diff --git a/pyproject.toml b/pyproject.toml
index 114755d..4acabb0 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -23,7 +23,7 @@ dependencies = [
Repository="https://github.com/catalystneuro/constantinople-lab-to-nwb"
[build-system]
-requires = ["setuptools>", "wheel"]
+requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
diff --git a/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md
index 81d3f7a..d2ff9c7 100644
--- a/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md
+++ b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_notes.md
@@ -165,4 +165,4 @@ Example task arguments:
The following UML diagram shows the mapping of the raw Bpod output to NWB.
-![nwb mapping](mah_2025_uml.png)
\ No newline at end of file
+![nwb mapping](mah_2024_uml.png)
\ No newline at end of file
diff --git a/src/constantinople_lab_to_nwb/mah_2024/mah_2025_uml.png b/src/constantinople_lab_to_nwb/mah_2024/mah_2024_uml.png
similarity index 100%
rename from src/constantinople_lab_to_nwb/mah_2024/mah_2025_uml.png
rename to src/constantinople_lab_to_nwb/mah_2024/mah_2024_uml.png
diff --git a/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb
new file mode 100644
index 0000000..152609e
--- /dev/null
+++ b/src/constantinople_lab_to_nwb/mah_2024/tutorials/mah_2024_example_notebook.ipynb
@@ -0,0 +1,1547 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7a36ffb3-ce49-49af-853c-61d2fd3d364c",
+ "metadata": {
+ "collapsed": true,
+ "jupyter": {
+ "outputs_hidden": true
+ }
+ },
+ "source": [
+ "# Example notebook\n",
+ "\n",
+ "This tutorial demonstrates how to access an NWB file from the [Mah et al. 2023]((https://doi.org/10.1038/s41467-023-43250-x)) dataset using `pynwb`.\n",
+ "\n",
+ "The dataset from [“Distinct value computations support rapid sequential decisions”](https://doi.org/10.1038/s41467-023-43250-x) includes behavioral data from rats performing various decision-making tasks, collected using a Bpod system (Bpod State Machine r2, Sanworks).\n",
+ "\n",
+ "The behavioral task and data is stored using the [ndx-structured-behavior](https://github.com/rly/ndx-structured-behavior) extension for NWB.\n",
+ "\n",
+ "## Overview of NWB\n",
+ "\n",
+ "This schematic shows an overview of the data types added to NWB. \n",
+ "\n",
+ "![NWB mapping](../mah_2024_uml.png)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "173c17e4-7ee4-4e58-884e-2353a4ee46d5",
+ "metadata": {},
+ "source": [
+ "## Reading an NWB file\n",
+ "\n",
+ "This section demonstrates how to access an NWB file using `pynwb.NWBHDF5IO`.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "52d493c5-1c7a-487f-971c-4e3ef6442abe",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2024-08-28T11:41:17.442258Z",
+ "start_time": "2024-08-28T11:41:15.123900Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from pynwb import NWBHDF5IO\n",
+ "import ndx_structured_behavior\n",
+ "\n",
+ "nwbfile_path = \"/Users/weian/data/nwbfiles/sub-J076_ses-RWTautowait2-20230721-130627.nwb\"\n",
+ "\n",
+ "io = NWBHDF5IO(nwbfile_path, \"r\")\n",
+ "nwbfile = io.read()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "750d82d9-13df-404e-8512-960613255b88",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2024-08-28T08:55:08.865637Z",
+ "start_time": "2024-08-28T08:55:07.711552Z"
+ }
+ },
+ "source": [
+ "## Accessing the task metadata\n",
+ "\n",
+ "The task-related general metadata is stored in a `Task` object which can be accessed as `nwbfile.lab_meta_data[\"task\"]`.\n",
+ "\n",
+ "The `EventTypesTable` is a column-based table to store the type of events that occur during the task (e.g. port poke from the animal), one type per row.\n",
+ "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].event_types`.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "662468a8-23c6-4d90-8070-0575579b7e44",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " event_name | \n",
+ "
\n",
+ " \n",
+ " id | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " state_timer | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " left_port_poke | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " right_port_poke | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " event_name\n",
+ "id \n",
+ "0 state_timer\n",
+ "1 left_port_poke\n",
+ "2 center_port_poke\n",
+ "3 right_port_poke"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "nwbfile.lab_meta_data[\"task\"].event_types[:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8035e39-8405-42c2-92cf-758b51845c77",
+ "metadata": {},
+ "source": [
+ "The `ActionTypesTable` is a column-based table to store the type of actions that occur during the task (e.g. sound output from the acquisition system), one type per row.\n",
+ "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].action_types`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "2c1a5c0e-e4b6-4c16-af8a-fdaef0ffa353",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " action_name | \n",
+ "
\n",
+ " \n",
+ " id | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " action_name\n",
+ "id \n",
+ "0 sound_output"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "nwbfile.lab_meta_data[\"task\"].action_types[:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "99b05bc7-d23e-4a19-8e5f-2a228702dc59",
+ "metadata": {},
+ "source": [
+ "The `StateTypesTable` is a column-based table to store the type of states that occur during the task (e.g. while the animal is waiting for reward), one type per row.\n",
+ "This table can be accessed as `nwbfile.lab_meta_data[\"task\"].state_types`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "3ecfb7c9-e58f-4856-8916-e73d16bb326e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " state_name | \n",
+ "
\n",
+ " \n",
+ " id | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " wait_for_poke | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " nose_in_center | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " punish_violation | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " go_cue | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " wait_for_side_poke | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " announce_reward | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " opt_out | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " reward | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " stop_sound | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " state_name\n",
+ "id \n",
+ "0 wait_for_poke\n",
+ "1 nose_in_center\n",
+ "2 punish_violation\n",
+ "3 go_cue\n",
+ "4 wait_for_side_poke\n",
+ "5 announce_reward\n",
+ "6 opt_out\n",
+ "7 reward\n",
+ "8 stop_sound"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "nwbfile.lab_meta_data[\"task\"].state_types[:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "12176f7b-b6f4-4f16-b8d0-37bde6132ec5",
+ "metadata": {},
+ "source": [
+ "The arguments for the task is stored in a `TaskArgumentsTable` which can be accessed as `nwbfile.lab_meta_data[\"task\"].task_arguments`.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "68998e44-3eb6-484e-8548-04de7a3816bd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " argument_name | \n",
+ " argument_description | \n",
+ " expression | \n",
+ " expression_type | \n",
+ " output_type | \n",
+ "
\n",
+ " \n",
+ " id | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " reward_volume_ul | \n",
+ " The volume of reward in microliters. | \n",
+ " 20 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " nose_in_center | \n",
+ " The time in seconds when the animal is require... | \n",
+ " 0.9483330026671162 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " time_increment_for_nose_in_center | \n",
+ " The time increment for nose in center in seconds. | \n",
+ " 0 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " target_duration_for_nose_in_center | \n",
+ " The goal for how long the animal must poke cen... | \n",
+ " 1 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " training_stage | \n",
+ " The stage of the training. | \n",
+ " 9 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " reward_delay | \n",
+ " The delay in seconds to receive reward, drawn ... | \n",
+ " 0.606090503076149 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " target_reward_delay | \n",
+ " The target delay in seconds to receive reward. | \n",
+ " 1.5 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " time_increment_for_reward_delay | \n",
+ " The time increment during monotonic increase o... | \n",
+ " 0.025 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " violation_time_out | \n",
+ " The time-out if nose is center is not satisfie... | \n",
+ " 1 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " block_type | \n",
+ " The block type (High, Low or Mixed). High and ... | \n",
+ " High | \n",
+ " string | \n",
+ " string | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " num_trials_in_mixed_blocks | \n",
+ " The number of trials in each mixed blocks. | \n",
+ " 40 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " num_trials_in_adaptation_blocks | \n",
+ " The number of trials in each high reward (20, ... | \n",
+ " 40 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " punish_sound_enabled | \n",
+ " Whether to play a white noise pulse on error. | \n",
+ " True | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " catch_percentage | \n",
+ " The percentage of catch trials. | \n",
+ " 0.25 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " is_catch | \n",
+ " Whether the trial is a catch trial. | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " current_trial | \n",
+ " The current trial number. | \n",
+ " 0 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " cumulative_reward_volume_ul | \n",
+ " The cumulative volume received during session ... | \n",
+ " 0 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " is_warm_up | \n",
+ " Whether the trial is warm-up. | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " override_nose_in_center | \n",
+ " Whether the required time for maintaining cent... | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " trials_in_stage | \n",
+ " The cumulative number of trials in the stages. | \n",
+ " 50400 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " min_reward_volume_ul | \n",
+ " The minimum volume of reward in microliters. (... | \n",
+ " 5 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " high_ITI | \n",
+ " Task parameter. | \n",
+ " 0 | \n",
+ " double | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " auto_change_catch_probability | \n",
+ " Whether to change the probability automaticall... | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " previous_was_violation | \n",
+ " Whether the previous trial was a violation. | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " changed | \n",
+ " Whether a block transition occurred for the tr... | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " num_trials_in_stage_3 | \n",
+ " Determines how many trials occur in stage 3 be... | \n",
+ " 400 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " num_trials_in_stage_8 | \n",
+ " Determines how many trials occur in stage 8 be... | \n",
+ " 250 | \n",
+ " integer | \n",
+ " numeric | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " center_port_cue | \n",
+ " Task parameter. | \n",
+ " False | \n",
+ " boolean | \n",
+ " boolean | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " argument_name \\\n",
+ "id \n",
+ "0 reward_volume_ul \n",
+ "1 nose_in_center \n",
+ "2 time_increment_for_nose_in_center \n",
+ "3 target_duration_for_nose_in_center \n",
+ "4 training_stage \n",
+ "5 reward_delay \n",
+ "6 target_reward_delay \n",
+ "7 time_increment_for_reward_delay \n",
+ "8 violation_time_out \n",
+ "9 block_type \n",
+ "10 num_trials_in_mixed_blocks \n",
+ "11 num_trials_in_adaptation_blocks \n",
+ "12 punish_sound_enabled \n",
+ "13 catch_percentage \n",
+ "14 is_catch \n",
+ "15 current_trial \n",
+ "16 cumulative_reward_volume_ul \n",
+ "17 is_warm_up \n",
+ "18 override_nose_in_center \n",
+ "19 trials_in_stage \n",
+ "20 min_reward_volume_ul \n",
+ "21 high_ITI \n",
+ "22 auto_change_catch_probability \n",
+ "23 previous_was_violation \n",
+ "24 changed \n",
+ "25 num_trials_in_stage_3 \n",
+ "26 num_trials_in_stage_8 \n",
+ "27 center_port_cue \n",
+ "\n",
+ " argument_description expression \\\n",
+ "id \n",
+ "0 The volume of reward in microliters. 20 \n",
+ "1 The time in seconds when the animal is require... 0.9483330026671162 \n",
+ "2 The time increment for nose in center in seconds. 0 \n",
+ "3 The goal for how long the animal must poke cen... 1 \n",
+ "4 The stage of the training. 9 \n",
+ "5 The delay in seconds to receive reward, drawn ... 0.606090503076149 \n",
+ "6 The target delay in seconds to receive reward. 1.5 \n",
+ "7 The time increment during monotonic increase o... 0.025 \n",
+ "8 The time-out if nose is center is not satisfie... 1 \n",
+ "9 The block type (High, Low or Mixed). High and ... High \n",
+ "10 The number of trials in each mixed blocks. 40 \n",
+ "11 The number of trials in each high reward (20, ... 40 \n",
+ "12 Whether to play a white noise pulse on error. True \n",
+ "13 The percentage of catch trials. 0.25 \n",
+ "14 Whether the trial is a catch trial. False \n",
+ "15 The current trial number. 0 \n",
+ "16 The cumulative volume received during session ... 0 \n",
+ "17 Whether the trial is warm-up. False \n",
+ "18 Whether the required time for maintaining cent... False \n",
+ "19 The cumulative number of trials in the stages. 50400 \n",
+ "20 The minimum volume of reward in microliters. (... 5 \n",
+ "21 Task parameter. 0 \n",
+ "22 Whether to change the probability automaticall... False \n",
+ "23 Whether the previous trial was a violation. False \n",
+ "24 Whether a block transition occurred for the tr... False \n",
+ "25 Determines how many trials occur in stage 3 be... 400 \n",
+ "26 Determines how many trials occur in stage 8 be... 250 \n",
+ "27 Task parameter. False \n",
+ "\n",
+ " expression_type output_type \n",
+ "id \n",
+ "0 integer numeric \n",
+ "1 double numeric \n",
+ "2 double numeric \n",
+ "3 double numeric \n",
+ "4 integer numeric \n",
+ "5 double numeric \n",
+ "6 double numeric \n",
+ "7 double numeric \n",
+ "8 double numeric \n",
+ "9 string string \n",
+ "10 integer numeric \n",
+ "11 integer numeric \n",
+ "12 boolean boolean \n",
+ "13 double numeric \n",
+ "14 boolean boolean \n",
+ "15 integer numeric \n",
+ "16 double numeric \n",
+ "17 boolean boolean \n",
+ "18 boolean boolean \n",
+ "19 integer numeric \n",
+ "20 double numeric \n",
+ "21 double numeric \n",
+ "22 boolean boolean \n",
+ "23 boolean boolean \n",
+ "24 boolean boolean \n",
+ "25 integer numeric \n",
+ "26 integer numeric \n",
+ "27 boolean boolean "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "nwbfile.lab_meta_data[\"task\"].task_arguments[:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7511f54-0f3e-4bc1-971c-1100cb1902d7",
+ "metadata": {},
+ "source": [
+ "## Accessing the behavioral data\n",
+ "\n",
+ "The `TaskRecording` object stores the data for events, states, and actions that occured during the task. The `TaskRecording` is added as acquisition which can be accessed as `nwbfile.acquisition[\"task_recording\"]`.\n",
+ "\n",
+ "The `EventsTable` is a column-based table to store the information about the events (e.g. poke times), one event per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].events`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "21dab6d0-0392-48f3-9c1b-65055bab99bb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " timestamp | \n",
+ " event_type | \n",
+ " value | \n",
+ " event_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 42.9993 | \n",
+ " 2 | \n",
+ " In | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 43.1775 | \n",
+ " 2 | \n",
+ " In | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 43.0395 | \n",
+ " 2 | \n",
+ " Out | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 43.3815 | \n",
+ " 2 | \n",
+ " Out | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 44.0395 | \n",
+ " 0 | \n",
+ " Expired | \n",
+ " state_timer | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 19161 | \n",
+ " 5270.2239 | \n",
+ " 2 | \n",
+ " Out | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 19162 | \n",
+ " 5271.2239 | \n",
+ " 0 | \n",
+ " Expired | \n",
+ " state_timer | \n",
+ "
\n",
+ " \n",
+ " 19163 | \n",
+ " 5308.2722 | \n",
+ " 2 | \n",
+ " In | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 19164 | \n",
+ " 5308.2948 | \n",
+ " 2 | \n",
+ " Out | \n",
+ " center_port_poke | \n",
+ "
\n",
+ " \n",
+ " 19165 | \n",
+ " 5309.2948 | \n",
+ " 0 | \n",
+ " Expired | \n",
+ " state_timer | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
19166 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " timestamp event_type value event_name\n",
+ "0 42.9993 2 In center_port_poke\n",
+ "1 43.1775 2 In center_port_poke\n",
+ "2 43.0395 2 Out center_port_poke\n",
+ "3 43.3815 2 Out center_port_poke\n",
+ "4 44.0395 0 Expired state_timer\n",
+ "... ... ... ... ...\n",
+ "19161 5270.2239 2 Out center_port_poke\n",
+ "19162 5271.2239 0 Expired state_timer\n",
+ "19163 5308.2722 2 In center_port_poke\n",
+ "19164 5308.2948 2 Out center_port_poke\n",
+ "19165 5309.2948 0 Expired state_timer\n",
+ "\n",
+ "[19166 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "pd.merge(\n",
+ " nwbfile.acquisition[\"task_recording\"].events[:],\n",
+ " nwbfile.lab_meta_data[\"task\"].event_types[:],\n",
+ " left_on=\"event_type\",\n",
+ " right_on=\"id\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7b526b5-7aa2-47df-a733-fa458d9d28fc",
+ "metadata": {},
+ "source": [
+ "The `ActionsTable` is a column-based table to store the information about the actions (e.g. sound onset times), one action per row. This table can be accessed as `nwbfile.acquisition[\"task_recording\"].actions`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "18183143-c735-427f-a54f-43d03e81f8c3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " timestamp | \n",
+ " action_type | \n",
+ " value | \n",
+ " action_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 16.2117 | \n",
+ " 0 | \n",
+ " On | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 16.4018 | \n",
+ " 0 | \n",
+ " On | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 42.9994 | \n",
+ " 0 | \n",
+ " On | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 43.0396 | \n",
+ " 0 | \n",
+ " On | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 43.5398 | \n",
+ " 0 | \n",
+ " On | \n",
+ " sound_output | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " timestamp action_type value action_name\n",
+ "0 16.2117 0 On sound_output\n",
+ "1 16.4018 0 On sound_output\n",
+ "2 42.9994 0 On sound_output\n",
+ "3 43.0396 0 On sound_output\n",
+ "4 43.5398 0 On sound_output"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.merge(\n",
+ " nwbfile.acquisition[\"task_recording\"].actions[:],\n",
+ " nwbfile.lab_meta_data[\"task\"].action_types[:],\n",
+ " left_on=\"action_type\",\n",
+ " right_on=\"id\",\n",
+ ").head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d47f67a-a13c-4f46-a703-6ab6753fe62b",
+ "metadata": {},
+ "source": [
+ "The `StatesTable` is a column-based table to store the information about the states (e.g. the duration while nose is in center port). This table can be accessed as `nwbfile.acquisition[\"task_recording\"].states`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a4fd969f-8b11-4bbd-986a-b275413c8079",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " start_time | \n",
+ " stop_time | \n",
+ " state_type | \n",
+ " state_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 16.2116 | \n",
+ " 42.9993 | \n",
+ " 0 | \n",
+ " wait_for_poke | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 42.9993 | \n",
+ " 43.0395 | \n",
+ " 1 | \n",
+ " nose_in_center | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 43.0395 | \n",
+ " 44.0395 | \n",
+ " 2 | \n",
+ " punish_violation | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 44.1310 | \n",
+ " 72.9036 | \n",
+ " 0 | \n",
+ " wait_for_poke | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 72.9036 | \n",
+ " 74.0515 | \n",
+ " 1 | \n",
+ " nose_in_center | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " start_time stop_time state_type state_name\n",
+ "0 16.2116 42.9993 0 wait_for_poke\n",
+ "1 42.9993 43.0395 1 nose_in_center\n",
+ "2 43.0395 44.0395 2 punish_violation\n",
+ "3 44.1310 72.9036 0 wait_for_poke\n",
+ "4 72.9036 74.0515 1 nose_in_center"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.merge(\n",
+ " nwbfile.acquisition[\"task_recording\"].states[:],\n",
+ " nwbfile.lab_meta_data[\"task\"].state_types[:],\n",
+ " left_on=\"state_type\",\n",
+ " right_on=\"id\",\n",
+ ").head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d983e620-b3d4-424b-bb53-cd64c5ec6cd8",
+ "metadata": {},
+ "source": [
+ "### Plot the events, actions, and states\n",
+ "\n",
