IiIiIiI2UaJJRERERERErit///033377LTt27OCXX37h1KlTJCYm4urqSo0aNWjWrBkPPfQQffr0KXD7uO+++45Zs2bx888/Ex0dbSZ0cv/vcXR0NFOnTmXNmjWcPn0ai8VCo0aNGDZsGI888oiZ7Cko0VTcMXLs3r2bjz76iLCwMM6cOUNGRga+vr7cdttt3H333Tz88MM0atTIrP/PP//w7bffsnXrVn7//XciIiJISEjAx8eHJk2a0L9/fwYNGoS9vX1pb7WIiIiIyGUp0SQiIiIiIiIiIiIiIiI20RlNIiIiIiIiIiIiIiIiYhMlmkRERERERERERERERMQmSjSJiIiIiIiIiIiIiIiITZRoEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbOJQ3gGIyI0jKyuLM2fO4OHhgWEY5R2OiIiIiIiIiIiIiBTAarUSHx9PjRo1sLMres2SEk0ictWcOXOGgICA8g5DRERERERERERERIrh5MmT1KxZs8g6SjSJyFXj4eEBZP9w8vT0LOdoRERERMrWHZM3APDLlPvKORIpip6TiEjZ0c9UuZw7Jm/Q+0PkOhUXF0dAQID5N92iKNEkIldNznZ5np6eSjSJiIhIhWPn7Aag33OucXpOIiJlRz9T5XLsnN30/hC5zhXnCJSiN9YTERERERERERERERERKYQSTSIiIiIiIiIiIiIiImITJZpERERERERERERERETEJjqjSeQKWLNmDQcPHqRp06b07NmzvMMpE8ePH2fJkiUABAcHl2ssIiIiIiIiIiIiInJt0IomkStgzZo1TJkyhTVr1pR3KGXm+PHjTJkyhSlTppR3KCIiIiIiIiIiIiJyjVCiSURERERERERERERERGyiRJOIiIiIiIiIiIiIiIjYRIkmuSGEhobSp08f/P39cXZ2pnLlytxzzz0sXryYzMzMfPWDg4MxDIPAwEAAVqxYQceOHfHx8aFSpUo0b96c999/P1/b0NBQDMNg6dKlACxduhTDMPK8QkNDSz2fiIgIXnzxRRo2bEilSpWoVKkSDRs2ZNy4cZw7d67Qe5ATQ1EKirNOnToEBQXlq5PzGjJkSKnnJCIiIiIiIiIiIiLXH4fyDkDkShs7dizvvvsukJ0gsVgsxMTEsGXLFrZs2cKnn37KmjVr8PDwKLD9+PHjefPNNzEMAy8vL1JSUvjpp5/46aef+Oabb/j6669xdnYGwMnJCT8/P2JjY0lJScHFxQWLxZKnPycnp1LNZ9u2bfTs2ZOYmBgAKlWqBMBvv/3Gb7/9xsKFC1m7di3t27cv1Ti5ValShbi4OKKjowHw8/PLU37pHEVERERERERERETkxqAVTVKhvf/++2aSadiwYZw5c4bo6GhiY2N59913cXBwYMuWLTz11FMFtj948CBvvvkmI0eO5Ny5c0RFRREdHc1rr72GYRhs2LCBiRMnmvXvuusuIiIi6NevHwD9+vUjIiIiz+uuu+6yeT4nT540k0y33347O3bsICEhgYSEBLZv3079+vWJjo7mwQcf5PTp0zaPc6l9+/axevVq8/tL5zR79uwyG0tERERERERERERErh9KNEmFlZyczOTJkwHo378/8+fPp1q1akD2KqDRo0cza9YsAEJCQjhw4EC+PmJjYxk4cCD/+9//qFKlCgCenp688sorvPzyywD873//48yZM1djSkybNo2YmBi8vb3ZvHkz7dq1M8s6dOjApk2b8PT0JCoqiunTp1+VmIqSmppKXFxcnpeIiIiIiIiIiIiIVBxKNEmFtXHjRqKiooDsM5cK8swzz1C9enUAPv/88wLrvPrqqwVef/HFF3F1dSUjI4NVq1aVPuDLsFqtrFixAoARI0aYSbPcatasyYgRIwD44osvrnhMlzN9+nQsFov5CggIKO+QRERERERERERERKQMKdEkFdb+/fsBCAgI4NZbby2wjr29PZ06dcpTP7eAgADq1atXYFtPT0+aN29eaNuyduzYMTNx1rlz50Lr3XvvvQBcvHiRY8eOXfG4ijJx4kRiY2PN18mTJ8s1HhEREREREREREREpWw7lHYDIlXL+/HkA/P39i6xXs2bNPPVzu1zbnPKC2pa13GMUFVfOfHLa3HTTTVc0rqI4Ozvj7OxcbuOLiIiIiIiIiIiIyJWlFU0iIiIiIiIiIiIiIiJiEyWapMKqWrUqAKdOnSqyXk55Tv3cTp8+XWTbnPKC2pa13GMUNafcZbnbODj83wLGlJSUAtvGxsaWJkQRERERERERERERucEo0SQVVosWLYDsxMuff/5ZYJ3MzEy2bt0KQMuWLfOVnzx5kn/++afAtvHx8Rw4cCDPWDns7LI/Wlar1bbgC3DTTTfh4+MDwObNmwutt2nTJgB8fX3zbJvn7e1tfl3YWUl79+4ttN+cOUHZzktERERERERERERErl9KNEmFde+99+Lr6wtAcHBwgXXmz5/PmTNnAOjfv3+BdV577bUCr7/zzjskJyfj4OBA796985R5enoCEBMTY0PkBTMMg379+gHZcUdEROSrc+bMGebPnw/kn8+tt96Kq6srAKtWrcrXNisri+nTpxc6fs6coGznJSIiIiIiIiIiIiLXLyWapMJydXU1E0zLly9nxIgRnDt3DoCkpCTmzJnD6NGjAejXrx/NmzfP14fFYmHp0qWMGjWKyMhIIHsl07Rp05g6dSoAzz77LDVq1MjT7o477gAgLCyMo0ePltmcXnrpJby8vIiKiqJz587s2rXLLNu5cyedO3cmJiYGHx8fJkyYkKeto6OjmRCbNm0aK1asIC0tDYA//viDXr16cfjw4ULHvvXWW3FycgJg4cKFWtUkIiIiIiIiIiIiIko0ScU2cuRIxowZA2SvAqpevTo+Pj5YLBZGjRpFeno6QUFBLFiwoMD2TZs2Zdy4ccyZM4eqVavi4+ODt7c3L7/8Mlarlc6dOzNjxox87Xr37k2VKlWIjo6mQYMGVKlShTp16lCnTh327Nlj83xq1qzJmjVrsFgs/Prrr7Rr1w53d3fc3d1p3749v//+O15eXqxZswZ/f/987adPn06NGjWIj4+nX79+uLu7Y7FYuO2229i6dSurV68udGw3NzcGDhwIwLhx43B3d6d27drUqVOHF154weY5iYiIiIiIiIiIiMj1S4kmqfBmzZrFli1b6N27N35+fiQkJODh4UFQUBAff/wxGzduxMPDo9D2M2fO5IsvvqB9+/ZYrVacnJxo2rQps2fP5vvvv8fFxSVfG29vb7Zv384jjzyCv78/sbGxhIeHEx4eTkpKSqnm07FjR37//Xeef/55GjRoQFZWFlarlQYNGvDCCy/w+++/06FDhwLb1qxZk7179/Lkk0+aiSh3d3cGDRrETz/9RMeOHYsce+7cuQQHB9OoUSMATpw4QXh4uLnaS0RERERERERERERuLA7lHYDI1RAUFERQUJDN7fv162eej1Rct912G8uXL7d5zKJUr16dt99+m7fffrvEbWvWrFnoCi6gyC3xnJ2dmTx5MpMnTy7xuCIiIiIiIiIiIiJS8WhFk4iIiIiIiIiIiIiIiNhEiSYRERERERERERERERGxiRJNIiIiIiIiIiIiIiIiYhOd0SRylYWEhDBq1KgStenXrx+zZ8++QhGJiIiIiIiIiIiIiNjGsFqt1vIOQuRGsmTJEh5//PEStRk8eDBLliy5MgFdRXFxcVgsFmJjY/H09CzvcKQCqjNhvc1tj8/oXoaRiIiIyPWoNL9LgH6fEBHJof83ExG5NpTm53FWahIn3+tbrL/lakWTyFU2ZMgQhgwZUt5hiIiIiIiIiIiIiIiUms5oEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbKJE0w3CMAwMwyA0NPSa7O9KCgwMxDAMgoODy7Tf4OBgDMMgMDCwTPu9XsYXEREREREREREREXEo7wBEJK+DBw+yZs0avLy8GD16dHmHIyIiIiIiIiIiIiJSKCWabhD169cHwM3NrZwjufpq1apF/fr1qVy5cnmHUiwHDx5kypQp1K5du8hEU+XKlalfvz61atW6esGJiIiIiIiIiIiIiOSiRNMN4ujRo+UdQrlZtmxZeYdwRYwcOZKRI0eWdxgiIiIiIiIiIiIicgPTGU0iIiIiIiIiIiIiIiJiEyWaSiAwMBDDMAgODiYtLY0ZM2bQuHFjKlWqhLe3N/feey/fffddgW0Nw8AwDEJDQ4vVf1Ht4+PjeeWVV7jttttwdXXF19eXHj16sHfv3kL7Lmr86OhoXn31Ve688048PT1xcnKiWrVqNG7cmBEjRrB58+Yi74st8RRXeno6lStXxjAM5syZU2Tdjz/+GMMw8PT0JCkpybxe1H3NsXr1anr06IGfnx9OTk74+fnRo0cPvvrqK5viTkpKYvny5QwaNIimTZtSpUoVnJ2dqVGjBj179izyffL4448DEB4ebj63nFfuOQQHB2MYBoGBgYXG8fPPPzNo0CBq166Ni4sL3t7e3HXXXbz33nukpqYW2GbJkiUYhkGdOnUAOHDgAH379qV69eo4Oztz8803M3bsWKKjo226NyIiIiIiIiIiIiJScWjrPBukpaXRuXNnwsLCcHBwwN3dnZiYGDZt2sSmTZuYPHlykUmN0jh79ix33nknf//9Ny4uLtjZ2REVFcX69evZuHEj69ato0uXLsXu79SpU7Rr144TJ04AYGdnh8ViITIyknPnznHkyBGOHj3KPffcc1XiuZSjoyOPPPIIc+fO5ZNPPuG///1voXU/+eQTAHr37l3ss6jS0tIYNGgQISEhQN75r1+/nvXr19O/f3+WLl2Ko6NjseNesWKFmTDKSX45ODhw9uxZvv76a77++muef/553n777Tzt/Pz8SE5OJi4uDjs7O6pUqZKn3N3dvdgxvPvuuzz//PNYrVYALBYLiYmJ7N69m927d7N48WK+//57qlevXmgfn3/+OUOGDCE9PR2LxUJGRgbHjh3j3Xff5YcffmDPnj0liklEREREREREREREKhataLLBBx98wI8//si8efOIj48nOjqaEydO8PDDDwMwZcoU1q5de0XGfvbZZ3FycmLLli0kJiaSkJDAjz/+SP369UlLS2PYsGFkZWUVu7/g4GBOnDhBnTp12LRpE2lpaURFRZGamsrx48f58MMPadOmzVWLpyCDBg0CYP/+/YWeNXXixAm2bduWp35xvPTSS4SEhGAYBpMmTeLixYtERUURGRnJSy+9BMDy5cuZNGlSiWL29vbmhRdeYMeOHSQkJBATE0NiYiJnzpxhypQpODo68s477+R7n0RERDB79mwAAgICiIiIyPN64YUXijX+N998w9ixY7FarTz44IP8+++/xMTEkJCQwLJly/Dw8ODw4cM8/PDDZGZmFtjHhQsXGDp0KIMHD+bEiRPExMQQHx/P+++/j6OjI7/++itvvvlmie6LiIiIiIiIiIiIiFQsSjTZIDY2lg8++IDhw4fj4uICZCcFQkJCuPvuuwHMJEVZc3BwYOvWrQQFBWFnZ4dhGLRs2ZIvv/wSyN5ubffu3cXub9euXQBMmzaNe+65B3t7ewDs7e2pXbs2I0aMYMaMGVctnoK0atWK+vXrA7Bs2bIC63z22WdYrVZq1apV5FZyuZ0+fdpM6kyYMIGpU6fi5eUFZCeK3njjDcaOHQvArFmzOHv2bLFjfvDBB3nrrbdo165dntVV1atX59VXX2XatGkAl90O0Fbjxo0DoEOHDqxatYqbbroJACcnJwYOHMhnn30GZD//wrYHTEpK4pFHHmHBggUEBAQA4ObmxrPPPstzzz0HZCfhipKamkpcXFyel4iIiIiIiIiIiIhUHEo02SAgIMDcFi03Ozs7XnnlFQB+/fVXjhw5UuZjDxs2jKpVq+a73qhRIzOZcPjw4WL3l5NYKUkS5UrGU5iBAwcC/5dQulTOtnmPPvoohmEUq89Vq1aRkZGBi4sLEyZMKLDOK6+8grOzM+np6axcudLG6PPr3r07ALt37y50RZGtDh8+zO+//w5kx5+TPMzt/vvvp1WrVkDRyaKc9/OlHnzwQQD+/vvvPOdhXWr69OlYLBbzlZOwEhEREREREREREZGKQYkmGwQGBhaazOjQoQMODtlHX+3fv7/Mx27dunWhZTVq1AAgKiqq2P316NEDyF7RM2zYML7//vsSrTop63gKM3DgQAzDyLNFXo4DBw6YiZWSbJuX83xatmyJp6dngXW8vb1p0aJFnvrFde7cOSZPnkzbtm3x9fXFwcEBwzAwDIPbb78dyF41FB0dXaJ+LycnTgcHBzp27FhovXvvvTdP/Uv5+PhQr169Astyni1QZPwTJ04kNjbWfJ08efKy8YuIiIiIiIiIiIjI9UOJJhv4+/sXWubi4oKvry8A58+fL/OxPTw8Ci3LSXClp6cXu78XX3yRvn37kp6ezoIFC+jWrRteXl40atSIF198kT/++OOqxlOYWrVqmUmTnNVLOXK+b9myJbfddlux+8x5PkU9T4CaNWvmqV8cu3fv5rbbbmPq1Kns2bOHqKgoXF1dqVq1Kn5+flSuXNmsm5iYWOx+iyMnzsqVK+Ps7FxovcvNqzjPFop+vs7Oznh6euZ5iYiIiIiIiIiIiEjFoUTTDc7R0ZGQkBAOHjzIq6++SqdOnXBzc+OXX37h7bffpmHDhrzzzjvlHSbwf6uVVq5cSXJyMgAZGRnm1m852+uVt4yMDPr3709MTAxNmzbl22+/JS4ujvj4eM6dO0dERAR79uwx6xe0FaCIiIiIiIiIiIiIyPVAiSYbnD59utCy1NRULl68CJDn7KKcc3JSUlIKbRsbG1tGEZZckyZNmDJlCps3byYmJoZNmzZx9913k5mZyYsvvsihQ4fKLbYcDz/8MK6ursTFxfH1118D8MMPP3D+/HkcHR3p379/ifrLeT6nTp0qsl5OeUFnURVk9+7dhIeHY29vzzfffEO3bt3yrQ6KiIgoUawlkRNnZGQkqamphdYr6bxERERERERERERERC6lRJMNtm3bVugqlLCwMDIyMgDMs30g+6wfoNAzauLj481zhsqbg4MD99xzD+vXr8fZ2Rmr1cqmTZvKOyw8PDzo2bMn8H/b5eX8t1u3bnm2oyuO3GcvFZbki4mJyXOWU3HkPOMqVaoUui1fUffTzi77Y2nrSqeceWVkZOQ7z6qgGIo7LxERERERERERERGRSynRZIMTJ06wdOnSfNezsrKYNm0aALfffjuNGjUyy5o0aQLAqlWrCuzz7bffLnL1yZVS1JjOzs7mSqyc5Ed5y9k+74cffuCvv/4yVzblXC+J3r174+DgQEpKCjNnziywzrRp00hNTcXR0ZHevXsXq1+LxQLAuXPnOHfuXL7yU6dOMWfOnELb55xjFBMTU6zxLtW4cWNuv/12AF5//XUyMzPz1fn222/Zu3cvQIlXgomIiIiIiIiIiIiI5Lg2sgfXGYvFwtNPP82CBQvMrfBOnjxJ//792bp1K5D9B/7ccv6Yv2HDBiZPnkxcXByQvb3ZSy+9xOuvv46Xl9fVm8T/V7t2bSZOnMiePXvyJJ3+/vtvHn30UZKSkrCzs+O+++676rEV5N5776VatWpkZGQwYMAAkpOT8fb2pkePHiXuy9/fn1GjRgEwY8YMJk+ebCZ3YmJimDRpEm+99RYAY8eOpXr16sXqt3379lSqVAmr1Urfvn35888/AcjMzGTDhg0EBgZiGEah7e+44w4A4uLiWLFiRYnnBZiJs7CwMB5++GGOHTsGQHp6Op999pn5frzrrrvMVWIiIiIiIiIiIiIiIiWlRJMNnnnmGVq0aMGwYcPw9PTEx8eHWrVqmUmBV155hV69euVpM2TIEIKCggCYOnUqXl5e+Pj4ULVqVWbMmMHMmTPNVU9X07lz55gxYwZt27bFzc0NHx8fXF1dueWWW/jyyy8xDIN33nnHXCFT3uzt7RkwYACAuaVd3759cXZ2tqm/adOm0bdvX6xWK1OnTsXX1xcfHx98fX3NZGH//v157bXXit2nxWLh7bffBmD79u3Ur18fDw8P3N3d6dq1K7GxsSxevLjQ9vXq1eOee+4BoF+/fnh6elKnTh3q1KnDe++9V6wYevTowaxZszAMgzVr1nDzzTfj7e2Nu7s7jz32GHFxcTRq1Igvv/zSXLUmIiIiIiIiIiIiIlJSSjTZwMnJic2bNzNt2jTq169PamoqFovFPNeooKSEvb0969evZ8qUKdx22204OTlhGAZdunRh48aNvPDCC+Uwk+wt6CZOnEiHDh0ICAggOTkZyE52PP744+zbt4/Ro0eXS2yFuXSbPFu2zcvh5ORESEgIK1eupFu3bvj6+hIfH4+vry/dunVj9erVfP755zg6Opao3xEjRrB+/XoCAwNxd3cnIyMDf39/nnvuOQ4dOpRnW8WCrFy5kjFjxnDrrbeSnp5OeHg44eHhJdpOb8yYMezfv5/HHnuMgIAAkpKScHV1pU2bNrz77rvs27ePGjVqlGheIiIiIiIiIiIiIiK5GVar1VraTrKysjhw4ADh4eEkJSWV6g//17LAwEC2bdvG5MmTCQ4OLu9wRK47cXFxWCwWYmNjzbOoRMpSnQnrbW57fEb3MoxERERErkel+V0C9PuEiEgO/b+ZiMi1oTQ/j7NSkzj5Xt9i/S231Cua/ve//1G9enXatGlDv379ePzxx/OUR0dHc8cdd3Dbbbdx7ty50g4nIiIiIiIiIiIiIiIi14hSJZqeffZZRo8ezYULF/Dw8MAwjHx1vL29ufPOO/nrr7/48ssvSzOciIiIiIiIiIiIiIiIXENsTjR9//33fPjhh7i7u/PVV18RExNDlSpVCqw7YMAArFYrmzZtsjlQERERERERERERERERubY42Npw3rx5GIbB1KlTefDBB4us27ZtWwCOHDli63BSAYwaNYqQkJAStZk9ezb9+vW7QhGJFC1nD9OKsD90cfdjvd7ner3Hb4vr+X16PccuIiIVk/5NunEV9vvyjfqe0P2Q0tJ7RaR86f+3JUdp3gNxcXFY3iteXZsTTXv37gVg6NChl61rsVjw9PQkIiLC1uGuCaGhoeUdwnUtNja2xOd0JScnX6FoRERERERERERERESktGxONEVFRWGxWPDw8ChWfTs7O7KysmwdTiqAJUuWsGTJkvIOQ0REREREREREREREyojNZzR5enoSFxdHenr6ZetGRUURGxtL5cqVbR1ORERERERERERERERErjE2J5oaNWqE1Wo1t9AryvLly7FarbRo0cLW4UREREREREREREREROQaY3Oi6eGHH8ZqtRIcHFzklniHDh3ilVdewTAM+vfvb+twIiIiIiIiIiIiIiIico2xOdH01FNPcfvtt7N161buvfdevvnmGzIzMwH466+/2LhxI//973+56667iI2NpU2bNvTp06fMAheR8hMYGIhhGAQHB5d3KCIiIiIiIiIiIiJSjhxsbejo6Mj69evp2rUrW7duJTQ01Cy77bbbzK+tViuNGjVi1apVGIZRqmBFRERERERERERERETk2mHziiaA2rVrc+DAAaZMmUKtWrWwWq15XjVq1CA4OJhdu3ZRrVq1sopZRERERERERERERERErgE2r2jK4ebmxqRJk5g0aRJnzpzhzJkzZGZmUq1aNWrXrl0WMYqIiIiIiIiIiIiIiMg1qNSJptxq1KhBjRo1yrJLERERERERERERERERuUaVaus8ketZYGAghmEQHBxMeno677zzDi1atMDLywvDMPKcO/bLL78wbNgwbrnlFtzc3HB3d6dx48a8/PLLREZG5uv7ueeewzAMHn744Xxl6enpeHh4YBgGVapUwWq15qtz3333YRgGkyZNynP92LFjzJw5k65du3LrrbdSqVIl3N3duf322xk9ejQnTpwok/lmZmbyv//9jzvvvJNKlSrh4+NDYGAgK1euLMadFREREREREREREZEbRalXNFmtVlavXs0XX3zB/v37OX/+PABVq1alRYsWPPLII/Tq1Qs7O+W05NqUkpJCYGAgu3btwsHBwUwC5XjzzTeZOHEiWVlZQPZ2kenp6Rw5coQjR46wePFi1q9fT7Nmzcw2QUFBvP/++4SGhmK1WvP09+OPP5KQkABAZGQkR44coXHjxmZ5eno6O3bsAKBTp055Yn388cfZtm0bAE5OTnh4eBAdHc3vv//O77//zpIlS/jmm29o3769zfNNTU3lwQcfZMOGDQDY2dnh5OTE9u3b2bZtG+PHjy/ZDRYRERERERERERGRCqtU2Z8TJ07Qtm1b+vbty+rVqwkPDyc5OZnk5GTCw8NZvXo1ffv2pU2bNoSHh5dVzCJlau7cuRw+fJjFixcTFxdHVFQUFy5coHHjxixatIjx48fj5ubGG2+8wdmzZ0lMTCQpKYn9+/fTqVMnzp49ywMPPGAmj+D/Vg9dvHiRQ4cO5Rlv69atAHh6egKwZcuWPOV79+4lKSkJZ2dn2rZtm6esadOmzJ07lz///JPk5GQiIyNJTU1l7969dO3aldjYWPr160dycrJN8wWYOHEiGzZswDAMXn/9daKjo4mOjiYiIoKnn36amTNncvDgQZvvt4iIiIiIiIiIiIhUHDavaIqNjaVjx46cOHECq9XKXXfdRadOnfD39wfg9OnTbN26lZ07d7J//36CgoL4+eefsVgsZRa8SFlISEhg7dq13H///eY1X19f4uPjeeGFFwBYuXIl9913n1lub29P8+bN2bBhA23atOHAgQMsXLiQ0aNHA+Dj40OTJk04ePAgW7ZsoWnTpmbbnMTS6NGjmTp1Klu2bDHb5S5v27YtLi4ueWJ977338sXv4OBAq1at+Oabb7jzzjs5fPgwq1at4rHHHivRfAHOnDnD//73PwBeeeUVXn75ZbNO1apV+eCDD4iJiWH58uUF9n2p1NRUUlNTze/j4uKK1U5ERERERERERERErg82r2h64403CA8Px9vbm40bN7Jjxw6mTp3K8OHDGT58OFOnTiUsLIzNmzfj4+NDeHg406ZNK8vYRcpEw4YN8yRdcqxatYqYmBiaNWuWJ8mUm4ODA/379wcwt5rLERQUBORdsZSamsru3bupVKkSY8eONbeky8zMNOvkrHjKaV9c9vb2dO3aFcDceq8ghc0XshNqGRkZuLq6mkm2SwUHBxc7punTp2OxWMxXQEBAsduKiIiIiIiIiIiIyLXP5kTTV199hWEYzJs3j3vuuafQekFBQcybNw+r1cqqVatsHU7kimnXrl2B13fu3AnA77//TrVq1Qp9TZ06FSDf9pA55yuFhYWZiaRdu3aRkpJC+/btsVgstG7dmtjYWA4cOABkn5+0e/duoPBEU1hYGEOGDOG2227D3d0dwzDM15tvvgnAqVOnSjxfgP379wPQokULc2u/S916663mysXLmThxIrGxsebr5MmTxWonIiIiIiIiIiIiItcHm7fOO3XqFE5OTjz00EOXrdurVy+cnZ05ffq0rcOJXDFVq1Yt8PqZM2eA7ORPSkrKZftJSkrK8/3dd9+Nvb09cXFx7Nu3jzZt2pirlXKSUJ06dSIsLIwtW7bQqlUrdu3aRWpqKq6urrRu3TrfGOPHjzeTSZC9isnb2xsnJycge1u8xMREEhMTSzxfgPPnzwNcNpFUs2bNYn2enZ2dcXZ2vmw9EREREREREREREbk+2byiydvbGxcXF+zsLt+Fvb09Li4ueHt72zqcyBVjb29f4PWcVUj9+vXDarVe9nX8+PE87T09PWnevDnwf9vn5fw3d6KpoPJ27dqZyaMcGzduNJNMzzzzDEeOHCE1NZWoqCgiIiKIiIhgzJgxAFit1hLPV0RERERERERERESkpGxONN11113ExcXx559/Xrbun3/+SWxsLO3bt7d1OJGrrlq1akD+LfFKIvc5TYmJifz44494eXlx5513AtCmTRtcXV3ZuXMnaWlp+RJRuX3xxRcA3HfffcydO5c77rgjX9IoIiLC5ljh/1Y7XW61klYnioiIiIiIiIiIiAiUItE0YcIEHB0deeaZZ0hNTS20XlpaGs888wyOjo5MmDDB1uFErrqcs4wOHDjA2bNnbeojJ9G0a9cuNm/eTHp6Oh07djRXAjo5OdGuXTuSkpLYtGkT+/bty9Mut5zzjZo1a1bgWFar1UxU2apFixZA9llNCQkJBdb566+/ijwDSkRERERERERERERuHDYnmlq0aMGKFSs4cOAATZs2ZfHixRw/fpz09HTS09M5fvw4ixcvplmzZvz000+sXLnSXMUhcj3o06cPXl5epKenM3bs2CK3o8vKyiImJibf9fbt2+Po6EhycjLTpk0D8q9WykkqTZ06lYyMDNzd3c2ET24WiwWAQ4cOFRjDvHnz+Pfff4s1t8L07t0be3t7kpOTefvttwusM3Xq1FKNISIiIiIiIiIiIiIVh82JJnt7e3r16mVun/fkk09St25dXFxccHFxoW7dujz55JMcPXqU2NhYevbsib29fb6Xg4NDWc5HpMx4eXnx3nvvAdnb1nXv3p29e/eSlZUFZCeXfv/9d9555x0aNmzIN998k6+PSpUq0apVKwD27t0L5E805XyfU96hQ4cCPxddu3YF4LvvvuO1114jMTERgJiYGKZNm8Zzzz2Hr69vqebs7+/Ps88+C8Brr73G9OnTiY+PB+DChQuMHDmSTz/91Ex6iYiIiIiIiIiIiMiNzeZEk9VqLbOXyLVq8ODBfPjhhzg5OfHdd9/Rpk0b3NzcqFy5Mi4uLtx+++288MILHD16FMMwCuwjd2KpatWq3HHHHXnKW7RogYeHh/l9QdvmAQwaNIgOHToA8Oqrr+Lh4YGPjw++vr68/PLLdO3alaeffrq0U2bmzJl07tyZrKwsXnrpJby9vfHx8cHPz4+5c+cyfvx4mjZtWupxREREREREREREROT6Z/Nyoq1bt5ZlHCLXrBEjRtC1a1fmzp3Lxo0bOXbsGDExMXh6elK3bl3atm3LAw88kG+lUo6goCBee+018+tLOTg40KFDB7799ttC6wA4Ojryww8/MGPGDJYvX87x48exWq20atWKwYMHM2zYsDLZ1s7FxYXvvvuODz74gMWLF/PHH39gtVrp0KEDI0eOpE+fPgQGBpZ6HBERERERERERERG5/hlWLSkSkaskLi4Oi8VCbGwsnp6e5R3OZdWZsB6A4zO6l3MkpZczl8upCHO90VzP79PrOXYRERGpWAr7fflG/T1F90NE5Pqm/9+WslCSv+XavHWeiIiIiIiIiIiIiIiI3NhsTjQNHTqUvXv3lmUsIiIiIiIiIiIiIiIich2xOdG0ZMkS7rrrLpo0acIHH3xAXFxcWcYlIiIiIiIiIiIiIiIi1zibz2jq0KEDO3fuzO7EMHB1daVfv34MGzaM1q1bl2mQIlIxXG9nNF1PLncGk/bkFRERub4V97xFuTz9XiS56QyL/OpMWK/7YYMb9ee03itSEVWEz7M+m1dXcd4z1+MzuSpnNIWFhfH7778zZswYfH19SUpKyrPK6cMPP9QqJxERERERERERERERkQrM5kQTQP369XnnnXc4deoUn3/+OYGBgQAcOXKEkSNHUqNGDZ544gmd5SQiIiIiIiIiIiIiIlIBlSrRlMPJyYlHHnmEzZs38+effzJu3DiqVq1KUlISixcv1ionERERERERERERERGRCqhMEk251a1blxkzZnDy5ElWrVpF69atsVqt/PLLL+Yqp2HDhvH777+X9dAiIiIiIiIiIiIiIiJyFZV5oilHWFgYK1as4ODBgxiGgdVqBSApKYlFixbRuHFjRo8eTVZW1pUKQURERERERERERERERK6gMk00XbhwgTfffJNbb72Vzp07ExISQmpqKnfeeScLFy4kOjqaL7/8kg4dOpCZmcn//vc/pk+fXpYhiMhVcPz4cQzDwDAMjh8/Xt7hiIiIiIiIiIiIiEg5KZNE08aNG+nTpw8BAQFMnDiRv//+G1dXV5544gn27dvHvn37GDp0KJ6envTu3ZvQ0FDmzZuH1WplyZIlZRGCiIiIiIiIiIiIiIiIXGUOtjaMiIjg448/ZtGiRRw/ftzcGu/2229nxIgRDBo0CE9Pz0LbDxs2jAkTJhAeHm5rCCIiIiIiIiIiIiIiIlKObE401apVi8zMTKxWK05OTvTu3ZsRI0bQoUOHYvfh6elJbGysrSGIiIiIiIiIiIiIiIhIObI50ZSRkcFNN93E8OHDGTp0KJUrVy5xHyEhIaSkpNgagoiIiIiIiIiIiIiIiJQjm89o+u677/jnn38YN26cTUkmgNatW9OxY0dbQyiW6OhoFi1aRN++fWnUqBE+Pj64uLhQu3ZtBgwYwJ49ewpsFxwcjGEYBAYGArB582a6d+9OlSpVcHFxoUGDBkyZMqXQRNmQIUMwDIMhQ4YAsHLlSgIDA/Hx8cHNzY2mTZsye/ZssrKyiow/NDSUPn364O/vj7OzM5UrV+aee+5h8eLFZGZmFmvsgixZsgTDMKhTp84Vi/3kyZOMGzeOpk2bYrFYcHV1pW7dujz44IMsW7as0Hu3c+dOHnvsMWrXro2LiwsWi4VWrVoxc+ZMEhISihyzuI4fP45hGBiGwfHjx/nnn38YNmwYN910E87OzvnuS1ZWFp999hn/+c9/8PPzw8nJiSpVqtClSxeWL19ubh2ZIzMzEy8vLwzD4Jtvvsk3/vLly83xX3jhhXzlZ8+eNcv/+eefPHFs3ryZ//73v7Rp04aaNWvi5OSEr68vHTt2ZN68eaSnp5fJnE+fPs3w4cMJCAjA2dmZmjVr8vjjj/P3338X8y6LiIiIiIiIiIiISEVn84qmBg0acPr0afz9/YtV/8yZM2RkZFCrVi1bh7TJ7NmzmTJlCgD29vbmuVEnTpzgxIkTfPHFF7z33nv897//LbSPt956i/HjxwNgsVhIS0vj6NGjBAcHs23bNjZu3Ii9vX2h7UeOHMncuXOxs7PD09OT5ORkDh06xOjRo/npp59YunRpge3Gjh3Lu+++C4BhGFgsFmJiYtiyZQtbtmzh008/Zc2aNXh4eNh0b4rD1tg/+eQThg0bZiaTnJyc8PDw4MSJE/z777+sXbuWxo0b07RpU7NNVlYWY8aMYc6cOeY1d3d3EhMT2bdvH/v27WPx4sVs2LCB2rVrl9kcd+3axfDhw0lISMDNzQ1HR8c85VFRUfTq1Yvt27eb1ywWC5GRkWzcuJGNGzfyxRdf8OWXX+Lk5ARkv9fuvvtu1q1bx5YtW+jRo0eePrds2VLg15deq1WrFnXr1jWvnzhxgs6dO5vfu7u74+bmRlRUFNu3b2f79u18/vnnbNiwAVdXV5vn/NNPP9G5c2eio6MBcHV1JTY2liVLlrB69WoWLFhQaN8iIiIiIiIiIiIicuOweUVTnTp1aNWqVbHrt2vXjptvvtnW4WxWo0YNJk+ezP79+0lKSiIqKork5GT+/fdfRo0aBWQndH7++ecC2x86dIgJEyYwYcIEzp8/T3R0NDExMbz66qsAbN26tdBkC8DatWtZsGABs2bNIjo6mujoaCIjI3nyyScBWLZsWYGJhvfff99MMg0bNowzZ84QHR1NbGws7777Lg4ODmzZsoWnnnqqVPenKLbGvn79egYPHkxKSgrt2rUjLCyM5ORkIiMjSUxMJCwsjKeeespMyuSYPHkyc+bMoWrVqsydO5eLFy8SHx9PcnIyW7dupVmzZvzxxx889NBDl11NVRLDhw+nYcOG7Nu3j8TERBISEvjhhx+A7JVJDz30ENu3b6dp06asW7eOxMREYmJiSEhIYOnSpVStWpW1a9eaycgcQUFBQMGJpK1btwLZ55QdOnSIqKioAstz+sjh4ODAo48+ytq1a837ExMTQ3x8PIsXL6ZGjRqEhYXx8ssv2zzn+Ph4evXqRXR0NLVq1eKHH34gMTGR+Ph4du3aRUBAAMOHDy/u7RURERERERERERGRCszmRBOQb7uwsq5fFoYNG0ZwcDDNmzc3ExuGYXDTTTfx3nvv8cwzz5CZmcncuXMLbB8TE8OkSZOYNm2auUWgp6cnU6ZM4aGHHgKyt0ErTHR0NPPnz2fMmDHmaipfX18WLFhA8+bNC2yfnJzM5MmTAejfvz/z58+nWrVqAFSqVInRo0cza9YsIPucqwMHDth0by7HltgzMjJ47rnnsFqttG/fni1bttC+fXvs7LLfak5OTrRv356PPvqI22+/3Wx3/Phxpk+fjqurKz/88APPPPMMPj4+ADg6OhIYGMi2bduoWbMmP/30E2vXri2zefr6+rJp0yZatGhhXrv11lsB+Pzzz9m2bRu33XYboaGh9OjRAzc3NyD7WQwaNIhvv/0WwzD44IMPOH/+vNlHp06dADh8+DAXL140r584cYJ//vmHunXr0qNHD7KysggNDc0TU05y6tJEU82aNfn000+5//77zfsD2SubhgwZwtdffw3ARx99VOT5Z0XN+cMPP+TEiRM4OTnx/fffc++992IYBgBt27Zl06ZN5veXk5qaSlxcXJ6XiIiIiIiIiIiIiFQcpUo0lURKSgoODjbv1HfFdO/eHYAdO3YUWO7s7FzgGToADz74IJCdSChMQEAAgwcPLrDsgQceKLD9xo0bzRUuwcHBBbZ95plnqF69OpCdDLkSbIl969atHDt2DIB3330336qlwixZsoTMzEy6du1KkyZNCqzj4eFBz549AdiwYUOx+i2OkSNH4u7uXmDZokWLAHj66aexWCwF1mnevDkNGzYkLS3NXIkE0LhxY3x9fbFarXmu53zdqVMnMxmVe9VTeHi4eQ8vTTRdTosWLahatSqJiYkcPHiw0HpFzfmLL74AoE+fPjRo0CBfebVq1RgxYkSx4pk+fToWi8V8BQQEFKudiIiIiIiIiIiIiFwfrkqi6cyZM1y4cAFfX9+rMVw+//77Ly+88ALNmzfHy8sLe3t7DMPAMAz+85//AHDq1KkC2zZs2LDQP8jXqFEDIN+2Z7m1bNmy0NUfhbXfv38/kJ3oyVllcil7e3szSZFTv6zZEvuuXbuA7GRE7tUyl7Nz504AfvjhB6pVq1boa/HixUB2MqastGvXrsDrmZmZ7NmzB8hO+BUV1x9//JEvLsMwCAwMBAo+k6lTp04Fbq+X8/XNN99c4JlmaWlpzJs3jy5dulCjRg2cnZ3N97NhGOaqqsLe00XNOS0tjSNHjpjxFaaostwmTpxIbGys+Tp58mSx2omIiIiIiIiIiIjI9aHYS4y2b9+eb3uvhIQEpk6dWmgbq9VKTEwM3377LVarldatW9scqK2++uor+vfvT2pqqnnN09MTFxcXDMMgLS2N6OhoEhMTC2zv4eFRaN85K7QyMjIKrVOc9unp6Xmu5yQK/P39C20L2duo5a5f1myJPSIiAoDatWuXaKwzZ84AkJiYWOizyC0pKalE/RelatWqBV6Piooy3zfR0dHF6uvSuIKCgli1alWeRFLuFU1Vq1aldu3a/P7770RERFCtWrVCz2eC7GfduXNnMxkE4OLiQuXKlbG3twfgwoULZGVlFXkfi5pzzvu5qPdfznvvcpydnXF2di5WXRERERERERERERG5/hQ70bR161amTJmSZ4VLYmIiU6ZMuWxbq9WKi4sLEydOtC1KG128eJEhQ4aQmppKp06dePXVV2nVqhWurq5mnc2bN9O5c+erGldFVtyzey6VmZkJwPjx45kxY0ZZhnRZOQmaS+XEBPDdd9/RtWvXEveds/Lnjz/+4MyZMyQlJXHy5EkaNmxoJns6derE4sWL2bJlCwMGDCgy0TRmzBiOHDmCr68vb731Ft26dTPP78oREBDAqVOnijwTrbA5i4iIiIiIiIiIiIiURLETTXXq1KFjx47m99u2bcPR0ZG2bdsW2sbOzg5PT0/uuOMOBg8eTL169UoXbQl9++23xMXF4e3tzbp163Bzc8tXJ2cFzrUkJwFR1NZnucsvXZ2Ss9ooJSWl0LaxsbGlCbFQOUmPkm5tl7P9XFluiVdavr6+ODg4kJGRYXNcDRo0oFq1akRERLBlyxZzxVPureeCgoLMRFOLFi3M53rp9nTp6emsXr0agPfff59HHnkk33iZmZlERkbaFCuAj48P9vb2ZGZmcvr06ULrFVUmIiIiIiIiIiIiIjeOYieaBg8ezODBg83v7ezs8PHxMVdfXItyzoOpX79+gUkmgE2bNl3NkIol52yjU6dO8eeffxZ4TlNmZqZ571u2bJmnzNvbG6DI83D27t1bVuHmcddddwHZCbz9+/cX+5ymdu3asW3bNjZt2kRKSgouLi5XJL6ScHR0pFWrVuzatYt169YxfPhwm/oJDAzkiy++YMuWLSQnJwN5k0g5X2/ZssV8lvXr16d69ep5+rlw4YKZPGzWrFmBY+3YsaPIBOPlODk50bhxY37++We2bt3K0KFDC6yXeytAEREREREREREREblx2dnacPHixbz33ntlGErZs1gsAPz5558F/vH94MGDfP7551c7rMu699578fX1BSA4OLjAOvPnzzfPNerfv3+esiZNmgCwb9++ApNNv//+u7kypqwFBQVx8803A9nbvKWlpRWr3dChQ3FwcCAyMpLJkycXWTctLY2EhIRSx1ocw4YNA7JXx3377bdF1o2Kiirweu5EUmhoKHZ2dgQGBprl/v7+3HLLLRw7dozFixcDBW+b5+npaW5NeOjQoXzlGRkZvPzyy5ef1GX069cPgC+//JI//vgjX/n58+eZN29eqccRERERERERERERkeufzYmmwYMH07dv37KMpcx16dIFOzs7oqKiePTRR83tvtLS0lixYgVdunTBw8OjnKPMz9XV1UwwLV++nBEjRnDu3DkAkpKSmDNnDqNHjwaykwLNmzfP0/7+++/H3d2d9PR0+vbtayYL0tPT+frrr+ncuTOVKlW6IrHb29vz/vvvYxgGO3bs4J577mHHjh1kZWUB2fc+NDSUxx57jN9++81sV7duXSZNmgTAm2++yaBBg/jll1/M8oyMDA4ePMjUqVOpV68eBw8evCLxX+qxxx6jc+fOWK1WevXqxeuvv24m+CD7nLKtW7fy7LPPmgm2S+UkjcLDw4mIiKBZs2Z4eXnlqZOTjMpZaVZQosnd3Z127doBMHbsWLZs2WLe119++YX//Oc/7N+/v9TP9umnn6ZmzZqkpqbStWtXNm/ebJ73tHfvXjp37myOKyIiIiIiIiIiIiI3NpsTTdeDW265hRdffBGA1atXU7NmTby8vHB3d6dfv364u7szZ86cco6yYCNHjmTMmDFA9uql6tWr4+Pjg8ViYdSoUaSnpxMUFMSCBQvytbVYLLz33nsYhsGePXu47bbb8PT0xN3dnZ49e1KrVi2mTp16xWLv1q0bS5YswdnZmR07dtChQwfc3NyoXLkylSpVIigoiM8++yzfaqdJkyYxadIkDMPgk08+oVGjRmY7FxcXmjVrxuTJkzl58qS5sudKs7e3Z9WqVfTo0YO0tDQmTZqEv78/FosFb29vPDw86NSpEx988AGJiYkF9lGvXj0CAgLM7y89ewnyJ5Zyr3jK7b333qNSpUqcPn2ae+65Bzc3Nzw9PWnUqBFbt25lwYIFVK5c2fYJk71y6quvvsLLy4vjx4/TuXNn3N3d8fDwoE2bNhw/fpz58+eXagwRERERERERERERqRgqdKIJYMaMGSxbtoxWrVrh6upKeno69erV46WXXuLnn3+mRo0a5R1ioWbNmsWWLVvo3bs3fn5+JCQk4OHhQVBQEB9//DEbN24sdEXWE088wfr16+nUqROenp5kZGRw6623MmPGDLZt23bFVjTlGDRoEEePHmX06NHcfvvtODg4kJycTO3atenZsyeffPIJDRo0yNPGMAymTp3K4cOHeeaZZ2jQoAH29vbExsbi7e3NXXfdxYsvvsiuXbvMlT1Xg6enJ+vWrePbb7+lX79+1KpVi9TUVJKSkvD396dLly5Mnz69wG3mcuROJBWWaMpJnjVs2JCqVasW2E/z5s358ccf6du3L5UrVyYrKwsPDw/69u3Lrl27GDhwYClnm61FixYcPnyYJ598En9/fzIyMrBYLAwePJiffvqJVq1alck4IiIiIiIiIiIiInJ9M6w5e2KJiFxhcXFxWCwWYmNj8fT0LO9wKpQ6E9YXWX58RverFImIiIhcCZf7t16KT78XSW45ny29L/5PnQnrdT9scKP+nNZ7RSqiivB51mfz6irOe+Z6fCYl+VtuhV/RJCIiIiIiIiIiIiIiIleGEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiK1OnjxJy5YtS9QmICCAffv2XaGIpLjumLwBO2e38g7jsq6VvVMr6j6vFd3V2tP5Wnn2tsz3Wom9IBVhT24Rufps/bmmf+tFyk5J/w2/UT5bJbkvuie2uVHu27VKv79fu2z5bJT389Tn+cop72d7peg9o0STXMcyMzM5d+5cidq4uLhcoWhERERERERERERERG48ZZJoOnz4MBs2bCA8PJzk5GQWLVpklqWnp3PhwgUMw6B69eplMZwIAHXq1MFqtZZ3GCIiIiIiIiIiIiIiN6xSJZpiY2MZOnQoa9asAcBqtWIYRr5EU5MmTYiOjubQoUM0bNiwVAGLiIiIiIiIiIiIiIjItcHO1obp6el069aNNWvW4ObmRvfu3QvclszNzY3HH3+crKwsVq5cWapgRURERERERERERERE5Nphc6Jp0aJF7Nmzh5tvvpk//viDtWvXYrFYCqzbu3dvALZv327rcCIiIiIiIiIiIiIiInKNsTnRtHz5cgzD4N1336VGjRpF1m3WrBl2dnYcPXrU1uGuKXXq1MEwDJYsWXJVx83MzGTWrFk0a9aMSpUqYRgGhmGYWxdWJMHBwRiGQWBgYLm0rygCAwMxDIPg4ODyDkVEREREREREREREKiCbz2g6cuQIhmHQpUuXy9Z1cnLCYrFw8eJFW4e7buT8QX/IkCHUqVOnTPsePXo077//PpB9T/38/AAK3LJQRERERERERERERETkSrM50ZSUlISHhwdOTk7Fqp+eno6Dg83DXVPq1q2Li4tLgVsFTpkyBcheSVKWiab4+Hjmz58PwJtvvskLL7yAYRhl1v+1pnLlytSvX59atWqVdygiIiIiIiIiIiIiIlIImzM/lStX5uzZsyQkJODu7l5k3WPHjpGQkEC9evVsHe6asnnz5qs+5tGjR0lPTwfg6aefrtBJJoCRI0cycuTI8g5DRERERERERERERESKYPMZTa1btwZg/fr1l637v//9D4AOHTrYOtwNLykpyfz6cok9ERERERERERERERGRq8HmRNPQoUOxWq1MmjSJM2fOFFpv/vz5zJ49G8MwGDZsmE1jNWrUCMMwzPOJctu9ezeGYWAYBg8//HC+8vT0dDw8PDAMI89KpD179jB+/Hg6dOhA7dq1cXFxwcvLizZt2jBz5kwSEhIKjadOnToYhsGSJUvMa0OGDMmzyigoKMiMyzAMm7fRW7JkCYZhEBgYaF7L3W/u6zlWr15Njx498PPzM89y6tGjB1999VWh4+TEP2TIEKxWKwsXLqR9+/b4+vrmm6stQkJC6NatG35+fjg6OuLl5cUtt9zCAw88wNy5c0lJSclTPzg4uND55fjuu++499578fLywt3dnSZNmvDmm2+aK78u5/jx44wePZqGDRvi7u6Om5sbt912G6NGjeLEiROlmW4eud8v8fHxTJw4kfr16+Pq6krlypXp2bMne/fuLbKPzMxMPv74Yzp16kTlypVxdnbG39+fPn36EBoaanNsS5cuxdHREcMwePnll/OVr1+/nt69e+Pv74+zszPe3t7cfffdfPjhh6Slpdk8roiIiIiIiIiIiIhUDDZvnde9e3d69+7NqlWraNGiBQMGDCA5ORmAjz76iPDwcL755ht++eUXrFYrTz31lLkKqqSCgoL45Zdf2LJlS77t1LZs2WJ+HRoaitVqzZPw+fHHH0lISMDZ2Zl27dqZ19u2bWt+7ebmhpubG9HR0ezdu5e9e/eybNkytm7dStWqVYsVo8Viwc/Pj3PnzgHg7e2d5/yqKlWqlGzS/5+rqyt+fn6kpaURHR0NgJ+fn1nu4+Njfp2WlsagQYMICQkBwM7ODovFQmRkJOvXr2f9+vX079/fTC4UxGq10qdPH1atWmW2t7OzOR8JZCclFy9ebH7v7u5Oeno6f//9N3///Tfr1q2je/fuJUrGBQcHm+dhAXh5efHbb78xfvx41q9fn+dZF+Szzz7jiSeeIDU1FQBnZ2fs7Oz4448/+OOPP1i8eDErV66kS5cuJZtsEaKjo2nZsiV//PEHTk5OuLi4cPHiRb7++mvWrVvHggULGDp0aL52sbGx9OzZ00wo2dvb4+HhwdmzZ1m5ciUrV67khRde4K233ipRPDNmzGDixInY2dnx/vvv8+yzz5plycnJDBo0iJUrV5rXPD09iY2NJSwsjLCwMJYtW8a3336Lt7e3bTdERERERERERERERK57pcogfPLJJzz66KNERETw7rvvEh8fD2SfITRjxgyOHDmC1Wpl6NChzJ071+ZxgoKCANi2bRtZWVl5yrZu3Qpk/xH84sWLHDp0qMDyNm3a4OLiYl6///77CQkJ4ezZsyQmJhIVFUVSUhKrV6+mfv36/Pbbb4wYMaLYMc6ePZuIiAjz+9WrVxMREWG+9u3bV7JJ/3/9+vUjIiKC1atXm9dy95v7+ksvvURISAiGYTBp0iQuXrxIVFQUkZGRvPTSSwAsX76cSZMmFTre6tWr+frrr3n77beJjo4mKiqK2NhY7rvvPpvi37FjB4sXL8bOzo6ZM2dy8eJF4uPjSUxMJDIykg0bNjB48OA8SbnLWbt2rZlk6tOnDydOnCA6Opq4uDjmzp3Lnj17+PDDDwttv3HjRgYNGkRmZibjxo3j2LFjJCcnk5iYyNGjR+nTpw/x8fFm32VlypQpnD9/nhUrVpCYmEhsbCy//fYbHTt2JCsri+HDh/PTTz/la/fEE08QGhqKk5MTc+bMIS4ujujoaM6cOWMmpt5++23mzZtXrDisViujRo1i4sSJODs7ExISkifJBDBs2DBWrlzJzTffzGeffUZsbCyxsbEkJSXx9ddfc/PNN7Nnz54CE2MiIiIiIiIiIiIicuMoVaLJxcWFTz75hO3btzNw4EDq1q2Lq6srTk5O1KpViwEDBhAaGsrChQtxcLB58RSBgYHY2dkRFRXFwYMHzeupqans2rULNzc3c1u+3Cuccn+fk6zKsXbtWvr27Uu1atXMa66urvTq1YvNmzfj7OzMmjVryjTRcCWdPn2a2bNnAzBhwgSmTp2Kl5cXkL266o033mDs2LEAzJo1i7NnzxbYT0JCArNmzeL555/H09MTyF6BVL16dZvi2rVrFwCdO3dm3LhxeVZg+fr60qVLF5YsWUKNGjWK3efEiRMB6NixI1988QUBAQFA9vN75plnmDNnDjExMQW2zcrK4tlnnyUrK4u5c+cyc+ZMc2s7wzCoX78+K1as4IEHHiAuLo5Zs2bZNO+CxMbG8uWXX9KnTx/z89CgQQO+++47brnlFjIyMvIlAffu3cuqVauA7LPOnnvuOdzc3ACoVq0aixYtonfv3gBMmjQp3xaEl0pLS+ORRx5hzpw5WCwWvv/++3xbToaFhfHpp59StWpVQkNDGTBggPlecHFx4YEHHmDbtm1UqlSJNWvW5PlMXio1NZW4uLg8LxERERERERERERGpOEq3J9r/1759e5YsWcKff/5JQkICycnJHDt2jE8//ZS777671P17e3vTpEkTIG8iac+ePSQnJ9OuXTu6du2arzw1NZXdu3cD+RNNRfH396dJkyZYrVYzUXKtW7VqFRkZGbi4uDBhwoQC67zyyis4OzuTnp6eZ0u03Ly9vRk+fHiZxZWT7Lpw4QKZmZml7u/w4cP89ttvQPZ8CtrW76mnnsLf37/A9tu3b+evv/6icuXKPPnkk4WOM2jQIAA2bNhQ6phztGvXjnvuuSffdVdXV1588UUAvv/+e2JjY82ynG0Qa9asWWi8r732GgCRkZFs3Lix0PHj4uLo2rUrK1asoHr16mzfvr3AM7AWLVoEwKOPPmom8S5Vs2ZN8zNV1D2aPn06FovFfBXWn4iIiIiIiIiIiIhcn8ok0XQ1dOrUCcibSMr5ulOnTtx11104OzsTFhZmJjR27dpFSkoKrq6utGnTJk9/WVlZfP755zzwwAPUqlULV1dXc1WLYRj8+OOPAJw6depqTK/U9u/fD0DLli3N1SeX8vb2pkWLFnnqX6ply5Yl2sbucu655x5cXFz4+eef6dChA4sWLeLYsWM295cTt4ODAx06dCiwjp2dXYEJFICdO3cC2auLatSoQbVq1Qp8PfXUUwCEh4fbHOulct7DRZVlZWXl2T4vZ75BQUGFnpXVoEEDM7FW2HM9e/YsHTt2ZOvWrdx6663s2rWLxo0bF1g35x4tWrSo0PtTrVo1Nm3aBBR9jyZOnGhuuxcbG8vJkycLrSsiIiIiIiIiIiIi1x+b97Ozs7OjevXqnD59ulj1b7rpJk6ePElGRoZN4wUFBfHOO+8QFhZGRkYGDg4O5vlLnTp1MpNJ27ZtY9++fbRp08Ysv+uuu/IkT5KSkujRo4dZDuDk5ISPjw+Ojo4AREVFkZ6eTmJiok3xXm3nz58HKHQlT46aNWvmqX+pqlWrlmlcdevWZeHChYwYMYLdu3ebK8yqVKlCUFAQAwYM4IEHHsAwjGL1lxN35cqVcXZ2LrRezjwvdebMGQDS09M5d+7cZcdLTk4uVlzFUdSzyV2W+9mU5LmePn260Of60UcfAdlb323atKnIlUU596i4W90lJSUVWubs7FzkcxIRERERERERERGR61upVjRZrdYrWj+3u+++GwcHBxISEvjxxx9JSkpi7969WCwWmjdvDuRf9VTY+UxvvPEGW7duxdXVlXfffZfw8HBSUlK4ePEiERERRERE0Lp161LHfD2yt7cv8z4fffRRwsPDmTdvHv369SMgIIALFy6wYsUKevbsSceOHa/a2T05q91at26N1Wot1qsi6NGjBxaLhZSUFB5//PEik0M59+jDDz8s1v1ZsmTJVZqFiIiIiIiIiIiIiFxrrtrWeWlpaYVu/VUcHh4eZkJpy5Yt7Nixg7S0NO6++24zOZKTUNqyZQuJiYnm9neXbln2xRdfAPDqq68yevRoatWqlW9FTUREhM2xloeclUiX2+ovp7ysVy5djo+PD8OHD+eLL77gxIkT/P3330yYMAHDMAgLCyM4OLhY/eTEHRkZSVpaWqH1CltpV61aNaBst8QrrqJW/+Uuy/1syuq5Nm/enE2bNuHt7c3mzZvp3r17oav1yvMeiYiIiIiIiIiIiMj15aokmmJiYjh//jze3t6l6id3Iin3tnk5WrdujZubG7t27WLz5s2kp6fj7u5Oy5Yt8/STc05Ms2bNChzn+PHj/P333zbFmJOwutorYXKfvRQbG1tgnZiYmDxnOZWnunXrMn36dAYMGADAxo0bi9UuZ54ZGRmEhYUVWCcrK4vQ0NACy9q1awdkJxILO8/oSsm9VWNhZXZ2dnnelznz3bp1K1lZWQW2PXr0qJmoKuq5tmjRgs2bN+Pj40NoaCjdunUjISEhX72ce/TNN99cZkYiIiIiIiIiIiIicqMrdqLp8OHDLFu2zHxB9vk1ua9d+lq6dCmzZ8/m/vvvJysrq9DETnHlJJV2797Nd999l+caZJ+z1K5dO5KTk5k2bRoA7du3x8Eh71FUFosFgEOHDhU4zoQJE2yO0dPTE8hO6lxNvXv3xsHBgZSUFGbOnFlgnWnTppGamoqjoyO9e/e+KnGlpqYWWe7q6gpQ7NVujRs3pkGDBkD2FogFJV8+/vjjQlcABQUFUa9ePQDGjBlT5KooyD6rq6zs2LGjwARYSkoK77zzDgD33XcfXl5eZtkjjzwCZK94WrhwYYH9vvrqq0D2uVWdO3cuMoZmzZqxZcsWKleuTFhYGF27diU+Pj5PnWHDhgHwyy+/8OGHHxbZX2Ji4mXvoYiIiIiIiIiIiIhUXMVONH311Vc8/vjj5gsgLi4uz7VLX0OHDmXs2LHs3LkTgLFjx5Yq2Hbt2uHk5ERKSgqHDh2iSpUqNGrUKE+dnMTT3r17gfznMwF07doVgNdff53Vq1eTkZEBwLFjxxgwYAArVqywefXVHXfcAcBnn31W5Dk4Zc3f359Ro0YBMGPGDCZPnmwmu2JiYpg0aRJvvfUWkP0cqlevflXiGjlyJH379mXVqlWcP3/evJ6QkMC8efPMpGX37t2L3ecbb7wBZK/yGTBggJlUSklJYd68eYwcOTJPsiY3BwcH5s2bh4ODAzt27ODuu+82V7/l+Pfff5k3bx4tW7bkgw8+KOmUC2WxWOjduzcrV64033NHjx6le/fuHD16FHt7e6ZOnZqnTatWrcyk4HPPPcf7779vvq8iIiJ46qmn+PLLLwF47bXXcHFxuWwcTZo0YcuWLVSpUoWdO3dy33335Tkjq2PHjuZn/Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dO89zFREREREREREREZEbi8Plq2Tz8vKiVq1a5vfh4eHY2dlRs2bNQtvY2dnh6enJHXfcwbBhw+jQoUOpgnVzc6N169bmlmmBgYH5zla6NLFUUKLp9ddfZ+PGjZw7d85cCVSpUiVzy7lp06axYcMGtm3bVuIYR4wYwc6dO1m1ahVr166latWqODg4ULNmTXbs2FHi/kpi2rRpnDx5khUrVjB16lRef/11LBYLsbGx5sqf/v3789prr13ROHJLT0/nyy+/NJMh7u7uODg45Fnx1b59e15++eVi99mrVy9efvll3njjDUJCQggJCcHb25v4+HgyMjLo0KED7du3Z/r06QW2v+eee/jyyy8ZNGgQe/fupXPnzjg6OuLp6UlCQkKeVVg9e/a0ad4FmTx5MvPnz6dPnz44Ozvj4uJivucMw+DDDz80t8rLbdGiRURGRrJt2zaee+45xowZg4eHBzExMeYWjS+88AIjRowodiyNGjUiNDSUTp06sXv3bu699142bNhgJujmzZuHvb09Cxcu5L333uO9997D3d0dR0fHPO+nnNhFRERERERERERE5MZU7BVNo0aN4tixY+YLoEqVKnmuXfr6559/+Pnnn/nkk09KnWTKkTtxlHvbvBwtWrQwt6/z9PTkzjvvzFendu3a7N+/nyeeeIIaNWoA4OLiQo8ePdiwYQMTJ060Ob7HHnuMTz75hPbt2+Pm5sbZs2cJDw8vdCu3suTk5ERISAgrV66kW7du+Pr6Eh8fj6+vL926dWP16tV8/vnnODo6XvFYckyaNIk5c+bQq1cvbrvtNhwcHEhISKBq1arce++9fPzxx4SGhlKpUqUS9fv666/zzTff0KlTJzw9PUlNTaVBgwbMmDGDzZs34+TkVGT7nj178vfffzN58mRatWqFu7s7MTExODs706RJE5588km++uorXnzxxdJMPw9vb29+/PFHJkyYQK1atUhNTcXHx4f777+fnTt38tRTTxXYzmKxsHnzZhYtWkRgYCAeHh4kJCRQrVo1evfuzdatW83VaiVx++23ExoaSvXq1fnxxx/p3Lkz0dHRQPZ7acGCBezatYshQ4ZQt25dMjMzzWcXGBjIq6++yuHDh/H39y/VfRERERERERERERGR65dhzVkSUUJTpkzB3d2d559/vqxjEqlQ6tSpQ3h4OIsXL2bIkCHlHU65iouLw2KxEDB6BXbObuUdzmUdn1H8LR2vpDoT1l+2zrUSq/yf4jy3snCtPHtb5nutxF6Qq/X8RKRisfXnmv6tFyk7Jf03/Eb5bJXkvuie2OZGuW/XKv3+fu2y5bNR3s9Tn+crp7yf7ZVSUd8zOX/LjY2NNRf3FKbYW+ddavLkybY2FRERERERERERERERkQqg2FvniYiIiIiIiIiIiIiIiORm84qm3Hbt2sWOHTs4deoUiYmJFLYbn2EYLFq0qCyGFBERERERERERERERkXJm8xlNAH/99RcDBgzgp59+ynPdarViGEaB1zIzM20d7rr30EMPsWvXrhK1Wb16NXfdddcViqj4rufYy0LLli05efJkidrs27ePgIAAndGUS0n29RQRERERERERERGR8nFVzmi6ePEinTp14vTp0/j5+dGxY0dWrFiBq6srvXv3JiIigr179xIfH0/lypXp3r1iHohVElFRUZw7d65EbdLS0q5QNCVzPcdeFi5cuFDi+eckVY8fP34FIhIRERERERERERERKX82J5ree+89Tp8+TevWrdm8eTNubm6sWLECi8XCsmXLAEhMTGTq1Km89dZbuLq68sEHH5RZ4Nej0NDQ8g7BZtdz7GVBySIRERERERERERERkfxsTjStX78ewzCYNm0abm5uBdapVKkSM2fOJC0tjTlz5hAUFESfPn1sDlZERERERERERERERESuHXa2Nvznn38wDIMOHTrkuV7QdmkTJkwA4KOPPrJ1OBEREREREREREREREbnG2JxoSk9Px9vbGweH/1sU5ebmRnx8fL66fn5+WCwWDh8+bOtwIiIiIiIiIiIiIiIico2xOdFUo0YNkpKS8lzz8/MjIyODf//9N8/19PR04uLiiI2NtXU4ERERERERERERERERucbYnGiqXbs2KSkpnDp1yrzWsmVLAD799NM8dZcsWUJWVhb+/v62DiciIiIiIiIiIiIiIiLXGJsTTTlnM4WGhprXBg4ciNVq5fXXX+fZZ59lwYIFjBw5kpEjR2IYBj179ixtvCIiIiIiIiIiIiIiInKNMKxWq9WWhr/++is9evQgMDCQxYsXm9cHDBjAF198gWEY5jWr1UqDBg3YtWsXFoul9FGLyHUpLi4Oi8VCbGwsnp6e5R2OiIiIiIiIiIiIiBSgJH/LtXlFU8OGDTl27FieJBPAZ599xvz58wkKCqJevXo0b96cV155RUkmuaZYrVYWL15M27Zt8fDwwGKx0Lp1az766COsVitDhgzBMAyGDBlSYPvVq1fTo0cP/Pz8cHJyws/Pjx49evDVV19dkXh/+OEHHnnkEWrXro2rqys+Pj40btyY5557jt27d+epGxwcjGEYBAYGFtpfaGgohmHkSQhfKj4+nhkzZtC2bVt8fHxwdnYmICCARx55JN+YIiIiIiIiIiIiInJjcijrDg3D4KmnnuKpp54q665FykRmZiaPPvooISEhQPZ71svLi/379/Pjjz8SGhqKk5NTgW3T0tIYNGiQ2dbOzg6LxUJkZCTr169n/fr19O/fn6VLl+Lo6FjqWJOSkhgyZAhffvmlec3Dw4OsrCyOHDnCkSNHCAsL4+DBg6UeK7eDBw9y//33m2ew2dvb4+bmxqlTpwgJCWHFihW88cYbTJw4sUzHFREREREREREREZHri80rmkSuV2+99ZaZKBo7diwXLlwgKiqK6Ohopk2bxhdffMHatWsLbPvSSy8REhKCYRhMmjSJixcvEhUVRWRkJC+99BIAy5cvZ9KkSWUS6+OPP86XX36JnZ0d48eP5+TJk8TFxRETE8OFCxf47LPPaNu2bZmMlePs2bPcd999nDp1ioceeoj9+/eTnJxMXFwc586dY9KkSdjb2/PSSy+xZs2aMh1bRERERERERERERK4vNiea7Ozs8Pf3L3b9m266CQeHMl9AJVIiiYmJTJ8+HYAnnniCd955B19fXwA8PT2ZOHEir776KtHR0fnanj59mtmzZwMwYcIEpk6dipeXFwDe3t688cYbjB07FoBZs2Zx9uzZUsW6efNmVqxYAcD777/PjBkzqFmzplleuXJlBgwYwIcffliqcS71yiuvcP78eQYMGMCqVato3ry5uTqratWqTJ06lTfffBPI3qZPRERERERERERERG5cpVrRZLVar2h9kbL2ww8/EBcXB8DLL79cYJ3nn38eNze3fNdXrVpFRkYGLi4uTJgwocC2r7zyCs7OzqSnp7Ny5cpSxfrxxx8DcMcdd/D000+Xqq/iSklJ4fPPPwdg/PjxhdYbNGgQAIcOHeLcuXOF1ktNTSUuLi7PS0REREREREREREQqjqu2dV5aWhp2dtqpT8rXTz/9BECtWrW46aabCqzj4eFB8+bN813fv38/AC1btsTT07PAtt7e3rRo0SJPfVvt2rULgB49epSqn5I4cOAAKSkpAHTp0oVq1aoV+GrYsKHZJjw8vND+pk+fjsViMV8BAQFXfA4iIiIiIiIiIiIicvVclb3sYmJiOH/+PN7e3ldjOJFCXbhwAYAaNWoUWa+gbSHPnz9faFluOdvb5dS3VUREBAC1a9cuVT8lcebMGfProlYq5ZaUlFRo2cSJE83tBAHi4uKUbBIRERERERERERGpQIqdaDp8+DAHDx7Mcy05OZlly5YV2sZqtRITE8PKlSvJysqiWbNmNgcqUpYMwyjvEC6rPGLMzMw0v05OTsbFxaVU/Tk7O+Ps7FzasERERERERERERETkGlXsRNNXX33F1KlT81yLi4vj8ccfv2xbq9WKYRh5VjaIlIcqVaoAeVfuFOT06dP5rlWtWhWAU6dOFdk2pzynvq2qVavGsWPHityariAODtkf65wt8AoSGxtb6Jg5wsPDqV+/fonGFhEREREREREREZEbS7EPTfLy8qJWrVrmC8DOzi7PtUtfderUoXHjxjz66KOEhoZy3333XbGJiBTHnXfeCWQnUY4fP15gnYSEBA4cOJDveu6zlwpL1MTExOQ5y6k07rrrLgDWrVtXonY5W1SePHmy0Dp79+4t8HrLli1xcnKyaVwRERERERERERERufEUO9E0atQojh07Zr4ge3VI7muXvv755x9+/vlnPvnkEzp06HDFJiFSXF26dMHT0xOAadOmFVjn3XffLfDcod69e+Pg4EBKSgozZ84ssO20adNITU3F0dGR3r17lyrWJ554AoBff/2VDz/8sNjtmjRpAmSv2ioooXT+/HkWLFhQYNtKlSoxYMAAAGbOnMmJEyeKHCsqKqrYcYmIiIiIiIiIiIhIxVPsRNOlJk+ezPPPP1+WsYhccZUqVWL8+PEALFiwgHHjxpnJkvj4eGbOnElwcLC5Kig3f39/Ro0aBcCMGTOYPHkyMTExQPZKpkmTJvHWW28BMHbsWKpXr16qWIOCgnjkkUcAGDlyJBMnTsyzbV9kZCQLFy40E1I57rrrLmrXrg3A4MGD2b9/P1arlaysLEJDQwkMDCQrK6vQcadNm0aNGjWIjIykbdu2fPLJJ8THx5vlFy5cYNWqVfTq1Yv+/fuXao4iIiIiIiIiIiIicn0zrFartbyDELmaMjIy6N+/PytXrgSyt4C0WCzExcWRmZnJwIEDMQyDZcuWMXz4cObNm2e2TUtLY+DAgaxYsSJP29jYWDN5079/f5YuXYqjo2OpY01KSmLgwIGsXr3avObp6YlhGOb2fU2aNOHgwYN52m3YsIH777+f9PR0ANzc3MjKyiIlJYVbbrmFqVOnmkmign4E/P777/Ts2ZM///zTnKeXlxepqakkJiaa9Tp37szGjRuLPZ+4uDjzfuWsLBMRERERERERERGRa0tJ/pZr84qmwqSlpbF27Vreeust5syZw44dO8p6CJFScXBwYMWKFSxcuJBWrVrh6upKRkYGLVq0YOHChSxbtsxcqeTl5ZWnrZOTEyEhIaxcuZJu3brh6+tLfHw8vr6+dOvWjdWrV/P555+XSZIJshNEq1at4ptvvqFXr17UqFGDlJQUHBwcaNy4Mf/973/56KOP8rW77777CAsLo0ePHnh7e5OZmUlAQAATJkzgwIEDVKtWrchxGzRowOHDh5k/fz5dunShcuXKxMXFYbVaqVevHn369OGjjz4yE24iIiIiIiIiIiIicmMq9oqm+Ph4vvrqKwD69euHs7Nzvjr79++nd+/eebb3AmjdujWrV6++7B+3Ra4FVquVWrVqcerUKZYtW8bAgQPLO6QKQyuaRERERERERERERK59V2RF0+bNmxkyZAjvvfdegUmm8+fP85///IdTp05htVrzvPbu3csDDzxQ8pmIlINPPvmEU6dO4eDgQOfOncs7HBERERERERERERGRa1axE01hYWEADBgwoMDymTNnEhkZCcDgwYPZuXMnhw4dYsyYMVitVg4cOGCeiSNS3nLOaMp5zwKcO3eOGTNm8NRTTwEwaNAgqlevXl4hioiIiIiIiIiIiIhc84q9dV6HDh3YtWsXhw4d4o477shXXq1aNS5cuMD999/PmjVr8pQ9/vjjLF26lH79+rF8+fIyCVykNLy8vIiNjQWyz0FydHQ0v4fs9/s333yj7d3KmLbOExEREREREREREbn2leRvuQ7F7fTs2bM4ODhw++235yv79ddfOX/+PIZh8N///jdf+ahRo1i6dCk///xzcYcTuaLmzJnDd999x88//8z58+dJSEigSpUqNG3alEceeYSBAwfi6OhY6nFOnjxJy5YtS9QmICCAffv2lXpsEREREREREREREZErrdiJpnPnzuHp6YmdXf7d9n788UcAnJycaN++fb7yO+64A8MwOHPmTClCFSk7gwYNYtCgQVd8nMzMTM6dO1eiNi4uLlcoGrmW1ZmwvtCy4zO6X8VIrk1F3Z/crta9Kk48Fe25XW7O1+N89bkTkavhRvw343pVZ8J6PYtrnD5PhauIv6uVht4r5Sfn3l+J+6vf3ysGfT4rLj3ba8uV/HlckGInmjIzM4mLiyuw7MCBAwA0aNAAJyen/IM4OODt7Z1nazKRG0GdOnUo5u6UIiIiIiIiIiIiIiLXnfzLkwpRtWpVMjIy+Oeff/KV7d69G8MwitwiLCEhgUqVKtkWpYiIiIiIiIiIiIiIiFxzip1ouvPOOwH46KOP8lz/66+/OHjwIAAdO3YssG14eDhpaWnUrFnTxjBFRERERERERERERETkWlPsRFP//v2xWq28++67vPXWW/zxxx9s3ryZPn36YLVaqVSpEvfff3+Bbbdv3w5kn9UkIiIiIiIiIiIiIiIiFUOxE019+vTh7rvvJiMjgwkTJnD77bfTpUsXjhw5gmEYjB07Fg8PjwLbhoSEYBgG7du3L7PARUREREREREREREREpHwVO9EE8PXXX9OjRw+sVqv5AnjyySd59dVXC2zz119/8f333wPwn//8p5ThSkUUHByMYRgEBgaWdygiIiIiIiIiIiIiIlICDiWpbLFYWLt2LX///bd5LlPLli2pXbt2oW0cHR35+uuvcXR05Oabby5VsCKS3/Hjx1myZAmQnbQTEREREREREREREblaSpRoylGvXj3q1atXrLp16tShTp06tgwjN4jKlStTv359atWqVd6hXJeOHz/OlClTACWaREREREREREREROTqsinRJFKWRo4cyciRI8s7DBERERERERERERERKaESndEkIiIiIiIiIiIiIiIikkOJpqskMDAQwzAIDg7GarWyYMECWrdujaenJx4eHrRt25ZPP/20yD5Wr15Njx498PPzw8nJCT8/P3r06MFXX31VZLsNGzbw0EMPUbNmTZycnPD09OTmm2+mS5cuvP3220RFRRXYLj4+nhkzZtC2bVt8fHxwdnYmICCARx55hN27d9t8Ly4VHByMYRgEBgbmKxsyZAiGYTBkyBAAVq5cSWBgID4+Pri5udG0aVNmz55NVlZWmcUDkJWVxYoVK+jZsyf+/v44OztTpUoVmjdvzvjx4/nll18KbGfLPTt+/DiGYWAYBsePH+fcuXOMGjWKm266CRcXF/z8/HjkkUc4evRovrZ16tQhKCjI/D6nn5xXzn0r6xj/+ecfhg0bxk033YSzs7O2xxQRERERERERERG5QWnrvKssMzOTXr168fXXX+Pg4ICbmxvx8fHs2bOHPXv28Ndff5nn7eRIS0tj0KBBhISEAGBnZ4fFYiEyMpL169ezfv16+vfvz9KlS3F0dMzTdurUqUyePNn83s3NDavVyrFjxzh27BgbN26kRYsW+ZI8Bw8e5P777+fUqVMA2Nvb4+bmxqlTpwgJCWHFihW88cYbTJw48QrcpYKNHDmSuXPnYmdnh6enJ8nJyRw6dIjRo0fz008/sXTp0jIZJzIykt69e7N9+3bzmpeXFykpKfz000/89NNP/PHHH6xZsyZPu7K4Z7/++itDhw7l/PnzuLm5AXD+/HlCQkL47rvv2L59O02aNDHrV6lShbi4OKKjowHw8/PL05/FYinzGHft2sXw4cNJSEjAzc0t33tORERERERERERERG4cWtF0lc2dO5fQ0FCWLFlCXFwcsbGxnDx5kvvvvx+A119/nb/++itPm5deeomQkBAMw2DSpElcvHiRqKgoIiMjeemllwBYvnw5kyZNytMuPDzcTFqNHTuW06dPk5iYSHx8PDExMYSFhfHMM8/g4eGRp93Zs2e57777OHXqFA899BD79+8nOTmZuLg4zp07x6RJk7C3t+ell17Kl2y5UtauXcuCBQuYNWsW0dHRREdHExkZyZNPPgnAsmXL2LJlS6nHycjIoGfPnmzfvh1nZ2dmzpzJ+fPniY6OJj4+ntOnTzN//nxuv/32PO3K6p4NHDiQW265hX379pGYmEhCQgIbN26kevXqxMXF8dxzz+Wpv2/fPlavXm1+HxERkec1e/bsMo9x+PDhNGzYME+MP/zwQ4F1U1NTiYuLy/MSERERERERERERkYpDiaarLDo6mq+++orBgwfj6uoKQM2aNfnyyy+pUaOGuWVbjtOnT5vJggkTJjB16lS8vLwA8Pb25o033mDs2LEAzJo1i7Nnz5pt9+7dS1ZWFrfeeivvvPMONWrUMMssFgvt27dn7ty5NG/ePE+Mr7zyCufPn2fAgAGsWrWK5s2bm6tWqlatytSpU3nzzTeB7G3vrobo6Gjmz5/PmDFj8PT0BMDX15cFCxaY8S9fvrzU4yxdupSdO3diGAarV69m3LhxVKlSxSyvUaMGw4YNY9q0aXnaldU98/PzM1eZATg4ONC5c2fmz58PQFhYmLkaqaTKKkZfX182bdpkxghw6623Flh3+vTpWCwW8xUQEGBT7CIiIiIiIiIiIiJybVKi6Spr165dnjN1cjg7O3PfffcBcPjwYfP6qlWryMjIwMXFhQkTJhTY5yuvvIKzszPp6emsXLnSvJ6TkIqPjycxMbFY8aWkpPD5558DMH78+ELrDRo0CIBDhw5x7ty5YvVdGgEBAQwePLjAsgceeADIe99s9fHHHwPwn//8h//85z/FalOW9+z55583E5C5devWDScnJwCOHDlSrLiuVIwjR47E3d29WONOnDiR2NhY83Xy5MkSRi4iIiIiIiIiIiIi1zKd0XSVtW7dutCynBVHUVFR5rX9+/cD0LJlS3Mlz6W8vb1p0aIFO3fuNOsDtGrVisqVK3P27Flat27NiBEj6Ny5M/Xr18cwjAL7OnDgACkpKQB06dKlWHMKDw/PdzZQWWvZsmWhMRd032yRkZHBvn37AMytDIujLO9ZYe8PBwcHqlSpwunTp22aZ1nG2K5du2KP6+zsjLOzc7Hri4iIiIiIiIiIiMj1RYmmq+zS85Byc3DIfhzp6enmtfPnzwPg7+9fZL81a9bMUx+yVzQtX76cAQMG8Ouvv5rn+1gsFu6++2769u1Lv379zO3TAM6cOWN+XdyVSklJScWqVxolvW+2uHjxotlH7dq1i92uLO/ZlZpnWcZYtWrVEo8vIiIiIiIiIiIiIhWTEk0VXOfOnTl27BirV69m8+bN7Nq1i7/++ot169axbt06ZsyYwYYNG8xEVmZmptk2OTkZFxeX8gr9qitsxdTlXA/3rCxjtLe3L4uQRERERERERERERKQC0BlN17ic1SOnTp0qsl5OeUGrTSpVqsTAgQNZsmQJf/75J6dOnWLmzJm4uLjkWekEUK1aNfPr8PDwspjCdcPHx8dc3VWSuV8P9+x6iFFERERERERERERErj9KNF3jWrRoAWSf1RQbG1tgnZiYmDxnOV2Ov78/48aN4/nnnwdg48aNZlnLli1xcnICYN26daWK/Xrj4OBAq1atgJLNvbzvmZ3d/32MrVZrgXXKO0YRERERERERERERqZiUaLrG9e7dGwcHB1JSUpg5c2aBdaZNm0ZqaiqOjo707t3bvJ6amlpk366urkDeREWlSpUYMGAAADNnzuTEiRNF9hEVFVWseVwvnnjiCQC+/fZbvv3222K1Ke975unpaX4dExNTYJ3yjlFEREREREREREREKiYlmq5x/v7+jBo1CoAZM2YwefJkM5kQExPDpEmTeOuttwAYO3Ys1atXN9vOnDmTbt268cknn+TZei81NZUVK1aY7bp3755nzGnTplGjRg0iIyNp27Ytn3zyCfHx8Wb5hQsXWLVqFb169aJ///5XZN7lZeDAgbRv3x6r1Urv3r156623iIyMNMvPnDnDu+++y/jx4/O0K897duutt5qrlRYuXFjoqqYb+bmKiIiIiIiIiIiIyJXhUN4ByOVNmzaNkydPsmLFCqZOncrrr7+OxWIhNjaWrKwsAPr3789rr72Wp11WVhbff/8933//PZC9gsnV1ZXo6GgzGdGgQQNmzZqVp1316tXZtGkTPXv25M8//2TQoEHY2dnh5eVFamoqiYmJZt3OnTtfyalfdQ4ODnz11Vc89NBDhIWFMW7cOMaPH4/FYiEjI4OEhAQAHnzwwTztyvOeubm5MXDgQBYtWsS4ceMIDg6mcuXKGIbBww8/zNtvv13uMYqIiIiIiIiIiIhIxaRE03XAycmJkJAQ+vbty6JFi9i/fz/R0dH4+vrSokULnnrqKXr16pWv3bBhw/D392fr1q0cOXKEs2fPEhsbi7e3Nw0bNqR3794MHz4cFxeXfG0bNGjA4cOHWbp0KatWreLgwYNERUXh5OREvXr1aNasGffeey8PP/zw1bgFV1XlypUJDQ1l+fLlfPbZZxw4cIDo6Gi8vb2pX78+9957LwMHDszXrjzv2dy5cwkICGDVqlX8888/5tZ4uVdjlXeMIiIiIiIiIiIiIlLxGNbC9tkSESljcXFx5mq83GdLCdSZsL7QsuMzuhdadqMo6v7kdrXuVXHiqWjP7XJzvh7nq8+diFwNN+K/GderOhPW61lc4/R5KlxF/F2tNPReKT859/5K3F/9/l4x6PNZcenZXlvK4udxSf6WqzOaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmziUdwBSMYwaNYqQkJAStZk9ezb9+vUr81h27drFQw89VKI2d911F6tXry7zWKRiKO75QKVxrexRezXmaotr6ewluHaeV25X+tldyTmX1/vuWnyOIlIx5P65pp81165L//0pq2d1rf4+VRGUx+fpenmeV/PeXA/3RD97r76yPpupoPeZnuv1S78blZ+r+TNbz/byKvLzUKJJykRsbCznzp0rUZvk5OQrEktaWlqJY4mKiroisYiIiIiIiIiIiIiIVGRKNEmZWLJkCUuWLCnvMAAIDAzEarWWdxgiIiIiIiIiIiIiIhWezmgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklKpE6dOhiGcdW3ycvMzGTWrFk0a9aMSpUqYRgGhmGwZs2aqxrH9WTIkCEYhsGQIUPKOxQRERERERERERERqaB0RpOUmeDgYCA7wVGnTp0y7Xv06NG8//77ADg5OeHn5weAi4tLmY4jIiIiIiIiIiIiIiLFp0STlEjdunVxcXHBYrHkK5syZQoAgYGBZZpoio+PZ/78+QC8+eabvPDCCxiGUWb9i4iIiIiIiIiIiIiIbZRokhLZvHnzVR/z6NGjpKenA/D0008rySQiIiIiIiIiIiIico3QGU1yzUtKSjK/dnd3L8dIREREREREREREREQkNyWarnGNGjXCMAzzfKLcdu/ejWEYGIbBww8/nK88PT0dDw8PDMPIsxJpz549jB8/ng4dOlC7dm1cXFzw8vKiTZs2zJw5k4SEhELjqVOnDoZhsGTJEvPakCFD8qwyCgoKMuMyDMPmbfSWLFmCYRgEBgaa13L3m/t6jtWrV9OjRw/8/PzMs5x69OjBV199Veg4OfEPGTIEq9XKwoULad++Pb6+vvnmWlKBgYEYhkFwcDBpaWnMmDGDxo0bU6lSJby9vbn33nv57rvvLtuPLfO6nB9++MF8fwwZMoSMjIw85Tt37uSxxx4z3yMWi4VWrVpd9j0iIiIiIiIiIiIiIjcObZ13jQsKCuKXX35hy5YtjBw5Mk/Zli1bzK9DQ0OxWq15Ej4//vgjCQkJODs7065dO/N627Ztza/d3Nxwc3MjOjqavXv3snfvXpYtW8bWrVupWrVqsWK0WCz4+flx7tw5ALy9vXFycjLLq1SpUrJJ/3+urq74+fmRlpZGdHQ0AH5+fma5j4+P+XVaWhqDBg0iJCQEADs7OywWC5GRkaxfv57169fTv39/li5diqOjY4HjWa1W+vTpw6pVq8z2dnZlk4tNS0ujc+fOhIWF4eDggLu7OzExMWzatIlNmzYxefJkgoODC2xX2nkV5NNPP2Xo0KGkp6czfvx4ZsyYYZZlZWUxZswY5syZY15zd3cnMTGRffv2sW/fPhYvXsyGDRuoXbu27TdFRERERERERERERK57WtF0jQsKCgJg27ZtZGVl5SnbunUrAJ6enly8eJFDhw4VWN6mTRtcXFzM6/fffz8hISGcPXuWxMREoqKiSEpKYvXq1dSvX5/ffvuNESNGFDvG2bNnExERYX6/evVqIiIizNe+fftKNun/r1+/fkRERLB69WrzWu5+c19/6aWXCAkJwTD+X3t3HhZlufAP/DswC4PAsCggIuK+a25puYChqaXmbilpuRX6tqhHXy0N10orLV8zyzxZJ3P3lL0dcwdFUsMlEfcEFXdkkWFf7t8f/uZ5GWYGhmHwYfT7ua65rmHu9Zn5Osjccz+PAnPnzsX9+/eRmpqKlJQUvPfeewCADRs2YO7cuRbH2759O3755Rd8+umnSEtLQ2pqKjIyMtCnTx+b5l/SqlWrcOzYMaxevRqZmZlIS0vDtWvXpJ1o8+fPx44dO0za2eO4Svv0008xZswYFBYW4vPPPzdaZAKAyMhIrFixAr6+vvjyyy9x//59ZGZmIicnBwcOHEC7du1w4cIFDBkyxCSTRERERERERERERPRk4UJTNRcaGgonJyekpqbi1KlT0uN5eXmIjY2Fq6srJk2aBMB4h1PJnw2LVQY7duzAiBEj4O/vLz2m1WoxePBg7Nu3DxqNBj///DOuXbtWRUdlXzdu3MAXX3wBAJg1axYWLFgAT09PAA93Vy1evBjTpk0DACxbtgy3bt0y249er8eyZcswffp0eHh4AHi4k6d27dqVnmNGRgZWrVqFN954Q1r0q1u3LjZt2oQePXoAgLRwZO/jMhBCYNq0aZgxYwZUKhU2bNiAd955x6hOUlISPvroI2i1WuzevRuTJ0+Wdo6pVCqEhoYiOjoagYGBOHHihNnFsZLy8vLw4MEDoxsRERERERERERERPT640FTNeXl5oW3btgCMF5KOHDmCnJwcdO3aFX379jUpz8vLwx9//AHAdKGpLHXq1EHbtm0hhEBsbKw9DqHKbdu2DYWFhXBxccGsWbPM1pkzZw40Gg0KCgqwdetWs3W8vLzwxhtvVMkc69ati9dff93kcScnJ8yZMwcAkJCQgPj4eKnMXscFPDwF3+jRo7F8+XK4u7vjP//5D0aOHGlSb926dSgqKkLfvn2l3JXm7u6OQYMGAQB27dplcUwA+Oijj6DT6aRb3bp1y6xPRERERERERERERI6FC00O4LnnngNgvJBkuP/cc8/h2WefhUajwaFDh1BUVAQAiI2NRW5uLrRaLbp06WLUX3FxMX766ScMHDgQQUFB0Gq1UCgU0u3YsWMAgOTk5EdxeJUWFxcHAOjUqZO0E6k0Ly8vdOzY0ah+aZ06dTK6tpQ9hYaGGl0/q6Tu3btDqVSazM1ex5WZmYkXX3wRGzZsgJ+fH6KjoxEWFma27uHDhwEAu3fvhr+/v8Xbd999BwC4evVqmcc9e/ZsZGRkSLfr16+XWZ+IiIiIiIiIiIiIHItS7glQ+Xr27InPPvsMhw4dQmFhIZRKpXT9peeee05aTIqOjsaff/6JLl26SOXPPvus0eJJdnY2+vfvL5UDgFqthre3N1QqFQAgNTUVBQUFyMrKeoRHabu7d+8CeLgbqyyBgYFG9Uvz9fW178RKKGtuLi4u8PHxwZ07d4zmZq/jKnktq19//RXt2rWz2NfNmzcBAFlZWVa9/tnZ2WWWazQaaDSacvshIiIiIiIiIiIiIsfEHU0OoEePHlAqldDr9Th27Biys7Nx9OhR6HQ6dOjQAYDpridL12davHgxDhw4AK1Wi+XLl+Pq1avIzc3F/fv3cfv2bdy+fRudO3cG8PCaPk8SZ2dnuadQJUJCQqRT1k2YMAH37t2zWNewI+6///u/IYQo9xYVFfUoDoGIiIiIiIiIiIiIqikuNDkAd3d3aUFp//79iImJQX5+Pnr06CEtjhgWlPbv34+srCzp9HeGBSiDjRs3AgA++OADvPvuuwgKCjI5pdvt27er9HjszbATqbxT/RnKq3LnkiU3btywWJaXl4f79+8DMJ6bvY4rODgYUVFRqFevHk6fPo2ePXta3P3k7+8PoPxT4hERERERERERERERAVxochglF5JKnjbPoHPnznB1dUVsbCz27duHgoICuLm5oVOnTkb9GK6RY+n0aUlJSbh8+bJNczQsWD3qnVAlr1GUkZFhtk56errRNY8etejoaIvPi+GUiMD/HUvJ+/Y4rgYNGiAqKgrBwcFISEhAaGio2QXFrl27AgD27t2L3NxcK46MiIiIiIiIiIiIiJ5kXGhyEIZFpT/++AM7d+40egx4eJ2lrl27IicnBx9++CEAoFu3blAqjS/DpdPpAAB//fWX2XFmzZpl8xw9PDwAPFz8eJSGDh0KpVKJ3NxcLFmyxGydDz/8EHl5eVCpVBg6dOgjnR8AXLt2Dd9//73J48XFxdLr1aJFC7Ru3Voqs/dxBQcHIzo6Gg0aNMC5c+cQGhqKW7duGdUZN24clEolUlJSEBkZWWZ/+fn50Ov1ZdYhIiIiIiIiIiIioscbF5ocRNeuXaFWq5Gbm4u//voLtWrVMlqUAP5v4eno0aMATK/PBAB9+/YFACxatAjbt2+XdtIkJiZi1KhR2Lx5M7y8vGyaY6tWrQAA69evR3Z2tk192KJOnTp45513AAAff/wxIiMjpcWu9PR0zJ07F5988gkAYNq0aahdu/Yjm5uBTqdDREQE1qxZI+0Uun79Ol555RVph9qiRYuM2lTFcQUFBSE6OhqNGjXChQsXEBISYnRav4YNG2Lu3LkAgKVLl2LMmDE4c+aMVF5YWIhTp05hwYIFaNSoEU6dOmXbE0JEREREREREREREjwUuNDkIV1dXdO7cWfo5NDTU5NpKpReWzC00LVq0CH5+fsjMzMTQoUOh1Wrh6emJBg0aYMOGDVi8eDHatGlj0xzffPNNAMC2bdvg6emJwMBABAcHo1u3bjb1VxEffvghRowYASEEFixYAB8fH3h7e8PHx0dawHnllVewcOHCKp+LOZMnT0bHjh0xadIkeHh4wNvbG0FBQdi8eTMAYM6cORg8eLBJu6o4rsDAQERHR6Np06a4dOkSQkJCpFMqAsDcuXMxd+5cKBQK/Otf/0Lr1q3h6uqKmjVrwsXFBe3atUNkZCSuX79ukkEiIiIiIiIiIiIierJwocmBlFw4KnnaPIOOHTtKp6/z8PBA+/btTerUq1cPcXFxGD9+PAICAgAALi4u6N+/P3bt2oXZs2fbPL/w8HD861//Qrdu3eDq6opbt27h6tWrSE5OtrlPa6nVamzatAlbt25Fv3794OPjg8zMTPj4+KBfv37Yvn07fvrpJ6hUqiqfi6X57du3Dx9++CGaNm2KvLw86HQ6hIWF4bfffrO4UFRVxxUQEICoqCg0b94cf//9N0JCQnD16lUAD6+1tWDBApw+fRqTJ09G8+bN4ezsjIyMDHh5eeHZZ5/FjBkzEBsbK13TiYiIiIiIiIiIiIieTMryq1B1MX/+fMyfP99iuWExoDyBgYH49ttvLZZHRUVZLEtKSiqz7/DwcISHh5c7h4oIDQ2FEMKqukOHDq3wNZjWrVuHdevW2TCzilGr1Zg9e7ZNi3lVcVz+/v44e/asxfJWrVrhyy+/rNCYRERERERERERERPRk4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim/AaTfRIDBkyBLGxsRVqs337djz77LNVNCPrOfLcqxvDtbYePHgg80wqpjgvu8rHqC7PyaM4Vls8qufH2uOvLq9XSVX92lXlMcuVu+r4OhLR46Hk+xrfa6qv0r9/7PVaVdf/Tz0O5Pj35Civ56N8bhzhOeF776NnyEVVvpfydXVc/L+RfB7lezZf2/I52uth6MPwmW5ZFMKaWkSVFBoaiujo6Aq1OXDgAEJDQ6tmQhXgyHOvbpKTk1G3bl25p0FEREREREREREREVrh+/ToCAwPLrMOFJiJ6ZIqLi3Hz5k24u7tDoVA88vEfPHiAunXr4vr16/Dw8Hjk49OTi9kjOTB3JAfmjuTA3JEcmDuSA3NHcmDuSA7MXfUghEBmZiYCAgLg5FT2VZh46jwiemScnJzKXf1+FDw8PPhLimTB7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+ZOfjqdzqp6ZS9DEREREREREREREREREVnAhSYiIiIiIiIiIiIiIiKyCReaiOiJodFoEBkZCY1GI/dU6AnD7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+bO8SiEEELuSRAREREREREREREREZHj4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiqjLZ2dnYuXMnFi1ahCFDhqBevXpQKBRQKBSYN2+eVX1s3boVAwYMQEBAANRqNWrUqIGmTZti4sSJOHXqVIXn9Oabb0pzCA4Otljvxo0bWLVqFYYPH45GjRpBq9VCq9Wifv36eOWVV7B//36rxrtz5w6mT5+Opk2bQqvVwtvbG927d8e3334LIUSF50/lc+Tc2as9cyePxyV7t2/fxty5c9GhQwd4e3tDq9WiXr166Nu3Lz7++GMUFBRYbMvsPXqPQ+4qOz5z9+jJmbt58+ZJY5V1u3z5cpnjnzhxAuHh4QgMDIRGo0Ht2rUxePBgq/+Pd+DAAQwePBi1a9eGRqNBYGAgwsPDceLECavaU8U5cu5Onz6NxYsXo0+fPqhTpw7UajXc3d3RqlUrvP3227h48aJV869sbqniHDl35hQUFKBNmzZS29dee63cNszdo/e45O7kyZOIiIhA06ZN4ebmBg8PDzRp0gQvv/wyNmzYUGZb5u7Rc/Tc5eTkYPny5ejevTt8fHygUqmg0+nQoUMHvP/++7h9+3a582fuKkkQEVWRAwcOCABmb5GRkWW2zc3NFQMGDDBq4+bmJtRqtfSzk5OTWLZsmdXz2b9/v1AoFFL7evXqma137do1o3oAhKurq9BqtUaPjRs3ThQWFlocLy4uTvj4+BjNX6lUSj/36dNH5OXlWT1/so6j5s5e7Zk7+TwO2du4caPw8PCQ2ri4uBj9DECkpaWZbcvsycORc2eP8Zk7eciZu8jISAFAqFQq4efnZ/GWmJhocQ5r1qwxyolOpzPKbXnHYJgDAKFQKIROp5N+ViqVYs2aNeU8g2QLR83djz/+aDJfnU4nnJ2dpZ/VarVYvXp1mcdQ2dySbRw1d5aUfP8CIMaOHVtmfeZOHo6eu+LiYjFjxgzh5OQkjenu7m70mUrbtm0ttmfu5OHIuUtKShKNGzc2+V1bMoM6nU5ER0dbPAbmrvK40EREVebAgQPCy8tLhIWFiRkzZogNGzYIf39/q96gP/jgA+nNfPLkySI5OVkIIURRUZGIi4sT3bp1k/64j4uLK3cuWVlZomHDhkKlUomOHTuW+eFXYmKiACDCwsLE999/L27cuCGNnZCQIF566SVpbnPmzDHbR3p6unSszZo1E3/++acQQoi8vDyxcuVKoVKpBAARERFR7typYhw1d/Zoz9zJy9Gzt3nzZuk/4pMmTRIJCQlS2YMHD8TBgwfF1KlThV6vN2nL7MnHkXNX2fGZO/nImTvDBxEhISE2zT02Nlb6gH/QoEHi+vXrQgghUlJSxBtvvCHNbdOmTWbbb9q0SarzxhtviJSUFCGEENevXxeDBg0SAISzs7OIjY21aX5kmaPm7rvvvhMajUaEh4eL3377TWRkZAghHr5X7d27V7Rq1Uoae8+ePWb7qGxuyXaOmjtzTp8+LVQqlWjQoIHw8/Mrd6GJuZOPo+furbfekhYali5dKm7duiWV3bt3T2zbtk3Mnz/fbFvmTj6OnLsePXoI4OEXN1auXCkyMzOFEA9/1/7yyy+iTp06AoDw8/MT2dnZJu2ZO/vgQhMRVRlzu33q1atn1S+p4ODgMn/JpKenCzc3NwFAzJo1q9y5vPvuuwKAeP/998XYsWPL/PArPT1dHD9+3GJfxcXFom/fvtJ/nHJyckzqzJkzRwAQWq1WXLlyxaT8ww8/lD6IuHDhQrnzJ+s5au7s0Z65k5cjZ+/mzZvCy8tLABCfffZZuf2XxuzJx5FzV9nxmTv5yJm7yn4QYfigo3Xr1iI/P9+kvE+fPgKACA4ONjnOwsJC6Tj79u1r0jYvL09aNOjWrZtN8yPLHDV358+fl764Zk5aWpr0QV5YWJjZOpXJLVWOo+autMLCQulLILt375aOoayFJuZOPo6cu507dwrg4c6UP/74o8LtmTv5OGrukpKSpIUgS/Pcu3evVOf33383KWfu7IPXaCKiKuPs7Gxz21u3bgEAOnbsaLZcp9OhSZMmAAC9Xl9mX0eOHMGKFSvQpEkTzJkzp9yxdTod2rdvb7FcoVBg3Lhx0tjnzp0zqfPDDz8AAF5++WXUr1/fpPytt96Cm5sbioqKsH79+nLnRNZz1NzZoz1zJy9Hzt6KFSuQlpaGdu3aYerUqRWY+UPMnnwcOXeVHZ+5k091yV1FXblyBTExMQCAf/zjH1CpVCZ1Zs+eDQBISkrCwYMHjcqio6Nx9epVo3olqdVq/OMf/wAAxMTEIDEx0a7zf9I5au6aNm2KgIAAi+Wenp4YMmQIAODPP/80Ka9sbqlyHDV3pX322WeIi4vDmDFj0Lt373LrM3fycuTczZ8/HwAwZcoUdOnSpUJtmTt5OWruDGOXNf7TTz8t3S89PnNnP1xoIqJqqUGDBgCA48ePmy3PyMiQLppr6RcJAOTl5WHcuHEQQuCbb76Bi4uLXeZXsp+ioiKjsgsXLuDatWsAgH79+plt7+bmhu7duwMAdu/ebZc5UeVVl9zZ0p65c2xyZ8/wgX14eDgUCkVFps7sOTC5c1eZ8Zk7x2Wv3Nliz5490v2+ffuardOtWze4u7sDMM2Nob27uzu6du1qtn3JPDJ31YecubOG4X2z9N8VQOVzS/KpLrm7ePEiIiMjUatWLSxbtsyqNsyd45Izd5cuXcKRI0cAAK+++mqF2zN3jkvO3BnGBoC4uDizdY4dOwYAcHJyQrt27YzKmDv74UITEVVLERERAICoqChMmTIFN27cAAAIIXDixAn0798fer0ezzzzDMLDwy32s2DBApw7dw7jx49HSEiI3eYXFRUF4OE3Vw3fyjA4c+aMdL9Vq1YW+zCUnT171m7zosqpLrmzpT1z59jkzF5iYiJu3rwJAOjQoQPi4+MxatQo1K5dGxqNBoGBgRg5ciQOHz5stj2z57jkfs+rzPjMneOyV+4SEhLQqlUruLq6ws3NDU2bNsXEiRNx8uRJi20MufH19YWvr6/ZOs7OzmjWrJk0hrn2zZs3t/itX19fX9SqVctse5KPnLmzhuFvi9atW5uUVTa3JJ/qkDshBMaPH4/c3FwsX74cPj4+Vs2duXNccubOsCtEpVKhTZs2+PXXX9GrVy94eXlBq9WiSZMmeOutt5CUlGS2PXPnuOTMna+vr7Qz+KOPPsKXX34p7VoqKCjAjh07MHbsWADA9OnTjRamAObOrh792fqI6Elm7fldi4qKxMyZM6UL0+P/Xw9JrVYLAMLf31/MmjXL7EX8DE6cOCGUSqXw8/MTaWlp0uO2XCunpCtXrghXV1cBQLz66qsm5StWrJDmbLjYrzmff/65VM9woUKqGo6UO1vbM3fVkyNk7/fff5fGXLx4sTSmVqsVHh4eUplCoRALFiwwac/sVT+OkLvKjs/cVT+PKneGc/gDEE5OTsLb21solUqj96r333/fbNshQ4YIAKJdu3ZlznHQoEECgOjQoYPR4+3btxcAxODBg8ts/9RTTwkAYujQoWXWo8pzhNyVZ+PGjVI/a9euNSmvbG7J/hwpd4bfl3369DF7DJau0cTcVT+OkLtZs2YJAMLX11fMmDFDauPh4SG0Wq3RfHbu3GnSnrmrfhwhd0IIkZqaKl1HyXDT6XTSfFq3bi3WrFljti1zZz/c0URE1ZKTkxM++ugj/POf/4SbmxuAh+dRzc/PBwDk5uYiIyMDWVlZZtsXFhZi3LhxKCwsxIoVK+Dp6WmXeeXk5GD48OHIzs5GzZo18fHHH5vUyczMlO67urpa7KtkWck2JB+5c1eZ9sydY5Mze2lpadL9uXPnIiAgAHv27IFer0dGRgYSEhIQGhoKIQQ++OADbN++3ag9s+e45H7Pq8z4zJ3jqmzuGjdujKVLl+LChQvIzc3F/fv3kZWVhV27dqFDhw4QQmDx4sX47LPPTNoaMlBWZkqWl85MZduTfOTMXVkuXryIN998E8DD0/K89tprJnWYO8cld+6SkpIwe/ZsuLq64quvvqrQ3Jk7xyVn7gx/V6SkpOCTTz7Bc889h7NnzyIjIwN6vR67d+9GUFAQ9Ho9RowYIV330IC5c1xyv995eXlh+/btmD59unQq+IyMDBQXF0tzSUlJMXuKWubOfrjQRETVUkpKCsLCwvDaa6/hmWeeQUxMDNLT03Hr1i1s374dtWrVwldffYXOnTtLW3JL+vjjj3Hq1Cn0798fI0aMsMucCgsLMWrUKBw/fhwqlQrr168v88K+5Hjkzl1V5JYcg5zZM/znG3h4aoNt27ahV69ecHJ6+N/EFi1a4Ndff4W/vz+A/7vALzk+ud/zKjs+OabKvu6jR4/GjBkz0KRJE+lizWq1Gs8//zxiYmLQqVMnAMC8efOQkZHxSI+Nqq/qmLvbt2/jxRdfRHp6OgICArBhwwbpdy89HuTO3cSJE5GVlYUFCxagfv36VXuwVG3ImTvD3xXFxcUICAjAr7/+iubNmwN4uBDRu3dvbN26FQqFApmZmVZfM4yqP7nf706ePIlmzZph+fLlmDx5MuLj45GVlYW///4bn3/+OVJTUzF79mwMGDDA6O9fsjMZd1MR0RPI2m23L7zwggAgQkJCRHFxsUn5nTt3RM2aNQUAER4eblSWkJAg1Gq1cHNzE9euXTNpa8up8woLC8WIESMEAKFUKsWWLVss1uXpfKofR8hdZdszd9WTI2Rvx44dUiZ69eplcY4LFy6U6t2+fVt6nNmrfhwhd5Udn7mrfh5F7qyxZ88e6TXftm2bURlPnff4cYTcmXPnzh3RokULAUD4+fmJc+fOWazLU/pUP46QuzVr1ggAon379qKwsNDiMfDUeY7DEXI3bdo0qWzRokUW+wgLCxMARLNmzYweZ+6qH0fI3YMHD4Sfn58AID744AOz7ffu3SsUCoUAIL799lujMubOfvh1GSKqds6dO4f//Oc/AGC07bUkX19fjBkzBgCwfft2CCGksilTpiA/Px/vv/8+vLy8oNfrjW6FhYUAHn5z3/BYQUGBxfkUFRUhPDwcmzdvhrOzM3788UcMGzbMYv2Su5zK+ga2oczDw0PaWkzykTt3lW3P3DkuubNXp04d6b7hG4fmtGjRQrpf8jQXzJ5jkjt3lR2fuXNMlX3drfHMM89I969cuWJUZshNeTvkDOWld65Xtj3JQ+7clXb37l3pdFK+vr7Yv3+/dIFxc5g7xyRn7jIyMvCPf/wDTk5O+Pzzz5GTk2Pye9owVmFhofRYyW/5M3eOSe73u4r+XVH61HnMnWOSO3c//vgj7ty5I41vTlhYGNq1awcA2LZtm1EZc2c/XGgiomrn7Nmz0v2GDRtarNe4cWMAQHZ2Nu7evSs9npiYCACYPXs23N3dTW7r168HAFy7dk167MsvvzQ7RlFREUaPHo2NGzdKi0wjR44sc/6tWrWS7p85c8ZiPUNZyQ9vST5y566y7Zk7xyV39lq0aAFnZ+dy51nyj4GSfzwwe45J7txVdnzmzjFV9nWvLENu7t69i3v37pmtU1RUhPPnzwMAWrZsabb9uXPnzJ7jv3TfpduTPOTOXUl3795Fz549kZCQIC0ylff+VNnckjzkzF1aWpp0bZIePXqY/T197do1AMD69eulx06fPi31wdw5Jrnf79q0aWNVPcPfFaUXJJg7xyR37gzj16pVCx4eHuWOb/g7xoC5sx8uNBFRtVPy3OSlv+FSkuEbCwCq5FvKRUVFGDVqFDZt2iQtMr388svltmvSpAmCgoIAAL///rvZOllZWTh06BAA4Pnnn7ffpMlm1SV3tmLuHJfc2XNxcUGPHj0APPzw1BLDf+AVCgWCg4Olx5k9xyR37io7PnPnmB5F7o4cOSLdL31Nkt69e0v3LeXm8OHD0kWeS+fG0D4zMxOxsbFm25fsl7mrHuTOXcn+e/bsabSTyZoPqyqbW5JHdcmdrZg7xyR37rp27YoaNWoAsO7vCnv/niZ5yJ07w/gpKSnIzs4ud3x3d3ejx5k7O3rU5+ojoiebNed3TUpKks69OmDAALN19Hq9aNCggQAg2rRpU6E5WHPdiMLCQjFy5EjpmkwbN26s0Bhz5swRAISrq6tITEw0KV+yZIkAIJydncWFCxcq1DdVnKPkrrLtmbvqx1Gy98MPPwgAQqFQiOPHj5uUZ2ZmCn9/fwFAdOnSxaSc2ateHCF39hifuateHkXuzJ3zv6Tc3FzRuXNnAUDUqFFDpKWlmdTp1q2bACDatm0r8vPzTcr79esnZbf0dU0KCwul43zhhRdM2ubn54s2bdoIAKJbt25lzpXsw1FyV/qaTAkJCeUeW0mVyS3Zn6PkzppjsHSNJiGYu+rGUXI3btw4AUAEBASIrKwsk/Jjx45J18qZNWuWSTlzV704Qu7WrVsnjf/ZZ5+Z7SM+Pl4olUoBQLz99tsm5cydfXChiYiqVGpqqrh37550q1u3rgAgZsyYYfR46Qt0DxgwQPpFER4eLi5fviyKi4tFfn6+OHz4sOjYsaNU/v3331doTuV9+FVYWChefvllaZFp8+bNFT7u9PR06UPZFi1aiLi4OCGEEHl5eWLVqlVCrVYLACIiIqLCfVP5HDF39mjP3MnPUbNXVFQknn76aQFABAcHi71794qioiIhhBBnz54VPXv2FACEk5OT2Ldvn0l7Zk9ejpq7yo7P3MlLjtxFRUWJsLAw8cMPP4jr169Lj+fn54u9e/eKTp06SW2XLFlidt6HDx8Wzs7OAoAYMmSISE5OFkIIcf/+fRERESG137Rpk9n2mzZtkupERESI+/fvCyGESE5Oli4m7ezsLGJjY21+bskyR8zd3bt3RcuWLQUA4e/vL86ePVvh465sbqlyHDF35bFmoYm5k5ej5i45OVnodDoBQISFhUnveUVFRWLPnj0iKChIABC+vr7i7t27Ju2ZO3k5Yu70er2oXbu2ACA0Go1YtGiRSElJkco2bNgglavVanHx4kWTPpg7++BCExFVKcN/YMu7lf4P7r1790SHDh2M6ri6ukrfQDDcZsyYUeE5lffhV3R0tNS/SqUSfn5+Zd4s7XaKi4sTPj4+Ul/u7u5CpVJJPz///PMiNze3wvOn8jli7uzVnrmTlyNn79atW9K3rQ3jG/5INLwffvPNNxbbM3vycdTc2WN85k4+cuTuwIEDRnW0Wq2oWbOm0Wvu5OQk3nvvvTLnvmbNGqPxPD09pW9XA2V/a1cIISIjI6W6CoVCeHp6Sj8rlUqxZs2aij6dZCVHzN38+fOlejVq1Cj3b4tr166Z7aeyuSXbOWLurD2mshaahGDu5OTIuTt48KDR70adTie0Wq30s6+vrzh69KjF9sydfBw1d0ePHhW1atUy6sfd3d0oN66urmLLli0W+2DuKo8LTURUpWz9JSWEEAUFBeLbb78Vffr0EX5+fkKlUgkXFxfRoEEDER4eLg4dOmTTnMr78Kv0L7nybt99953FsW7fvi2mTp0qGjduLFxcXISnp6fo1q2bWLNmjbRbgOzPEXNnz/bMnXwcPXu5ubni008/FZ06dRI6nU6o1WoRHBwsxo0bJ+Lj48ttz+zJw5FzZ4/xmTt5yJG7lJQU8emnn4qhQ4eKJk2aCG9vb6FUKoWHh4do27at+K//+i9x+vRpq+Z//PhxMWrUKFGnTh2hVquFn5+fGDRokNldm+bs27dPDBo0SPj5+Qm1Wi3q1KkjRo0aJe2so6rhiLkruTBpzc3cqUANKptbso0j5s7aYypvoUkI5k4ujp67mzdvimnTpommTZsKV1dX4erqKlq3bi3ee+89szuZSmPu5OHIuUtJSRELFy4UXbp0EV5eXsLZ2Vm4ubmJNm3aiKlTp4q///673D6Yu8pRCCEEiIiIiIiIiIiIiIiIiCrISe4JEBERERERERERERERkWPiQhMRERERERERERERERHZhAtNREREREREREREREREZBMuNBEREREREREREREREZFNuNBERERERERERERERERENuFCExEREREREREREREREdmEC01ERERERERERERERERkEy40ERERERERERERERERkU240EREREREREREREREREQ24UITERERERERERERERER2YQLTURERERERNWcQqGAQqFAVFSU3FOxq6ioKOnYyHHJlc/8/Hw0bNgQGo0G169fr3R/R44cgUKhQI8ePewwOyIiIqInBxeaiIiIiIiIqpDhQ3hbbuvWrZN7+kTV1v/8z//gypUrmDBhAurWrVvp/rp06YI+ffrg0KFD+Pe//22HGRIRERE9GZRyT4CIiIiIiOhx5ufnZ/ZxvV6PrKysMutotVoAQNOmTQEArq6uVTBD+bi6ukrHRlQRqampWLRoETQaDWbPnm23fufNm4ddu3Zh1qxZGDBgAJRKfmxCREREVB7+j4mIiIiIiKgK3b592+zj8+bNw/z588usY3D+/Hm7z6s6ePrppx/bY6Oq9c033yA9PR3Dhg1DYGCg3frt0qUL2rZti7/++gs///wzhg0bZre+iYiIiB5XPHUeERERERERETkMIQS++eYbAEB4eLjd+zf0+fXXX9u9byIiIqLHEReaiIiIiIiIqjnDNZuioqKMHk9KSpLKkpKScPXqVUycOBFBQUFwcXFBw4YNMWfOHOkUfQBw5swZhIeHo27dunBxcUHjxo2xaNEiFBQUlDmHpKQkvPvuu2jZsiXc3Nzg6uqKZs2a4Z133sG1a9dsOq6oqChp/qWtW7cOCoUCwcHBAIDjx49jxIgRqF27NjQaDRo0aIBp06YhLS3NprEB4OjRoxg9ejTq168PFxcX1KhRA/Xq1UNISAgWLlyI5ORks+3y8/OxatUq9OzZEzVr1oRarYa/vz9eeukl7Ny506pxX3/9dTRq1Aiurq7w8PBAixYtMG7cOOzatctsm4yMDCxYsADt27eHh4cHtFotGjdujIiICFy5csXiWCWzk5mZiTlz5qBZs2bQarXw8fFB//79cfTo0TLnm5aWhhkzZqBhw4ZwcXFB7dq1MXz4cBw/frzcY01OTsbUqVPRsmVL1KhRAxqNBgEBAejQoQOmTp2KP//8s9w+Stu7dy8SExPh6emJF154wWK98+fPY9KkSWjSpAlcXV3h4uKCunXrokuXLnjvvfcs7qYbNWoUAGDfvn1lPrdERERE9P8JIiIiIiIieuQiIyMFAGHNn2WGegcOHDB6PDExUSrbtm2b8PT0FACEh4eHcHZ2lsq6d+8u8vPzxf/+7/8KV1dXAUDodDqhUCikOiNHjrQ4/o8//ig0Go1UV6PRCK1WK/3s7u4udu3aVeHn4MCBAxafg++++04AEPXq1RPr168XKpVKmreTk5PUrmXLliIzM7PCY69bt87o+DUajfDw8JB+BiC+++47k3ZJSUmiZcuWUh2FQiF0Op1RuzfffNPsmIWFheLtt982qlujRg3h5eUlzUWn05m0O3PmjAgMDJTauLi4CHd3d6O5b9261eyYhjo//fSTaNSokdTekAMAQq1WW3z9EhMTRb169YzqGp4ntVotfvnlF4v5PHXqlPDy8pLKnZ2djY4VgBg7dmxZL5NZ06ZNEwBEnz59LNbZvXu3UWZVKpX078Nwi4yMtNi+YcOGAoBYtWpVhedHRERE9KThjiYiIiIiIqLHwPjx49GhQwckJCQgIyMDmZmZWLFiBZydnXHo0CEsWLAAo0ePxoABA5CUlIT09HQ8ePAA77//PgBg06ZN2Lt3r0m/e/bswZgxY1BUVISZM2ciMTEROTk5yMrKwvnz5zF8+HBkZmZi+PDhNu9sKsu9e/cwbtw4jB07FteuXUN6ejoyMzOxcuVKqFQqJCQkYOnSpRXqMzs7G2+99RaEEAgPD8fly5eRm5uLjIwM6PV6xMXFYcaMGfD19TVql5WVhb59+yIhIQGhoaGIiopCTk4O0tPTkZ6ejmXLlsHNzQ2rV6/GF198YTLue++9hxUrVgAAxo0bhwsXLkCv1yM1NRVpaWn4+eef0bdvX6M2mZmZGDBgAJKTk1GnTh389ttvyMrKwoMHD3Dq1Cl06dIFeXl5GD16NP766y+LxzxlyhSo1Wrs378fWVlZ0Ov1OHbsGJo2bYr8/HxMmjQJxcXFRm2KioowfPhwXL16FV5eXti8eTOysrKQkZGBhIQEdO7cGWPHjrU45vTp05GWlob27dvjjz/+QEFBAVJTU5Gbm4uLFy/i008/RcuWLct9vUo7ePAggIfX+LIkIiICeXl5eP755xEfH4/8/HykpaUhJycHZ86cwfz586XdcuZ07twZABAdHV3h+RERERE9ceRe6SIiIiIiInoS2XtHU8uWLUVubq5J21dffVWq07t3b1FcXGxSp3v37gKAGD9+vNHjRUVFonHjxgKA+Prrry3Ob+DAgQKAeOedd8o9lpKs2dGEMna9GHa2NGrUqELjHj16VNpNVFBQYHW7BQsWCAAiJCRE5Ofnm62zfft2AUDUrFnTqO8LFy5IO7Fmzpxp9Zgff/yxtCMnPj7epPzBgwciODhYABAvvviiSbnhOaxVq5a4c+eOSfnp06elOjExMUZlmzZtksr27t1r0jYrK0va+WMun4Zdb7GxsVYfb3ny8vKk3XqWdnHduXNHmtPNmzdtGueTTz4RAERQUFBlpktERET0ROCOJiIiIiIiosfA1KlTodFoTB7v06ePdH/WrFlmr4dkqHP69Gmjxw8ePIhLly6hZs2amDBhgsWxx4wZAwAWry9UWXPmzDH7+EsvvQQAuHz5MrKzs63uz9PTE8DDay3dv3/f6nZr164FAEybNg0qlcpsnUGDBsHDwwMpKSlG1zD6/vvvUVxcDB8fH8yfP9/qMTdt2gQAGDZsGFq1amVS7u7ujpkzZwIAdu7ciYyMDLP9TJo0yWSHFgC0bt0a9evXB2D6+m/cuBEA0LVrV4SFhZm0dXV1lcY2x/A837p1y2Kdirp79y6KiooAALVq1TJbx93dHU5OTpUau2bNmpVqT0RERPQk4UITERERERHRY8DSacT8/Pyk+506dSqzTlpamtHjhw8fBgBkZGQgICAA/v7+Zm8TJ04EAFy9erXSx1Gat7c3GjVqZLYsICBAul967mVp2LAhmjVrhoKCAnTu3BlLlizBqVOnpAUMc27cuCEd3/jx4y0+F7Vr14Zerwdg/HzExsYCAHr37g0XFxer5pmfny8t/vTq1ctivd69ewMAiouLceLECbN1DKeCM8fwPKampho9HhcXBwB47rnnLLYtq6x///4AgLFjx2L69OmIjo6u0IKgOffu3ZPue3t7m62j1WqlhbG+ffvigw8+wNGjR5Gfn2/1OIa+CwoKkJ6ebvuEiYiIiJ4AXGgiIiIiIiJ6DLi7u5t9XKlUWl2noKDA6PGbN29Kj9+5c8fizbDIk5OTU+njKM3SnEvO29zcy+Ls7IyNGzeifv36uHr1KmbNmoV27drBw8MDvXv3xldffWWyIGJ4LgAgJSWlzOfDcK2jkn3cvn0bAFCvXj2r55mamiotftWpU8divcDAQOn+3bt3zdax5nks/Rwa+rJ27NKWLl2Knj17Qq/XY9myZQgNDYWHhwc6duyIyMhI3Lhxw2JbS3Jzc6X75nbwGXz77bdo27Yt7t27h4ULF6JLly5wd3dHt27d8Mknn5gsqpWm1WrNjklEREREprjQRERERERERGYZFjk6d+4MIYRVN0fRtm1bnD9/Htu2bcOkSZPQqlUr5OTkYO/evZg8eTKaNWuG+Ph4qX7J3U7nzp2z6rl47bXXpDbmTln4uPP09MT+/ftx6NAhzJw5E127doVSqcTx48exYMECNG7cGBs2bKhQnz4+PtL9snaxBQUF4cSJE/j999/x9ttvo0OHDiguLsbhw4cxc+ZMNGrUCPv377fYvuRCVMkxiYiIiMgUF5qIiIiIiIjILH9/fwBVc0q86kCtVmPIkCH4+uuvER8fj3v37mH16tXw9vbG9evXMXbsWKmu4bkAbHs+bHkuvb294ezsDABITk62WK9kmbnrMNnK0FdZO4+s2ZXUrVs3LFmyBDExMUhPT8cvv/yC1q1bIycnB+PGjcOdO3esnlPJ6zKVtyvJyckJffr0wRdffIG4uDikpqZi/fr1CAoKQlpaGkaNGmXxdHqGvnU6ncXrcRERERHRQ1xoIiIiIiIiIrO6du0K4OFp3wzX63mc+fj44I033sCSJUsAACdPnsT9+/cBAMHBwdIp5H799dcK9/3ss88CAPbs2WP1qdjUajXatGkDANi3b5/Fenv37gXwcGGlffv2FZ6bJR07dgQAHDhwwGKdsnYFmePi4oKBAwdi+/btAB6eli4mJsbq9l5eXtKi3ZUrVyo0tru7O0aNGoW1a9cCAO7cuWO0a62kxMREAEDz5s0rNAYRERHRk4gLTURERERERGRWz5490ahRIwDA1KlTLe7+MChvh0l1kZeXV2Z5yevzODn935/NEydOBACsXbsWJ0+eLLOP0s/Fa6+9BmdnZ9y/fx+RkZFWz/Xll18GAGzduhVnzpwxKdfr9Vi6dCkA4IUXXoBOp7O67/KMHDkSABATE4OoqCiT8pycHHzyySdm2xYWFkrXqjLH0nNsjR49egAAjh07Zra8vJxaM/bRo0cBACEhIRWaGxEREdGTiAtNREREREREZJZSqcTq1auhVCoRExODHj16YN++fSgoKJDqXLlyBatXr0anTp2watUqGWdrvY0bN6Jr1674+uuvjXbFFBUVYdeuXZg1axYA4JlnnoGXl5dUPn36dLRu3Rq5ubno2bMnVq5cKe14AoD09HTs3LkTY8aMQffu3Y3GbNSoEWbMmAEAWLp0KSZMmIBLly5J5Q8ePMCmTZswePBgo3YRERGoX78+CgoK0K9fP+zcuVNawImPj0efPn2QmJgIjUaDRYsW2ekZemjo0KHSDqmhQ4di27Zt0rWqzp07h379+uHevXtm2yYnJ6Nx48ZYtGgRTp48icLCQqns9OnTCA8PBwDUqFGjwos5oaGhAP5vMai02NhYtGnTBsuXL8e5c+ek50sIgdjYWERERAAAAgMDpR1jJRUVFeH48eMAuNBEREREZA2l3BMgIiIiIiKi6issLAxbtmzBmDFjcPToUfTq1QsqlQoeHh7Q6/VGu4MGDRok30QrwLDgEBsbCwDQaDRwc3NDWlqatCgREBCAf/7zn0bt3Nzc8Pvvv2Po0KE4cuQI3nrrLbz99tvQ6XQoLi7GgwcPpLqGnWAlLVq0CJmZmfjyyy+xdu1arF27Fm5ublCpVEhPT4cQwmRHkru7O3bs2IG+ffsiOTkZL7zwAlxcXKBWq6XxNBoNfvzxR7Rt29auz5NSqcSWLVsQGhqK69evY9iwYdBoNHBxcUFGRgbUajW2bNmCl156yWz7K1euYO7cuZg7dy6cnZ2h0+mg1+ulHUdqtRrr1q2Dt7d3heY1dOhQvPPOOzh//jwuXbqExo0bm9SJj4/HtGnTMG3aNCmvGRkZ0oKXh4cHfvrpJ+kaWCXt27cPWVlZ8PX1Ra9evSo0NyIiIqInEXc0ERERERERUZkGDRqEy5cvIzIyEk8//TTc3NyQnp4OjUaDtm3bYsKECfj3v/8t7dip7gYOHIgffvgBr7/+Otq2bQudToeMjAy4u7vj6aefxsKFC5GQkIBmzZqZtA0ICEBMTAw2bNiAgQMHonbt2sjOzkZ+fj6Cg4MxYMAAfP755zh48KBJW2dnZ6xcuRIxMTEYPXo0goKCUFBQACEEWrRogfHjx2Pbtm0m7Vq1aoWEhATMmzcPTz31FJRKJfLy8tCwYUO8+eabSEhIwLBhw6rkuWrQoAFOnTqFadOmoX79+hBCwMXFBcOGDUNsbCwGDhxotl2dOnWwY8cOTJ06FV26dEHt2rWh1+uhVCrRokULTJkyBWfOnLFp3r6+vtLOr/Xr15uUd+rUCZs3b0ZERAQ6dOiAmjVr4sGDB3BxccFTTz2FmTNn4ty5cya7zgwMfb7++utQqVQVnh8RERHRk0YhhBByT4KIiIiIiIiIyFoHDx5ESEgIGjZsiEuXLkGhUNil36ysLGnx8OLFi2jQoIFd+iUiIiJ6nHFHExERERERERE5lB49euD555/H33//jS1bttit35UrVyIzMxMTJkzgIhMRERGRlbijiYiIiIiIiIgcTnx8PJ566ik0b94cp0+fhpNT5b5Lq9frUb9+feTm5uLy5cvw8/Oz00yJiIiIHm9KuSdARERERERERFRRrVu3xtq1a5GUlIRbt26hTp06leovKSkJU6ZMQbt27bjIRERERFQB3NFERERERERERERERERENuE1moiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiIiIiIiIiIiIiIiKyCReaiIiIiIiIiIiIiIiIyCZcaCIiIiIiIiIiIiIiIiKbcKGJiIiIiIiIiIiIiIiIbMKFJiIiIiIiIiIiIiIiIrIJF5qIiIiIiIiIiIiIiIjIJv8Pjm7X8BIZmQ4AAAAASUVORK5CYII=", + " \n", + " 4\n", + " 18390.3722\n", + " 0\n", + " On\n", + " sound_output\n", + " \n", + " \n", + "\n", + "
" + ], "text/plain": [ - "
" + " timestamp action_type value action_name\n", + "0 17950.0908 0 On sound_output\n", + "1 17950.0909 0 On sound_output\n", + "2 18391.2434 0 On sound_output\n", + "3 18391.2435 0 On sound_output\n", + "4 18390.3722 0 On sound_output" ] }, + "execution_count": 71, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "# Get the states from file\n", - "states = nwbfile.get_acquisition(\"task_recording\").states\n", - "state_types = nwbfile.get_lab_meta_data(\"task\").state_types\n", - "\n", - "# Plot the data\n", - "plot_states(states=states[20:100],\n", - " state_types=state_types,\n", - " marker_size=500)\n", - "plt.title(\"States\", fontsize=18)\n", - "plt.show()" + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].actions[:],\n", + " nwbfile.lab_meta_data[\"task\"].action_types[:],\n", + " left_on=\"action_type\",\n", + " right_on=\"id\",\n", + ").head()" ] }, { "cell_type": "markdown", - "id": "d811ac1c-771a-4fc0-a995-613065ae60fd", + "id": "4d47f67a-a13c-4f46-a703-6ab6753fe62b", "metadata": {}, "source": [ - "## Accessing the trials\n", - "\n", - "The `TrialsTable` is a column-based table to store information about trials, one trial per row.\n", - "The table can be accessed from the file as `nwbfile.trials`.\n" + "The `StatesTable` is a column-based table to store the information about the states (e.g. the duration while nose is in center port). This table can be accessed as `nwbfile.acquisition[\"task_recording\"].states`." ] }, { "cell_type": "code", - "execution_count": null, - "id": "c23cd956-7ccc-4104-8349-0275dd1c3e7e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 99, - "id": "ca66b7b5-c6ac-405f-8297-8aeb6cc4d92e", + "execution_count": 74, + "id": "a4fd969f-8b11-4bbd-986a-b275413c8079", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "
\n", + "\n", - " \n", - " \n", - "

trials (TrialsTable)

description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", - "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", - "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", - "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", - "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", - "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", - "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", - "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", - "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", - "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", - "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", - "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", - "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", - "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", - "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", - "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", - "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", - "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", - "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", - ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", - "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", - "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", - "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", - "broke fixation on a subset of trials, in practice, block durations were variable.\n", - "
table\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "\n", + "
\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - "
start_timestop_timestateseventsactionsreward_volume_ulprevious_was_violationis_warm_upcatch_percentagechangedtime_increment_for_delay_to_rewardtraining_stagecumulative_reward_volume_ulpunish_sound_enabledauto_change_catch_probabilitynose_in_centerblock_typetarget_delay_to_rewardtrials_in_stageis_catchdelay_to_rewardtarget_duration_for_nose_in_centerviolation_time_outtime_increment_for_nose_in_center
idstate_typestate_name
017950.090718395.7043[0, 1, 2, 3, 4, 5][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30][0, 1, 2, 3, 4, 5, 6]20FalseFalse0.15False0.02590TrueFalse0.869210High1.523023False4.1356001218390.37210wait_for_poke
118395.704318402.2559[6, 7, 8, 9, 10, 11][31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51][7, 8, 9, 10, 11, 12, 13, 14]80FalseFalse0.15False0.025920TrueFalse0.979292High1.523025False1.26452018390.372118391.2413120nose_in_center
218402.255918410.3677[12, 13, 14, 15, 16, 17][52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72][15, 16, 17, 18, 19, 20, 21]40FalseFalse0.15False0.0259100TrueFalse0.835958High1.523026False0.619385118391.241318391.243320go_cue
318410.367718421.6165[18, 19, 20, 21, 22, 23][73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131][22, 23, 24, 25, 26, 27, 28]20FalseFalse0.15False0.0259140TrueFalse0.846073High1.523027False5.36925412018391.243318395.37893wait_for_side_poke
418395.378918395.47434announce_reward

... and 362 more rows.