+ "The ``plot_events``, ``plot_actions``, and ``plot_states`` functions can consume both the raw table as well as a subset of the table as a pandas DataFrame created through slicing, e.g., via ``events[:100]`` will plot only the first 100 rows from the events table.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "9e145e47-ebd3-4eb3-93c5-6e9d036c111b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAAGiCAYAAAC7/hjYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMUElEQVR4nOzdeVzU5d7/8fcMO7KIiJCIuNQpl9JKs9x3S62jkrupWZpa55RmJZWJHlPbPFrZqrlrmlvmklui5FJZWmrSyRLBBdxYFNnn+/vD38wNwiCMICqv5+Mxjxu+1/a5rhmO95nPua7LZBiGIQAAAAAAAAAAAKAcMJd1AAAAAAAAAAAAAMD1QnIMAAAAAAAAAAAA5QbJMQAAAAAAAAAAAJQbJMcAAAAAAAAAAABQbpAcAwAAAAAAAAAAQLlBcgwAAAAAAAAAAADlBskxAAAAAAAAAAAAlBskxwAAAAAAAAAAAFBukBwDAAAAAAAAAABAuUFyDAAAAAAAAAAAAOUGyTEAAAAAAEpJRESETCZTkV+3gunTpysiIkL79+8v61AAAACAAjmXdQAAAAAAAJQHgYGBZR3CdTF9+nQdO3ZMNWrUUMOGDcs6HAAAACAfkmMAAAAAAFwH8fHxZR0CAAAAAHGsIgAAAAAAAAAAAMoRkmMAAAAAANxA9u3bZ7uD7Lfffiu07sCBA2UymdSuXbsCy9etW6ewsDAFBwfLzc1Nfn5+atmypT7++GNlZmYW2KZ169YymUyKiIiQYRj6/PPP1aRJE/n4+Mjb21sPPfSQFi5cmK+d9X61Y8eOSZKefPLJQu9US0xM1BtvvKH77rtPPj4+cnV1VVBQkO655x4NHz5cW7duLcpyAQAAAMXGsYoAAAAAANxA7r33XtWrV0+HDh3SggUL9M477xRYLzU1VStXrpR0OUmWW1pamgYOHKjly5fbnvn4+Cg5OVlRUVGKiorS/PnztX79evn5+RXYf05Ojrp3766vv/5azs7O8vT01IULF7Rnzx7t2bNHf/75pyZMmGCr7+XlpcDAQJ05c0YWi0U+Pj7y8PAosO/jx4+rWbNmio2NlSSZzWb5+vrq7NmzSkhI0IEDBxQdHW036QcAAABcC3aOAQAAAABwg7EmuxYvXiyLxVJgnVWrVik1NVUVKlRQWFhYnrJhw4Zp+fLlqlWrlhYtWqTk5GQlJyfr0qVL+vrrr1WrVi3t2bNHQ4YMsRvDzJkzFRkZqblz5yolJUXJycmKi4vTo48+KkmaNGmS/vzzT1v9MWPGKD4+XiEhIZKkGTNmKD4+Ps/LKiIiQrGxsapRo4a2bNmizMxMnT9/XhkZGYqJidHHH3+sBx980LHFAwAAAK6C5BgAAAAAANdBUFBQoa/nn3/eVrd///4ym806efKktmzZUmB/CxYskCR1795dXl5etudRUVFauHChqlSposjISPXr108+Pj6SJHd3dz322GPavn27KlSooNWrV2v//v0F9p+YmKhVq1Zp0KBBth1g1apV01dffaWqVavKYrFo2bJlDq3Frl27JEmTJ09Wu3bt5OTkJElycnJSaGiohg8frqlTpzrUNwAAAHA1JMcAAAAAALgOEhISCn0lJyfb6gYHB6tt27aS/i8JltupU6dsd3I98cQTecpmz54t6XKCzbqL60rVqlVTmzZtJEkbN24ssE6zZs1sdXJzc3NTp06dJOmqd6LZU7FiRUmX5wEAAABcb9w5BgAAAADAdWAYRrHqDxw4UFu2bMlzfKLV4sWLlZOTo6pVq6p9+/Z52u3cuVPS5STZ4sWL7fZvTcYdO3aswPImTZrYbVu1alVJ0vnz54s2mSt07dpVu3fv1tixYxUdHa0ePXqoadOmth1uAAAAQGli5xgAAAAAADegHj16yMvLS6mpqVq5cmWeMutuMuvxi7mdPHlSkpSSklLoTrX09HRJ0qVLlwoc39vb225szs6X/7e2WVlZDs3tpZdeUq9evZSVlaXPP/9cjzzyiCpWrKi7775bL730kv744w+H+gUAAACKguQYAAAAAAA3oAoVKqhHjx6SpPnz59ueHzhwQL/++quk/EcqSlJOTo4k6eOPP5ZhGFd9zZ07t/QncwUXFxctXbpU+/fv1xtvvKG2bdvK09NTBw8e1Lvvvqt69erpvffeu+5xAQAAoHwgOQYAAAAAwA3Kmvz67rvvdOLECUn/t2usYcOGuvvuu/O1CQoKkmT/uMQbSYMGDTRhwgRt3bpVSUlJ2rJli1q2bKmcnBy99NJLtiQgAAAAUJJIjgEAAAAAcINq27atqlWrJovFosWLF9v+r3T5TrKCNGvWTJK0du3a6xZnbtZjHot7x5qzs7PatWundevWyc3NTYZhaMuWLaURIgAAAMo5kmMAAAAAANygzGaz+vfvL+nyjjHrDjInJyf169evwDbDhg2TJB08eFAff/xxof2npqYqMzOzRGP28fGRJCUlJdmtk5GRYbfMzc1NTk5OkpTvPjUAAACgJPD/ZQIAAAAAcAOzHq144MABhYeHS5I6duyowMDAAuu3atVKTz75pCTp2Wef1ahRo/T333/byjMyMrRnzx69/PLLCg0N1enTp0s03vr160uSli9frsTExALrhIaGKjw8XHv27MmTKDty5Ij69++vS5cuyWw2q1OnTiUaGwAAACBJzmUdAAAAAAAA5YH1LrDCrFy5Uk2bNs3zrF69errvvvv0yy+/aO/evZLsH6lo9cknn8jJyUmzZs3S9OnTNX36dHl5ecnFxUXJycmyWCy2uiaTyYHZ2Dds2DAtXrxYu3btUkBAgKpUqSJXV1dJUkxMjCQpISFBU6dO1dSpU2U2m+Xr66u0tDSlp6fbYnrvvfdUt27dEo0NAAAAkEiOAQAAAABwXSQkJFy1jr0jDgcOHKhffvlF0uVjC//5z38W2o+rq6s+//xzDRkyRJ999pmioqJ08uRJZWRkqEqVKrrrrrvUsmVLPf744woODi7+ZArRsmVLrVu3TtOmTdO+ffuUkJCQJxknSZs2bdK2bdv0/fffKzY21rY2t99+u1q0aKFnn31W999/f4nGBQAAAFiZjOLekAsAAAAAAAAAAADcpLhzDAAAAAAAAAAAAOUGyTEAAAAAAAAAAACUGyTHAAAAAAAAAAAAUG6QHAMAAAAAAAAAAEC5QXIMAAAAAAAAAAAA5QbJMQAAAAAAAAAAAJQbzmUdAADc6CwWi06ePClvb2+ZTKayDgcAAAAAAAAAUADDMHThwgVVrVpVZrP9/WEkxwDgKk6ePKmQkJCyDgMAAAAAAAAAUARxcXGqVq2a3XKSYwBwFd7e3pIu/weqj49PGUcDAAAAAABuFpcys/XAm1slST++1k6ernwdCwClKSUlRSEhIbbvdO3hP40B4CqsRyn6+PiQHAMAAAAAAEXmnJkts5unpMvfK5AcA4Dr42rX49g/cBEAAAAAAAAAAAC4xZAcAwAAAAAAAAAAQLlBcgy4BjExMTKZTDKZTIqJiSnrcEpdZmamateuLTc3N8XFxZX6eDk5OZo2bZruvfdeVahQwbbWq1evttW5dOmSxo0bpzp16sjDw8NWZ//+/bp48aICAgLk5+enc+fOlXq8AAAAAAAAAIAbH4fcolCrV6/W/v371bBhQ3Xr1u2mHcMRERERkqTBgwerRo0aZRrLjeKDDz7Q33//rZEjRyokJKTQutu3b9fixYu1Y8cOnTp1Sunp6QoICNA999yjrl27avDgwfLw8Ci0jxdeeEEffvihJMnV1VWBgYGSJHd3d1ud3r17a+3atZIkDw8PWx0XFxd5eXnpxRdfVHh4uCZOnKgZM2Y4PHcAAAAAAAAAwK3BZBiGUdZB4MY1ePBgzZs3T4MGDdLcuXNv2jEcYb2wb9u2bWrdunWBdU6cOKF27dpJkrZu3arg4ODrFd51d/78edWuXVtpaWk6cuSIqlWrVmC9c+fOaeDAgVq/fr3tmZubm9zd3ZWcnGx7FhwcrDlz5qhDhw4F9nPhwgX5+/srKytLb7/9tsaMGZPvEsXo6GjVqVNHkrR06VL16tUrXz8XL15UzZo1lZycrN9//1233357seeekpIiX19fJScny8fHp9jtAQAAAABA+XQpM1t139goSfp9Yid5urJXAQBKU1G/y+VYReAaBAcHKzo6WtHR0bd0YkySPvvsMyUlJenRRx+1mxhLSEjQgw8+qPXr18vJyUn/+te/dOjQIaWnpyspKUmJiYmaM2eOQkJCdOLECXXu3FnLli0rsK/o6GhlZWVJkkaMGJEvMSZJBw4ckCT5+/sXmBiTJC8vL/Xv319ZWVmaPn26AzMHAAAAAAAAANxKSI4BuCrDMPTZZ59JkgYMGGC3Tr9+/XTkyBG5uLho1apVev/991W3bl1bnYoVK2rw4MHat2+fGjRooOzsbA0ZMkTR0dH5+rt06ZLtZy8vrwLHtNaxV25ljXnhwoV5+gUAAAAAAAAAlD8kx8qhpUuX6pFHHlFgYKBcXFxUsWJF3XHHHXrsscc0c+ZMpaenKzIyUiaTSfPmzZMkzZs3TyaTKc8rMjLS1md8fLw++OAD/fOf/1SdOnXk6+srDw8P3X777Xr66ad16NChfHEUdwyrgwcPatiwYbrjjjvk6ekpLy8v3XPPPXrttdd09uzZa16fwYMH59ml1KZNmzwx5b5/LCYmxvY8JiamwPlZ+/rtt9/Ut29fVa1aVR4eHqpTp47effddZWdn29rs3LlT3bp102233SZ3d3fVr19fM2fO1NVOP3VkTSIiImQymWxHRq5YsUIdO3ZUlSpVZDabbXeuSdKWLVt09OhRVaxYUZ07dy6wv7Vr1+q7776TJL322mt69NFH7cbr7++vr776Su7u7kpNTdW4ceNsZXPnzs0Tl6Q869+6dWtb7IMHD5YkHTt2LE8d63OrRo0a6Y477lBycrKWLl1qNy4AAAAAAAAAwK2PQ27LmSFDhmjOnDm23728vJSVlaUjR47oyJEj+uabb9SlSxe5uroqMDBQycnJSk9Pl7u7u3x9ffP05erqavt57NixtiSXs7OzfHx8dOnSJf3111/666+/tHDhQi1atEhhYWF52hdnDEl6++23FR4eLovFIkny9PRUVlaWDhw4oAMHDmjOnDlat26d7r33XofXyNfXV4GBgUpISJAk+fn55YkjICCg2H1u2LBBPXr0UHp6unx9fZWRkaHo6Gi99NJL+vnnn7VkyRLNmjVLw4cPl8VikY+PjzIyMnTo0CE999xziouL09SpUwvsuyTW5MUXX9S0adNkMplUsWJFmc158+bffvutJKlJkyZycXEpsI+PPvpIkuTt7a0XX3zxqmtyxx13qG/fvpozZ45Wrlyp+Ph4BQUFycPDQ4GBgcrMzFRiYqIkKTAw0NauUqVK8vLyUmBgoNLS0pSSkiKz2ZznfbnycyRJLVu21J9//qlvv/1WTz755FXjAwAAAAAAAADcmtg5Vo58//33mjNnjsxms9566y2dO3dOFy5cUGpqqs6ePauNGzdq0KBBcnV1VdOmTRUfH6/evXtLknr37q34+Pg8r6ZNm9r6vv322/XOO+/owIEDSktL07lz55SRkaGDBw+qf//+ysjI0KBBg3Ty5Elbm+KOMXv2bL3yyivy9PTUm2++qVOnTik1NVWXLl3S3r171bZtW506dUqPPfaYLl686PA6zZgxQ/Hx8bbfrYkb6+unn34qdp/9+vXTP//5Tx07dkxJSUlKTk5WeHi4JOnLL7/U1KlTNXLkSI0cOVLx8fFKSkrS+fPnbTug3nnnHf3vf//L129JrMnPP/+sadOm6ZVXXlFCQoLOnz+v1NTUPAmkHTt2SJIeeOCBAvvIzs5WVFSUJKljx45XPebQqkePHpIki8Wi7du3S/q/z8HKlStt9XKv/8qVKzVmzBjFx8drxowZkqSQkJA8dazPc2vSpEmeuQAAAAAAAAAAyieSY+XIrl27JEnt27fXyy+/rEqVKtnK/P391bFjR82dO1dVq1Ytdt+vv/66xowZo/r168vZ+fKGRLPZrHr16mnhwoXq0qWLUlNT9cUXXzgU+4ULFzRmzBhJ0vLly/Xqq68qKChIkuTk5KT7779fGzdu1P3336/jx49r1qxZDo1TWho3bqwlS5aoevXqki7vrpo8ebJatGghSQoPD9egQYP0/vvvq0qVKpIu71ibNWuWatasKYvFomXLluXps6TW5OLFixo9erSmTp1q233l5uam0NBQSVJmZqb27dsnSWrQoEGBfcTExCg1NVWSirVrr2HDhrafDx48WOR2jrDGFR8fr6NHjxZaNyMjQykpKXleAAAAAAAAAIBbA8mxcqRixYqSpDNnzignJ+e6jt2lSxdJl3evOWLFihVKSkrSvffeq06dOhVYx9nZWX379pUkbdy40bFAS8krr7yS5x4zq9xzse4ky83JyUnt2rWTdPnOstxKak3MZrNeeeUVu7GfPn3a9nmxd6TkuXPnbD/7+/vb7etKlStXLrCP0pB7rNw7GAsyZcoU+fr62l4hISGlGhsAAAAAAAAA4PrhzrFypF27dnJ3d9e+ffvUokULPfXUU2rbtq1q1qxZIv3/+uuv+vTTT/X9998rJiZGFy9elGEYeeocP37cob537twpSTp8+LBtd1RB0tLSJEnHjh1zaJzSYu84QutdWpUqVVKtWrUKrWO9f8uqpNbk9ttvt+1WK8iZM2dsP+febXizyR177jkVJDw8XKNHj7b9npKSQoIMAAAAAAAAAG4RJMfKkdq1a2vWrFkaPny4du/erd27d0u6vBuoTZs26tevnx577LECdzhdzYcffqjnn39eFotFkmQymeTr6ys3NzdJlxM0KSkptqP3isu60yc9PV3p6elXrX/p0iWHxikt3t7eBT63HkFprzx3naysrDzPS2pNCkuMWfu3sr6fV8q9W6w4O8DOnj1bYB+lwcPDw/bz1dbLzc3N7lwBAAAAAAAAADc3jlUsZ/r3769jx47pk08+Ue/evRUSEqIzZ85o2bJl6tatm1q1alXs+5UOHz6sF154QRaLRT179tSPP/6o9PR0JSYmKj4+XvHx8Zo2bZok5dtJVlTWY/169+4twzCu+oqJiXFonJtJSa2Jk5NToePkTlpduXvNKjQ0VBUqVJAk/fLLL0Weg/UuM0mqV69ekds54vz587afSzsRBwAAAAAAAAC4cZEcK4cqVaqkZ555Rl9++aViY2N15MgRjR07ViaTSVFRUYqIiChWf8uXL1dOTo7q1KmjL7/8Uo0bN5arq2ueOvHx8dcUs/XYwBvtuMSydL3WJPc9Y7kTTLm5uLioRYsWkqRNmzbpwoULRep75cqVki7fe9a6detrC/Qqcsdu7+40AAAAAAAAAMCtj+QYVLt2bU2ZMkX9+vWTJG3evNlWZjZf/ogUtuMrLi5OktSgQQNb/Stt2bLFbvuijNGsWTNJ0s8//6xTp07ZrVeSrMdLOrrbrbRdrzXx8/OzJeL+/vtvu/VGjBghSbp48aJtp2Bh/vzzT3355ZeSpO7duxd6b1pJOHr0qKTLx1TecccdpToWAAAAAAAAAODGRXKsHMnIyCi03HonU+4El4+PjyQpKSnJbjtfX19J0oEDBwpMJG3YsEGRkZF22xdljJ49e6pixYrKysrS6NGjC01YWSyWQvsqqqLEVZau55q0bNlSkvTjjz/arfPoo4/adn+9+eabWrt2rd26586dU8+ePZWeni5PT0/95z//cTi2ovrhhx8kSffff7/tCEgAAAAAAAAAQPlDcqwcee6559SrVy+tWLFCp0+ftj2/ePGiPvnkE82fP1+S1KVLF1tZ/fr1JUlRUVGKjo4usN+HH35YknTo0CE9++yztuPrUlNT9emnn+rxxx8v9I6nooxRsWJFTZ8+XZL05ZdfqkuXLvrhhx9ksVgkXU7+HD58WO+9957q1atXaGKmqKxxLVq0SJcuXbrm/kra9VwTa9LLmmAqiMlk0pIlS1SrVi1lZWWpe/fuev7553X48GFbneTkZM2bN0/33Xeffv31Vzk5OWnWrFmqU6eOw7EVlTX2Vq1alfpYAAAAAAAAAIAbF8mxciQrK0tfffWVHn/8cQUGBsrb21t+fn7y9vbWiBEjlJmZqebNm+u1116ztQkLC1NAQIASExNVp04dBQQEqEaNGqpRo4b27NkjSWrXrp369OkjSfr444/l7+8vPz8/+fr6avjw4apTp06h95gVZQxJGjRokD7++GO5urpqw4YNevDBB+Xp6anKlSvL3d1ddevW1ZgxYxQdHW07EvFaDB8+XJK0YsUKVaxYUdWqVVONGjXUvHnza+67pFyvNQkLC5OLi4uio6P1559/2q0XFBSkPXv2qFOnTsrOztb777+vunXrysPDQ35+fqpYsaIGDx6s2NhY3XbbbVq7dq369u3rcFxFlZKSou3bt0uS7fhQAAAAAAAAAED5RHKsHBk3bpzef/99de/eXXfddZecnZ118eJFValSRR06dNAXX3yhyMjIPEfO+fn5aceOHerTp4+Cg4OVnJysY8eO6dixY0pPT7fVW7RokaZPn6577rlHbm5uysnJ0d13360pU6Zo586d8vLyshtXUceQLies/vjjD40ZM0YNGjSQm5ubkpKS5OXlpUaNGulf//qXNm/eXCIJlwEDBmjBggVq3ry5PD09derUKR07dkzHjx+/5r5L0vVYkypVqqh79+6SLr/XhQkICNC3336r7777Tk8//bTuvPNOubq6Ki0tTcHBwXrkkUc0c+ZMHTlyxLbrsLStWLFC6enpatKkiRo0aHBdxgQAAAAAAAAA3JhMRmEXFQHA/7djxw61atVKtWvX1p9//lkiu/Oul7Zt22rbtm2aN2+eBg4cWOz2KSkp8vX1VXJysu0uOgAAAAAAgKu5lJmtum9slCT9PrGTPF2dyzgiALi1FfW7XHaOASiSli1bqmPHjvrrr7/01VdflXU4RfbDDz9o27Ztqlevnvr371/W4QAAAAAAAAAAyhjJMQBF9u6778psNmvixImyWCxlHU6RWO+7e/vtt+Xk5FS2wQAAAAAAAAAAyhz7eAEU2d13363Zs2crJiZGp06dUnBwcFmHVKiLFy/qwQcf1MMPP6zOnTuXdTgAAAAAAAAAgBsAyTHc0oKCgordJj4+vhQiuXUMHjy4rEMoMi8vL40fP76swwAAAAAAAAAA3EBIjuGWlpCQUNYhAAAAAAAAAACAGwjJMdzSDMMo6xAAAAAAAABQTnm6OitmapeyDgMAcAVzWQcAAAAAAAAAAAAAXC8kxwAAAAAAAAAAAFBukBwDAAAAAAAAAABAuUFyDAAAAAAAAAAAAOUGyTEAAAAAAAAAAACUGyTHAAAAAAAAAAAAUG6QHAMAAAAAAAAAAEC5QXIMAAAAAAAAAAAA5QbJMQAAAAAAAAAAAJQbJMcAAAAAAAAAAABQbpAcAwAAAAAAAAAAQLlBcgwAAAAAAAAAAADlBskxAAAAAAAAAAAAlBskxwAAAAAAAACUikuZ2aoxdp1qjF2nS5nZZR0OAACSSI4BAAAAAAAAAACgHCE5BgAAAAAAAAAAgHKD5BgAAAAAAAAAAADKDZJjAAAAAAAAAAAAKDdIjgEAAAAAAAAAAKDcIDkGAAAAAAAAAACAcoPkGFACYmJiZDKZZDKZFBMTU9bhlLrMzEzVrl1bbm5uiouLK+tw7LJYLKpXr55cXFz0xx9/lHU4AAAAAAAAAIAbAMkxFMnq1asVERGh1atX39RjOCIiIkIRERHlIulVVB988IH+/vtvPf300woJCSm07vbt2/XMM8+oTp06qlixotzd3RUSEqIuXbro448/VlpaWqnFaTabNW7cOGVnZ+vll18utXEAAAAAAAAAADcPkmMoktWrV2vChAmlnhwr7TEcMWHCBE2YMKHQ5JiLi4vuvPNO3XnnnXJxcbl+wZWB8+fPa9KkSXJzc1N4eLjdeufOnVOXLl3UunVrffbZZ4qOjlZ6errc3d11/PhxrV+/XiNHjtQdd9yhzZs3l1q8vXr1Ut26dbVmzRrt2LGj1MYBAAAAAAAAANwcSI4BJSA4OFjR0dGKjo5WcHBwWYdTqj777DMlJSXp0UcfVbVq1Qqsk5CQoAcffFDr16+Xk5OT/vWvf+nQoUNKT09XUlKSEhMTNWfOHIWEhOjEiRPq3Lmzli1bVirxms1mDR06VJL09ttvl8oYAAAAAAAAAICbB8kxAEVmGIY+++wzSdKAAQPs1unXr5+OHDkiFxcXrVq1Su+//77q1q1rq1OxYkUNHjxY+/btU4MGDZSdna0hQ4YoOjq6VOLu27evnJyctGHDBsXGxpbKGAAAAAAAAACAmwPJsXJs6dKleuSRRxQYGCgXFxdVrFhRd9xxhx577DHNnDlT6enpioyMlMlk0rx58yRJ8+bNk8lkyvOKjIy09RkfH68PPvhA//znP1WnTh35+vrKw8NDt99+u55++mkdOnQoXxzFHcPq4MGDGjZsmO644w55enrKy8tL99xzj1577TWdPXv2mtdn8ODBMplMtt/btGmTJ6YaNWrYymJiYmzPrzx+0To/a1+//fab+vbtq6pVq8rDw0N16tTRu+++q+zsbFubnTt3qlu3brrtttvk7u6u+vXra+bMmTIMo9CYHVmTiIgImUwmtW7dWpK0YsUKdezYUVWqVJHZbFZERISt7pYtW3T06FFVrFhRnTt3LrC/tWvX6rvvvpMkvfbaa3r00Uftxuvv76+vvvpK7u7uSk1N1bhx4/LVad26tUwmkyIiImQYhj7//HM1adJEPj4+8vb21kMPPaSFCxcWui6BgYFq27atLBaLZs+eXWhdAAAAAAAAAMCtzbmsA0DZGDJkiObMmWP73cvLS1lZWTpy5IiOHDmib775Rl26dJGrq6sCAwOVnJxsuy/K19c3T1+urq62n8eOHWtLcjk7O8vHx0eXLl3SX3/9pb/++ksLFy7UokWLFBYWlqd9ccaQLh+PFx4eLovFIkny9PRUVlaWDhw4oAMHDmjOnDlat26d7r33XofXyNfXV4GBgUpISJAk+fn55YkjICCg2H1u2LBBPXr0UHp6unx9fZWRkaHo6Gi99NJL+vnnn7VkyRLNmjVLw4cPl8VikY+PjzIyMnTo0CE999xziouL09SpUwvsuyTW5MUXX9S0adNkMplUsWJFmc158+fffvutJKlJkyZ271b76KOPJEne3t568cUXr7omd9xxh/r27as5c+Zo5cqVio+PV1BQUL56OTk56t69u77++ms5OzvL09NTFy5c0J49e7Rnzx79+eefmjBhgt1xWrZsqc2bN+vbb78ttB4AAAAAAAAA4NbGzrFy6Pvvv9ecOXNkNpv11ltv6dy5c7pw4YJSU1N19uxZbdy4UYMGDZKrq6uaNm2q+Ph49e7dW5LUu3dvxcfH53k1bdrU1vftt9+ud955RwcOHFBaWprOnTunjIwMHTx4UP3791dGRoYGDRqkkydP2toUd4zZs2frlVdekaenp958802dOnVKqampunTpkvbu3au2bdvq1KlTeuyxx3Tx4kWH12nGjBmKj4+3/W5N3FhfP/30U7H77Nevn/75z3/q2LFjSkpKUnJyssLDwyVJX375paZOnaqRI0dq5MiRio+PV1JSks6fP6/BgwdLkt555x3973//y9dvSazJzz//rGnTpumVV15RQkKCzp8/r9TUVD355JO2Ojt27JAkPfDAAwX2kZ2draioKElSx44d5eXlVaR16dGjhyTJYrFo+/btBdaZOXOmIiMjNXfuXKWkpCg5OVlxcXG2nWmTJk3Sn3/+aXeMJk2aSJJ++eWXa/pcAAAAAAAAAABubiTHyqFdu3ZJktq3b6+XX35ZlSpVspX5+/urY8eOmjt3rqpWrVrsvl9//XWNGTNG9evXl7Pz5Y2JZrNZ9erV08KFC9WlSxelpqbqiy++cCj2CxcuaMyYMZKk5cuX69VXX7XtMnJyctL999+vjRs36v7779fx48c1a9Ysh8YpLY0bN9aSJUtUvXp1SZd3V02ePFktWrSQJIWHh2vQoEF6//33VaVKFUmXd6zNmjVLNWvWlMVi0bJly/L0WVJrcvHiRY0ePVpTp0617Ypzc3NTaGioJCkzM1P79u2TJDVo0KDAPmJiYpSamipJxdq117BhQ9vPBw8eLLBOYmKiVq1apUGDBsnDw0OSVK1aNX311VeqWrVqgWuTmzWe7OzsqyY2MzIylJKSkucFAAAAAAAAALg1kBwrhypWrChJOnPmjHJycq7r2F26dJF0efeaI1asWKGkpCTde++96tSpU4F1nJ2d1bdvX0nSxo0bHQu0lLzyyit57jGzyj0X606y3JycnNSuXTtJl+8sy62k1sRsNuuVV16xG/vp06dtnxd7R0qeO3fO9rO/v7/dvq5UuXLlAvvIrVmzZmrTpk2+525ubrZ5X7k2uVWqVMl2TGTunYsFmTJlinx9fW2vkJCQq84BAAAAAAAAAHBz4M6xcqhdu3Zyd3fXvn371KJFCz311FNq27atatasWSL9//rrr/r000/1/fffKyYmRhcvXpRhGHnqHD9+3KG+d+7cKUk6fPhwgfdSWaWlpUmSjh075tA4pcXecYSBgYGSLidwatWqVWidxMTEPM9Lak1uv/122261gpw5c8b2c+7dhteL9VjEglh3OZ4/f95uHbPZLF9fXyUmJuaZS0HCw8M1evRo2+8pKSkkyAAAAAAAAADgFkFyrByqXbu2Zs2apeHDh2v37t3avXu3pMu7gdq0aaN+/frpscceK3CH09V8+OGHev7552WxWCRJJpNJvr6+cnNzk3Q5QZOSkmI7eq+4rDt+0tPTlZ6eftX6ly5dcmic0uLt7V3gc+sRlPbKc9fJysrK87yk1qSwxJi1fyvr+3ml3LvF7O0AK8jZs2cL7CM3R9bmSh4eHkpMTLzqOrm5udmdIwAAAAAAAADg5saxiuVU//79dezYMX3yySfq3bu3QkJCdObMGS1btkzdunVTq1atin3P0uHDh/XCCy/IYrGoZ8+e+vHHH5Wenq7ExETFx8crPj5e06ZNk6R8O8mKynqsX+/evWUYxlVfMTExDo1zMympNXFycip0nNxJqyt3r1mFhoaqQoUKkqRffvmlyHOw3mUmSfXq1Styu+Ky7iwrzpGPAAAAAAAAAIBbC8mxcqxSpUp65pln9OWXXyo2NlZHjhzR2LFjZTKZFBUVpYiIiGL1t3z5cuXk5KhOnTr68ssv1bhxY7m6uuapEx8ff00xW48NvNGOSyxL12tNct8zZu/4QhcXF7Vo0UKStGnTJl24cKFIfa9cuVLS5aMPW7dufW2B2pGWlmbbMWbvzjQAAAAAAAAAwK2P5BhsateurSlTpqhfv36SpM2bN9vKzObLH5XCdnzFxcVJkho0aGCrf6UtW7bYbV+UMZo1ayZJ+vnnn3Xq1Cm79UqS9XhJR3e7lbbrtSZ+fn62RNzff/9tt96IESMkSRcvXrTtFCzMn3/+qS+//FKS1L1790LvTbsWR48etf1cp06dUhkDAAAAAAAAAHDjIzlWDmVkZBRa7uHhIUl5Elw+Pj6SpKSkJLvtfH19JUkHDhwoMJG0YcMGRUZG2m1flDF69uypihUrKisrS6NHjy40YWWxWArtq6iKEldZup5r0rJlS0nSjz/+aLfOo48+atv99eabb2rt2rV26547d049e/ZUenq6PD099Z///Mfh2K7mhx9+kCQFBgbqzjvvLLVxAAAAAAAAAAA3NpJj5dBzzz2nXr16acWKFTp9+rTt+cWLF/XJJ59o/vz5kqQuXbrYyurXry9JioqKUnR0dIH9Pvzww5KkQ4cO6dlnn7UdvZeamqpPP/1Ujz/+eKF3PRVljIoVK2r69OmSpC+//FJdunTRDz/8IIvFIuly8ufw4cN67733VK9evUITM0VljWvRokW6dOnSNfdX0q7nmliTXtZEU0FMJpOWLFmiWrVqKSsrS927d9fzzz+vw4cP2+okJydr3rx5uu+++/Trr7/KyclJs2bNKtUdXdaYW7VqVWpjAAAAAAAAAABufCTHyqGsrCx99dVXevzxxxUYGChvb2/5+fnJ29tbI0aMUGZmppo3b67XXnvN1iYsLEwBAQFKTExUnTp1FBAQoBo1aqhGjRras2ePJKldu3bq06ePJOnjjz+Wv7+//Pz85Ovrq+HDh6tOnTqF3mNWlDEkadCgQfr444/l6uqqDRs26MEHH5Snp6cqV64sd3d31a1bV2PGjFF0dLTtSMRrMXz4cEnSihUrVLFiRVWrVk01atRQ8+bNr7nvknK91iQsLEwuLi6Kjo7Wn3/+abdeUFCQ9uzZo06dOik7O1vvv/++6tatKw8PD/n5+alixYoaPHiwYmNjddttt2nt2rXq27evw3FdjcVi0bp16yTJdmwoAAAAAAAAAKB8IjlWDo0bN07vv/++unfvrrvuukvOzs66ePGiqlSpog4dOuiLL75QZGSkKlSoYGvj5+enHTt2qE+fPgoODlZycrKOHTumY8eOKT093VZv0aJFmj59uu655x65ubkpJydHd999t6ZMmaKdO3fKy8vLblxFHUO6nLD6448/NGbMGDVo0EBubm5KSkqSl5eXGjVqpH/961/avHlziSRcBgwYoAULFqh58+by9PTUqVOndOzYMR0/fvya+y5J12NNqlSpou7du0u6/F4XJiAgQN9++62+++47Pf3007rzzjvl6uqqtLQ0BQcH65FHHtHMmTN15MgR267D0rJ9+3YdP35cwcHB6tq1a6mOBQAAAAAAAAC4sZmMwi4oAoAr7NixQ61atVLt2rX1559/lsjuvNI2ZMgQzZkzRxMmTNAbb7xR7PYpKSny9fVVcnKy7Q46AAAAAABwdZcys1X3jY2SpN8ndpKnq3MZRwQAuJUV9btcdo4BKJaWLVuqY8eO+uuvv/TVV1+VdThXFRcXp0WLFikgIEAvvPBCWYcDAAAAAAAAAChjJMcAFNu7774rs9msiRMnymKxlHU4hZo8ebIyMzMVERHBri8AAAAAAAAAgNjHDKDY7r77bs2ePVsxMTE6deqUgoODyzqkAlksFlWvXl2TJk3SsGHDyjocAAAAAAAAAMANgOQYyoWgoKBit4mPjy+FSG4dgwcPLusQrspsNis8PLyswwAAAAAAAAAA3EBIjqFcSEhIKOsQAAAAAAAAAADADYDkGMoFwzDKOgQAAAAAAIByx9PVWTFTu5R1GAAA5GEu6wAAAAAAAAAAAACA64XkGAAAAAAAAAAAAMoNkmMAAAAAAAAAAAAoN0iOAQAAAAAAAAAAoNwgOQYAAAAAAAAAAIByg+QYAAAAAAAAAAAAyg2SYwAAAAAAAAAAACg3SI4BAAAAAAAAAACg3CA5BgAAAAAAAAAAgHKD5BgAAAAAAAAAAADKDZJjAAAAAAAAAAAAKDdIjgEAAAAAAAAAAKDcuObk2PHjxzV69GjVq1dPXl5ecnZ2zlOemJioyZMna8qUKcrOzr7W4QAAAAAAAAAAAACHOV+9in2bN29Wr169lJKSIsMwJEkmkylPHT8/P61evVo///yz6tWrp8cee+xahgQAAAAAAAAAAAAc5vDOsbi4OD3++ONKTk7Wo48+quXLl8vPz6/AukOGDJFhGFq3bp3DgQIAAABl4VJmtmqMXacaY9fpUiYnIdwIeE8AALg58W84AOBG4XBy7L333tOFCxfUq1cvrV69Wj169JCrq2uBdTt16iRJ+umnnxwdDgAAAAAAAAAAALhmDifHNm7cKJPJpP/85z9XrVuzZk25ubnp6NGjjg4HAAAAAAAAAAAAXDOHk2OxsbHy8PDQHXfcUaT6Xl5eSk1NdXQ4AAAAAAAAAAAA4Jo5nBwzm82yWCxFqpudna2UlBT5+Pg4OhwAAAAAAAAAAABwzRxOjoWGhiojI0OxsbFXrbtjxw5lZWUVeZcZAAAAAAAAAAAAUBocTo61b99ekvTJJ58UWi8rK0uvvfaaTCaTHnnkEUeHAwAAAAAAAAAAAK6Zw8mxUaNGydXVVe+9955mz55dYJ1ffvlF7du31w8//CBvb2+NHDnS4UCB8qJGjRoymUyaO3dumYw/YMAAmUwmLV26tEzGL0kWi0X16tWTi4uL/vjjj7IOBwAAAAAAAABwA7imYxVnzZqlnJwcDRs2TIGBgUpMTJQkNW3aVMHBwWrcuLGioqLk7Oys+fPnq3LlyiUW+I1u7ty5ioiIUGRkZFmHcsuKiYlRRESEIiIiyjqUW8bevXu1ePFi1a9fX7169Sq07pEjRxQeHq7GjRsrICBArq6uCgoKUrNmzTRhwgSdPHmyVGNdvXq1IiIitHr1art1zGazxo0bp+zsbL388sulGg8AAAAAAAAA4ObgcHJMkvr3768NGzaodu3aOnPmjDIzM2UYhvbs2aNTp07JMAzdfvvt+vbbb/XYY4+VVMw3hblz52rChAkkx0pRTEyMJkyYoAkTJpR1KLeMF198UYZhaPz48TKZTAXWycnJ0UsvvaQ6depo6tSp2rt3rxITE+Xl5aUzZ85o165dioiI0B133KF333231GJdvXq1JkyYUGhyTJJ69eqlunXras2aNdqxY0epxQMAAAAAAAAAuDk4X2sHHTp00B9//KEdO3Zo586dOnnypHJycmw7SNq0aSMnJ6eSiBVAKdqzZ4927NihoKAgde/evcA6FotFYWFh+vrrryVJDz/8sMLDw9WsWTM5OTkpMzNT27Zt08SJE7Vr1y699NJLio2N1fvvv389p5KH2WzW0KFDNWrUKL399ttq2bJlmcUCAAAAAAAAACh715wckySTyaRWrVqpVatWJdEdgDLwySefSJL69OljN6E9adIkW2Js7NixmjJlSp5yV1dXderUSR06dNCTTz6p+fPn64MPPlDjxo31xBNPlO4ECtG3b1+NGTNGGzZsUGxsrKpXr15msQAAAAAAAAAAytY1HatYFuLi4vTyyy+rYcOG8vX1lYeHh2rXrq1//vOfmj9/vtLT0/O12blzpwYMGKDQ0FC5u7vL19dXDzzwgN566y1dvHixwHEGDx4sk8mkwYMHS5KWL1+u1q1bq1KlSvL09FTDhg01Y8YMWSyWPO3mzp0rk8mk7du3S5ImTJggk8mU5xUTE1PiMRqGoVmzZql58+by9/eXyWTS3Llzi76wV2jdurVMJpMiIiKUmZmpqVOn6p577lGFChXk5+enDh06aMOGDVftZ+XKleratasCAwPl6uqqwMBAde3aVatWrbLbpijzqlGjhtq0aWNrc+UaW983R1n7iYyMVHx8vJ577jnVrFlT7u7uCgoKUv/+/RUdHV1oH+np6Zo+fbqaNm0qPz8/ubu7KzQ0VAMHDtT+/fsdju3NN9+UyWSSk5OTLaFlZbFYtGjRInXu3Nm25gEBAerYsaOWLFkiwzAK7DMlJUXLli2TJPXr16/AOqdPn9bUqVMlSW3atNHkyZPtxmg2m/XZZ5+pTp06kqTw8HBlZmbmqXPl31hBrH9PNWrUsD2LjIyUyWTSvHnzJEnz5s3L9/5feZxpYGCg2rZtK4vFotmzZ9sdDwAAAAAAAABw6yuRnWOZmZnavHmz9u7dq9OnT0uSqlSpokaNGqlDhw5ydXUtiWG0YMECDRs2zJYAc3V1lbe3t2JjY/X3339rzZo1uueee9SwYUNJlxMFo0aNynOkm5eXl1JTU/XTTz/pp59+0pw5c7Rx40aFhobaHfe5557TzJkzZTab5ePjo7S0NP3666964YUX9Msvv9i+pJckDw8PBQYG6vz588rKylKFChXk5eWVp7/cu3JKIkbDMNSzZ0+tWLFCZrNZvr6+MptLJu+ZmZmp9u3bKyoqSs7OzvLy8lJSUpK2bNmiLVu2aPz48YqIiCiw3cCBA7V06VJJssV19uxZrVu3TuvWrVPfvn01b948ubi4FHteAQEBSklJUWJioqTLyY/cfH19S2T+R48eVd++fRUfHy8PDw+5uLgoISFBixcv1sqVK7Vq1So9/PDD+dqdOHFCDz/8sA4ePChJcnFxkaenp2JjY7VgwQItWrRI06dP17/+9a8ix2KxWPTvf/9bM2fOlLu7uxYvXpzn+MPz58+re/fuee7Vsq755s2btXnzZn355Zf66quv8v1Nbt++XWlpaapQoYLuu+++AsefM2eO0tLSJKnQO8ms3NzcNHbsWA0aNEgnTpzQ6tWr1atXryLP1x5rkjU5OVnp6em2ZPKVda7UsmVLbd68Wd9++y331AEAAAAAAABAeWZcow8++MCoXLmyYTabC3xVrlzZeP/99691GGPt2rWGyWQyJBnNmjUzoqKijJycHMMwDCMjI8OIiooyhg4dahw6dMjW5vXXXzckGVWqVDFmzpxpnDt3zjAMw8jMzDS2bdtm3HvvvYYk47777rP1ZTVo0CBDkuHn52e4uroa06ZNM5KTkw3DMIyzZ88aTz/9tCHJkGRs3bo1X7ytWrUyJBnjx48vdF4lEaOXl5fh7OxsvPvuu7YYL1y4YJw8ebIYK1xw/L6+voabm5vxySefGGlpaYZhGEZsbKzx+OOP2+b/9ddf52v/4osvGpIMk8lkjBs3zkhMTDQMwzDOnz9vvPrqq7a2r7zySr62RZ3Xtm3bbP2UNGu/vr6+RvXq1Y1NmzYZFovFMAzD+OGHH4y7777bkGT4+PgYcXFxedpmZ2cbTZo0sbVfuHChkZGRYRiGYfz1119G165dbWuzfv36fGOHhoYakow5c+bYnqWnpxthYWGGJKNixYrGjh078o1pfc8aNmxofPPNN0ZqaqphGIZx8eJFY968eUaVKlUMScYLL7yQb8wxY8YYkowWLVrYXZOOHTsakgx/f/+iLaJhGMnJyba/2+HDh+cps77PgwYNstt+zpw5hiQjNDQ0X1lR2ue2adMmQ5Lh7OxsXLhwochzMIzL85Bk+xwCAMqX1IwsI/SVtUboK2uN1Iyssg4HBu8JAAA3K/4NBwCUtqJ+l3tNWYWnnnrKMJvNhslkMkwmkxESEmI8+OCDxoMPPmiEhITYnpvNZuPJJ590eJysrCyjZs2ahiSjefPmtkRDYY4ePWo4OTkZHh4exv79+wusk5KSYlSrVs2QZKxatSpPmfWL9yuTFLndf//9hiTj6aefzldWlORYScZYEgnI3KzxSzJmz56drzwnJ8do2bKlIcmoV69enrLjx48bzs7OhiQjPDy8wP5Hjx5tSDJcXFzyJfGKOq/rkRxzdXU1fv/993zlCQkJRqVKlQxJxsiRI/OUffnll7b2GzduzNc2KyvLljyrX79+vvIrk2NJSUm29yM4ONg4cOBAvjbz5883JBl33XWXkZSUVOCc9u7da5hMJsPV1dVISEjIU9aiRQtDkvHcc8/ZXZPg4GBDktG+fXu7dQpSu3Zt299ubtc7OXbmzBnb+/Ldd98VWjc9Pd1ITk62veLi4kiOAUA5xpc4Nx7eEwAAbk78Gw4AKG1FTY45fPbekiVL9MUXX8gwDA0YMED/+9//FBsbq927d2v37t2KjY3Vn3/+qYEDB8owDM2bN0+LFy92aKxt27bp6NGjkqT//ve/RTqmce7cucrJydHDDz+sBg0aFFjH29tb3bp1kyRt3LixwDohISEaNGhQgWWPPfaYJOm33367ajylGaOfn5+eeeYZh2K4mpCQED355JP5npvNZr3++uuSpEOHDunAgQO2shUrVig7O1vu7u4aO3Zsgf2+/vrrcnNzU1ZWlpYvX15gndKcV1H17NnTdm9WblWqVNHw4cMlyXZ0pJX194ceekgdO3bM19bZ2Vnjx4+XJB08eDDP2l3p5MmTatGihbZv36677rpLu3btUv369fPVs96jNWLECLtHSt5///2qV6+eMjMztW3btnzjSJePq7Tn3LlzkiR/f3+7dQpSuXLlPO3LSqVKlWzHclrna8+UKVPk6+tre4WEhFyPEAEAAAAAAAAA14HDybGPPvpIJpNJ//rXvzR//nzdfvvt+erUrl1bc+fO1b/+9S8ZhqGPPvrIobF27dolSQoKClKjRo2K1Gbnzp2SpE2bNikoKMjua86cOZKkY8eOFdhP48aN7d6tVLVqVUmX73pyREnGWFL3ul2pdevWduffokULOTtfvrZu7969tufWnxs3biwfH58C2/r5+dney9xtcyvNeRVV27Ztr1p27tw5W/JW+r/5tG/f3m7bNm3a2O6eszf/6OhoNW3aVAcOHNBDDz2knTt3qnr16vnq5eTkaM+ePZKkiIiIQj9Lf/zxh6T8n6UzZ85IupxAulVZ762T/m++9oSHhys5Odn2iouLux4hAgAAAAAAAACuA2dHG/72228ymUx64403rlr3jTfe0IcffljoDpnCxMfHS5JCQ0OL3Ma6MyQ1NVWpqalXrX/p0qUCn3t7e9ttY00MZWVlFTmu3EoqxipVqjg0flEEBwfbLXN3d5e/v78SEhJ0+vRp23Prz4W1laRq1arlqX+l0pxXURU2h9xlp0+fVs2aNW0/X62tu7u7KleunG/tcnvrrbckSYGBgdq0aZO8vLwKrHf+/HllZGRIkhITEwuZzf+58rOUnp4uSXJzc7Pbxt/fXydOnCj2DrCzZ8/a2pc1Dw8PJSYm2uZrj5ubW6FrAQAAAAAAAAC4eTm8c0ySKlasWKQvvP39/VWxYkW7O5CuxpF2OTk5kqRXXnlFxuW71Qp9RUZGOhTbtSipGK07kG41t+q8iqpnz55ydXVVQkKCRowYYfu8XCn38w0bNhTpsxQREZGnD+vfcWHJtbp160qS9u3bV+Q5pKSk6O+//5Yk1atXr8jtSot1l+eNkKgDAAAAAAAAAJQNh5Njd955p5KTk3Xx4sWr1r148aJSUlJ05513OjRWUFCQJPvHCpZUm+vtZojxxIkTdssyMjJsu4hy7/Ky/nz8+PFC+7aW3wg7xOwpbP65y4o7//T09ALXLrfOnTtr1apVcnNz08KFC/XEE08UmCDz9/e37WJ09LNkvWussCNC27VrJ+nyMZJFTSavWrVKhmFIyn9EpTXmwnZxJScnF2mcokhLS7ONVdjdagAAAAAAAACAW5vDybEhQ4YoJydHH3zwwVXrfvjhh8rJydGQIUMcGqtp06aSLh+vaO9+pis1a9ZMkrRly5arHqFWGszmy0trTQwUpKxjLIrt27fbnUNUVJSys7MlKc9dcLnvErOX3EhKSspzN5kjrGssFb7O12Lbtm1XLatUqZLtSEXp/+a/detWu20jIyNta1fY/Dt37qyvv/5a7u7uWrJkifr162drZ+Xi4qIHHnhAkvTNN99cZUYFs+4Ks+7yKsjgwYPl7u4uSZo4ceJV1zwjI8N2NGTVqlXVrVu3POV+fn6SVOh9Xj/88IPdsqL8jeWW+164OnXqFKkNAAAAAAAAAODW43BybPjw4erdu7fGjRunCRMmFLiD7NKlS5o4caLGjRunPn366JlnnnForDZt2qhWrVqSpFGjRikzM/OqbYYMGSJnZ2edPXtW48ePL7RuZmZmkXbAFYePj4+ky0kge8o6xqKIjY3VvHnz8j23WCyaPHmypMuJlbvvvttWFhYWJmdnZ6Wnp9uSI1eaPHmyMjIy5OLiorCwMIdis66xVPg6X4uvvvpKf/zxR77nZ8+e1aeffipJ6t27d56yPn36SJJ2796tTZs25WubnZ2tiRMnSpLq16+v+vXrFxpDp06dtGbNGnl4eGjZsmXq06dPvnvuhg0bJklav3691q9fX2h/Be0Oa9mypSTpxx9/tNsuMDBQL7/8sqTLicHXXnvNbl2LxaJnnnlGhw8flnT5/XZ1dc1Tp0GDBpKkn376qcAE2eHDh7Vy5Uq7YxTlbyw3a6ItMDDQ4V2sAAAAAAAAAICb3zXtHPPw8JC3t7cmTpyooKAgtW7dWv3791f//v3VunVrValSRRMmTJC3t7fc3d01ZMiQfK+nnnrqqmM5OTnpww8/lMlk0vfff6927drp+++/l8VikXQ5cRQZGakBAwbo999/lyTVrl1b48aNkyS9/fbbGjhwoA4ePGjrMzs7W/v379fEiRN1++23a//+/Y4uRYGsCY/169fbPZqvrGMsCl9fX40YMUKff/65bXdbXFyc+vbta9s5NWnSpDxtgoOD9fzzz0uSpk6dqvHjx9sSGElJSRo3bpzeeecdSdLo0aN12223ORTbP/7xD1vCZdasWaWye8zd3V0PP/ywtmzZYuv/p59+Uvv27XX27Fl5e3tr7NixedqEhYWpSZMmkqRevXpp8eLFtmTW0aNHFRYWpt27d0u6/L4XRYcOHbR27Vp5enpqxYoV6tWrV54k8YABA9S+fXsZhqHu3btr0qRJOnnypK08NTVV27Zt07PPPmtLNOfWunVrSZePZUxISLAbx/jx49W1a1dJ0pQpU9S5c2dFRUXZjnvMysrSpk2b1LJlS1tSdeTIkRo0aFC+vh599FF5eXkpKytLvXr1siUhs7Ky9PXXX6t9+/aqUKGC3Visf2NRUVGKjo62W8/Kmhxr1arVVesCAAAAAAAAAG5hhoNMJpNhNpsNk8lUpNeVda2/m83mIo85b948w83NzZBkSDLc3NwMf39/w9nZ2fZs3759tvoWi8UYN26cYTKZbOUeHh6Gv7+/4eTkZHsmyfj+++/zjDVo0CBDkjFo0CC78cyZM8eQZISGhuYr+9///me4u7sbkgyz2WwEBgYaoaGhRmhoqBEXF3fdYnRUq1atDElGeHi40bx5c0OS4eLiYvj5+eWJ6fXXXy+wfUZGhtGrVy9bPbPZbPj5+Rlms9n2rG/fvkZmZma+tsWZ11NPPWXrz9PT06hevboRGhpqvPjii9c0f2ufX3zxhREUFGTr38vLK8/nb+3atQW2P378uFGvXj1bXVdXV6NixYp51mPGjBkFtg0NDTUkGXPmzMlXFhkZaVSoUMGQZHTt2tXIyMiwlSUnJxtdu3bN8/74+PgYFStWzPP5cnZ2LnDcBg0aGJKMzz77rNC1ycrKMkaNGpXn787JycmoVKlSnvfX3d3dmDp1aqF9zZo1K09s3t7ehqurqyHJePDBB40PP/zQ7t/Y+fPnjYCAAFvbypUr2/7Gdu/enaduTk6OUa1aNUOSsXr16kJjKkhycrIhyUhOTi52WwDAzS81I8sIfWWtEfrKWiM1I6usw4HBewIAwM2Kf8MBAKWtqN/lOjuaVBs4cKBMJpOjzR0es2XLlpoxY4Y2bdqkY8eOKS0tTaGhobr77rsVFhaW5y4hk8mkiRMnqlevXvr444+1bds2xcXFKTk5WX5+fvrHP/6hZs2aqXv37nrooYdKNNY77rhD27Zt05QpU/TDDz/o3Llztruict8ZVZYxFoWrq6u2bt2q9957T4sXL9bff/8tX19fNWrUSKNHj1bnzp3ttlu6dKl69eql2bNna+/evUpMTJS/v78aNWqkoUOHqnv37tcc38yZMxUSEqIVK1bor7/+UmxsrKTLxx6WhJo1a2rfvn2aNGmS1q5dq1OnTqlKlSpq166dxo0bZ/fuquDgYO3du1cff/yxli1bpsOHD+vSpUsKCQlR69atNXr0aDVs2LDY8bRq1UrffvutOnfurLVr16pbt25atWqV3Nzc5OPjo2+++UYbNmzQvHnztHv3biUkJMgwDAUHB6tu3bpq06aNevXqVWDfzzzzjEaOHKlFixZp6NChdmNwdnbWtGnTNGLECM2aNUtbt25VTEyMUlJS5O/vr9tvv10dO3bU0KFDFRwcXOh8nnrqKVWtWlXvvvuu9u7dq6ysLP3jH//QgAEDNGrUKC1evNhuWz8/P+3YsUMTJkxQVFSUTp8+bXvfr7zDb/v27Tp+/LiCg4NtO98AAAAAAAAAAOWTyTBK4Sw63PRat26t7du3a/z48YqIiCjrcK47a+J327ZttiMHb3UXLlxQtWrVdOHCBR09elShoaFlHVKJGTJkiObMmaMJEybojTfeKHb7lJQU+fr6Kjk5Oc9ddwCA8uFSZrbqvrFRkvT7xE7ydHX4f1+GEsJ7AgDAzYl/wwEApa2o3+U6fOcYgFuL9f40wzD01ltvlXU4JSYuLk6LFi1SQECAXnjhhbIOBwAAAAAAAABQxhxOju3YsaMk4wBwAxg1apRCQkI0e/ZsxcXFlXU4JWLy5MnKzMxUREQEu74AAAAAAAAAAI4nx1q3bq26detq+vTpOn/+fEnGBKCMuLu7a/78+QoPD7fd33Yzs1gsql69uiZNmqRhw4aVdTgAAAAAAAAAgBvANR3sGx0drRdffFGvvvqqwsLCNHToULVs2bKkYsM16tGjh3bt2lWsNitXrlTTpk1LKaLrKygoqNht4uPjSyGSm0vr1q1vmXvWzGazwsPDyzoMAAAAAAAAAMANxOHk2J9//qnPP/9c8+bNU0JCghYvXqzFixfrzjvv1LBhwzRw4EBVqlSpJGNFMZ0/f14JCQnFapOZmSlJioyMLIWIrq/izj03wzBKMBIAAAAAAAAAAHCjMBnXmAXIzs7WmjVr9Nlnn2nLli2yWCwymUxyc3NjNxmAW0JKSop8fX2VnJzMvWUAAAAAAAAAcIMq6ne515wcyy02Nlaff/655s6dqxMnTlwewGRiNxmAmxrJMQAAAAAAAAC48ZVJcszKYrFo3bp1mjVrltavX6+cnJw8u8mGDx+uZs2alfSwAFAqSI4BAAAAAAAAwI2vqN/lmktjcLPZrEcffVQjRoxQkyZNZDKZZBiG0tPTtWjRIrVs2VLNmjXTTz/9VBrDAwAAAAAAAAAAAAUq8eTYqVOnNGnSJNWqVUtdunTRrl27ZBiGmjdvrhkzZqhLly4ymUzavXu3mjdvrsjIyJIOAQAAAAAAAAAAAChQiRyraBiG1q9fr88//9x2jKJhGPLx8dETTzyh4cOHq169erb6f//9t0aMGKHNmzerWbNmioqKutYQAKDUcKwiAAAAAAAAANz4rsudY8ePH9fs2bP1xRdf6Pjx47J2dd9992n48OHq16+fPD097QZYpUoVubm5KTk52dEQAKDUkRwDAAAAAAAAgBtfUb/LdXZ0gK5du2rjxo2yWCwyDEOenp7q3bu3hg8frsaNG1+1vY+Pj4KCghQXF+doCAAAAAAAAAAAAECxOJwcW79+vSSpTp06euaZZzRo0CD5+voWq4/HH39c586dczQEAAAAAAAAAAAAoFgcTo5Zd4m1atXK4cHfffddh9sCAAAAAAAAAAAAxeVwcmzJkiUlGQcAAAAAAAAAAABQ6syONmzbtq169uxZ5Pp9+/ZVu3btHB0OAAAAAAAAAAAAuGYO7xyLjIxUUFBQkevv2bNHsbGxjg4HAAAAAAAAAAAAXDOHd44Vl8Vikclkul7DAQAAAAAAAAAAAPlcl+RYTk6OTp8+rQoVKlyP4QAAAAAAAAAAAIACFflYxZSUFCUlJeV5lpOTo7i4OBmGUWAbwzCUlJSkOXPmKCMjQ/fcc881BQsAuP4uZWar7hsbJUm/T+wkT1eHT+Qt94q7lsWpX5p938hjXK82/B3gZsFnFQBwK+LfN9ysivLZzV3HqiQ/50X9+ynt/450I/73tlthDrdSG/6zHtdbkT9h//3vfzVx4sQ8z86ePasaNWoUqb3JZNITTzxRrOAAAAAAAAAAAACAklSs9GvuHWImk8nujrErBQcHa/jw4XruueeKFx0AAAAAAAAAAABQgoqcHHvhhRc0ePBgSZeTZLVq1VJAQIB+/PFHu23MZrN8fHzk6+t7zYECAAAAAAAAAAAA16rIyTFfX988Sa6WLVuqcuXKCg0NLZXAAAAAAAAAAAAAgJLm8K12kZGRJRgGAAAAAAAAAAAAUPrMZR0AAAAAAAAAAAAAcL2QHCshgwcPlslkst3LVpKioqLUpUsXBQQEyMnJSSaTSd26dSvxcXBjqFGjhkwmk+bOnVsm4w8YMEAmk0lLly4tk/FLksViUb169eTi4qI//vijrMMBAAAAAAAAANwAHD5WEdfHnj171LZtW2VnZ8tkMsnf319OTk7y8/OTJEVEREi6nJyrUaNG2QVaBmJiYmwJJOs64Nrs3btXixcvVv369dWrV69C6x45ckSzZ8/Wli1bFBMTo+TkZFWqVEm1a9dWx44dNXToUFWtWrXUYl29erX279+vhg0b2k0Wm81mjRs3Tn379tXLL7+sr7/+utTiAQAAAAAAAADcHNg5doObPn26srOz1axZM509e1ZnzpxRfHy85syZI0maMGGCJkyYoJiYmLINtAzExMTY5o+S8eKLL8owDI0fP14mk6nAOjk5OXrppZdUp04dTZ06VXv37lViYqK8vLx05swZ7dq1SxEREbrjjjv07rvvllqsq1ev1oQJE7R69epC6/Xq1Ut169bVmjVrtGPHjlKLBwAAAAAAAABwcyA5doM7cOCAJKlPnz6qVKlSGUeDW9mePXu0Y8cOBQUFqXv37gXWsVgsCgsL07vvvqvs7Gw9/PDD2r59uzIyMnT+/HmlpaXp22+/VdOmTXXp0iW99NJL+ve//32dZ5KX2WzW0KFDJUlvv/12mcYCAAAAAAAAACh7JMducJcuXZIkeXl5lXEkuNV98sknki4nYp2cnAqsM2nSJNvRhGPHjtWGDRvUsmVLW31XV1d16tRJUVFRGjhwoCTpgw8+0IIFC67DDOzr27evnJyctGHDBsXGxpZpLAAAAAAAAACAskVy7DqJiYnRCy+8oHr16snLy0uenp6666679Pzzzxf4Zb3JZJLJZLIdl/jkk0/anplMJg0ePDjPsXdt2rTJU36t94+1bt1aJpNJERERyszM1NSpU3XPPfeoQoUK8vPzU4cOHbRhw4ar9rNy5Up17dpVgYGBcnV1VWBgoLp27apVq1bZbWOd2+DBg2UYhmbNmqXmzZvL399fJpNJc+fOVY0aNdSmTRtbm9xzt7a9FtZ+IiMjFR8fr+eee041a9aUu7u7goKC1L9/f0VHRxfaR3p6uqZPn66mTZvKz89P7u7uCg0N1cCBA7V//36HY3vzzTdlMpnk5ORkS2hZWSwWLVq0SJ07d7ateUBAgDp27KglS5bIMIwC+0xJSdGyZcskSf369SuwzunTpzV16lRJlz9vkydPthuj2WzWZ599pjp16kiSwsPDlZmZmadO7vfZnrlz5+b7PEdGRspkMmnevHmSpHnz5uV7/yMjI/P0ExgYqLZt28pisWj27Nl2xwMAAAAAAAAA3PpIjl0HixYt0l133aUZM2bo999/V3Z2tiTpjz/+0Pvvv6/69etr06ZNedoEBgYqMDBQZvPlt8jHx8f2LDAwUE5OTgoMDLTV9/Pzy1MeEBBQIrFnZmaqffv2Cg8P1+HDh+Xq6qqkpCRt2bJFnTt3VkREhN12ffr0UVhYmNatW6ezZ8/Ky8tLZ8+e1bp169SjRw/169dPWVlZdsc2DEM9e/bU0KFDtXv3bhmGYVuPgIAA+fn52ermnntgYKB8fX1LZP5Hjx7Vvffeq5kzZyohIUEuLi5KSEjQ4sWLde+99+rbb78tsN2JEyfUuHFjjRo1Srt371Zqaqrc3d0VGxurBQsW6P7779cHH3xQrFgsFouee+45vf7663J3d9fy5cs1fPhwW/n58+fVpk0bDRgwQBs2bNDp06fl6emps2fPavPmzerXr5+6deuWL0klSdu3b1daWpoqVKig++67r8Dx58yZo7S0NEkq9E4yKzc3N40dO9a2Hle7G6yorElWd3d3SZK7u3u+99/V1TVfu5YtW0qS3fcMAAAAAAAAAFA+OJwcM5vNCg4OLnL9mjVrytnZ2dHhblqbN2/WwIEDlZOTo5dffllHjx5VWlqaUlNTFR0drZ49e+rChQvq2bNnnh1k8fHxio+PV0hIiCRpxowZtmfx8fGaPXu24uPjbfVXrlyZp/ynn34qkfg/+ugj/fjjj/rkk0904cIFJSYmKjY2Vo8//rgkacKECVqzZk2+dq+++qqWLl0qk8mkcePG6dy5czp//rzOnj2rV199VZK0ZMkSjRs3zu7YK1eu1Ndff613331XiYmJOn/+vJKTk9WpUyf99NNPWrlyZb71sr5mzJhRIvMfNWqUXF1dtWnTJqWmpurChQv64YcfdPfddys9PV29e/fW8ePH87TJyclRWFiYDh48KF9fXy1cuFAXL15UUlKS/vrrL3Xt2lUWi0XPP/98kXbfSVJGRoZ69eqlmTNnqmLFitq0aVOee8FycnLUo0cP7dixQw0bNtQ333yj1NRUJSUl6eLFi5o3b56qVKmiNWvW6JVXXsnX/44dOyRJ9913n90jFb/77jtJkr+/v1q1alWkuLt162ZLom3btq1Iba6madOmio+PV+/evSVJvXv3zvf+N23aNF+7Jk2aSJJ++eUXXbx4sURiAQAAAAAAAADcfK5p55i9I9pKqv7NzmKx6Nlnn5XFYtHMmTP11ltvqUaNGraj3+68804tW7ZMjz32mFJSUjRt2rSyDjmf5ORkffTRR3rmmWdsO3VCQkK0dOlS204ca7LL6sSJE7bk1NixYzVx4kRVrFhR0uUdbm+++aZGjx4tSZo2bZpOnTpV4NgXL17UtGnT9OKLL8rHx0fS5bvXbrvtthKfpz1paWn69ttv1aFDB1uS54EHHtCWLVtUqVIlpaSkaMqUKXnaLF++XD/88IMkadmyZerfv79tJ1OtWrW0atUqNWnSRIZh6OWXX75qDNaE4IoVKxQcHKyoqCi1aNEiT53Fixdr+/btuuuuuxQZGamuXbvK09NTklShQgUNHDhQ69evl8lk0kcffaTTp0/naW+Nt0GDBnbjOHTokCTp3nvvvWrMVj4+PqpVq5Yk6eDBg0VuVxqscWdnZ181eZyRkaGUlJQ8LwAAAAAAAADAreG6HauYmZlpOxKvvNixY4f+/PNPVa5cWU8//bTdegMHDpQkbdy48XqFVmQhISF68skn8z03m816/fXXJV1Omhw4cMBWtmLFCmVnZ8vd3d12rN6VXn/9dbm5uSkrK0vLly8vsI6fn5+eeeaZEpiF43r27Gm7Nyu3KlWq2I40XLp0aZ4y6+8PPfSQOnbsmK+ts7Ozxo8fL+lywij32l3p5MmTatGihS3xtWvXLtWvXz9fPes9WiNGjLB7pOT999+vevXqKTMzM98urpMnT0pSocdxnjt3TtLlnWPFUbly5Tzty0qlSpVs/xlkna89U6ZMka+vr+1l3cEJAAAAAAAAALj5XZdsVVJSkk6fPp3njqjyYOfOnZIu7/ypWrWqgoKCCnwNHTpUknTs2LGyDLdArVu3tnu3VIsWLWxHZe7du9f23Ppz48aNbTu+ruTn56dGjRrla5tb48aNC7w76npq27btVcvOnTuno0eP2p5b59O+fXu7bdu0aWM7vtDe/KOjo9W0aVMdOHBADz30kHbu3Knq1avnq5eTk6M9e/ZIkiIiIux+zoKCgvTHH39Iyv9ZO3PmjKTLCaRbldlstiUOrfO1Jzw8XMnJybZXXFzc9QgRAAAAAAAAAHAdFPkSsN9++0379+/P8ywtLU3z58+328YwDCUlJWn58uWyWCzFOo7tVmDdnZKVlaWEhISr1k9LSyvtkIqtsHvl3N3d5e/vr4SEhDzH9Fl/vtqddNWqVctT/0pVqlQpbrglrrA55C47ffq0atasafv5am3d3d1VuXLlfGuX21tvvSVJCgwM1KZNm+Tl5VVgvfPnzysjI0OSlJiYWMhs/s+lS5fy/J6eni5JcnNzs9vG399fJ06cKPYOsLNnz9ralzUPDw8lJiba5muPm5tboWsBAAAAAAAAALh5FTk5tmrVKk2cODHPs5SUlAKP3LuSYRgymUy2e6bKi5ycHElSkyZNbDt7UHTWnVXlVc+ePfX1118rISFBI0aM0Ny5cwtcE+vnTJI2bNighx9+uNhj+fv769SpU4Um1+rWrasTJ05o3759Re43JSVFf//9tySpXr16xY6rpJ0/f17SjZGoAwAAAAAAAACUjSInxypWrJjnSLdjx47JbDbbdv8UxGw2y8fHR/Xr19ewYcPUokWLa4v2JhMUFCTpxjwusahOnDhhtywjI8O2iyj3Li/rz8ePHy+0b2v5jbBDzJ7C5p+77Mr5x8XFFTr/9PT0Atcut86dO2vw4MHq0aOHFi5cqJycHC1YsCBfgszf31/Ozs7Kzs52+LMWEBCgU6dO2ZJHBWnXrp02b96sc+fOKTIyUq1bt75qv6tWrZJhGJLyH1FpPZKzsF1cycnJRYi+aNLS0mxjFXa3GgAAAAAAAADg1lbkO8eef/55HT161PaSLn/BnPvZla+//vpL+/bt04IFC8pdYkySmjVrJkmKj4+3e6/UtbLeB2ZNQJS07du32+07KipK2dnZkmS7Pyz3z3v37rWb3EhKSspzN5kjzOb/+/iW1vy3bdt21bJKlSrZjlSU/m/+W7dutds2MjLStnaFzb9z5876+uuv5e7uriVLlqhfv362dlYuLi564IEHJEnffPPNVWZUsLp160qSbZdXQQYPHix3d3dJ0sSJE6+65hkZGbajIatWrapu3brlKbfeQVjYfV4//PCD3TLr+1/U9z73vXB16tQpUhsAAAAAAAAAwK2nyMmxK40fP14vvvhiScZyy2nTpo1uv/12SdKoUaOUmZlZaP3Cdu3Y4+PjI+lysqk0xMbGat68efmeWywWTZ48WdLlxMrdd99tKwsLC5Ozs7PS09NtyZErTZ48WRkZGXJxcVFYWJhDsVnnLpXe/L/66iv98ccf+Z6fPXtWn376qSSpd+/eecr69OkjSdq9e7c2bdqUr212drbtiNL69eurfv36hcbQqVMnrVmzRh4eHlq2bJn69OmjrKysPHWGDRsmSVq/fr3Wr19faH8Ffc5atmwpSfrxxx/ttgsMDNTLL78s6XJi8LXXXrNb12Kx6JlnntHhw4clXX6/XV1d89Rp0KCBJOmnn34qMEF2+PBhrVy50u4Yxf3sWxNtgYGBuvPOO4vUBgAAAAAAAABw6yE5VoqcnZ31ySefyNnZWd9//71atmyprVu35kls/P333/rkk0/UuHFjffTRR8Uew5pYWbRokS5dulRisVv5+vpqxIgR+vzzz21H0sXFxalv3762nVOTJk3K0yY4OFjPP/+8JGnq1KkaP368LYGRlJSkcePG6Z133pEkjR49WrfddptDsf3jH/+wJVxmzZpVKrvH3N3d9fDDD2vLli22/n/66Se1b99eZ8+elbe3t8aOHZunTVhYmJo0aSJJ6tWrlxYvXmx7z48ePaqwsDDt3r1bkvT2228XKY4OHTpo7dq18vT01IoVK9SrV688ydYBAwaoffv2MgxD3bt316RJk3Ty5ElbeWpqqrZt26Znn31WtWrVyte/9YjEY8eOKSEhwW4c48ePV9euXSVJU6ZMUefOnRUVFWW79ywrK0ubNm1Sy5YtbUnVkSNHatCgQfn6evTRR+Xl5aWsrCz16tXLloTMysrS119/rfbt26tChQp2Y7F+9qOiohQdHW23npU1OdaqVaur1gUAAAAAAAAA3LocTo6haNq1a6evvvpK3t7e+uGHH2xf+FeuXFnu7u6qXbu2RowYob1799qOSCyO4cOHS5JWrFihihUrqlq1aqpRo4aaN29eIvGPHDlSjRo10rBhw+Tj46NKlSqpevXqWrZsmSTp9ddfV/fu3fO1mzx5snr16iXDMDRx4kT5+/urUqVK8vf3tyXT+vbtq//85z8Ox+bp6aknnnhCkvTyyy/Ly8tLoaGhqlGjhsaMGeNwv7n997//VXp6ujp06CAvLy95e3vrgQce0K+//io3NzctWbIkz118kuTk5KQVK1aoXr16Sk5OVv/+/eXl5SU/Pz/VqlVLa9askdls1owZM/TII48UOZa2bdtq/fr1qlChglavXq2wsDBbgsw6ZteuXZWZmalx48YpODhYvr6+8vPzk7e3t9q2bauPPvpIqamp+fquU6eObSfXmjVr7MZgNpu1atUqjRo1Ss7OztqwYYNatmwpNzc3+fv7y93dXZ06ddLOnTvl7u6uqVOnaubMmQX25evrq+nTp8tkMmnPnj2666675OPjIy8vL3Xr1k3Vq1e37bArSFhYmAICApSYmKg6deooICBANWrUUI0aNbRnz548dS0Wi9atWydJ6tevX+ELDQAAAAAAAAC4pTlfawd//fWXli1bpt9++03nz5/Pd9xbbiaTqdB7mG5V3bp105EjR/TRRx9pw4YN+vPPP5WUlKQKFSrorrvuUuPGjdWlSxd17ty52H0PGDBAkvTpp5/qwIEDOnXqlCwWS4nF7urqqq1bt+q9997T4sWL9ffff8vX11eNGjXS6NGj7cbs6uqqpUuXqlevXpo9e7b27t2rxMRE+fv7q1GjRho6dGiBSbXimjlzpkJCQrRixQr99ddfio2NlXT52MOSULNmTe3bt0+TJk3S2rVrderUKVWpUkXt2rXTuHHj7N5dFRwcrL179+rjjz/WsmXLdPjwYV26dEkhISFq3bq1Ro8erYYNGxY7nlatWunbb79V586dtXbtWnXr1k2rVq2Sm5ubfHx89M0332jDhg2aN2+edu/erYSEBBmGoeDgYNWtW1dt2rRRr169Cuz7mWee0ciRI7Vo0SINHTrUbgzOzs6aNm2aRowYoVmzZmnr1q2KiYlRSkqK/P39dfvtt6tjx44aOnSogoODC53PU089papVq+rdd9/V3r17lZWVpX/84x8aMGCARo0apcWLF9tt6+fnpx07dmjChAmKiorS6dOnbe+7dZej1fbt23X8+HEFBwfbdr4BAAAAAAAAAMqna0qOTZgwQZMmTZLFYinSkXaO7Iy6WcydO1dz5861W16lShVFREQoIiKiWP3GxMRctc6AAQNsSbLS4OrqqvDwcIWHhxe7bVhYWLHvFLvaWubm5uam8ePHa/z48cWOraiCgoL04Ycf6sMPPyxWO3d3d40aNUqjRo0qVrurvefNmzdXSkqK3fJHHnmkWDvSrAYMGKCxY8dqx44dOnbsmEJDQwutf8cdd9i9U644Cot38ODBGjx4sN22d911l5YsWXLVMRYsWCDp8t1sTk5ODsUJAAAAAAAAALg1OJwcW7RokSZMmCBJqlq1qjp16qSqVavK2fmaN6MBKAPW+9NeffVVvfXWWw7dgXcjiouL06JFixQQEKAXXnihrMMBAAAAAAAAAJQxhzNZ1nuEHnvsMS1btkyurq4lFhSAsjFq1Ch9/PHHmj17tsLDwxUSElLWIV2zyZMnKzMzUxEREfLx8SnrcAAAAAAAAAAAZczh5NjBgwdlMpn00UcfkRgDbhHu7u6aP3++IiMjFRsbe9MnxywWi6pXr65JkyZp2LBhZR0OAAAAAAAAAOAG4HByzGQyycfHR1WrVi3JeFCCevTooV27dhWrzcqVK9W0adNSiuj6CgoKKnab+Pj4Uojk5tK6dWu1bt26rMMoEWaz2aG78gAAAAAAAAAAty6Hk2N33XWX9u/fr4yMDLm5uZVkTCgh58+fV0JCQrHaZGZmSpIiIyNLIaLrq7hzz80wjBKMBAAAAAAAAAAA3ChMhoNZgM8//1zPPPOM5s+frwEDBpR0XABww0hJSZGvr6+Sk5O5twwAAAAAAAAAblBF/S7X7OgAQ4cO1WOPPaZ///vf2rFjh6PdAAAAAAAAAAAAANeNw8cqTpw4UQ0aNFBUVJTatGmjZs2aqUmTJvL29i603RtvvOHokAAAAAAAAAAAAMA1cfhYRbPZLJPJJOn/7mey/l6YnJwcR4YDgDLDsYoAAAAAAAAAcOMr6ne5Du8ca9myZZGSYQAAAAAAAAAAAMCNwuHkWGRkZAmGAQAAAAAAAAAAAJQ+c1kHAAAAAAAAAAAAAFwvJMcAAAAAAAAAAABQbjh8rGJuv/32mzZu3Khjx44pLS1Ns2fPtpVlZWXpzJkzMplMuu2220piOAAAAAAAAAAAAMAh15QcS05O1pAhQ7R69WpJkmEYMplM+ZJjDRo0UGJion799VfVq1fvmgIGAAAAAAAAAAAAHOXwsYpZWVl65JFHtHr1anl6eqpLly5yd3fPV8/T01NPPvmkLBaLli9ffk3BAgAAAAAAAAAAANfC4eTY7NmztWfPHtWqVUt//PGH1qxZI19f3wLrhoWFSZJ27Njh6HAAAAAAAAAAAADANXM4ObZkyRKZTCb997//VdWqVQute++998psNis6OtrR4QAAAAAAAAAAAIBr5nBy7MCBAzKZTOrYseNV67q6usrX11fnzp1zdDgAAAAAAAAAAADgmjmcHLt06ZK8vb3l6upapPpZWVlydnZ2dDgAAACgyC5lZqvG2HWqMXadLmVml3U4cADvIQDgRsS/TwAA3BocTo5VrlxZKSkpunjx4lXrHj16VBcvXrzq8YsAAAAAAAAAAABAaXI4OdakSRNJ0rp1665a94MPPpAktWjRwtHhAAAAAAAAAAAAgGvmcHJsyJAhMgxD48aN08mTJ+3W+/TTTzVjxgyZTCYNGzbM0eEAAAAAAAAAAACAa+bwJWBdunRRWFiYVqxYoUaNGqlfv35KS0uTJH322Wc6duyY1q5dq4MHD8owDA0dOtS22wwAAAAAAAAAAAAoCw4nxyRpwYIFcnd316JFi/Tf//7X9nzEiBGSJMMwJF3eZTZz5sxrGQoAAAAAAAAAAAC4Zg4fqyhJ7u7uWrBggXbs2KEnnnhCtWvXloeHh1xdXVW9enX169dPkZGRmjVrlpydrykPBwAAAAAAAAAAAFyza0qOWTVv3lxz587V//73P128eFFpaWk6evSoFi5cqJYtW5bEEACuUY0aNWQymTR37twyGX/AgAEymUxaunTpdR334Ycflslk0nfffXddxwUAAAAAAAAA3JhKJDmG62fu3LmKiIhQZGRkWYdyy4qJiVFERIQiIiLKOpRbxt69e7V48WLVr