" + "\n", + "
" ], "text/plain": [ - "trials ndx_structured_behavior.trials_table.TrialsTable at 0x5091712208\n", - "Fields:\n", - " colnames: ['start_time' 'stop_time' 'states' 'events' 'actions' 'reward_volume_ul'\n", - " 'previous_was_violation' 'is_warm_up' 'catch_percentage' 'changed'\n", - " 'time_increment_for_delay_to_reward' 'training_stage'\n", - " 'cumulative_reward_volume_ul' 'punish_sound_enabled'\n", - " 'auto_change_catch_probability' 'nose_in_center' 'block_type'\n", - " 'target_delay_to_reward' 'trials_in_stage' 'is_catch' 'delay_to_reward'\n", - " 'target_duration_for_nose_in_center' 'violation_time_out'\n", - " 'time_increment_for_nose_in_center']\n", - " columns: (\n", - " start_time ,\n", - " stop_time ,\n", - " states_index ,\n", - " states ,\n", - " events_index ,\n", - " events ,\n", - " actions_index ,\n", - " actions ,\n", - " reward_volume_ul ,\n", - " previous_was_violation ,\n", - " is_warm_up ,\n", - " catch_percentage ,\n", - " changed ,\n", - " time_increment_for_delay_to_reward ,\n", - " training_stage ,\n", - " cumulative_reward_volume_ul ,\n", - " punish_sound_enabled ,\n", - " auto_change_catch_probability ,\n", - " nose_in_center ,\n", - " block_type ,\n", - " target_delay_to_reward ,\n", - " trials_in_stage ,\n", - " is_catch ,\n", - " delay_to_reward ,\n", - " target_duration_for_nose_in_center ,\n", - " violation_time_out ,\n", - " time_increment_for_nose_in_center \n", - " )\n", - " description: LED illumination from the center port indicated that the animal could initiate a trial by poking its nose in that \n", - "port - upon trial initiation the center LED turned off. While in the center port, rats needed to maintain center\n", - "fixation for a duration drawn uniformly from [0.8, 1.2] seconds. During the fixation period, a tone played from \n", - "both speakers, the frequency of which indicated the volume of the offered water reward for that trial \n", - "[1, 2, 4, 8, 16kHz, indicating 5, 10, 20, 40, 80μL rewards]. Following the fixation period, one of the two side \n", - "LEDs was illuminated, indicating that the reward might be delivered at that port; the side was randomly chosen on \n", - "each trial.This event (side LED ON) also initiated a variable and unpredictable delay period, which was randomly \n", - "drawn from an exponential distribution with mean=2.5s. The reward port LED remained illuminated for the duration \n", - "of the delay period, and rats were not required to maintain fixation during this period, although they tended to \n", - "fixate in the reward port. When reward was available, the reward port LED turned off, and rats could collect the \n", - "offered reward by nose poking in that port. The rat could also choose to terminate the trial (opt-out) at any time\n", - "by nose poking in the opposite, un-illuminated side port, after which a new trial would immediately begin. On a \n", - "proportion of trials (15–25%), the delay period would only end if the rat opted out (catch trials). If rats did \n", - "not opt-out within 100s on catch trials, the trial would terminate. The trials were self-paced: after receiving \n", - "their reward or opting out, rats were free to initiate another trial immediately. However, if rats terminated \n", - "center fixation prematurely, they were penalized with a white noise sound and a time out penalty (typically 2s, \n", - "although adjusted to individual animals). Following premature fixation breaks, the rats received the same offered \n", - "reward, in order to disincentivize premature terminations for small volume offers. We introduced semi-observable, \n", - "hidden states in the task by including uncued blocks of trials with varying reward statistics: high and low blocks\n", - ", which offered the highest three or lowest three rewards, respectively, and were interspersed with mixed blocks, \n", - "which offered all volumes. There was a hierarchical structure to the blocks, such that high and low blocks \n", - "alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block of each \n", - "session was a mixed block. Blocks transitioned after 40 successfully completed trials. Because rats prematurely \n", - "broke fixation on a subset of trials, in practice, block durations were variable.\n", - "\n", - " id: id " + " start_time stop_time state_type state_name\n", + "0 17950.0907 18390.3721 0 wait_for_poke\n", + "1 18390.3721 18391.2413 1 nose_in_center\n", + "2 18391.2413 18391.2433 2 go_cue\n", + "3 18391.2433 18395.3789 3 wait_for_side_poke\n", + "4 18395.3789 18395.4743 4 announce_reward" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.merge(\n", + " nwbfile.acquisition[\"task_recording\"].states[:],\n", + " nwbfile.lab_meta_data[\"task\"].state_types[:],\n", + " left_on=\"state_type\",\n", + " right_on=\"id\",\n", + ").head()" + ] + }, + { + "cell_type": "markdown", + "id": "d983e620-b3d4-424b-bb53-cd64c5ec6cd8", + "metadata": {}, + "source": [ + "### Plot the events, actions, and states\n", + "\n", + "The ``plot_events``, ``plot_actions``, and ``plot_states`` functions can consume both the raw table as well as a subset of the table as a pandas DataFrame created through slicing, e.g., via ``events[:100]`` will plot only the first 100 rows from the events table.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "9e145e47-ebd3-4eb3-93c5-6e9d036c111b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAAGiCAYAAAC7/hjYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0tUlEQVR4nOzdeVzU1f7H8dewg+yIkIiS5jVcU0vLXHBfM5fcTdFbblmmWWlqopnack0rzUpTyyXNLXPJLVFzK8tKvWJZgisoKiAg68zvD34zF2RHEJf38/GYxx2+37N8zvkOkw8+95xjMJlMJkRERERERERERERERETuA1alHYCIiIiIiIiIiIiIiIjI7aLkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSYyIiIiIiIiIiIiIiInLfUHJMRERERERERERERERE7htKjomIiIiIiIiIiIiIiMh9Q8kxERERERERERERERERuW8oOSYiIiIiIiIiIiIiIiL3DSXHRERERERERERERERE5L6h5JiIiIiIiIiIiIiIiIjcN5QcExERERERESkhISEhGAyGAr/uBbNnzyYkJITffvuttEMREREREcmRTWkHICIiIiIiInI/8PHxKe0QbovZs2cTERFBQEAAjzzySGmHIyIiIiKSjZJjIiIiIiIiIrdBZGRkaYcgIiIiIiJoW0URERERERERERERERG5jyg5JiIiIiIiInIHOXLkiOUMsj/++CPPsgMGDMBgMNCyZcsc72/atInu3bvj5+eHvb09Hh4eNG3alE8++YSUlJQc6wQFBWEwGAgJCcFkMvH555/TsGFDXF1dcXFx4YknnmDp0qXZ6pnPV4uIiABg0KBBeZ6pdu3aNd58803q1auHq6srdnZ2+Pr6Urt2bYYNG8bOnTsLMl0iIiIiIoWmbRVFRERERERE7iB169alRo0aHD9+nK+++or33nsvx3IJCQmsXbsWyEiSZXbjxg0GDBjA6tWrLddcXV2JjY1l79697N27ly+//JLNmzfj4eGRY/vp6el07dqVb7/9FhsbG5ycnLh+/ToHDx7k4MGD/PXXX0yZMsVS3tnZGR8fHy5fvozRaMTV1RVHR8cc2z537hxPPvkkZ86cAcDKygo3Nzeio6OJiori6NGjhIWF5Zr0ExERERG5FVo5JiIiIiIiInKHMSe7li9fjtFozLHMunXrSEhIoEyZMnTv3j3LvSFDhrB69WoqV67MsmXLiI2NJTY2lsTERL799lsqV67MwYMHGTx4cK4xzJ07l9DQUBYvXkxcXByxsbGcPXuWp556CoBp06bx119/WcqPHTuWyMhI/P39AZgzZw6RkZFZXmYhISGcOXOGgIAAduzYQUpKClevXiU5OZnw8HA++eQTHn/88aJNnoiIiIhIPpQcExEREREREbkNfH1983yNGjXKUrZfv35YWVlx4cIFduzYkWN7X331FQBdu3bF2dnZcn3v3r0sXbqUcuXKERoaSt++fXF1dQXAwcGBzp07s3v3bsqUKcP69ev57bffcmz/2rVrrFu3joEDB1pWgFWoUIFvvvmG8uXLYzQaWbVqVZHmYv/+/QBMnz6dli1bYm1tDYC1tTWVKlVi2LBhzJw5s0hti4iIiIjkR8kxERERERERkdsgKioqz1dsbKylrJ+fHy1atAD+lwTL7OLFi5YzuZ599tks9xYuXAhkJNjMq7huVqFCBZo3bw7A1q1bcyzz5JNPWspkZm9vT9u2bQHyPRMtN+7u7kDGOEREREREbjedOSYiIiIiIiJyG5hMpkKVHzBgADt27MiyfaLZ8uXLSU9Pp3z58rRq1SpLvX379gEZSbLly5fn2r45GRcREZHj/YYNG+Zat3z58gBcvXq1YIO5SadOnThw4ADjxo0jLCyMbt260ahRI8sKNxERERGRkqSVYyIiIiIiIiJ3oG7duuHs7ExCQgJr167Ncs+8msy8/WJmFy5cACAuLi7PlWpJSUkAJCYm5ti/i4tLrrHZ2GT8f21TU1OLNLZXX32Vnj17kpqayueff0779u1xd3enVq1avPrqq5w8ebJI7YqIiIiIFISSYyIiIiIiIiJ3oDJlytCtWzcAvvzyS8v1o0eP8vvvvwPZt1QESE9PB+CTTz7BZDLl+1q8eHHJD+Ymtra2rFy5kt9++40333yTFi1a4OTkxLFjx3j//fepUaMG//nPf257XCIiIiJyf1ByTEREREREROQOZU5+/fDDD5w/fx7436qxRx55hFq1amWr4+vrC+S+XeKdpE6dOkyZMoWdO3cSExPDjh07aNq0Kenp6bz66quWJKCIiIiISHFSckxERERERETkDtWiRQsqVKiA0Whk+fLllv+FjDPJcvLkk08CsHHjxtsWZ2bmbR4Le8aajY0NLVu2ZNOmTdjb22MymdixY0dJhCgiIiIi9zklx0RERERERETuUFZWVvTr1w/IWDFmXkFmbW1N3759c6wzZMgQAI4dO8Ynn3ySZ/sJCQmkpKQUa8yurq4AxMTE5FomOTk513v29vZYW1sDZDtPTURERESkOOhfmSIiIiIiIiJ3MPPWikePHmX8+PEAtGnTBh8fnxzLN2vWjEGDBgHwwgsvMHr0aP755x/L/eTkZA4ePMhrr71GpUqVuHTpUrHGW7NmTQBWr17NtWvXcixTqVIlxo8fz8GDB7Mkyk6dOkW/fv1ITEzEysqKtm3bFmtsIiIiIiIANqUdgIiIiIiIiMj9wHwWWF7Wrl1Lo0aNslyrUaMG9erV49dff+Xw4cNA7lsqms2fPx9ra2sWLFjA7NmzmT17Ns7Oztja2hIbG4vRaLSUNRgMRRhN7oYMGcLy5cvZv38/3t7elCtXDjs7OwDCw8MBiIqKYubMmcycORMrKyvc3Ny4ceMGSUlJlpj+85//UL169WKNTUREREQElBwTERERERERuS2ioqLyLZPbFocDBgzg119/BTK2LXz66afzbMfOzo7PP/+cwYMH89lnn7F3714uXLhAcnIy5cqV4+GHH6Zp06Y888wz+Pn5FX4weWjatCmbNm1i1qxZHDlyhKioqCzJOIBt27axa9cufvzxR86cOWOZm4ceeogmTZrwwgsvUL9+/WKNS0RERETEzGAq7Am5IiIiIiIiIiIiIiIiIncpnTkmIiIiIiIiIiIiIiIi9w0lx0REREREREREREREROS+oeSYiIiIiIiIiIiIiIiI3DeUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuGzalHYCIyJ3OaDRy4cIFXFxcMBgMpR2OiIiIiIiIiIiIiOTAZDJx/fp1ypcvj5VV7uvDlBwTEcnHhQsX8Pf3L+0wRERERERERERERKQAzp49S4UKFXK9r+SYiEg+XFxcgIwvVFdX11KO5v51JT6JZu/tBmD3q83wcnYo5YhEii4xJY0Gb+8E4KcJLXGy0z/JpHTou/XOpe8JESkO9+r3vL4jRe4c9+r3jMjdSv+NhLi4OPz9/S1/083N/TczIiKFZN5K0dXVVcmxUpRiZYeVvRMALq6uuOof3HIXs0lJs3yeXV1d78t/rMqdQd+tdy59T4hIcbhXv+f1HSly57hXv2dE7lb6b+T/5Hc8Tu4bLoqIiIiIiIiIiIiIiIjcY5QcExERERERERERERERkfuGkmNSYsLDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZs6UdTrEJCgrCYDAQEhJS2qHkKiQkBIPBQFBQULZ77dq1w2Aw8MMPP9z+wERERERERERERETkjqPk2C1Yv349ISEhrF+//q7uoyhCQkIICQm5L5JeBfXRRx/xzz//8Nxzz+Hv75/lXuZEYUFeixcvLp1B3IPMSb2xY8diNBpLNxgRERERERERERERKXX372lsxWD9+vUsWbKEgQMH0qVLl7u2j6KYMmUKkLGqKCAgIMcytra2VKtWzfL+Xnb16lWmTZuGvb0948ePz7Osq6srjo6OeZbJ7/7tVLFiRapVq0bZsmVLO5Qiefzxx2nbti1bt25l6dKlDBgwoLRDEhEREREREREREZFSpOSYlBg/Pz/CwsJKO4zb4rPPPiMmJoZnnnmGChUq5Fl2zpw5BAcH357AisGXX35Z2iHcsmHDhrF161beffddJcdERERERERERERE7nPaVlHkFplMJj777DMA+vfvX8rRSE46dOiAp6cnx48fZ9++faUdjoiIiIiIiIiIiIiUIiXHbrJy5Urat2+Pj48Ptra2uLu7U7VqVTp37szcuXNJSkoiNDQUg8HAkiVLAFiyZEm2M6NCQ0MtbUZGRvLRRx/x9NNPExgYiJubG46Ojjz00EM899xzHD9+PFsche3D7NixYwwZMoSqVavi5OSEs7MztWvXZsKECURHR9/y/AQHB2MwGCw/N2/ePEtMmbdYzHzO1s1nk5nHZ27rjz/+oE+fPpQvXx5HR0cCAwN5//33SUtLs9TZt28fXbp04YEHHsDBwYGaNWsyd+5cTCZTnjEXZU5CQkIwGAwEBQUBsGbNGtq0aUO5cuWwsrKynGMFsGPHDk6fPo27uzsdOnQowCwWzv79+7GxscFgMPDBBx/kWObcuXN4eXlhMBh4/vnns9wLCgrCYDAQEhJCSkoKM2fOpHbt2pQpUwYPDw9at27Nli1bcu0/c/2bBQQEWM5Ii4+P580336RWrVq4uLjk+Nz37dtH//79qVSpEg4ODri5udGgQQPeeecd4uPj85yHLVu20Lp1a9zd3XF2dqZOnTq8++67pKam5lkPwM7Oju7duwNYEpkiIiIiIiIiIiIicn/StoqZDB48mEWLFll+dnZ2JjU1lVOnTnHq1Cm+++47OnbsiJ2dHT4+PsTGxpKUlGT5I39mdnZ2lvfjxo2zJLlsbGxwdXUlMTGRv//+m7///pulS5eybNkyyx/vzfUL0wfAu+++y/jx4zEajQA4OTmRmprK0aNHOXr0KIsWLWLTpk3UrVu3yHPk5uaGj48PUVFRAHh4eGSJw9vbu9BtbtmyhW7dupGUlISbmxvJycmEhYXx6quv8ssvv7BixQoWLFjAsGHDMBqNuLq6kpyczPHjxxk5ciRnz55l5syZObZdHHPyyiuvMGvWLAwGA+7u7lhZZc0pf//99wA0bNiwRM5Wa9SoEZMnT+bNN99k3LhxBAUFZYnXaDTSv39/rl69SmBgIHPmzMmxnZSUFFq1asXevXuxsbHB2dmZmJgYduzYwY4dO5g8eXKOCbCCuHLlCvXr1+fPP//Ezs4OJyenLPeNRiOjR4/mww8/tFxzdnYmISGBn3/+mZ9//plFixaxdetWKlWqlK39kJAQyzl3AO7u7vz3v//l9ddfZ9OmTTz55JP5xti0aVM+//xztm7dWqQxioiIiIiIiIiIiMi9QSvH/t+PP/7IokWLsLKy4p133uHKlStcv36dhIQEoqOj2bp1KwMHDsTOzo5GjRoRGRlJr169AOjVqxeRkZFZXo0aNbK0/dBDD/Hee+9x9OhRbty4wZUrV0hOTubYsWP069eP5ORkBg4cyIULFyx1CtvHwoULef3113FycuLtt9/m4sWLJCQkkJiYyOHDh2nRogUXL16kc+fO+a7QycucOXOIjIy0/Lx27dosMf3888+FbrNv3748/fTTREREEBMTQ2xsLOPHjwfg66+/ZubMmYwYMYIRI0YQGRlJTEwMV69etZzb9d577/Hnn39ma7c45uSXX35h1qxZvP7660RFRXH16lUSEhIYNGiQpcyePXsAaNCgQaHHXlATJkwgKCiIlJQUevfuTUJCguXetGnT2L17N/b29qxYsSJbYsps3rx5/PTTT8yfP5/r169z7do1zpw5wzPPPAPAlClT2LBhQ5HiCwkJIS4ujnXr1hEfH8+1a9c4e/Ys5cqVA2Dy5Ml8+OGHlCtXjrlz51p+v27cuMGuXbuoW7cuJ0+epFu3bpZEptmGDRssibEePXpw5swZrl27RlxcHHPnzuXgwYN88skn+cbYsGFDAKKiou6bs/BEREREREREREREJDslx/7f/v37AWjVqhWvvfYanp6elnteXl60adOGxYsXU758+UK3PXHiRMaOHUvNmjWxsclYrGdlZUWNGjVYunQpHTt2JCEhgS+++KJIsV+/fp2xY8cCsHr1at544w18fX0BsLa2pn79+mzdupX69etz7tw5FixYUKR+Sspjjz3GihUrqFixIgAuLi5Mnz6dJk2aADB+/HgGDhxoSa5Axoq1BQsW8OCDD2I0Glm1alWWNotrTuLj4xkzZgwzZ860rIqzt7e3rG5KSUnhyJEjANSpU6dA4x01ahS+vr55vm5mZWXF0qVL8fLy4s8//2TkyJFAxjaFU6dOBTJWyeUVQ2xsLPPmzWPo0KE4ODgA4O/vz8qVK2natCkAb7zxRoHGcLMbN26wefNmunTpYlk9V6FCBZycnAgPD2fGjBk4Ojqybds2RowYYfn9srW1JSgoiN27d1OhQgV+/fXXbAk6c6K0WbNmfP311/j7+wPg6OjIiBEj+PDDD4mJick3xqpVq+Ls7AzAgQMH8iybnJxMXFxclpeIiIiIiIiIiIiI3BuUHPt/7u7uAFy+fJn09PTb2nfHjh2BjNVrRbFmzRpiYmKoW7cubdu2zbGMjY0Nffr0AbjjtpV7/fXXs5xjZpZ5LOYESWbW1ta0bNkSyDizLLPimhMrKytef/31XGO/dOmS5fNS0C0l4+LiiIqKyvOVEz8/P0sCdfHixXzyySf07duX9PR0OnXqxEsvvZRnv/7+/llWvGUe48SJEwE4fvw4R48eLdA4MmvXrl2uW1MuXryY9PR02rVrl2vyzsXFhS5dugBZn8Uff/zBf//7XyAjyXzzlpYAzz//PH5+fgWK08vLCyDLKs2czJgxAzc3N8vLnJATERERERERERERkbufzhz7fy1btsTBwYEjR47QpEkT/v3vf9OiRQsefPDBYmn/999/59NPP+XHH38kPDyc+Ph4TCZTljLnzp0rUtv79u0D4MSJEzmuOjK7ceMGABEREUXqp6Tkth2hj48PAJ6enlSuXDnPMteuXctyvbjm5KGHHrKsVsvJ5cuXLe8zrzbMy6JFiyxbQhZW586dGTlyJB9//DEjRowA4IEHHshyVl5ugoKCckxCAjRp0gQbGxvS0tI4fPgwtWrVKlRceZ35ZX4W27Zty/NZmLe2zPwsDh8+DGQkMs0rCW9mZWVFUFAQy5YtyzdOT09PIiIisjy3nIwfP54xY8ZYfo6Li1OCTEREREREREREROQeoeTY/6tSpQoLFixg2LBhHDhwwLLtmre3N82bN6dv37507tw51+RCXj7++GNGjRplOUvJYDDg5uaGvb09kJGgiYuLy3KOVGGYV8EkJSWRlJSUb/nExMQi9VNSXFxccrxu3oIyt/uZy6Smpma5XlxzkldizNy+mfl5lrT333+fdevWcf78eQC++OILypYtm2+9vFZXOTg44OXlRVRUFJcuXSp0THnNk/lZJCQkFOgznvlZmGMpW7ZsnvNboUKFAsXp6OgIkO9nwt7e/rY9TxERERERERERERG5vbStYib9+vUjIiKC+fPn06tXL/z9/bl8+TKrVq2iS5cuNGvWrNBnD504cYKXX34Zo9FIjx49+Omnn0hKSuLatWtERkYSGRnJrFmzALKtJCso87Z+vXr1wmQy5fsKDw8vUj93k+KaE2tr6zz7MW/TB9lXr5WUTZs2WRJjALt3774t/eYlr3kyP4vXX3+9QM8iNDS0xOK8evUqkPW5iYiIiIiIiIiIiMj9Rcmxm3h6ejJ06FC+/vprzpw5w6lTpxg3bhwGg4G9e/cSEhJSqPZWr15Neno6gYGBfP311zz22GPY2dllKRMZGXlLMZu3qrvTtkssTbdrTjKfM2ZOvJSks2fP8txzzwFQu3ZtAN59911++OGHfOtmTqjdLDk5mStXrgD5r5YrrFt5FuZYoqOjSUlJybVcXmPLzPyMCno+nIiIiIiIiIiIiIjce5Qcy0eVKlWYMWMGffv2BWD79u2We1ZWGdOX14qvs2fPAlCnTh1L+Zvt2LEj1/oF6cN83tMvv/zCxYsXcy1XnMzbSxZ1tVtJu11z4uHhYUn+/PPPPyXWD2SswOrXrx/Xrl2jevXqHDx4kK5du2I0Gnn22Wctya3c7N69O9fntXfvXtLS0gB49NFHizVu87PYsWNHgba4zMwcS1paGnv37s2xjNFoLNBqs+vXrxMdHQ1AYGBgoeIQERERERERERERkXuHkmP/Lzk5Oc/75rOKMie4XF1dAYiJicm1npubGwBHjx7NMTGxZcuWPP+wX5A+evTogbu7O6mpqYwZMybPhJXRaMyzrYIqSFyl6XbOSdOmTQH46aefitxGQUybNo29e/dib2/P119/jaOjIwsWLKBChQpcuHCBQYMG5Vn/zJkzLFmyJNt1o9HI9OnTAahevTq1atUq1rgHDx6MjY0N0dHRTJ48Oc+yKSkpxMfHW36uXbu2JZH19ttvW87ty+yLL77g3Llz+cZx+PBhjEYjNjY2loSdiIiIiIiIiIiIiNx/lBz7fyNHjqRnz56sWbOGS5cuWa7Hx8czf/58vvzySwA6duxouVezZk0gY9VNWFhYju22a9cOgOPHj/PCCy9YtnVLSEjg008/5Zlnnsnz/KOC9OHu7s7s2bMB+Prrr+nYsSOHDh2yJBKMRiMnTpzgP//5DzVq1GDjxo35zkd+zHEtW7aMxMTEW26vuN3OOQkKCgLg0KFDtxp2rvbt28dbb70FwHvvvWdJYHl6erJ06VKsrKz47rvv+Pjjj3Ntw83NjeHDh/P5559bVnCdPXuWPn36sGvXLiAjAVfcqlSpwqRJk4CMLSAHDBjAsWPHLPfT0tL47bffmDp1Kg899BC//fZblvpvv/02ALt27aJv376WRFhSUhLz589n5MiRuLu75xuH+fnUq1cPZ2fnYhiZiIiIiIiIiIiIiNyNlBz7f6mpqXzzzTc888wz+Pj44OLigoeHBy4uLgwfPpyUlBQaN27MhAkTLHW6d++Ot7c3165dIzAwEG9vbwICAggICODgwYMAtGzZkt69ewPwySef4OXlhYeHB25ubgwbNozAwMA8zzErSB8AAwcO5JNPPsHOzo4tW7bw+OOP4+TkRNmyZXFwcKB69eqMHTuWsLAwy5aIt2LYsGEArFmzBnd3dypUqEBAQACNGze+5baLy+2ak+7du2Nra0tYWBh//fVXvuVHjRqFr69vnq9Ro0ZZysfExNC3b1/S09Pp1KkTL774Ypb2mjVrZvlcvvrqqxw9ejTHfkeMGMGjjz7KkCFDcHV1xdPTk4oVK7Jq1SoAJk6cSNeuXYs6DXmaNGkSkyZNwmAw8NVXX1GrVq0sz6Ju3bpMnjyZs2fPZnsWXbt2tYxv5cqV+Pv74+npafndbNCgAcOHD883hg0bNgBYtkgVERERERERERERkfuTkmP/b9KkSXz44Yd07dqVhx9+GBsbG+Lj4ylXrhytW7fmiy++IDQ0lDJlyljqeHh4sGfPHnr37o2fnx+xsbFEREQQERGR5WylZcuWMXv2bGrXro29vT3p6enUqlWLGTNmsG/fvjxXsRS0D8hIWJ08eZKxY8dSp04d7O3tiYmJwdnZmUcffZQXX3yR7du306dPn1uer/79+/PVV1/RuHFjnJycuHjxIhEREQXa3u52uh1zUq5cOUtSadmyZfmWj4uLIyoqKs9XbGyspfzzzz/PmTNn8PX15YsvvsixzcmTJ9OoUSOSkpLo3bs3N27cyFbGzs6OnTt3Mn36dKpVq0ZycjJubm60bNmSTZs2WVamlQSDwcDUqVP5448/GDFiBIGBgVhbWxMbG4uHhweNGjXi1VdfZf/+/TlueTht2jQ2btxIixYtcHV1JTk5mcDAQGbOnMnOnTuxs7PLs/9//vmHAwcO4OjoyIABA0pqmCIiIiIiIiIiIiJyFzCY8jqMSUQKZM+ePTRr1owqVarw119/FcvqvOISFBTE7t27mTx5cp6rFO9lU6dOZfLkyQwaNCjXBGNe4uLicHNzIzY21nLentx+0fFJPDptJwCHJ7akrLNDKUckUnSJKWlUf3MrAP+d2hYnO5tSjkjuV/puvXPpe0JEisO9+j2v70iRO8e9+j0jcrfSfyML/rdcrRwTKQZNmzalTZs2/P3333zzzTelHY5kkpCQwEcffYS9vT2TJ08u7XBEREREREREREREpJQpOSZSTN5//32srKyYOnUqRqOxtMOR//fxxx8THR3NSy+9RKVKlUo7HBEREREREREREREpZfffmjqRElKrVi0WLlxIeHg4Fy9exM/Pr7RDEqBMmTKEhITw8ssvl3YoIiIiIiIiIiIiInIHUHLsPubr61voOpGRkSUQyb0jODi4tEOQm4wcObK0QxARERERERERERGRO4iSY/exqKio0g5BboPQ0NDSDkFERERERERERERE5I5hMJlMptIOQkTkThYXF4ebmxuxsbG4urqWdjgiIiIiIiIiIiIikoOC/i3X6jbGJCIiIiIiIiIiIiIiIlKqlBwTERERERERERERERGR+4aSYyIiIiIicldKTEkjYNwmyysxJS3bdfO1vK6LlLbCfmbz+iwX9Z5IUej7VsxK6nupuL8HC3JfRETuD0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJcdERERERERERERERETkvqHkmIiIiIiIiIiIiIiIiNw3lBwTERERERERERERERGR+4aSY3e44OBgDAYDwcHBxd723r176dixI97e3lhbW2MwGOjSpUux9yN3hoCAAAwGA4sXLy6V/vv374/BYGDlypW3td927dphMBj44Ycfbmu/IiIiIiIiIiIiInJnUnLsPnXw4EFatGjB5s2buXLlCp6envj4+ODh4QFASEgIISEhhIeHl26gpSA8PNwyfikehw8fZvny5dSsWZOePXtmu29O3JVEEtj8HMeOHYvRaCz29kVERERERERERETk7mJT2gFI6Zg9ezZpaWk8+eSTbNiwAU9Pzyz3p0yZAkBQUBABAQGlEGHpCQ8Pt4xfCbLi8corr2AymZg8eTIGg+G29v3444/Ttm1btm7dytKlSxkwYMBt7V9ERERERERERERE7ixaOXafOnr0KAC9e/fOlhgTKU4HDx5kz549+Pr60rVr11KJYdiwYQC8++67pdK/iIiIiIiIiIiIiNw5lBy7TyUmJgLg7OxcypHIvW7+/PlARiLW2tq6VGLo0KEDnp6eHD9+nH379pVKDCIiIiIiIiIiIiJyZ1By7C4XHh7Oyy+/TI0aNXB2dsbJyYmHH36YUaNGcebMmWzlDQYDBoPBcpbYoEGDLNfMZz5l3vauefPmWe7f6haLQUFBGAwGQkJCSElJYebMmdSuXZsyZcrg4eFB69at2bJlS77trF27lk6dOuHj44OdnR0+Pj506tSJdevW5VrHPLbg4GBMJhMLFiygcePGeHl5YTAYWLx4MQEBATRv3txSJ/PYi+NMLHM7oaGhREZGMnLkSB588EEcHBzw9fWlX79+hIWF5dlGUlISs2fPplGjRnh4eODg4EClSpUYMGAAv/32W5Fje/vttzEYDFhbW1sSWmZGo5Fly5bRoUMHy5x7e3vTpk0bVqxYgclkyrHNuLg4Vq1aBUDfvn2LFFfm5wawevVqgoKC8PT0xMnJiUceeYQ5c+bkeZ6YnZ0d3bt3B+Czzz4rUhwiIiIiIiIiIiIicm/QmWN3sWXLlvHvf/+b5ORkAOzt7bGysuLkyZOcPHmSRYsWsXr1atq0aWOp4+PjA8Dly5cxGo24urri6OhouW9tbY2Pjw9RUVEAeHh4YGdnZ7nv7e1dLLGnpKTQqlUr9u7di42NDc7OzsTExLBjxw527NjB5MmTczzvKyUlhQEDBrBy5UoArKyscHNzIzo6mk2bNrFp0yb69OnDkiVLsLW1zbFvk8lEjx49WLNmjaW+lZWVZXxxcXFcu3YN+N98mbm5uRXL+E+fPk2fPn2IjIzE0dERW1tboqKiWL58OWvXrmXdunW0a9cuW73z58/Trl07jh07BoCtrS1OTk6cOXOGr776imXLljF79mxefPHFAsdiNBp56aWXmDt3Lg4ODixfvjzL9odXr16la9eu7Nmzx3LNPOfbt29n+/btfP3113zzzTdZPisAu3fv5saNG5QpU4Z69eoVdpqyGTlyJHPnzsXKygpXV1du3LjB77//zssvv8yvv/7KkiVLcq3btGlTPv/8c7Zu3XrLcYiIiIiIiIiIiIjI3Usrx+5S27dvZ8CAAaSnp/Paa69x+vRpbty4QUJCAmFhYfTo0YPr16/To0ePLCvIIiMjiYyMxN/fH4A5c+ZYrkVGRrJw4UIiIyMt5deuXZvl/s8//1ws8c+bN4+ffvqJ+fPnc/36da5du8aZM2d45plnAJgyZQobNmzIVu+NN95g5cqVGAwGJk2axJUrV7h69SrR0dG88cYbAKxYsYJJkybl2vfatWv59ttvef/997l27RpXr14lNjaWtm3b8vPPP7N27dps82V+zZkzp1jGP3r0aOzs7Ni2bRsJCQlcv36dQ4cOUatWLZKSkujVqxfnzp3LUic9PZ3u3btz7Ngx3NzcWLp0KfHx8cTExPD333/TqVMnjEYjo0aNKtDqO4Dk5GR69uzJ3LlzcXd3Z9u2bVkSY+np6XTr1o09e/bwyCOP8N1335GQkEBMTAzx8fEsWbKEcuXKsWHDBl5//fVs7ZsTavXq1bvlLRU3bNjA559/zqxZs7h27RrXrl0jOjqa5557DoAvv/ySH374Idf6DRs2BCAqKirf1XkiIiIiIiIiIiIicu9ScuwuZDQaeeGFFzAajcydO5d33nmHgIAAy5Z91apVY9WqVXTu3Jm4uDhmzZpV2iFnExsby7x58xg6dCgODg4A+Pv7s3LlSpo2bQpgSXaZnT9/3pKcGjduHFOnTsXd3R3IWOH29ttvM2bMGABmzZrFxYsXc+w7Pj6eWbNm8corr+Dq6gpknL32wAMPFPs4c3Pjxg2+//57WrdubdnGskGDBuzYsQNPT0/i4uKYMWNGljqrV6/m0KFDAKxatYp+/fpZVmpVrlyZdevW0bBhQ0wmE6+99lq+MZgTgmvWrMHPz4+9e/fSpEmTLGWWL1/O7t27efjhhwkNDaVTp044OTkBUKZMGQYMGMDmzZsxGAzMmzePS5cuZalvjrdOnTpFmKWsrl27xqeffsro0aMtz83Ly4vPP/+c+vXrAxmJ0dxUrVrVcsbegQMH8uwrOTmZuLi4LC8RERERERERERERuTcoOXYX2rNnD3/99Rdly5a1rJrJyYABAwDuyG3k/P39GTRoULbrVlZWTJw4EYDjx49z9OhRy701a9aQlpaGg4MD48aNy7HdiRMnYm9vT2pqKqtXr86xjIeHB0OHDi2GURRdjx49CAwMzHa9XLlyDBs2DMCydaSZ+ecnnngiy1aZZjY2NkyePBmAY8eOZZm7m124cIEmTZpYEl/79++nZs2a2cotXLgQgOHDh+e6pWT9+vWpUaMGKSkp7Nq1K1s/UDzbcfr7+zNw4MAc73Xu3BmAP/74I882vLy8ssSVmxkzZuDm5mZ5mVdaioiIiIiIiIiIiMjdT8mxu9C+ffuAjJU/5cuXx9fXN8fX888/D0BERERphpujoKAgy4qpmzVp0gQbm4zj8A4fPmy5bn7/2GOPWVYO3czDw4NHH300W93MHnvssWxnY91uLVq0yPfelStXOH36tOW6eTytWrXKtW7z5s0t2xfmNv6wsDAaNWrE0aNHeeKJJ9i3bx8VK1bMVi49PZ2DBw8CEBISkuvnzNfXl5MnTwLZP2uXL18GwNPTM9eYC+qxxx7L9TNTvnx5ION8tLyY4zDHlZvx48cTGxtreZ09e7YIEYuIiIiIiIiIiIjIncimtAOQwjOveklNTSUqKirf8jdu3CjpkArNz88v13sODg54eXkRFRWVZZs+8/u86gJUqFAhS/mblStXrrDhFru8xpD53qVLl3jwwQct7/Or6+DgQNmyZbPNXWbvvPMOAD4+Pmzbts2y1eDNrl69SnJyMpCxpWFBJCYmZvk5KSkJAHt7+wLVz4uLi0uu98zJ1NTU1DzbcHR0zBJXbuzt7YslZhERERERERERERG582jl2F0oPT0dwHK+VEFe8j/mlVX3qx49emBnZ0dUVBTDhw+3fJ5ulvn6li1bCvQ5CwkJydKGeRvDgibXSpp5ZZk5LhERERERERERERG5/yg5dhfy9fUF7sztEgvq/Pnzud5LTk7mypUrQNZVXub3586dy7Nt8/07YYVYbvIaf+Z7hR1/UlJSjnOXWYcOHVi3bh329vYsXbqUZ599NscEmZeXl2VFVlE/a+azxvLb7vB2McdRHGegiYiIiIiIiIiIiMjdScmxu9CTTz4JQGRkZK7nSt0q89lOJbXqbPfu3bm2vXfvXtLS0gAs54dlfn/48GFiY2NzrBsTE5PlbLKisLL6369FSY1/165d+d7z9PS0bKkI/xv/zp07c60bGhpqmbu8xt+hQwe+/fZbHBwcWLFiBX379rXUM7O1taVBgwYAfPfdd/mMKGfVq1cH4J9//ilS/eJ0/fp1oqOjAQgMDCzlaERERERERERERESktCg5dhdq3rw5Dz30EACjR48mJSUlz/JFWbXj6uoKZCSbSsKZM2dYsmRJtutGo5Hp06cDGYmVWrVqWe51794dGxsbkpKSLOdm3Wz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t0725ldQ4YMAWDz5s1s3rw5z/Zy+pw1bdoUgJ9++inPurfD4cOHMRqN2NjYWBLMIiIiIiIiIiIiInL/UXLsLmRjY8P8+fOxsbHhxx9/pGnTpuzcuTNLYuOff/5h/vz5PPbYY8ybN6/QfZgTK8uWLSMxMbHYYjdzc3Nj+PDhfP755yQlJQFw9uxZ+vTpY1k5NW3atCx1/Pz8GDVqFAAzZ85k8uTJluRVTEwMkyZN4r333gNgzJgxPPDAA0WK7V//+hd2dnYALFiwoERWjzk4ONCuXTt27Nhhaf/nn3+mVatWREdH4+Liwrhx47LU6d69Ow0bNgSgZ8+eLF++3PLMT58+Tffu3Tlw4AAA7777boHiaN26NRs3bsTJyYk1a9bQs2fPLMnW/v3706pVK0wmE127dmXatGlcuHDBcj8hIYFdu3bxwgsvULly5WztBwUFARnbMkZFRRVwdkrGoUOHAKhXrx7Ozs6lGouIiIiIiIiIiIiIlB4lx+5SLVu25JtvvsHFxYVDhw7RqlUrypQpQ9myZXFwcKBKlSoMHz6cw4cPW7ZILIxhw4YBsGbNGtzd3alQoQIBAQE0bty4WOIfMWIEjz76KEOGDMHV1RVPT08qVqzIqlWrAJg4cSJdu3bNVm/69On07NkTk8nE1KlT8fLywtPTEy8vL0syrU+fPrz11ltFjs3JyYlnn30WgNdeew1nZ2cqVapEQEAAY8eOLXK7mX3wwQckJSXRunVrnJ2dcXFxoUGDBvz+++/Y29uzYsUKKlasmKWOtbU1a9asoUaNGsTGxtKvXz+cnZ3x8PCgcuXKbNiwASsrK+bMmUP79u0LHEuLFi3YvHkzZcqUYf369XTv3t2SIDP32alTJ1JSUpg0aRJ+fn64ubnh4eGBi4sLLVq0YN68eSQkJGRrOzAwkDp16gCwYcOGW5ixW2fuv2/fvqUah4iIiIiIiIiIiIiULiXH7mJdunTh1KlTTJ48mQYNGuDs7ExMTAz29vbUqVOH5557jnXr1vHqq68Wuu3+/fvz1Vdf0bhxY5ycnLh48SIRERGcO3euWGK3s7Nj586dTJ8+nWrVqpGcnIybmxstW7Zk06ZNuSa37OzsWLlyJatXr6Z9+/Z4eXlx/fp1vLy8aN++PWvXrmX58uXY2treUnxz584lJCTEsq3jmTNniIiIsJxZdasefPBBjhw5wgsvvIC3tzcpKSmUK1eOPn36cOTIETp27JhjPT8/Pw4fPsysWbN4/PHHcXR0JDExEX9/f5599ll++eUXXnrppULH06xZM77//ntcXFzYuHEjXbp0ITk5GcjYZvK7775j8+bN9OrVi4oVK5KcnExiYiJ+fn60adOGGTNm5LhNJMDQoUOBjFWIpeWff/7hwIEDODo6MmDAgFKLQ0RERERERERERERKn01pByB5W7x4MYsXL871frly5QgJCSEkJKRQ7YaHh+dbpn///vTv379Q7RaGnZ0d48ePZ/z48YWu271790KfKZbfXGZmb2/P5MmTmTx5cqFjKyhfX18+/vhjPv7440LVc3BwYPTo0YwePbpQ9fJ75o0bNyYuLi7X++3bty/UijSz/v37M27cOPbs2UNERASVKlUqVGwFeW7BwcEEBwfnen/p0qVAxrltHh4eBQlbRERERERERERERO5RWjkmIiXKfH6ayWTinXfeue39JyQk8NFHH1kSniIiIiIiIiIiIiJyf1NyTERK3OjRo/H392fhwoWcPXv2tvb98ccfEx0dzUsvvZTjqjURERERERERERERub9oW0URKXEODg58+eWXhIaGcubMGfz9/W9b32XKlCEkJISXX375tvUpIiIiIiIiIiIiIncuJcek0Lp168b+/fsLVWft2rU0atSohCK6vXx9fQtdJzIysgQiubsEBQURFBR02/sdOXLkbe9TRERERERERERERO5cSo5JoV29epWoqKhC1UlJSQEgNDS0BCK6vQo79sxMJlMxRiIiIiIiIiIiIiIiIoVlMOmv9SIieYqLi8PNzY3Y2FhcXV1LOxwRERERERERERERyUFB/5ZrdRtjEhERERERERERERERESlVSo6JiIiIiIiIiIiIiIjIfUPJMRERERERuWslpqQRMG6T5ZWYkpbjPfP1nK6JlLa8Ppf5fWaLUle/B1Kc9DkTs5L4vrrVurfSp4iI3NuUHBMREREREREREREREZH7hpJjIiIiIiIiIiIiIiIict9QckxERERERERERERERETuG0qOiYiIiIiIiIiIiIiIyH1DyTERERERERERERERERG5byg5JiIiIiIiIiIiIiIiIvcNJceKSXBwMAaDgeDg4GJve+/evXTs2BFvb2+sra0xGAx06dKl2PuRO0NAQAAGg4HFixeXSv/9+/fHYDCwcuXKUum/OBmNRmrUqIGtrS0nT54s7XBERERERERERERE5A5gU9oBSN4OHjxIixYtSEtLw2Aw4OXlhbW1NR4eHgCEhIQAGcm5gICA0gu0FISHh1sSSOZ5kFtz+PBhli9fTs2aNenZs2eeZU+dOsXChQvZsWMH4eHhxMbG4unpSZUqVWjTpg3PP/885cuXL7FY169fz2+//cYjjzySa7LYysqKSZMm0adPH1577TW+/fbbEotHRERERERERERERO4OWjl2h5s9ezZpaWk8+eSTREdHc/nyZSIjI1m0aBEAU6ZMYcqUKYSHh5duoKUgPDzcMn4pHq+88gomk4nJkydjMBhyLJOens6rr75KYGAgM2fO5PDhw1y7dg1nZ2cuX77M/v37CQkJoWrVqrz//vslFuv69euZMmUK69evz7Ncz549qV69Ohs2bGDPnj0lFo+IiIiIiIiIiIiI3B2UHLvDHT16FIDevXvj6elZytHIvezgwYPs2bMHX19funbtmmMZo9FI9+7def/990lLS6Ndu3bs3r2b5ORkrl69yo0bN/j+++9p1KgRiYmJvPrqq7z00ku3eSRZWVlZ8fzzzwPw7rvvlmosIiIiIiIiIiIiIlL6lBy7wyUmJgLg7OxcypHIvW7+/PlARiLW2to6xzLTpk2zbE04btw4tmzZQtOmTS3l7ezsaNu2LXv37mXAgAEAfPTRR3z11Ve3YQS569OnD9bW1mzZsoUzZ86UaiwiIiIiIiIiIiIiUrqUHLtNwsPDefnll6lRowbOzs44OTnx8MMPM2rUqBz/WG8wGDAYDJbtEgcNGmS5ZjAYCA4OzrLtXfPmzbPcv9Xzx4KCgjAYDISEhJCSksLMmTOpXbs2ZcqUwcPDg9atW7Nly5Z821m7di2dOnXCx8cHOzs7fHx86NSpE+vWrcu1jnlswcHBmEwmFixYQOPGjfHy8sJgMLB48WICAgJo3ry5pU7msZvr3gpzO6GhoURGRjJy5EgefPBBHBwc8PX1pV+/foSFheXZRlJSErNnz6ZRo0Z4eHjg4OBApUqVGDBgAL/99luRY3v77bcxGAxYW1tbElpmRqORZcuW0aFDB8uce3t706ZNG1asWIHJZMqxzbi4OFatWgVA3759cyxz6dIlZs6cCWR83qZPn55rjFZWVnz22WcEBgYCMH78eFJSUrKUyfycc7N48eJsn+fQ0FAMBgNLliwBYMmSJdmef2hoaJZ2fHx8aNGiBUajkYULF+ban4iIiIiIiIiIiIjc+5Qcuw2WLVvGww8/zJw5c/jvf/9LWloaACdPnuTDDz+kZs2abNu2LUsdHx8ffHx8sLLKeESurq6Waz4+PlhbW+Pj42Mp7+HhkeW+t7d3scSekpJCq1atGD9+PCdOnMDOzo6YmBh27NhBhw4dCAkJybVe79696d69O5s2bSI6OhpnZ2eio6PZtGkT3bp1o2/fvqSmpubat8lkokePHjz//PMcOHAAk8lkmQ9vb288PDwsZTOP3cfHBzc3t2IZ/+nTp6lbty5z584lKioKW1tboqKiWL58OXXr1uX777/Psd758+d57LHHGD16NAcOHCAhIQEHBwfOnDnDV199Rf369fnoo48KFYvRaGTkyJFMnDgRBwcHVq9ezbBhwyz3r169SvPmzenfvz9btmzh0qVLODk5ER0dzfbt2+nbty9dunTJlqQC2L17Nzdu3KBMmTLUq1cvx/4XLVrEjRs3API8k8zM3t6ecePGWeYjv7PBCsqcZHVwcADAwcEh2/O3s7PLVq9p06YAuT4zEREREREREREREbk/KDlWwrZv386AAQNIT0/ntdde4/Tp09y4cYOEhATCwsLo0aMH169fp0ePHllWkEVGRhIZGYm/vz8Ac+bMsVyLjIxk4cKFREZGWsqvXbs2y/2ff/65WOKfN28eP/30E/Pnz+f69etcu3aNM2fO8MwzzwAwZcoUNmzYkK3eG2+8wcqVKzEYDEyaNIkrV65w9epVoqOjeeONNwBYsWIFkyZNyrXvtWvX8u233/L+++9z7do1rl69SmxsLG3btuXnn39m7dq12ebL/JozZ06xjH/06NHY2dmxbds2EhISuH79OocOHaJWrVokJSXRq1cvzp07l6VOeno63bt359ixY7i5ubF06VLi4+OJiYnh77//plOnThiNRkaNGlWg1XcAycnJ9OzZk7lz5+Lu7s62bduynAuWnp5Ot27d2LNnD4888gjfffcdCQkJxMTEEB8fz5IlSyhXrhwbNmzg9ddfz9b+nj17AKhXr16uWyr+8MMPAHh5edGsWbMCxd2lSxdLEm3Xrl0FqpOfRo0aERkZSa9evQDo1atXtuffqFGjbPUaNmwIwK+//kp8fHyxxCIiIiIiIiIiIiIidx8lx0qQ0WjkhRdewGg0MnfuXN555x0CAgIsW79Vq1aNVatW0blzZ+Li4pg1a1Zph5xNbGws8+bNY+jQoZaVOv7+/qxcudKyEsec7DI7f/68JTk1btw4pk6diru7O5Cxwu3tt99mzJgxAMyaNYuLFy/m2Hd8fDyzZs3ilVdewdXVFcg4e+2BBx4o9nHm5saNG3z//fe0bt3akuRp0KABO3bswNPTk7i4OGbMmJGlzurVqzl06BAAq1atol+/fpaVTJUrV2bdunU0bNgQk8nEa6+9lm8M5oTgmjVr8PPzY+/evTRp0iRLmeXLl7N7924efvhhQkND6dSpE05OTgCUKVOGAQMGsHnzZgwGA/PmzePSpUtZ6pvjrVOnTq5xHD9+HIC6devmG7OZq6srlStXBuDYsWMFrlcSzHGnpaXlmzxOTk4mLi4uy0tERERERERERERE7g1KjpWgPXv28Ndff1G2bFmee+65XMsNGDAAgK1bt96u0ArM39+fQYMGZbtuZWXFxIkTgYykydGjRy331qxZQ1paGg4ODpZt9W42ceJE7O3tSU1NZfXq1TmW8fDwYOjQocUwiqLr0aOH5dyszMqVK2fZ0nDlypVZ7pl/fuKJJ2jTpk22ujY2NkyePBnISBhlnrubXbhwgSZNmlgSX/v376dmzZrZypnP0Ro+fHiuW0rWr1+fGjVqkJKSkm0V14ULFwDy3I7zypUrQMbKscIoW7ZslvqlxdPT07Itp3m8uZkxYwZubm6Wl3kFp4iIiIiIiIiIiIjc/ZQcK0H79u0DMlb+lC9fHl9f3xxfzz//PAARERGlGW6OgoKCcj1bqkmTJtjY2ABw+PBhy3Xz+8cee8yy4utmHh4ePProo9nqZvbYY4/leHbU7dSiRYt87125coXTp09brpvH06pVq1zrNm/e3LJ9YW7jDwsLo1GjRhw9epQnnniCffv2UbFixWzl0tPTOXjwIAAhISG5fs58fX05efIkkP2zdvnyZSAjgXSvsrKysiQOzePNzfjx44mNjbW8zp49eztCFBEREREREREREZHbwKa0A7iXmVenpKamEhUVlW/5GzdulHRIhebn55frPQcHB7y8vIiKisqyTZ/5fV51ASpUqJCl/M3KlStX2HCLXV5jyHzv0qVLPPjgg5b3+dV1cHCgbNmy2eYus3feeQcAHx8ftm3bhrOzc47lrl69SnJyMgDXrl3LYzT/k5iYmOXnpKQkAOzt7XOt4+Xlxfnz5wu9Aiw6OtpSv7Q5Ojpy7do1y3hzY29vn+dciIiIiIiIiIiIiMjdSyvHSlB6ejqA5Xypgrzkf8wrq+5XPXr0wM7OjqioKIYPH275PN0s8/UtW7YU6HMWEhKSpQ1z4iqv5Fr16tUBOHLkSIHHEBcXxz///ANAjRo1ClyvpFy9ehW4MxJ1IiIiIiIiIiIiIlI6lBwrQb6+vsCduV1iQZ0/fz7Xe8nJyZZVRJlXeZnfnzt3Ls+2zffvhBViuclr/JnvFXb8SUlJOc5dZh06dGDdunXY29uzdOlSnn322RwTZF5eXpbtLYv6WTOfNWZOHuWkZcuWQMY2kqGhoQVqd926dZak781bVJpjzmsVV2xsbIH6KYgbN25Y+srrbDURERERERERERERubfdcnLs3LlzjBkzhho1auDs7Gz5g7fZtWvXmD59OjNmzCAtLe1Wu7urPPnkkwBERkbmeq7UrTKfB1ZSq852796da9t79+61PFPz+WGZ3x8+fDjX5EZMTEyWs8mKwsrqfx/fkhr/rl278r3n6elp2VIR/jf+nTt35lo3NDTUMnd5jb9Dhw58++23ODg4sGLFCvr27Zvt98jW1pYGDRoA8N133+UzopyZV4WZV3nlJDg4GAcHBwCmTp2a75wnJydbtoYsX748Xbp0yXLfw8MDIM/zvA4dOpTrPfPzL+izz3wuXGBgYIHqiIiIiIiIiIiIiMi955aSY9u3b6dWrVrMmTOHEydOkJiYmO0P1R4eHqxfv56JEyeyefPmWwr2btO8eXMeeughAEaPHk1KSkqe5fNatZMbV1dXICPZVBLOnDnDkiVLsl03Go1Mnz4dyEis1KpVy3Kve/fu2NjYkJSUZEmO3Gz69OkkJydja2tL9+7dixSbeexQcuP/5ptvOHnyZLbr0dHRfPrppwD06tUry73evXsDcODAAbZt25atblpaGlOnTgWgZs2a1KxZM88Y2rZty4YNG3B0dGTVqlX07t2b1NTULGWGDBkCwObNm/P9Pcvpc9a0aVMAfvrpp1zr+fj48NprrwEZicEJEybkWtZoNDJ06FBOnDgBZDxvOzu7LGXq1KkDwM8//5xjguzEiROsXbs21z4K+9k3J9p8fHyoVq1ageqIiIiIiIiIiIiIyL2nyMmxs2fP8swzzxAbG8tTTz3F6tWrLStBbjZ48GBMJhObNm0qcqB3IxsbG+bPn4+NjQ0//vgjTZs2ZefOnVkSG//88w/z58/nscceY968eYXuw5xYWbZsGYmJicUWu5mbmxvDhw/n888/t2xJd/bsWfr06WNZOTVt2rQsdfz8/Bg1ahQAM2fOZPLkyZYERkxMDJMmTeK9994DYMyYMTzwwANFiu1f//qXJeGyYMGCElk95uDgQLt27dixY4el/Z9//plWrVoRHR2Ni4sL48aNy1Kne/fuNGzYEICePXuyfPlyyzM/ffo03bt358CBAwC8++67BYqjdevWbNy4EScnJ9asWUPPnj2zJFv79+9Pq1atMJlMdO3alWnTpnHhwgXL/YSEBHbt2sULL7xA5cqVs7UfFBQEZGzLGBUVlWsckydPplOnTgDMmDGDDh06sHfvXst2j6mpqWzbto2mTZtakqojRoxg4MCB2dp66qmncHZ2JjU1lZ49e1qSkKmpqXz77be0atWKMmXK5BqL+bO/d+9ewsLCci1nZk6ONWvWLN+yIiIiIiIiIiIiInLvKnJy7D//+Q/Xr1+nZ8+erF+/nm7dumVbGWLWtm1bICOpcL9p2bIl33zzDS4uLhw6dMjyB/+yZcvi4OBAlSpVGD58OIcPH7ZskVgYw4YNA2DNmjW4u7tToUIFAgICaNy4cbHEP2LECB599FGGDBmCq6srnp6eVKxYkVWrVgEwceJEunbtmq3e9OnT6dmzJyaTialTp+Ll5YWnpydeXl6WZFqfPn146623ihybk5MTzz77LACvvfYazs7OVKpUiYCAAMaOHVvkdjP74IMPSEpKonXr1jg7O+Pi4kKDBg34/fffsbe3Z8WKFVSsWDFLHWtra9asWUONGjWIjY2lX79+ODs74+HhQeXKldmwYQNWVlbMmTOH9u3bFziWFi1asHnzZsqUKcP69evp3r27JUFm7rNTp06kpKQwadIk/Pz8cHNzw8PDAxcXF1q0aMG8efNISEjI1nZgYKBlJdeGDRtyjcHKyop169YxevRobGxs2LJlC02bNsXe3h4vLy8cHBxo27Yt+/btw8HBgZkzZzJ37twc23Jzc2P27NkYDAYOHjzIww8/jKurK87OznTp0oWKFStaVtjlpHv37nh7e3Pt2jUCAwPx9vYmICCAgIAADh48mKWs0Wi0JOf79u2b90SLiIiIiIiIiIiIyD2tyMmxrVu3YjAYCpTcePDBB7G3t89y5s/9pEuXLpw6dYrJkyfToEEDnJ2diYmJwd7enjp16vDcc8+xbt06Xn311UK33b9/f7766isaN26Mk5MTFy9eJCIignPnzhVL7HZ2duzcuZPp06dTrVo1kpOTcXNzo2XLlmzatCnX529nZ8fKlStZvXo17du3x8vLi+vXr+Pl5UX79u1Zu3Yty5cvx9bW9pbimzt3LiEhIZZtHc+cOUNERATR0dG31K7Zgw8+yJEjR3jhhRfw9vYmJSWFcuXK0adPH44cOULHjh1zrOfn58fhw4eZNWsWjz/+OI6OjiQmJuLv78+zzz7LL7/8wksvvVToeJo1a8b333+Pi4sLGzdupEuXLiQnJwMZ2wx+9913bN68mV69elGxYkWSk5NJTEzEz8+PNm3aMGPGjBy3iQQYOnQokLEKMS82NjbMmjWL//73v7z22mvUr18fd3d3y/N94oknmDx5MqdOneL111/Ps61///vfbNq0iRYtWuDq6kpaWhr/+te/mDlzJrt3785z5ZiHhwd79uyhd+/e+Pn5ERsbS0REBBEREZZVjma7d+/m3Llz+Pn5WVa+iYiIiIiIiIiIiMj9yaaoFc+cOYOjoyNVq1YtUHlnZ2diY2OL2t0db/HixSxevDjX++XKlSMkJISQkJBCtRseHp5vmf79+9O/f/9CtVsYdnZ2jB8/nvHjxxe6bvfu3Qt9plh+c5mZvb09kydPZvLkyYWOraB8fX35+OOP+fjjjwtVz8HBgdGjRzN69OhC1cvvmTdu3Ji4uLhc77dv375QK9LM+vfvz7hx49izZw8RERFUqlQpz/JVq1bN9Uy5wsgr3uDgYIKDg3Ot+/DDD7NixYp8+/jqq6+AjLPZrK2tixSniIiIiIiIiIiIiNwbirxyzMrKCqPRWKCyaWlpxMXF4erqWtTuRKSEmc9PM5lMxZL0ulOcPXuWZcuW4e3tzcsvv1za4YiIiIiIiIiIiIhIKStycqxSpUokJydz5syZfMvu2bOH1NTUAq8yE5HSMXr0aPz9/Vm4cCFnz54t7XCKxfTp00lJSSEkJEQJehEREREREREREREpenKsVatWAMyfPz/PcqmpqUyYMAGDwVCkrd5E5PZxcHDgyy+/ZPz48QVKfN/pjEYjFStWZNq0aQwZMqS0wxERERERERERERGRO0CRzxwbPXo0n376Kf/5z3+oUqUK//73v7OV+fXXXxk9ejSHDh3C1dWVESNG3FKwUjjdunVj//79haqzdu1aGjVqVEIR3V6+vr6FrhMZGVkCkdxdgoKCCAoKKu0wioWVlVWRzsoTERERERERERERkXtXkZNjlSpVYsGCBQwcOJAhQ4bwxhtvEBsbC0CjRo2IiIggMjISk8mEjY0NX375JWXLli22wCV/V69eJSoqqlB1UlJSAAgNDS2BiG6vwo49M5PJVIyRiIiIiIiIiIiIiIjIncJgusUswPbt23nhhRc4depUjvcfeugh5s+fT4sWLW6lGxGRUhMXF4ebmxuxsbE6t0xERERERERERETkDlXQv+UWeeWYWevWrTl58iR79uxh3759XLhwgfT0dHx9fXnyySdp3rw51tbWt9qNiIiIiIiIiIiIiIiIyC275ZVjIiL3Oq0cExEREREREREREbnzFfRvuVa3MSYRERGRO05iShoB4zYRMG4TiSlpxdJmdHySpc3o+KQS7+9ukNe4c7t3v86ViIiIiIiIiJSsW95WESAlJYXt27dz+PBhLl26BEC5cuV49NFHad26NXZ2dsXRjYiIiIiIiIiIiIiIiMgtueXk2Mcff8yUKVO4evVqjvc9PT158803efHFF2+1KxEREREREREREREREZFbckvJseeee45FixZhPrasQoUK+Pn5AXD+/HnOnTvHlStXePnllzly5AhffPHFrUcsIiIiIiIiIiIiIiIiUkRFPnNsxYoVfPHFF5hMJvr378+ff/7JmTNnOHDgAAcOHODMmTP89ddfDBgwAJPJxJIlS1i+fHlxxi4iIiIiIiIiIiIiIiJSKEVOjs2bNw+DwcCLL77Il19+yUMPPZStTJUqVVi8eDEvvvgiJpOJefPm3VKwIiIiIiIiIiIiIiIiIreiyMmxP/74A4PBwJtvvplv2TfffBODwcDRo0eL2p2IiIiIiIiIiIiIiIjILStycgzA3d0dLy+vfMt5eXnh7u6OwWC4le5KRWhoKAaDoURiDwkJwWAwEBQUVOxty92ptD8TO3fuxGAw0L59+1Lpv7jNnDkTg8HApEmTSjsUEREREREREREREblDFDk5Vq1aNWJjY4mPj8+3bHx8PHFxcVSrVq2o3UkO1q9fT0hICOvXry/tUErF7NmzCQkJ4bfffivtUO4JRqORV155BYApU6bkWTYpKYlPP/2UTp06UbFiRRwdHXFzcyMwMJAhQ4awa9euEo01PDyckJAQQkJC8iw3cuRIypYty6xZszh//nyJxiQiIiIiIiIiIiIid4ciJ8cGDx5Meno6H330Ub5lP/74Y9LT0xk8eHBRuys1Tk5OVKtW7Y5M7K1fv54pU6bc18mxKVOmKDlWTJYsWcLvv/9Ox44dadCgQa7ltm/fTtWqVRk2bBibNm3i7Nmz2NnZkZycTFhYGJ9//jktWrSgQ4cOXLlypURiDQ8PZ8qUKfkm8ZydnXnllVdITEzU6jERERERERERERERAW4hOTZs2DB69erFpEmTmDJlSo4ryBITE5k6dSqTJk2id+/eDB069JaCLQ0NGjQgLCyMsLCw0g5FpES9++67AAwfPjzXMitXrqRDhw6cO3cOPz8/FixYwNWrV4mNjSUpKYkTJ07w8ssvY2Njw5YtW3j88ce5dOnS7RpCjp577jlsbGz46quvuHjxYqnGIiIiIiIiIiIiIiKlz6aoFQcPHoyjoyMuLi5MnTqV9957j0cffRQ/Pz8Azp8/z+HDh7lx4wZubm44ODjkuHLMYDCwcOHCoo9ARG5ZaGgoYWFheHt707Zt2xzLnDhxgsGDB5OWlkatWrXYuXMn3t7eWco8/PDDfPDBB7Ru3ZquXbty6tQp+vbty44dO27HMHJUtmxZ2rZty6ZNm/jiiy+YMGFCqcUiIiIiIiIiIiIiIqWvyCvHFi9ezJIlS4iNjcVkMpGYmMiePXtYsWIFK1asYM+ePSQmJmIymYiJiWHJkiUsXrzY8sr8c2kJCgrCYDAQEhJCamoq//nPf3j00Udxd3fHYDAQGhpKaGgoBoMBg8GQaztHjx6lV69e+Pr64uDgQOXKlXnxxRe5dOlSgeqb7dy5k44dO+Lt7Y2DgwOBgYFMmTKFpKSkLOXMbS5ZsgTI2A7P3If5FRoaWuR5Wbx4MQaDgYCAACBjG7327dvj7e2No6MjNWrUYNq0adniutnff//N8OHDqVq1Ko6Ojri6ulKvXj2mTp1KXFxcjnVunq8jR47Qr18/KlSogK2tLUFBQYSEhGAwGIiIiABg0KBB2cZ/K4KDgzEYDAQHB2MymZg/fz4NGjTA1dUVV1dXGjduzPLly/NtJzQ0lB49euDn54e9vT1ly5alZcuWLFq0iPT09CLFduTIEXx9fTEYDLRt2zbbis1jx44xZMgQqlatipOTE87OztSuXZsJEyYQHR2da7uff/45AD169MDGJuec+cSJE0lMTMTe3p5vvvkmW2Issw4dOjBx4kQg43O9adOmLPcL+nuR0+c5ICCA5s2bZytjfgUHB2drp2/fvlnGKSIiIiIiIiIiIiL3ryKvHBswYMAtJyHuFElJSQQFBbF//35sbGxwcXEp8NjWrVtHr169SE1NBTLOOLp48SIff/wxa9asYfr06QVq57333uP1118HwM3NjZSUFMLCwggJCWH37t1s374da2trAOzs7PDx8bFsZefg4ICbm1uW9uzs7Ao6/DzNmzePkSNHYjKZcHd3Jy0tjf/+979MmjSJtWvXsnPnTjw8PLLVW7VqFQMGDCA5ORkAFxcXUlJSOHLkCEeOHGHBggVs3bqVwMDAXPtes2YNffr0ITU1FVdXV0vSxtnZGR8fHy5fvozRaMTV1RVHR8diGe/N+vTpw8qVK7GyssLNzY2YmBj27dvHvn372LFjBwsXLszxszJmzBg++OADICN5Y677ww8/8MMPP7B06VLWr1+Pi4tLgWPZsWMH3bp14/r16/Tv358vvvgCW1tby/13332X8ePHYzQagYzz8lJTUzl69ChHjx5l0aJFbNq0ibp162Zp12QysXXrVgCaNGmSY98XL160nG3Xp0+fAp3BN3r0aN577z2uX7/O3Llz6dixY4HHmhdvb2/i4uK4du0aAD4+Plnu3/y7ANC0aVMAIiIiOHHiRJ6fOxERERERERERERG5x5nuY82aNTMBJmdnZ5Ozs7Np0aJFpsTERJPJZDJFR0ebrly5Ytq1a5cJMOU0VX///bfJycnJBJjq1atnOnz4sMlkMpmMRqNp+/btpkqVKpk8PDxyrT958mQTYHJ3dzdZWVmZxo8fb7p8+bLJZDKZYmNjTW+++aal7sKFC7PVHzhwoAkwDRw4sBhnxWRatGiRCTA5OTmZbG1tTT169DCdOXPGZDKZTImJiaZPPvnEZG9vbwJMXbt2zVb/l19+Mdna2poA05NPPmn6448/TCaTyZSenm7asGGD6YEHHjABpipVqpiuX7+epW7m+XZ2djZ16NDBdOLECcv9P//80/K+UqVKJsC0aNGiYh2/eV7d3NxMBoPB9NZbb5liY2NNJpPJdOnSJdPIkSMtMc6ZMydb/Y8++shyf8iQIaaLFy+aTCaTKT4+3vTBBx+YbGxsTICpV69e2eqaPxPNmjXLcn358uUmOzs7E2B65ZVXTEajMcv9BQsWWObs7bfftvSZlpZmOnz4sKlFixYmwFShQoVsc37s2DFLvH///XeOc7J8+XJLme+++65gE2kymbp3726JKzU11XI9r9+rzMxldu3aleV6QetnVr58eRNg+uSTTwpcxyw2NtYEWD4HInJvSUhONVV6faOp0usbTQnJqflXKIDL129Y2rx8/UaJ93c3yGvcud27X+dKRERERERERIqmoH/LLfK2iveS+Ph4li9fTnBwsGUFkpeXF56ennnWmz59OomJiZQrV47t27dTv359IGOlUKtWrdi6dSuJiYn59h8TE8OkSZOYPn06ZcuWBcDV1ZUpU6bQrVs3AFasWHErQyySxMREGjVqxNdff42/vz8Ajo6ODBs2jLlz5wIZK+d+/vnnLPUmTJhAamoqDz30ENu2baNWrVoAWFlZ8dRTT7Fp0yZsbGz4+++/mT9/fq79V69enQ0bNvDwww9brlWtWrW4h5mr2NhYJk6cyMSJE3F1dQUyVi199NFH9O/fHyDbtpc3btxg8uTJQMYKq08//RRfX18AypQpw8svv8ysWbMAWLlyJb/88ku+ccyaNYt+/fpZtv58//33s6xWu379OmPHjgVg9erVvPHGG5Y+ra2tqV+/Plu3bqV+/fqcO3eOBQsWZGn/0KFDQMbqvsqVK+cYw/Hjxy3vb155lpdHHnkEyPgdM2+DWVrMcR84cCDfssnJycTFxWV5iYiIiIiIiIiIiMi9ocjJsT179hRnHKWqRo0aPPXUU4WqYzKZWLNmDQDDhw/PMZFWrVo1evbsmW9b9vb2luTGzZ5++mkA/vjjj0LFV1wmTpyIlVX2j8mgQYOoUKECAF9//bXlekxMjGWLvldffRUnJ6dsdevWrVugpN+rr75q2UqyNDg6Oub6XN58800Arl69yvbt2y3Xt2/fztWrVwEICQnJse6IESN44IEHAPI8u8xkMvHqq6/yyiuvYGNjw9KlSxkzZky2cmvWrCEmJoa6devStm3bHNuysbGhT58+AJbnY3bhwgUAS2I2J1euXLG89/LyyrXczTK3mbmN0mCOxTzevMyYMQM3NzfLy5wcFhEREREREREREZG7X5GTY0FBQVSvXp3Zs2dbkgF3qyeffLLQdf755x9iYmIAaNasWa7lgoKC8m2rRo0aODs753ivfPnyAKUyxzY2NrmeQWVlZWUZ2+HDhy3Xf/31V0wmEwCtWrXKte3WrVsDGUk/83ltNyvKcylOjz76qGXF2M2qVq1qSQ5mHr/5vb+/P//6179yrGttbU2LFi2y1c0sNTWVAQMG8P777+Ps7MymTZvo27dvjmX37dsHwIkTJ/D19c31NXXqVIBsK7guX74MkO9KybudeXzm8eZl/PjxxMbGWl5nz54t6fBERERERERERERE5Da5pW0Vw8LCeOWVV6hQoQLPPvvsXbuarFy5coWuk/kP7OYEVk78/PzybcvFxSXXezY2NgCkpaUVIrriUbZsWezt7XO9bx7bpUuXLNcyv89r7ObEUlpaWq6Jv6I8l+KU37PLa/z51TWPP3PdzPbv38/SpUsBWLRokSWZmBPzSqikpCSioqJyfZm3Brx5q0/ztpB5PevMq8UKswIsOjo6xzZKg3nL1MzbYObG3t4eV1fXLC8RERERERERERERuTcUOTn2119/8dprr1GuXDmSkpJYvnw5zZs3vytXk93q1n2Zz3+S4lOaWyqWtlq1alG7dm0AxowZw99//51r2fT0dAB69eqFyWTK9xUeHp6lvjlpde3atVz7qF69uuX9r7/+WuBxHDlyBABnZ2cqVapU4HolwfydVNpJOhEREREREREREREpXUVOjlWpUoWZM2dy9uxZVq9eTevWrTEYDPfMarL8eHt7W97ndYbR+fPnb0c4JSI6OpqUlJRc75vHlnmFV+b3586dy7Wu+Z6Njc0du51ffs8ur/HnNfbM93NbHefp6ckPP/zAI488wtmzZ2nWrBl//vlnjmV9fX2B7NslFpT5s5xXQrt58+aWs+fMZ+3lJz4+3nIeW5MmTSyrIIEs73NbyRUbG1ugfgrKPL7Mv7siIiIiIiIiIiIicv+5pW0VIeOP3N26deP777/nn3/+YcKECZQvX56kpCSWLVt2164my0/lypVxd3cHIDQ0NNdyed27VeZkhfmMr+KWlpbG3r17c7xnMpnYvXs3kHE2l1m9evUsce3cuTPXtnfs2AFAnTp1sLW1LVJ8JT3+w4cPEx8fn+O9U6dOWRJcmcdvfn/u3Llck1np6ens2rULgMceeyzX/r28vNi5cyf16tXj/PnzBAUFcfLkyWzlzGez/fLLL1y8eLEAI8vKvCrs8uXLuY73gQce4Omnnwbg66+/zjGOm33wwQdcv34dgBEjRmS55+HhYXmf23lehw4dyrVt87OHgj//06dPAxAYGFig8iIiIiIiIiIiIiJyb7rl5FhmFStW5K233iIiIoJvv/2Wp556Cisrq2yryfbt21ec3ZYKg8FAt27dAJg/f36OW9L99ddfrFq1qsRiMJ+DFBMTU2J9vP322xiNxmzXlyxZYklq9OrVy3Ld3d2dtm3bAvDee+9lO98K4Pfff7esPurTp0+RYyvp8d+4cYP3338/x3vTpk0DMlZ4ZT4PrHXr1pZt+0JCQnKs++mnn1pWG+Y3fk9PT3bu3Mljjz3GxYsXCQoK4sSJE1nK9OjRA3d3d1JTUxkzZkyeySKj0Zhtvho1aoS1tTVGo5HDhw/nWvett97C0dGR5ORkevTokeU8sZtt2bLFMkfNmzenY8eOWe7/61//spwBltNKNKPRyIwZM3JtP/MZYAV5/snJyfz+++8ANGvWLN/yIiIiIiIiIiIiInLvKtbkmKVRKyueeuophg8fTsOGDTEYDJhMJstqsqZNm/Lkk0/y888/l0T3t8348eNxdHQkKiqKNm3aWM5XMplM/PDDD7Rt2xYnJ6cS679mzZoA7N27l7CwsGJv38nJiR9//JG+fftaVkklJSXx2WefMXz4cACefvppGjRokKXetGnTsLW15dSpU7Rt25ajR48CGQmPzZs306FDB9LS0qhSpQpDhw4tcnzm8a9evTrP87KKys3NjbfeeosZM2ZYVkBFR0czatQolixZAsCkSZNwcHCw1HF0dLQkxVasWMGwYcOIiooCIDExkQ8//JCXX34ZyEgq1q9fP9843N3d2b59O48//jiRkZEEBQVx7NixLPdnz54NZKzq6tixI4cOHbIkNY1GIydOnOA///kPNWrUYOPGjVnad3FxscSR12qtGjVqsGDBAqytrTl69Ch169bliy++yJKc+vPPPxkzZgydO3cmJSWFypUrs3z58mzn8tna2tK9e3cApk+fzqpVqyxbeJ48eZKuXbvyxx9/5BrLv/71L+zs7ABYsGBBvqvHjhw5QkpKCjY2NpaVdiIiIiIiIiIiIiJyfyr25NjFixeZNm0alStXpmPHjuzfvx+TyUTjxo2ZM2cOHTt2xGAwcODAARo3blyi2w6WtIceeogvv/wSGxsbDh8+TL169XB1dcXZ2ZmWLVuSkpLCrFmzALC3ty/2/rt37463tzfXrl0jMDAQb29vAgICCAgI4ODBg7fcvre3Nx988AGrVq3C398fT09PXF1dGTp0KElJSdSpU4eFCxdmq1evXj2++uor7Ozs+PHHH6lduzZubm6UKVOGjh07cuHCBfz9/fnuu+9wdnYucnxDhgzBYDCwf/9+vL29KV++vGX8xaFLly706NGDN954Aw8PDzw9PSlXrhwffvghAAMGDOCll17KVm/kyJGMHj0ayFgl9sADD+Dp6YmbmxujRo0iNTWV5s2b8/nnnxc4Fjc3N7Zt20ajRo24dOkSzZs3z5I8GjhwIJ988gl2dnZs2bKFxx9/HCcnJ8qWLYuDgwPVq1dn7NixhIWFZUtUwf9WsG3YsCHPOPr27cvGjRspX748586d49///jceHh64u7vj6OhItWrV+OCDD0hLS6NNmzYcPHjQcibazWbMmEH58uW5fv06vXr1wtnZGTc3Nx5++GF27drF2rVrc43DycmJZ599FoDXXnsNZ2dnKlWqREBAAGPHjs1W3jyuTp064eLikucYRUREREREREREROTeVizJMZPJxKZNm+jSpQuVKlVi8uTJhIeH4+LiwgsvvMDRo0fZs2cPL774It999x1//vknrVu3JjU1lUmTJhVHCKXmmWee4fDhw/To0QNvb2+Sk5Px8fFh1KhRHDlyBDc3NwDL+WTFycPDgz179tC7d2/8/PyIjY0lIiKCiIgIkpKSiqWPF154ga1bt9KuXTusrKywsrLi4YcfZurUqRw4cMCyheDNevXqxfHjxxk6dChVqlQhOTkZGxsbHnnkEaZMmcKxY8du+eynpk2bsmnTJlq1aoW7uztRUVGW8ReXFStWMG/ePOrWrUtaWhplypThiSee4Msvv2TJkiVZzr7KbNasWfzwww90794dHx8f4uPjcXFxoXnz5nzxxRds37690EkaFxcXtm7dSpMmTYiOjqZFixaW1YoAw4YN4+TJk4wdO5Y6depgb29PTEwMzs7OPProo7z44ots3749x60cBw4ciIODA/v377eczZWbdu3acerUKebNm0eHDh3w8/MjKSkJW1tb/vWvf/Hvf/+bHTt2sHXrVry9vXNtp0KFChw6dIjnnnsOPz8/AJydnRkwYAC//vprvtsfzp07l5CQEGrVqgXAmTNniIiIyLbdo8lkYvny5QC3tFJRRERERERERERERO4NBlN++5Hl4dy5cyxcuJAvvviCc+fOWbY2q1evHsOGDaNv3765bisYFxdHuXLlsLe3JzY2tqgh3PEmTJjA9OnTadGiBTt37iztcApk8eLFDBo0iEqVKhEeHl7a4dx2wcHBLFmyhIEDB7J48eLSDue2GTx4MIsWLWLKlCm8+eabpR1OsdmzZw/NmjWjSpUq/PXXXzmunMtPXFwcbm5uxMbGZjnvTETuDYkpaVR/cysA/53aFic7m1tuMzo+iUenZfx3//DElpR1/t8WvCXR390gr3Hndu9+nSsRERERERERKZqC/i23yCvHOnXqxIMPPsjUqVM5e/Ysjo6ODBo0iEOHDnH48GGee+65PM/bcnV1xdfXl/j4+KKGcMe7fPkyCxYsADJW24jcyd58803s7e35+OOPSUhIKO1wis2MGTOAjLPwipIYExEREREREREREZF7S5GTY5s3byY9PZ2HH36Y2bNnc/78eRYuXMhjjz1W4DaeeeYZBgwYUNQQ7ggffvghM2fO5NSpU6SlpQGQnJzM5s2badq0KZcuXcLb25vBgweXcqQieQsICODFF1/k8uXLzJ07t7TDKRaHDh3i+++/p0GDBvTq1au0wxERERERERERERGRO0CR96bp1asXw4YNy/dcoLy8//77Ra57p/jnn3+YM2cO48ePx9raGjc3N+Li4iyJMjc3N1atWpXr2Vwid5IJEybg7OxMmTJlSjuUYnH58mUmT55M165dtWpMRERERERERERERIBbSI6tWLGiOOO4aw0cOBBra2v27NnD+fPnuXLlCo6Ojjz44IO0bduWUaNG4efnd9vjWrlyJaNGjSpUnV69ejFnzpwSiuj2GjVqFCtXrixUnTlz5tz3q4vc3d2ZPHlyaYdRbDp16kSnTp1KOwwRERERERERERERuYMUOTnWokULvLy8+OabbwpUvk+fPly6dImdO3cWtcs7Ut26dalbt25ph5HNjRs3iIqKKlSd2NhYAIKDgwkODi6BqG6f2NjYQo//xo0bACxevJjFixeXQFQiIiIiIiIiIiIiIlLaDCaTyVSUilZWVvj6+nLhwoUClX/wwQc5c+YM6enpRelORKTUxMXF4ebmRmxsLK6urqUdjoiIiIiIiIiIiIjkoKB/y7W6XQEZjUad+SMiIiIiIiIiIiIiIiKl6rYkx9LT07l06RJlypS5Hd2JiIiIiIiIiIiIiIiI5KjAZ47FxcURExOT5Vp6ejpnz54lt50ZTSYTMTExLFq0iOTkZGrXrn1LwYqIiIjciRJT0qj+5lYA/ju1LU52RT7WVUSKSL+HIiKlQ9+/IiIicjcq8L9YPvjgA6ZOnZrlWnR0NAEBAQWqbzAYePbZZwsVnIiIiIiIiIiIiIiIiEhxKtT/nSfzCjGDwZDrirGb+fn5MWzYMEaOHFm46ERERERERERERERERESKUYGTYy+//DLBwcFARpKscuXKeHt789NPP+Vax8rKCldXV9zc3G45UBEREREREREREREREZFbVeDkmJubW5YkV9OmTSlbtiyVKlUqkcBEREREREREREREREREiluRT0kNDQ0txjBERERERERERERERERESp5VaQcgIiIiIiIiIiIiIiIicrsoOSZyC8LDwzEYDBgMBsLDw0s7nBKXkpJClSpVsLe35+zZsyXeX3p6OrNmzaJu3bqUKVPGMtfr16+3lElMTGTSpEkEBgbi6OhoKfPbb78RHx+Pt7c3Hh4eXLlypcTjFREREREREREREZE7X5G3VZT7w/r16/ntt9945JFH6NKly13bR1GEhIQAEBwcTEBAQKnGcqf46KOP+OeffxgxYgT+/v55lt29ezfLly9nz549XLx4kaSkJLy9valduzadOnUiODgYR0fHPNt4+eWX+fjjjwGws7PDx8cHAAcHB0uZXr16sXHjRgAcHR0tZWxtbXF2duaVV15h/PjxTJ06lTlz5hR57CIiIiIiIiIiIiJyb9DKMcnT+vXrmTJlSpaVOndjH0UxZcoUpkyZkueKMFtbW6pVq0a1atWwtbW9fcGVgqtXrzJt2jTs7e0ZP358ruWuXLlCx44dCQoK4rPPPiMsLIykpCQcHBw4d+4cmzdvZsSIEVStWpXt27fn2s7169f59NNPAXj33XdJSkoiMjKSyMhI2rVrB0BYWJglMbZy5UoSExMtZWrUqAHAyJEjKVu2LJ988gmnTp0qrukQERERERERERERkbuUkmMit8DPz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq3JsKywsjNTUVACGDx+OwWDIVubo0aMAeHl50bNnzxzbcXZ2pl+/fqSmpjJ79uwijFxERERERERERERE7iVKjolIvkwmE5999hkA/fv3z7VM3759OXXqFLa2tqxbt44PP/yQ6tWrW8q4u7sTHBzMkSNHqFOnDmlpaQwePJiwsLBs7SUmJlreOzs759inuUxu983MMS9dujRLuyIiIiIiIiIiIiJy/1Fy7D60cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwcJZVSs2bN88SU+bzx8LDwy3Xb95+0Tw+c1t//PEHffr0oXz58jg6OhIYGMj7779PWlqapc6+ffvo0qULDzzwAA4ODtSsWZO5c+diMpnyjLkocxISEoLBYCAoKAiANWvW0KZNG8qVK4eVlZXlzDWAHTt2cPr0adzd3enQoUOO7W3cuJEffvgBgAkTJvDUU0/lGq+XlxfffPMNDg4OJCQkMGnSJMu9xYsXZ4kLyDL/QUFBltiDg4MBiIiIyFLGfN3s0UcfpWrVqsTGxrJy5cpc4xIRERERERERERGRe59NaQcgt9fgwYNZtGiR5WdnZ2dSU1M5deoUp06d4rvvvqNjx47Y2dnh4+NDbGys5bwoNze3LG3Z2dlZ3o8bN86S5LKxscHV1ZXExET+/vtv/v77b5YuXcqyZcvo3r17lvqF6QMyzp4aP348RqMRACcnJ1JTUzl69ChHjx5l0aJFbNq0ibp16xZ5jtzc3PDx8SEqKgoADw+PLHF4e3sXus0tW7bQrVs3kpKScHNzIzk5mbCwMF599VV++eUXVqxYwYIFCxg2bBhGoxFXV1eSk5M5fvw4I0eO5OzZs8ycOTPHtotjTl555RVmzZqFwWDA3d0dK6usefPvv/8egIYNG+Z6ttq8efMAcHFx4ZVXXsl3TqpWrUqfPn1YtGgRa9euJTIyEl9fXxwdHfHx8SElJYVr164B4OPjY6nn6emJs7MzPj4+3Lhxg7i4OKysrLI8l5s/RwBNmzblr7/+4vvvv2fQoEH5xiciIiIiIiIiIiIi96YirxyzsrIq1BlLDz74IDY2ysWVph9//JFFixZhZWXFO++8w5UrV7h+/ToJCQlER0ezdetWBg4ciJ2dHY0aNSIyMpJevXoB0KtXLyIjI7O8GjVqZGn7oYce4r333uPo0aPcuHGDK1eukJyczLFjx+jXrx/JyckMHDiQCxcuWOoUto+FCxfy+uuv4+TkxNtvv83FixdJSEggMTGRw4cP06JFCy5evEjnzp2Jj48v8jzNmTOHyMhIy8/mxI359fPPPxe6zb59+/L0008TERFBTEwMsbGxjB8/HoCvv/6amTNnMmLECEaMGEFkZCQxMTFcvXrVsgLqvffe488//8zWbnHMyS+//MKsWbN4/fXXiYqK4urVqyQkJGRJIO3ZsweABg0a5NhGWloae/fuBaBNmzb5bnNo1q1bNwCMRiO7d+8G/vc5WLt2raVc5vlfu3YtY8eOJTIykjlz5gDg7++fpYz5emYNGzbMMhYRERERERERERERuT/d0raK+W31dqvlpXjt378fgFatWvHaa6/h6elpuefl5UWbNm1YvHgx5cuXL3TbEydOZOzYsdSsWdOSBLWysqJGjRosXbqUjh07kpCQwBdffFGk2K9fv87YsWMBWL16NW+88Qa+vr4AWFtbU79+fbZu3Ur9+vU5d+4cCxYsKFI/JeWxxx5jxYoVVKxYEchYXTV9+nSaNGkCwPjx4xk4cCAffvgh5cqVAzJWrC1YsIAHH3wQo9HIqlWrsrRZXHMSHx/PmDFjmDlzpmX1lb29PZUqVQIgJSWFI0eOAFCnTp0c2wgPDychIQGgUKv2HnnkEcv7Y8eOFbheUZjjioyM5PTp03mWTU5OJi4uLstLRERERERERERERO4Nt+3MsZSUlGxbtcnt5e7uDsDly5dJT0+/rX137NgRyFi9VhRr1qwhJiaGunXr0rZt2xzL2NjY0KdPHwC2bt1atEBLyOuvv57lHDOzzGMxryTLzNrampYtWwIZZ5ZlVlxzYmVlxeuvv55r7JcuXbJ8XnLbUvLKlSuW915eXrm2dbOyZcvm2EZJyNxX5hWMOZkxYwZubm6Wl7+/f4nGJiIiIiIiIiIiIiK3z23Z5zAmJoZLly7h4eFxO7qTXLRs2RIHBweOHDlCkyZN+Pe//02LFi148MEHi6X933//nU8//ZQff/yR8PBw4uPjs60WPHfuXJHa3rdvHwAnTpywrI7KyY0bNwCIiIgoUj8lJbftCM1naXl6elK5cuU8y5jP3zIrrjl56KGHLKvVcnL58mXL+8yrDe82mWPPPKacjB8/njFjxlh+jouLU4JMRERERERERERE5B5R4OTYH3/8wW+//Zbl2o0bN/jyyy9zrWMymYiJiWH16tUYjcZCbbcmxa9KlSosWLCAYcOGceDAAQ4cOABkrAZq3rw5ffv2pXPnzjmucMrPxx9/zKhRozAajQAYDAbc3Nywt7cHMj4rcXFxlq33Csu80icpKYmkpKR8yycmJhapn5Li4uKS43XzFpS53c9cJjU1Ncv14pqTvBJj5vbNzM/zZplXixVmBVh0dHSObZQER0dHy/v85sve3j7XsYqIiIiIiIiIiIjI3a3AybF169YxderULNfi4uIYNGhQvnVNJhMGgyHLSgwpHf369aN9+/Z888037Nq1i/3793P27FlWrVrFqlWraNKkCRs3bsTV1bXAbZ44cYKXX34Zo9FIjx49ePXVV6lTpw52dnaWMgsXLuS5554r8rlz5m39evXqxddff12kNu41xTUn1tbWed7PnLS6efWaWaVKlShTpgwJCQn8+uuvBe7bfJYZQI0aNQpcryiuXr1qeV/SiTgRERERERERERERuXMVODnm7u5OxYoVLT9HRERgZWVFhQoVcq1jZWWFq6srNWvWZMiQITRp0uTWopVi4enpydChQxk6dCgAf//9NwsWLOCdd95h7969hISEMGvWrAK3t3r1atLT0wkMDOTrr7/O8Wy5yMjIW4rZvG3gnbZdYmm6XXOS+ZyxzAmmzGxtbWnSpAnff/8927Zt4/r163muhjNbu3YtkPFdERQUVCzx5iZz7LmdnSYiIiIiIiIiIiIi977sWYxcjBo1itOnT1tekPEH5szXbn79/fffHDlyhK+++kqJsTtYlSpVmDFjBn379gVg+/btlnvmRFdeK77Onj0LQJ06dXJMjAHs2LEj1/oF6ePJJ58E4JdffuHixYu5litO5u0li7raraTdrjnx8PCwJOL++eefXMsNHz4cgPj4+AIlV//66y/LireuXbvmeW5acTB/b9nY2FC1atUS7UtERERERERERERE7lwFTo7dbPLkybzyyivFGYuUsOTk5Dzvm89kypzgMm+vGBMTk2s9Nzc3AI4ePZpjImnLli2EhobmWr8gffTo0QN3d3dSU1MZM2ZMngkro9GYZ1sFVZC4StPtnJOmTZsC8NNPP+Va5qmnnrKs/nr77bfZuHFjrmWvXLlCjx49SEpKwsnJibfeeqvIsRXUoUOHAKhfvz5lypQp8f5ERERERERERERE5M6k5Nh9ZOTIkfTs2ZM1a9Zw6dIly/X4+Hjmz5/Pl19+CUDHjh0t92rWrAnA3r17CQsLy7Hddu3aAXD8+HFeeOEFy/Z1CQkJfPrppzzzzDN5nvFUkD7c3d2ZPXs2AF9//TUdO3bk0KFDGI1GICP5c+LECf7zn/9Qo0aNPBMzBWWOa9myZSQmJt5ye8Xtds6JOellTjDlxGAwsGLFCipXrkxqaipdu3Zl1KhRnDhxwlImNjaWJUuWUK9ePX7//Xesra1ZsGABgYGBRY6toMyxN2vWrMT7EhEREREREREREZE7V5GTY3L3SU1N5ZtvvuGZZ57Bx8cHFxcXPDw8cHFxYfjw4aSkpNC4cWMmTJhgqdO9e3e8vb25du0agYGBeHt7ExAQQEBAAAcPHgSgZcuW9O7dG4BPPvkELy8vPDw8cHNzY9iwYQQGBhISEpJrXAXpA2DgwIF88skn2NnZsWXLFh5//HGcnJwoW7YsDg4OVK9enbFjxxIWFmbZEvFWDBs2DIA1a9bg7u5OhQoVCAgIoHHjxrfcdnG5XXPSvXt3bG1tCQsL46+//sq1nK+vLwcPHqRt27akpaXx4YcfUr16dRwdHfHw8MDd3Z3g4GDOnDnDAw88wMaNG+nTp0+R4yqouLg4du/eDWDZPlRERERERERERERE7k82t9rA33//zapVq/jjjz+4evUqqampuZY1GAzs3LnzVruUIpo0aRL169dn165dnDhxgsjISOLj4ylXrhx16tShT58+DBgwAGtra0sdDw8P9uzZw5QpU9i7dy+XLl0iOjoagKSkJEu5ZcuW8fjjj/PFF19w8uRJ0tPTqVWrFr169WL06NGsWLEi17gK2gdkJKzatWvH3Llz2b59O6dPnyYmJgZXV1eqVKnCE088QefOnWnRosUtz1f//v0B+PTTTzl69CgXL160rMq6k9yOOSlXrhxdu3Zl1apVLFu2LM9kp7e3N99//z27du1i+fLl7N27l4sXL3Ljxg38/PyoXbs2nTp1Ijg4GCcnpyLHVBhr1qwhKSmJhg0bUqdOndvSp4iIiIiIiIiIiIjcmQymvA4qyseUKVOYNm0aRqMxz/OOLJ0ZDKSnpxe1OxEpRXv27KFZs2ZUqVKFv/76q1hW590uLVq0YNeuXSxZsoQBAwYUun5cXBxubm7ExsZazqITEcksMSWN6m9uBeC/U9viZHfL//8jESkk/R6KiJQOff+KiIjInaSgf8st8r9Yli1bxpQpUwAoX748bdu2pXz58tjY6B9BIveipk2b0qZNG7Zt28Y333xDz549SzukAjl06BC7du2iRo0a9OvXr7TDEREREREREREREZFSVuRM1ty5cwHo3Lkzq1atws7OrtiCEpE70/vvv88jjzzC1KlTeeaZZ7CyuvOPLTRvAfnuu+9m2TJURERERERERERERO5PRU6OHTt2DIPBwLx585QYE7lP1KpVi4ULFxIeHs7Fixfx8/Mr7ZDyFB8fz+OPP067du3o0KFDaYcjIiIiIiIiIiIiIneAIifHDAYDrq6ulC9fvjjjESlWvr6+ha4TGRlZApHcO4KDg0s7hAJzdnZm8uTJpR2GiIiIiIiIiIiIiNxBipwce/jhh/ntt99ITk7G3t6+OGMSKTZRUVGlHYKIiIiIiIiIiIiIiNxBDCaTyVSUip9//jlDhw7lyy+/pH///sUdl4jIHSMuLg43NzdiY2NxdXUt7XBEREREREREREREJAcF/VuuVVE7eP755+ncuTMvvfQSe/bsKWozIiIiIiIiIiIiIiIiIrdNkbdVnDp1KnXq1GHv3r00b96cJ598koYNG+Li4pJnvTfffLOoXYqIiIiIiIiIiIiIiIjckiJvq2hlZYXBYADA3IT557ykp6cXpTsRkVKjbRXvDIkpaVR/cysA/53aFie7Iv//O0RE5P/pu1VE5N6m73kRKWn6nhGRO01B/5Zb5G+rpk2bFigZJiIiIiIiIiIiIiIiInKnKHJyLDQ0tBjDEBERERERERERERERESl5VqUdgIiIiIiIiIiIiIiIiMjtouSYiIiIiIiIiIiIiIiI3DeK5YTEP/74g61btxIREcGNGzdYuHCh5V5qaiqXL1/GYDDwwAMPFEd3IiIiIiIiIiIiIiIiIkVyS8mx2NhYBg8ezPr16wEwmUwYDIZsybE6depw7do1fv/9d2rUqHFLAYuIiIiIiIiIiIiIiIgUVZG3VUxNTaV9+/asX78eJycnOnbsiIODQ7ZyTk5ODBo0CKPRyOrVq28pWJE7VXh4OAaDAYPBQHh4eGmHU+JSUlKoUqUK9vb2nD17trTDyZXRaKRGjRrY2tpy8uTJ0g5HRERERERERERERO4ARU6OLVy4kIMHD1K5cmVOnjzJhg0bcHNzy7Fs9+7dAdizZ09Ru5NStn79ekJCQiyrBO/WPooiJCSEkJCQ+yLpVVAfffQR//zzD8899xz+/v55lt29ezdDhw4lMDAQd3d3HBwc8Pf3p2PHjnzyySfcuHGjxOK0srJi0qRJpKWl8dprr5VYPyIiIiIiIiIiIiJy9yhycmzFihUYDAY++OADypcvn2fZunXrYmVlRVhYWFG7k1K2fv16pkyZUuLJsZLuoyimTJnClClT8kyO2draUq1aNapVq4atre3tC64UXL16lWnTpmFvb8/48eNzLXflyhU6duxIUFAQn332GWFhYSQlJeHg4MC5c+fYvHkzI0aMoGrVqmzfvr3E4u3ZsyfVq1dnw4YNStCLiIiIiIiIiIiISNGTY0ePHsVgMNCmTZt8y9rZ2eHm5saVK1eK2p3IHc3Pz4+wsDDCwsLw8/Mr7XBK1GeffUZMTAxPPfUUFSpUyLFMVFQUjz/+OJs3b8ba2poXX3yR48ePk5SURExMDNeuXWPRokX4+/tz/vx5OnTowKpVq0okXisrK55//nkA3n333RLpQ0RERERERERERETuHkVOjiUmJuLi4oKdnV2ByqempmJjY1PU7kTkDmAymfjss88A6N+/f65l+vbty6lTp7C1tWXdunV8+OGHVK9e3VLG3d2d4OBgjhw5Qp06dUhLS2Pw4MEltrq0T58+WFtbs2XLFs6cOVMifYiIiIiIiIiIiIjI3aHIybGyZcsSFxdHfHx8vmVPnz5NfHx8vtsvyu21cuVK2rdvj4+PD7a2tri7u1O1alU6d+7M3LlzSUpKIjQ0FIPBwJIlSwBYsmQJBoMhyys0NNTSZmRkJB999BFPP/00gYGBuLm54ejoyEMPPcRzzz3H8ePHs8VR2D7Mjh07xpAhQ6hatSpOTk44OztTu3ZtJkyYQHR09C3PT3BwMAaDwfJz8+bNs8QUEBBguRceHm65fvP2i+bxmdv6448/6NOnD+XLl8fR0ZHAwEDef/990tLSLHX27dtHly5deOCBB3BwcKBmzZrMnTsXk8mUZ8xFmZOQkBAMBgNBQUEArFmzhjZt2lCuXDmsrKwICQmxlN2xYwenT5/G3d2dDh065Njexo0b+eGHHwCYMGECTz31VK7xenl58c033+Dg4EBCQgKTJk3KViYoKAiDwUBISAgmk4nPP/+chg0b4urqiouLC0888QRLly7Nc158fHxo0aIFRqORhQsX5llWRERERERERERERO5tRU6ONWzYEIBNmzblW/ajjz4CoEmTJkXtTorZ4MGD6d27N99//z2XLl3CwcGB1NRUTp06xXfffcfIkSOJjIzEzs4OHx8fHBwcAHBwcMDHxyfLK/PqwXHjxvHSSy+xYcMGTv1fe/cdHVXx/nH8vekJKSQQQg8IqPRqQ7o0EZWOFAmiglhpIiiYgIhYvqgoigrSpEpRBJEeuihNAUFFekko6b3d3x+c3V9CsmFDGkk+r3P2nOXOzJ3n3t3ZDXkyMydP4uDgQEpKCv/99x9z5syhadOmrFy5MkMsOe0DbiyP17BhQ7755htOnjyJyWQiOTmZI0eOMHXqVBo0aMChQ4dydY+8vLzw8/Oz/Nvb2ztDTL6+vjk+5/r163nggQdYunQpcXFxJCYmcuLECV5//XWefvppAGbPnk3r1q1Zs2YN8fHxJCYmcuzYMV5++eVs9/jKi3syevRoevXqxebNm0lJScHOLuNHxC+//ALcGP/W9lb74osvAPDw8GD06NG3vCe1atWiX79+AKxatYqQkJAs66WmptK9e3eGDh3KwYMHMZlMxMTE8Ouvv/L0008TGBiYbT+tWrXKcA0iIiIiIiIiIiIiUjLddnJsyJAhGIbBxIkTuXTpktV6X331FZ9++ikmk4mhQ4febneSh3bt2sXcuXOxs7Pj/fff5/r160RHRxMbG8u1a9fYsGEDAQEBODk50bx5c0JCQujbty8Affv2JSQkJMOjefPmlnPXrFmTDz/8kCNHjhAfH8/169dJTEzk6NGjDBgwgMTERAICAjK8Z3Lax5w5c3jjjTdwc3Pj3Xff5fLly8TGxhIXF8f+/ftp164dly9f5oknnrBpZqM1n376aYZEjTlxY378/vvvOT5n//79efLJJzl79iwRERFERkZaEl5Lly5l2rRpvPjii7z44ouEhIQQERFBWFgYgwcPBuDDDz/kn3/+yXTevLgnBw4cYPr06bzxxhuEhoYSFhZGbGwszzzzjKXOjh07ALj//vuzPEdKSgo7d+4EoGPHjri7u9t0X3r06AFAWloa27dvz7LOzJkzCQ4OZt68eURFRREZGcn58+ctM9OmTJnCv//+a7UPc0L/4MGDuXpfiIiIiIiIiIiIiEjRdtvJsccee4yePXty8uRJmjVrxpgxY4iPjwfg66+/5q233qJhw4a8+OKLGIbBc889Z/nltBSuPXv2ANC+fXvGjh2Lj4+PpaxMmTJ07NiRefPm3dYymBMmTGDMmDHUq1fPssecnZ0ddevW5bvvvuOxxx4jNjaWb7/99rZij46OZsyYMQCsWLGCN998k/LlywNgb29P06ZN2bBhA02bNuXChQvMnj37tvrJL/fddx9LliyhatWqwI3ZVVOnTrXMqhw/fjwBAQHMmDGDcuXKATdmrM2ePZvq1auTlpbG8uXLM5wzr+5JTEwMo0aNYtq0aZZZcc7Ozvj7+wOQlJRkmXnWsGHDLM9x5swZYmNjAWjcuLHN96VRo0aW50ePHs2yTnh4OKtXryYgIABXV1cAKleuzPfff0/FihWzvDfpmeNJSUm5ZWIzMTGRqKioDA8RERERERERERERKR5uOzkGsHDhQgYMGEBISAgff/wx0dHRAAwfPpxp06Zx5MgRDMNgyJAhzJw5M08CltwrXbo0AFevXiU1NbVA+37ssceAG7PXbsfKlSuJiIigcePGdOrUKcs6Dg4OlmX6NmzYcHuB5pM33ngjwz5mZumvJaulE+3t7XnkkUeAG3uWpZdX98TOzo433njDauxXrlyxvF+sLSl5/fp1y/MyZcpYPdfNypYtm+U50nv44Ydp27ZtpuPOzs6W67753qTn4+NjWSYyu9muAO+99x5eXl6WR5UqVW55DSIiIiIiIiIiIiJSNDjkprGLiwsLFy5k2LBhzJ49mz179nDp0iVSU1MpX748Dz/8MEOHDrXs9SN3hkceeQQXFxcOHTpEy5YtefbZZ2nXrh3Vq1fPk/P/8ccffPXVV+zatYszZ84QExODYRgZ6ly4cOG2zr17924Ajh8/bpkdlRXzLMazZ8/eVj/5xdpyhOa9zXx8fLjrrruyrRMeHp7heF7dk5o1a1pmq2Xl6tWrlufpZxsWlOxmnppnOYaFhVmtY2dnh5eXF+Hh4RmuJSvjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTOQqOWbWokULWrRokRenkgJQo0YNZs+ezQsvvMDevXvZu3cvcGM2UNu2benfvz9PPPFEljOcbuXzzz/ntddeIy0tDQCTyYSXlxfOzs7AjQRNVFSUZem9nDLP+ElISCAhIeGW9ePi4m6rn/zi4eGR5XHzEpTWytPXSU5OznA8r+5Jdokx8/nNzK/nzdLPFrM2Aywr165dy/Ic6d3OvbmZq6sr4eHht7xPzs7OVq9RRERERERERERERIq2XC2rKEXXgAEDOHv2LLNmzaJv375UqVKFq1evsnz5crp160br1q1zvM/S8ePHGTFiBGlpafTu3ZvffvuNhIQEwsPDCQkJISQkhOnTpwNkmklmK/Oyfn379sUwjFs+zpw5c1v9FCV5dU/s7e2z7Sd90urm2Wtm/v7+lCpVCoCDBw/afA3mvcwA6tata3O7nDLPLMvJko8iIiIiIiIiIiIiUrzcdnKsQ4cOfPfdd3fczByxnY+PD8OGDWPp0qWcO3eOkydPMm7cOEwmEzt37iQoKChH51uxYgWpqanUrl2bpUuXct999+Hk5JShTkhISK5iNi8beKctl1iYCuqepN9nzNryhY6OjrRs2RKAjRs3WvYhvJVVq1YBN5Y+bNOmTe4CtSI+Pt4yY8zanmkiIiIiIiIiIiIiUvzddnJsy5YtBAQEUL58eQYPHszmzZvzMi4pBDVq1OC9996jf//+AGzatMlSZmd3462S3Yyv8+fPA9CwYUNL/Ztl9z6xpY+HH34YgAMHDnD58mWr9fKSeXnJ253tlt8K6p54e3tbEnGnTp2yWm/48OEAxMTEWGYKZufff/9l6dKlAHTv3j3bfdNy4/Tp05bntWvXzpc+REREREREREREROTOd9vJsYEDB+Lm5kZMTAwLFy6kU6dOVKlShfHjx3Ps2LG8jFHyWGJiYrblrq6uABkSXJ6engBERERYbefl5QXAkSNHskwkrV+/nuDgYKvtbemjd+/elC5dmuTkZEaNGpVtwiotLS3bc9nKlrgKU0Hek1atWgHw22+/Wa3z+OOPW2Z/vfvuu6xdu9Zq3evXr9O7d28SEhJwc3PjnXfeue3YbmXfvn0A+Pn5cc899+RbPyIiIiIiIiIiIiJyZ7vt5NiCBQsIDQ1l4cKFtG/fHjs7Oy5evMgHH3xAgwYNaNq0KTNmzODq1at5Ga/kgZdffpk+ffqwcuVKrly5YjkeExPDrFmzWLBgAQCPPfaYpaxevXoA7Ny5kxMnTmR53s6dOwNw7NgxXnrpJcvSe7GxsXz11Vf06tUr272ebOmjdOnSfPLJJwAsXbqUxx57jH379pGWlgbcSP4cP36c//3vf9StWzfbxIytzHEtWrTojlxGtCDviTnpZU40ZcVkMrFkyRLuuusukpOT6d69O6+99hrHjx+31ImMjGT+/Pk0adKEP/74A3t7e2bPnp2vM7rMMbdu3Trf+hARERERERERERGRO99tJ8cA3NzcGDBgABs2bOD8+fN8+OGHNGjQAMMwOHToECNHjqRSpUo8/vjjLF++/JYzlqRgJCcn8/3339OrVy/8/Pzw8PDA29sbDw8Phg8fTlJSEi1atOCtt96ytOnZsye+vr6Eh4dTu3ZtfH19qVatGtWqVePXX38F4JFHHuGpp54C4Msvv6RMmTJ4e3vj5eXFCy+8QO3atbPdx8yWPgACAgL48ssvcXJyYv369Tz44IO4ublRtmxZXFxcqFOnDmPGjOHEiROWJRFz44UXXgBg5cqVlC5dmsqVK1OtWjVatGiR63PnlYK6Jz179sTR0ZETJ07w77//Wq1Xvnx5fv31Vzp16kRKSgozZsygTp06uLq64u3tTenSpRk8eDDnzp2jQoUKrF27ln79+t12XLeSlpbGunXrACzLhoqIiIiIiIiIiIhIyZSr5Fh65cuXZ/To0Rw6dIg///yTMWPGULFiRVJSUli3bh39+vWjQoUKedWd5MLEiROZMWMG3bt3595778XBwYGYmBjKlStHhw4d+PbbbwkODqZUqVKWNt7e3uzYsYOnnnqKSpUqERkZydmzZzl79iwJCQmWeosWLeKTTz6hQYMGODs7k5qaSv369XnvvffYvXs37u7uVuOytQ+4kbD6+++/GTNmDA0bNsTZ2ZmIiAjc3d1p1qwZr7zyCps2bcqThMvAgQNZuHAhLVq0wM3NjcuXL3P27FkuXLiQ63PnpYK4J+XKlaN79+7Ajdc6O76+vvzyyy9s3bqV5557jnvuuQcnJyfi4+OpVKkSjz76KDNnzuTkyZOWWYf5Zfv27Vy4cIFKlSrRtWvXfO1LRERERERERERERO5sJiO7DYpyyTAMtm7dyvjx49m/fz8mk4nU1NT86k5ECsCOHTto3bo1NWrU4N9//82T2Xn5bciQIcydO5dJkybx9ttv57h9VFQUXl5eREZGWvagk4IXl5RCnbc3APDX5E64OTkUckQiIkWfPltFRIo3fc6LSH7T54yI3Gls/V1uns0cu9nly5eZPn06o0eP5sCBA/nVjYgUsFatWtGxY0f+++8/vv/++8IO55bOnz/PokWL8PX1ZcSIEYUdjoiIiIiIiIiIiIgUsjxN5cfHx7Nq1SoWLFjA1q1bSUtLwzwxrUmTJgwaNCgvuxORQvLRRx/RqFEjJk+eTK9evbCzy7c8e65NnTqVpKQkgoKCNOtLRERERERERERERPImObZ582YWLlzI6tWriY2NtSTEKleuzIABA3j66aepU6dOXnQlIneA+vXrM2fOHM6cOcPly5epVKlSYYeUpbS0NKpWrcqUKVMYOnRoYYcjIiIiIiIiIiIiIneA206OHT16lIULF7J48WIuXboE3NhjzN3dnR49evD000/Trl27IrEfkRR/5cuXz3GbkJCQfIik+Bg8eHBhh3BLdnZ2jB8/vrDDEBEREREREREREZE7yG0nxxo0aIDJZMIwDOzs7GjXrh2DBg2iR48euLm55WWMIrkWGhpa2CGIiIiIiIiIiIiIiMgdwGSY10DMITs7O+rWrcugQYMYMGAAFStWzOvYRETuCFFRUXh5eREZGal9y0RERERERERERETuULb+Lve2Z44dPHiQRo0a3W5zERERERERERERERERkQJnd7sNlRgTERERERERERERERGRoua2k2M59euvv7Jjx46C6k5ERHIpLimFauPWUW3cOuKSUgo7HBGRIkmfpSIiJZM+/0UkP+kzRkQk92xeVtHOzo4KFSpw8eLFTGUjR44kKiqKOXPmWG3fvXt3rl69SkqKPrBFRERERERERERERESkcORo5phhGFkeX7p0KfPmzbvt9iIiIiIiIiIiIiIiIiIFocCWVRQREREREREREREREREpbEqOiYiIiIiIiIiIiIiISImh5JiIiIiIiIiIiIiIiIiUGEqOiYiIiIiIiIiIiIiISImh5JhICVGtWjVMJhPz5s0rlP4HDhyIyWRi2bJlBdpv586dMZlMbN26tUD7FREREREREREREZE7k5JjRcy8efMICgoiODi4sEMpts6cOUNQUBBBQUGFHUqxsX//fhYvXky9evXo06dPpnJz4m7w4MF53rf5dRwzZgxpaWl5fn4RERERERERERERKVqUHCti5s2bx6RJk5Qcy0dnzpxh0qRJTJo0qbBDKTZGjx6NYRgEBgZiMpkKtO8HH3yQTp06cejQIb777rsC7VtERERERERERERE7jw5So6FhoZib2+f6XHlyhWALMvMj9DQ0Hy5ABG5s/3666/s2LGD8uXL071790KJ4YUXXgDggw8+KJT+RUREREREREREROTOkaPkmGEYt/0QkZJp1qxZADz11FPY29sXSgxdunTBx8eHY8eOsXv37kKJQURERERERERERETuDDYnxwIDA3P9ePvtt/PzWnLl/PnzjB07lkaNGuHl5YWrqys1atTgySefZMGCBSQkJGRqs3v3bgYOHIi/vz8uLi54eXlx//338/777xMTE5NlP4MHD86wt9KKFSto06YNPj4+uLm50ahRIz799NNMeyPNmzcPk8nE9u3bAZg0aRImkynD48yZM3keo2EYzJ49mxYtWlCmTBlMJhPz5s2z/cbepE2bNphMJoKCgkhKSmLatGk0aNCAUqVK4e3tTYcOHVi/fv0tz7Nq1Sq6du2Kn58fTk5O+Pn50bVrV1avXm21jS3XVa1aNdq2bWtpc/M9zu2eWObzBAcHExISwssvv0z16tVxcXGhfPnyDBgwgBMnTmR7joSEBD755BOaN2+Ot7c3Li4u+Pv7M2jQIA4fPnzbsb377ruYTCbs7e0tCS2ztLQ0Fi1aRJcuXSz33NfXl44dO7JkyRKrCfCoqCiWL18OQP/+/W8rrtsdM+k5OTnRs2dPAL7++uvbikNEREREREREREREigcHWysGBgbmZxyFauHChQwdOtSSAHNycsLDw4Nz585x6tQp1qxZQ4MGDWjUqBFwI1EwcuRIZsyYYTmHu7s7sbGx/P777/z+++/MnTuXDRs24O/vb7Xfl19+mZkzZ2JnZ4enpyfx8fH88ccfjBgxgoMHDzJ//nxLXVdXV/z8/AgLCyM5OZlSpUrh7u6e4XzpZ+XkRYyGYdC7d29WrlyJnZ0dXl5e2NnlzTZ1SUlJtG/fnp07d+Lg4IC7uzsRERFs3ryZzZs3ExgYSFBQUJbtBg0axLJlywAscV27do1169axbt06+vXrx/z583F0dMzxdfn6+hIVFUV4eDgAfn5+Gdp6eXnlyfWfPn2afv36ERISgqurK46OjoSGhrJ48WJWrVrF6tWr6dy5c6Z2Fy9epHPnzhw9ehQAR0dH3NzcOHfuHAsXLmTRokV88sknvPLKKzbHkpaWxquvvsrMmTNxcXFh8eLFGZY/DAsLo3v37uzYscNyzHzPN23axKZNm1i6dCnff/89Tk5OGc69fft24uPjKVWqFE2aNMnpbcokJ2PmZq1ateKbb75hw4YNuY5DRERERERERERERIquvMl0FGHr1q0jICCAhIQEHn74YXbu3El8fDzXrl0jNjaWnTt38vzzz2f4pX9gYCAzZsygXLlyzJw5k+vXrxMdHU18fDzbtm2jcePG/P333/To0cPqbJY1a9bwzTffMH36dMLDwwkPD+fatWs899xzACxYsICtW7da6vft25eQkBCaN28OwJgxYwgJCcnwqFKlSp7GuGrVKn788Uc++ugjwsPDCQsLIzIykk6dOuX6vn/xxRf89ttvzJo1i+joaMLDwzl37hy9evUCbsyMW7NmTaZ2b775JsuWLcNkMjFx4kSuX79OWFgY165d48033wRgyZIlTJw40Wrf2V3X77//zqpVqyx1b77Hn376aa6vHWDkyJE4OTmxceNGYmNjiY6OZt++fdSvX5+EhAT69u3LhQsXMrRJTU2lZ8+eHD16FC8vL7777jtiYmKIiIjgv//+o2vXrqSlpfHaa6/ZNPsOIDExkT59+jBz5kxKly7Nxo0bMyTGUlNT6dGjBzt27KBRo0b89NNPxMbGEhERQUxMDPPnz6dcuXKsWbOGN954I9P5zQm1Jk2a5HpJxZyOmZs98MADwI29E281O09EREREREREREREijGjBEtOTjaqV69uAEaLFi2MxMTEW7Y5ffq0YW9vb7i6uhqHDx/Osk5UVJRRuXJlAzBWr16doSwgIMAADMCYO3dulu2bNm1qAMZzzz2Xqax169YGYAQGBhZIjDNmzLDaz+0wxw8Yc+bMyVSemppqtGrVygCMunXrZii7cOGC4eDgYADG+PHjszz/qFGjDMBwdHQ0Ll26lKHM1uvatm2bpV5eM5/XycnJ+OuvvzKVh4aGGj4+PgZgvPjiixnKli5damm/YcOGTG2Tk5ONBx54wACMevXqZSr39/fP8L6LiIiwvB6VKlUyjhw5kqnNggULDMC49957jYiIiCyvaf/+/YbJZDKcnJyM0NDQDGUtW7Y0AOPll1+2ek/SxxYQEJCpLLdjJj13d3cDML799tts6yUkJBiRkZGWx/nz5w3AiIyMzLZdcRObmGz4v7HW8H9jrRGbmFzY4YiIFEn6LBURKZn0+S8i+UmfMSIi1kVGRtr0u9wSPXNs27ZtnD59GoCPP/4405JwWZk3bx6pqal07tyZhg0bZlnHw8ODbt26AVhdwq1KlSoEBARkWfbEE08A8Oeff94ynvyM0dvbm2HDht1WDLdSpUoVnnnmmUzH7ezsmDBhAgDHjh3jyJEjlrKVK1eSkpKCi4sL48aNy/K8EyZMwNnZmeTkZFasWJFlnfy8Llv17t2b2rVrZzperlw5XnjhBQDL0pFm5n8/9NBDdOzYMVNbBwcHy/KnR48ezXDvbnbp0iVatmzJ9u3buffee9mzZw/16tXLVG/OnDkADB8+3OqSkk2bNqVu3bokJSWxbdu2TP3AjeUqcysvxkyZMmUyxGXNe++9h5eXl+WRflamiIiIiIiIiIiIiBRtNu85Vhzt2bMHgPLly9OsWTOb2uzevRuAjRs3Ur58eav1YmJiADh79myW5ffddx8mkynLsooVKwI39nq6HXkZoy0Jw9vRpk0bq9ffsmVLHBwcSElJYf/+/dSvXx+A/fv3W+Ly9PTMsq23tzfNmjVj9+7dlvo3y8/rslW7du2yLZs6dSrXr1/n9OnTVK9eHfj/62/fvr3Vtm3btsXe3p7U1NQM9y69EydOEBQUxNmzZ3nooYdYu3YtPj4+meqlpqby66+/AhAUFMTUqVOt9mt+r978Xrp69SpAlufPqbwYMz4+Ppw9e9YSlzXjx49n1KhRln9HRUUpQSYiIiIiIiIiIiJSTJTo5FhISAgA/v7+NrcxzziJjY0lNjb2lvXj4uKyPO7h4WG1jYPDjZclOTnZ5rjSy6sYy5Urd1v926JSpUpWy1xcXChTpgyhoaFcuXLFctz8PLu2AJUrV85Q/2b5eV22yu4a0pdduXLFkhyz5fpdXFwoW7ZspnuX3vvvvw+An58fGzduxN3dPct6YWFhJCYmAhAeHp7N1fy/m99LCQkJADg7O9vUPjt5MWZcXV0zxGWNs7NznsQsIiIiIiIiIiIiIneeEr2sorVZKNlJTU0F4I033sAwjFs+goOD8zjqgovR3t6+AKMuOMX1umzVu3dvnJycCA0NZfjw4Zb3y83SH1+/fr1N76WgoKAM5zAvY2hrci2/mWeWmeMSERERERERERERkZKnRCfHzEsOWltWMK/aFLSiEOPFixetliUmJnL9+nUg4ywv8/MLFy5ke25z+Z0wQ8ya7K4/fVlOrz8hISHLe5dely5dWL16Nc7Oznz33Xc8/fTTWSbIypQpY5mRdbvvJfNeY7e7RGheM8eRF3ugiYiIiIiIiIiIiEjRVKKTY82bNwduLK9obX+qmz388MMAbN68+ZZLs+UHO7sbL5lhGFbrFHaMtti+fbvVa9i5cycpKSkAGfaCMz/fv38/kZGRWbaNiIjIsDfZ7TDfY8j+PufGtm3bblnm4+NjWVIR/v/6t2zZYrVtcHCw5d5ld/1dunThxx9/xMXFhSVLltC/f39LOzNHR0fuv/9+AH766adbXFHW6tSpA8CpU6duq31eio6O5tq1awDUrl27kKMRERERERERERERkcJSopNjbdu25a677gJg5MiRJCUl3bLNkCFDcHBw4Nq1awQGBmZbNykpiZiYmDyJ1czT0xO4kQSyprBjtMW5c+eYP39+puNpaWlMnToVuJFYqV+/vqWsZ8+eODg4kJCQYNk362ZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdqza+jQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+y7ZtQdi/fz9paWk4ODhYEsgiIiIiIiIiIiIiUvKU6OSYvb09n3/+OSaTiV27dvHII4+wa9cu0tLSgBuJo+DgYAYOHMhff/0FQI0aNZg4cSIAH3zwAYMGDeLo0aOWc6akpHD48GEmT55MzZo1OXz4cJ7GbE54/Pzzz1aX5ivsGG3h5eXF8OHD+eabbyyz286fP0+/fv0sM6emTJmSoU2lSpV47bXXAJg2bRqBgYGW5FVERAQTJ07kww8/BGDUqFFUqFDhtmK7++67cXJyAmD27Nn5MnvMxcWFzp07s3nzZsv5f//9d9q3b8+1a9fw8PBg3LhxGdr07NmTBx54AIA+ffqwePFiSzLr9OnT9OzZk7179wI3XndbdOjQgbVr1+Lm5sbKlSvp06dPhiTxwIEDad++PYZh0L17d6ZMmcKlS5cs5bGxsWzbto2XXnrJkmhOr02bNsCNZRlDQ0NtvDv5Y9++fQA0adIEd3f3Qo1FRERERERERERERApPiU6OATz66KPMmzcPZ2dndu3aRcuWLXFzc6Ns2bKUKlWKtm3bsmjRogwJg4kTJzJx4kRMJhMLFy6kfv36ljYuLi40btyYwMBAzp8/j8lkytN4AwICcHFx4eTJk1StWpXy5ctTrVo1qlWrlmEvqsKM0RYvvvgizZo1Y+jQoXh6euLj40PVqlVZvnw5ABMmTKB79+6Z2k2dOpU+ffpgGAaTJ0+mTJky+Pj4UKZMGUsyrV+/frzzzju3HZubmxtPP/00AGPHjsXd3R1/f3+qVavGmDFjbvu86X388cckJCTQoUMH3N3d8fDw4P777+ePP/7A2dmZJUuWULVq1Qxt7O3tWblyJXXr1iUyMpIBAwbg7u6Ot7c3d911F2vWrMHOzo5PP/2URx991OZY2rVrx88//0ypUqX44Ycf6Nmzp+X9bu6za9euJCUlMXHiRCpVqoSXlxfe3t54eHjQrl07vvjiC2JjYzOdu3bt2jRs2BCANWvW5OKO5Z65//79+xdqHCIiIiIiIiIiIiJSuEp8cgxg0KBBnDhxghEjRlCnTh0cHByIj4/H39+fbt26sXDhwgx7FJlMJiZPnsyff/7Jiy++SO3atbG3tycyMhJvb2+aN2/O66+/zp49e/J8+bZatWqxbds2nnjiCXx9fbl+/Tpnz57l7NmzGfaMKswYbeHk5MSWLVuYOnUq99xzD4mJiXh5efHII4+wbt06q8ktJycnli1bxooVK3j00UcpU6YM0dHRlClThkcffZRVq1axePFiHB0dcxXfzJkzCQoKsizreO7cOc6ePWvZsyq3qlevzqFDh3jppZfw9fUlKSmJcuXK0a9fPw4dOsRjjz2WZbtKlSqxf/9+pk+fzoMPPoirqytxcXFUqVKFp59+mgMHDvDqq6/mOJ7WrVvzyy+/4OHhwdq1a+nWrRuJiYnAjWUmf/rpJ37++Wf69u1L1apVSUxMJC4ujkqVKtGxY0fee++9LJeJBBg2bBgAixYtynFceeXUqVPs3bsXV1dXBg0aVGhxiIiIiIiIiIiIiEjhMxn5sWaciBVt2rRh+/btBAYGEhQUVNjhFDjzLL1t27ZZlhws7qKjo6lcuTLR0dGcPn0af3//Ao9h8uTJBAYG8swzz/Dtt9/muH1UVBReXl5ERkZm2JOuuItLSqHO2xsA+GtyJ9ycHAo5IhGRokefpSIiJZM+/0UkP+kzRkTEOlt/l6uZYyKSr8z7pxmGwfvvv1/g/cfGxvLZZ5/h7OxMYGBggfcvIiIiIiIiIiIiIncWJcdEJN+NHDmSKlWqMGfOHM6fP1+gfX/++edcu3aNV199tVBmrYmIiIiIiIiIiIjInUVzbkUk37m4uLBgwQKCg4M5d+4cVapUKbC+S5UqRVBQECNGjCiwPkVERERERERERETkzqXkmORYjx492LNnT47arFq1iubNm+dTRAWrfPnyOW4TEhKSD5EULW3atCmUfdZefvnlAu9TRERERERERERERO5cSo5JjoWFhREaGpqjNklJSQAEBwfnQ0QFK6fXnp5hGHkYiYiIiIiIiIiIiIiI5JTJ0G/rRUSyFRUVhZeXF5GRkXh6ehZ2OCIiIiIiIiIiIiKSBVt/l2tXgDGJiIiIiIiIiIiIiIiIFColx0RERERERERERERERKTEUHJMRERERPJdXFIK1cato9q4dcQlpdz2cRERERERkZvl5f83bPm/iK3/X8mqnv6vI3JnUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHKskAQHB2MymTCZTHl+7qCgIEwmE23atMnzc0vRVNjviS1btmAymXj00UcLtN+lS5diMpl4+umnC7RfEREREREREREREblzKTkmmfzwww8EBQXxww8/FHYoheKTTz4hKCiIw4cPF3YoxUJaWhqjR48GYNKkSZnKzYm7/EgU9+nThzp16rBo0SIOHjyY5+cXERERERERERERkaJHybFC4ubmxj333MM999xT2KFk8sMPPzBp0qQSnRybNGmSkmN5ZP78+fzxxx889thj3H///QXat52dHRMnTsQwDMaMGVOgfYuIiIiIiIiIiIjInUnJsUJy//33c+LECU6cOFHYoYjkqw8++ACA4cOHF0r/vXr1omzZsmzbto39+/cXSgwiIiIiIiIiIiIicudQckxE8k1wcDAnTpzA19eXTp06FUoMDg4O9O3bF4CvvvqqUGIQERERERERERERkTuHkmP5oE2bNphMJoKCgkhOTuZ///sfzZo1o3Tp0phMJoKDgwkODr7lPktHjhyhb9++lC9fHhcXF+666y5eeeUVrly5YlN7sy1btvDYY4/h6+uLi4sLtWvXZtKkSSQkJGSoZz7n/PnzgRvL4Zn7MD+Cg4Nv+77MmzcPk8lEtWrVANi0aROPPvoovr6+uLq6UrduXaZMmZIprpv9999/DB8+nFq1auHq6oqnpydNmjRh8uTJREVFZdnm5vt16NAhBgwYQOXKlXF0dKRNmzaWva/Onj0LwDPPPJPp+nNj8ODBmEwmBg8ejGEYzJo1i/vvvx9PT088PT1p0aIFixcvvuV5goOD6d27N5UqVcLZ2ZmyZcvyyCOPMHfuXFJTU28rtkOHDlG+fHlMJhOdOnUiJiYmQ/nRo0cZOnQotWrVws3NDXd3dxo0aMBbb73FtWvXrJ73m2++AaB37944ODjkOK6bX7eTJ08yZMgQqlSpgrOzM5UrV+b555/n4sWL2Z6nf//+ACxZsiTTtYmIiIiIiIiIiIhIyaLkWD5KSEigTZs2jBkzhj/++AM7OzubEyyrV6+madOmLF++nNDQUBwdHbl8+TKff/45jRo14syZMzad58MPP6RDhw6sX7+elJQUkpKSOHHiBEFBQXTp0iVDMsXJyQk/Pz9cXFwAcHFxwc/PL8PDyckpx/chK1988QWdOnXil19+ISUlhZSUFP766y8mTpxI8+bNCQ8Pz7Ld8uXLqVu3LrNmzeLkyZM4OjqSlJTEoUOHCAwMpF69ehw/fjzbvleuXMkDDzzA4sWLiY6OtiRt3N3d8fPzw87uxrDw9PTMdP15pV+/fgwfPpwDBw7g4OBATEwMu3fvZsCAAQwZMgTDMLJsN2rUKNq2bcuKFSu4fPkybm5uREREsHXrVoYMGULHjh2Jjo7OUSybN2+mdevWhIaGMnDgQNauXYu7u7ul/IMPPqBhw4Z88803nDx5EpPJRHJyMkeOHGHq1Kk0aNCAQ4cOZTqvYRhs2LABgJYtW+Yopqxs27aNxo0bM3fuXCIjI0lLS+PixYvMnj2b+++/P9sE2X333YeLiwuxsbHs3Lkz17GIiIiIiIiIiIiISNGl5Fg+mjlzJn/++Sdz584lKiqKsLAwrl69SoMGDbJtd+rUKQYOHEhycjJNmjRh//79REdHExcXx6ZNm3BycmLUqFG37P+PP/5g3LhxjBs3jitXrhAeHk5ERARvv/02cCPZYJ4lBtC8eXNCQkIsS9D17duXkJCQDI/mzZvn4o7ccPXqVUaMGEGvXr04d+4c4eHhREVF8eWXX+Ls7MyhQ4d49tlnM7U7ePAgAwcOJDExkYcffpg///yTqKgo4uLiWLNmDRUqVOD8+fM8/vjj2c4OGjx4MB06dOD48eNERkYSHx/PN998w5gxYwgJCaFKlSoAfPrpp5muPy/88MMPLF++nHfeeYfw8HDCwsIIDQ3l5ZdfBmDu3Ll89tlnmdp9/vnnfPzxxwAMHTqUS5cuER4eTmRkJB9//DEODg5s3bqV559/3uZYlixZwmOPPUZ0dDSjR49mwYIFODo6WsrnzJnDG2+8gZubG++++y6XL18mNjaWuLg49u/fT7t27bh8+TJPPPFEpnv+119/cf36deDGHnu51bNnT9q1a8fx48eJiooiNjaWZcuW4eHhwaVLlxg/frzVto6OjjRp0gSA7du35zoWERERERERERERESm6lBzLRzExMSxevJjBgwfj6uoKQJkyZfDx8cm23dSpU4mLi6NcuXJs2rSJpk2bAmAymWjfvj0bNmwgLi7ulv1HREQwceJEpk6dStmyZYEbs6EmTZpEjx49gBvJkYIWFxdH8+bNWbp0qSUR5erqygsvvMDMmTOBGzPnfv/99wzt3nrrLZKTk6lZsyYbN26kfv36ANjZ2fH444+zbt06HBwc+O+//5g1a5bV/uvUqcOaNWu49957Lcdq1aqV15dpVWRkJBMmTGDChAl4enoC4Ovry2effcbAgQMBMi17GR8fT2BgIHBj1tlXX31F+fLlAShVqhQjRoxg+vTpACxbtowDBw7cMo7p06czYMAAy9KfH330UYaZjdHR0YwZMwaAFStW8Oabb1r6tLe3p2nTpmzYsIGmTZty4cIFZs+eneH8+/btA8DDw4O77ror5zfqJo0aNWL16tWW183JyYk+ffrw7rvvWmJMSUmx2r5x48YA7N2795Z9JSYmEhUVleEhIiIiIiIiIiIiIsWDkmP5qG7dujz++OM5amMYBitXrgRg+PDhWSbS7rnnHvr06XPLczk7O1uSGzd78sknAfjzzz9zFF9emTBhgmX5wvSeeeYZKleuDMDSpUstxyMiIixL9L3++uu4ubllatu4cWObkn6vv/469vb2uYo/N1xdXa2+LuZZfWFhYWzatMlyfNOmTYSFhQEQFBSUZdsXX3yRChUqAGS7d5lhGLz++uuMHj0aBwcHvvvuuyxnIq5cuZKIiAgaN25Mp06dsjyXg4MD/fr1A7C8PmaXLl0CsCRmc+vNN9/M8j1jfi/Hx8fz77//Wm1vjsMcV3bee+89vLy8LA9zEldEREREREREREREij4lx/LRww8/nOM2p06dIiIiAoDWrVtbrdemTZtbnqtu3boZ9o5Kr2LFigCWhEtBcnBwsLoHlZ2dneXa9u/fbzl+8OBByz5c7du3t3ruDh06ADeSfsnJyVnWuZ3XJS81a9bMMmPsZrVq1bIkB9Nfv/l5lSpVuPvuu7Nsa29vT7t27TK1TS85OZlBgwbx0Ucf4e7uzrp16+jfv3+WdXfv3g3A8ePHKV++vNXH5MmTATh79myG9levXgW45UxJWz3wwANZHje/lyH797M5DnNc2Rk/fjyRkZGWx/nz53MYrYiIiIiIiIiIiIjcqRwKO4DirFy5cjluk/4X9+l/6X+zSpUq3fJcHh4eVsscHG689NktQ5dfypYti7Ozs9Vy87VduXLFciz98+yu3ZxYSklJISwsDD8/v0x1bud1yUu3eu0qVarEhQsXsrz+W7U1X3/6tunt2bOHPXv2ADf2NjMnE7NinmGVkJCQYYlHa25e6tPcJrvXOiesvZ/N72XAakIUsCxtasu1ODs751ncIiIiIiIiIiIiInJn0cyxfJTbpfvS7/8keacwl1QsbPXr16dBgwYAjBo1iv/++89q3dTUVAD69u2LYRi3fJw5cyZD+zJlygAQHh6ePxeTQ+ZZZea4RERERERERERERKRkUnLsDuPr62t5nt3eSBcvXiyIcPLFtWvXSEpKslpuvrb0M7zSP79w4YLVtuYyBweHPFvOL6/d6rXL7vqzu/b05dZmx/n4+LB161YaNWrE+fPnad26Nf/880+WdcuXLw9kXi7RVub3cmEs3ZkVcxzpx5iIiIiIiIiIiIiIlDxKjt1h7rrrLkqXLg1AcHCw1XrZleWWnd2Nt4V5j6+8lpKSws6dO7MsMwyD7du3Azf25jJr0qSJJa4tW7ZYPffmzZsBaNiwIY6OjrcVX35f//79+4mJicmy7OTJk5YEV/rrNz+/cOGC1WRWamoq27ZtA+C+++6z2n+ZMmXYsmULTZo04eLFi7Rp04a///47Uz3z3mwHDhzg8uXLNlxZRnXq1AFuLBVq7XoL0unTpwGoXbt2IUciIiIiIiIiIiIiIoVJybE7jMlkokePHgDMmjUryyXp/v33X5YvX55vMXh6egIQERGRb328++67pKWlZTo+f/58zp8/D9xYzs+sdOnSdOrUCYAPP/ww0/5WAH/88QcrV64EoF+/frcdW35ff3x8PB999FGWZVOmTAFuzPBKvx9Yhw4dLMsBBgUFZdn2q6++ssw2vNX1+/j4sGXLFu677z4uX75MmzZtOH78eIY6vXv3pnTp0iQnJzNq1Khsk4VpaWmZ7lfz5s2xt7cnLS2N/fv3ZxtPQdi3bx8ArVu3LuRIRERERERERERERKQwKTl2Bxo/fjyurq6EhobSsWNHDh06BNyYybR161Y6deqEm5tbvvVfr149AHbu3MmJEyfy/Pxubm7s2rWL/v37W2ZJJSQk8PXXXzN8+HAAnnzySe6///4M7aZMmYKjoyMnT56kU6dOHDlyBLiRmPn555/p0qULKSkp1KhRg2HDht12fObrX7FiRb7sl+Xl5cU777zDe++9R3R0NHBjqcnXXnuN+fPnAzBx4kRcXFwsbVxdXS1JsSVLlvDCCy8QGhoKQFxcHDNmzGDEiBHAjaRi06ZNbxlH6dKl2bRpEw8++CAhISG0adOGo0ePZij/5JNPAFi6dCmPPfYY+/btsyQ109LSOH78OP/73/+oW7cua9euzXB+Dw8PSxzmxFRhCQkJ4dy5c4CSYyIiIiIiIiIiIiIlnZJjd6CaNWuyYMECHBwc2L9/P02aNMHT0xN3d3ceeeQRkpKSmD59OgDOzs553n/Pnj3x9fUlPDyc2rVr4+vrS7Vq1ahWrRq//vprrs/v6+vLxx9/zPLly6lSpQo+Pj54enoybNgwEhISaNiwIXPmzMnUrkmTJixcuBAnJyd27dpFgwYN8PLyolSpUjz22GNcunSJKlWq8NNPP+Hu7n7b8Q0dOhSTycSePXvw9fWlYsWKluvPC926daN37968+eabeHt74+PjQ7ly5ZgxYwYAgwYN4tVXX83U7uWXX2bkyJHAjVliFSpUwMfHBy8vL1577TWSk5Np27Yt33zzjc2xeHl5sXHjRpo3b86VK1do27Ytf/75p6U8ICCAL7/8EicnJ9avX8+DDz6Im5sbZcuWxcXFhTp16jBmzBhOnDiByWTKdH7zDLY1a9bk6B7lNXP/jRo10rKKIiIiIiIiIiIiIiWckmN3qF69erF//3569+6Nr68viYmJ+Pn58dprr3Ho0CG8vLwALPuT5SVvb2927NjBU089RaVKlYiMjOTs2bOcPXuWhISEPOnjpZdeYsOGDXTu3Bk7Ozvs7Oy49957mTx5Mnv37rUsIXizvn37cuzYMYYNG0aNGjVITEzEwcGBRo0aMWnSJI4ePZrr5EerVq1Yt24d7du3p3Tp0oSGhlquP68sWbKEL774gsaNG5OSkkKpUqV46KGHWLBgAfPnz7fse3az6dOns3XrVnr27Imfnx8xMTF4eHjQtm1bvv32WzZt2oSHh0eOYvHw8GDDhg20bNmSa9eu0a5dO8tsRYAXXniBv//+mzFjxtCwYUOcnZ2JiIjA3d2dZs2a8corr7Bp06Ysl3IMCAjAxcWFPXv2WPb8KgyLFi0CyNWMQhEREREREREREREpHhwKO4DiKDg4+JZ12rRpk+0eTgANGza0ureYeQ+nunXrZioLCgqyui+Vrf3fe++9LFmyJNtz5FaHDh0y7Ktlq5o1azJr1qwctbHlfqf36KOP8uijj+Y0NJuZTCaGDx9uWUYyJ9q2bUvbtm1z1OZW7wl3d3d27NhhtbxatWp8+OGHOeoTbiRa+/Xrx9y5c1m4cCFvv/12jmKz9XXLrs6ZM2fYuXMnnp6eDBgwwObYRURERERERERERKR40syxIujq1avMnj0bgM6dOxdyNCLZe/vtt3F2dubzzz8nNja2wPt///33MQyD8ePH53hWnYiIiIiIiIiIiIgUP0qO3aFmzJjBtGnTOHnyJCkpKQAkJiby888/06pVK65cuYKvry9Dhgwp5EhFsletWjVeeeUVrl69ysyZMwu07/Pnz/Ptt99StWpVRowYUaB9i4iIiIiIiIiIiMidScsq3qFOnTrFp59+yvjx47G3t8fLy4uoqChLoszLy4vly5db3ZtL5E7y1ltv4e7uTqlSpQq037NnzzJ+/Hjatm2Li4tLgfYtIiIiIiIiIiIiIncmJcfuUAEBAdjb27Njxw4uXrzI9evXcXV1pXr16nTq1InXXnuNSpUqFXhcy5Yt47XXXstRm759+/Lpp5/mU0QF67XXXmPZsmU5avPpp5/St2/ffIqoaChdujSBgYEF3m+LFi1o0aJFgfcrIiIiIiIiIiIiIncuJcfuUI0bN6Zx48aFHUYm8fHxhIaG5qhNZGQkAIMHD2bw4MH5EFXBiYyMzPH1x8fHAzBv3jzmzZuXD1GJiIiIiIiIiIiIiIitTIZhGIUdhIjInSwqKgovLy8iIyPx9PQs7HBEREREREREREREJAu2/i7XrgBjEhERERERERERERERESlUSo6JiIiIiIiIiIiIiIhIiaHkmIiIFGlxSSlUG7eOauPWEZeUUtjhiIgUG/p8FREpnvT5LiIFRZ83InInU3JMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJM5A5TrVo1TCYT8+bNK5T+Bw4ciMlkYtmyZYXSf15KS0ujbt26ODo68vfffxd2OCIiIiIiIiIiIiJyB1ByLJ/MmzePoKAggoODCzuUYuvMmTMEBQURFBRU2KEUG/v372fx4sXUq1ePPn36ZFv35MmTjB8/nvvuuw9fX1+cnJwoX748Dz/8MJMmTeLSpUv5GusPP/xAUFAQP/zwg9U6dnZ2TJw4kZSUFMaOHZuv8YiIiIiIiIiIiIhI0aDkWD6ZN28ekyZNUnIsH505c4ZJkyYxadKkwg6l2Bg9ejSGYRAYGIjJZMqyTmpqKq+//jq1a9dm2rRp7N+/n/DwcNzd3bl69Sp79uwhKCiIWrVq8dFHH+VbrD/88AOTJk3KNjkG0KdPH+rUqcOaNWvYsWNHvsUjIiIiIiIiIiIiIkWDkmMiAsCvv/7Kjh07KF++PN27d8+yTlpaGj179uSjjz4iJSWFzp07s337dhITEwkLCyM+Pp5ffvmF5s2bExcXx+uvv86rr75awFeSkZ2dHc8//zwAH3zwQaHGIiIiIiIiIiIiIiKFT8kxEQFg1qxZADz11FPY29tnWWfKlCn8+OOPAIwbN47169fTqlUrS30nJyc6derEzp07GTRoEACfffYZCxcuLIArsK5fv37Y29uzfv16zp07V6ixiIiIiIiIiIiIiEjhKnLJsfPnzzN27FgaNWqEl5cXrq6u1KhRgyeffJIFCxaQkJCQqc3u3bsZOHAg/v7+uLi44OXlxf3338/7779PTExMlv0MHjwYk8nE4MGDAVixYgVt2rTBx8cHNzc3GjVqxKeffkpaWlqGdvPmzcNkMrF9+3YAJk2ahMlkyvA4c+ZMnsdoGAazZ8+mRYsWlClTBpPJxLx582y/sTdp06YNJpOJoKAgkpKSmDZtGg0aNKBUqVJ4e3vToUMH1q9ff8vzrFq1iq5du+Ln54eTkxN+fn507dqV1atXW21jy3VVq1aNtm3bWtrcfI/Nr9vtMp8nODiYkJAQXn75ZapXr46Liwvly5dnwIABnDhxIttzJCQk8Mknn9C8eXO8vb1xcXHB39+fQYMGcfjw4duO7d1338VkMmFvb29JaJmlpaWxaNEiunTpYrnnvr6+dOzYkSVLlmAYRpbnjIqKYvny5QD0798/yzpXrlxh2rRpALRt25apU6dajdHOzo6vv/6a2rVrAzB+/HiSkpIy1Ll5jGXFPJ6qVatmORYcHIzJZGL+/PkAzJ8/P9Prf/Nypn5+frRr1460tDTmzJljtT8RERERERERERERKf6KVHJs4cKF3H333Xz44Yf88ccfJCQkUKpUKc6dO8eaNWsICAjIkLBIS0vjtddeo0WLFixatIhz587h6OhIbGwsv//+O+PGjaNZs2acPXs2235ffvllevfuzc6dOzEMg/j4eP744w9GjBjBM888k6Guq6srfn5+ODo6AlCqVCn8/PwyPNLPysmLGA3DoHfv3jz//PPs3bsXwzCws8ublzYpKYn27dszfvx4jh8/jpOTExEREWzevJkuXboQFBRktd1TTz1Fz549WbduHdeuXcPd3Z1r166xbt06evToQf/+/UlOTr6t6/L19cXb29tS9+Z77OXllSfXf/r0aRo3bszMmTMJDQ3F0dGR0NBQFi9eTOPGjfnll1+ybHfx4kXuu+8+Ro4cyd69e4mNjcXFxYVz586xcOFCmjZtymeffZajWNLS0nj55ZeZMGECLi4urFixghdeeMFSHhYWRtu2bRk4cCDr16/nypUruLm5ce3aNTZt2kT//v3p1q1bpiQVwPbt24mPj6dUqVI0adIky/7nzp1LfHw8QLZ7kpk5Ozszbtw4y/241d5gtjInWV1cXABwcXHJ9Po7OTllateqVSsAq6+ZiIiIiIiIiIiIiJQMRSY5tm7dOgICAkhISODhhx9m586dxMfHc+3aNWJjY9m5cyfPP/98hl+KBwYGMmPGDMqVK8fMmTO5fv060dHRxMfHs23bNho3bszff/9Njx49Ms0AM1uzZg3ffPMN06dPJzw8nPDwcK5du8Zzzz0HwIIFC9i6daulft++fQkJCaF58+YAjBkzhpCQkAyPKlWq5GmMq1at4scff+Sjjz4iPDycsLAwIiMj6dSpU67v+xdffMFvv/3GrFmziI6OJjw8nHPnztGrVy/gxsy4NWvWZGr35ptvsmzZMkwmExMnTuT69euEhYVx7do13nzzTQCWLFnCxIkTrfad3XX9/vvvrFq1ylL35nv86aef5vraAUaOHImTkxMbN24kNjaW6Oho9u3bR/369UlISKBv375cuHAhQ5vU1FR69uzJ0aNH8fLy4rvvviMmJoaIiAj+++8/unbtakmK2jL7DiAxMZE+ffowc+ZMSpcuzcaNGzPsC5aamkqPHj3YsWMHjRo14qeffiI2NpaIiAhiYmKYP38+5cqVY82aNbzxxhuZzr9jxw4AmjRpYnVJRfP7vEyZMrRu3dqmuLt162ZJom3bts2mNrfSvHlzQkJC6Nu3L/D/Yy79wzz+0nvggQcAOHjwoNXZmCIiIiIiIiIiIiJS/BWJ5FhKSgqvvPIKhmHQokULtm7dSosWLSyziJycnGjRogVff/01derUAeDMmTO89957uLq6snHjRl588UV8fHwAcHR0pE2bNmzfvp3KlStz8ODBLBM8AOHh4Xz11VeMHDkST09P4EZy4JtvvqFp06bAjSTP7cirGGNiYpg+fTqjR4+2xOju7k6FChVuK670IiMj+eKLLxg2bJhlpk6VKlVYtmyZZSaOOdlldvHiRUtyaty4cUyePJnSpUsD4O3tzbvvvsuoUaMAmD59OpcvXy7w67JVfHw8v/zyCx06dLAkee6//342b96Mj48PUVFRvPfeexnarFixgn379gGwfPlyBgwYYEna3nXXXaxevZoHHngAwzAYO3bsLWMwJwRXrlxJpUqV2LlzJy1btsxQZ/HixWzfvp17772X4OBgunbtipubG3Bj9uKgQYP4+eefMZlMfPHFF1y5ciVDe3O8DRs2tBrHsWPHAGjcuPEtYzbz9PTkrrvuAuDo0aM2t8sP5rhTUlL4/fffs62bmJhIVFRUhoeIiIiIiIiIiIiIFA9FIjm2bds2Tp8+DcDHH3+c5ZJpN5s3bx6pqal07tzZ6i/8PTw86NatGwAbNmzIsk6VKlUICAjIsuyJJ54A4M8//7xlPPkZo7e3N8OGDbutGG6lSpUqmZaOhBt7Sk2YMAG4kTQ5cuSIpWzlypWkpKTg4uJiWVbvZhMmTMDZ2Znk5GRWrFiRZZ38vC5b9e7d27JvVnrlypWzLGm4bNmyDGXmfz/00EN07NgxU1sHBwcCAwOBGwmj9PfuZpcuXaJly5aWxNeePXuoV69epnrmfbSGDx9udUnJpk2bUrduXZKSkjLN4rp06RJwY7lKa65fvw7cSA7nRNmyZTO0Lyw+Pj6WhLr5eq1577338PLysjzSz/YUERERERERERERkaLNobADsMWePXsAKF++PM2aNbOpze7duwHYuHEj5cuXt1rPvLyatT297rvvPqt7K1WsWBG4sdfT7cjLGG1JGN6ONm3aWL3+li1b4uDgQEpKCvv376d+/foA7N+/3xKXecbXzby9vWnWrBm7d++21L9Zfl6Xrdq1a5dt2dSpU7l+/TqnT5+mevXqwP9ff/v27a22bdu2Lfb29qSmpma4d+mdOHGCoKAgzp49y0MPPcTatWstMwvTS01N5ddffwUgKCiIqVOnWu3X/F69+b109epVgCzPX1zY2dnh5eVFeHi45XqtGT9+vGV2I0BUVJQSZCIiIiIiIiIiIiLFRJFIjoWEhADg7+9vcxvzzJDY2FhiY2NvWT8uLi7L4x4eHlbbODjcuH3Jyck2x5VeXsVYrly52+rfFpUqVbJa5uLiQpkyZQgNDc2wTJ/5eXZtASpXrpyh/s3y87psld01pC+7cuWKJTlmy/W7uLhQtmzZTPcuvffffx8APz8/Nm7ciLu7e5b1wsLCSExMBG4sA2qLm99LCQkJADg7O1ttU6ZMGS5evJjjGWDXrl2ztC9srq6uhIeHW67XGmdn52zvhYiIiIiIiIiIiIgUXUViWUVrM5eyk5qaCsAbb7yBYRi3fAQHB+dx1AUXo729fQFGXXCK63XZqnfv3jg5OREaGsrw4cMt75ebpT++fv16m95LQUFBGc5hTlxll1wz7+d36NAhm68hKiqKU6dOAVC3bl2b2+UX88y5OyFRJyIiIiIiIiIiIiKFo0gkx8xLDlpbVjCv2hS0ohDjxYsXrZYlJiZaZhGln+Vlfn7hwoVsz20uvxNmiFmT3fWnL8vp9SckJGR579Lr0qULq1evxtnZme+++46nn346ywRZmTJlLLMYb/e9ZN5rLLslQh955BHgxt5htiaTV69ejWEYQOYlKs0xZzeLKzIy0qZ+bBEfH2/pK7u91URERERERERERESkeCsSybHmzZsDN5ZXtLY/1c0efvhhADZv3nzLJdTyg53djVtrTgxkpbBjtMX27dutXsPOnTtJSUkByLAXnPn5/v37rSY3IiIiMuxNdjvM9xiyv8+5sW3btluW+fj4WJZUhP+//i1btlhtGxwcbLl32V1/ly5d+PHHH3FxcWHJkiX079/f0s7M0dGR+++/H4CffvrpFleUNfOsMPMsr6wMHjwYFxcXACZPnnzLe56YmGhZGrJixYp069YtQ7m3tzcA58+ft3qOffv2WS2zZYyld/r0acvz2rVr29RGRERERERERERERIqfIpEca9u2LXfddRcAI0eOJCkp6ZZthgwZgoODA9euXSMwMDDbuklJScTExORJrGaenp7AjSSQNYUdoy3OnTvH/PnzMx1PS0tj6tSpwI3ESv369S1lPXv2xMHBgYSEBEty5GZTp04lMTERR0dHevbseVuxme8xZH+fc+P777/n77//znT82rVrfPXVVwD07ds3Q9lTTz0FwN69e9m4cWOmtikpKUyePBmAevXqUa9evWxj6NSpE2vWrMHV1ZXly5fz1FNPZdrnbujQoQD8/PPP/Pzzz9meL6vZYa1atQLgt99+s9rOz8+PsWPHAjcSg2+99ZbVumlpaQwbNozjx48DN15vJyenDHUaNmwIwO+//55lguz48eOsWrXKah+2jLH0zIk2Pz8/7rnnHpvaiIiIiIiIiIiIiEjxUySSY/b29nz++eeYTCZ27drFI488wq5du0hLSwNuJI6Cg4MZOHAgf/31FwA1atRg4sSJAHzwwQcMGjSIo0ePWs6ZkpLC4cOHmTx5MjVr1uTw4cN5GrM54fHzzz9bXZqvsGO0hZeXF8OHD+ebb76xzG47f/48/fr1s8ycmjJlSoY2lSpV4rXXXgNg2rRpBAYGWhIYERERTJw4kQ8//BCAUaNGUaFChduK7e6777YkXGbPnp0vs8dcXFzo3Lkzmzdvtpz/999/p3379ly7dg0PDw/GjRuXoU3Pnj154IEHAOjTpw+LFy+2JLNOnz5Nz5492bt3L3DjdbdFhw4dWLt2LW5ubqxcuZI+ffpkSBIPHDiQ9u3bYxgG3bt3Z8qUKVy6dMlSHhsby7Zt23jppZcsieb02rRpA9xYljE0NNRqHIGBgXTt2hWA9957jy5durBz507Lco/Jycls3LiRVq1aWZKqL774IgEBAZnO9fjjj+Pu7k5ycjJ9+vSxJCGTk5P58ccfad++PaVKlbIai3mM7dy5kxMnTlitZ2ZOjrVu3fqWdUVERERERERERESkGDOKkPnz5xvOzs4GYACGs7OzUaZMGcPBwcFy7NChQ5b6aWlpxsSJEw2TyWQpd3V1NcqUKWPY29tbjgHGrl27MvQVEBBgAEZAQIDVeObOnWsAhr+/f6ayf/75x3BxcTEAw87OzvDz8zP8/f0Nf39/4/z58wUW4+1q3bq1ARjjx483WrRoYQCGo6Oj4e3tnSGmCRMmZNk+MTHR6NOnj6WenZ2d4e3tbdjZ2VmO9evXz0hKSsrUNifX9eyzz1rO5+bmZlStWtXw9/c3Ro8enavrN5/z22+/NcqXL285v7u7e4b339q1a7Nsf+HCBaNu3bqWuk5OTkbp0qUz3I9PP/00y7b+/v4GYMydOzdTWXBwsFGqVCkDMLp27WokJiZayiIjI42uXbtmeH08PT2N0qVLZ3h/OTg4ZNlvw4YNDcD4+uuvs703ycnJxsiRIzOMO3t7e8PHxyfD6+vi4mJMmzYt23PNnj07Q2weHh6Gk5OTARgPPvig8fnnn1sdY2FhYYavr6+lbdmyZS1jbO/evRnqpqamGpUrVzYA44cffsg2pqxERkYagBEZGZnjtpL/YhOTDf831hr+b6w1YhOTCzscEZFiQ5+vIiLFkz7fRaSg6PNGRAqDrb/LLRIzx8wGDRrEiRMnGDFiBHXq1MHBwYH4+Hj8/f3p1q0bCxcuzLCXkMlkYvLkyfz555+8+OKL1K5dG3t7eyIjI/H29qZ58+a8/vrr7Nmzx7L/V16pVasW27Zt44knnsDX15fr169z9uxZzp49m2HPqMKM0RZOTk5s2bKFqVOncs8995CYmIiXlxePPPII69at45133rHabtmyZaxYsYJHH32UMmXKEB0dTZkyZXj00UdZtWoVixcvxtHRMVfxzZw5k6CgIMuyjufOnePs2bNcu3YtV+c1q169OocOHeKll17C19eXpKQkypUrR79+/Th06BCPPfZYlu0qVarE/v37mT59Og8++CCurq7ExcVRpUoVnn76aQ4cOMCrr76a43hat27NL7/8goeHB2vXrqVbt24kJiYCN5YZ/Omnn/j555/p27cvVatWJTExkbi4OCpVqkTHjh157733slwmEmDYsGEALFq0KNsYHBwcmD59On/99Rdjx46ladOmlC5d2vL6PvTQQwQGBnLy5EneeOONbM/17LPPsm7dOtq1a4enpycpKSncfffdTJs2je3bt2c7c8zb25sdO3bw1FNPUalSJSIjIy1j7OY9/LZv386FCxeoVKmSZeabiIiIiIiIiIiIiJRMJsPIh7XopMhr06YN27dvJzAwkKCgoMIOp8CZTCbgxt5a5iUHi7vo6GgqV65MdHQ0p0+fxt/fv7BDyjNDhgxh7ty5TJo0ibfffjvH7aOiovDy8iIyMjLDXndyZ4hLSqHO2xsA+GtyJ9ycHAo5IhGR4kGfryIixZM+30WkoOjzRkQKg62/yy1SM8dEJP+Y908zDIP333+/sMPJM+fPn2fRokX4+voyYsSIwg5HRERERERERERERAqZkmMiYjFy5EiqVKnCnDlzOH/+fGGHkyemTp1KUlISQUFBmvUlIiIiIiIiIiIiImguq4hYuLi4sGDBAoKDgzl37hxVqlQp7JByJS0tjapVqzJlyhSGDh162+cxrz4bFRWVV6FJHopLSiEtMQ648RqlaJkGEZE8oc9XEZHiSZ/vIlJQ9HkjIoXB/DvcW+0opk+kYqxHjx7s2bMnR21WrVpF8+bN8ymiglW+fPkctwkJCcmHSIqWNm3aFJt91uzs7Bg/fnyuzxMdHQ1Q5JOFJUGFTwo7AhGR4kmfryIixZM+30WkoOjzRkQKWnR0NF5eXlbLlRwrxsLCwggNDc1Rm6SkJACCg4PzIaKCldNrT+9WWWUpWSpWrMj58+fx8PDAZDIVdjg5FhUVRZUqVTh//ryWlhTJhsaKiO00XkRso7EiYhuNFRHbaKyI2EZjpWQzDIPo6GgqVqyYbT0lx4qx4pDgyg0luCSv2NnZUbly5cIOI9c8PT31A4GIDTRWRGyn8SJiG40VEdtorIjYRmNFxDYaKyVXdjPGzOwKIA4RERERERERERERERGRO4KSYyIiIiIiIiIiIiIiIlJiKDkmIlLMOTs7ExgYiLOzc2GHInJH01gRsZ3Gi4htNFZEbKOxImIbjRUR22isiC1MhjZmEhERERERERERERERkRJCM8dERERERERERERERESkxFByTEREREREREREREREREoMJcdERERERERERERERESkxFByTEREREREREREREREREoMJcdERPJYXFwc69evZ8qUKfTo0QN/f39MJhMmk4mgoCCbzrFixQoef/xxKlasiJOTE6VKleKee+7h+eef5/Dhw1bbbd++nbfeeotOnTpRq1YtvL29cXR0pFy5crRt25YZM2YQHx+fbd+pqaksXLiQDh06ULZsWZydnalcuTL9+vVj7969NsV/8OBBBg4cSOXKlXF2dqZChQp0796drVu32tReSoaSPFbatGljuVZrj8qVK9t0D6T4K8yxYs0LL7xgiaFatWq3rB8aGsro0aO55557cHV1xcfHh5YtWzJ79mwMw7hl+//++49hw4ZRvXp1XFxc8PX1pVOnTqxcuTLHsUvxVpLHy+DBg2/53WIymUhJScnxNUjxU5THSkREBD/++CNvv/02Xbt2pUKFCpZ28+bNs7k/fbeILUryWNH3iuREUR4rFy9e5IsvvqB3797UrFkTV1dXXF1dqV69Ov369bP5d1m5/T+PFAJDRETy1LZt2wwgy0dgYGC2bRMSEozHH388Qxt3d3fDycnJ8m87Oztj+vTpWbZ/7LHHMrQtVaqUUapUqQzHqlevbvz9999Zto+Ojjbat29vqWtvb294e3sbdnZ2lr4/+OCDbK/hm2++MRwcHCzn8PLyMkwmk833QEqOkjxWWrdubenXz88vy0fjxo1tvpdSvBXmWMnK1q1bM3yu+/v7Z1t///79RpkyZTL0n/57olOnTkZiYqLV9uvWrTPc3Nws9T09PS1jDTCeeeYZIy0tzeb4pXgryeMlICDAAAwXFxer3y1+fn5GSkqKzfFL8VWUx8rcuXOtxj537lyb+tN3i9iqJI8Vfa9IThTVsXLu3LkM9QDDzc3NcHV1zXBsyJAh2b7Xc/t/HikcmjkmIpIPvL29eeSRR3j99ddZsmQJ5cuXt6nd1KlT+emnnwB48cUXuXDhAtHR0cTHx7N//35atGhBWloao0eP5sCBA5nat2/fnhkzZnDw4EGioqKIiYkhJiaGa9euMWPGDFxdXTl9+jTdu3cnLS0tU/vnn3+ezZs3Y2dnx9SpUwkPDycsLIxr164xduxY0tLSGDt2LGvWrMky/r179/LCCy+QkpJCt27dOH/+PBEREVy9epVhw4YBMGnSJJYvX27rrZRirqSOFbMxY8YQEhKS5ePgwYM23QspGQprrNwsLi6O559/HgcHB5o1a3bL+pGRkXTt2pXr169z77338vvvvxMdHU1sbCyff/45jo6ObNiwgREjRmTZ/vTp0/Tp04e4uDgefvhh/v77byIjI4mMjOTtt98GYO7cuXz44Yc23Q8pGUrqeDHr27ev1e+WkJAQ7O3tbbofUvwV1bECUL58eR599FHeeustVq1aZVMbM323SE6V1LFipu8VsVVRHCupqakYhsEjjzzC/PnzuXjxIrGxscTExHDs2DGefPJJAL799lurM+Dy6mc4KQSFnZ0TESlusvpLEn9/f5v+WqZatWoGYLRu3TrL8oiICMPd3d0AjHHjxuU4tq+++sryVyu7du3KUPbnn39aykaMGJFl+759+xqAUbNmTSM1NTVTeYsWLQzAqF+/vpGUlJSpvFOnTgZgVKtWTX9dJiV6rJhnjmkmpdjiThorI0aMMADjrbfesvw1cXZ/sTxhwgQDMFxdXY1Tp05lKp86daoBN2ZfZjVTc+DAgQZglC9f3ggPD89UPnToUMtf/IeFhd0yfin+SvJ4MfcREBBwy9hEivJYySp2889mtsyG0XeL5ERJHiv6XpGcKKpjJSIiwjhw4IDVc6WlpRmdO3e2zAaLj4/PVCe3P8NJ4dHMMRGRPJabv5q6fPkygNW/bPHy8uLuu+8GICYmJsfnf/DBBy3PL1y4kKHs559/tjx//fXXs2w/duxYAE6ePMmuXbsylJ06dcpybMyYMTg6OmZqP378eADOnDnDjh07chy/FC8ldayI5NSdMlZ+/fVXZsyYwd13382ECRNs6n/BggUAPPXUU1SvXj1T+SuvvIK7uzupqaksWrQoQ1lsbKxl35fhw4dTunTpTO3N3ytRUVH88MMPNsUkxVtJHS8iOVWUx0puYtd3i+RUSR0rIjlVVMeKl5cXTZo0sVpuMpkYMmSIpe/jx49nqqOf4YouJcdERO4gd911F4DVaeKRkZH8888/gPUfGrKzc+dOy/MaNWpkKDt79ixw4weDihUrZtn+3nvvxWQyAbBx48YMZZs2bbI879y5c5btW7RogYeHR5btRXKiKI8VkYKUV2MlMTGRIUOGYBgGX3/9NS4uLrfs+++//+bcuXMAPProo1nWcXd3p2XLlkDmsbJr1y7i4+OzbV+tWjVq166dZXuRnCrK40WkIBXmWMktfbdIQSrKY0WkIN3pYyX9eVJTUzOU6We4ok3JMRGRO8jw4cMBCA4O5qWXXuLixYsAGIbBwYMH6dq1KzExMTz00EMMHDjQpnPGx8fz77//MnXqVEaPHg1Aq1atrP5AkdX+SunLDMMA4MiRIxnKjh49CkC5cuUoV65clu3t7e259957ATh27JhN8YtkpSiPlfQWLVpEtWrVcHZ2pnTp0jRr1oy33nqLS5cu2RSzyK3k1ViZPHkyx48f59lnn6V169Y29W3+XgCoV6+e1Xrmsr/++itX7fW9IrlVlMdLelu2bOHuu+/GxcUFT09P6tevz4gRI/j3339tikXkVgpzrOSWvlukIBXlsZKevlckv93pYyU4OBgAJycnyww2s7z8GU4KnpJjIiJ3kJdeeomxY8diZ2fHF198QeXKlfHw8MDFxYWmTZty8uRJxo0bx5YtW7Kdsh4SEoLJZMJkMuHm5sbdd9/NW2+9RWJiIo8//jirV6/O1KZatWoAREdHW2bG3Cz9l/7Nv7w3/7tSpUrZXqO5XL/8l9woymMlvZMnT3Lp0iVKlSpFVFQUBw4cYOrUqdSuXTvLvkVyKi/GyqFDh/jggw/w8/Pjww8/tLnv9O/97L4bzGVRUVEZlkkxt/f29sbV1fWW7fW9IrlVlMdLehcuXODUqVO4ubkRFxfH0aNH+fTTT6lXrx5ffvmlzTGJWFOYYyW39N0iBakoj5X09L0i+e1OHiunT59m1qxZAPTt2xdPT88M5Xn5M5wUPCXHRETuIHZ2drz33nt8++23uLu7AzfWNE5KSgIgISGByMhIYmNjsz2Pvb09fn5++Pn5ZZj+3bt3bz744AN8fHwytUk//XvKlClZnvfdd9+1PI+KispQFh0dDYCbm1u2sZnLzfVFbkdRHisAbdq0Ye7cuVy8eJHExETCwsIIDw9n7ty5lCtXjqioKPr27cuvv/6abfwit5LbsZKSksKQIUNISUlhxowZWe7NYk36z/nsvhvSl6Vvo+8VKWhFebwANGnShM8//5wzZ85YvluioqJYuXIlNWrUICkpiRdffNGy35LI7SrMsZJb+m6RglSUxwroe0UKzp06VuLj4+nduzdxcXGULVuWadOmZaqTFz/DSeFRckxE5A5y7do1HnnkEQYPHsxDDz3Erl27iIiI4PLly6xatQpfX1++/PJLHnjgAcs086z4+voSEhJCSEgIcXFxnD9/nrfeeouffvqJBg0a8PXXX2dqU79+fXr37g3A7NmzGTVqFGfOnCE5OZl//vmHIUOGsHbtWhwdHYEbP7yIFJaiPlaCgoIYPHgwFStWtOxN5uXlxeDBg9mzZw+lS5cmOTmZsWPH5sXtkhIst2Nl2rRpHD58mK5du9KnT59CuAKRglPUx8urr77KSy+9hL+/v+Wvqt3c3OjRowf79u2zbBA/evRoy9K/IrejqI8VkYJS1MeKvlekoNyJYyUlJYX+/ftz4MABHB0dWbRokdU9x6UIM0REJN/5+/sbgBEYGJhtvS5duhiA0bp1ayMtLS1TeWhoqFG2bFkDMAYOHJjjOFauXGkAhp2dnXH48OFM5VFRUUa7du0MIMvHk08+aXTr1s0AjIceeihD2x49ehiA0bhx42xjMLdv2rRpjuOX4q8kjBVbvPXWWwZgmEwm49q1azluL8VfQYyVY8eOGU5OToa7u7tx7ty5TG0DAgIMwPD398+y7xkzZljGRGRkpNUYP/nkE0u96Ohoy/FRo0YZgOHt7Z3tNY4YMcIAjDJlymRbT0qukjBebPHNN99Y2h44cCBHbaVkKApjxRrze3vu3LnZ1tN3i+SFkjBWbKHvFbmVojpWUlJSjD59+hiA4eDgYHz//fdW6xbEz3CSf/Rn/yIid4jjx4/z888/Azf+8so8myS9cuXKMWjQIABWrVqV47/O6tGjB1WrViUtLY05c+ZkKvfw8GDTpk0sXryYJ598klq1alGtWjXat2/P/PnzWb16NWFhYQCZNiE1/wVNdrN00pfrL27kdhX1sWKLhx56CLixAfHp06dz3F4Ecj9WXnrpJZKSknjrrbfw9vYmJiYmwyMlJQW48T41H0tOTra0T/85n913g7nM09PTsoxK+vbh4eHEx8ffsr2+VyQ3ivp4sYX5uwXg1KlTOWorYlbYYyW39N0iBaWojxVb6HtF8sKdNlZSU1MZOHAgy5cvx97enu+++45evXpZrV8QP8NJ/lFyTETkDvHXX39ZnteoUcNqvVq1agEQFxfHlStXctyPeRPQkydPZlluZ2dHv379+OGHH/jnn384ffo0mzZtYtCgQaSmpvLHH38A0Lx58wzt6tWrB8CVK1e4evVqludOTU3lxIkTANStWzfHsYtA0R8rIgUlt2PFnJgdP348Hh4emR6LFi0C4Ny5c5ZjM2fOtLQ3fy8AHD161Gr/5rI6depkOJ7T9vpekdwo6uNFpKAU9ljJLX23SEEp6mNFpKDcSWMlNTWVAQMGsHTpUktirG/fvtnGr5/hijYlx0RE7hDp9yU6e/as1XqhoaGW5zn9a5P0s1A8PDxyGCH89NNPREZG4urqatlzyaxDhw6W57/88kuW7Xfv3m3ZeLRjx4457l8Eiv5YscWvv/4KgMlkolq1ajluLwIFM1ayc/fdd1O1alXA+vdCbGwsO3fuBDJ/L7Ro0QJXV9ds2589e5bjx49n2V4kJ4r6eLGF+bsFsOwTI5JThT1WckvfLVJQivpYsYW+VyQv3CljJTU1lf79+7Ns2TJLYuypp566ZbuC+BlO8o+SYyIid4gmTZpYnn/55ZdZ1omNjWXBggUANGjQgFKlSlnKzFPFszN37lxCQkIAaNOmTY7iu3r1KmPGjAFuTFv39vbOUH7XXXfRokULAP73v/9lOU192rRpAPj7+9OqVasc9S9iVtTHyq2WeDx9+rTlL9maN29O2bJlc9S/iFlux8qZM2cwDMPqIyAgALjxmW4+NmLECEt7k8lkWf5k6dKlnDlzJlP/M2fOJCYmBnt7ewYMGJChrFSpUvTs2dMSf2RkZKb277//PnAjid2tW7db3BER64r6eLnVd0tYWBhTp04FoEqVKjRu3Djb+iLWFPZYyS19t0hBKepjRd8rUlDuhLFinjG2fPlyHBwcWLRokU2JMcj9z3BSyPJg3zIREblJWFiYcfXqVcujSpUqBmC8/vrrGY7fvAnn448/btmgc+DAgcbJkyeNtLQ0Iykpydi9e7fRrFkzS/n8+fMztN22bZvRsmVLY8GCBcb58+czlP3zzz/GG2+8YTg4OBiAUaNGDSMuLi5T3GvXrjU++eQT4+TJk0ZKSophGIYRGxtrLF++3KhRo4YBGA0bNsyyrWEYxu7duw17e3sDMHr06GFcuHDBMAzDuH79ujF8+HBL7MuWLbvteyvFS0kcK1OnTjUGDRpk/Pzzz0Z4eLjleGRkpDF//nyjfPnyBmA4Ojoau3btut1bK8VMYYyVW7Flc+uIiAjLe7pOnTrG/v37DcMwjMTEROOLL74wnJycDMAYPnx4lu1PnTpllCpVygCMli1bGv/8849hGIYRExNjTJo0yTCZTAZgvP/++zmKXYq3kjheFixYYHTv3t1YsWKFERoaajkeFxdnrF692rj77rstsS9dujRHsUvxVVTHimEYGeK7evWqpb/PPvssw/HY2NhMbfXdIjlVEseKvlfkdhTFsZKSkmI89dRTBmA4ODgYy5cvz/F15/b/PFJ4lBwTEckH/v7+li/u7B4BAQEZ2l29etVo2rRphjpubm6WX9SbH6+//nqmPrdt25ahjouLi1G2bFnD1dU1w/GGDRsap0+fzjLujz/+2FLP3t7e8Pb2Nuzs7CzHWrVqZVy/fj3ba//mm28yxFu6dGnLfzABIzAw8DbvqhRHJXGsBAYGZujHw8PD8PHxydDey8vLWLlyZW5vrxQjhTFWbsXWX8rs37/fKFOmTIb3vKOjo+XfHTt2NBISEqy2X7duneHm5pZhfJj/EAMwnnnmGSMtLS3H8UvxVRLHy9y5czPEWKpUKaNMmTIZxoqzs7Mxc+bMHMcuxVdRHiu2xJ3d/z303SI5URLHir5X5HYUxbGyfft2y/kdHR0NPz+/bB/WksG5/T+PFA4HRETkjlG2bFl+/fVX5s+fz/fff8/hw4cJCwvDwcGBqlWr0rx5c4YNG2ZZvjC9pk2bsnDhQoKDg9m/fz8hISFcv34dZ2dnatSoQZMmTejZsye9evXC3t4+y/47dOjAK6+8wq5duzh//jxRUVH4+flx3333MWDAAHr37o3JZMr2Gp577jmaNGnC//73P7Zv387Vq1cpV64cDz30EK+88grt2rXLk3slJVtRHiu9e/fGMAz27t3LyZMnuX79OlFRUXh7e1O7dm06duzI0KFD8fPzy9N7JiVTbsZKXmnatCnHjh3j/fffZ+3atZw/f55SpUpRr149AgICGDJkSIa9Bm7WpUsX/vzzT95//302bdrE5cuX8fb2pnHjxgwbNsyyPJZIbhXl8dK2bVveffdd9u7dy/Hjx7l+/TqRkZF4enpSs2ZN2rVrx7Bhw7QnjOSJO2Gs5Ja+W6QgFOWxou8VKUiFOVbS0tIsz5OTkzPsbZaV+Pj4LI/n9v88UjhMhnGLRWRFREREREREREREREREigmlK0VERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERERERERERKTEUHJMRERERERERERERERESgwlx0RERERERCRfmEwmTCYTwcHBhR1KngoODrZcmxRdhfX+TEpKokaNGjg7O3P+/Plcn+/XX3/FZDLRqlWrPIhOREREpGRQckxEREREREQyMScObucxb968wg5f5I712WefcerUKZ577jmqVKmS6/M9+OCDdOrUiZ07d7J69eo8iFBERESk+HMo7ABERERERETkzuPn55fl8ZiYGGJjY7Ot4+rqCsA999wDgJubWz5EWHjc3Nws1yaSE2FhYUyZMgVnZ2fGjx+fZ+cNCgpiw4YNjBs3jscffxwHB/26R0RERCQ7+mlJREREREREMgkJCcnyeFBQEJMmTcq2jtmJEyfyPK47wf33319sr03y19dff01ERAS9evWicuXKeXbeBx98kIYNG/LHH3/www8/0KtXrzw7t4iIiEhxpGUVRURERERERETymWEYfP311wAMHDgwz89vPudXX32V5+cWERERKW6UHBMREREREZF8Yd6DLDg4OMPxM2fOWMrOnDnD2bNnef7556latSouLi7UqFGDCRMmWJZvBDh69CgDBw6kSpUquLi4UKtWLaZMmUJycnK2MZw5c4YRI0ZQt25d3N3dcXNz49577+W1117j3Llzt3VdwcHBlvhvNm/ePEwmE9WqVQPgwIED9OnThwoVKuDs7Mxdd93FqFGjCA8Pv62+Afbt28eAAQOoXr06Li4ulCpVCn9/f1q3bs0777zDhQsXsmyXlJTEF198Qdu2bSlbtixOTk6UL1+eJ598kvXr19vU7zPPPEPNmjVxc3PD09OTOnXqMGTIEDZs2JBlm8jISCZPnkyTJk3w9PTE1dWVWrVqMXz4cE6dOmW1r/TvnejoaCZMmMC9996Lq6srZcqUoWvXruzbty/beMPDw3n99depUaMGLi4uVKhQgd69e3PgwIFbXuuFCxcYOXIkdevWpVSpUjg7O1OxYkWaNm3KyJEj+f333295jptt3ryZ06dPU7p0abp06WK13okTJxg6dCh33303bm5uuLi4UKVKFR588EHefPNNq7MW+/fvD8CWLVuyvbciIiIiAhgiIiIiIiIiNgoMDDQAw5b/Tprrbdu2LcPx06dPW8pWrlxplC5d2gAMT09Pw97e3lLWsmVLIykpyVi7dq3h5uZmAIaXl5dhMpksdfr27Wu1/++++85wdna21HV2djZcXV0t//bw8DA2bNiQ43uwbds2q/dg7ty5BmD4+/sbixYtMhwdHS1x29nZWdrVrVvXiI6OznHf8+bNy3D9zs7Ohqenp+XfgDF37txM7c6cOWPUrVvXUsdkMhleXl4Z2r3wwgtZ9pmSkmK8+uqrGeqWKlXK8Pb2tsTi5eWVqd3Ro0eNypUrW9q4uLgYHh4eGWJfsWJFln2a6yxevNioWbOmpb35fQAYTk5OVl+/06dPG/7+/hnqmu+Tk5OT8eOPP1p9fx4+fNjw9va2lNvb22e4VsAICAjI7mXK0qhRowzA6NSpk9U6GzduzPCedXR0tIwP8yMwMNBq+xo1ahiA8cUXX+Q4PhEREZGSRDPHREREREREpNA8++yzNG3alGPHjhEZGUl0dDQzZszA3t6enTt3MnnyZAYMGMDjjz/OmTNniIiIICoqirfeeguAZcuWsXnz5kzn3bRpE4MGDSI1NZWxY8dy+vRp4uPjiY2N5cSJE/Tu3Zvo6Gh69+592zPIsnP16lWGDBlCQEAA586dIyIigujoaD7//HMcHR05duwYH3zwQY7OGRcXxyuvvIJhGAwcOJCTJ0+SkJBAZGQkMTEx7N+/n9dff51y5cplaBcbG0vnzp05duwYbdq0ITg4mPj4eCIiIoiIiGD69Om4u7sza9YsPv3000z9vvnmm8yYMQOAIUOG8PfffxMTE0NYWBjh4eH88MMPdO7cOUOb6OhoHn/8cS5cuEClSpVYt24dsbGxREVFcfjwYR588EESExMZMGAAf/zxh9Vrfumll3BycmLr1q3ExsYSExPDb7/9xj333ENSUhJDhw4lLS0tQ5vU1FR69+7N2bNn8fb2Zvny5cTGxhIZGcmxY8d44IEHCAgIsNrn6NGjCQ8Pp0mTJuzdu5fk5GTCwsJISEjgn3/+4aOPPqJu3bq3fL1utmPHDuDGnnXWDB8+nMTERDp27MiRI0dISkoiPDyc+Ph4jh49yqRJkyyzErPywAMPALB9+/YcxyciIiJSohR2dk5ERERERESKjryeOVa3bl0jISEhU9unn37aUqdDhw5GWlpapjotW7Y0AOPZZ5/NcDw1NdWoVauWARhfffWV1fieeOIJAzBee+21W15LerbMHCOb2UXmGUQ1a9bMUb/79u2zzNpKTk62ud3kyZMNwGjdurWRlJSUZZ1Vq1YZgFG2bNkM5/77778tM97Gjh1rc5/Tpk2zzHw6cuRIpvKoqCijWrVqBmA89thjmcrN99DX19cIDQ3NVP7nn39a6uzatStD2bJlyyxlmzdvztQ2NjbWMsMqq/eneXbhnj17bL7eW0lMTLTMirQ2Wy40NNQS06VLl26rnw8//NAAjKpVq+YmXBEREZFiTzPHREREREREpNCMHDkSZ2fnTMc7depkeT5u3Lgs9/cy1/nzzz8zHN+xYwf//vsvZcuW5bnnnrPa96BBgwCs7peVWxMmTMjy+JNPPgnAyZMniYuLs/l8pUuXBm7sHXb9+nWb282ZMweAUaNG4ejomGWdbt264enpybVr1zLsyTV//nzS0tIoU6YMkyZNsrnPZcuWAdCrVy/q1auXqdzDw4OxY8cCsH79eiIjI7M8z9ChQzPNhAOoX78+1atXBzK//kuXLgXg4Ycf5pFHHsnU1s3NzdJ3Vsz3+fLly1br5NSVK1dITU0FwNfXN8s6Hh4e2NnZ5arvsmXL5qq9iIiISEmh5JiIiIiIiIgUGmtLzPn5+Vme33fffdnWCQ8Pz3B89+7dAERGRlKxYkXKly+f5eP5558H4OzZs7m+jpv5+PhQs2bNLMsqVqxoeX5z7NmpUaMG9957L8nJyTzwwAO8//77HD582JJ0ycrFixct1/fss89avRcVKlQgJiYGyHg/9uzZA0CHDh1wcXGxKc6kpCRLwqp9+/ZW63Xo0AGAtLQ0Dh48mGUd8zKBWTHfx7CwsAzH9+/fD0C7du2sts2urGvXrgAEBAQwevRotm/fnqMkZlauXr1qee7j45NlHVdXV0syr3Pnzrz99tvs27ePpKQkm/sxnzs5OZmIiIjbD1hERESkmFNyTERERERERAqNh4dHlscdHBxsrpOcnJzh+KVLlyzHQ0NDrT7Mian4+PhcX8fNrMWcPu6sYs+Ovb09S5cupXr16pw9e5Zx48bRuHFjPD096dChA19++WWmJI75XgBcu3Yt2/th3rsr/TlCQkIA8Pf3tznOsLAwS8KuUqVKVutVrlzZ8vzKlStZ1rHlPt58D83nsrXvm33wwQe0bduWmJgYpk+fTps2bfD09KRZs2YEBgZy8eJFq22tSUhIsDzPaqak2ezZs2nYsCFXr17lnXfe4cEHH8TDw4MWLVrw4YcfZkoE3szV1TXLPkVEREQkIyXHREREREREpFgxJ2YeeOABDMOw6VFUNGzYkBMnTrBy5UqGDh1KvXr1iI+PZ/Pmzbz44ovce++9HDlyxFI//ayy48eP23QvBg8ebGmT1XKWxV3p0qXZunUrO3fuZOzYsTz88MM4ODhw4MABJk+eTK1atViyZEmOzlmmTBnL8+xmC1atWpWDBw/yyy+/8Oqrr9K0aVPS0tLYvXs3Y8eOpWbNmmzdutVq+/TJs/R9ioiIiEhGSo6JiIiIiIhIsVK+fHkgf5ZLvBM4OTnRo0cPvvrqK44cOcLVq1eZNWsWPj4+nD9/noCAAEtd872A27sft3MvfXx8sLe3B+DChQtW66Uvy2pfsdtlPld2M7xsmf3VokUL3n//fXbt2kVERAQ//vgj9evXJz4+niFDhhAaGmpzTOn3GbvV7C87Ozs6derEp59+yv79+wkLC2PRokVUrVqV8PBw+vfvb3WpRfO5vby8rO4vJyIiIiJKjomIiIiIiEgx8/DDDwM3lgQ07z9VnJUpU4Zhw4bx/vvvA3Do0CGuX78OQLVq1SzLC/700085Pnfz5s0B2LRpk83L9Dk5OdGgQQMAtmzZYrXe5s2bgRvJoCZNmuQ4NmuaNWsGwLZt26zWyW72VVZcXFx44oknWLVqFXBjycJdu3bZ3N7b29uSaDx16lSO+vbw8KB///7MmTMHgNDQ0AyzA9M7ffo0ALVr185RHyIiIiIljZJjIiIiIiIiUqy0bduWmjVrAjBy5Eirs2zMbjWT506RmJiYbXn6/abs7P7/v/vPP/88AHPmzOHQoUPZnuPmezF48GDs7e25fv06gYGBNsf61FNPAbBixQqOHj2aqTwmJoYPPvgAgC5duuDl5WXzuW+lb9++AOzatYvg4OBM5fHx8Xz44YdZtk1JSbHsvZYVa/fYFq1atQLgt99+y7L8Vu9TW/ret28fAK1bt85RbCIiIiIljZJjIiIiIiIiUqw4ODgwa9YsHBwc2LVrF61atWLLli0kJydb6pw6dYpZs2Zx33338cUXXxRitLZbunQpDz/8MF999VWG2Uepqals2LCBcePGAfDQQw/h7e1tKR89ejT169cnISGBtm3b8vnnn1tmlgFERESwfv16Bg0aRMuWLTP0WbNmTV5//XUAPvjgA5577jn+/fdfS3lUVBTLli2je/fuGdoNHz6c6tWrk5yczKOPPsr69estSacjR47QqVMnTp8+jbOzM1OmTMmjO3RDz549LTPRevbsycqVKy17rx0/fpxHH32Uq1evZtn2woUL1KpViylTpnDo0CFSUlIsZX/++ScDBw4EoFSpUjlOQLVp0wb4/wTWzfbs2UODBg34+OOPOX78uOV+GYbBnj17GD58OACVK1e2zMxLLzU1lQMHDgBKjomIiIjcikNhByAiIiIiIiKS1x555BG+//57Bg0axL59+2jfvj2Ojo54enoSExOTYRZWt27dCi/QHDAnSfbs2QOAs7Mz7u7uhIeHWxIpFStW5Ntvv83Qzt3dnV9++YWePXvy66+/8sorr/Dqq6/i5eVFWloaUVFRlrrmGXfpTZkyhejoaGbOnMmcOXOYM2cO7u7uODo6EhERgWEYmWZ+eXh4sGbNGjp37syFCxfo0qULLi4uODk5Wfpzdnbmu+++o2HDhnl6nxwcHPj+++9p06YN58+fp1evXjg7O+Pi4kJkZCROTk58//33PPnkk1m2P3XqFBMnTmTixInY29vj5eVFTEyMZWaXk5MT8+bNw8fHJ0dx9ezZk9dee40TJ07w77//UqtWrUx1jhw5wqhRoxg1apTl/RoZGWlJ0nl6erJ48WLLnm7pbdmyhdjYWMqVK0f79u1zFJuIiIhISaOZYyIiIiIiIlIsdevWjZMnTxIYGMj999+Pu7s7ERERODs707BhQ5577jlWr15tmRl1p3viiSdYsGABzzzzDA0bNsTLy4vIyEg8PDy4//77eeeddzh27Bj33ntvprYVK1Zk165dLFmyhCeeeIIKFSoQFxdHUlIS1apV4/HHH+eTTz5hx44dmdra29vz+eefs2vXLgYMGEDVqlVJTk7GMAzq1KnDs88+y8qVKzO1q1evHseOHSMoKIhGjRrh4OBAYmIiNWrU4IUXXuDYsWP06tUrX+7VXXfdxeHDhxk1ahTVq1fHMAxcXFzo1asXe/bs4YknnsiyXaVKlVizZg0jR47kwQcfpEKFCsTExODg4ECdOnV46aWXOHr06G3FXa5cOcsMu0WLFmUqv++++1i+fDnDhw+nadOmlC1blqioKFxcXGjUqBFjx47l+PHjmWb3mZnP+cwzz+Do6Jjj+ERERERKEpNhGEZhByEiIiIiIiIiUtzt2LGD1q1bU6NGDf79919MJlOenDc2NtaS8Pznn3+466678uS8IiIiIsWVZo6JiIiIiIiIiBSAVq1a0bFjR/777z++//77PDvv559/TnR0NM8995wSYyIiIiI20MwxEREREREREZECcuTIERo1akTt2rX5888/sbPL3d8tx8TEUL16dRISEjh58iR+fn55FKmIiIhI8eVQ2AGIiIiIiIiIiJQU9evXZ86cOZw5c4bLly9TqVKlXJ3vzJkzvPTSSzRu3FiJMREREREbaeaYiIiIiIiIiIiIiIiIlBjac0xERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKDCXHREREREREREREREREpMRQckxERERERERERERERERKjP8DsIExolcsqtcAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, - "execution_count": 99, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "trials = nwbfile.trials\n", - "trials" + "from matplotlib import pyplot as plt\n", + "from ndx_structured_behavior.plot import plot_events, plot_actions, plot_states, plot_trials\n", + "\n", + "# Get the events from file\n", + "events = nwbfile.get_acquisition(\"task_recording\").events\n", + "event_types = nwbfile.get_lab_meta_data(\"task\").event_types\n", + "\n", + "# Plot the data\n", + "fig = plot_events(\n", + " events=events[20:100],\n", + " event_types=event_types,\n", + " show_event_values=True,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Events\", fontsize=18)\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 100, - "id": "cc9adeaf-ae23-403f-ad66-5a6ed695760f", + "execution_count": 89, + "id": "b14f720f-2e2e-423a-ac16-35940f92e775", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrMAAAGiCAYAAABEXD06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkHklEQVR4nO3dd3hUVf7H8c+kJ6TQO4ZQpIMCIiIdEUQQVNoiUkVhEXeBlcVKKOsqa6+AgoCidLEiClKlrCAIBFD5EUKHAKmkJ/f3B8/MJmQmmUzK3JD363nmcTL3nHu+c5mTmPvJuddiGIYhAAAAAAAAAAAAwIQ83F0AAAAAAAAAAAAA4AhhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAJLCw8NlsVjUtWtXd5cCAAAAIBvCLAAAAACA28TExMjf318Wi0UWi0V//vlnkY9x4MABhYeH68033yzyfQMAAAAofoRZAAAAAAC3WbZsmVJSUmxfL1q0qMjHOHDggGbOnJlvmFW5cmU1atRIt9xyS5HXAAAAAMB1hFkAAAAAALdZuHChJGnSpEmSpCVLligzM9MttTz55JM6duyYli5d6pbxAQAAANhHmAUAAAAAcItff/1VBw4cUPny5TV37lyFhYXp/Pnz+u6779xdGgAAAAATIcwCAAAAALiFdVXWkCFD5OfnpxEjRkhy7lKDP/zwg4YOHarQ0FD5+/urYsWKatmypSZNmqRdu3bZ2lksFo0ePVqSFBUVZbs3l/URHh5uaxseHi6LxaKuXbs6HHf//v0aMWKEQkND5efnpwoVKqhDhw568803lZqaarfP4sWLZbFYVLduXUnSvn37NHjwYNWoUUO+vr6qV6+epkyZopiYGIfj7tmzR4888ojCwsLk5+encuXKKTQ0VF26dNHs2bN15syZfI8ZAAAAUFp5ubsAAAAAAEDZk5KSos8++0ySbCHWiBEjNGvWLH3zzTe6ePGiqlWrlqtfUlKSRo0apVWrVtleCwoKUlZWlg4dOqRDhw5p+/btOnDggCSpWrVqSk5OVnx8vDw8PFSlSpUc+wsMDHS65jfeeENTp06VYRiSpJCQEF27dk27du3Srl279PHHH+v7779XjRo1HO7js88+06hRo5Senq6QkBBlZGQoMjJSb7zxhn744Qft3r07V01LlizR6NGjbeP6+vrKy8tLp06d0qlTp7Rt2zbVqVNHo0aNcvq9AAAAAKUJK7MAAAAAACVuzZo1io2NVYMGDdShQwdJUr169dSxY0dlZGQ4vG/V6NGjtWrVKnl4eOif//ynTp8+rfj4eMXGxio6OlrLli3TXXfdZWt/4cIFvfXWW5KkOnXq6MKFCzke//jHP5yq95tvvtGUKVNkGIb69++vEydOKDY2VomJiVq6dKmCgoJ08OBBDRw40OE9v6KjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3bo4+SUlJmjRpkgzD0PDhw3X8+HGlpKQoLi5OiYmJ2rt3r55++mlVrVrVqfcBAAAAlEaEWQAAAACAEme9xKB1VZZVXpca3LRpk1auXClJevfdd/Xyyy+rdu3atu2VK1fWsGHD9MEHHxR5vdOmTZMkderUSWvWrFFYWJgkycfHR48++qiWLVsmSdq5c6e++OILu/tISkrS0KFD9eGHH6pOnTqSpICAAE2cOFGTJk2SJH3++ec5+hw+fFgJCQkqV66cPv74Y9WvX9+2rVy5cmrTpo3mzp2rPn36FO0bBgAAAEyEMAsAAAAAUKJOnDihLVu2yGKx6NFHH82xbfDgwfL399exY8e0c+fOHNusAVfz5s01YcKEEqv34MGDOnr0qCTp+eefl6enZ642/fr1U7t27STlDqSye/755+2+3r9/f0nS8ePHlZSUZHu9fPnykqS0tDRduXLFpfoBAACA0o4wCwAAAABQoj7++GMZhqFOnTqpbt26ObYFBwdrwIABkv63esvKGm717du3JMq02bt3ryTJy8tLXbp0cdiuZ8+eOdrfqGLFimrQoIHdbTVr1rQ9j4mJsT2vX7++GjdurPT0dN1555165ZVXdODAAYeXMgQAAABuRoRZAAAAAIASk5WVpcWLF0vKfYlBq5EjR0qSVq5cqcTERNvrFy5ckCSFhoYWb5E3uHTpkqTrlzH09fV12M56yUNr+xsFBQU57Ovl5WV7np6ebnvu6emp5cuXKywsTFFRUZo+fbpuv/12BQcHq2fPnvrggw9yrOQCAAAAbkaEWQAAAACAErNhwwadOXNGkvTYY4/JYrHkevTu3VuSlJiYaLtHliRZLBa31OxurVq10rFjx7RmzRo9/vjjat68uZKTk7Vx40b99a9/VePGjXXo0CF3lwkAAAAUG8IsAAAAAECJufHSgQVpX716dUlSVFRUkdaUn6pVq0qSLl++rNTUVIftrCGdtX1R8vHx0UMPPaT58+fr0KFDio6O1rx581SxYkWdPn3atpoNAAAAuBkRZgEAAAAASkR0dLS++uorSdLq1auVkJDg8PHf//5X0vX7ZP3++++SpA4dOkiSvv766wKN6+Fx/VdfwzBcqrtt27aSpIyMDG3dutVhu40bN0qS7rjjDpfGKYhKlSrpiSee0CuvvCJJ2r9/v65cuVLs4wIAAADuQJgFAAAAACgRn3zyidLT0xUSEqJ+/fopMDDQ4eOOO+5Q48aNJf1vddbYsWMlSREREfrggw+cHjc4OFiSFBsb61LdLVu2VNOmTSVJc+bMUWZmZq423333nfbs2SNJ+stf/uLSOPbktRJMkvz9/W3PraEdAAAAcLPh/3QBAAAAACXCGkr1799fPj4++bYfNGiQJGnp0qXKyMhQt27dNHToUEnSk08+qWeeecZ2aT/p+mUAP/roI1voZdW8eXNJUnx8fI57cBWEdQXU9u3bNXDgQEVGRkqS0tPTtWzZMluA1aFDBw0YMMClMexZvny57r77bs2fP18nTpywvZ6ZmakNGzZo+vTpkqS77rpLFSpUKLJxAQAAADMhzAIAAAAAFLvdu3fryJEjkv4XUuXH2u7ixYv69ttvJV0PxB566CFlZWXp5ZdfVp06dRQSEqLy5curSpUqGjdunPbt25djPw0aNFCPHj0kSUOGDFFwcLDq1q2runXr6s0333Sqlr59++r111+XxWLRunXrVK9ePVWoUEGBgYEaPny44uPj1aJFC61atUqenp5O7dMZhmFo586dGj9+vOrXry8/Pz9VrlxZPj4+6t27t86cOaOaNWtq0aJFRTYmAAAAYDaEWQAAAACAYmddlRUSEqJ7773XqT4tWrRQkyZNcvQPCAjQmjVr9M033+jBBx9UzZo1lZKSIi8vL7Vs2VJPPfWUFixYkGtfq1ev1uTJk3XrrbcqPT1dUVFRioqKKtClBydPnqy9e/dq+PDhqlOnjpKSkuTv76/27dvrjTfe0C+//KKaNWs6vT9nPPDAA1q6dKlGjx6tVq1aKSQkRHFxcQoKClK7du00e/ZsRURE2C7JCAAAANyMLIard8AFAAAAAAAAAAAAihkrswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0/JydwEASr+srCydO3dOQUFBslgs7i4HAAAAAAAAAGCHYRhKSEhQzZo15eFRetY7EWYBKLRz586pTp067i4DAAAAAAAAAOCE06dPq3bt2u4uw2mEWQAKLSgoSNL1b4DBwcFurgYAAAAAAAAAYE98fLzq1KljO6dbWhBmASg066UFg4ODCbMAAAAAAAAAwORK2+1iSs8FEQEAAAAAAAAAAFDmEGYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLS8imInBw8e1IYNGxQVFaXk5GQtXLjQti09PV3R0dGyWCyqUaNGUQwHAAAAAAAAAACAMqJQYVZcXJzGjBmjdevWSZIMw5DFYskVZrVq1UoxMTH67bff1KxZs0IVDAAAAAAAAAAAgLLD5csMpqen67777tO6desUEBCg+++/X35+frnaBQQEaPTo0crKytLq1asLVSwAAAAAAAAAAADKFpfDrIULF2r37t2qV6+efv/9d3311VcKCQmx2/bhhx+WJG3bts3V4QAAAAAAAAAAAFAGuRxmff7557JYLHrjjTdUs2bNPNvefvvt8vDw0LFjx1wdDgAAAAAAAAAAAGWQy2HWoUOHZLFYdO+99+bb1sfHRyEhIbpy5YqrwwEAAAAAAAAAAKAMcjnMSkpKUlBQkHx8fJxqn56eLi8vL1eHAwAAAAAAAAAAQBnkcphVuXJlxcfHKzExMd+2kZGRSkxMzPdyhAAAAAAAAAAAAEB2LodZd955pyTp22+/zbftO++8I0nq1KmTq8MBAAAAAAAAAACgDHI5zBozZowMw9ALL7ygc+fOOWw3f/58vfXWW7JYLHr88cddHQ4AAAAAAAAAAABlkMs3sbr//vv18MMPa82aNWrbtq2GDRum5ORkSdKCBQsUFRWlb775RocPH5ZhGBo3bpxtNRcAAAAAAAAAAADgDIthGIarnVNSUjRu3DgtW7ZMFosl13brrseMGaN58+bJy8vl7AyAicXHxyskJERxcXEKDg52dzkAAAAAAAAAADtK67lcly8zKEl+fn765JNPtG3bNj366KOqX7++/P395ePjo1tuuUXDhg3Tli1b9NFHHxFkAQAAAAAAAAAAoMAKtTILAKTSm+YDAAAAAAAAQFlSWs/lFmplFgAAAAAAAAAAAFCcivTaf1FRUbp06ZIkqWrVqgoNDS3K3QMAAAAAAAAAAKCMKfTKrHPnzmnSpEmqWrWq6tWrp/bt26t9+/aqV6+eqlSpokmTJunMmTNFUSsAAAAAAAAAAADKmELdM+uHH37QkCFDFB8fL0e7sVgsCgoK0vLly9W7d2+XCwVgXqX1OqsAAAAAAAAAUJaU1nO5Ll9m8Pfff9eAAQOUkpKiihUravz48erevbtq1aolSTp79qw2b96s+fPn6/Lly3rooYe0f/9+NWrUqMiKBwAAAAAAAAAAwM3N5ZVZw4cP12effaaWLVvqxx9/VJUqVey2u3z5su655x4dOnRIw4YN0yeffFKoggGYT2lN8wEAAAAAAACgLCmt53JdvmfWpk2bZLFY9NFHHzkMsiSpcuXK+vDDD2UYhjZu3OjqcAAAAAAAAAAAACiDXA6zYmNjFRgYqLZt2+bb9o477lBgYKBiY2NdHQ4AAAAAAAAAAABlkMthVo0aNZSZmel0+6ysLNWoUcPV4QAAAAAAAAAAAFAGuRxm9enTR8nJyfrpp5/ybbtp0yYlJSWpb9++rg4HAAAAAAAAAACAMshiGIbhSseLFy/qtttuk5+fnzZs2KBbb73Vbrs///xTvXr1Umpqqvbv36+qVasWqmAA5lNabxoIAAAAAAAAAGVJaT2X63KYtW3bNp04cUKTJ09WSkqKBg0apO7du6tWrVqSpLNnz2rz5s1atWqV/Pz89MYbbygsLMzuvjp37uz6OwDgdqX1GyAAAAAAAAAAlCWl9Vyuy2GWh4eHLBZL4QuwWJSRkVHo/QBwn9L6DRAAAAAAAAAAypLSei7XqzCdXczBinwfAAAAAAAAAAAAuDm5HGZlZWUVZR0AAAAAAAAAAABALh7uLgAAAAAAAAAAAABwhDALAAAAAAAAAAAApuVymNWgQQO98sorunTpUlHWAwAAAAAAAAAAANi4HGadOHFCzz77rOrUqaPBgwdr48aNRVkXAAAAAAAAAAAA4HqY9dxzz6lmzZpKT0/X6tWr1atXLzVo0EBz585ltRYAAAAAAAAAAACKhMUwDMPVzllZWfruu+80f/58ff/998rMzJTFYpGXl5cGDBigcePG6Z577inKegGYUHx8vEJCQhQXF6fg4GB3lwMAAAAAAAAAsKO0nsstVJiV3blz57Rw4UItWrRIUVFR13dusSgsLEyPP/64Ro0apapVqxbFUABMprR+AwQAAAAAAACAsqS0nsstsjDLyjAM/fDDD1qwYIG++eYbpaens1oLuMmV1m+AAAAAAAAAAFCWlNZzuUUeZmV37tw5DRs2TNu2bbs+mMUiSWrQoIGmTp2qsWPHytPTs7iGB1BCSus3QAAAAAAAAAAoS0rruVyP4tjpqVOnNGPGDN15553avn27pOtB1m233SZPT0/9+eefmjBhgtq3b6/o6OjiKAEAAAAAAAAAAAA3gSILszIzM7Vu3Tr16dNH9evX15w5c3T27FlVrFhRU6dO1R9//KF9+/bp9OnTevHFF1WuXDn9+uuveuaZZ4qqBAAAAAAAAAAAANxkCn2ZwZMnT+rDDz/U4sWLdeHCBVl316FDB02YMEGDBg2Sj49Prn579+5Vu3btVKNGDZ09e7YwJQBws9K6NBUAAAAAAAAAypLSei7Xy9WOq1ev1oIFC/TTTz/JMAwZhqGgoCANHz5cEyZMUPPmzfPs37ZtW1WvXl0XLlxwtQQAAAAAAAAAAADc5FwOswYPHmx7ftttt2nChAkaNmyYypUr5/Q+7K3YAgAAAAAAAAAAAKxcDrP8/Pw0ZMgQTZgwQe3atXNpHydPnnR1eAAAAAAAAAAAAJQBLodZ586dU/ny5YuwFAAAAAAAAAAAACAnD1c7fvXVV1q1apXT7deuXaulS5e6OhwAAAAAAAAAAADKIIthGIYrHT08PFSjRg2dPXvWqfZhYWE6ffq0MjIyXBkOgInFx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZklSQXMwF3MzAAAAAAAAAAAAlFGFCrMKIj4+Xj4+PiU1HAAAAAAAAAAAAG4CJRJm7dq1SzExMapVq1ZJDAcAAAAAAAAAAICbhJezDZcsWaIlS5bkeO3q1avq3r27wz6GYSg2NlYRERGyWCzq0aOH65UCAAAAAAAAAACgzHE6zDp58qS2bNmS47W0tLRcrznSqFEjhYeHF6A0AAAAAAAAAAAAlHVOh1ldu3bN8fXMmTMVGBioqVOnOuzj4eGh4OBgNW/eXF27dpWnp6fLhQIAAAAAAAAAAKDssRiGYbjS0cPDQ9WrV9e5c+eKuiYApUx8fLxCQkIUFxen4OBgd5dTopLSMtT0xQ2SpCOzeinAx8upbZcTU9R2ziZJ0t7ne6hyoF8JVl04eb0vq9NXr6nT3C2SpO3TuqpOxXIlWWKxyv7+t0/ranufJf3v6M5/B2fGttfWqrR95q2cfd/23rO1fUGOnT2ufO8oTN3umr9mmGfOHreimGdmeL/5Kevf+wHATBz9/1WAj1ep+5mPoufM52Pv8z1s/09ZFP+fWpp/v8V1rv7OUJjvHfmNeTN+rkryOHN8nT++N8v7L4jSei63YGdQsomMjGSlFQAAAAAAAAAAAIqVy2FWaGhoUdYBAAAAAAAAAAAA5OLh7gIAAAAAAAAAAAAARwizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmFWKRUeHi6LxaKuXbu6uxQ4MHz4cFksFq1YscLdpeRp/PjxslgsWrhwobtLAQAAAAAAAAAgF8IsuFVsbKzCw8MVHh6u2NhYd5fj0Lp16xQeHq5169Y51X7v3r367LPP1Lx5cw0ePDjPtsePH9czzzyjO+64Q1WqVJGPj4+qV6+uu+++WzNnztS5c+eK4B049uyzz8rHx0cvvviikpKSinUsAAAAAAAAAAAKijALbhUbG6uZM2dq5syZpg+zZs6c6XSYNXXqVBmGoRkzZshisdhtk5mZqaefflpNmjTRyy+/rL179yomJkaBgYGKjo7Wzp07FR4eroYNG+rVV18twneT0y233KLRo0fr3LlzxToOAAAAAAAAAACuIMwCitju3bu1bds2Va9eXQ8++KDdNllZWXr44Yf16quvKiMjQ71799bWrVuVmpqqq1evKjk5Wd9//706dOigpKQkPf3003rqqaeKrebx48dLkt5++22lpqYW2zgAAAAAAAAAABRUkYVZKSkpOn/+vE6dOpXnA7jZzZs3T5I0dOhQeXp62m0zZ84cffnll5Kk6dOna/369ercubOtvY+Pj3r16qXt27drxIgRkqR33nlHn3zySbHUfNttt6lZs2a6cuWKVq9eXSxjAAAAAAAAAADgikKFWUlJSQoPD1ejRo1Urlw51a5dW2FhYQ4f9erVK1SxK1as0H333adq1arJ29tb5cuXV8OGDfXAAw/ovffeU0pKSq4++/fv14gRIxQaGio/Pz9VqFBBHTp00JtvvulwBUp4eLgsFou6du3qsJYtW7bIYrHYvYTcjf03bdqk+++/X1WqVJGfn5+aNGmimTNn2q03u/Xr16tnz54qX768AgMD1apVK82dO1fp6el59nNVXFycZs2apdatWys4OFj+/v5q2LChJkyYoBMnTtjtc/LkSdtxOHnypMN9161bVxaLRYsXL7a91rVrV4WFhdm+DgsLs+3rxuO/ePFiWSwW1a1bV5L0448/6r777lOVKlXk7++vZs2aac6cOQ6P6ahRo2SxWDRq1CiHNd44hvS/f+clS5ZIkpYsWZKjRovFoi1bttjax8fHa+XKlZKkYcOG2R3n0qVLevnllyVJ3bp100svveSwJg8PDy1YsEBNmjSRJD3zzDNKS0vL0aaoPm/WehcsWJBnOwAAAAAAAAAASpLLYVZsbKzat2+v2bNn688//5RhGPk+srKyXC50zJgxGjp0qL7//ntdunRJfn5+Sk9P1/Hjx/X111/rySef1IULF3L0eeONN9SmTRt98sknOnXqlPz8/HTt2jXt2rVLkydPVrt27XT+/HmXa3LGf/7zH/Xs2VPr169XRkaG0tLSdOzYMYWHh6tPnz7KzMy028+6fePGjYqLi5O3t7eOHDmif/7zn7rnnntyBRqFFRERoebNm2vGjBnav3+/0tPT5e3trePHj2vevHlq2rSp1qxZU6RjVqxYUZUrV7Z9XblyZVWrVs32qFixot1+77//vnr16qXvv/9eGRkZysjI0JEjR/TCCy+oQ4cOiomJKbIafXx8VK1aNfn5+UmS/Pz8ctRYrVo1+fj42Npv3bpVycnJKleunFq3bm13nx9//LGSk5MlKc97aln5+vpq+vTpkqSzZ8/med8uVz9vktS5c2dJ0s8//6yEhIQ8awIAAAAAAAAAoKS4HGbNnj1bhw8flpeXl6ZMmaKtW7fqzz//VGRkZJ4PV+zYsUMff/yxPDw89Morr+jKlStKSEjQtWvXdPnyZW3YsEEjR47MESp88803mjJligzDUP/+/XXixAnFxsYqMTFRS5cuVVBQkA4ePKiBAwfmeYK/MH777TdNnz5d06dP16VLlxQTE6PY2Fi9+OKLkqTNmzfbVvxk99VXX2nmzJmSpEGDBunUqVOKiYlRfHy83nvvPe3evVsffPBBkdWZkJCgfv366cyZM6pVq5a+/fZbXbt2TfHx8Tpw4IDat2+v1NRUPfLII/rtt9+KbNy1a9fql19+sX39yy+/6MKFC7bH2rVrc/WJjo7W3//+dw0cODDHcfnggw/k6+ur/fv3a+zYsUVWY4cOHXThwgUNGTJEkjRkyJAcNV64cEEdOnSwtd+2bZskqXXr1g4vMfjTTz9JkipVqqQuXbo4VceAAQNsodfmzZvttnH182bVpk0beXl5KTMzUz///LNTdQEAAAAAAAAAUNxcDrPWrVsni8WiN998U6+++qo6deqk+vXrKzQ0NM+HK3bu3ClJuueeezRt2rQcK3YqVaqke++9V4sXL1bNmjVtr0+bNk2S1KlTJ61Zs8Z2OTsfHx89+uijWrZsmW3fX3zxhUt15Sc2NlYvvPCCXnrpJdsKpODgYM2cOVMPPfSQJOnzzz/P1e+ZZ56RJHXp0kXLly9XnTp1JEn+/v7661//qrfffluxsbFFVuf777+vyMhIeXt76/vvv1efPn3k4XH9o9GqVSv98MMPqlu3rlJTU/Xcc88V2biuSEpKUocOHXIdl/Hjx+u9996TJH3xxRc5QrKStGfPHknXj5sjERERkqTbb7/d6f0GBwfbLtN5+PBhu21c/bxZ+fv7q1GjRpKkXbt25VlPamqq4uPjczwAAAAAAAAAACgOLodZZ8+elYeHh0aPHl2U9dhVvnx5SddX5TiziurgwYM6evSoJOn555+3u0KmX79+ateunaS8T/AXhq+vr/7xj3/Y3da/f39brdkdPHhQR44ckXS9dmuolN24ceNUq1atIqtzxYoVkqSBAweqefPmubYHBQXZwsH169crLi6uyMZ2haPjMnr0aNWuXVuStHz58pIuS5J07tw5SVKVKlUctrly5Yqk60FsQVgDKmv/G7nyeXM0hvV9OPLvf/9bISEhtoc1WAQAAAAAAAAAoKi5HGZVrFhRQUFBtnsJFacePXrIz89P+/fvV6dOnbRw4cI8L1m4d+9eSZKXl1eel3Hr2bNnjvZFrVmzZgoMDLS7zbqK7OrVqzlez157p06d7Pb18PBQ165di6TGtLQ0W8Bxzz33OGxnPVZZWVn69ddfi2RsVzh7XIrr3zQ/0dHRkuTwfl/FyZXP242sdVvfhyPPPPOM4uLibI/Tp0+7UDEAAAAAAAAAAPlzOczq2LGj4uLidPbs2aKsx6769evro48+UmBgoHbt2qXHHntM9erVU9WqVTVkyBB9+eWXMgzD1v7SpUuSrq8y8fX1dbhf6yoea/uiFhQU5HCbl5eXJCkjIyPH6wWtvbCuXr1qW+2W12qv7OMV1/FyRn7Hxfoe3FVjSkqKJOVZo3VFlqMVVo5cvnw5R/8bufJ5u5G/v7+k/70PR3x9fRUcHJzjAQAAAAAAAABAcXA5zPrnP/8pLy8vzZ49uyjrceiRRx5RVFSU5s2bpyFDhqhOnTqKjo7WypUrNWDAAHXp0oX79sDtrEFTTEyMwzZNmzaVJO3fv9/p/cbHx+vEiROSrq/AKi7WlVsFvQQiAAAAAAAAAADFxeUwq02bNlq8eLGWLFmisWPH2k60F6eKFSvqiSee0PLly3Xq1CkdP35c06dPl8Vi0fbt2xUeHi5Jqlq1qqTrK1lSU1Md7u/MmTM52ltZV7HktTqluO4blb32tLQ0h+2KakVcxYoVbfcUsx4Pe7Jvy368rMdKKpnj5exxcde/qfVeWXldzq9Hjx6Srq/M2rJli1P7/eKLL2yrD7t37164IvNgrTuve34BAAAAAAAAAFCSXA6z6tWrp+eee06enp5avHixGjZsqCpVqqhevXoOH/Xr1y/K2lW/fn39+9//1rBhwyRJP/74oySpbdu2kq5fUm3r1q0O+2/cuFGSdMcdd+R4vUKFCpKU532A9uzZ43rheche+/bt2+22ycrKcjoEyY+Pj49atmwpSdq0aZPDdtZj5eHhodatW9tetx4ryfHx+uOPPxQbG2t3m4fH/z6C2S8V6Uhex8UwDNu/t/U43linq/+m1jrzq9G66iqvcHfUqFG2e83NmjUr332mpqbqlVdekXT93lcDBgzIs31hWO9F16RJk2IbAwAAAAAAAACAgnA5zDp58qROnjyppKQkGYYhwzB05coV2+uOHq7Ia3WV9L/7/FgDh5YtW9pChTlz5tjuCZXdd999Zwsv/vKXv+TY1qpVK0nSuXPn7AYcly5d0ocffljAd+Gcli1b2oKEf/3rX8rKysrVZtGiRXmuoiqooUOHSpJWr16tw4cP59qemJiouXPnSpL69OmjkJAQ27Zy5crZQso1a9bY3f+//vUvh2Nnv9eSo8DL3v7sHZclS5bYwqohQ4bk2Gb9N/3ll1/sBlpHjx7V2rVr860zvxo7d+4sSfrvf//rsE21atU0bdo0SdLmzZv13HPPOWyblZWlJ554QkePHpUkvfTSS/Lx8cmzBldFRkYqOjpaktSlS5diGQMAAAAAAAAAgIJyOcz6+OOPC/xYtGiRS2M9+eSTGjx4sNasWaNLly7ZXk9MTNS8efO0dOlSSdL9999v22ZdybJ9+3YNHDjQtuIkPT1dy5YtswVYHTp0yLXSpUOHDgoNDZUkjRw5Unv37pVhGLYVUV27drUbphQVa/izefNmDRs2zBZcpaSkaN68eXryySdVvnz5IhtvwoQJCgsLU3p6uu677z6tX7/e9v4OHTqkXr16KTIyUr6+vpozZ06u/tZjuWjRIr3//vtKTk6WdH0V1GOPPaYVK1YoICDA7tjly5dXrVq1JF3/TGVkZORZa0BAgHbs2JHruCxYsEATJkyQJPXv31/t2rXL0a9fv34KDAxUenq6Bg8erN9//13S9c/Dl19+qXvuuUflypVzOG7z5s0lXf88HTt2zGG7rl27SpKioqJ08eJFh+1mzJihvn37SpL+/e9/q0+fPtq+fbsteE1PT9cPP/ygzp07a8mSJZKkv/71rxo5cqTDfRaWNbitVq2aGjduXGzjAAAAAAAAAABQEF75N7GvOE+q3yg9PV2rVq3SqlWrJEmBgYHy8vLKsUqmY8eOOVa49O3bV6+//rqmTp2qdevWad26dSpfvrySkpJs91xq0aKFVq1aZbtnlJWHh4fmz5+vfv366ffff9cdd9yhgIAAZWVlKSUlRQ0bNtR7772Xa0VXUXnwwQf13HPP6V//+pdWrFihFStWqEKFCkpISFBGRoY6deqkjh076t///neRjBcUFKSvvvpKvXv31pkzZ9SnTx/5+fnJx8dH8fHxkiRfX199+umnthVO2f3zn//U2rVrdeTIEU2cOFGTJk1ScHCwYmNj5e3traVLl2r69OmKioqyO/748eP1wgsv6J133tGCBQtUtWpVeXh4qH379lq+fHmOtlWqVNHTTz+tSZMm2Y5LYmKi0tPTJV1fgbVw4cJcY4SEhOjNN9/UuHHjtHv3bjVu3FhBQUFKTU1VWlqa2rdvr+HDh+vJJ5+0W+PDDz+sZ599VtHR0WrSpIkqV65sC7+WL1+u9u3bS7p+eb5WrVrpt99+01dffaVx48bZ3Z+Hh4e++OILTZs2Te+8847Wr1+v9evXy9PTUyEhIYqNjbUFin5+fgoPD9c///lPu/sqKl999ZWk3CsVAQAAAAAAAABwJ5dXZpWkF154QW+//bYefPBBNW7cWF5eXkpMTFTVqlXVs2dPLVq0SFu2bMm1smby5Mnau3evhg8frjp16igpKUn+/v5q37693njjDf3yyy+qWbOm3TF79eql7du3q2/fvqpQoYIyMzNVp04dTZ8+Xfv27VP16tWL9T3PmTNH33zzjbp3767g4GClpqaqSZMmevnll7Vp06Yiv9Rc8+bNFRERofDwcN12223y8vJSamqq6tevr/HjxysiIkIDBw602zcwMFA7duzQlClTFBYWJi8vL3l7e+vhhx/Wrl27bJcxdOTZZ5/VW2+9pbZt28rb21tnzpxRVFSULly4YLf9xIkTtWHDBvXu3VseHh7y8PBQ48aNNWvWLO3atUuVKlWy22/s2LH69ttvbcc0IyNDt956q15++WVt3bo1z5VZFSpU0LZt2zR06FDVqlVLcXFxioqKUlRUlFJSUnK0feKJJyRJy5Yty/N9e3l56fXXX9eRI0c0bdo0tWnTRuXLl1dCQoIqVaqku+66SzNmzNDx48eLPchKTEzUl19+maN+AAAAAAAAAADMwOWVWSWpfv36mjRpkiZNmlTgvq1bt9Ynn3zi0rh33nmnvv76a7vbunbtKsMw7G4LDw9XeHh4nvvOq7/V/fffn+PSiQUdo6BCQkI0Y8YMzZgxo8B9K1SooNdee02vvfaa3e153S/Nw8NDTz31lJ566imnx+vZs6d69uxZ0DJ133336b777rO7bdSoURo1apTDvo0bN9bnn3+e7xjDhw/X9OnTtW3bNkVFRdkuWelIw4YNbZfFdEVRfN7Wrl2rpKQkdevWjUsMAgAAAAAAAABMpdArswzD0Nq1azVo0CCFhYWpXLlyKleunMLCwjR48GCtW7cu39AGuJkEBQVp+vTpMgyjUCFVScnKytLcuXMlSS+99JKbqwEAAAAAAAAAIKdChVkXL15U586dNWjQIK1du1ZRUVFKTk5WcnKyoqKitGbNGj388MPq0qWLw0vGATejyZMnq06dOlq4cKFOnz7t7nLytGrVKkVERGjQoEG2e38BAAAAAAAAAGAWLl9mMC0tTb169dKhQ4dkGIbatWunnj17qnbt2pKkM2fOaOPGjdqzZ49+/vln3Xffffrvf/8rb2/vIiseMCs/Pz8tXbpUW7Zs0alTp1SnTh13l+RQenq6ZsyYodGjR7u7FAAAAAAAAAAAcnE5zPrggw908OBBBQcH69NPP1Xfvn1ztZk9e7a+++47DRs2TAcPHtS8efNcuu8V8rdz50499NBDBerToUMHrV27tpgqQteuXdW1a1d3l5Gv4cOHu7sEAAAAAAAAAAAccvkygytXrpTFYtF7771nN8iy6tOnj9577z0ZhqHly5e7OhzykZaWposXLxbocfXqVXeX7bRRo0bJMAydPHnS3aUAAAAAAAAAAIASZDEMw3ClY8WKFZWUlKTExER5eeW9wCsjI0OBgYEKCAgoVQEKAOfEx8crJCREcXFxCg4Odnc5AAAAAAAAAAA7Suu5XJdXZiUnJysgICDfIEuSvLy8FBAQoOTkZFeHAwAAAAAAAAAAQBnkcphVrVo1xcXF6dSpU/m2PXnypGJjY1WtWjVXhwMAAAAAAAAAAEAZ5HKY1blzZxmGocmTJyuvKxUahqEpU6bIYrGoS5curg4HAAAAAAAAAACAMsjlMMsaUK1bt07du3fXpk2blJ6ebtuenp6ujRs3qlu3blq3bp0sFosmT55cJEUDAAAAAAAAAACgbLAYeS2ryscbb7yhqVOnymKxSLp+b6zKlStLki5fvqyMjAzbqq3XX39df//73wtfMQDTKa03DQQAAAAAAACAsqS0nst1eWWWJE2ePFlfffWVGjVqJMMwlJ6ervPnz+v8+fNKT0+XYRhq2rSpvv76a4IsAAAAAAAAAAAAFFihVmZld+jQIe3du1eXLl2SJFWtWlVt27ZVixYtimL3AEystKb5AAAAAAAAAFCWlNZzuV5FtaMWLVoQXAEAAAAAAAAAAKBIFeoygwAAAAAAAAAAAEBxIswCAAAAAAAAAACAaTl1mcHu3btLkkJDQ/Xxxx/neK0gLBaLNm3aVOB+AAAAAAAAAAAAKJucCrO2bNkiSWrcuHGu1wrCYrEUuA8AAAAAAAAAAADKLqfCrBkzZkiSKleunOs1AAAAAAAAAAAAoLhYDMMw3F0EgNItPj5eISEhiouLU3BwsLvLAQAAAAAAAADYUVrP5Xq4uwAAAAAAAAAAAADAEZfDrFmzZun11193uv3bb7+tWbNmuTocAAAAAAAAAAAAyiCXLzPo4eGh6tWr69y5c061DwsL06lTp5SZmenKcABMrLQuTQUAAAAAAACAsqS0nsvlMoMAAAAAAAAAAAAwrRILs65evSo/P7+SGg4AAAAAAAAAAAA3gRIJs1atWqWEhATdcsstJTEcAAAAAAAAAAAAbhJezjZ866239NZbb+V4LTo6WvXq1XPYxzAMxcbGKj4+XhaLRffff7/rlQIAAAAAAAAAAKDMcTrMio2N1cmTJ3O8lpmZmes1R3r06KEXX3yxILUBAAAAAAAAAACgjHM6zBowYIDq1q0r6fqKqzFjxigkJERvvvmmwz4eHh4KDg5W8+bNVb9+/cLWCgAAAAAAAAAAgDLGYhiG4UpHDw8PVa9eXefOnSvqmgCUMvHx8QoJCVFcXJyCg4PdXQ4AAAAAAAAAwI7Sei7X6ZVZN8rKyirKOgAAAAAAAAAAAIBcPNxdAAAAAAAAAAAAAOCIy2HW7t271bp1a02cODHfto899phat26tvXv3ujocAAAAAAAAAAAAyiCXw6zPPvtMv/32mzp16pRv2/bt2+vAgQP67LPPXB0OAAAAAAAAAAAAZZDLYdbWrVslSffee2++bR988EFJ0ubNm10dDgAAAAAAAAAAAGWQy2HWmTNnFBISoooVK+bbtlKlSgoJCdHZs2ddHQ4AAAAAAAAAAABlkMthVnJysrKyspxubxiGEhISXB0OAAAAAAAAAAAAZZDLYVbVqlWVkJCgc+fO5dv27Nmzio+PV+XKlV0dDgAAAAAAAAAAAGWQy2FW+/btJUnvvfdevm2tbe68805XhwMAAAAAAAAAAEAZ5HKYNXbsWBmGoblz52rBggUO282fP19z586VxWLR2LFjXR0OAAAAAAAAAAAAZZDFMAzD1c6DBw/W6tWrZbFY1Lx5c/Xt21ehoaGSpKioKH399deKiIiQYRh6+OGHtWrVqiIrHIB5xMfHKyQkRHFxcQoODnZ3OQAAAAAAAAAAO0rruVyvwnResmSJLBaLVq1apUOHDunw4cM5tltzsqFDh2rhwoWFGQoAAAAAAAAAAABlkMuXGZQkf39/rVixQhs3btSwYcMUGhoqX19f+fn5qW7dunrkkUf0008/6bPPPpO/v39R1QwAAAAAAAAAAIAyolCXGQQAqfQuTQUAAAAAAACAsqS0nsst1MosZ2VlZenrr7/WgAEDSmI4AAAAAAAAAAAA3CQKdc+s/Pz5559auHChli5dqosXLxbnUAAAAAAAAAAAALgJFXmYlZSUpJUrV2rhwoXauXOnJMl6JcMmTZoU9XAAAAAAAAAAAAC4iRVZmLV7924tXLhQK1euVGJioqTrIVbjxo01aNAgDRo0SM2bNy+q4QAAAAAAAAAAAFAGFCrMio6O1tKlS7Vo0SIdO3ZM0v9WYVksFv3yyy9q06ZN4asEAAAAAAAAAABAmVTgMMswDH333XdatGiRvvnmG2VkZMgwDPn7+2vAgAEaOXKkevfuLYnLCgIAAAAAAAAAAKBwnA6z/u///k+LFi3SkiVLdP78eRmGIYvFoo4dO2rEiBEaPHiwgoKCirNWAAAAAAAAAAAAlDFOh1kNGzaUxWKRYRgKCwvTiBEjNGLECIWFhRVnfQAAAAAAAAAAACjDCnyZwaeeekpz586Vj49PcdQDAAAAAAAAAAAA2Hg429DX11eGYeidd95RzZo1NXHiRO3evbs4awMAAAAAAAAAAEAZ53SYdf78eb399ttq2bKlrl69qg8++EB33323GjVqpJdeekmnTp0qzjoBAAAAAAAAAABQBlkMwzAK2mn//v366KOP9Pnnnys2NlYWi0UWi0WdO3fWo48+qrFjx8pisSghIUEBAQHFUTcAE4mPj1dISIji4uIUHBzs7nIAAAAAAAAAAHaU1nO5LoVZVqmpqVq9erUWLlyorVu3yjAMWSwW23/XrFmjvn37ysurwLfmAlCKlNZvgAAAAAAAAABQlpTWc7mFCrOyi4yM1KJFi7RkyRKdOXPm+s4tFoWEhKh///4aNGiQ7r33XoIt4CZUWr8BAgAAAAAAAEBZUlrP5RZZmGVlGIY2bNigjz76SF9//bXS09NlsVgkSeXLl9eVK1eKcjgAJlBavwECAAAAAAAAQFlSWs/lehT1Di0Wi3r37q3Vq1fr7NmzevXVV9WkSRMZhqHY2NiiHg4AAAAAAAAAAAA3sSIPs7KrXLmypkyZosOHD2vnzp0aO3ZscQ4HAAAAAAAAAACAm0yJ3cCqffv2at++fUkNBwAAAAAAAAAAgJtAsa7MAgAAAAAAAAAAAAqDMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAAAAAAAAAAANMizAIAAAAAAAAAAIBpEWYBAAAAAAAAAADAtAizAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAAAAAAAAEyLMAsAAAAAAAAAAACmRZgFAAAAAAAAAAAA0yLMAgAAAAAAAAAAgGkRZgEAAAAAAAAAAMC0CLMAAAAAAAAAAABgWoRZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJiWl7sLAFD6GYYhSYqPj3dzJQAAAAAAAAAAR6zncK3ndEsLwiwAhZaQkCBJqlOnjpsrAQAAAAAAAADkJyEhQSEhIe4uw2kWo7TFbwBMJysrS+fOnVNQUJAsFou7ywGcFh8frzp16uj06dMKDg52dzmAaTFXAOcwV4D8MU8A5zBXAOcwV4D83ThPDMNQQkKCatasKQ+P0nMnKlZmASg0Dw8P1a5d291lAC4LDg7mf3oBJzBXAOcwV4D8MU8A5zBXAOcwV4D8ZZ8npWlFllXpid0AAAAAAAAAAABQ5hBmAQAAAAAAAAAAwLQIswAAZZavr69mzJghX19fd5cCmBpzBXAOcwXIH/MEcA5zBXAOcwXI380yTyyGYRjuLgIAAAAAAAAAAACwh5VZAAAAAAAAAAAAMC3CLAAAAAAAAAAAAJgWYRYAAAAAAAAAAABMizALAAAAAAAAAAAApkWYBQAoMUlJSVq/fr3mzJmjhx56SKGhobJYLLJYLAoPD3dqH6tXr1a/fv1Us2ZN+fj4qFy5cmrUqJHGjRunAwcOFLim8ePH22qoW7euw3Znz57V+++/r0GDBqlBgwby9/eXv7+/wsLC9Je//EU//fSTU+NdvHhRU6dOVaNGjeTv76+KFSuqU6dO+uijj2QYRoHrx82pNM+VourPXEF+bpZ5cuHCBb3wwgtq06aNKlasKH9/f4WGhqp37956+eWXlZ6e7rAv8wTOuBnmSmHHZ67AGe6cK+Hh4bax8nocP348z/F//fVXDR8+XLVr15avr69q1KihBx980OnfVTZv3qwHH3xQNWrUkK+vr2rXrq3hw4fr119/dao/yobSPFcOHjyof/3rX+rVq5dq1aolHx8fBQUFqXnz5nrqqaf0xx9/OFV/Yecabn6leZ7Yk56erpYtW9r6jho1Kt8+xTJPDAAASsjmzZsNSXYfM2bMyLNvSkqK0a9fvxx9AgMDDR8fH9vXHh4exuuvv+50PT/99JNhsVhs/UNDQ+22O3XqVI52koyAgADD398/x2tjxowxMjIyHI63d+9eo1KlSjnq9/Lysn3dq1cvIzU11en6cfMqrXOlqPozV+CMm2GeLF++3AgODrb18fPzy/G1JCMmJsZuX+YJnFWa50pRjM9cgbPcOVdmzJhhSDK8vb2NatWqOXxERkY6rOHDDz/M8dkOCQnJMdfyew/WGiQZFovFCAkJsX3t5eVlfPjhh/kcQZQVpXWufPrpp7nqDQkJMTw9PW1f+/j4GPPmzcvzPRR2rqFsKK3zxJHsPyMkGSNHjsyzfXHNE8IsAECJ2bx5s1GhQgWjR48extNPP218/vnnRvXq1Z36Qfbiiy/afuj99a9/Nc6cOWMYhmFkZmYae/fuNTp27Gj7xWvv3r351nLt2jWjfv36hre3t9G2bds8T6ZERkYakowePXoYS5YsMc6ePWsbOyIiwujfv7+ttueff97uPmJjY23vtXHjxsYvv/xiGIZhpKamGu+++67h7e1tSDImTJiQb+24+ZXWuVIU/ZkrcFZpnycrV640PDw8DEnG448/bkRERNi2xcfHG9u2bTMmT55sJCYm5urLPEFBlOa5UtjxmSsoCHfOFetJwi5durhU+86dO20n5AcMGGCcPn3aMAzDuHz5svHEE0/YaluxYoXd/itWrLC1eeKJJ4zLly8bhmEYp0+fNgYMGGBIMjw9PY2dO3e6VB9uLqV1rnz88ceGr6+vMXz4cOPbb7814uLiDMO4/jNh48aNRvPmzW1j//jjj3b3Udi5hrKjtM4Tew4ePGh4e3sb9erVM6pVq5ZvmFWc84QwCwBQYuytWgoNDXXqh3ndunXz/GEcGxtrBAYGGpKM6dOn51vL3//+d0OS8dxzzxkjR47M82RKbGyssW/fPof7ysrKMnr37m37a5nk5ORcbZ5//nlDkuHv72+cOHEi1/aXXnrJ9kvi77//nm/9uLmV1rlSFP2ZK3BWaZ4n586dMypUqGBIMl577bV8938j5gkKojTPlcKOz1xBQbhzrhT2xKP1xGaLFi2MtLS0XNt79eplSDLq1q2b631mZGTY3mfv3r1z9U1NTbWd5O/YsaNL9eHmUlrnyrFjx2x/mGpPTEyMLWzo0aOH3TaFmWsoW0rrPLlRRkaG7Q+QfvjhB9t7yCvMKs55wj2zAAAlxtPT0+W+58+flyS1bdvW7vaQkBDdeuutkqTExMQ897V79269/fbbuvXWW/X888/nO3ZISIhat27tcLvFYtGYMWNsYx89ejRXm6VLl0qShg4dqrCwsFzbJ02apMDAQGVmZmrZsmX51oSbW2mdK0XRn7kCZ5XmefL2228rJiZGt99+uyZPnlyAyq9jnqAgSvNcKez4zBUUhFnmSkGdOHFCO3bskCT94x//kLe3d642zzzzjCTp5MmT2rZtW45tW7duVVRUVI522fn4+Ogf//iHJGnHjh2KjIws0vpR+pTWudKoUSPVrFnT4fby5cvroYcekiT98ssvubYXdq6hbCmt8+RGr732mvbu3asRI0aoZ8+e+bYv7nlCmAUAKBXq1asnSdq3b5/d7XFxcbabtTr6gS9JqampGjNmjAzD0IIFC+Tn51ck9WXfT2ZmZo5tv//+u06dOiVJuu++++z2DwwMVKdOnSRJP/zwQ5HUhLLJLHPFlf7MFZQUd88T6wn24cOHy2KxFKR05glKlLvnSmHGZ66gJBXVXHHFjz/+aHveu3dvu206duyooKAgSbk/69b+QUFBuvvuu+32zz6HmCsoDHfOFWdYfz7d+Du9VPi5BjjLLPPkjz/+0IwZM1SlShW9/vrrTvUp7nlCmAUAKBUmTJggSdqyZYsmTpyos2fPSpIMw9Cvv/6qvn37KjExUXfddZeGDx/ucD+zZs3S0aNHNXbsWHXp0qXI6tuyZYuk63+5aP0LGavDhw/bnjdv3tzhPqzbjhw5UmR1oewxy1xxpT9zBSXFnfMkMjJS586dkyS1adNGhw4d0rBhw1SjRg35+vqqdu3aGjJkiH7++We7/ZknKEnu/plSmPGZKyhJRTVXIiIi1Lx5cwUEBCgwMFCNGjXSuHHjtH//fod9rJ/1qlWrqmrVqnbbeHp6qnHjxrYx7PVv0qSJw5UEVatWVZUqVez2BwrCnXPFGdbf61u0aJFrW2HnGuAsM8wTwzA0duxYpaSk6I033lClSpWcqr245wlhFgCgVJg4caKmTZsmDw8Pvf/++6pdu7aCgoLk5+enNm3a6Pjx45o+fbo2bdrk8Jew/fv3a+7cuapWrZr+85//FFltkZGRmjdvniRpyJAhCg4OzrHdetJSkmrVquVwP9Zt8fHxxb5UHDcvM8wVV/szV1BS3DlPrH9FKUk///yz2rZtq88//1xxcXHy8/PT2bNntXLlSnXq1EmzZ8/O1Z95gpLk7p8phRmfuYKSVBRzRZIuX76so0ePyt/fX6mpqfrjjz/00UcfqU2bNg4vz2n9rOf1Oc++PfvcKIr+QEG4c67kZ8WKFfr1118lSePGjcu1nbmCkmKGefLuu+9qx44d6tWrlx555BGnay/ueUKYBQAoFTw8PPTvf/9bixYtUmBgoKTr1wZOS0uTJKWkpCguLk7Xrl2z2z8jI0NjxoxRRkaG3n77bZUvX75I6kpOTtagQYOUlJSkypUr6+WXX87VJiEhwfY8ICDA4b6yb8veBygId8+VwvRnrqCkuHOexMTE2J6/8MILqlmzpn788UclJiYqLi5OERER6tq1qwzD0Isvvqi1a9fm6M88QUly98+UwozPXEFJKuxcadiwoebOnavff/9dKSkpunLliq5du6YNGzaoTZs2MgxD//rXv/Taa6/l6mv93Ob1Oc++/cbPeWH7AwXhzrmSlz/++EPjx4+XdP0SaKNGjcrVhrmCkuLueXLy5Ek988wzCggI0AcffFCg2ot7nhBmAQBKhcuXL6tHjx4aNWqU7rrrLu3YsUOxsbE6f/681q5dqypVquiDDz7QnXfeaVuCnd3LL7+sAwcOqG/fvho8eHCR1JSRkaFhw4Zp37598vb21rJly/K8oSxQEtw9V4pjrgFFzZ3zJCsry/bcMAytWbNG99xzjzw8rv9q1rRpU3399deqXr26JGnmzJmFeKdA4bj7Z0phxwdKSmE/q4888oiefvpp3XrrrfL29pZ0/fLl9957r3bs2KE77rhDkhQeHq64uLgSfW9AUTLjXLlw4YLuv/9+xcbGqmbNmvr8889t/18GuIO758m4ceN07do1zZo1S2FhYcX7ZguImQkAKBVGjhypLVu2qEuXLtqwYYPuvvtuhYSEqHr16nrwwQe1Y8cOVa5cWSdOnND06dNz9D1y5Ihmz56twMBAvf/++0VST2Zmph555BGtW7dOXl5e+uyzz3TvvffabWu9saUkJSUlOdxn9m3Z+wAF4c65Utj+zBWUFHfOk+yf2R49eqh169a52gQGBmrixImSpIMHD+rixYt2+zNPUNzc/f9fhRmfuYKSVJjPan78/Pz00ksvSbr+l/mbNm3Ksd36uc3rc559+42f88L2BwrCnXPFnkuXLqlHjx46fvy4qlWrpk2bNql27dp22zJXUFLcOU8++ugjbdy4Ua1bt9bf//73Atde3POEMAsAYHpHjx7Vd999J0maOnWqLBZLrjZVq1bViBEjJElr166VYRi2bRMnTlRaWpqee+45VahQQYmJiTkeGRkZkq7/hbz1tfT0dIf1ZGZmavjw4Vq5cqU8PT316aefauDAgQ7bZ1+tlddfDVu3BQcH25aSAwXh7rlS2P7MFZQEd8+T7NePb9KkicM6mzZtanseFRVle848QUlx91wp7PjMFZSUwn5WnXHXXXfZnp84cSLHNutnPb/VidbtN15JorD9AWe5e67c6NKlS+revbuOHDmiqlWr6qefflLjxo0dtmeuoCS4c57ExcXpH//4hzw8PPTmm28qOTk51/+/WcfKyMiwvZb9yhPFPU8IswAApnfkyBHb8/r16zts17BhQ0nX/8Lj0qVLttcjIyMlSc8884yCgoJyPZYtWyZJOnXqlO219957z+4Y1hVZy5cvtwVZQ4YMybP+5s2b254fPnzYYTvrtuwnMIGCcPdcKWx/5gpKgrvnSdOmTfO8UbNV9l9Ks/8SyzxBSXH3XCns+MwVlJTCflYLy/pZv3TpkqKjo+22yczM1LFjxyRJzZo1s9v/6NGjyszMtNs/+75v7A84y91zJbtLly6pW7duioiIsAVZ+f0cKOxcA5zhznkSExOjuLg4ZWVlqXPnznb//+3UqVOSpGXLltleO3jwoG0fxT1PCLMAAKaX/XrV2f86/UbZL8NUHH9Zm5mZqWHDhmnFihW2IGvo0KH59rv11lt1yy23SJK+//57u22uXbum7du3S5LDyxUC+THLXHEVcwUlwd3zxM/PT507d5Z0/cShI9ZfZC0Wi+rWrWt7nXmCkuLuuVLY8ZkrKCklMVd2795te37j/Ut69uxpe+7os/7zzz8rISFBUu7PurV/QkKCdu7cabd/9v0yV+Aqd8+V7Pvv1q1bjhVZzpxQL+xcA5xhlnniqmKfJwYAAG4UGhpqSDJmzJjhsM3JkycNSYYko1+/fnbbJCYmGvXq1TMkGS1btixQDSNHjjQkGaGhoQ7bZGRkGEOGDDEkGV5eXsby5csLNMbzzz9vSDICAgKMyMjIXNtfeeUVQ5Lh6elp/P777wXaN8qG0jJXCtufuYLCKC3zZOnSpYYkw2KxGPv27cu1PSEhwahevbohyWjfvn2u7cwTFFZpmCtFMT5zBYVVEnMlKysrzxpSUlKMO++805BklCtXzoiJicnVpmPHjoYko1WrVkZaWlqu7ffdd59tvmVkZOTYlpGRYXufffr0ydU3LS3NaNmypSHJ6NixY561ouwqLXPl4sWLRtOmTQ1JRrVq1YyIiIh831t2hZlrQGmZJ868h5EjRzpsU5zzhDALAFCirl69akRHR9sederUMSQZTz/9dI7XExIScvTr16+f7Qf68OHDjePHjxtZWVlGWlqa8fPPPxtt27a1bV+yZEmBasrvZEpGRoYxdOhQW5C1cuXKAr/v2NhY24nJpk2bGnv37jUMwzBSU1ON999/3/Dx8TEkGRMmTCjwvnFzKo1zpSj6M1dQEKV1nmRmZhrt2rUzJBl169Y1Nm7caGRmZhqGYRhHjhwxunXrZkgyPDw8jE2bNuXqzzxBQZXWuVLY8ZkrKCh3zJUtW7YYPXr0MJYuXWqcPn3a9npaWpqxceNG44477rD1feWVV+zW/fPPPxuenp6GJOOhhx4yzpw5YxiGYVy5csWYMGGCrf+KFSvs9l+xYoWtzYQJE4wrV64YhmEYZ86cMR566CFb6Ltz506Xjy1uLqVxrly6dMlo1qyZIcmoXr26ceTIkQK/78LONZQtpXGe5MeZMKs45wlhFgCgRFl/8OX3uPEHY3R0tNGmTZscbQICAgwvL68crz399NMFrim/kylbt2617d/b29uoVq1ang9Hq7b27t1rVKpUybavoKAgw9vb2/b1vffea6SkpBS4ftycSuNcKar+zBU4qzTPk/Pnz9v+Mtg6fkhISI6fNwsWLHDYn3mCgiitc6UoxmeuoCDcMVc2b96co42/v79RuXLlHJ9TDw8P49lnn82z9g8//DDHeOXLlzcsFovt67xWAhiGYcyYMcPW1mKxGOXLl7d97eXlZXz44YcFPZy4iZXGuTJz5kxbu3LlyuX7e/2pU6fs7qewcw1lR2mcJ86+p7zCLMMovnniJQAASoHKlStr9+7dWrJkiVatWqUDBw7o6tWr8vLy0i233KIOHTroiSeeUMeOHYt87KysLNvz9PT0HNcmtic5Odnu623atFFERIReeeUVffPNNzp9+rTKlSun5s2ba+TIkRozZkyO6yMDrnDnXCkqzBUUNzPMk+rVq+vXX3/Vu+++qxUrVuiPP/5QcnKy6tatq+7du2vy5Mm2GyjbwzxBSXD3XCmK8ZkrKAmF+ay2aNFCr776qnbt2qVDhw7p8uXLio2NVUBAgJo2bapOnTrp8ccfV4sWLfKs4bHHHlPr1q312muvaevWrYqOjlbVqlV11113adKkSerevXue/cPDw9W5c2e988472rVrl2JiYlSrVi116dJFU6ZMUZs2bQp1jADJvXMl++/1165d07Vr1/KsNTMz0+7rhZ1rQH7M8DOlsIprnlgMwzCKuFYAAAAAAAAAAACgSPDnRwAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBahFkAAAAAAAAAAAAwLcIsAAAAAAAAAAAAmBZhFgAAAAC4icVikcVi0ZYtW9xdSpHasmWL7b2h9HLX5zMtLU3169eXr6+vTp8+Xej97d69WxaLRZ07dy6C6gAAAOAOhFkAAAAA4ALriX5XHosXL3Z3+YBpvfPOOzpx4oQee+wx1alTp9D7a9++vXr16qXt27friy++KIIKAQAAUNK83F0AAAAAAJRG1apVs/t6YmKirl27lmcbf39/SVKjRo0kSQEBAcVQofsEBATY3htQEFevXtWcOXPk6+urZ555psj2Gx4erg0bNmj69Onq16+fvLw4HQIAAFCa8H9vAAAAAOCCCxcu2H09PDxcM2fOzLON1bFjx4q8LjNo167dTfveULwWLFig2NhYDRw4ULVr1y6y/bZv316tWrXSb7/9pnXr1mngwIFFtm8AAAAUPy4zCAAAAAAA3M4wDC1YsECSNHz48CLfv3Wf8+fPL/J9AwAAoHgRZgEAAACAm1jvobVly5Ycr588edK27eTJk4qKitK4ceN0yy23yM/PT/Xr19fzzz9vu5yhJB0+fFjDhw9XnTp15Ofnp4YNG2rOnDlKT0/Ps4aTJ0/q73//u5o1a6bAwEAFBASocePG+tvf/qZTp0659L62bNliq/9GixcvlsViUd26dSVJ+/bt0+DBg1WjRg35+vqqXr16mjJlimJiYlwaW5L27NmjRx55RGFhYfLz81O5cuUUGhqqLl26aPbs2Tpz5ozdfmlpaXr//ffVrVs3Va5cWT4+Pqpevbr69++v9evXOzXu6NGj1aBBAwUEBCg4OFhNmzbVmDFjtGHDBrt94uLiNGvWLLVu3VrBwcHy9/dXw4YNNWHCBJ04ccLhWNk/OwkJCXr++efVuHFj+fv7q1KlSurbt6/27NmTZ70xMTF6+umnVb9+ffn5+alGjRoaNGiQ9u3bl+97PXPmjCZPnqxmzZqpXLly8vX1Vc2aNdWmTRtNnjxZv/zyS777uNHGjRsVGRmp8uXLq0+fPg7bHTt2TI8//rhuvfVWBQQEyM/PT3Xq1FH79u317LPPOlwVOGzYMEnSpk2b8jy2AAAAMCEDAAAAAFBkZsyYYUgynPl1y9pu8+bNOV6PjIy0bVuzZo1Rvnx5Q5IRHBxseHp62rZ16tTJSEtLM7755hsjICDAkGSEhIQYFovF1mbIkCEOx//0008NX19fW1tfX1/D39/f9nVQUJCxYcOGAh+DzZs3OzwGH3/8sSHJCA0NNZYtW2Z4e3vb6vbw8LD1a9asmZGQkFDgsRcvXpzj/fv6+hrBwcG2ryUZH3/8ca5+J0+eNJo1a2ZrY7FYjJCQkBz9xo8fb3fMjIwM46mnnsrRtly5ckaFChVstYSEhOTqd/jwYaN27dq2Pn5+fkZQUFCO2levXm13TGubzz77zGjQoIGtv/VzIMnw8fFx+O8XGRlphIaG5mhrPU4+Pj7Gl19+6fDzeeDAAaNChQq27Z6enjneqyRj5MiRef0z2TVlyhRDktGrVy+HbX744Yccn1lvb2/b/LA+ZsyY4bB//fr1DUnG+++/X+D6AAAA4D6szAIAAAAAExs7dqzatGmjiIgIxcXFKSEhQW+//bY8PT21fft2zZo1S4888oj69eunkydPKjY2VvHx8XruueckSStWrNDGjRtz7ffHH3/UiBEjlJmZqWnTpikyMlLJycm6du2ajh07pkGDBikhIUGDBg1yeYVWXqKjozVmzBiNHDlSp06dUmxsrBISEvTuu+/K29tbERERmjt3boH2mZSUpEmTJskwDA0fPlzHjx9XSkqK4uLilJiYqL179+rpp59W1apVc/S7du2aevfurYiICHXt2lVbtmxRcnKyYmNjFRsbq9dff12BgYGaN2+e3nrrrVzjPvvss3r77bclSWPGjNHvv/+uxMREXb16VTExMVq3bp169+6do09CQoL69eunM2fOqFatWvr222917do1xcfH68CBA2rfvr1SU1P1yCOP6LfffnP4nidOnCgfHx/99NNPunbtmhITE/Xf//5XjRo1Ulpamh5//HFlZWXl6JOZmalBgwYpKipKFSpU0MqVK3Xt2jXFxcUpIiJCd955p0aOHOlwzKlTpyomJkatW7fWrl27lJ6erqtXryolJUV//PGHXn31VTVr1izff68bbdu2TdL1e645MmHCBKWmpuree+/VoUOHlJaWppiYGCUnJ+vw4cOaOXOmbdWfPXfeeackaevWrQWuDwAAAG7k7jQNAAAAAG4mRb0yq1mzZkZKSkquvo8++qitTc+ePY2srKxcbTp16mRIMsaOHZvj9czMTKNhw4aGJGP+/PkO63vggQcMScbf/va3fN9Lds6szFIeq3esK3QaNGhQoHH37NljWxWVnp7udL9Zs2YZkowuXboYaWlpdtusXbvWkGRUrlw5x75///1324qyadOmOT3myy+/bFtZdOjQoVzb4+Pjjbp16xqSjPvvvz/XdusxrFKlinHx4sVc2w8ePGhrs2PHjhzbVqxYYdu2cePGXH2vXbtmW8Fk7/NpXb23c+dOp99vflJTU22rDh2tRrt48aKtpnPnzrk0zn/+8x9DknHLLbcUplwAAACUMFZmAQAAAICJTZ48Wb6+vrle79Wrl+359OnT7d6fytrm4MGDOV7ftm2b/vzzT1WuXFmPPfaYw7FHjBghSQ7v91RYzz//vN3X+/fvL0k6fvy4kpKSnN5f+fLlJV2/99WVK1ec7rdw4UJJ0pQpU+Tt7W23zYABAxQcHKzLly/nuKfUkiVLlJWVpUqVKmnmzJlOj7lixQpJ0sCBA9W8efNc24OCgjRt2jRJ0vr16xUXF2d3P48//niulWaS1KJFC4WFhUnK/e+/fPlySdLdd9+tHj165OobEBBgG9se63E+f/68wzYFdenSJWVmZkqSqlSpYrdNUFCQPDw8CjV25cqVC9UfAAAA7kGYBQAAAAAm5uiSa9WqVbM9v+OOO/JsExMTk+P1n3/+WZIUFxenmjVrqnr16nYf48aNkyRFRUUV+n3cqGLFimrQoIHdbTVr1rQ9v7H2vNSvX1+NGzdWenq67rzzTr3yyis6cOCALSSx5+zZs7b3N3bsWIfHokaNGkpMTJSU83js3LlTktSzZ0/5+fk5VWdaWpotYLrnnnsctuvZs6ckKSsrS7/++qvdNtbL5tljPY5Xr17N8frevXslSd27d3fYN69tffv2lSSNHDlSU6dO1datWwsUOtoTHR1te16xYkW7bfz9/W3hW+/evfXiiy9qz549SktLc3oc677T09MVGxvresEAAAAoUYRZAAAAAGBiQUFBdl/38vJyuk16enqO18+dO2d7/eLFiw4f1iApOTm50O/jRo5qzl63vdrz4unpqeXLlyssLExRUVGaPn26br/9dgUHB6tnz5764IMPcoUu1mMhSZcvX87zeFjvPZV9HxcuXJAkhYaGOl3n1atXbQFbrVq1HLarXbu27fmlS5fstnHmON54DK37cnbsG82dO1fdunVTYmKiXn/9dXXt2lXBwcFq27atZsyYobNnzzrs60hKSortub2ViFYfffSRWrVqpejoaM2ePVvt27dXUFCQOnbsqP/85z+5grsb+fv72x0TAAAA5kaYBQAAAABljDVIufPOO2UYhlOP0qJVq1Y6duyY1qxZo8cff1zNmzdXcnKyNm7cqL/+9a9q3LixDh06ZGuffdXW0aNHnToWo0aNsvWxd3nHm1358uX1008/afv27Zo2bZruvvtueXl5ad++fZo1a5YaNmyozz//vED7rFSpku15XqvxbrnlFv3666/6/vvv9dRTT6lNmzbKysrSzz//rGnTpqlBgwb66aefHPbPHnZlHxMAAADmRpgFAAAAAGVM9erVJRXP5QPNwMfHRw899JDmz5+vQ4cOKTo6WvPmzVPFihV1+vRpjRw50tbWeiwk146HK8eyYsWK8vT0lCSdOXPGYbvs2+zdF8tV1n3ltYLKmdVVHTt21CuvvKIdO3YoNjZWX375pVq0aKHk5GSNGTNGFy9edLqm7PfJym91lYeHh3r16qW33npLe/fu1dWrV7Vs2TLdcsstiomJ0bBhwxxeetC675CQEIf3RwMAAID5EGYBAAAAQBlz9913S7p+iTzr/ZNuZpUqVdITTzyhV155RZK0f/9+XblyRZJUt25d2+X2vv766wLvu0OHDpKkH3/80enL1vn4+Khly5aSpE2bNjlst3HjRknXw5vWrVsXuDZH2rZtK0navHmzwzZ5rW6yx8/PTw888IDWrl0r6fol/Hbs2OF0/woVKtiCwRMnThRo7KCgIA0bNkwLFy6UJF28eDHH6rvsIiMjJUlNmjQp0BgAAABwL8IsAAAAAChjunXrpgYNGkiSJk+e7HAVi1V+K2XMIjU1Nc/t2e+X5OHxv1+Hx40bJ0lauHCh9u/fn+c+bjwWo0aNkqenp65cuaIZM2Y4XevQoUMlSatXr9bhw4dzbU9MTNTcuXMlSX369FFISIjT+87PkCFDJEk7duzQli1bcm1PTk7Wf/7zH7t9MzIybPcOs8fRMXZG586dJUn//e9/7W7P73PqzNh79uyRJHXp0qVAtQEAAMC9CLMAAAAAoIzx8vLSvHnz5OXlpR07dqhz587atGmT0tPTbW1OnDihefPm6Y477tD777/vxmqdt3z5ct19992aP39+jtU9mZmZ2rBhg6ZPny5Juuuuu1ShQgXb9qlTp6pFixZKSUlRt27d9O6779pWbklSbGys1q9frxEjRqhTp045xmzQoIGefvppSdLcuXP12GOP6c8//7Rtj4+P14oVK/Tggw/m6DdhwgSFhYUpPT1d9913n9avX28LiQ4dOqRevXopMjJSvr6+mjNnThEdoesefvhh20qvhx9+WGvWrLHdO+zo0aO67777FB0dbbfvmTNn1LBhQ82ZM0f79+9XRkaGbdvBgwc1fPhwSVK5cuUKHBh17dpV0v8Cpxvt3LlTLVu21BtvvKGjR4/ajpdhGNq5c6cmTJggSapdu7Zt5Vt2mZmZ2rdvnyTCLAAAgNLGy90FAAAAAABKXo8ePbRq1SqNGDFCe/bs0T333CNvb28FBwcrMTExxyqnAQMGuK/QArCGGjt37pQk+fr6KjAwUDExMbbgo2bNmlq0aFGOfoGBgfr+++/18MMPa/fu3Zo0aZKeeuophYSEKCsrS/Hx8ba21hVt2c2ZM0cJCQl67733tHDhQi1cuFCBgYHy9vZWbGysDMPItbIqKChIX331lXr37q0zZ86oT58+8vPzk4+Pj208X19fffrpp2rVqlWRHicvLy+tWrVKXbt21enTpzVw4ED5+vrKz89PcXFx8vHx0apVq9S/f3+7/U+cOKEXXnhBL7zwgjw9PRUSEqLExETbyikfHx8tXrxYFStWLFBdDz/8sP72t7/p2LFj+vPPP9WwYcNcbQ4dOqQpU6ZoypQpts9rXFycLVQLDg7WZ599ZrsnWXabNm3StWvXVLVqVd1zzz0Fqg0AAADuxcosAAAAACijBgwYoOPHj2vGjBlq166dAgMDFRsbK19fX7Vq1UqPPfaYvvjiC9vKI7N74IEHtHTpUo0ePVqtWrVSSEiI4uLiFBQUpHbt2mn27NmKiIhQ48aNc/WtWbOmduzYoc8//1wPPPCAatSooaSkJKWlpalu3brq16+f3nzzTW3bti1XX09PT7377rvasWOHHnnkEd1yyy1KT0+XYRhq2rSpxo4dqzVr1uTq17x5c0VERCg8PFy33XabvLy8lJqaqvr162v8+PGKiIjQwIEDi+VY1atXTwcOHNCUKVMUFhYmwzDk5+engQMHaufOnXrggQfs9qtVq5a++uorTZ48We3bt1eNGjWUmJgoLy8vNW3aVBMnTtThw4ddqrtq1aq2FWzLli3Ltf2OO+7QypUrNWHCBLVp00aVK1dWfHy8/Pz8dNttt2natGk6evRortVzVtZ9jh49Wt7e3gWuDwAAAO5jMQzDcHcRAAAAAAAA27ZtU5cuXVS/fn39+eefslgsRbLfa9eu2QLKP/74Q/Xq1SuS/QIAAKBksDILAAAAAACYQufOnXXvvffq//7v/7Rq1aoi2++7776rhIQEPfbYYwRZAAAApRArswAAAAAAgGkcOnRIt912m5o0aaKDBw/Kw6Nwf4ebmJiosLAwpaSk6Pjx46pWrVoRVQoAAICS4uXuAgAAAAAAAKxatGihhQsX6uTJkzp//rxq1apVqP2dPHlSEydO1O23306QBQAAUEqxMgsAAAAAAAAAAACmxT2zAAAAAAAAAAAAYFqEWQAAAAAAAAAAADAtwiwAAAAAAAAAAACYFmEWAAAAAAAAAAAATIswCwAAAAAAAAAAAKZFmAUAAAAAAAAAAADTIswCAAAAAAAAAACAaRFmAQAAAAAAAAAAwLQIswAAAAAAAAAAAGBa/w+EdmROGnWCgQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the actions from file\n", + "actions = nwbfile.get_acquisition(\"task_recording\").actions\n", + "action_types = nwbfile.get_lab_meta_data(\"task\").action_types\n", + "\n", + "# Plot the data\n", + "fig = plot_actions(\n", + " actions=actions[20:100],\n", + " action_types=action_types,\n", + " figsize=(18,4),\n", + " marker_size=500,\n", + ")\n", + "plt.title(\"Actions\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "68ecfe11-c8f4-4449-a1f9-23a331258fea", "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAFVCAYAAAD/gzyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyK0lEQVR4nOzde3zP9f//8dtr58229w4YZihKklPOIZskPlQkRDmkQqWPQ+VQyagcOig+KUIOHTQhkUpOY46hHDroyByH2fl8ev/+2G+v72YH23tjzP16ubwvba/n6fF8vd7vWXtcns+nYbVarYiIiIiIiIiIiIiIiIiUkF15ByAiIiIiIiIiIiIiIiLXJyWaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklERERERERERERERERsokSTiIiIiIiIiIiIiIiI2ESJJhEREREREREREREREbGJEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiIiIiIiISElZrVZWrlzJ559/zk8//cT58+ext7fHz8+P6tWr06pVKzp06MA999yDp6en2e69994jJiaGnj170rRp0ysS29UYQ0RERETkWmFYrVZreQchIiIiIiIiUlw5SZxt27aZ1xwcHPD09CQuLo6MjAzz+uLFixkyZIj5fZ06dQgPD893vSxdjTFERERERK4V2jpPREREREREriuDBg1i27Zt2Nvb8/zzz/Pnn3+SmprKxYsXSU5O5tChQ8ycOZMmTZqUd6giIiIiIhWets4TERERERGR68Zff/3FunXrAHj99deZMGFCnnIHBwcaN25M48aNGTduHMnJyeURpoiIiIjIDUMrmkREREREROS6cfDgQfPrBx988LL1XV1dAQgODsYwDMLDwwF4/PHHMQwjzyu3X375heDgYDp16kTdunVxdXXF09OTZs2a8corrxAZGZlvrJKOkWP9+vX07t0bf39/nJ2d8fb25u677+bDDz8kLS2t0LmFhITQrVs3/Pz8cHR0xMvLi1tuuYUHHniAuXPnkpKSctn7IyIiIiJSWlrRJCIiIiIiItelU6dO0aBBg2LVdXd3x8/PjwsXLpCVlYWnp6eZhCpIjx49zISRi4sLbm5uREdHc/DgQQ4ePMiSJUvYvHkz9evXt3mM5ORkBg0axMqVK81rnp6exMbGEhYWRlhYGMuWLePbb7/F29s7T9uhQ4eyePHiPGOnp6fz999/8/fff7Nu3Tq6d+9OnTp1inV/RERERERspRVNIiIiIiIict1o2bKluTIo53ym4njhhReIiIggICAAgNmzZxMREZHnlVvHjh1ZsmQJ4eHhJCcnc/HiRVJSUti0aROtWrXi9OnTDBgwoFRjDBs2jJUrV3LzzTfz2WefERsbS2xsLElJSXz99dfcfPPN7Nmzh6FDh+Zpt2PHDhYvXoydnR0zZ87k4sWLxMfHk5iYSGRkJBs2bGDw4ME4OTkV/8aKiIiIiNjIsFqt1vIOQkRERERERKS4hg0bxoIFCwAwDIOmTZvStm1bmjdvTqtWrWjYsGGh29TVqVOH8PBwFi9ezJAhQ2waPyEhgXr16nHu3DnCwsJo3759iccICwvj7rvvpmrVquzfv99MTuV26tQpbrvtNhITE/n5559p2rQpAG+++Sbjx4+nS5cubNiwwaY5iIiIiIiUFa1oEhERERERkevKBx98wKRJk6hUqRJWq5Wff/6ZDz74gCeeeIJGjRpRrVo1xo4dy7lz567I+O7u7nTs2BHIXl1ki0WLFgHw6KOPFphkAqhZsyZBQUEAeRJKXl5eAFy4cIHMzEybxhcRERERKStKNImIiIiIiMh1xcHBgalTp3L69Gk++eQTnnzySZo0aWJuFXf+/Hneffdd7rjjDn788Uebx/nmm2/o168fN998M5UqVcIwDPO1YsUKIHvVkS127twJZCecqlWrVuhr06ZNAOZ5UQD33HMPLi4u/Pzzz3To0IFFixZx7Ngxm+cpIiIiIlIaDuUdgIiIiIiIiIgtLBYLjz32GI899hgAKSkp7Nixgzlz5rBu3ToiIyPp3bs3f/31Fy4uLsXuNysri8cee4zly5eb1xwcHPD29jaTWbGxsaSkpJCYmGhT7GfOnAEgLi6OuLi4y9ZPSkoyv65bty4LFy5kxIgR7N69m927dwNQpUoVgoKCGDBgAA888ECh2weKiIiIiJQlrWgSERERERGRCsHFxYXOnTuzdu1aBg8eDGSvOPr+++9L1M+iRYtYvnw59vb2vPrqq/z111+kpqYSFRVFREQEERERPPzwwwDYeuxxzpZ3H374IVar9bKvJUuW5Gn/6KOPEh4ezrx58+jXrx8BAQFcuHCBFStW0LNnTzp27FisBJaIiIiISGkp0SQiIiIiIiIVzrBhw8yv//jjjxK1/eKLLwB48sknmTJlCvXq1cPOLu//PkdERJQqvmrVqgF5t8QrKR8fH4YPH84XX3zBiRMn+Pvvv5kwYQKGYRAWFkZwcHCpYhQRERERKQ4lmkRERERERKTCcXd3N792dnY2v85JGBW1EunkyZMANGvWrMDyhIQE9u7dW2j74ozRrl07IPscqLJSt25dpk+fzoABAwDYuHFjmfUtIiIiIlIYJZpERERERETkunHs2DH+/PPPy9ZbunSp+fWdd95pfu3p6QlATExMoW0tFgsAhw4dKrD8tddeIz4+vtD2xRkjZ8XVL7/8wocfflhoPYDExETS0tLM71NTU4us7+rqCpBvFZaIiIiIyJWg3zpFRERERETkuvHrr7/SoEEDunfvzrJlyzh+/LhZlp6ezs8//8zjjz/OrFmzAGjVqhXt27c369xxxx0ArFy5kujo6ALH6Nq1KwALFizgo48+MpM8ERERjBkzhjfffBNfX99CYyzOGB07duTxxx8H4Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dm/Pnz5tlI0eOpG/fvqxatSrP9YSEBObNm8eyZcsA6N69e6ExioiIiIiUFcNq68mlIiIiIiIiIlfZhg0bzERQDicnJ9zd3YmOjs6zXd2dd97JunXrqFGjhnlt+/btBAYGYrVasbe3p2rVqjg5OQGYSauYmBjatm3L0aNHgeyVQZ6ensTGxmK1Whk+fDgpKSksXbqUwYMHs2TJkjzxFGcMgLS0NJ599lkWLlxoXnN3d8fR0ZHY2FiysrLM66dOncLf3x+AIUOG5Fmx5e7ujoODQ54VVO3bt+f777+nUqVKxb21IiIiIiI2UaJJRERERERErit///033377LTt27OCXX37h1KlTJCYm4urqSo0aNWjWrBkPPfQQffr0KXD7uO+++45Zs2bx888/Ex0dbSZ0cv/vcXR0NFOnTmXNmjWcPn0ai8VCo0aNGDZsGI888oiZ7Cko0VTcMXLs3r2bjz76iLCwMM6cOUNGRga+vr7cdttt3H333Tz88MM0atTIrP/PP//w7bffsnXrVn7//XciIiJISEjAx8eHJk2a0L9/fwYNGoS9vX1pb7WIiIiIyGUp0SQiIiIiIiIiIiIiIiI20RlNIiIiIiIiIiIiIiIiYhMlmkRERERERERERERERMQmSjSJiIiIiIiIiIiIiIiITZRoEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbOJQ3gGIyI0jKyuLM2fO4OHhgWEY5R2OiIiIiIiIiIiIiBTAarUSHx9PjRo1sLMres2SEk0ictWcOXOGgICA8g5DRERERERERERERIrh5MmT1KxZs8g6SjSJyFXj4eEBZP9w8vT0LOdoRERERMrWHZM3APDLlPvKORIpip6TiEjZ0c9UuZw7Jm/Q+0PkOhUXF0dAQID5N92iKNEkIldNznZ5np6eSjSJiIhIhWPn7Aag33OucXpOIiJlRz9T5XLsnN30/hC5zhXnCJSiN9YTERERERERERERERERKYQSTSIiIiIiIiIiIiIiImITJZpERERERERERERERETEJjqjSeQKWLNmDQcPHqRp06b07NmzvMMpE8ePH2fJkiUABAcHl2ssIiIiIiIiIiIiInJt0IomkStgzZo1TJkyhTVr1pR3KGXm+PHjTJkyhSlTppR3KCIiIiIiIiIiIiJyjVCiSURERERERERERERERGyiRJOIiIiIiIiIiIiIiIjYRIkmuSGEhobSp08f/P39cXZ2pnLlytxzzz0sXryYzMzMfPWDg4MxDIPAwEAAVqxYQceOHfHx8aFSpUo0b96c999/P1/b0NBQDMNg6dKlACxduhTDMPK8QkNDSz2fiIgIXnzxRRo2bEilSpWoVKkSDRs2ZNy4cZw7d67Qe5ATQ1EKirNOnToEBQXlq5PzGjJkSKnnJCIiIiIiIiIiIiLXH4fyDkDkShs7dizvvvsukJ0gsVgsxMTEsGXLFrZs2cKnn37KmjVr8PDwKLD9+PHjefPNNzEMAy8vL1JSUvjpp5/46aef+Oabb/j6669xdnYGwMnJCT8/P2JjY0lJScHFxQWLxZKnPycnp1LNZ9u2bfTs2ZOYmBgAKlWqBMBvv/3Gb7/9xsKFC1m7di3t27cv1Ti5ValShbi4OKKjowHw8/PLU37pHEVERERERERERETkxqAVTVKhvf/++2aSadiwYZw5c4bo6GhiY2N59913cXBwYMuWLTz11FMFtj948CBvvvkmI0eO5Ny5c0RFRREdHc1rr72GYRhs2LCBiRMnmvXvuusuIiIi6NevHwD9+vUjIiIiz+uuu+6yeT4nT540k0y33347O3bsICEhgYSEBLZv3079+vWJjo7mwQcf5PTp0zaPc6l9+/axevVq8/tL5zR79uwyG0tERERERERERERErh9KNEmFlZyczOTJkwHo378/8+fPp1q1akD2KqDRo0cza9YsAEJCQjhw4EC+PmJjYxk4cCD/+9//qFKlCgCenp688sorvPzyywD873//48yZM1djSkybNo2YmBi8vb3ZvHkz7dq1M8s6dOjApk2b8PT0JCoqiunTp1+VmIqSmppKXFxcnpeIiIiIiIiIiIiIVBxKNEmFtXHjRqKiooDsM5cK8swzz1C9enUAPv/88wLrvPrqqwVef/HFF3F1dSUjI4NVq1aVPuDLsFqtrFixAoARI0aYSbPcatasyYgRIwD44osvrnhMlzN9+nQsFov5CggIKO+QRERERERERERERKQMKdEkFdb+/fsBCAgI4NZbby2wjr29PZ06dcpTP7eAgADq1atXYFtPT0+aN29eaNuyduzYMTNx1rlz50Lr3XvvvQBcvHiRY8eOXfG4ijJx4kRiY2PN18mTJ8s1HhEREREREREREREpWw7lHYDIlXL+/HkA/P39i6xXs2bNPPVzu1zbnPKC2pa13GMUFVfOfHLa3HTTTVc0rqI4Ozvj7OxcbuOLiIiIiIiIiIiIyJWlFU0iIiIiIiIiIiIiIiJiEyWapMKqWrUqAKdOnSqyXk55Tv3cTp8+XWTbnPKC2pa13GMUNafcZbnbODj83wLGlJSUAtvGxsaWJkQRERERERERERERucEo0SQVVosWLYDsxMuff/5ZYJ3MzEy2bt0KQMuWLfOVnzx5kn/++afAtvHx8Rw4cCDPWDns7LI/Wlar1bbgC3DTTTfh4+MDwObNmwutt2nTJgB8fX3zbJvn7e1tfl3YWUl79+4ttN+cOUHZzktERERERERERERErl9KNEmFde+99+Lr6wtAcHBwgXXmz5/PmTNnAOjfv3+BdV577bUCr7/zzjskJyfj4OBA796985R5enoCEBMTY0PkBTMMg379+gHZcUdEROSrc+bMGebPnw/kn8+tt96Kq6srAKtWrcrXNisri+nTpxc6fs6coGznJSIiIiIiIiIiIiLXLyWapMJydXU1E0zLly9nxIgRnDt3DoCkpCTmzJnD6NGjAejXrx/NmzfP14fFYmHp0qWMGjWKyMhIIHsl07Rp05g6dSoAzz77LDVq1MjT7o477gAgLCyMo0ePltmcXnrpJby8vIiKiqJz587s2rXLLNu5cyedO3cmJiYGHx8fJkyYkKeto6OjmRCbNm0aK1asIC0tDYA//viDXr16cfjw4ULHvvXWW3FycgJg4cKFWtUkIiIiIiIiIiIiIko0ScU2cuRIxowZA2SvAqpevTo+Pj5YLBZGjRpFeno6QUFBLFiwoMD2TZs2Zdy4ccyZM4eqVavi4+ODt7c3L7/8Mlarlc6dOzNjxox87Xr37k2VKlWIjo6mQYMGVKlShTp16lCnTh327Nlj83xq1qzJmjVrsFgs/Prrr7Rr1w53d3fc3d1p3749v//+O15eXqxZswZ/f/987adPn06NGjWIj4+nX79+uLu7Y7FYuO2229i6dSurV68udGw3NzcGDhwIwLhx43B3d6d27drUqVOHF154weY5iYiIiIiIiIiIiMj1S4kmqfBmzZrFli1b6N27N35+fiQkJODh4UFQUBAff/wxGzduxMPDo9D2M2fO5IsvvqB9+/ZYrVacnJxo2rQps2fP5vvvv8fFxSVfG29vb7Zv384jjzyCv78/sbGxhIeHEx4eTkpKSqnm07FjR37//Xeef/55GjRoQFZWFlarlQYNGvDCCy/w+++/06FDhwLb1qxZk7179/Lkk0+aiSh3d3cGDRrETz/9RMeOHYsce+7cuQQHB9OoUSMATpw4QXh4uLnaS0RERERERERERERuLA7lHYDI1RAUFERQUJDN7fv162eej1Rct912G8uXL7d5zKJUr16dt99+m7fffrvEbWvWrFnoCi6gyC3xnJ2dmTx5MpMnTy7xuCIiIiIiIiIiIiJS8WhFk4iIiIiIiIiIiIiIiNhEiSYRERERERERERERERGxiRJNIiIiIiIiIiIiIiIiYhOd0SRylYWEhDBq1KgStenXrx+zZ8++QhGJiIiIiIiIiIiIiNjGsFqt1vIOQuRGsmTJEh5//PEStRk8eDBLliy5MgFdRXFxcVgsFmJjY/H09CzvcKQCqjNhvc1tj8/oXoaRiIiIyPWoNL9LgH6fEBHJof83ExG5NpTm53FWahIn3+tbrL/lakWTyFU2ZMgQhgwZUt5hiIiIiIiIiIiIiIiUms5oEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbKJE0w3CMAwMwyA0NPSa7O9KCgwMxDAMgoODy7Tf4OBgDMMgMDCwTPu9XsYXEREREREREREREXEo7wBEJK+DBw+yZs0avLy8GD16dHmHIyIiIiIiIiIiIiJSKCWabhD169cHwM3NrZwjufpq1apF/fr1qVy5cnmHUiwHDx5kypQp1K5du8hEU+XKlalfvz61atW6esGJiIiIiIiIiIiIiOSiRNMN4ujRo+UdQrlZtmxZeYdwRYwcOZKRI0eWdxgiIiIiIiIiIiIicgPTGU0iIiIiIiIiIiIiIiJiEyWaSiAwMBDDMAgODiYtLY0ZM2bQuHFjKlWqhLe3N/feey/fffddgW0Nw8AwDEJDQ4vVf1Ht4+PjeeWVV7jttttwdXXF19eXHj16sHfv3kL7Lmr86OhoXn31Ve688048PT1xcnKiWrVqNG7cmBEjRrB58+Yi74st8RRXeno6lStXxjAM5syZU2Tdjz/+GMMw8PT0JCkpybxe1H3NsXr1anr06IGfnx9OTk74+fnRo0cPvvrqK5viTkpKYvny5QwaNIimTZtSpUoVnJ2dqVGjBj179izyffL4448DEB4ebj63nFfuOQQHB2MYBoGBgYXG8fPPPzNo0CBq166Ni4sL3t7e3HXXXbz33nukpqYW2GbJkiUYhkGdOnUAOHDgAH379qV69eo4Oztz8803M3bsWKKjo226NyIiIiIiIiIiIiJScWjrPBukpaXRuXNnwsLCcHBwwN3dnZiYGDZt2sSmTZuYPHlykUmN0jh79ix33nknf//9Ny4uLtjZ2REVFcX69evZuHEj69ato0uXLsXu79SpU7Rr144TJ04AYGdnh8ViITIyknPnznHkyBGOHj3KPffcc1XiuZSjoyOPPPIIc+fO5ZNPPuG///1voXU/+eQTAHr37l3ss6jS0tIYNGgQISEhQN75r1+/nvXr19O/f3+WLl2Ko6NjseNesWKFmTDKSX45ODhw9uxZvv76a77++muef/553n777Tzt/Pz8SE5OJi4uDjs7O6pUqZKn3N3dvdgxvPvuuzz//PNYrVYALBYLiYmJ7N69m927d7N48WK+//57qlevXmgfn3/+OUOGDCE9PR2LxUJGRgbHjh3j3Xff5YcffmDPnj0liklEREREREREREREKhataLLBBx98wI8//si8efOIj48nOjqaEydO8PDDDwMwZcoU1q5de0XGfvbZZ3FycmLLli0kJiaSkJDAjz/+SP369UlLS2PYsGFkZWUVu7/g4GBOnDhBnTp12LRpE2lpaURFRZGamsrx48f58MMPadOmzVWLpyCDBg0CYP/+/YWeNXXixAm2bduWp35xvPTSS4SEhGAYBpMmTeLixYtERUURGRnJSy+9BMDy5cuZNGlSiWL29vbmhRdeYMeOHSQkJBATE0NiYiJnzpxhypQpODo68s477+R7n0RERDB79mwAAgICiIiIyPN64YUXijX+N998w9ixY7FarTz44IP8+++/xMTEkJCQwLJly/Dw8ODw4cM8/PDDZGZmFtjHhQsXGDp0KIMHD+bEiRPExMQQHx/P+++/j6OjI7/++itvvvlmie6LiIiIiIiIiIiIiFQsSjTZIDY2lg8++IDhw4fj4uICZCcFQkJCuPvuuwHMJEVZc3BwYOvWrQQFBWFnZ4dhGLRs2ZIvv/wSyN5ubffu3cXub9euXQBMmzaNe+65B3t7ewDs7e2pXbs2I0aMYMaMGVctnoK0atWK+vXrA7Bs2bIC63z22WdYrVZq1apV5FZyuZ0+fdpM6kyYMIGpU6fi5eUFZCeK3njjDcaOHQvArFmzOHv2bLFjfvDBB3nrrbdo165dntVV1atX59VXX2XatGkAl90O0Fbjxo0DoEOHDqxatYqbbroJACcnJwYOHMhnn30GZD//wrYHTEpK4pFHHmHBggUEBAQA4ObmxrPPPstzzz0HZCfhipKamkpcXFyel4iIiIiIiIiIiIhUHEo02SAgIMDcFi03Ozs7XnnlFQB+/fVXjhw5UuZjDxs2jKpVq+a73qhRIzOZcPjw4WL3l5NYKUkS5UrGU5iBAwcC/5dQulTOtnmPPvoohmEUq89Vq1aRkZGBi4sLEyZMKLDOK6+8grOzM+np6axcudLG6PPr3r07ALt37y50RZGtDh8+zO+//w5kx5+TPMzt/vvvp1WrVkDRyaKc9/OlHnzwQQD+/vvvPOdhXWr69OlYLBbzlZOwEhEREREREREREZGKQYkmGwQGBhaazOjQoQMODtlHX+3fv7/Mx27dunWhZTVq1AAgKiqq2P316NEDyF7RM2zYML7//vsSrTop63gKM3DgQAzDyLNFXo4DBw6YiZWSbJuX83xatmyJp6dngXW8vb1p0aJFnvrFde7cOSZPnkzbtm3x9fXFwcEBwzAwDIPbb78dyF41FB0dXaJ+LycnTgcHBzp27FhovXvvvTdP/Uv5+PhQr169Astyni1QZPwTJ04kNjbWfJ08efKy8YuIiIiIiIiIiIjI9UOJJhv4+/sXWubi4oKvry8A58+fL/OxPTw8Ci3LSXClp6cXu78XX3yRvn37kp6ezoIFC+jWrRteXl40atSIF198kT/++OOqxlOYWrVqmUmTnNVLOXK+b9myJbfddlux+8x5PkU9T4CaNWvmqV8cu3fv5rbbbmPq1Kns2bOHqKgoXF1dqVq1Kn5+flSuXNmsm5iYWOx+iyMnzsqVK+Ps7FxovcvNqzjPFop+vs7Oznh6euZ5iYiIiIiIiIiIiEjFoUTTDc7R0ZGQkBAOHjzIq6++SqdOnXBzc+OXX37h7bffpmHDhrzzzjvlHSbwf6uVVq5cSXJyMgAZGRnm1m852+uVt4yMDPr3709MTAxNmzbl22+/JS4ujvj4eM6dO0dERAR79uwx6xe0FaCIiIiIiIiIiIiIyPVAiSYbnD59utCy1NRULl68CJDn7KKcc3JSUlIKbRsbG1tGEZZckyZNmDJlCps3byYmJoZNmzZx9913k5mZyYsvvsihQ4fKLbYcDz/8MK6ursTFxfH1118D8MMPP3D+/HkcHR3p379/ifrLeT6nTp0qsl5OeUFnURVk9+7dhIeHY29vzzfffEO3bt3yrQ6KiIgoUawlkRNnZGQkqamphdYr6bxERERERERERERERC6lRJMNtm3bVugqlLCwMDIyMgDMs30g+6wfoNAzauLj481zhsqbg4MD99xzD+vXr8fZ2Rmr1cqmTZvKOyw8PDzo2bMn8H/b5eX8t1u3bnm2oyuO3GcvFZbki4mJyXOWU3HkPOMqVaoUui1fUffTzi77Y2nrSqeceWVkZOQ7z6qgGIo7LxERERERERERERGRSynRZIMTJ06wdOnSfNezsrKYNm0aALfffjuNGjUyy5o0aQLAqlWrCuzz7bffLnL1yZVS1JjOzs7mSqyc5Ed5y9k+74cffuCvv/4yVzblXC+J3r174+DgQEpKCjNnziywzrRp00hNTcXR0ZHevXsXq1+LxQLAuXPnOHfuXL7yU6dOMWfOnELb55xjFBMTU6zxLtW4cWNuv/12AF5//XUyMzPz1fn222/Zu3cvQIlXgomIiIiIiIiIiIiI5Lg2sgfXGYvFwtNPP82CBQvMrfBOnjxJ//792bp1K5D9B/7ccv6Yv2HDBiZPnkxcXByQvb3ZSy+9xOuvv46Xl9fVm8T/V7t2bSZOnMiePXvyJJ3+/vtvHn30UZKSkrCzs+O+++676rEV5N5776VatWpkZGQwYMAAkpOT8fb2pkePHiXuy9/fn1GjRgEwY8YMJk+ebCZ3YmJimDRpEm+99RYAY8eOpXr16sXqt3379lSqVAmr1Urfvn35888/AcjMzGTDhg0EBgZiGEah7e+44w4A4uLiWLFiRYnnBZiJs7CwMB5++GGOHTsGQHp6Op999pn5frzrrrvMVWIiIiIiIiIiIiIiIiWlRJMNnnnmGVq0aMGwYcPw9PTEx8eHWrVqmUmBV155hV69euVpM2TIEIKCggCYOnUqXl5e+Pj4ULVqVWbMmMHMmTPNVU9X07lz55gxYwZt27bFzc0NHx8fXF1dueWWW/jyyy8xDIN33nnHXCFT3uzt7RkwYACAuaVd3759cXZ2tqm/adOm0bdvX6xWK1OnTsXX1xcfHx98fX3NZGH//v157bXXit2nxWLh7bffBmD79u3Ur18fDw8P3N3d6dq1K7GxsSxevLjQ9vXq1eOee+4BoF+/fnh6elKnTh3q1KnDe++9V6wYevTowaxZszAMgzVr1nDzzTfj7e2Nu7s7jz32GHFxcTRq1Igvv/zSXLUmIiIiIiIiIiIiIlJSSjTZwMnJic2bNzNt2jTq169PamoqFovFPNeooKSEvb0969evZ8qUKdx22204OTlhGAZdunRh48aNvPDCC+Uwk+wt6CZOnEiHDh0ICAggOTkZyE52PP744+zbt4/Ro0eXS2yFuXSbPFu2zcvh5ORESEgIK1eupFu3bvj6+hIfH4+vry/dunVj9erVfP755zg6Opao3xEjRrB+/XoCAwNxd3cnIyMDf39/nnvuOQ4dOpRnW8WCrFy5kjFjxnDrrbeSnp5OeHg44eHhJdpOb8yYMezfv5/HHnuMgIAAkpKScHV1pU2bNrz77rvs27ePGjVqlGheIiIiIiIiIiIiIiK5GVar1VraTrKysjhw4ADh4eEkJSWV6g//17LAwEC2bdvG5MmTCQ4OLu9wRK47cXFxWCwWYmNjzbOoRMpSnQnrbW57fEb3MoxERERErkel+V0C9PuEiEgO/b+ZiMi1oTQ/j7NSkzj5Xt9i/S231Cua/ve//1G9enXatGlDv379ePzxx/OUR0dHc8cdd3Dbbbdx7ty50g4nIiIiIiIiIiIiIiIi14hSJZqeffZZRo8ezYULF/Dw8MAwjHx1vL29ufPOO/nrr7/48ssvSzOciIiIiIiIiIiIiIiIXENsTjR9//33fPjhh7i7u/PVV18RExNDlSpVCqw7YMAArFYrmzZtsjlQERERERERERERERERubY42Npw3rx5GIbB1KlTefDBB4us27ZtWwCOHDli63BSAYwaNYqQkJAStZk9ezb9+vW7QhGJFC1nD9OKsD90cfdjvd7ner3Hb4vr+X16PccuIiIVk/5NunEV9vvyjfqe0P2Q0tJ7RaR86f+3JUdp3gNxcXFY3iteXZsTTXv37gVg6NChl61rsVjw9PQkIiLC1uGuCaGhoeUdwnUtNja2xOd0JScnX6FoRERERERERERERESktGxONEVFRWGxWPDw8ChWfTs7O7KysmwdTiqAJUuWsGTJkvIOQ0REREREREREREREyojNZzR5enoSFxdHenr6ZetGRUURGxtL5cqVbR1ORERERERERERERERErjE2J5oaNWqE1Wo1t9AryvLly7FarbRo0cLW4UREREREREREREREROQaY3Oi6eGHH8ZqtRIcHFzklniHDh3ilVdewTAM+vfvb+twIiIiIiIiIiIiIiIico2xOdH01FNPcfvtt7N161buvfdevvnmGzIzMwH466+/2LhxI//973+56667iI2NpU2bNvTp06fMAheR8hMYGIhhGAQHB5d3KCIiIiIiIiIiIiJSjhxsbejo6Mj69evp2rUrW7duJTQ01Cy77bbbzK+tViuNGjVi1apVGIZRqmBFRERERERERERERETk2mHziiaA2rVrc+DAAaZMmUKtWrWwWq15XjVq1CA4OJhdu3ZRrVq1sopZRERERERERERERERErgE2r2jK4ebmxqRJk5g0aRJnzpzhzJkzZGZmUq1aNWrXrl0WMYqIiIiIiIiIiIiIiMg1qNSJptxq1KhBjRo1yrJLERERERERERERERERuUaVaus8ketZYGAghmEQHBxMeno677zzDi1atMDLywvDMPKcO/bLL78wbNgwbrnlFtzc3HB3d6dx48a8/PLLREZG5uv7ueeewzAMHn744Xxl6enpeHh4YBgGVapUwWq15qtz3333YRgGkyZNynP92LFjzJw5k65du3LrrbdSqVIl3N3duf322xk9ejQnTpwok/lmZmbyv//9jzvvvJNKlSrh4+NDYGAgK1euLMadFREREREREREREZEbRalXNFmtVlavXs0XX3zB/v37OX/+PABVq1alRYsWPPLII/Tq1Qs7O+W05NqUkpJCYGAgu3btwsHBwUwC5XjzzTeZOHEiWVlZQPZ2kenp6Rw5coQjR46wePFi1q9fT7Nmzcw2QUFBvP/++4SGhmK1WvP09+OPP5KQkABAZGQkR44coXHjxmZ5eno6O3bsAKBTp055Yn388cfZtm0bAE5OTnh4eBAdHc3vv//O77//zpIlS/jmm29o3769zfNNTU3lwQcfZMOGDQDY2dnh5OTE9u3b2bZtG+PHjy/ZDRYRERERERERERGRCqtU2Z8TJ07Qtm1b+vbty+rVqwkPDyc5OZnk5GTCw8NZvXo1ffv2pU2bNoSHh5dVzCJlau7cuRw+fJjFixcTFxdHVFQUFy5coHHjxixatIjx48fj5ubGG2+8wdmzZ0lMTCQpKYn9+/fTqVMnzp49ywMPPGAmj+D/Vg9dvHiRQ4cO5Rlv69atAHh6egKwZcuWPOV79+4lKSkJZ2dn2rZtm6esadOmzJ07lz///JPk5GQiIyNJTU1l7969dO3aldjYWPr160dycrJN8wWYOHEiGzZswDAMXn/9daKjo4mOjiYiIoKnn36amTNncvDgQZvvt4iIiIiIiIiIiIhUHDavaIqNjaVjx46cOHECq9XKXXfdRadOnfD39wfg9OnTbN26lZ07d7J//36CgoL4+eefsVgsZRa8SFlISEhg7dq13H///eY1X19f4uPjeeGFFwBYuXIl9913n1lub29P8+bN2bBhA23atOHAgQMsXLiQ0aNHA+Dj40OTJk04ePAgW7ZsoWnTpmbbnMTS6NGjmTp1Klu2bDHb5S5v27YtLi4ueWJ977338sXv4OBAq1at+Oabb7jzzjs5fPgwq1at4rHHHivRfAHOnDnD//73PwBeeeUVXn75ZbNO1apV+eCDD4iJiWH58uUF9n2p1NRUUlNTze/j4uKK1U5ERERERERERERErg82r2h64403CA8Px9vbm40bN7Jjxw6mTp3K8OHDGT58OFOnTiUsLIzNmzfj4+NDeHg406ZNK8vYRcpEw4YN8yRdcqxatYqYmBiaNWuWJ8mUm4ODA/379wcwt5rLERQUBORdsZSamsru3bupVKkSY8eONbeky8zMNOvkrHjKaV9c9vb2dO3aFcDceq8ghc0XshNqGRkZuLq6mkm2SwUHBxc7punTp2OxWMxXQEBAsduKiIiIiIiIiIiIyLXP5kTTV199hWEYzJs3j3vuuafQekFBQcybNw+r1cqqVatsHU7kimnXrl2B13fu3AnA77//TrVq1Qp9TZ06FSDf9pA55yuFhYWZiaRdu3aRkpJC+/btsVgstG7dmtjYWA4cOABkn5+0e/duoPBEU1hYGEOGDOG2227D3d0dwzDM15tvvgnAqVOnSjxfgP379wPQokULc2u/S916663mysXLmThxIrGxsebr5MmTxWonIiIiIiIiIiIiItcHm7fOO3XqFE5OTjz00EOXrdurVy+cnZ05ffq0rcOJXDFVq1Yt8PqZM2eA7ORPSkrKZftJSkrK8/3dd9+Nvb09cXFx7Nu3jzZt2pirlXKSUJ06dSIsLIwtW7bQqlUrdu3aRWpqKq6urrRu3TrfGOPHjzeTSZC9isnb2xsnJycge1u8xMREEhMTSzxfgPPnzwNcNpFUs2bNYn2enZ2dcXZ2vmw9EREREREREREREbk+2byiydvbGxcXF+zsLt+Fvb09Li4ueHt72zqcyBVjb29f4PWcVUj9+vXDarVe9nX8+PE87T09PWnevDnwf9vn5fw3d6KpoPJ27dqZyaMcGzduNJNMzzzzDEeOHCE1NZWoqCgiIiKIiIhgzJgxAFit1hLPV0RERERERERERESkpGxONN11113ExcXx559/Xrbun3/+SWxsLO3bt7d1OJGrrlq1akD+LfFKIvc5TYmJifz44494eXlx5513AtCmTRtcXV3ZuXMnaWlp+RJRuX3xxRcA3HfffcydO5c77rgjX9IoIiLC5ljh/1Y7XW61klYnioiIiIiIiIiIiAiUItE0YcIEHB0deeaZZ0hNTS20XlpaGs888wyOjo5MmDDB1uFErrqcs4wOHDjA2bNnbeojJ9G0a9cuNm/eTHp6Oh07djRXAjo5OdGuXTuSkpLYtGkT+/bty9Mut5zzjZo1a1bgWFar1UxU2apFixZA9llNCQkJBdb566+/ijwDSkRERERERERERERuHDYnmlq0aMGKFSs4cOAATZs2ZfHixRw/fpz09HTS09M5fvw4ixcvplmzZvz000+sXLnSXMUhcj3o06cPXl5epKenM3bs2CK3o8vKyiImJibf9fbt2+Po6EhycjLTpk0D8q9WykkqTZ06lYyMDNzd3c2ET24WiwWAQ4cOFRjDvHnz+Pfff4s1t8L07t0be3t7kpOTefvttwusM3Xq1FKNISIiIiIiIiIiIiIVh82JJnt7e3r16mVun/fkk09St25dXFxccHFxoW7dujz55JMcPXqU2NhYevbsib29fb6Xg4NDWc5HpMx4eXnx3nvvAdnb1nXv3p29e/eSlZUFZCeXfv/9d9555x0aNmzIN998k6+PSpUq0apVKwD27t0L5E805XyfU96hQ4cCPxddu3YF4LvvvuO1114jMTERgJiYGKZNm8Zzzz2Hr69vqebs7+/Ps88+C8Brr73G9OnTiY+PB+DChQuMHDmSTz/91Ex6iYiIiIiIiIiIiMiNzeZEk9VqLbOXyLVq8ODBfPjhhzg5OfHdd9/Rpk0b3NzcqFy5Mi4uLtx+++288MILHD16FMMwCuwjd2KpatWq3HHHHXnKW7RogYeHh/l9QdvmAQwaNIgOHToA8Oqrr+Lh4YGPjw++vr68/PLLdO3alaeffrq0U2bmzJl07tyZrKwsXnrpJby9vfHx8cHPz4+5c+cyfvx4mjZtWupxREREREREREREROT6Z/Nyoq1bt5ZlHCLXrBEjRtC1a1fmzp3Lxo0bOXbsGDExMXh6elK3bl3atm3LAw88kG+lUo6goCBee+018+tLOTg40KFDB7799ttC6wA4Ojryww8/MGPGDJYvX87x48exWq20atWKwYMHM2zYsDLZ1s7FxYXvvvuODz74gMWLF/PHH39gtVrp0KEDI0eOpE+fPgQGBpZ6HBERERERERERERG5/hlWLSkSkaskLi4Oi8VCbGwsnp6e5R3OZdWZsB6A4zO6l3MkpZczl8upCHO90VzP79PrOXYRERGpWAr7fflG/T1F90NE5Pqm/9+WslCSv+XavHWeiIiIiIiIiIiIiIiI3NhsTjQNHTqUvXv3lmUsIiIiIiIiIiIiIiIich2xOdG0ZMkS7rrrLpo0acIHH3xAXFxcWcYlIiIiIiIiIiIiIiIi1zibz2jq0KEDO3fuzO7EMHB1daVfv34MGzaM1q1bl2mQIlIxXG9nNF1PLncGk/bkFRERub4V97xFuTz9XiS56QyL/OpMWK/7YYMb9ee03itSEVWEz7M+m1dXcd4z1+MzuSpnNIWFhfH7778zZswYfH19SUpKyrPK6cMPP9QqJxERERERERERERERkQrM5kQTQP369XnnnXc4deoUn3/+OYGBgQAcOXKEkSNHUqNGDZ544gmd5SQiIiIiIiIiIiIiIlIBlSrRlMPJyYlHHnmEzZs38+effzJu3DiqVq1KUlISixcv1ionERERERERERERERGRCqhMEk251a1blxkzZnDy5ElWrVpF69atsVqt/PLLL+Yqp2HDhvH777+X9dAiIiIiIiIiIiIiIiJyFZV5oilHWFgYK1as4ODBgxiGgdVqBSApKYlFixbRuHFjRo8eTVZW1pUKQURERERERERERERERK6gMk00XbhwgTfffJNbb72Vzp07ExISQmpqKnfeeScLFy4kOjqaL7/8kg4dOpCZmcn//vc/pk+fXpYhiMhVcPz4cQzDwDAMjh8/Xt7hiIiIiIiIiIiIiEg5KZNE08aNG+nTpw8BAQFMnDiRv//+G1dXV5544gn27dvHvn37GDp0KJ6envTu3ZvQ0FDmzZuH1WplyZIlZRGCiIiIiIiIiIiIiIiIXGUOtjaMiIjg448/ZtGiRRw/ftzcGu/2229nxIgRDBo0CE9Pz0LbDxs2jAkTJhAeHm5rCCIiIiIiIiIiIiIiIlKObE401apVi8zMTKxWK05OTvTu3ZsRI0bQoUOHYvfh6elJbGysrSGIiIiIiIiIiIiIiIhIObI50ZSRkcFNN93E8OHDGTp0KJUrVy5xHyEhIaSkpNgagoiIiIiIiIiIiIiIiJQjm89o+u677/jnn38YN26cTUkmgNatW9OxY0dbQyiW6OhoFi1aRN++fWnUqBE+Pj64uLhQu3ZtBgwYwJ49ewpsFxwcjGEYBAYGArB582a6d+9OlSpVcHFxoUGDBkyZMqXQRNmQIUMwDIMhQ4YAsHLlSgIDA/Hx8cHNzY2mTZsye/ZssrKyiow/NDSUPn364O/vj7OzM5UrV+aee+5h8eLFZGZmFmvsgixZsgTDMKhTp84Vi/3kyZOMGzeOpk2bYrFYcHV1pW7dujz44IMsW7as0Hu3c+dOHnvsMWrXro2LiwsWi4VWrVoxc+ZMEhISihyzuI4fP45hGBiGwfHjx/nnn38YNmwYN910E87OzvnuS1ZWFp999hn/+c9/8PPzw8nJiSpVqtClSxeWL19ubh2ZIzMzEy8vLwzD4Jtvvsk3/vLly83xX3jhhXzlZ8+eNcv/+eefPHFs3ryZ//73v7Rp04aaNWvi5OSEr68vHTt2ZN68eaSnp5fJnE+fPs3w4cMJCAjA2dmZmjVr8vjjj/P3338X8y6LiIiIiIiIiIiISEVn84qmBg0acPr0afz9/YtV/8yZM2RkZFCrVi1bh7TJ7NmzmTJlCgD29vbmuVEnTpzgxIkTfPHFF7z33nv897//LbSPt956i/HjxwNgsVhIS0vj6NGjBAcHs23bNjZu3Ii9vX2h7UeOHMncuXOxs7PD09OT5ORkDh06xOjRo/npp59YunRpge3Gjh3Lu+++C4BhGFgsFmJiYtiyZQtbtmzh008/Zc2aNXh4eNh0b4rD1tg/+eQThg0bZiaTnJyc8PDw4MSJE/z777+sXbuWxo0b07RpU7NNVlYWY8aMYc6cOeY1d3d3EhMT2bdvH/v27WPx4sVs2LCB2rVrl9kcd+3axfDhw0lISMDNzQ1HR8c85VFRUfTq1Yvt27eb1ywWC5GRkWzcuJGNGzfyxRdf8OWXX+Lk5ARkv9fuvvtu1q1bx5YtW+jRo0eePrds2VLg15deq1WrFnXr1jWvnzhxgs6dO5vfu7u74+bmRlRUFNu3b2f79u18/vnnbNiwAVdXV5vn/NNPP9G5c2eio6MBcHV1JTY2liVLlrB69WoWLFhQaN8iIiIiIiIiIiIicuOweUVTnTp1aNWqVbHrt2vXjptvvtnW4WxWo0YNJk+ezP79+0lKSiIqKork5GT+/fdfRo0aBWQndH7++ecC2x86dIgJEyYwYcIEzp8/T3R0NDExMbz66qsAbN26tdBkC8DatWtZsGABs2bNIjo6mujoaCIjI3nyyScBWLZsWYGJhvfff99MMg0bNowzZ84QHR1NbGws7777Lg4ODmzZsoWnnnqqVPenKLbGvn79egYPHkxKSgrt2rUjLCyM5ORkIiMjSUxMJCwsjKeeespMyuSYPHkyc+bMoWrVqsydO5eLFy8SHx9PcnIyW7dupVmzZvzxxx889NBDl11NVRLDhw+nYcOG7Nu3j8TERBISEvjhhx+A7JVJDz30ENu3b6dp06asW7eOxMREYmJiSEhIYOnSpVStWpW1a9eaycgcQUFBQMGJpK1btwLZ55QdOnSIqKioAstz+sjh4ODAo48+ytq1a837ExMTQ3x8PIsXL6ZGjRqEhYXx8ssv2zzn+Ph4evXqRXR0NLVq1eKHH34gMTGR+Ph4du3aRUBAAMOHDy/u7RURERERERERERGRCszmRBOQb7uwsq5fFoYNG0ZwcDDNmzc3ExuGYXDTTTfx3nvv8cwzz5CZmcncuXMLbB8TE8OkSZOYNm2auUWgp6cnU6ZM4aGHHgKyt0ErTHR0NPPnz2fMmDHmaipfX18WLFhA8+bNC2yfnJzM5MmTAejfvz/z58+nWrVqAFSqVInRo0cza9YsIPucqwMHDth0by7HltgzMjJ47rnnsFqttG/fni1bttC+fXvs7LLfak5OTrRv356PPvqI22+/3Wx3/Phxpk+fjqurKz/88APPPPMMPj4+ADg6OhIYGMi2bduoWbMmP/30E2vXri2zefr6+rJp0yZatGhhXrv11lsB+Pzzz9m2bRu33XYboaGh9OjRAzc3NyD7WQwaNIhvv/0WwzD44IMPOH/+vNlHp06dADh8+DAXL140r584cYJ//vmHunXr0qNHD7KysggNDc0TU05y6tJEU82aNfn000+5//77zfsD2SubhgwZwtdffw3ARx99VOT5Z0XN+cMPP+TEiRM4OTnx/fffc++992IYBgBt27Zl06ZN5veXk5qaSlxcXJ6XiIiIiIiIiIiIiFQcpUo0lURKSgoODjbv1HfFdO/eHYAdO3YUWO7s7FzgGToADz74IJCdSChMQEAAgwcPLrDsgQceKLD9xo0bzRUuwcHBBbZ95plnqF69OpCdDLkSbIl969atHDt2DIB3330336qlwixZsoTMzEy6du1KkyZNCqzj4eFBz549AdiwYUOx+i2OkSNH4u7uXmDZokWLAHj66aexWCwF1mnevDkNGzYkLS3NXIkE0LhxY3x9fbFarXmu53zdqVMnMxmVe9VTeHi4eQ8vTTRdTosWLahatSqJiYkcPHiw0HpFzfmLL74AoE+fPjRo0CBfebVq1RgxYkSx4pk+fToWi8V8BQQEFKudiIiIiIiIiIiIiFwfrkqi6cyZM1y4cAFfX9+rMVw+//77Ly+88ALNmzfHy8sLe3t7DMPAMAz+85//AHDq1KkC2zZs2LDQP8jXqFEDIN+2Z7m1bNmy0NUfhbXfv38/kJ3oyVllcil7e3szSZFTv6zZEvuuXbuA7GRE7tUyl7Nz504AfvjhB6pVq1boa/HixUB2MqastGvXrsDrmZmZ7NmzB8hO+BUV1x9//JEvLsMwCAwMBAo+k6lTp04Fbq+X8/XNN99c4JlmaWlpzJs3jy5dulCjRg2cnZ3N97NhGOaqqsLe00XNOS0tjSNHjpjxFaaostwmTpxIbGys+Tp58mSx2omIiIiIiIiIiIjI9aHYS4y2b9+eb3uvhIQEpk6dWmgbq9VKTEwM3377LVarldatW9scqK2++uor+vfvT2pqqnnN09MTFxcXDMMgLS2N6OhoEhMTC2zv4eFRaN85K7QyMjIKrVOc9unp6Xmu5yQK/P39C20L2duo5a5f1myJPSIiAoDatWuXaKwzZ84AkJiYWOizyC0pKalE/RelatWqBV6Piooy3zfR0dHF6uvSuIKCgli1alWeRFLuFU1Vq1aldu3a/P7770RERFCtWrVCz2eC7GfduXNnMxkE4OLiQuXKlbG3twfgwoULZGVlFXkfi5pzzvu5qPdfznvvcpydnXF2di5WXRERERERERERERG5/hQ70bR161amTJmSZ4VLYmIiU6ZMuWxbq9WKi4sLEydOtC1KG128eJEhQ4aQmppKp06dePXVV2nVqhWurq5mnc2bN9O5c+erGldFVtyzey6VmZkJwPjx45kxY0ZZhnRZOQmaS+XEBPDdd9/RtWvXEveds/Lnjz/+4MyZMyQlJXHy5EkaNmxoJns6derE4sWL2bJlCwMGDCgy0TRmzBiOHDmCr68vb731Ft26dTPP78oREBDAqVOnijwTrbA5i4iIiIiIiIiIiIiURLETTXXq1KFjx47m99u2bcPR0ZG2bdsW2sbOzg5PT0/uuOMOBg8eTL169UoXbQl9++23xMXF4e3tzbp163Bzc8tXJ2cFzrUkJwFR1NZnucsvXZ2Ss9ooJSWl0LaxsbGlCbFQOUmPkm5tl7P9XFluiVdavr6+ODg4kJGRYXNcDRo0oFq1akRERLBlyxZzxVPureeCgoLMRFOLFi3M53rp9nTp6emsXr0agPfff59HHnkk33iZmZlERkbaFCuAj48P9vb2ZGZmcvr06ULrFVUmIiIiIiIiIiIiIjeOYieaBg8ezODBg83v7ezs8PHxMVdfXItyzoOpX79+gUkmgE2bNl3NkIol52yjU6dO8eeffxZ4TlNmZqZ571u2bJmnzNvbG6DI83D27t1bVuHmcddddwHZCbz9+/cX+5ymdu3asW3bNjZt2kRKSgouLi5XJL6ScHR0pFWrVuzatYt169YxfPhwm/oJDAzkiy++YMuWLSQnJwN5k0g5X2/ZssV8lvXr16d69ep5+rlw4YKZPGzWrFmBY+3YsaPIBOPlODk50bhxY37++We2bt3K0KFDC6yXeytAEREREREREREREblx2dnacPHixbz33ntlGErZs1gsAPz5558F/vH94MGDfP7551c7rMu699578fX1BSA4OLjAOvPnzzfPNerfv3+esiZNmgCwb9++ApNNv//+u7kypqwFBQVx8803A9nbvKWlpRWr3dChQ3FwcCAyMpLJkycXWTctLY2EhIRSx1ocw4YNA7JXx3377bdF1o2Kiirweu5EUmhoKHZ2dgQGBprl/v7+3HLLLRw7dozFixcDBW+b5+npaW5NeOjQoXzlGRkZvPzyy5ef1GX069cPgC+//JI//vgjX/n58+eZN29eqccRERERERERERERkeufzYmmwYMH07dv37KMpcx16dIFOzs7oqKiePTRR83tvtLS0lixYgVdunTBw8OjnKPMz9XV1UwwLV++nBEjRnDu3DkAkpKSmDNnDqNHjwaykwLNmzfP0/7+++/H3d2d9PR0+vbtayYL0tPT+frrr+ncuTOVKlW6IrHb29vz/vvvYxgGO3bs4J577mHHjh1kZWUB2fc+NDSUxx57jN9++81sV7duXSZNmgTAm2++yaBBg/jll1/M8oyMDA4ePMjUqVOpV68eBw8evCLxX+qxxx6jc+fOWK1WevXqxeuvv24m+CD7nLKtW7fy7LPPmgm2S+UkjcLDw4mIiKBZs2Z4eXnlqZOTjMpZaVZQosnd3Z127doBMHbsWLZs2WLe119++YX//Oc/7N+/v9TP9umnn6ZmzZqkpqbStWtXNm/ebJ73tHfvXjp37myOKyIiIiIiIiIiIiI3NpsTTdeDW265hRdffBGA1atXU7NmTby8vHB3d6dfv364u7szZ86cco6yYCNHjmTMmDFA9uql6tWr4+Pjg8ViYdSoUaSnpxMUFMSCBQvytbVYLLz33nsYhsGePXu47bbb8PT0xN3dnZ49e1KrVi2mTp16xWLv1q0bS5YswdnZmR07dtChQwfc3NyoXLkylSpVIigoiM8++yzfaqdJkyYxadIkDMPgk08+oVGjRmY7FxcXmjVrxuTJkzl58qS5sudKs7e3Z9WqVfTo0YO0tDQmTZqEv78/FosFb29vPDw86NSpEx988AGJiYkF9lGvXj0CAgLM7y89ewnyJ5Zyr3jK7b333qNSpUqcPn2ae+65Bzc3Nzw9PWnUqBFbt25lwYIFVK5c2fYJk71y6quvvsLLy4vjx4/TuXNn3N3d8fDwoE2bNhw/fpz58+eXagwRERERERERERERqRgqdKIJYMaMGSxbtoxWrVrh6upKeno69erV46WXXuLnn3+mRo0a5R1ioWbNmsWWLVvo3bs3fn5+JCQk4OHhQVBQEB9//DEbN24sdEXWE088wfr16+nUqROenp5kZGRw6623MmPGDLZt23bFVjTlGDRoEEePHmX06NHcfvvtODg4kJycTO3atenZsyeffPIJDRo0yNPGMAymTp3K4cOHeeaZZ2jQoAH29vbExsbi7e3NXXfdxYsvvsiuXbvMlT1Xg6enJ+vWrePbb7+lX79+1KpVi9TUVJKSkvD396dLly5Mnz69wG3mcuROJBWWaMpJnjVs2JCqVasW2E/z5s358ccf6du3L5UrVyYrKwsPDw/69u3Lrl27GDhwYClnm61FixYcPnyYJ598En9/fzIyMrBYLAwePJiffvqJVq1alck4IiIiIiIiIiIiInJ9M6w5e2KJiFxhcXFxWCwWYmNj8fT0LO9wKpQ6E9YXWX58RverFImIiIhcCZf7t16KT78XSW45ny29L/5PnQnrdT9scKP+nNZ7RSqiivB51mfz6irOe+Z6fCYl+VtuhV/RJCIiIiIiIiIiIiIiIleGEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCYO5R2AiK1OnjxJy5YtS9QmICCAffv2XaGIpLjumLwBO2e38g7jsq6VvVMr6j6vFd3V2tP5Wnn2tsz3Wom9IBVhT24Rufps/bmmf+tFyk5J/w2/UT5bJbkvuie2uVHu27VKv79fu2z5bJT389Tn+cop72d7peg9o0STXMcyMzM5d+5cidq4uLhcoWhERERERERERERERG48ZZJoOnz4MBs2bCA8PJzk5GQWLVpklqWnp3PhwgUMw6B69eplMZwIAHXq1MFqtZZ3GCIiIiIiIiIiIiIiN6xSJZpiY2MZOnQoa9asAcBqtWIYRr5EU5MmTYiOjubQoUM0bNiwVAGLiIiIiIiIiIiIiIjItcHO1obp6el069aNNWvW4ObmRvfu3QvclszNzY3HH3+crKwsVq5cWapgRURERERERERERERE5Nphc6Jp0aJF7Nmzh5tvvpk//viDtWvXYrFYCqzbu3dvALZv327rcCIiIiIiIiIiIiIiInKNsTnRtHz5cgzD4N1336VGjRpF1m3WrBl2dnYcPXrU1uGuKXXq1MEwDJYsWXJVx83MzGTWrFk0a9aMSpUqYRgGhmGYWxdWJMHBwRiGQWBgYLm0rygCAwMxDIPg4ODyDkVEREREREREREREKiCbz2g6cuQIhmHQpUuXy9Z1cnLCYrFw8eJFW4e7buT8QX/IkCHUqVOnTPsePXo077//PpB9T/38/AAK3LJQRERERERERERERETkSrM50ZSUlISHhwdOTk7Fqp+eno6Dg83DXVPq1q2Li4tLgVsFTpkyBcheSVKWiab4+Hjmz58PwJtvvskLL7yAYRhl1v+1pnLlytSvX59atWqVdygiIiIiIiIiIiIiIlIImzM/lStX5uzZsyQkJODu7l5k3WPHjpGQkEC9evVsHe6asnnz5qs+5tGjR0lPTwfg6aefrtBJJoCRI0cycuTI8g5DRERERERERERERESKYPMZTa1btwZg/fr1l637v//9D4AOHTrYOtwNLykpyfz6cok9ERERERERERERERGRq8HmRNPQoUOxWq1MmjSJM2fOFFpv/vz5zJ49G8MwGDZsmE1jNWrUCMMwzPOJctu9ezeGYWAYBg8//HC+8vT0dDw8PDAMI89KpD179jB+/Hg6dOhA7dq1cXFxwcvLizZt2jBz5kwSEhIKjadOnToYhsGSJUvMa0OGDMmzyigoKMiMyzAMm7fRW7JkCYZhEBgYaF7L3W/u6zlWr15Njx498PPzM89y6tGjB1999VWh4+TEP2TIEKxWKwsXLqR9+/b4+vrmm6stQkJC6NatG35+fjg6OuLl5cUtt9zCAw88wNy5c0lJSclTPzg4uND55fjuu++499578fLywt3dnSZNmvDmm2+aK78u5/jx44wePZqGDRvi7u6Om5sbt912G6NGjeLEiROlmW4eud8v8fHxTJw4kfr16+Pq6krlypXp2bMne/fuLbKPzMxMPv74Yzp16kTlypVxdnbG39+fPn36EBoaanNsS5cuxdHREcMwePnll/OVr1+/nt69e+Pv74+zszPe3t7cfffdfPjhh6Slpdk8roiIiIiIiIiIiIhUDDZvnde9e3d69+7NqlWraNGiBQMGDCA5ORmAjz76iPDwcL755ht++eUXrFYrTz31lLkKqqSCgoL45Zdf2LJlS77t1LZs2WJ+HRoaitVqzZPw+fHHH0lISMDZ2Zl27dqZ19u2bWt+7ebmhpubG9HR0ezdu5e9e/eybNkytm7dStWqVYsVo8Viwc/Pj3PnzgHg7e2d5/yqKlWqlGzS/5+rqyt+fn6kpaURHR0NgJ+fn1nu4+Njfp2WlsagQYMICQkBwM7ODovFQmRkJOvXr2f9+vX079/fTC4UxGq10qdPH1atWmW2t7OzOR8JZCclFy9ebH7v7u5Oeno6f//9N3///Tfr1q2je/fuJUrGBQcHm+dhAXh5efHbb78xfvx41q9fn+dZF+Szzz7jiSeeIDU1FQBnZ2fs7Oz4448/+OOPP1i8eDErV66kS5cuJZtsEaKjo2nZsiV//PEHTk5OuLi4cPHiRb7++mvWrVvHggULGDp0aL52sbGx9OzZ00wo2dvb4+HhwdmzZ1m5ciUrV67khRde4K233ipRPDNmzGDixInY2dnx/vvv8+yzz5plycnJDBo0iJUrV5rXPD09iY2NJSwsjLCwMJYtW8a3336Lt7e3bTdERERERERERERERK57pcogfPLJJzz66KNERETw7rvvEh8fD2SfITRjxgyOHDmC1Wpl6NChzJ071+ZxgoKCANi2bRtZWVl5yrZu3Qpk/xH84sWLHDp0qMDyNm3a4OLiYl6///77CQkJ4ezZsyQmJhIVFUVSUhKrV6+mfv36/Pbbb4wYMaLYMc6ePZuIiAjz+9WrVxMREWG+9u3bV7JJ/3/9+vUjIiKC1atXm9dy95v7+ksvvURISAiGYTBp0iQuXrxIVFQUkZGRvPTSSwAsX76cSZMmFTre6tWr+frrr3n77beJjo4mKiqK2NhY7rvvPpvi37FjB4sXL8bOzo6ZM2dy8eJF4uPjSUxMJDIykg0bNjB48OA8SbnLWbt2rZlk6tOnDydOnCA6Opq4uDjmzp3Lnj17+PDDDwttv3HjRgYNGkRmZibjxo3j2LFjJCcnk5iYyNGjR+nTpw/x8fFm32VlypQpnD9/nhUrVpCYmEhsbCy//fYbHTt2JCsri+HDh/PTTz/la/fEE08QGhqKk5MTc+bMIS4ujujoaM6cOWMmpt5++23mzZtXrDisViujRo1i4sSJODs7ExISkifJBDBs2DBWrlzJzTffzGeffUZsbCyxsbEkJSXx9ddfc/PNN7Nnz54CE2MiIiIiIiIiIiIicuMoVaLJxcWFTz75hO3btzNw4EDq1q2Lq6srTk5O1KpViwEDBhAaGsrChQtxcLB58RSBgYHY2dkRFRXFwYMHzeupqans2rULNzc3c1u+3Cuccn+fk6zKsXbtWvr27Uu1atXMa66urvTq1YvNmzfj7OzMmjVryjTRcCWdPn2a2bNnAzBhwgSmTp2Kl5cXkL266o033mDs2LEAzJo1i7NnzxbYT0JCArNmzeL555/H09MTyF6BVL16dZvi2rVrFwCdO3dm3LhxeVZg+fr60qVLF5YsWUKNGjWK3efEiRMB6NixI1988QUBAQFA9vN75plnmDNnDjExMQW2zcrK4tlnnyUrK4u5c+cyc+ZMc2s7wzCoX78+K1as4IEHHiAuLo5Zs2bZNO+CxMbG8uWXX9KnTx/z89CgQQO+++47brnlFjIyMvIlAffu3cuqVauA7LPOnnvuOdzc3ACoVq0aixYtonfv3gBMmjQp3xaEl0pLS+ORRx5hzpw5WCwWvv/++3xbToaFhfHpp59StWpVQkNDGTBggPlecHFx4YEHHmDbtm1UqlSJNWvW5PlMXio1NZW4uLg8LxERERERERERERGpOEq3J9r/1759e5YsWcKff/5JQkICycnJHDt2jE8//ZS777671P17e3vTpEkTIG8iac+ePSQnJ9OuXTu6du2arzw1NZXdu3cD+RNNRfH396dJkyZYrVYzUXKtW7VqFRkZGbi4uDBhwoQC67zyyis4OzuTnp6eZ0u03Ly9vRk+fHiZxZWT7Lpw4QKZmZml7u/w4cP89ttvQPZ8CtrW76mnnsLf37/A9tu3b+evv/6icuXKPPnkk4WOM2jQIAA2bNhQ6phztGvXjnvuuSffdVdXV1588UUAvv/+e2JjY82ynG0Qa9asWWi8r732GgCRkZFs3Lix0PHj4uLo2rUrK1asoHr16mzfvr3AM7AWLVoEwKOPPmom8S5Vs2ZN8zNV1D2aPn06FovFfBXWn4iIiIiIiIiIiIhcn8ok0XQ1dOrUCcibSMr5ulOnTtx11104OzsTFhZmJjR27dpFSkoKrq6utGnTJk9/WVlZfP755zzwwAPUqlULV1dXc1WLYRj8+OOPAJw6depqTK/U9u/fD0DLli3N1SeX8vb2pkWLFnnqX6ply5Yl2sbucu655x5cXFz4+eef6dChA4sWLeLYsWM295cTt4ODAx06dCiwjp2dXYEJFICdO3cC2auLatSoQbVq1Qp8PfXUUwCEh4fbHOulct7DRZVlZWXl2T4vZ75BQUGFnpXVoEEDM7FW2HM9e/YsHTt2ZOvWrdx6663s2rWLxo0bF1g35x4tWrSo0PtTrVo1Nm3aBBR9jyZOnGhuuxcbG8vJkycLrSsiIiIiIiIiIiIi1x+b97Ozs7OjevXqnD59ulj1b7rpJk6ePElGRoZN4wUFBfHOO+8QFhZGRkYGDg4O5vlLnTp1MpNJ27ZtY9++fbRp08Ysv+uuu/IkT5KSkujRo4dZDuDk5ISPjw+Ojo4AREVFkZ6eTmJiok3xXm3nz58HKHQlT46aNWvmqX+pqlWrlmlcdevWZeHChYwYMYLdu3ebK8yqVKlCUFAQAwYM4IEHHsAwjGL1lxN35cqVcXZ2LrRezjwvdebMGQDS09M5d+7cZcdLTk4uVlzFUdSzyV2W+9mU5LmePn260Of60UcfAdlb323atKnIlUU596i4W90lJSUVWubs7FzkcxIRERERERERERGR61upVjRZrdYrWj+3u+++GwcHBxISEvjxxx9JSkpi7969WCwWmjdvDuRf9VTY+UxvvPEGW7duxdXVlXfffZfw8HBSUlK4ePEiERERRERE0Lp161LHfD2yt7cv8z4fffRRwsPDmTdvHv369SMgIIALFy6wYsUKevbsSceOHa/a2T05q91at26N1Wot1qsi6NGjBxaLhZSUFB5//PEik0M59+jDDz8s1v1ZsmTJVZqFiIiIiIiIiIiIiFxrrtrWeWlpaYVu/VUcHh4eZkJpy5Yt7Nixg7S0NO6++24zOZKTUNqyZQuJiYnm9neXbln2xRdfAPDqq68yevRoatWqlW9FTUREhM2xloeclUiX2+ovp7ysVy5djo+PD8OHD+eLL77gxIkT/P3330yYMAHDMAgLCyM4OLhY/eTEHRkZSVpaWqH1CltpV61aNaBst8QrrqJW/+Uuy/1syuq5Nm/enE2bNuHt7c3mzZvp3r17oav1yvMeiYiIiIiIiIiIiMj15aokmmJiYjh//jze3t6l6id3Iin3tnk5WrdujZubG7t27WLz5s2kp6fj7u5Oy5Yt8/STc05Ms2bNChzn+PHj/P333zbFmJOwutorYXKfvRQbG1tgnZiYmDxnOZWnunXrMn36dAYMGADAxo0bi9UuZ54ZGRmEhYUVWCcrK4vQ0NACy9q1awdkJxILO8/oSsm9VWNhZXZ2dnnelznz3bp1K1lZWQW2PXr0qJmoKuq5tmjRgs2bN+Pj40NoaCjdunUjISEhX72ce/TNN99cZkYiIiIiIiIiIiIicqMrdqLp8OHDLFu2zHxB9vk1ua9d+lq6dCmzZ8/m/vvvJysrq9DETnHlJJV2797Nd999l+caZJ+z1K5dO5KTk5k2bRoA7du3x8Eh71FUFosFgEOHDhU4zoQJE2yO0dPTE8hO6lxNvXv3xsHBgZSUFGbOnFlgnWnTppGamoqjoyO9e/e+KnGlpqYWWe7q6gpQ7NVujRs3pkGDBkD2FogFJV8+/vjjQlcABQUFUa9ePQDGjBlT5KooyD6rq6zs2LGjwARYSkoK77zzDgD33XcfXl5eZtkjjzwCZK94WrhwYYH9vvrqq0D2uVWdO3cuMoZmzZqxZcsWKleuTFhYGF27diU+Pj5PnWHDhgHwyy+/8OGHHxbZX2Ji4mXvoYiIiIiIiIiIiIhUXMVONH311Vc8/vjj5gsgLi4uz7VLX0OHDmXs2LHs3LkTgLFjx5Yq2Hbt2uHk5ERKSgqHDh2iSpUqNGrUKE+dnMTT3r17gfznMwF07doVgNdff53Vq1eTkZEBwLFjxxgwYAArVqywefXVHXfcAcBnn31W5Dk4Zc3f359Ro0YBMGPGDCZPnmwmu2JiYpg0aRJvvfUWkP0cqlevflXiGjlyJH379mXVqlWcP3/evJ6QkMC8efPMpGX37t2L3ecbb7wBZK/yGTBggJlUSklJYd68eYwcOTJPsiY3BwcH5s2bh4ODAzt27ODuu+82V7/l+Pfff5k3bx4tW7bkgw8+KOmUC2WxWOjduzcrV64033NHjx6le/fuHD16FHt7e6ZOnZqnTatWrcyk4HPPPcf7779vvq8iIiJ46qmn+PLLLwF47bXXcHFxuWwcTZo0YcuWLVSpUoWdO3dy33335Tkjq2PHjuZn/Nlnn2XMmDH8+++/Znlqaip79uxh3Lhx1K5dO89zFREREREREREREZEbi8Plq2Tz8vKiVq1a5vfh4eHY2dlRs2bNQtvY2dnh6enJHXfcwbBhw+jQoUOpgnVzc6N169bmlmmBgYH5zla6NLFUUKLp9ddfZ+PGjZw7d85cCVSpUiVzy7lp06axYcMGtm3bVuIYR4wYwc6dO1m1ahVr166latWqODg4ULNmTXbs2FHi/kpi2rRpnDx5khUrVjB16lRef/11LBYLsbGx5sqf/v3789prr13ROHJLT0/nyy+/NJMh7u7uODg45Fnx1b59e15++eVi99mrVy9efvll3njjDUJCQggJCcHb25v4+HgyMjLo0KED7du3Z/r06QW2v+eee/jyyy8ZNGgQe/fupXPnzjg6OuLp6UlCQkKeVVg9e/a0ad4FmTx5MvPnz6dPnz44Ozvj4uJivucMw+DDDz80t8rLbdGiRURGRrJt2zaee+45xowZg4eHBzExMeYWjS+88AIjRowodiyNGjUiNDSUTp06sXv3bu699142bNhgJujmzZuHvb09Cxcu5L333uO9997D3d0dR0fHPO+nnNhFRERERERERERE5MZU7BVNo0aN4tixY+YLoEqVKnmuXfr6559/+Pnnn/nkk09KnWTKkTtxlHvbvBwtWrQwt6/z9PTkzjvvzFendu3a7N+/nyeeeIIaNWoA4OLiQo8ePdiwYQMTJ060Ob7HHnuMTz75hPbt2+Pm5sbZs2cJDw8vdCu3suTk5ERISAgrV66kW7du+Pr6Eh8fj6+vL926dWP16tV8/vnnODo6XvFYckyaNIk5c+bQq1cvbrvtNhwcHEhISKBq1arce++9fPzxx4SGhlKpUqUS9fv666/zzTff0KlTJzw9PUlNTaVBgwbMmDGDzZs34+TkVGT7nj178vfffzN58mRatWqFu7s7MTExODs706RJE5588km++uorXnzxxdJMPw9vb29+/PFHJkyYQK1atUhNTcXHx4f777+fnTt38tRTTxXYzmKxsHnzZhYtWkRgYCAeHh4kJCRQrVo1evfuzdatW83VaiVx++23ExoaSvXq1fnxxx/p3Lkz0dHRQPZ7acGCBezatYshQ4ZQt25dMjMzzWcXGBjIq6++yuHDh/H39y/VfRERERERERERERGR65dhzVkSUUJTpkzB3d2d559/vqxjEqlQ6tSpQ3h4OIsXL2bIkCHlHU65iouLw2KxEDB6BXbObuUdzmUdn1H8LR2vpDoT1l+2zrUSq/yf4jy3snCtPHtb5nutxF6Qq/X8RKRisfXnmv6tFyk7Jf03/Eb5bJXkvuie2OZGuW/XKv3+fu2y5bNR3s9Tn+crp7yf7ZVSUd8zOX/LjY2NNRf3FKbYW+ddavLkybY2FRERERERERERERERkQqg2FvniYiIiIiIiIiIiIiIiORm84qm3Hbt2sWOHTs4deoUiYmJFLYbn2EYLFq0qCyGFBERERERERERERERkXJm8xlNAH/99RcDBgzgp59+ynPdarViGEaB1zIzM20d7rr30EMPsWvXrhK1Wb16NXfdddcViqj4rufYy0LLli05efJkidrs27ePgIAAndGUS0n29RQRERERERERERGR8nFVzmi6ePEinTp14vTp0/j5+dGxY0dWrFiBq6srvXv3JiIigr179xIfH0/lypXp3r1iHohVElFRUZw7d65EbdLS0q5QNCVzPcdeFi5cuFDi+eckVY8fP34FIhIRERERERERERERKX82J5ree+89Tp8+TevWrdm8eTNubm6sWLECi8XCsmXLAEhMTGTq1Km89dZbuLq68sEHH5RZ4Nej0NDQ8g7BZtdz7GVBySIRERERERERERERkfxsTjStX78ewzCYNm0abm5uBdapVKkSM2fOJC0tjTlz5hAUFESfPn1sDlZERERERERERERERESuHXa2Nvznn38wDIMOHTrkuV7QdmkTJkwA4KOPPrJ1OBEREREREREREREREbnG2JxoSk9Px9vbGweH/1sU5ebmRnx8fL66fn5+WCwWDh8+bOtwIiIiIiIiIiIiIiIico2xOdFUo0YNkpKS8lzz8/MjIyODf//9N8/19PR04uLiiI2NtXU4ERERERERERERERERucbYnGiqXbs2KSkpnDp1yrzWsmVLAD799NM8dZcsWUJWVhb+/v62DiciIiIiIiIiIiIiIiLXGJsTTTlnM4WGhprXBg4ciNVq5fXXX+fZZ59lwYIFjBw5kpEjR2IYBj179ixtvCIiIiIiIiIiIiIiInKNMKxWq9WWhr/++is9evQgMDCQxYsXm9cHDBjAF198gWEY5jWr1UqDBg3YtWsXFoul9FGLyHUpLi4Oi8VCbGwsnp6e5R2OiIiIiIiIiIiIiBSgJH/LtXlFU8OGDTl27FieJBPAZ599xvz58wkKCqJevXo0b96cV155RUkmuaZYrVYWL15M27Zt8fDwwGKx0Lp1az766COsVitDhgzBMAyGDBlSYPvVq1fTo0cP/Pz8cHJyws/Pjx49evDVV19dkXh/+OEHHnnkEWrXro2rqys+Pj40btyY5557jt27d+epGxwcjGEYBAYGFtpfaGgohmHkSQhfKj4+nhkzZtC2bVt8fHxwdnYmICCARx55JN+YIiIiIiIiIiIiInJjcijrDg3D4KmnnuKpp54q665FykRmZiaPPvooISEhQPZ71svLi/379/Pjjz8SGhqKk5NTgW3T0tIYNGiQ2dbOzg6LxUJkZCTr169n/fr19O/fn6VLl+Lo6FjqWJOSkhgyZAhffvmlec3Dw4OsrCyOHDnCkSNHCAsL4+DBg6UeK7eDBw9y//33m2ew2dvb4+bmxqlTpwgJCWHFihW88cYbTJw4sUzHFREREREREREREZHri80rmkSuV2+99ZaZKBo7diwXLlwgKiqK6Ohopk2bxhdffMHatWsLbPvSSy8REhKCYRhMmjSJixcvEhUVRWRkJC+99BIAy5cvZ9KkSWUS6+OPP86XX36JnZ0d48eP5+TJk8TFxRETE8OFCxf47LPPaNu2bZmMlePs2bPcd999nDp1ioceeoj9+/eTnJxMXFwc586dY9KkSdjb2/PSSy+xZs2aMh1bRERERERERERERK4vNiea7Ozs8Pf3L3b9m266CQeHMl9AJVIiiYmJTJ8+HYAnnniCd955B19fXwA8PT2ZOHEir776KtHR0fnanj59mtmzZwMwYcIEpk6dipeXFwDe3t688cYbjB07FoBZs2Zx9uzZUsW6efNmVqxYAcD777/PjBkzqFmzplleuXJlBgwYwIcffliqcS71yiuvcP78eQYMGMCqVato3ry5uTqratWqTJ06lTfffBPI3qZPRERERERERERERG5cpVrRZLVar2h9kbL2ww8/EBcXB8DLL79cYJ3nn38eNze3fNdXrVpFRkYGLi4uTJgwocC2r7zyCs7OzqSnp7Ny5cpSxfrxxx8DcMcdd/D000+Xqq/iSklJ4fPPPwdg/PjxhdYbNGgQAIcOHeLcuXOF1ktNTSUuLi7PS0REREREREREREQqjqu2dV5aWhp2dtqpT8rXTz/9BECtWrW46aabCqzj4eFB8+bN813fv38/AC1btsTT07PAtt7e3rRo0SJPfVvt2rULgB49epSqn5I4cOAAKSkpAHTp0oVq1aoV+GrYsKHZJjw8vND+pk+fjsViMV8BAQFXfA4iIiIiIiIiIiIicvVclb3sYmJiOH/+PN7e3ldjOJFCXbhwAYAaNWoUWa+gbSHPnz9faFluOdvb5dS3VUREBAC1a9cuVT8lcebMGfProlYq5ZaUlFRo2cSJE83tBAHi4uKUbBIRERERERERERGpQIqdaDp8+DAHDx7Mcy05OZlly5YV2sZqtRITE8PKlSvJysqiWbNmNgcqUpYMwyjvEC6rPGLMzMw0v05OTsbFxaVU/Tk7O+Ps7FzasERERERERERERETkGlXsRNNXX33F1KlT81yLi4vj8ccfv2xbq9WKYRh5VjaIlIcqVaoAeVfuFOT06dP5rlWtWhWAU6dOFdk2pzynvq2qVavGsWPHityariAODtkf65wt8AoSGxtb6Jg5wsPDqV+/fonGFhEREREREREREZEbS7EPTfLy8qJWrVrmC8DOzi7PtUtfderUoXHjxjz66KOEhoZy3333XbGJiBTHnXfeCWQnUY4fP15gnYSEBA4cOJDveu6zlwpL1MTExOQ5y6k07rrrLgDWrVtXonY5W1SePHmy0Dp79+4t8HrLli1xcnKyaVwRERERERERERERufEUO9E0atQojh07Zr4ge3VI7muXvv755x9+/vlnPvnkEzp06HDFJiFSXF26dMHT0xOAadOmFVjn3XffLfDcod69e+Pg4EBKSgozZ84ssO20adNITU3F0dGR3r17lyrWJ554AoBff/2VDz/8sNjtmjRpAmSv2ioooXT+/HkWLFhQYNtKlSoxYMAAAGbOnMmJEyeKHCsqKqrYcYmIiIiIiIiIiIhIxVPsRNOlJk+ezPPPP1+WsYhccZUqVWL8+PEALFiwgHHjxpnJkvj4eGbOnElwcLC5Kig3f39/Ro0aBcCMGTOYPHkyMTExQPZKpkmTJvHWW28BMHbsWKpXr16qWIOCgnjkkUcAGDlyJBMnTsyzbV9kZCQLFy40E1I57rrrLmrXrg3A4MGD2b9/P1arlaysLEJDQwkMDCQrK6vQcadNm0aNGjWIjIykbdu2fPLJJ8THx5vlFy5cYNWqVfTq1Yv+/fuXao4iIiIiIiIiIiIicn0zrFartbyDELmaMjIy6N+/PytXrgSyt4C0WCzExcWRmZnJwIEDMQyDZcuWMXz4cObNm2e2TUtLY+DAgaxYsSJP29jYWDN5079/f5YuXYqjo2OpY01KSmLgwIGsXr3avObp6YlhGOb2fU2aNOHgwYN52m3YsIH777+f9PR0ANzc3MjKyiIlJYVbbrmFqVOnmkmign4E/P777/Ts2ZM///zTnKeXlxepqakkJiaa9Tp37szGjRuLPZ+4uDjzfuWsLBMRERERERERERGRa0tJ/pZr84qmwqSlpbF27Vreeust5syZw44dO8p6CJFScXBwYMWKFSxcuJBWrVrh6upKRkYGLVq0YOHChSxbtsxcqeTl5ZWnrZOTEyEhIaxcuZJu3brh6+tLfHw8vr6+dOvWjdWrV/P555+XSZIJshNEq1at4ptvvqFXr17UqFGDlJQUHBwcaNy4Mf/973/56KOP8rW77777CAsLo0ePHnh7e5OZmUlAQAATJkzgwIEDVKtWrchxGzRowOHDh5k/fz5dunShcuXKxMXFYbVaqVevHn369OGjjz4yE24iIiIiIiIiIiIicmMq9oqm+Ph4vvrqKwD69euHs7Nzvjr79++nd+/eebb3AmjdujWrV6++7B+3Ra4FVquVWrVqcerUKZYtW8bAgQPLO6QKQyuaRERERERERERERK59V2RF0+bNmxkyZAjvvfdegUmm8+fP85///IdTp05htVrzvPbu3csDDzxQ8pmIlINPPvmEU6dO4eDgQOfOncs7HBERERERERERERGRa1axE01hYWEADBgwoMDymTNnEhkZCcDgwYPZuXMnhw4dYsyYMVitVg4cOGCeiSNS3nLOaMp5zwKcO3eOGTNm8NRTTwEwaNAgqlevXl4hioiIiIiIiIiIiIhc84q9dV6HDh3YtWsXhw4d4o477shXXq1aNS5cuMD999/PmjVr8pQ9/vjjLF26lH79+rF8+fIyCVykNLy8vIiNjQWyz0FydHQ0v4fs9/s333yj7d3KmLbOExEREREREREREbn2leRvuQ7F7fTs2bM4ODhw++235yv79ddfOX/+PIZh8N///jdf+ahRo1i6dCk///xzcYcTuaLmzJnDd999x88//8z58+dJSEigSpUqNG3alEceeYSBAwfi6OhY6nFOnjxJy5YtS9QmICCAffv2lXpsEREREREREREREZErrdiJpnPnzuHp6YmdXf7d9n788UcAnJycaN++fb7yO+64A8MwOHPmTClCFSk7gwYNYtCgQVd8nMzMTM6dO1eiNi4uLlcoGrmW1ZmwvtCy4zO6X8VIrk1F3Z/crta9Kk48Fe25XW7O1+N89bkTkavhRvw343pVZ8J6PYtrnD5PhauIv6uVht4r5Sfn3l+J+6vf3ysGfT4rLj3ba8uV/HlckGInmjIzM4mLiyuw7MCBAwA0aNAAJyen/IM4OODt7Z1nazKRG0GdOnUo5u6UIiIiIiIiIiIiIiLXnfzLkwpRtWpVMjIy+Oeff/KV7d69G8MwitwiLCEhgUqVKtkWpYiIiIiIiIiIiIiIiFxzip1ouvPOOwH46KOP8lz/66+/OHjwIAAdO3YssG14eDhpaWnUrFnTxjBFRERERERERERERETkWlPsRFP//v2xWq28++67vPXWW/zxxx9s3ryZPn36YLVaqVSpEvfff3+Bbbdv3w5kn9UkIiIiIiIiIiIiIiIiFUOxE019+vTh7rvvJiMjgwkTJnD77bfTpUsXjhw5gmEYjB07Fg8PjwLbhoSEYBgG7du3L7PARUREREREREREREREpHwVO9EE8PXXX9OjRw+sVqv5AnjyySd59dVXC2zz119/8f333wPwn//8p5ThSkUUHByMYRgEBgaWdygiIiIiIiIiIiIiIlICDiWpbLFYWLt2LX///bd5LlPLli2pXbt2oW0cHR35+uuvcXR05Oabby5VsCKS3/Hjx1myZAmQnbQTEREREREREREREblaSpRoylGvXj3q1atXrLp16tShTp06tgwjN4jKlStTv359atWqVd6hXJeOHz/OlClTACWaREREREREREREROTqsinRJFKWRo4cyciRI8s7DBERERERERERERERKaESndEkIiIiIiIiIiIiIiIikkOJpqskMDAQwzAIDg7GarWyYMECWrdujaenJx4eHrRt25ZPP/20yD5Wr15Njx498PPzw8nJCT8/P3r06MFXX31VZLsNGzbw0EMPUbNmTZycnPD09OTmm2+mS5cuvP3220RFRRXYLj4+nhkzZtC2bVt8fHxwdnYmICCARx55hN27d9t8Ly4VHByMYRgEBgbmKxsyZAiGYTBkyBAAVq5cSWBgID4+Pri5udG0aVNmz55NVlZWmcUDkJWVxYoVK+jZsyf+/v44OztTpUoVmjdvzvjx4/nll18KbGfLPTt+/DiGYWAYBsePH+fcuXOMGjWKm266CRcXF/z8/HjkkUc4evRovrZ16tQhKCjI/D6nn5xXzn0r6xj/+ecfhg0bxk033YSzs7O2xxQRERERERERERG5QWnrvKssMzOTXr168fXXX+Pg4ICbmxvx8fHs2bOHPXv28Ndff5nn7eRIS0tj0KBBhISEAGBnZ4fFYiEyMpL169ezfv16+vfvz9KlS3F0dMzTdurUqUyePNn83s3NDavVyrFjxzh27BgbN26kRYsW+ZI8Bw8e5P777+fUqVMA2Nvb4+bmxqlTpwgJCWHFihW88cYbTJw48QrcpYKNHDmSuXPnYmdnh6enJ8nJyRw6dIjRo0fz008/sXTp0jIZJzIykt69e7N9+3bzmpeXFykpKfz000/89NNP/PHHH6xZsyZPu7K4Z7/++itDhw7l/PnzuLm5AXD+/HlCQkL47rvv2L59O02aNDHrV6lShbi4OKKjowHw8/PL05/FYinzGHft2sXw4cNJSEjAzc0t33tORERERERERERERG4cWtF0lc2dO5fQ0FCWLFlCXFwcsbGxnDx5kvvvvx+A119/nb/++itPm5deeomQkBAMw2DSpElcvHiRqKgoIiMjeemllwBYvnw5kyZNytMuPDzcTFqNHTuW06dPk5iYSHx8PDExMYSFhfHMM8/g4eGRp93Zs2e57777OHXqFA899BD79+8nOTmZuLg4zp07x6RJk7C3t+ell17Kl2y5UtauXcuCBQuYNWsW0dHRREdHExkZyZNPPgnAsmXL2LJlS6nHycjIoGfPnmzfvh1nZ2dmzpzJ+fPniY6OJj4+ntOnTzN//nxuv/32PO3K6p4NHDiQW265hX379pGYmEhCQgIbN26kevXqxMXF8dxzz+Wpv2/fPlavXm1+HxERkec1e/bsMo9x+PDhNGzYME+MP/zwQ4F1U1NTiYuLy/MSERERERERERERkYpDiaarLDo6mq+++orBgwfj6uoKQM2aNfnyyy+pUaOGuWVbjtOnT5vJggkTJjB16lS8vLwA8Pb25o033mDs2LEAzJo1i7Nnz5pt9+7dS1ZWFrfeeivvvPMONWrUMMssFgvt27dn7ty5NG/ePE+Mr7zyCufPn2fAgAGsWrWK5s2bm6tWqlatytSpU3nzzTeB7G3vrobo6Gjmz5/PmDFj8PT0BMDX15cFCxaY8S9fvrzU4yxdupSdO3diGAarV69m3LhxVKlSxSyvUaMGw4YNY9q0aXnaldU98/PzM1eZATg4ONC5c2fmz58PQFhYmLkaqaTKKkZfX182bdpkxghw6623Flh3+vTpWCwW8xUQEGBT7CIiIiIiIiIiIiJybVKi6Spr165dnjN1cjg7O3PfffcBcPjwYfP6qlWryMjIwMXFhQkTJhTY5yuvvIKzszPp6emsXLnSvJ6TkIqPjycxMbFY8aWkpPD5558DMH78+ELrDRo0CIBDhw5x7ty5YvVdGgEBAQwePLjAsgceeADIe99s9fHHHwPwn//8h//85z/FalOW9+z55583E5C5devWDScnJwCOHDlSrLiuVIwjR47E3d29WONOnDiR2NhY83Xy5MkSRi4iIiIiIiIiIiIi1zKd0XSVtW7dutCynBVHUVFR5rX9+/cD0LJlS3Mlz6W8vb1p0aIFO3fuNOsDtGrVisqVK3P27Flat27NiBEj6Ny5M/Xr18cwjAL7OnDgACkpKQB06dKlWHMKDw/PdzZQWWvZsmWhMRd032yRkZHBvn37AMytDIujLO9ZYe8PBwcHqlSpwunTp22aZ1nG2K5du2KP6+zsjLOzc7Hri4iIiIiIiIiIiMj1RYmmq+zS85Byc3DIfhzp6enmtfPnzwPg7+9fZL81a9bMUx+yVzQtX76cAQMG8Ouvv5rn+1gsFu6++2769u1Lv379zO3TAM6cOWN+XdyVSklJScWqVxolvW+2uHjxotlH7dq1i92uLO/ZlZpnWcZYtWrVEo8vIiIiIiIiIiIiIhWTEk0VXOfOnTl27BirV69m8+bN7Nq1i7/++ot169axbt06ZsyYwYYNG8xEVmZmptk2OTkZFxeX8gr9qitsxdTlXA/3rCxjtLe3L4uQRERERERERERERKQC0BlN17ic1SOnTp0qsl5OeUGrTSpVqsTAgQNZsmQJf/75J6dOnWLmzJm4uLjkWekEUK1aNfPr8PDwspjCdcPHx8dc3VWSuV8P9+x6iFFERERERERERERErj9KNF3jWrRoAWSf1RQbG1tgnZiYmDxnOV2Ov78/48aN4/nnnwdg48aNZlnLli1xcnICYN26daWK/Xrj4OBAq1atgJLNvbzvmZ3d/32MrVZrgXXKO0YRERERERERERERqZiUaLrG9e7dGwcHB1JSUpg5c2aBdaZNm0ZqaiqOjo707t3bvJ6amlpk366urkDeREWlSpUYMGAAADNnzuTEiRNF9hEVFVWseVwvnnjiCQC+/fZbvv3222K1Ke975unpaX4dExNTYJ3yjlFEREREREREREREKiYlmq5x/v7+jBo1CoAZM2YwefJkM5kQExPDpEmTeOuttwAYO3Ys1atXN9vOnDmTbt268cknn+TZei81NZUVK1aY7bp3755nzGnTplGjRg0iIyNp27Ytn3zyCfHx8Wb5hQsXWLVqFb169aJ///5XZN7lZeDAgbRv3x6r1Urv3r156623iIyMNMvPnDnDu+++y/jx4/O0K897duutt5qrlRYuXFjoqqYb+bmKiIiIiIiIiIiIyJXhUN4ByOVNmzaNkydPsmLFCqZOncrrr7+OxWIhNjaWrKwsAPr3789rr72Wp11WVhbff/8933//PZC9gsnV1ZXo6GgzGdGgQQNmzZqVp1316tXZtGkTPXv25M8//2TQoEHY2dnh5eVFamoqiYmJZt3OnTtfyalfdQ4ODnz11Vc89NBDhIWFMW7cOMaPH4/FYiEjI4OEhAQAHnzwwTztyvOeubm5MXDgQBYtWsS4ceMIDg6mcuXKGIbBww8/zNtvv13uMYqIiIiIiIiIiIhIxaRE03XAycmJkJAQ+vbty6JFi9i/fz/R0dH4+vrSokULnnrqKXr16pWv3bBhw/D392fr1q0cOXKEs2fPEhsbi7e3Nw0bNqR3794MHz4cFxeXfG0bNGjA4cOHWbp0KatWreLgwYNERUXh5OREvXr1aNasGffeey8PP/zw1bgFV1XlypUJDQ1l+fLlfPbZZxw4cIDo6Gi8vb2pX78+9957LwMHDszXrjzv2dy5cwkICGDVqlX8888/5tZ4uVdjlXeMIiIiIiIiIiIiIlLxGNbC9tkSESljcXFx5mq83GdLCdSZsL7QsuMzuhdadqMo6v7kdrXuVXHiqWjP7XJzvh7nq8+diFwNN+K/GderOhPW61lc4/R5KlxF/F2tNPReKT859/5K3F/9/l4x6PNZcenZXlvK4udxSf6WqzOaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmziUdwBSMYwaNYqQkJAStZk9ezb9+vUr81h27drFQw89VKI2d911F6tXry7zWKRiKO75QKVxrexRezXmaotr6ewluHaeV25X+tldyTmX1/vuWnyOIlIx5P65pp81165L//0pq2d1rf4+VRGUx+fpenmeV/PeXA/3RD97r76yPpupoPeZnuv1S78blZ+r+TNbz/byKvLzUKJJykRsbCznzp0rUZvk5OQrEktaWlqJY4mKiroisYiIiIiIiIiIiIiIVGRKNEmZWLJkCUuWLCnvMAAIDAzEarWWdxgiIiIiIiIiIiIiIhWezmgSERERERERERERERERmyjRJCIiIiIiIiIiIiIiIjZRoklKpE6dOhiGcdW3ycvMzGTWrFk0a9aMSpUqYRgGhmGwZs2aqxrH9WTIkCEYhsGQIUPKOxQRERERERERERERqaB0RpOUmeDgYCA7wVGnTp0y7Xv06NG8//77ADg5OeHn5weAi4tLmY4jIiIiIiIiIiIiIiLFp0STlEjdunVxcXHBYrHkK5syZQoAgYGBZZpoio+PZ/78+QC8+eabvPDCCxiGUWb9i4iIiIiIiIiIiIiIbZRokhLZvHnzVR/z6NGjpKenA/D0008rySQiIiIiIiIiIiIico3QGU1yzUtKSjK/dnd3L8dIREREREREREREREQkNyWarnGNGjXCMAzzfKLcdu/ejWEYGIbBww8/nK88PT0dDw8PDMPIsxJpz549jB8/ng4dOlC7dm1cXFzw8vKiTZs2zJw5k4SEhELjqVOnDoZhsGTJEvPakCFD8qwyCgoKMuMyDMPmbfSWLFmCYRgEBgaa13L3m/t6jtWrV9OjRw/8/PzMs5x69OjBV199Veg4OfEPGTIEq9XKwoULad++Pb6+vvnmWlKBgYEYhkFwcDBpaWnMmDGDxo0bU6lSJby9vbn33nv57rvvLtuPLfO6nB9++MF8fwwZMoSMjIw85Tt37uSxxx4z3yMWi4VWrVpd9j0iIiIiIiIiIiIiIjcObZ13jQsKCuKXX35hy5YtjBw5Mk/Zli1bzK9DQ0OxWq15Ej4//vgjCQkJODs7065dO/N627Ztza/d3Nxwc3MjOjqavXv3snfvXpYtW8bWrVupWrVqsWK0WCz4+flx7tw5ALy9vXFycjLLq1SpUrJJ/3+urq74+fmRlpZGdHQ0AH5+fma5j4+P+XVaWhqDBg0iJCQEADs7OywWC5GRkaxfv57169fTv39/li5diqOjY4HjWa1W+vTpw6pVq8z2dnZlk4tNS0ujc+fOhIWF4eDggLu7OzExMWzatIlNmzYxefJkgoODC2xX2nkV5NNPP2Xo0KGkp6czfvx4ZsyYYZZlZWUxZswY5syZY15zd3cnMTGRffv2sW/fPhYvXsyGDRuoXbu27TdFRERERERERERERK57WtF0jQsKCgJg27ZtZGVl5SnbunUrAJ6enly8eJFDhw4VWN6mTRtcXFzM6/fffz8hISGcPXuWxMREoqKiSEpKYvXq1dSvX5/ffvuNESNGFDvG2bNnExERYX6/evVqIiIizNe+fftKNun/r1+/fkRERLB69WrzWu5+c19/6aWXCAkJwTD+X3t3HhZlufAP/DswC4PAsCggIuK+a25puYChqaXmbilpuRX6tqhHXy0N10orLV8zyzxZJ3P3lL0dcwdFUsMlEfcEFXdkkWFf7t8f/uZ5GWYGhmHwYfT7ua65rmHu9Zn5Osjccz+PAnPnzsX9+/eRmpqKlJQUvPfeewCADRs2YO7cuRbH2759O3755Rd8+umnSEtLQ2pqKjIyMtCnTx+b5l/SqlWrcOzYMaxevRqZmZlIS0vDtWvXpJ1o8+fPx44dO0za2eO4Svv0008xZswYFBYW4vPPPzdaZAKAyMhIrFixAr6+vvjyyy9x//59ZGZmIicnBwcOHEC7du1w4cIFDBkyxCSTRERERERERERERPRk4UJTNRcaGgonJyekpqbi1KlT0uN5eXmIjY2Fq6srJk2aBMB4h1PJnw2LVQY7duzAiBEj4O/vLz2m1WoxePBg7Nu3DxqNBj///DOuXbtWRUdlXzdu3MAXX3wBAJg1axYWLFgAT09PAA93Vy1evBjTpk0DACxbtgy3bt0y249er8eyZcswffp0eHh4AHi4k6d27dqVnmNGRgZWrVqFN954Q1r0q1u3LjZt2oQePXoAgLRwZO/jMhBCYNq0aZgxYwZUKhU2bNiAd955x6hOUlISPvroI2i1WuzevRuTJ0+Wdo6pVCqEhoYiOjoagYGBOHHihNnFsZLy8vLw4MEDoxsRERERERERERERPT640FTNeXl5oW3btgCMF5KOHDmCnJwcdO3aFX379jUpz8vLwx9//AHAdKGpLHXq1EHbtm0hhEBsbKw9DqHKbdu2DYWFhXBxccGsWbPM1pkzZw40Gg0KCgqwdetWs3W8vLzwxhtvVMkc69ati9dff93kcScnJ8yZMwcAkJCQgPj4eKnMXscFPDwF3+jRo7F8+XK4u7vjP//5D0aOHGlSb926dSgqKkLfvn2l3JXm7u6OQYMGAQB27dplcUwA+Oijj6DT6aRb3bp1y6xPRERERERERERERI6FC00O4LnnngNgvJBkuP/cc8/h2WefhUajwaFDh1BUVAQAiI2NRW5uLrRaLbp06WLUX3FxMX766ScMHDgQQUFB0Gq1UCgU0u3YsWMAgOTk5EdxeJUWFxcHAOjUqZO0E6k0Ly8vdOzY0ah+aZ06dTK6tpQ9hYaGGl0/q6Tu3btDqVSazM1ex5WZmYkXX3wRGzZsgJ+fH6KjoxEWFma27uHDhwEAu3fvhr+/v8Xbd999BwC4evVqmcc9e/ZsZGRkSLfr16+XWZ+IiIiIiIiIiIiIHItS7glQ+Xr27InPPvsMhw4dQmFhIZRKpXT9peeee05aTIqOjsaff/6JLl26SOXPPvus0eJJdnY2+vfvL5UDgFqthre3N1QqFQAgNTUVBQUFyMrKeoRHabu7d+8CeLgbqyyBgYFG9Uvz9fW178RKKGtuLi4u8PHxwZ07d4zmZq/jKnktq19//RXt2rWz2NfNmzcBAFlZWVa9/tnZ2WWWazQaaDSacvshIiIiIiIiIiIiIsfEHU0OoEePHlAqldDr9Th27Biys7Nx9OhR6HQ6dOjQAYDpridL12davHgxDhw4AK1Wi+XLl+Pq1avIzc3F/fv3cfv2bdy+fRudO3cG8PCaPk8SZ2dnuadQJUJCQqRT1k2YMAH37t2zWNewI+6///u/IYQo9xYVFfUoDoGIiIiIiIiIiIiIqikuNDkAd3d3aUFp//79iImJQX5+Pnr06CEtjhgWlPbv34+srCzp9HeGBSiDjRs3AgA++OADvPvuuwgKCjI5pdvt27er9HjszbATqbxT/RnKq3LnkiU3btywWJaXl4f79+8DMJ6bvY4rODgYUVFRqFevHk6fPo2ePXta3P3k7+8PoPxT4hERERERERERERERAVxochglF5JKnjbPoHPnznB1dUVsbCz27duHgoICuLm5oVOnTkb9GK6RY+n0aUlJSbh8+bJNczQsWD3qnVAlr1GUkZFhtk56errRNY8etejoaIvPi+GUiMD/HUvJ+/Y4rgYNGiAqKgrBwcFISEhAaGio2QXFrl27AgD27t2L3NxcK46MiIiIiIiIiIiIiJ5kXGhyEIZFpT/++AM7d+40egx4eJ2lrl27IicnBx9++CEAoFu3blAqjS/DpdPpAAB//fWX2XFmzZpl8xw9PDwAPFz8eJSGDh0KpVKJ3NxcLFmyxGydDz/8EHl5eVCpVBg6dOgjnR8AXLt2Dd9//73J48XFxdLr1aJFC7Ru3Voqs/dxBQcHIzo6Gg0aNMC5c+cQGhqKW7duGdUZN24clEolUlJSEBkZWWZ/+fn50Ov1ZdYhIiIiIiIiIiIioscbF5ocRNeuXaFWq5Gbm4u//voLtWrVMlqUAP5v4eno0aMATK/PBAB9+/YFACxatAjbt2+XdtIkJiZi1KhR2Lx5M7y8vGyaY6tWrQAA69evR3Z2tk192KJOnTp45513AAAff/wxIiMjpcWu9PR0zJ07F5988gkAYNq0aahdu/Yjm5uBTqdDREQE1qxZI+0Uun79Ol555RVph9qiRYuM2lTFcQUFBSE6OhqNGjXChQsXEBISYnRav4YNG2Lu3LkAgKVLl2LMmDE4c+aMVF5YWIhTp05hwYIFaNSoEU6dOmXbE0JEREREREREREREjwUuNDkIV1dXdO7cWfo5NDTU5NpKpReWzC00LVq0CH5+fsjMzMTQoUOh1Wrh6emJBg0aYMOGDVi8eDHatGlj0xzffPNNAMC2bdvg6emJwMBABAcHo1u3bjb1VxEffvghRowYASEEFixYAB8fH3h7e8PHx0dawHnllVewcOHCKp+LOZMnT0bHjh0xadIkeHh4wNvbG0FBQdi8eTMAYM6cORg8eLBJu6o4rsDAQERHR6Np06a4dOkSQkJCpFMqAsDcuXMxd+5cKBQK/Otf/0Lr1q3h6uqKmjVrwsXFBe3atUNkZCSuX79ukkEiIiIiIiIiIiIierJwocmBlFw4KnnaPIOOHTtKp6/z8PBA+/btTerUq1cPcXFxGD9+PAICAgAALi4u6N+/P3bt2oXZs2fbPL/w8HD861//Qrdu3eDq6opbt27h6tWrSE5OtrlPa6nVamzatAlbt25Fv3794OPjg8zMTPj4+KBfv37Yvn07fvrpJ6hUqiqfi6X57du3Dx9++CGaNm2KvLw86HQ6hIWF4bfffrO4UFRVxxUQEICoqCg0b94cf//9N0JCQnD16lUAD6+1tWDBApw+fRqTJ09G8+bN4ezsjIyMDHh5eeHZZ5/FjBkzEBsbK13TiYiIiIiIiIiIiIieTMryq1B1MX/+fMyfP99iuWExoDyBgYH49ttvLZZHRUVZLEtKSiqz7/DwcISHh5c7h4oIDQ2FEMKqukOHDq3wNZjWrVuHdevW2TCzilGr1Zg9e7ZNi3lVcVz+/v44e/asxfJWrVrhyy+/rNCYRERERERERERERPRk4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim/AaTfRIDBkyBLGxsRVqs337djz77LNVNCPrOfLcqxvDtbYePHgg80wqpjgvu8rHqC7PyaM4Vls8qufH2uOvLq9XSVX92lXlMcuVu+r4OhLR46Hk+xrfa6qv0r9/7PVaVdf/Tz0O5Pj35Civ56N8bhzhOeF776NnyEVVvpfydXVc/L+RfB7lezZf2/I52uth6MPwmW5ZFMKaWkSVFBoaiujo6Aq1OXDgAEJDQ6tmQhXgyHOvbpKTk1G3bl25p0FEREREREREREREVrh+/ToCAwPLrMOFJiJ6ZIqLi3Hz5k24u7tDoVA88vEfPHiAunXr4vr16/Dw8Hjk49OTi9kjOTB3JAfmjuTA3JEcmDuSA3NHcmDuSA7MXfUghEBmZiYCAgLg5FT2VZh46jwiemScnJzKXf1+FDw8PPhLimTB7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+ZOfjqdzqp6ZS9DEREREREREREREREREVnAhSYiIiIiIiIiIiIiIiKyCReaiOiJodFoEBkZCY1GI/dU6AnD7JEcmDuSA3NHcmDuSA7MHcmBuSM5MHckB+bO8SiEEELuSRAREREREREREREREZHj4Y4mIiIiIiIiIiIiIiIisgkXmoiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiqjLZ2dnYuXMnFi1ahCFDhqBevXpQKBRQKBSYN2+eVX1s3boVAwYMQEBAANRqNWrUqIGmTZti4sSJOHXqVIXn9Oabb0pzCA4Otljvxo0bWLVqFYYPH45GjRpBq9VCq9Wifv36eOWVV7B//36rxrtz5w6mT5+Opk2bQqvVwtvbG927d8e3334LIUSF50/lc+Tc2as9cyePxyV7t2/fxty5c9GhQwd4e3tDq9WiXr166Nu3Lz7++GMUFBRYbMvsPXqPQ+4qOz5z9+jJmbt58+ZJY5V1u3z5cpnjnzhxAuHh4QgMDIRGo0Ht2rUxePBgq/+Pd+DAAQwePBi1a9eGRqNBYGAgwsPDceLECavaU8U5cu5Onz6NxYsXo0+fPqhTpw7UajXc3d3RqlUrvP3227h48aJV869sbqniHDl35hQUFKBNmzZS29dee63cNszdo/e45O7kyZOIiIhA06ZN4ebmBg8PDzRp0gQvv/wyNmzYUGZb5u7Rc/Tc5eTkYPny5ejevTt8fHygUqmg0+nQoUMHvP/++7h9+3a582fuKkkQEVWRAwcOCABmb5GRkWW2zc3NFQMGDDBq4+bmJtRqtfSzk5OTWLZsmdXz2b9/v1AoFFL7evXqma137do1o3oAhKurq9BqtUaPjRs3ThQWFlocLy4uTvj4+BjNX6lUSj/36dNH5OXlWT1/so6j5s5e7Zk7+TwO2du4caPw8PCQ2ri4uBj9DECkpaWZbcvsycORc2eP8Zk7eciZu8jISAFAqFQq4efnZ/GWmJhocQ5r1qwxyolOpzPKbXnHYJgDAKFQKIROp5N+ViqVYs2aNeU8g2QLR83djz/+aDJfnU4nnJ2dpZ/VarVYvXp1mcdQ2dySbRw1d5aUfP8CIMaOHVtmfeZOHo6eu+LiYjFjxgzh5OQkjenu7m70mUrbtm0ttmfu5OHIuUtKShKNGzc2+V1bMoM6nU5ER0dbPAbmrvK40EREVebAgQPCy8tLhIWFiRkzZogNGzYIf39/q96gP/jgA+nNfPLkySI5OVkIIURRUZGIi4sT3bp1k/64j4uLK3cuWVlZomHDhkKlUomOHTuW+eFXYmKiACDCwsLE999/L27cuCGNnZCQIF566SVpbnPmzDHbR3p6unSszZo1E3/++acQQoi8vDyxcuVKoVKpBAARERFR7typYhw1d/Zoz9zJy9Gzt3nzZuk/4pMmTRIJCQlS2YMHD8TBgwfF1KlThV6vN2nL7MnHkXNX2fGZO/nImTvDBxEhISE2zT02Nlb6gH/QoEHi+vXrQgghUlJSxBtvvCHNbdOmTWbbb9q0SarzxhtviJSUFCGEENevXxeDBg0SAISzs7OIjY21aX5kmaPm7rvvvhMajUaEh4eL3377TWRkZAghHr5X7d27V7Rq1Uoae8+ePWb7qGxuyXaOmjtzTp8+LVQqlWjQoIHw8/Mrd6GJuZOPo+furbfekhYali5dKm7duiWV3bt3T2zbtk3Mnz/fbFvmTj6OnLsePXoI4OEXN1auXCkyMzOFEA9/1/7yyy+iTp06AoDw8/MT2dnZJu2ZO/vgQhMRVRlzu33q1atn1S+p4ODgMn/JpKenCzc3NwFAzJo1q9y5vPvuuwKAeP/998XYsWPL/PArPT1dHD9+3GJfxcXFom/fvtJ/nHJyckzqzJkzRwAQWq1WXLlyxaT8ww8/lD6IuHDhQrnzJ+s5au7s0Z65k5cjZ+/mzZvCy8tLABCfffZZuf2XxuzJx5FzV9nxmTv5yJm7yn4QYfigo3Xr1iI/P9+kvE+fPgKACA4ONjnOwsJC6Tj79u1r0jYvL09aNOjWrZtN8yPLHDV358+fl764Zk5aWpr0QV5YWJjZOpXJLVWOo+autMLCQulLILt375aOoayFJuZOPo6cu507dwrg4c6UP/74o8LtmTv5OGrukpKSpIUgS/Pcu3evVOf33383KWfu7IPXaCKiKuPs7Gxz21u3bgEAOnbsaLZcp9OhSZMmAAC9Xl9mX0eOHMGKFSvQpEkTzJkzp9yxdTod2rdvb7FcoVBg3Lhx0tjnzp0zqfPDDz8AAF5++WXUr1/fpPytt96Cm5sbioqKsH79+nLnRNZz1NzZoz1zJy9Hzt6KFSuQlpaGdu3aYerUqRWY+UPMnnwcOXeVHZ+5k091yV1FXblyBTExMQCAf/zjH1CpVCZ1Zs+eDQBISkrCwYMHjcqio6Nx9epVo3olqdVq/OMf/wAAxMTEIDEx0a7zf9I5au6aNm2KgIAAi+Wenp4YMmQIAODPP/80Ka9sbqlyHDV3pX322WeIi4vDmDFj0Lt373LrM3fycuTczZ8/HwAwZcoUdOnSpUJtmTt5OWruDGOXNf7TTz8t3S89PnNnP1xoIqJqqUGDBgCA48ePmy3PyMiQLppr6RcJAOTl5WHcuHEQQuCbb76Bi4uLXeZXsp+ioiKjsgsXLuDatWsAgH79+plt7+bmhu7duwMAdu/ebZc5UeVVl9zZ0p65c2xyZ8/wgX14eDgUCkVFps7sOTC5c1eZ8Zk7x2Wv3Nliz5490v2+ffuardOtWze4u7sDMM2Nob27uzu6du1qtn3JPDJ31YecubOG4X2z9N8VQOVzS/KpLrm7ePEiIiMjUatWLSxbtsyqNsyd45Izd5cuXcKRI0cAAK+++mqF2zN3jkvO3BnGBoC4uDizdY4dOwYAcHJyQrt27YzKmDv74UITEVVLERERAICoqChMmTIFN27cAAAIIXDixAn0798fer0ezzzzDMLDwy32s2DBApw7dw7jx49HSEiI3eYXFRUF4OE3Vw3fyjA4c+aMdL9Vq1YW+zCUnT171m7zosqpLrmzpT1z59jkzF5iYiJu3rwJAOjQoQPi4+MxatQo1K5dGxqNBoGBgRg5ciQOHz5stj2z57jkfs+rzPjMneOyV+4SEhLQqlUruLq6ws3NDU2bNsXEiRNx8uRJi20MufH19YWvr6/ZOs7OzmjWrJk0hrn2zZs3t/itX19fX9SqVctse5KPnLmzhuFvi9atW5uUVTa3JJ/qkDshBMaPH4/c3FwsX74cPj4+Vs2duXNccubOsCtEpVKhTZs2+PXXX9GrVy94eXlBq9WiSZMmeOutt5CUlGS2PXPnuOTMna+vr7Qz+KOPPsKXX34p7VoqKCjAjh07MHbsWADA9OnTjRamAObOrh792fqI6Elm7fldi4qKxMyZM6UL0+P/Xw9JrVYLAMLf31/MmjXL7EX8DE6cOCGUSqXw8/MTaWlp0uO2XCunpCtXrghXV1cBQLz66qsm5StWrJDmbLjYrzmff/65VM9woUKqGo6UO1vbM3fVkyNk7/fff5fGXLx4sTSmVqsVHh4eUplCoRALFiwwac/sVT+OkLvKjs/cVT+PKneGc/gDEE5OTsLb21solUqj96r333/fbNshQ4YIAKJdu3ZlznHQoEECgOjQoYPR4+3btxcAxODBg8ts/9RTTwkAYujQoWXWo8pzhNyVZ+PGjVI/a9euNSmvbG7J/hwpd4bfl3369DF7DJau0cTcVT+OkLtZs2YJAMLX11fMmDFDauPh4SG0Wq3RfHbu3GnSnrmrfhwhd0IIkZqaKl1HyXDT6XTSfFq3bi3WrFljti1zZz/c0URE1ZKTkxM++ugj/POf/4SbmxuAh+dRzc/PBwDk5uYiIyMDWVlZZtsXFhZi3LhxKCwsxIoVK+Dp6WmXeeXk5GD48OHIzs5GzZo18fHHH5vUyczMlO67urpa7KtkWck2JB+5c1eZ9sydY5Mze2lpadL9uXPnIiAgAHv27IFer0dGRgYSEhIQGhoKIQQ++OADbN++3ag9s+e45H7Pq8z4zJ3jqmzuGjdujKVLl+LChQvIzc3F/fv3kZWVhV27dqFDhw4QQmDx4sX47LPPTNoaMlBWZkqWl85MZduTfOTMXVkuXryIN998E8DD0/K89tprJnWYO8cld+6SkpIwe/ZsuLq64quvvqrQ3Jk7xyVn7gx/V6SkpOCTTz7Bc889h7NnzyIjIwN6vR67d+9GUFAQ9Ho9RowYIV330IC5c1xyv995eXlh+/btmD59unQq+IyMDBQXF0tzSUlJMXuKWubOfrjQRETVUkpKCsLCwvDaa6/hmWeeQUxMDNLT03Hr1i1s374dtWrVwldffYXOnTtLW3JL+vjjj3Hq1Cn0798fI0aMsMucCgsLMWrUKBw/fhwqlQrr168v88K+5Hjkzl1V5JYcg5zZM/znG3h4aoNt27ahV69ecHJ6+N/EFi1a4Ndff4W/vz+A/7vALzk+ud/zKjs+OabKvu6jR4/GjBkz0KRJE+lizWq1Gs8//zxiYmLQqVMnAMC8efOQkZHxSI+Nqq/qmLvbt2/jxRdfRHp6OgICArBhwwbpdy89HuTO3cSJE5GVlYUFCxagfv36VXuwVG3ImTvD3xXFxcUICAjAr7/+iubNmwN4uBDRu3dvbN26FQqFApmZmVZfM4yqP7nf706ePIlmzZph+fLlmDx5MuLj45GVlYW///4bn3/+OVJTUzF79mwMGDDA6O9fsjMZd1MR0RPI2m23L7zwggAgQkJCRHFxsUn5nTt3RM2aNQUAER4eblSWkJAg1Gq1cHNzE9euXTNpa8up8woLC8WIESMEAKFUKsWWLVss1uXpfKofR8hdZdszd9WTI2Rvx44dUiZ69eplcY4LFy6U6t2+fVt6nNmrfhwhd5Udn7mrfh5F7qyxZ88e6TXftm2bURlPnff4cYTcmXPnzh3RokULAUD4+fmJc+fOWazLU/pUP46QuzVr1ggAon379qKwsNDiMfDUeY7DEXI3bdo0qWzRokUW+wgLCxMARLNmzYweZ+6qH0fI3YMHD4Sfn58AID744AOz7ffu3SsUCoUAIL799lujMubOfvh1GSKqds6dO4f//Oc/AGC07bUkX19fjBkzBgCwfft2CCGksilTpiA/Px/vv/8+vLy8oNfrjW6FhYUAHn5z3/BYQUGBxfkUFRUhPDwcmzdvhrOzM3788UcMGzbMYv2Su5zK+ga2oczDw0PaWkzykTt3lW3P3DkuubNXp04d6b7hG4fmtGjRQrpf8jQXzJ5jkjt3lR2fuXNMlX3drfHMM89I969cuWJUZshNeTvkDOWld65Xtj3JQ+7clXb37l3pdFK+vr7Yv3+/dIFxc5g7xyRn7jIyMvCPf/wDTk5O+Pzzz5GTk2Pye9owVmFhofRYyW/5M3eOSe73u4r+XVH61HnMnWOSO3c//vgj7ty5I41vTlhYGNq1awcA2LZtm1EZc2c/XGgiomrn7Nmz0v2GDRtarNe4cWMAQHZ2Nu7evSs9npiYCACYPXs23N3dTW7r168HAFy7dk167MsvvzQ7RlFREUaPHo2NGzdKi0wjR44sc/6tWrWS7p85c8ZiPUNZyQ9vST5y566y7Zk7xyV39lq0aAFnZ+dy51nyj4GSfzwwe45J7txVdnzmzjFV9nWvLENu7t69i3v37pmtU1RUhPPnzwMAWrZsabb9uXPnzJ7jv3TfpduTPOTOXUl3795Fz549kZCQIC0ylff+VNnckjzkzF1aWpp0bZIePXqY/T197do1AMD69eulx06fPi31wdw5Jrnf79q0aWNVPcPfFaUXJJg7xyR37gzj16pVCx4eHuWOb/g7xoC5sx8uNBFRtVPy3OSlv+FSkuEbCwCq5FvKRUVFGDVqFDZt2iQtMr388svltmvSpAmCgoIAAL///rvZOllZWTh06BAA4Pnnn7ffpMlm1SV3tmLuHJfc2XNxcUGPHj0APPzw1BLDf+AVCgWCg4Olx5k9xyR37io7PnPnmB5F7o4cOSLdL31Nkt69e0v3LeXm8OHD0kWeS+fG0D4zMxOxsbFm25fsl7mrHuTOXcn+e/bsabSTyZoPqyqbW5JHdcmdrZg7xyR37rp27YoaNWoAsO7vCnv/niZ5yJ07w/gpKSnIzs4ud3x3d3ejx5k7O3rU5+ojoiebNed3TUpKks69OmDAALN19Hq9aNCggQAg2rRpU6E5WHPdiMLCQjFy5EjpmkwbN26s0Bhz5swRAISrq6tITEw0KV+yZIkAIJydncWFCxcq1DdVnKPkrrLtmbvqx1Gy98MPPwgAQqFQiOPHj5uUZ2ZmCn9/fwFAdOnSxaSc2ateHCF39hifuateHkXuzJ3zv6Tc3FzRuXNnAUDUqFFDpKWlmdTp1q2bACDatm0r8vPzTcr79esnZbf0dU0KCwul43zhhRdM2ubn54s2bdoIAKJbt25lzpXsw1FyV/qaTAkJCeUeW0mVyS3Zn6PkzppjsHSNJiGYu+rGUXI3btw4AUAEBASIrKwsk/Jjx45J18qZNWuWSTlzV704Qu7WrVsnjf/ZZ5+Z7SM+Pl4olUoBQLz99tsm5cydfXChiYiqVGpqqrh37550q1u3rgAgZsyYYfR46Qt0DxgwQPpFER4eLi5fviyKi4tFfn6+OHz4sOjYsaNU/v3331doTuV9+FVYWChefvllaZFp8+bNFT7u9PR06UPZFi1aiLi4OCGEEHl5eWLVqlVCrVYLACIiIqLCfVP5HDF39mjP3MnPUbNXVFQknn76aQFABAcHi71794qioiIhhBBnz54VPXv2FACEk5OT2Ldvn0l7Zk9ejpq7yo7P3MlLjtxFRUWJsLAw8cMPP4jr169Lj+fn54u9e/eKTp06SW2XLFlidt6HDx8Wzs7OAoAYMmSISE5OFkIIcf/+fRERESG137Rpk9n2mzZtkupERESI+/fvCyGESE5Oli4m7ezsLGJjY21+bskyR8zd3bt3RcuWLQUA4e/vL86ePVvh465sbqlyHDF35bFmoYm5k5ej5i45OVnodDoBQISFhUnveUVFRWLPnj0iKChIABC+vr7i7t27Ju2ZO3k5Yu70er2oXbu2ACA0Go1YtGiRSElJkco2bNgglavVanHx4kWTPpg7++BCExFVKcN/YMu7lf4P7r1790SHDh2M6ri6ukrfQDDcZsyYUeE5lffhV3R0tNS/SqUSfn5+Zd4s7XaKi4sTPj4+Ul/u7u5CpVJJPz///PMiNze3wvOn8jli7uzVnrmTlyNn79atW9K3rQ3jG/5INLwffvPNNxbbM3vycdTc2WN85k4+cuTuwIEDRnW0Wq2oWbOm0Wvu5OQk3nvvvTLnvmbNGqPxPD09pW9XA2V/a1cIISIjI6W6CoVCeHp6Sj8rlUqxZs2aij6dZCVHzN38+fOlejVq1Cj3b4tr166Z7aeyuSXbOWLurD2mshaahGDu5OTIuTt48KDR70adTie0Wq30s6+vrzh69KjF9sydfBw1d0ePHhW1atUy6sfd3d0oN66urmLLli0W+2DuKo8LTURUpWz9JSWEEAUFBeLbb78Vffr0EX5+fkKlUgkXFxfRoEEDER4eLg4dOmTTnMr78Kv0L7nybt99953FsW7fvi2mTp0qGjduLFxcXISnp6fo1q2bWLNmjbRbgOzPEXNnz/bMnXwcPXu5ubni008/FZ06dRI6nU6o1WoRHBwsxo0bJ+Lj48ttz+zJw5FzZ4/xmTt5yJG7lJQU8emnn4qhQ4eKJk2aCG9vb6FUKoWHh4do27at+K//+i9x+vRpq+Z//PhxMWrUKFGnTh2hVquFn5+fGDRokNldm+bs27dPDBo0SPj5+Qm1Wi3q1KkjRo0aJe2so6rhiLkruTBpzc3cqUANKptbso0j5s7aYypvoUkI5k4ujp67mzdvimnTpommTZsKV1dX4erqKlq3bi3ee+89szuZSmPu5OHIuUtJSRELFy4UXbp0EV5eXsLZ2Vm4ubmJNm3aiKlTp4q///673D6Yu8pRCCEEiIiIiIiIiIiIiIiIiCrISe4JEBERERERERERERERkWPiQhMRERERERERERERERHZhAtNREREREREREREREREZBMuNBEREREREREREREREZFNuNBERERERERERERERERENuFCExEREREREREREREREdmEC01ERERERERERERERERkEy40ERERERERERERERERkU240EREREREREREREREREQ24UITERERERERERERERER2YQLTURERERERNWcQqGAQqFAVFSU3FOxq6ioKOnYyHHJlc/8/Hw0bNgQGo0G169fr3R/R44cgUKhQI8ePewwOyIiIqInBxeaiIiIiIiIqpDhQ3hbbuvWrZN7+kTV1v/8z//gypUrmDBhAurWrVvp/rp06YI+ffrg0KFD+Pe//22HGRIRERE9GZRyT4CIiIiIiOhx5ufnZ/ZxvV6PrKysMutotVoAQNOmTQEArq6uVTBD+bi6ukrHRlQRqampWLRoETQaDWbPnm23fufNm4ddu3Zh1qxZGDBgAJRKfmxCREREVB7+j4mIiIiIiKgK3b592+zj8+bNw/z588usY3D+/Hm7z6s6ePrppx/bY6Oq9c033yA9PR3Dhg1DYGCg3frt0qUL2rZti7/++gs///wzhg0bZre+iYiIiB5XPHUeERERERERETkMIQS++eYbAEB4eLjd+zf0+fXXX9u9byIiIqLHEReaiIiIiIiIqjnDNZuioqKMHk9KSpLKkpKScPXqVUycOBFBQUFwcXFBw4YNMWfOHOkUfQBw5swZhIeHo27dunBxcUHjxo2xaNEiFBQUlDmHpKQkvPvuu2jZsiXc3Nzg6uqKZs2a4Z133sG1a9dsOq6oqChp/qWtW7cOCoUCwcHBAIDjx49jxIgRqF27NjQaDRo0aIBp06YhLS3NprEB4OjRoxg9ejTq168PFxcX1KhRA/Xq1UNISAgWLlyI5ORks+3y8/OxatUq9OzZEzVr1oRarYa/vz9eeukl7Ny506pxX3/9dTRq1Aiurq7w8PBAixYtMG7cOOzatctsm4yMDCxYsADt27eHh4cHtFotGjdujIiICFy5csXiWCWzk5mZiTlz5qBZs2bQarXw8fFB//79cfTo0TLnm5aWhhkzZqBhw4ZwcXFB7dq1MXz4cBw/frzcY01OTsbUqVPRsmVL1KhRAxqNBgEBAejQoQOmTp2KP//8s9w+Stu7dy8SExPh6emJF154wWK98+fPY9KkSWjSpAlcXV3h4uKCunXrokuXLnjvvfcs7qYbNWoUAGDfvn1lPrdERERE9P8JIiIiIiIieuQiIyMFAGHNn2WGegcOHDB6PDExUSrbtm2b8PT0FACEh4eHcHZ2lsq6d+8u8vPzxf/+7/8KV1dXAUDodDqhUCikOiNHjrQ4/o8//ig0Go1UV6PRCK1WK/3s7u4udu3aVeHn4MCBAxafg++++04AEPXq1RPr168XKpVKmreTk5PUrmXLliIzM7PCY69bt87o+DUajfDw8JB+BiC+++47k3ZJSUmiZcuWUh2FQiF0Op1RuzfffNPsmIWFheLtt982qlujRg3h5eUlzUWn05m0O3PmjAgMDJTauLi4CHd3d6O5b9261eyYhjo//fSTaNSokdTekAMAQq1WW3z9EhMTRb169YzqGp4ntVotfvnlF4v5PHXqlPDy8pLKnZ2djY4VgBg7dmxZL5NZ06ZNEwBEnz59LNbZvXu3UWZVKpX078Nwi4yMtNi+YcOGAoBYtWpVhedHRERE9KThjiYiIiIiIqLHwPjx49GhQwckJCQgIyMDmZmZWLFiBZydnXHo0CEsWLAAo0ePxoABA5CUlIT09HQ8ePAA77//PgBg06ZN2Lt3r0m/e/bswZgxY1BUVISZM2ciMTEROTk5yMrKwvnz5zF8+HBkZmZi+PDhNu9sKsu9e/cwbtw4jB07FteuXUN6ejoyMzOxcuVKqFQqJCQkYOnSpRXqMzs7G2+99RaEEAgPD8fly5eRm5uLjIwM6PV6xMXFYcaMGfD19TVql5WVhb59+yIhIQGhoaGIiopCTk4O0tPTkZ6ejmXLlsHNzQ2rV6/GF198YTLue++9hxUrVgAAxo0bhwsXLkCv1yM1NRVpaWn4+eef0bdvX6M2mZmZGDBgAJKTk1GnTh389ttvyMrKwoMHD3Dq1Cl06dIFeXl5GD16NP766y+LxzxlyhSo1Wrs378fWVlZ0Ov1OHbsGJo2bYr8/HxMmjQJxcXFRm2KioowfPhwXL16FV5eXti8eTOysrKQkZGBhIQEdO7cGWPHjrU45vTp05GWlob27dvjjz/+QEFBAVJTU5Gbm4uLFy/i008/RcuWLct9vUo7ePAggIfX+LIkIiICeXl5eP755xEfH4/8/HykpaUhJycHZ86cwfz586XdcuZ07twZABAdHV3h+RERERE9ceRe6SIiIiIiInoS2XtHU8uWLUVubq5J21dffVWq07t3b1FcXGxSp3v37gKAGD9+vNHjRUVFonHjxgKA+Prrry3Ob+DAgQKAeOedd8o9lpKs2dGEMna9GHa2NGrUqELjHj16VNpNVFBQYHW7BQsWCAAiJCRE5Ofnm62zfft2AUDUrFnTqO8LFy5IO7Fmzpxp9Zgff/yxtCMnPj7epPzBgwciODhYABAvvviiSbnhOaxVq5a4c+eOSfnp06elOjExMUZlmzZtksr27t1r0jYrK0va+WMun4Zdb7GxsVYfb3ny8vKk3XqWdnHduXNHmtPNmzdtGueTTz4RAERQUFBlpktERET0ROCOJiIiIiIiosfA1KlTodFoTB7v06ePdH/WrFlmr4dkqHP69Gmjxw8ePIhLly6hZs2amDBhgsWxx4wZAwAWry9UWXPmzDH7+EsvvQQAuHz5MrKzs63uz9PTE8DDay3dv3/f6nZr164FAEybNg0qlcpsnUGDBsHDwwMpKSlG1zD6/vvvUVxcDB8fH8yfP9/qMTdt2gQAGDZsGFq1amVS7u7ujpkzZwIAdu7ciYyMDLP9TJo0yWSHFgC0bt0a9evXB2D6+m/cuBEA0LVrV4SFhZm0dXV1lcY2x/A837p1y2Kdirp79y6KiooAALVq1TJbx93dHU5OTpUau2bNmpVqT0RERPQk4UITERERERHRY8DSacT8/Pyk+506dSqzTlpamtHjhw8fBgBkZGQgICAA/v7+Zm8TJ04EAFy9erXSx1Gat7c3GjVqZLYsICBAul967mVp2LAhmjVrhoKCAnTu3BlLlizBqVOnpAUMc27cuCEd3/jx4y0+F7Vr14Zerwdg/HzExsYCAHr37g0XFxer5pmfny8t/vTq1ctivd69ewMAiouLceLECbN1DKeCM8fwPKampho9HhcXBwB47rnnLLYtq6x///4AgLFjx2L69OmIjo6u0IKgOffu3ZPue3t7m62j1WqlhbG+ffvigw8+wNGjR5Gfn2/1OIa+CwoKkJ6ebvuEiYiIiJ4AXGgiIiIiIiJ6DLi7u5t9XKlUWl2noKDA6PGbN29Kj9+5c8fizbDIk5OTU+njKM3SnEvO29zcy+Ls7IyNGzeifv36uHr1KmbNmoV27drBw8MDvXv3xldffWWyIGJ4LgAgJSWlzOfDcK2jkn3cvn0bAFCvXj2r55mamiotftWpU8divcDAQOn+3bt3zdax5nks/Rwa+rJ27NKWLl2Knj17Qq/XY9myZQgNDYWHhwc6duyIyMhI3Lhxw2JbS3Jzc6X75nbwGXz77bdo27Yt7t27h4ULF6JLly5wd3dHt27d8Mknn5gsqpWm1WrNjklEREREprjQRERERERERGYZFjk6d+4MIYRVN0fRtm1bnD9/Htu2bcOkSZPQqlUr5OTkYO/evZg8eTKaNWuG+Ph4qX7J3U7nzp2z6rl47bXXpDbmTln4uPP09MT+/ftx6NAhzJw5E127doVSqcTx48exYMECNG7cGBs2bKhQnz4+PtL9snaxBQUF4cSJE/j999/x9ttvo0OHDiguLsbhw4cxc+ZMNGrUCPv377fYvuRCVMkxiYiIiMgUF5qIiIiIiIjILH9/fwBVc0q86kCtVmPIkCH4+uuvER8fj3v37mH16tXw9vbG9evXMXbsWKmu4bkAbHs+bHkuvb294ezsDABITk62WK9kmbnrMNnK0FdZO4+s2ZXUrVs3LFmyBDExMUhPT8cvv/yC1q1bIycnB+PGjcOdO3esnlPJ6zKVtyvJyckJffr0wRdffIG4uDikpqZi/fr1CAoKQlpaGkaNGmXxdHqGvnU6ncXrcRERERHRQ1xoIiIiIiIiIrO6du0K4OFp3wzX63mc+fj44I033sCSJUsAACdPnsT9+/cBAMHBwdIp5H799dcK9/3ss88CAPbs2WP1qdjUajXatGkDANi3b5/Fenv37gXwcGGlffv2FZ6bJR07dgQAHDhwwGKdsnYFmePi4oKBAwdi+/btAB6eli4mJsbq9l5eXtKi3ZUrVyo0tru7O0aNGoW1a9cCAO7cuWO0a62kxMREAEDz5s0rNAYRERHRk4gLTURERERERGRWz5490ahRIwDA1KlTLe7+MChvh0l1kZeXV2Z5yevzODn935/NEydOBACsXbsWJ0+eLLOP0s/Fa6+9BmdnZ9y/fx+RkZFWz/Xll18GAGzduhVnzpwxKdfr9Vi6dCkA4IUXXoBOp7O67/KMHDkSABATE4OoqCiT8pycHHzyySdm2xYWFkrXqjLH0nNsjR49egAAjh07Zra8vJxaM/bRo0cBACEhIRWaGxEREdGTiAtNREREREREZJZSqcTq1auhVCoRExODHj16YN++fSgoKJDqXLlyBatXr0anTp2watUqGWdrvY0bN6Jr1674+uuvjXbFFBUVYdeuXZg1axYA4JlnnoGXl5dUPn36dLRu3Rq5ubno2bMnVq5cKe14AoD09HTs3LkTY8aMQffu3Y3GbNSoEWbMmAEAWLp0KSZMmIBLly5J5Q8ePMCmTZswePBgo3YRERGoX78+CgoK0K9fP+zcuVNawImPj0efPn2QmJgIjUaDRYsW2ekZemjo0KHSDqmhQ4di27Zt0rWqzp07h379+uHevXtm2yYnJ6Nx48ZYtGgRTp48icLCQqns9OnTCA8PBwDUqFGjwos5oaGhAP5vMai02NhYtGnTBsuXL8e5c+ek50sIgdjYWERERAAAAgMDpR1jJRUVFeH48eMAuNBEREREZA2l3BMgIiIiIiKi6issLAxbtmzBmDFjcPToUfTq1QsqlQoeHh7Q6/VGu4MGDRok30QrwLDgEBsbCwDQaDRwc3NDWlqatCgREBCAf/7zn0bt3Nzc8Pvvv2Po0KE4cuQI3nrrLbz99tvQ6XQoLi7GgwcPpLqGnWAlLVq0CJmZmfjyyy+xdu1arF27Fm5ublCpVEhPT4cQwmRHkru7O3bs2IG+ffsiOTkZL7zwAlxcXKBWq6XxNBoNfvzxR7Rt29auz5NSqcSWLVsQGhqK69evY9iwYdBoNHBxcUFGRgbUajW2bNmCl156yWz7K1euYO7cuZg7dy6cnZ2h0+mg1+ulHUdqtRrr1q2Dt7d3heY1dOhQvPPOOzh//jwuXbqExo0bm9SJj4/HtGnTMG3aNCmvGRkZ0oKXh4cHfvrpJ+kaWCXt27cPWVlZ8PX1Ra9evSo0NyIiIqInEXc0ERERERERUZkGDRqEy5cvIzIyEk8//TTc3NyQnp4OjUaDtm3bYsKECfj3v/8t7dip7gYOHIgffvgBr7/+Otq2bQudToeMjAy4u7vj6aefxsKFC5GQkIBmzZqZtA0ICEBMTAw2bNiAgQMHonbt2sjOzkZ+fj6Cg4MxYMAAfP755zh48KBJW2dnZ6xcuRIxMTEYPXo0goKCUFBQACEEWrRogfHjx2Pbtm0m7Vq1aoWEhATMmzcPTz31FJRKJfLy8tCwYUO8+eabSEhIwLBhw6rkuWrQoAFOnTqFadOmoX79+hBCwMXFBcOGDUNsbCwGDhxotl2dOnWwY8cOTJ06FV26dEHt2rWh1+uhVCrRokULTJkyBWfOnLFp3r6+vtLOr/Xr15uUd+rUCZs3b0ZERAQ6dOiAmjVr4sGDB3BxccFTTz2FmTNn4ty5cya7zgwMfb7++utQqVQVnh8RERHRk0YhhBByT4KIiIiIiIiIyFoHDx5ESEgIGjZsiEuXLkGhUNil36ysLGnx8OLFi2jQoIFd+iUiIiJ6nHFHExERERERERE5lB49euD555/H33//jS1bttit35UrVyIzMxMTJkzgIhMRERGRlbijiYiIiIiIiIgcTnx8PJ566ik0b94cp0+fhpNT5b5Lq9frUb9+feTm5uLy5cvw8/Oz00yJiIiIHm9KuSdARERERERERFRRrVu3xtq1a5GUlIRbt26hTp06leovKSkJU6ZMQbt27bjIRERERFQB3NFERERERERERERERERENuE1moiIiIiIiIiIiIiIiMgmXGgiIiIiIiIiIiIiIiIim3ChiYiIiIiIiIiIiIiIiGzChSYiIiIiIiIiIiIiIiKyCReaiIiIiIiIiIiIiIiIyCZcaCIiIiIiIiIiIiIiIiKbcKGJiIiIiIiIiIiIiIiIbMKFJiIiIiIiIiIiIiIiIrIJF5qIiIiIiIiIiIiIiIjIJv8Pjm7X8BIZmQ4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the states from file\n", + "states = nwbfile.get_acquisition(\"task_recording\").states\n", + "state_types = nwbfile.get_lab_meta_data(\"task\").state_types\n", + "\n", + "# Plot the data\n", + "plot_states(states=states[20:100],\n", + " state_types=state_types,\n", + " marker_size=500)\n", + "plt.title(\"States\", fontsize=18)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d811ac1c-771a-4fc0-a995-613065ae60fd", + "metadata": {}, + "source": [ + "## Accessing the trials\n", + "\n", + "The `TrialsTable` is a column-based table to store information about trials, one trial per row.\n", + "The table can be accessed from the file as `nwbfile.trials`.\n" + ] + }, + { + "cell_type": "code", + "id": "ca66b7b5-c6ac-405f-8297-8aeb6cc4d92e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-08-28T11:41:33.949842Z", + "start_time": "2024-08-28T11:41:33.947843Z" + } + }, + "source": "trials = nwbfile.trials", + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "code", + "id": "cc9adeaf-ae23-403f-ad66-5a6ed695760f", + "metadata": { + "ExecuteTime": { + "end_time": "2024-08-28T11:41:35.210373Z", + "start_time": "2024-08-28T11:41:35.192278Z" + } + }, + "source": [ + "trials[:].head()" + ], + "outputs": [ + { + "data": { + "text/plain": [ + " start_time stop_time states \\\n", + "id \n", + "0 17950.0907 18395.7043 [0, 1, 2, 3, 4, 5] \n", + "1 18395.7043 18402.2559 [6, 7, 8, 9, 10, 11] \n", + "2 18402.2559 18410.3677 [12, 13, 14, 15, 16, 17] \n", + "3 18410.3677 18421.6165 [18, 19, 20, 21, 22, 23] \n", + "4 18421.6165 18429.0515 [24, 25, 26, 27, 28, 29] \n", + "\n", + " events \\\n", + "id \n", + "0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... \n", + "1 [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4... \n", + "2 [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 6... \n", + "3 [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 8... \n", + "4 [132, 133, 134, 135, 136, 137, 138, 139, 140, ... \n", + "\n", + " actions reward_volume_ul \\\n", + "id \n", + "0 [0, 1, 2, 3, 4, 5, 6] 20 \n", + "1 [7, 8, 9, 10, 11, 12, 13, 14] 80 \n", + "2 [15, 16, 17, 18, 19, 20, 21] 40 \n", + "3 [22, 23, 24, 25, 26, 27, 28] 20 \n", + "4 [29, 30, 31, 32, 33, 34, 35, 36] 80 \n", + "\n", + " previous_was_violation is_warm_up catch_percentage changed ... \\\n", + "id ... \n", + "0 False False 0.15 False ... \n", + "1 False False 0.15 False ... \n", + "2 False False 0.15 False ... \n", + "3 False False 0.15 False ... \n", + "4 False False 0.15 False ... \n", + "\n", + " auto_change_catch_probability nose_in_center block_type \\\n", + "id \n", + "0 False 0.869210 High \n", + "1 False 0.979292 High \n", + "2 False 0.835958 High \n", + "3 False 0.846073 High \n", + "4 False 0.838370 High \n", + "\n", + " target_delay_to_reward trials_in_stage is_catch delay_to_reward \\\n", + "id \n", + "0 1.5 23023 False 4.135600 \n", + "1 1.5 23025 False 1.264520 \n", + "2 1.5 23026 False 0.619385 \n", + "3 1.5 23027 False 5.369254 \n", + "4 1.5 23028 False 1.220980 \n", + "\n", + " target_duration_for_nose_in_center violation_time_out \\\n", + "id \n", + "0 1 2 \n", + "1 1 2 \n", + "2 1 2 \n", + "3 1 2 \n", + "4 1 2 \n", + "\n", + " time_increment_for_nose_in_center \n", + "id \n", + "0 0 \n", + "1 0 \n", + "2 0 \n", + "3 0 \n", + "4 0 \n", + "\n", + "[5 rows x 24 columns]" + ], "text/html": [ "
\n", "