19fvXr1ylduTdwNHjy4xMe2vo9jxoyRxWIp8f4BAAAAAAAAADcXh5NjHTp00MKFC3Xp0qWSjAdXMXfuXE2YMIHkWCmKiYnRhAkTNGHChLIO5Zbx4osvyjAMjR8/XiaT6bqO/eCDD6pTp07at2+fFi5ceF3HBgAAAAAAAADceBxOjm3dulWDBg1SUFCQBg8erC1btpRkXABuEXv27NGOHTsUFBSk7t27l0kMw4cPlyS9/fbbZTI+AAAAAAAAAODG4XBybMCAAfL09NTFixe1YMECderUSSEhIQoPD9ehQ4dKMkYAN7FPPvlEktSnTx85OTmVSQydO3dWpUqVdOjQIe3cubNMYgAAAAAAAAAA3BgcTo7Nnz9fCQkJWrBggdq3by+z2awTJ07o7bff1j333KP7779f77//vs6cOVOS8ZaauLg4vfzyy2rYsKF8fX3l4eGh2rVr65///Kfmz5+v9PT0fG127typAQMGKDQ0VO7u7vL19dUDDzygt956SxcvXixwnMGDB+e5W2n58uVq3bq1KlWqJE9PTzVs2FAzZszIdzfS3LlzZTKZtH37dknShAkTZDKZ8rxiYmJKPEbDMDRr1iw1b95c/v7+MplMmjt3btEX9gqtW7eWyWRSRESEMjMzNXXqVN1zzz2qUKGC/Pz81KFDB23YsOGq/axcuVJdu3ZVYGCgXF1dFRgYqK5du2rVqlV22xRlXjVq1FCbNm1sba5c42u9E8vaT2RkpOLj4/Xcc8+pZs2acnd3V1BQkPr376/o6OhC+0hPT9f06dPVtGlT+fn5yd3dXaGhoRo4cKD279/vcGxvvvmmTCaTnJycbAktK4vFokWLFqlz5862NQ8ICFDHjh21ZMkSGYZRYJ8pKSlatmyZJKlfv34OxeXo30xurq6uCgsLkyR99tlnDsUBAAAAAAAAALg1OJwckyRPT0/1799fGzduVFxcnN555x3dc889MgxD+/bt06hRoxQcHKxHH31Uy5YtU0ZGRknFXaIWLFigf/zjH3rnnXf066+/Kj09XRUqVFBsbKzWrFmjQYMG5UlYWCwWPf/882revLkWLVqk2NhYubi4KDU1VT/99JPGjh2rRo0a6dixY4WO+9xzz6lnz56KioqSYRhKS0vTr7/+qhdeeEFPPvlknroeHh4KDAyUi4uLJKlChQoKDAzM88q9K6ckYjQMQz179tTQoUO1e/duGYYhs/maPjI2mZmZat++vcLDw3X48GG5uroqKSlJW7ZsUefOnRUREWG3XZ8+fRQWFqZ169bp7Nmz8vLy0tmzZ7Vu3Tr16NFD/fr1U1ZWlkPzCggIkJ+fn63ulWvs6+tbIvM/evSo7r33Xs2cOVMJCQlycXFRQkKCFi9erHvvvVfffvttge1OnDihxo0ba9SoUdq9e7dSU1Pl7u6u2NhYLViwQPfff78++OCDYsVisVj03HPP6fXXX5e7u7uWL19uO4ZQks6fP682bdpowIAB2rBhg06fPi1PT0+dPXtWmzdvVr9+/dStWzdlZmbm63v79u1KS0tThQoVdN999xVvkQpQnL+ZK7Vs2VKStHHjxmuOAwAAAAAAAABwEzNKwYEDB4yXXnrJqFatmmEymQyTyWSYzWbDz8+vNIa7JmvXrjVMJpMhyWjWrJkRFRVl5OTkGIZhGBkZGUZUVJQxdOhQ49ChQ7Y2r7/+uiHJqFKlijFz5kzj3LlzhmEYRmZmprFt2zbj3nvvNSQZ9913n60vq0GDBhmSDD8/P8PV1dWYNm2akZycbBiGYZw9e9Z4+umnDUmGJGPr1q354m3VqpUhyRg/fnyh8yqJGL28vAxnZ2fj3XfftcV44cIF4+TJk8VY4YLj9/X1Ndzc3IxPPvnESEtLMwzDMGJjY43HH3/cNv+vv/46X/sXX3zRkGSYTCZj3LhxRmJiomEYhnH+/Hnj1VdftbV95ZVX8rUt6ry2bdtm66ekWfv19fU1qlevbmzatMmwWCyGYRjGDz/8YNx9992GJMPHx8eIi4vL0zY7O9to0qSJrf3ChQuNjIwMwzAM46+//jK6du1qW5v169fnGzs0NNSQZMyZM8f2LD093QgLCzMkGRUrVjR27NiRb0zre9awYUPjm2++MVJTUw3DMIyLFy8a8+bNM6pUqWJIMl544YV8Y44ZM8aQZLRo0aLQdbHGNmjQoHxl1/o3Y/W///3PVu/w4cOFxnOl5ORkQ5JtXADAjS81I8sIfWWtEfrKWiM1I6usw4EDeA8BADci/n0CAODGVtTvckslOWZlsViMLVu2GI0bN7YlyG4kWVlZRs2aNQ1JRvPmzW2JhsIcPXrUcHJyMjw8PIz9+/cXWCclJcWoVq2aIclYtWpVnjLrF/1XJilyu//++w1JxtNPP52vrCjJsZKM8f3337c7jiOs8UsyZs+ena88JyfHaNmypSHJqFevXp6y48ePG87OzoYkIzw8vMD+R48ebUgyXFxc8iXxijqv65Ecc3V1NX7//fd85QkJCUalSpUMScbIkSPzlH355Ze29hs3bszXNisry5Y8q1+/fr7yK5NjSUlJtvcjODjYOHDgQL428+fPNyQZd911l5GUlFTgnPbu3WuYTCbD1dXVSEhIyFPWokULQ5Lx3HPP2V2T3LEVlhxz9G8mNy8vL0OS8cUXXxRaLz093UhOTra94uLiSI4BwE2GL65ufryHAIAbEf8+AQBwYytqcqxkzsgrwKlTpzRt2jS9+OKL+vnnn0trmGuybds2HT16VJL03//+V66urldtM3fuXOXk5Ojhhx9WgwYNCqzj7e2tbt26SbJ/hFtISIgGDRpUYNljjz0mSfrtt9+uGk9pxujn56dnnnnGoRiuJiQkpMBj8Mxms15//XVJ0qFDh3TgwAFb2YoVK5SdnS13d3eNHTu2wH5ff/11ubm5KSsrS8uXLy+wTmnOq6h69uypOnXq5HtepUoV25GGS5cuzVNm/f2hhx5Sx44d87V1dnbW+PHjJUkHDx7Ms3ZXOnnypFq0aKHt27frrrvu0q5du1S/fv189WbPni1JGjFihN0jJe+//37Vq1dPmZmZ2rZtW75xpMvHVV6rkvib8ff3zxOXPVOmTJGvr6/tFRIS4kDEAAAAAAAAAIAbkXNJdpaWlqaVK1dq/vz5+u6772SxWGQYhiTpvvvu08CBA0tyuGu2a9cuSVJQUJAaNWpUpDY7d+6UJG3atElBQUF26128eFGS7N7p1bhxY5lMpgLLqlatKunyXU+OKMkYi5IwdETr1q3tzr9FixZydnZWdna29u7dq7vvvluStHfvXltcPj4+Bbb18/NTo0aNtHPnTlv9K5XmvIqqbdu2hZZNnjxZ586d09GjR1WzZk1J/zf/9u3b223bpk0bOTk5KScnJ8/a5RYdHa2IiAgdO3ZMDz30kNauXatKlSrlq5eTk6M9e/ZIkiIiIjR58mS741o/q1d+ls6cOSNJBfZfXCXxN1OpUiUdO3bMFpc94eHhGj16tO33lJQUEmQAAAAAAAAAcIsokeTYli1btGDBAq1atUqpqam2hFi1atXUv39/PfHEE6pbt25JDFWi4uPjJUmhoaFFbmPdcZKamqrU1NSr1r906VKBz729ve22cXa+/LZkZWUVOa7cSirGKlWqODR+UQQHB9stc3d3l7+/vxISEnT69Gnbc+vPhbWVLn/ucte/UmnOq6gKm0PustOnT9uSY0WZv7u7uypXrpxv7XJ76623JEmBgYHatGmTvLy8Cqx3/vx5ZWRkSJISExMLmc3/ufKzlJ6eLklyc3MrUvvClMTfjIeHR5647HFzcyuRmAEAAAAAAAAANx6Hk2MHDx7UggULtHjxYlsyxjAMeXl5qUePHnriiSfUtm1buzs9bgSOxJaTkyNJeuWVVzR16tSSDqlElFSMTk5OJRXSDeVWnVdR9ezZU19//bUSEhI0YsQIzZ07t8A1sX6OJGnDhg16+OGHiz2Wv7+/Tp06VeTkWmmz7iyzHq8IAAAAAAAAACh/HE6O3XPPPTKZTDIMQ2azWW3bttXAgQPVo0cPeXp6lmSMpcZ65KC9YwXttfnjjz+K1eZ6uxliPHHihN2yjIwMnTt3TlLeXV7Wn48fP15o39byG2GHmD2FzT932ZXzj4uLK3T+6enpBa5dbp07d9bgwYPVo0cPLVy4UDk5OVqwYEG+BJm/v7/teEtHP0sBAQE6deqUw0eEljRrHCVxBxoAAAAAAAAA4OZkvpbGdevW1VtvvaXY2Fht2rRJAwYMuGkSY5LUtGlTSZePV7R3P9WVmjVrJunyUZJXO5qtNJjNl98y69GVBSnrGIti+/btducQFRWl7OxsScpzF5z157179yo5ObnAtklJSXnuJnOEdY2lwtf5Wmzbtu2qZZUqVbIdqSj93/y3bt1qt21kZKRt7Qqbf+fOnfX111/L3d1dS5YsUb9+/WztrFxcXPTAAw9Ikr755purzKhg1uNU//77b4fal6QLFy7o7NmzkqQ6deqUcTQAAAAAAAAAgLLicHLsl19+0YEDB/TSSy+patWqJRnTddOmTRvVqlVLkjRq1ChlZmZetc2QIUPk7Oyss2fPavz48YXWzczM1MWLF0skVisfHx9Jl5NA9pR1jEURGxurefPm5XtusVg0efJkSZcTK3fffbetLCwsTM7OzkpPT7fdm3WlyZMnKyMjQy4uLgoLC3MoNusaS4Wv87X46quv9Mcff+R7fvbsWX366aeSpN69e+cp69OnjyRp9+7d2rRpU7622dnZmjhxoiSpfv36ql+/fqExdOrUSWvWrJGHh4eWLVumPn365Luza9iwYZKk9evXa/369YX2V9DusJYtW0qSfvzxx0LbXg979+6VxWKRs7OzLYEMAAAAAAAAACh/HE6ONWzYsATDKBtOTk768MMPZTKZ9P3336tdu3b6/vvvZbFYJF1OHEVGRmrAgAH6/fffJUm1a9fWuHHjJElvv/22Bg4cqIMHD9r6zM7O1v79+zVx4kTdfvvt2r9/f4nGbE14rF+/3u7RfGUdY1H4+vpqxIgR+vzzz2272+Li4tS3b1/bzqlJkyblaRMcHKznn39ekjR16lSNHz/elrxKSkrSuHHj9M4770iSRo8erdtuu82h2P7xj3/I1dVVkjRr1qxS2T3m7u6uhx9+WFu2bLH1/9NPP6l9+/Y6e/asvL29NXbs2DxtwsLC1KRJE0lSr169tHjxYlsy6+jRowoLC9Pu3bslXX7fi6JDhw5au3atPD09tWLFCvXq1StPknjAgAFq3769DMNQ9+7dNWnSJNsdg5KUmpqqbdu26dlnn7UlmnNr3bq1pMtHlyYkJBRxdUrHDz/8IEm677775OXlVaaxAAAAAAAAAADKzjUdq1gce/bs0Y4dO67XcEX2yCOPaO7cuXJzc9P333+vFi1ayNPTU5UrV1aFChXUpk0bLVq0KE/CYNy4cRo3bpxMJpMWLFigu+++29bG3d1d9957r8aPH6+4uDiZTKYSjXfQoEFyd3fXkSNHVL16dQUFBalGjRqqUaNGnruoyjLGohg5cqQaNWqkYcOGycfHR5UqVVL16tW1bNkySdLrr7+u7t2752s3efJk9erVS4ZhaOLEifL391elSpXk7+9vS6b17dtX//nPfxyOzdPTU0888YQk6eWXX5aXl5dCQ0NVo0YNjRkzxuF+c/vvf/+r9PR0dejQQV5eXvL29tYDDzygX3/9VW5ublqyZImqV6+ep42Tk5NWrFihevXqKTk5Wf3795eXl5f8/PxUq1YtrVmzRmazWTNmzNAjjzxS5Fjatm2r9evXq0KFClq9erXCwsJsn3frmF27dlVmZqbGjRun4OBg+fr6ys/PT97e3mrbtq0++ugjpaam5uu7Tp06atCggSRpzZo117Bi1846fr9+/co0DgAAAAAAAABA2SpycsxsNis4OLjAslGjRumpp54qtH337t3Vtm3b4kV3nQwcOFDR0dF64YUXVLduXTk7OystLU2hoaHq1q2bFixYkOeOIpPJpIkTJ+q3337TyJEjVadOHTk5OSk5OVl+fn5q2rSpXnrpJe3atavEj2+74447tG3bNj322GMKCAjQuXPndOzYMR07dizPnVFlGWNRuLq6auvWrZo8ebLuvPNOZWRkyNfXV+3atdO6devsJrdcXV21dOlSLV++XI888oj8/f114cIF+fv765FHHtHKlSu1ePFiubi4XFN8M2fOVEREhO1Yx9jYWB07dsx2Z9W1qlmzpvbt26dnn31WAQEByszMVJUqVdS3b1/t27dPXbp0KbBdcHCw9u7dq2nTpunBBx+Uh4eHLl26pJCQED3xxBP6+eef9e9//7vY8bRq1UrffvutvL29tXbtWnXr1k0ZGRmSLh8z+c0332j9+vXq3bu3qlevroyMDF26dEnBwcHq2LGjpkyZUuAxkZL0zDPPSJIWLVpU7LhKyt9//63du3fLw8NDAwcOLLM4AAAAAAAAAABlz2QU8cw4s9msoKCgPEeqWd122206ffq0cnJy7LYvSh3c+lq3bq3t27dr/PjxioiIKOtwrjvrLr1t27bZjhy81V24cEHVqlXThQsXdPToUYWGhl73GCZOnKjx48frySef1BdffFHs9ikpKfL19VVycnKeO+kAADeuS5nZqvvGRknS7xM7ydPVuYwjQnHxHgIAbkT8+wQAwI2tqN/lXrdjFQGUT9b70wzD0FtvvXXdx09NTdUHH3wgNzc3jR8//rqPDwAAAAAAAAC4sZAcA1DqRo0apZCQEM2ePVtxcXHXdewPP/xQZ8+e1b///e8y2bUGAAAAAAAAALixsPcbQKlzd3fX/PnzFRkZqdjYWIWEhFy3sStUqKCIiAi98MIL121MAAAAAAAAAMCNi+QYiq1Hjx7atWtXsdqsXLlSTZs2LaWIrq+goKBit4mPjy+FSG4urVu3LpN71p577rnrPiYAAAAAAAAA4MZFcgzFdv78eSUkJBSrTWZmpiQpMjKyFCK6voo799wMwyjBSAAAAAAAAAAAQHGZjCJ+W282mxUUFKSTJ0/mK7vtttt0+vRp5eTk2G1flDoAcCNKSUmRr6+vkpOT5ePjU9bhAAAAAAAAAAAKUNTvcs3XMSYAAAAAAAAAAACgTBXrWMWEhAQ5OTnZLS+szDAMmUym4gwHAAAAAAAAAAAAlKhiJce4LwkAAAAAAAAAAAA3syInx8aPH1+acQAAAAAAAAAAAAClzmSwHQwAClXUSxwBAAAAAAAAAGWnqN/lmq9jTAAAAAAAAAAAAECZIjkGAAD+X3v3HR5V0fZx/LfpCemh19CUjoKgIiVIR0SUXgRUVEARAUFUNBERKT7YAFFBQUHp+KCIIL0JEiwUAUUggJJISe/lvH/w7HmzpJAeQr6f69rr2pwzM+ees8OGzb0zAwAAAAAAAJQaJMcAAAAAAAAAAABQapAcAwAAAAAAAAAAQKlBcgwAAAAAAAAAAAClBskxAAAAAAAAAAAAlBokxwAAAAAAAAAAAFBqkBwDAAAAAAAAAABAqUFyDAAAAAAAAAAAAKUGyTEAAAAAhSYuKUX+kzfIf/IGxSWlFHc4pR6vBwCgqF2OSTB/91yOSSjucEo07iUAFBySYwAAAAAAAAAAACg1SI4BAAAAAAAAAACg1CA5BgAAAAAAAAAAgFKD5BgAAAAAAAAAAABKDZJjAAAAAAAAAAAAKDVIjgEAAAAAAAAAAKDUIDmGQnP27FlZLBZZLBadPXu2uMMpdElJSapdu7acnZ11/vz54g6nwAQEBMhisSgoKKi4Q8lSUFCQLBaLAgICMpzr2rWrLBaLtm3bVvSBAQAAAAAAAABuOiTH8uHrr79WUFCQvv766xJ9jbwICgpSUFBQqUh65dQHH3yg06dPa8SIEapWrZrNufSJwpw8Fi9eXDyduAVZk3ovvPCC0tLSijcYAAAAAAAAAECxcyjuAEqyr7/+WkuWLNGwYcPUq1evEnuNvHj99dclXZtV5O/vn2kZR0dH3X777ebzW9nVq1c1bdo0OTs766WXXsq2rKenp1xdXbMtc6PzRal69eq6/fbbVbZs2eIOJU/uuecedenSRZs2bdLSpUs1dOjQ4g4JAAAAAAAAAFCMSI6h0FSpUkUnTpwo7jCKxMcff6yIiAj16dNHVatWzbbse++9p+HDhxdNYAXg888/L+4Q8m3kyJHatGmTZs2aRXIMAAAAAAAAAEo5llUE8skwDH388ceSpCFDhhRzNMhM9+7d5evrq2PHjmnv3r3FHQ4AAAAAAAAAoBiRHLvOihUr1K1bN1WoUEGOjo7y9vZW3bp11bNnT82bN08JCQnasWOHLBaLlixZIklasmRJhj2jduzYYbYZGhqqDz74QA899JDq168vLy8vubq6qk6dOhoxYoSOHTuWIY7cXsPq6NGjeuqpp1S3bl25ubnJ3d1dTZo00SuvvKLLly/n+/4MHz5cFovF/Ll9+/Y2MaVfYjH9PlvX701m7Z+1rcOHD2vgwIGqXLmyXF1dVb9+fb399ttKSUkx6+zdu1e9evVSpUqV5OLiokaNGmnevHkyDCPbmPNyT4KCgmSxWBQQECBJWrNmjTp37qzy5cvLzs7O3MdKkrZs2aIzZ87I29tb3bt3z8FdzJ19+/bJwcFBFotF77zzTqZlLly4ID8/P1ksFj355JM25wICAmSxWBQUFKSkpCTNmDFDTZo0UZkyZeTj46NOnTpp48aNWV4/ff3r+fv7m3ukxcTE6LXXXlPjxo3l4eGR6eu+d+9eDRkyRDVq1JCLi4u8vLzUsmVLzZw5UzExMdneh40bN6pTp07y9vaWu7u7mjZtqlmzZik5OTnbepLk5OSk3r17S5KZyAQAAAAAAAAAlE4sq5jO448/rs8++8z82d3dXcnJyTp16pROnTqlb775Rg888ICcnJxUoUIFRUZGKiEhwfwjf3pOTk7m88mTJ5tJLgcHB3l6eiouLk5//fWX/vrrLy1dulTLli0z/3hvrZ+ba0jSrFmz9NJLLyktLU2S5ObmpuTkZB05ckRHjhzRZ599pg0bNujOO+/M8z3y8vJShQoVFBYWJkny8fGxiaNcuXK5bnPjxo165JFHlJCQIC8vLyUmJurEiROaOHGiDh06pK+++koLFy7UyJEjlZaWJk9PTyUmJurYsWN69tlndf78ec2YMSPTtgvinkyYMEFz5syRxWKRt7e37Oxsc8rff/+9JOnuu+8ulL3VWrVqpcDAQL322muaPHmyAgICbOJNS0vTkCFDdPXqVdWvX1/vvfdepu0kJSWpY8eO2r17txwcHOTu7q6IiAht2bJFW7ZsUWBgYKYJsJy4cuWKmjdvrj/++ENOTk5yc3OzOZ+WlqZx48bp/fffN4+5u7srNjZWBw8e1MGDB/XZZ59p06ZNqlGjRob2g4KCzH3uJMnb21u///67XnzxRW3YsEH33XffDWNs27atPvnkE23atClPfQQAAAAAAAAA3BqYOfY/e/bs0WeffSY7OzvNnDlTV65cUXR0tGJjY3X58mVt2rRJw4YNk5OTk1q1aqXQ0FD1799fktS/f3+FhobaPFq1amW2XadOHc2ePVtHjhxRfHy8rly5osTERB09elSDBw9WYmKihg0bpn/++cesk9trLFq0SC+++KLc3Nz05ptv6uLFi4qNjVVcXJyCg4N1//336+LFi+rZs+cNZ+hk57333lNoaKj589q1a21iOnjwYK7bHDRokB566CGFhIQoIiJCkZGReumllyRJy5cv14wZMzR69GiNHj1aoaGhioiI0NWrV819u2bPnq0//vgjQ7sFcU8OHTqkOXPm6MUXX1RYWJiuXr2q2NhYPfbYY2aZXbt2SZJatmyZ677n1CuvvKKAgAAlJSVpwIABio2NNc9NmzZNO3fulLOzs7766qsMiSmr+fPn66efftKCBQsUHR2t8PBwnTt3Tn369JEkvf7661q/fn2e4gsKClJUVJTWrVunmJgYhYeH6/z58ypfvrwkKTAwUO+//77Kly+vefPmmf++4uPjtX37dt155506efKkHnnkETORabV+/XozMda3b1+dO3dO4eHhioqK0rx587R//359+OGHN4zx7rvvliSFhYWVmr3wAAAAAAAAAAAZkRz7n3379kmSOnbsqEmTJsnX19c85+fnp86dO2vx4sWqXLlyrtueMmWKXnjhBTVq1EgODtcm69nZ2alhw4ZaunSpHnjgAcXGxurTTz/NU+zR0dF64YUXJEmrV6/Wyy+/rIoVK0qS7O3t1bx5c23atEnNmzfXhQsXtHDhwjxdp7C0aNFCX331lapXry5J8vDw0PTp09WmTRtJ0ksvvaRhw4aZyRXp2oy1hQsXqmbNmkpLS9PKlStt2iyoexITE6Px48drxowZ5qw4Z2dnc3ZTUlKSfvnlF0lS06ZNc9TfsWPHqmLFitk+rmdnZ6elS5fKz89Pf/zxh5599llJ15YpnDp1qqRrs+SyiyEyMlLz58/X008/LRcXF0lStWrVtGLFCrVt21aS9PLLL+eoD9eLj4/Xd999p169epmz56pWrSo3NzedPXtWb731llxdXbV582aNHj3a/Pfl6OiogIAA7dy5U1WrVtXPP/+cIUFnTZS2a9dOy5cvV7Vq1SRJrq6uGj16tN5//31FRETcMMa6devK3d1dkvTjjz9mWzYxMVFRUVE2DwAAAAAAAADArYHk2P94e3tLki5duqTU1NQivfYDDzwg6drstbxYs2aNIiIidOedd6pLly6ZlnFwcNDAgQMl6aZbVu7FF1+02cfMKn1frAmS9Ozt7dWhQwdJ1/YsS6+g7omdnZ1efPHFLGP/999/zfGS0yUlo6KiFBYWlu0jM1WqVDETqIsXL9aHH36oQYMGKTU1VT169NBzzz2X7XWrVatmM+MtfR+nTJkiSTp27JiOHDmSo36k17Vr1yyXply8eLFSU1PVtWvXLJN3Hh4e6tWrlyTb1+Lw4cP6/fffJV1LMl+/pKUkPfnkk6pSpUqO4vTz85Mkm1mamXnrrbfk5eVlPqwJOQAAAAAAAABAyceeY//ToUMHubi46JdfflGbNm30xBNP6P7771fNmjULpP3ffvtNH330kfbs2aOzZ88qJiZGhmHYlLlw4UKe2t67d68k6fjx45nOOrKKj4+XJIWEhOTpOoUlq+UIK1SoIEny9fVVrVq1si0THh5uc7yg7kmdOnXM2WqZuXTpkvk8/WzD7Hz22WfmkpC51bNnTz377LOaO3euRo8eLUmqVKmSzV55WQkICMg0CSlJbdq0kYODg1JSUhQcHKzGjRvnKq7s9vyyvhabN2/O9rWwLm2Z/rUIDg6WdC2RaZ1JeD07OzsFBARo2bJlN4zT19dXISEhNq9bZl566SWNHz/e/DkqKooEGQAAAAAAAADcIkiO/U/t2rW1cOFCjRw5Uj/++KO57Fq5cuXUvn17DRo0SD179swyuZCduXPnauzYseZeShaLRV5eXnJ2dpZ0LUETFRVls49UblhnwSQkJCghIeGG5ePi4vJ0ncLi4eGR6XHrEpRZnU9fJjk52eZ4Qd2T7BJj1vatrK9nYXv77be1bt06/f3335KkTz/9VGXLlr1hvexmV7m4uMjPz09hYWH6999/cx1TdvfJ+lrExsbmaIynfy2ssZQtWzbb+1u1atUcxenq6ipJNxwTzs7ORfZ6AgAAAAAAAACKFssqpjN48GCFhIRowYIF6t+/v6pVq6ZLly5p5cqV6tWrl9q1a5frvYeOHz+u559/Xmlpaerbt69++uknJSQkKDw8XKGhoQoNDdWcOXMkKcNMspyyLuvXv39/GYZxw8fZs2fzdJ2SpKDuib29fbbXsS7TJ2WcvVZYNmzYYCbGJGnnzp1Fct3sZHefrK/Fiy++mKPXYseOHYUW59WrVyXZvm4AAAAAAAAAgNKF5Nh1fH199fTTT2v58uU6d+6cTp06pcmTJ8tisWj37t0KCgrKVXurV69Wamqq6tevr+XLl6tFixZycnKyKRMaGpqvmK1L1d1syyUWp6K6J+n3GbMmXgrT+fPnNWLECElSkyZNJEmzZs3Stm3bblg3fULteomJibpy5YqkG8+Wy638vBbWWC5fvqykpKQsy2XXt/Ssr1FO94cDAAAAAAAAANx6SI7dQO3atfXWW29p0KBBkqQffvjBPGdnd+32ZTfj6/z585Kkpk2bmuWvt2XLlizr5+Qa1v2eDh06pIsXL2ZZriBZl5fM62y3wlZU98THx8dM/pw+fbrQriNdm4E1ePBghYeHq0GDBtq/f78efvhhpaWl6dFHHzWTW1nZuXNnlq/X7t27lZKSIkm66667CjRu62uxZcuWHC1xmZ41lpSUFO3evTvTMmlpaTmabRYdHa3Lly9LkurXr5+rOAAAAAAAAAAAtw6SY/+TmJiY7XnrXkXpE1yenp6SpIiIiCzreXl5SZKOHDmSaWJi48aN2f5hPyfX6Nu3r7y9vZWcnKzx48dnm7BKS0vLtq2cyklcxako70nbtm0lST/99FOe28iJadOmaffu3XJ2dtby5cvl6uqqhQsXqmrVqvrnn3/02GOPZVv/3LlzWrJkSYbjaWlpmj59uiSpQYMGaty4cYHG/fjjj8vBwUGXL19WYGBgtmWTkpIUExNj/tykSRMzkfXmm2+a+/al9+mnn+rChQs3jCM4OFhpaWlycHAwE3YAAAAAAAAAgNKH5Nj/PPvss+rXr5/WrFmjf//91zweExOjBQsW6PPPP5ckPfDAA+a5Ro0aSbo26+bEiROZttu1a1dJ0rFjx/TMM8+Yy7rFxsbqo48+Up8+fbLd/ygn1/D29ta7774rSVq+fLkeeOABHThwwEwkpKWl6fjx4/rPf/6jhg0b6ttvv73h/bgRa1zLli1TXFxcvtsraEV5TwICAiRJBw4cyG/YWdq7d6/eeOMNSdLs2bPNBJavr6+WLl0qOzs7ffPNN5o7d26WbXh5eWnUqFH65JNPzBlc58+f18CBA7V9+3ZJ1xJwBa127dp69dVXJV1bAnLo0KE6evSoeT4lJUW//vqrpk6dqjp16ujXX3+1qf/mm29KkrZv365BgwaZibCEhAQtWLBAzz77rLy9vW8Yh/X1adasmdzd3QugZwAAAAAAAACAkojk2P8kJydr1apV6tOnjypUqCAPDw/5+PjIw8NDo0aNUlJSklq3bq1XXnnFrNO7d2+VK1dO4eHhql+/vsqVKyd/f3/5+/tr//79kqQOHTpowIABkqQPP/xQfn5+8vHxkZeXl0aOHKn69etnu49ZTq4hScOGDdOHH34oJycnbdy4Uffcc4/c3NxUtmxZubi4qEGDBnrhhRd04sQJc0nE/Bg5cqQkac2aNfL29lbVqlXl7++v1q1b57vtglJU96R3795ydHTUiRMn9Oeff96w/NixY1WxYsVsH2PHjjXLR0REaNCgQUpNTVWPHj00ZswYm/batWtnjsuJEyfqyJEjmV539OjRuuuuu/TUU0/J09NTvr6+ql69ulauXClJmjJlih5++OG83oZsvfrqq3r11VdlsVj0xRdfqHHjxjavxZ133qnAwECdP38+w2vx8MMPm/1bsWKFqlWrJl9fX/PfZsuWLTVq1KgbxrB+/XpJMpdIBQAAAAAAAACUTiTH/ufVV1/V+++/r4cfflj16tWTg4ODYmJiVL58eXXq1EmffvqpduzYoTJlyph1fHx8tGvXLg0YMEBVqlRRZGSkQkJCFBISYrO30rJly/Tuu++qSZMmcnZ2Vmpqqho3bqy33npLe/fuzXYWS06vIV1LWJ08eVIvvPCCmjZtKmdnZ0VERMjd3V133XWXxowZox9++EEDBw7M9/0aMmSIvvjiC7Vu3Vpubm66ePGiQkJCcrS8XVEqintSvnx5M6m0bNmyG5aPiopSWFhYto/IyEiz/JNPPqlz586pYsWK+vTTTzNtMzAwUK1atVJCQoIGDBig+Pj4DGWcnJy0detWTZ8+XbfffrsSExPl5eWlDh06aMOGDebMtMJgsVg0depUHT58WKNHj1b9+vVlb2+vyMhI+fj4qFWrVpo4caL27duX6ZKH06ZN07fffqv7779fnp6eSkxMVP369TVjxgxt3bpVTk5O2V7/9OnT+vHHH+Xq6qqhQ4cWVjcBAAAAAAAAACWAxchuMyYAObJr1y61a9dOtWvX1p9//lkgs/MKSkBAgHbu3KnAwMBsZyneyqZOnarAwEA99thjWSYYsxMVFSUvLy9FRkaa++0BAICciUtKUYPXNkmSfp/aRW5ODsUcUenG6wEAKGqXYxJ017StkqTgKR1U1t2lmCMqubiXAHBjOf1bLjPHgALQtm1bde7cWX/99ZdWrVpV3OEgndjYWH3wwQdydnZWYGBgcYcDAAAAAAAAAChmJMeAAvL222/Lzs5OU6dOVVpaWnGHg/+ZO3euLl++rOeee041atQo7nAAAAAAAAAAAMWMNTSAAtK4cWMtWrRIZ8+e1cWLF1WlSpXiDgmSypQpo6CgID3//PPFHQoAAAAAAAAA4CZAcqwUq1ixYq7rhIaGFkIkt47hw4cXdwi4zrPPPlvcIQAAAAAAAAAAbiIkx0qxsLCw4g4BRWDHjh3FHQIAAAAAAAAAADcNi2EYRnEHAQA3s6ioKHl5eSkyMlKenp7FHQ4AAAAAAAAAIBM5/VuuXRHGBAAAAAAAAAAAABQrkmMAAAAAAAAAAAAoNUiOAQAAAAAAAAAAoNQgOQYAAAAAAAAAAIBSg+QYAAAAAAAAAAAASg2SYwAAAAAAAAAAACg1SI4BAAAAAAAAAACg1CA5BgAAAAAAAAAAgFKD5BgAAAAAAAAAAABKDZJjAAAAAAAAAAAAKDVIjgEAAAAAAAAAAKDUIDkGAAAAAAAAAACAUoPkGAAAAAAAAAAAAEoNkmMAAAAAAAAAAAAoNUiOAQAyFZeUIv/JG+Q/eYPiklLyXKa0y809KqyyRVG+qK5xs8cGFAfGKwDgVsTvN5RUuR27l2MSzPKXYxIKpO3S8jm0pJe/Wa9RUq6FzO8b9zLnSI4BAAAAAAAAAACg1CA5BgAAAAAAAAAAgFKD5BgAAAAAAAAAAABKDZJjAAAAAAAAAAAAKDVIjgEAAAAAAAAAAKDUIDkGAAAAAAAAAACAUoPk2E1u+PDhslgsGj58eIG3vXv3bj3wwAMqV66c7O3tZbFY1KtXrwK/Dm4O/v7+slgsWrx4cbFcf8iQIbJYLFqxYkWRXrdr166yWCzatm1bkV4XAAAAAAAAAHBzIjlWSu3fv1/333+/vvvuO125ckW+vr6qUKGCfHx8JElBQUEKCgrS2bNnizfQYnD27Fmz/ygYwcHB+vLLL9WoUSP169cvw3lr4q4wksDW1/GFF15QWlpagbcPAAAAAAAAAChZHIo7ABSPd999VykpKbrvvvu0fv16+fr62px//fXXJUkBAQHy9/cvhgiLz9mzZ83+kyArGBMmTJBhGAoMDJTFYinSa99zzz3q0qWLNm3apKVLl2ro0KFFen0AAAAAAAAAwM2FmWOl1JEjRyRJAwYMyJAYAwrS/v37tWvXLlWsWFEPP/xwscQwcuRISdKsWbOK5foAAAAAAAAAgJsHybFSKi4uTpLk7u5ezJHgVrdgwQJJ1xKx9vb2xRJD9+7d5evrq2PHjmnv3r3FEgMAAAAAAAAA4OZAcqyEO3v2rJ5//nk1bNhQ7u7ucnNzU7169TR27FidO3cuQ3mLxSKLxWLuJfbYY4+Zx6x7PqVf9q59+/Y25/O7xGJAQIAsFouCgoKUlJSkGTNmqEmTJipTpox8fHzUqVMnbdy48YbtrF27Vj169FCFChXk5OSkChUqqEePHlq3bl2Wdax9Gz58uAzD0MKFC9W6dWv5+fnJYrFo8eLF8vf3V/v27c066fteEHtiWdvZsWOHQkND9eyzz6pmzZpycXFRxYoVNXjwYJ04cSLbNhISEvTuu++qVatW8vHxkYuLi2rUqKGhQ4fq119/zXNsb775piwWi+zt7c2EllVaWpqWLVum7t27m/e8XLly6ty5s7766isZhpFpm1FRUVq5cqUkadCgQXmKK/3rJkmrV69WQECAfH195ebmpjvuuEPvvfdetvuJOTk5qXfv3pKkjz/+OE9xAAAAAAAAAABuDew5VoItW7ZMTzzxhBITEyVJzs7OsrOz08mTJ3Xy5El99tlnWr16tTp37mzWqVChgiTp0qVLSktLk6enp1xdXc3z9vb2qlChgsLCwiRJPj4+cnJyMs+XK1euQGJPSkpSx44dtXv3bjk4OMjd3V0RERHasmWLtmzZosDAwEz3+0pKStLQoUO1YsUKSZKdnZ28vLx0+fJlbdiwQRs2bNDAgQO1ZMkSOTo6ZnptwzDUt29frVmzxqxvZ2dn9i8qKkrh4eGS/v9+WXl5eRVI/8+cOaOBAwcqNDRUrq6ucnR0VFhYmL788kutXbtW69atU9euXTPU+/vvv9W1a1cdPXpUkuTo6Cg3NzedO3dOX3zxhZYtW6Z3331XY8aMyXEsaWlpeu655zRv3jy5uLjoyy+/tFn+8OrVq3r44Ye1a9cu85j1nv/www/64YcftHz5cq1atcpmrEjSzp07FR8frzJlyqhZs2a5vU0ZPPvss5o3b57s7Ozk6emp+Ph4/fbbb3r++ef1888/a8mSJVnWbdu2rT755BNt2rQp33EAAAAAAAAAAEouZo6VUD/88IOGDh2q1NRUTZo0SWfOnFF8fLxiY2N14sQJ9e3bV9HR0erbt6/NDLLQ0FCFhoaqWrVqkqT33nvPPBYaGqpFixYpNDTULL927Vqb8wcPHiyQ+OfPn6+ffvpJCxYsUHR0tMLDw3Xu3Dn16dNHkvT6669r/fr1Geq9/PLLWrFihSwWi1599VVduXJFV69e1eXLl/Xyyy9Lkr766iu9+uqrWV577dq1+u9//6u3335b4eHhunr1qiIjI9WlSxcdPHhQa9euzXC/rI/33nuvQPo/btw4OTk5afPmzYqNjVV0dLQOHDigxo0bKyEhQf3799eFCxds6qSmpqp37946evSovLy8tHTpUsXExCgiIkJ//fWXevToobS0NI0dOzZHs+8kKTExUf369dO8efPk7e2tzZs32yTGUlNT9cgjj2jXrl2644479M033yg2NlYRERGKiYnRkiVLVL58ea1fv14vvvhihvatCbVmzZrle0nF9evX65NPPtGcOXMUHh6u8PBwXb58WSNGjJAkff7559q2bVuW9e+++25JUlhY2A1n5wEAAAAAAAAAbl0kx0qgtLQ0PfPMM0pLS9O8efM0c+ZM+fv7m0v23X777Vq5cqV69uypqKgozZkzp7hDziAyMlLz58/X008/LRcXF0lStWrVtGLFCrVt21aSzGSX1d9//20mpyZPnqypU6fK29tb0rUZbm+++abGjx8vSZozZ44uXryY6bVjYmI0Z84cTZgwQZ6enpKu7b1WqVKlAu9nVuLj4/X999+rU6dO5jKWLVu21JYtW+Tr66uoqCi99dZbNnVWr16tAwcOSJJWrlypwYMHmzO1atWqpXXr1unuu++WYRiaNGnSDWOwJgTXrFmjKlWqaPfu3WrTpo1NmS+//FI7d+5UvXr1tGPHDvXo0UNubm6SpDJlymjo0KH67rvvZLFYNH/+fP3777829a3xNm3aNA93yVZ4eLg++ugjjRs3znzd/Pz89Mknn6h58+aSriVGs1K3bl1zj70ff/wx22slJiYqKirK5gEAAAAAAAAAuDWQHCuBdu3apT///FNly5Y1Z81kZujQoZJ0Uy4jV61aNT322GMZjtvZ2WnKlCmSpGPHjunIkSPmuTVr1iglJUUuLi6aPHlypu1OmTJFzs7OSk5O1urVqzMt4+Pjo6effroAepF3ffv2Vf369TMcL1++vEaOHClJ5tKRVtaf7733XpulMq0cHBwUGBgoSTp69KjNvbveP//8ozZt2piJr3379qlRo0YZyi1atEiSNGrUqCyXlGzevLkaNmyopKQkbd++PcN1pIJZjrNatWoaNmxYpud69uwpSTp8+HC2bfj5+dnElZW33npLXl5e5sM60xIAAAAAAAAAUPKRHCuB9u7dK+nazJ/KlSurYsWKmT6efPJJSVJISEhxhpupgIAAc8bU9dq0aSMHh2vb4QUHB5vHrc9btGhhzhy6no+Pj+66664MddNr0aJFhr2xitr9999/w3NXrlzRmTNnzOPW/nTs2DHLuu3btzeXL8yq/ydOnFCrVq105MgR3Xvvvdq7d6+qV6+eoVxqaqr2798vSQoKCspynFWsWFEnT56UlHGsXbp0SZLk6+ubZcw51aJFiyzHTOXKlSVd2x8tO9Y4rHFl5aWXXlJkZKT5OH/+fB4iBgAAAAAAAADcjByKOwDknnXWS3JyssLCwm5YPj4+vrBDyrUqVapkec7FxUV+fn4KCwuzWabP+jy7upJUtWpVm/LXK1++fG7DLXDZ9SH9uX///Vc1a9Y0n9+orouLi8qWLZvh3qU3c+ZMSVKFChW0efNmc6nB6129elWJiYmSri1pmBNxcXE2PyckJEiSnJ2dc1Q/Ox4eHlmesyZTk5OTs23D1dXVJq6sODs7F0jMAAAAAAAAAICbDzPHSqDU1FRJMveXyskD/886s6q06tu3r5ycnBQWFqZRo0aZ4+l66Y9v3LgxR+MsKCjIpg3rMoY5Ta4VNuvMMmtcAAAAAAAAAIDSh+RYCVSxYkVJN+dyiTn1999/Z3kuMTFRV65ckWQ7y8v6/MKFC9m2bT1/M8wQy0p2/U9/Lrf9T0hIyPTepde9e3etW7dOzs7OWrp0qR599NFME2R+fn7mjKy8jjXrXmM3Wu6wqFjjKIg90AAAAAAAAAAAJRPJsRLovvvukySFhoZmua9Ufln3diqsWWc7d+7Msu3du3crJSVFksz9w9I/Dw4OVmRkZKZ1IyIibPYmyws7u///Z1FY/d++ffsNz/n6+ppLKkr/3/+tW7dmWXfHjh3mvcuu/927d9d///tfubi46KuvvtKgQYPMelaOjo5q2bKlJOmbb765QY8y16BBA0nS6dOn81S/IEVHR+vy5cuSpPr16xdzNAAAAAAAAACA4kJyrARq37696tSpI0kaN26ckpKSsi2fl1k7np6ekq4lmwrDuXPntGTJkgzH09LSNH36dEnXEiuNGzc2z/Xu3VsODg5KSEgw98263vTp05WYmChHR0f17t07T7FZ+y4VXv9XrVqlkydPZjh++fJlffTRR5Kk/v3725wbMGCAJOnHH3/U5s2bM9RNSUnR1KlTJUmNGjVSo0aNso2hS5cuWr9+vVxdXbVy5UoNGDAgw55dTz31lCTpu+++03fffZdte5mNs7Zt20qSfvrpp2zrFoXg4GClpaXJwcHBTDADAAAAAAAAAEofkmMlkIODgxYsWCAHBwft2bNHbdu21datW20SG6dPn9aCBQvUokULzZ8/P9fXsCZWli1bpri4uAKL3crLy0ujRo3SJ598ooSEBEnS+fPnNXDgQHPm1LRp02zqVKlSRWPHjpUkzZgxQ4GBgWbyKiIiQq+++qpmz54tSRo/frwqVaqUp9huu+02OTk5SZIWLlxYKLPHXFxc1LVrV23ZssVs/+DBg+rYsaMuX74sDw8PTZ482aZO7969dffdd0uS+vXrpy+//NJ8zc+cOaPevXvrxx9/lCTNmjUrR3F06tRJ3377rdzc3LRmzRr169fPJtk6ZMgQdezYUYZh6OGHH9a0adP0zz//mOdjY2O1fft2PfPMM6pVq1aG9gMCAiRdW5YxLCwsh3encBw4cECS1KxZM7m7uxdrLAAAAAAAAACA4kNyrITq0KGDVq1aJQ8PDx04cEAdO3ZUmTJlVLZsWbm4uKh27doaNWqUgoODzSUSc2PkyJGSpDVr1sjb21tVq1aVv7+/WrduXSDxjx49WnfddZeeeuopeXp6ytfXV9WrV9fKlSslSVOmTNHDDz+cod706dPVr18/GYahqVOnys/PT76+vvLz8zOTaQMHDtQbb7yR59jc3Nz06KOPSpImTZokd3d31ahRQ/7+/nrhhRfy3G5677zzjhISEtSpUye5u7vLw8NDLVu21G+//SZnZ2d99dVXql69uk0de3t7rVmzRg0bNlRkZKQGDx4sd3d3+fj4qFatWlq/fr3s7Oz03nvvqVu3bjmO5f7779d3332nMmXK6Ouvv1bv3r3NBJn1mj169FBSUpJeffVVValSRV5eXvLx8ZGHh4fuv/9+zZ8/X7GxsRnarl+/vpo2bSpJWr9+fT7uWP5Zrz9o0KBijQMAAAAAAAAAULxIjpVgvXr10qlTpxQYGKiWLVvK3d1dERERcnZ2VtOmTTVixAitW7dOEydOzHXbQ4YM0RdffKHWrVvLzc1NFy9eVEhIiC5cuFAgsTs5OWnr1q2aPn26br/9diUmJsrLy0sdOnTQhg0bskxuOTk5acWKFVq9erW6desmPz8/RUdHy8/PT926ddPatWv15ZdfytHRMV/xzZs3T0FBQeayjufOnVNISIi5Z1V+1axZU7/88oueeeYZlStXTklJSSpfvrwGDhyoX375RQ888ECm9apUqaLg4GDNmTNH99xzj1xdXRUXF6dq1arp0Ucf1aFDh/Tcc8/lOp527drp+++/l4eHh7799lv16tVLiYmJkq4tM/nNN9/ou+++U//+/VW9enUlJiYqLi5OVapUUefOnfXWW29lukykJD399NOSrs1CLC6nT5/Wjz/+KFdXVw0dOrTY4gAAAAAAAAAAFD+H4g4A2Vu8eLEWL16c5fny5csrKChIQUFBuWr37NmzNywzZMgQDRkyJFft5oaTk5NeeuklvfTSS7mu27t371zvKXaje5mes7OzAgMDFRgYmOvYcqpixYqaO3eu5s6dm6t6Li4uGjdunMaNG5erejd6zVu3bq2oqKgsz3fr1i1XM9KshgwZosmTJ2vXrl0KCQlRjRo1chVbTl634cOHa/jw4VmeX7p0qaRr+7b5+PjkJGwAAAAAAAAAwC2KmWMACpV1/zTDMDRz5swiv35sbKw++OADM+EJAAAAAAAAACjdSI4BKHTjxo1TtWrVtGjRIp0/f75Irz137lxdvnxZzz33XKaz1gAAAAAAAAAApQvLKgIodC4uLvr888+1Y8cOnTt3TtWqVSuya5cpU0ZBQUF6/vnn89yGYRiSlO2yk7eiuKQUpSXGSbrW9xSnjL8yclKmtMvNPSqsskVRvqiucbPHBhQHxisA4FbE7zeUVLkdu9ExCWb56KgoOaUl5bvt0vI5tKSXv1mvUVKuhczvG/fy//+Ga/2bblYsxo1KANd55JFHtG/fvlzVWbt2rVq1aqWAgADt3LlTgYGBud4n7WZRsWLFXNcJDQ2VJFksFknS9u3bFRAQUJBhoRBduHChSBN6AAAAAAAAAIC8O3/+vKpWrZrl+dKXNkS+Xb16VWFhYbmqk5R07VsvO3bsKISIilZu+54eueiSqXLlyjp//rw8PDzMBCdQGKKiolStWjWdP39enp6exR0OSgnGHYoLYw/FhbGH4sC4Q3Fh7KE4MO5QXBh7kK79DT46OlqVK1fOthzJMeTarZDgyg8SXKWPnZ1dtt8yAAqap6cn/4lDkWPcobgw9lBcGHsoDow7FBfGHooD4w7FhbEHLy+vG5axK4I4AAAAAAAAAAAAgJsCyTEAAAAAAAAAAACUGiTHAAC4STg7OyswMFDOzs7FHQpKEcYdigtjD8WFsYfiwLhDcWHsoTgw7lBcGHvIDYvBBkoAAAAAAAAAAAAoJZg5BgAAAAAAAAAAgFKD5BgAAAAAAAAAAABKDZJjAAAAAAAAAAAAKDVIjgEAAAAAAAAAAKDUIDkGAEAhsFgsOX60b98+y3ZWr16tBx98UJUrV5aTk5PKlCmj22+/XU8++aR+/fXXousQSpwffvhB/fr1U40aNeTi4iJXV1fVqlVLgwcP1s6dO7OtGx0draCgIDVu3Fju7u7y8vJSixYt9J///EdJSUlF1AOUVHkZe1euXNFnn32mIUOGqEGDBipTpoycnZ1VtWpV9erVS+vWrSviXqCkyc973vVmzJhh83sayE5+x15UVJRmzpypVq1aqVy5cuZ7X/v27RUUFKSIiIjC7wRKpPyMvYJ8z0Tpsnv3bvXv319Vq1aVs7Ozypcvr06dOumrr766Yd2wsDBNmDBBt99+u1xdXeXr66s2bdpo4cKFMgyjCKJHSZaXsff3339r/vz56tu3r+rUqSNXV1e5urqqZs2aGjhwoLZt21aEPcBNyQAAAAWuQoUK2T58fX0NSYYkY+LEiRnqJyQkGA8++KBZRpLh7u5uODk5mT/b2dkZc+bMKYbe4WaWlpZmPP300zZjx9XV1XB1dbU5Nm7cuEzrnz171vD39zfLubm5Gc7OzubPd955p3H16tUi7hVKgvyMPQcHB5syLi4uRpkyZWyOdevWzYiNjS2GnuFmlt/3vOudOHHCcHFxsakLZKYgxt62bduMChUqmGWdnJwMb29vm/q//PJL0XUKJUJ+xl5Bv2eidHnxxRdtxom3t7fh6Oho/vzwww8bycnJmdYNDg42/Pz8bD7bpv//X5cuXYzExMQi7hFKiryMvXPnzhkWi8WmnpubW4b3u8cff9xISUkppp6huPE/fQAAisHbb79t/mfsxIkTGc6/9tpr5vnRo0cbFy5cMAzDMFJTU43g4GCjdevWhiTDYrEYwcHBRR0+bmKffvqpOXb69Olj/PHHH+a5EydOGA899JB5fu3atTZ1k5OTjcaNGxuSjEqVKhk//PCDYRjXxt3y5csNDw8PQ5LRvXv3Iu0TSob8jD1JRsuWLY358+cbf/31l3n8zJkzxhNPPGHWGzJkSJH1ByVDfsbd9VJTU41WrVoZkox7772X5Biyld+xt2fPHvMPdI888ohx8OBBIy0tzTAMw4iNjTV++ukn45VXXjFOnz5dZH1CyZCfsVeQ75koXRYsWGCOjQEDBhjnz583DOPalzoXL15sfqkps8RqRESEUbFiRUOSUa9ePePgwYOGYRhGYmKiMXfuXDPJMWrUqCLtE0qGvI69M2fOGJKMDh06GEuWLDH+/vtvwzCu/X/v2LFjNu93U6ZMKfJ+4ebA//QBACgG9evXNyQZrVu3zvS8deZOu3btMj0fERFhuLu7G5KMyZMnF2KkKGkCAgIMSUadOnUy/eZmUlKSUatWLfPDRXoLFy40PyDs27cvQ90vv/zSPL9ly5ZC6wNKpvyMvW3btmXbdvpvuZ87d65A40bJlp9xd713333XkGQMHjzYCAwMJDmGbOVn7MXGxprnxowZU1Qh4xaRn7FXkO+ZKD2Sk5PNWa7NmjUzUlNTM5T58MMPDUmGg4ODzRedDMMwpkyZYs5SzCzhP336dEOSYW9vb5w8ebLQ+oGSJz9jLyIiwjh06FCWbaelpRldu3Y1ZzLGx8cXSh9wc2PPMQAAiti+fft0/PhxSdKIESMyLXPx4kVJ0l133ZXpeS8vL912222SpJiYmEKIEiWVdew0bdpUDg4OGc47OjrqjjvukJRx7CxZskSS1L59e917770Z6g4YMEA1a9aUJH3++ecFGTZuAfkZe9ntvShJTzzxhPk8ODg4n5HiVpKfcZfemTNn9Morr8jPz0/vvPNOocSKW0t+xt4XX3yh06dPq2LFipo1a1ahx4pbS37GXkG9Z6J0OXTokMLCwiRJEyZMkJ1dxj8nP/nkk/L29lZKSoqWLl1qc876uSH9Z4n0xowZI3d3d6WmpmrZsmWF0AOUVPkZe15eXmrWrFmWbVssFj3++OOSrr3fWf9Gg9KF5BgAAEVs0aJFkq79Z61v376ZlqlVq5aka/8ZzExkZKT++OMPSVkn0FA6WcfOb7/9ppSUlAznk5OT9euvv0qyHTtxcXHau3evJKlbt26Ztm2xWNS1a1dJ0ubNmwsybNwC8jr2csLFxcV8npqamvcgccspqHH35JNPKjY2VnPmzFG5cuUKJVbcWvIz9qx/KO7bt6/N+xuQE/kZe4X5uxq3rpCQEPN5gwYNMi1jb29vfnkz/eeEkydP6ty5c5Ky/ozh7u6uNm3aZKgL5Gfs5QSfMUByDACAIhQTE6OVK1dKkgYOHCg3N7dMy40aNUqStGPHDj3zzDP6+++/JUmGYejnn39Wjx49FBMTo3vvvVdDhgwpmuBRIljHzqlTpzRw4ECdOnXKPHfy5En169dPp0+fVu3atTVu3Djz3PHjx5WWliZJatSoUZbtW8+Fhobq6tWrhdEFlFB5HXs5sWPHDvN548aNCyRe3BoKYtx98skn2rp1qzp27KihQ4cWSdwo+fI69hITE80ZsM2bN9e5c+f01FNPqVq1anJyclKFChX04IMPasOGDUXbIZQY+XnfK8zf1SgdsksgWM8dPXrUPJb+eU4+Y/z+++/5DRG3qNyOvZywfsZwcnIyE2woZYp7XUcAAEqTTz75xNzDJDg4OMtyqampxqRJkww7OzuzvLu7u+Hk5GRIMipWrGhMnjzZiIuLK8LoUVK888475ljR/9b3d3V1NSQZ3t7exqhRo4wrV67Y1Fm/fr1Z/rfffsuy7a+//tosd+TIkcLuCkqYvIy9GwkPDzcqVapkSDLatGlTSJGjJMvPuLtw4YLh5eVluLq62uxTwZ5jyIm8jL0TJ06Y5V977TXDw8PDkGQ4OTkZ3t7e5jlJxogRI4y0tLRi6h1uZvl53yuM39W4tR04cMAcL4sXL860TGJiouHp6WmWi4mJMQzDMN5//33zWGRkZJbXsO77KcmIjo4ulH6g5MnP2LuR06dPG25uboYk49FHHy3IsFGCMHMMAIAitHDhQknX1vlv3rx5luXs7Oz01ltv6dNPP5W7u7uka7POkpKSJEkJCQmKjIxUbGxs4QeNEuf555/X2rVrVb58eUlSfHy84uPjJUlJSUmKiYlRZGSkTZ3o6GjzeVYzGq8/l74OIOVt7GUnLS1Njz76qC5evCgXFxfNnTu3UOJGyZafcff0008rMjJSQUFB5nJjQE7lZeyFh4ebz6dNmyZHR0etWrVKMTExCg8PV0hIiLns9sKFC9kDD5nKz/teQf+uxq2vWbNmqlChgiRp5syZmS7J+cEHHygqKsr82fqczxjIj/yMvezEx8erb9++iouLU9myZTVjxoyCCxolCskxAACKyLFjx3TgwAFJ0ogRI7Ite/nyZXXo0EHDhw/Xvffeqz179igiIkIXL17U2rVrVa5cOX344Ye6++67zSUXAena3mH9+/dXjx49VL16dW3evFmXLl3SpUuXtHnzZjVo0EBffPGFWrZsqcOHDxd3uLiFFMbYGzt2rL799ltJ0rx589SkSZPC7AJKoPyMu6VLl2rDhg264447NH78+GLqAUqqvI496xLG1ueLFi1Snz595OjoKEmqXr26li9frqZNm0qSpk+fnukfA1F65ed9j/8nIi8cHBz02muvSbq2FHuPHj30888/KykpSaGhoZo9e7Zeeukl831MuvZlTyC/CmPspaSkaNCgQTp06JAcHR21bNkyVa5cuVD7gZtYcU9dAwCgtHj++ecNSYaLi4sRHh6ebdnu3bsbkox27dplupxOWFiYUbZsWUOSMWTIkEKKGCXR6NGjDUnG7bffbsTHx2c4HxcXZ9x2222GJKN169bmcZZVRH7ldexlZcKECeZYe+eddwohYtwK8jruQkNDDT8/P8Pe3t44ePBghnosq4gbyevYO3z4sDm26tatm2X7X3zxhVlu//79hdIHlEz5+X1b0L+rUbq88MILNku/pn/UrVvXeOWVV8yfExMTDcNgWUUUjLyMvcykpKQY/fr1MyQZDg4OxqpVq4qwF7gZkcYHAKAIJCUlaenSpZKk3r17y9vbO8uyx48f13fffSdJmjBhgiwWS4Yy5cuX19ChQyVJa9eulWEYBR80Spzo6Gh9/PHHkqRnnnlGLi4uGcq4urrq2WeflSTt2bNH//77ryTZfFsuu9mI6c/xDTtY5WfsZWbSpEn6z3/+I0l6++239fzzzxd80Cjx8jPuJk+erCtXruipp55SvXr1FBMTY/OwLmMsKdNjKN3yM/aqVKlilqlXr16W12jQoIH5PCQkpEDiRsmXn7FX0L+rUfrMnj1be/bs0fDhw9WwYUNVq1ZNLVu21LRp0/TLL7/I3t5eklSjRg05OTlJyv1nDE9PT3NbAcAqL2PveqmpqRoyZIhWrlwpe3t7LV26VH369CnKbuAm5FDcAQAAUBr897//1eXLlyXdeEnF33//3Xxeu3btLMvVrVtX0rXlUf79919zLW6UXn/88Ye59FJOxo4knTlzRuXLl1f9+vVlZ2entLQ0HT16VN26dcu07tGjRyVJFStWlK+vbwFGj5IsP2PvehMnTtTbb78tSZo1a5YmTJhQwNHiVpGfcXfmzBlJ0ocffqgPP/ww2+t4eHhIurbM57vvvpvPqHEryM/Y8/X1VZUqVW64LHb6Lz5l9kUplE75GXsF+bsapdd9992n++67L9NzwcHBkqRWrVqZxxo1amQ+P3r0qOrXr59pXetnjPRfDADSy+3YSy81NVWDBw/WihUrzMRY//79Cy1WlBzMHAMAoAgsXLhQklSnTh21a9cu27Lp18jO7pvCYWFh5nO+XQcpb2PH+kdfNzc388PG999/n2k9wzC0adMmSVLnzp3zHS9uHfkZe+m98MILNomxiRMnFmCUuNUU1LgDciu/Y8/6O/T48eNZ1k3/ZamaNWvmKU7cevIz9njPRGEKCwvTli1bJMlc4USSbrvtNlWvXl1S1p8xYmNjtXv3bkl8xkDuZTX2rFJTUzVo0CCbxNiAAQOKOkzcrIp5WUcAAG55ISEhhp2dnSHJmD59+g3Lnz171lwv+8EHH8y0TExMjFGrVi1DktGkSZOCDhklVFxcnOHq6mpIMpo1a2YkJydnKJOSkmK0atXKkGT4+PgYKSkp5rmFCxcakgyLxZLp/iYrVqwwx+aWLVsKtS8oWfI79gzDdo+xt99+u6hCRwlWEOMuK+w5huzkd+zt2rXLHF/r1q3LUDc1NdVo0qSJIcmoUqWKkZqaWpjdQQmSn7FXmO+ZKN1SUlKMXr16GZKMli1bZtgze8qUKYYkw83NzThz5kyG+jNnzjQkGfb29sbJkyeLKGrcCm409lJSUoz+/fube4wtX768mCLFzYr/6QMAUMisf2BzcHAw/vnnnxzVefDBB80/mgwZMsQ4deqUkZaWZiQlJRl79+417rrrLvP8kiVLCrkHKEnGjBljjo2uXbsahw8fNlJTU43U1FTjt99+Mzp37myef/31123qJicnG40bNzb/GGdNgKWmphorV640PD09DUlGt27diqNruMnlZ+xNnDjRPDdnzpxi6gFKovyMu+yQHMON5Hfs9enTx5Bk+Pn5GatXrzYTFSEhIUa/fv3MuosXLy7qruEml5+xV1jvmbj1/fXXX8bLL79sHDp0yIiPjzcM49pnhD179hj333+/Icnw9vY2fv/99wx1IyIijIoVKxqSjAYNGhjBwcGGYRhGYmKiMX/+fMPJycmQZIwaNapI+4SSIa9jLyUlxRgwYID5t5iVK1cWR/i4yfE/fQAAClFqaqpRvXp1Q5LRs2fPHNe7dOmS0bx5c/PDqfWbdg4ODjbHJk6cWIjRoySKi4szunbtajNOnJ2dDWdnZ5tjAwcOzPTbwGfOnDH8/f1txp2Li4v585133mlcvXq1GHqGm11ex15ISIh5zs7OzqhQoUK2j9mzZxdjL3Gzye97XlZIjuFG8jv2YmJijLZt29rU9fHxsakbGBhY9B3DTS8/Y6+w3jNx6/vll19sxoiPj4/h6Oho/ly9enXj0KFDWdYPDg42/Pz8zPIeHh429Tt37mwkJCQUYY9QUuR17O3cudMs4+joeMPPGMwqK50cBAAACs2WLVt07tw5SdKIESNyXK9s2bLav3+/lixZolWrVunXX3/V1atX5eDgoOrVq6tVq1Z6+umn1bp168IKHSWUq6urvvvuO61Zs0ZLly7VoUOH9O+//8pisahatWpq2bKlHnvsMT3wwAOZ1vf399fhw4f19ttva+3atTpz5owcHR3VsGFDDRw4UGPGjJGTk1MR9wolQV7HXlpams3z9HudZCYmJqZQ4kfJlN/3PCCv8jv2ypQpo+3bt+vTTz/VF198oaNHjyo6OlpVqlRRmzZtNGbMGLVq1aqIe4WSID9jj/dM5JW/v79ee+017dixQ6dOndLly5fl6empevXq6ZFHHtHIkSPl5uaWZf3mzZvr2LFjmjlzpr799ludP39eZcqUUaNGjTRs2DA9/vjjNvviAVZ5HXvpP2MkJyff8DNGfHx8gceOm5/FMAyjuIMAAAAAAAAAAAAAigIpeQAAAAAAAAAAAJQaJMcAAAAAAAAAAABQapAcAwAAAAAAAAAAQKlBcgwAAAAAAAAAAAClBskxAAAAAAAAAAAAlBokxwAAAAAAAAAAAFBqkBwDAAAAAAAAAABAqUFyDAAAAAAAAAAAAKUGyTEAAAAAAAAAAACUGiTHAAAAAAAAAAAAUGqQHAMAAAAAFAqLxSKLxaIdO3YUdygFaseOHWbfUHIV1/hMSkpS7dq15ezsrPPnz+e7vf3798tisaht27YFEB0AAEDpQHIMAAAAAJCBNXGQl8fixYuLO3zgpvXBBx/o9OnTGjFihKpVq5bv9u655x516dJFu3fv1rp16wogQgAAgFufQ3EHAAAAAAC4+VSoUCHT4zExMYqNjc22jKurqyTp9ttvlyS5ubkVQoTFx83NzewbkBtXr17VtGnT5OzsrJdeeqnA2g0KCtKmTZs0efJkPfjgg3Jw4M89AAAA2eF/SwAAAACADEJDQzM9HhQUpNdffz3bMlYnTpwo8LhuBi1btrxl+4bC9fHHHysiIkJ9+vRR1apVC6zde+65R02bNtVvv/2mr7/+Wn369CmwtgEAAG5FLKsIAAAAAABQyAzD0McffyxJGjJkSIG3b23zo48+KvC2AQAAbjUkxwAAAAAAhcK6B9mOHTtsjp89e9Y8d/bsWYWEhOjJJ59U9erV5eLiotq1a2vKlCnm8o2SdPToUQ0ZMkTVqlWTi4uL6tatq2nTpik5OTnbGM6ePavnn39eDRs2lLu7u9zc3FSvXj2NHTtW586dy1O/duzYYcZ/vcWLF8tiscjf31+SdOjQIfXr10+VKlWSs7OzatWqpfHjxys8PDxP15akAwcOaPDgwapZs6ZcXFxUpkwZ1ahRQ+3atdMbb7yhCxcuZFovKSlJ8+fPV/v27VW2bFk5OTmpYsWKeuihh7Rx48YcXfexxx5TnTp15ObmJk9PTzVo0ECPP/64Nm3alGmdyMhITZ06Vc2aNZOnp6dcXV1Vt25djRo1SqdPn87yWunHTnR0tKZMmaJ69erJ1dVVfn5+6tGjhw4cOJBtvOHh4Zo4caJq164tFxcXVapUSX379tWhQ4du2NcLFy5o3LhxatiwocqUKSNnZ2dVrlxZzZs317hx43Tw4MEbtnG9LVu26MyZM/L29lb37t2zLHfixAk99dRTuu222+Tm5iYXFxdVq1ZN99xzj15++eUsZy0OGjRIkrR169Zs7y0AAAAkGQAAAAAA5FBgYKAhycjJx0lrue3bt9scP3PmjHluzZo1hre3tyHJ8PT0NOzt7c1zbdq0MZKSkoxvv/3WcHNzMyQZXl5ehsViMcv0798/y+svXbrUcHZ2Nss6Ozsbrq6u5s8eHh7Gpk2bcn0Ptm/fnuU9+OyzzwxJRo0aNYxly5YZjo6OZtx2dnZmvYYNGxrR0dG5vvbixYtt+u/s7Gx4enqaP0syPvvsswz1zp49azRs2NAsY7FYDC8vL5t6I0eOzPSaKSkpxnPPPWdTtkyZMoaPj48Zi5eXV4Z6R48eNapWrWrWcXFxMTw8PGxiX716dabXtJb58ssvjTp16pj1reNAkuHk5JTl63fmzBmjRo0aNmWt98nJycn473//m+X4/PXXXw0fHx/zvL29vU1fJRnDhg3L7mXK1Pjx4w1JRpcuXbIss3nzZpsx6+joaP77sD4CAwOzrF+7dm1DkjF//vxcxwcAAFCaMHMMAAAAAFBsnnjiCTVv3lzHjh1TZGSkoqOj9f7778ve3l67d+/W1KlTNXjwYD344IM6e/asIiIiFBUVpVdeeUWStGLFCm3ZsiVDuz/88IOGDh2q1NRUTZo0SWfOnFF8fLxiY2N14sQJ9e3bV9HR0erbt2+eZ5Bl59KlS3r88cc1bNgwnTt3ThEREYqOjtbcuXPl6OioY8eOadasWblqMy4uTmPGjJFhGBoyZIhOnTqlhIQERUZGKiYmRsHBwZo4caLKly9vUy82NlZdu3bVsWPHFBAQoB07dig+Pl4RERGKiIjQnDlz5O7urgULFui9997LcN2XX35Z77//viTp8ccf18mTJxUTE6OrV68qPDxcX3/9tbp27WpTJzo6Wg8++KAuXLigKlWqaMOGDYqNjVVUVJR+/fVX3XPPPUpMTNTgwYP122+/ZdnnZ555Rk5OTtq2bZtiY2MVExOjn376SbfffruSkpL01FNPKS0tzaZOamqq+vbtq5CQEPn4+GjlypWKjY1VZGSkjh07prvvvlvDhg3L8poTJkxQeHi4mjVrph9//FHJycm6evWqEhIS9Mcff+jtt99Ww4YNb/h6XW/Xrl2Sru1Zl5VRo0YpMTFRnTt31pEjR5SUlKTw8HDFx8fr6NGjev31181ZiZm5++67JUk7d+7MdXwAAAClSnFn5wAAAAAAJUdBzxxr2LChkZCQkKHuo48+apbp1KmTkZaWlqFMmzZtDEnGE088YXM8NTXVqFu3riHJ+Oijj7KMr2fPnoYkY+zYsTfsS3o5mTmmbGYXWWcQ1alTJ1fXPXDggDlrKzk5Ocf1pk6dakgy2rVrZyQlJWVaZu3atYYko2zZsjZtnzx50pzxNmnSpBxfc8aMGebMpyNHjmQ4HxUVZfj7+xuSjAceeCDDees9LFeunBEWFpbh/OHDh80ye/bssTm3YsUK89yWLVsy1I2NjTVnWGU2Pq2zC/ft25fj/t5IYmKiOSsyq9lyYWFhZkz//PNPnq4ze/ZsQ5JRvXr1/IQLAABwy2PmGAAAAACg2IwbN07Ozs4Zjnfp0sV8Pnny5Ez397KWOXz4sM3xXbt26c8//1TZsmU1YsSILK89dOhQScpyv6z8mjJlSqbHH3roIUnSqVOnFBcXl+P2vL29JV3bO+zKlSs5rrdo0SJJ0vjx4+Xo6JhpmV69esnT01OXL1+22ZNryZIlSktLk5+fn15//fUcX3PFihWSpD59+qhRo0YZznt4eGjSpEmSpI0bNyoyMjLTdp566qkMM+EkqXHjxqpZs6akjK//8uXLJUn33XefOnTokKGum5ubee3MWO/zxYsXsyyTW//++69SU1MlSeXKlcu0jIeHh+zs7PJ17bJly+arPgAAQGlBcgwAAAAAUGyyWmKuQoUK5vMWLVpkWyY8PNzm+N69eyVJkZGRqly5sipWrJjp48knn5QkhYSE5Lsf1/P19VWdOnUyPVe5cmXz+fWxZ6d27dqqV6+ekpOTdffdd2vmzJn69ddfzaRLZv7++2+zf0888USW96JSpUqKiYmRZHs/9u3bJ0nq1KmTXFxcchRnUlKSmbDq2LFjluU6deokSUpLS9PPP/+caRnrMoGZsd7Hq1ev2hwPDg6WJN1///1Z1s3uXI8ePSRJw4YN04QJE7Rz585cJTEzc+nSJfO5r69vpmVcXV3NZF7Xrl312muv6cCBA0pKSsrxdaxtJycnKyIiIu8BAwAA3OJIjgEAAAAAio2Hh0emxx0cHHJcJjk52eb4P//8Yx4PCwvL8mFNTMXHx+e7H9fLKub0cWcWe3bs7e21fPly1axZUyEhIZo8ebLuvPNOeXp6qlOnTvrwww8zJHGs90KSLl++nO39sO7dlb6N0NBQSVKNGjVyHOfVq1fNhF2VKlWyLFe1alXz+b///ptpmZzcx+vvobWtnF77erNmzVL79u0VExOjOXPmKCAgQJ6enrrrrrsUGBiov//+O8u6WUlISDCfZzZT0mrhwoVq2rSpLl26pDfeeEP33HOPPDw81Lp1a82ePTtDIvB6rq6umV4TAAAAtkiOAQAAAABuKdbEzN133y3DMHL0KCmaNm2qEydOaM2aNXrqqafUqFEjxcfHa8uWLRo9erTq1aunI0eOmOXTzyo7fvx4ju7F8OHDzTqZLWd5q/P29ta2bdu0e/duTZo0Sffdd58cHBx06NAhTZ06VXXr1tVXX32Vqzb9/PzM59nNFqxevbp+/vlnff/993ruuefUvHlzpaWlae/evZo0aZLq1Kmjbdu2ZVk/ffIs/TUBAABgi+QYAAAAAOCWUrFiRUmFs1zizcDJyUmPPPKIPvroIx05ckSXLl3SggUL5Ovrq/Pnz2vYsGFmWeu9kPJ2P/JyL319fWVvby9JunDhQpbl0p/LbF+xvLK2ld0Mr5zM/mrdurVmzpypPXv2KCIiQv/973/VuHFjxcfH6/HHH1dYWFiOY0q/z9iNZn/Z2dmpS5cueu+99xQcHKyrV69q2bJlql69usLDwzVo0KAsl1q0tu3l5ZXl/nIAAAAgOQYAAAAAuMXcd999kq4tCWjdf+pW5ufnp6efflozZ86UJP3yyy+6cuWKJMnf399cXvCbb77JddutWrWSJP3www85XqbPyclJTZo0kSRt3bo1y3JbtmyRdC0Z1KxZs1zHlpW77rpLkrR9+/Ysy2Q3+yozLi4u6tmzp9auXSvp2pKFe/bsyXF9Hx8fM9F4+vTpXF3bw8NDgwYN0qJFiyRJYWFhNrMD0ztz5owkqX79+rm6BgAAQGlDcgwAAAAAcEtp37696tSpI0kaN25clrNsrG40k+dmkZiYmO359PtN2dn9/8f9J598UpK0aNEi/fLLL9m2cf29GD58uOzt7XXlyhUFBgbmONYBAwZIklavXq2jR49mOB8TE6NZs2ZJkrp37y4vL68ct30j/fv3lyTt2bNHO3bsyHA+Pj5es2fPzrRuSkqKufdaZrK6xznRtm1bSdJPP/2U6fkbjdOcXPvAgQOSpHbt2uUqNgAAgNKG5BgAAAAA4Jbi4OCgBQsWyMHBQXv27FHbtm21detWJScnm2VOnz6tBQsWqEWLFpo/f34xRptzy5cv13333aePPvrIZvZRamqqNm3apMmTJ0uS7r33Xvn4+JjnJ0yYoMaNGyshIUHt27fX3LlzzZllkhQREaGNGzdq6NChatOmjc0169Spo4kTJ0qSZs2apREjRujPP/80z0dFRWnFihV6+OGHbeqNGjVKNWvWVHJysrp166aNGzeaSacjR46oS5cuOnPmjJydnTVt2rQCukPX9O7d25yJ1rt3b61Zs8bce+348ePq1q2bLl26lGndCxcuqG7dupo2bZp++eUXpaSkmOcOHz6sIUOGSJLKlCmT6wRUQECApP9PYF1v3759atKkid555x0dP37cvF+GYWjfvn0aNWqUJKlq1armzLz0UlNTdejQIUkkxwAAAG7EobgDAAAAAACgoHXo0EGrVq3S0KFDdeDAAXXs2FGOjo7y9PRUTEyMzSysXr16FV+guWBNkuzbt0+S5OzsLHd3d4WHh5uJlMqVK+vTTz+1qefu7q7vv/9evXv31v79+zVmzBg999xz8vLyUlpamqKiosyy1hl36U2bNk3R0dGaN2+eFi1apEWLFsnd3V2Ojo6KiIiQYRgZZn55eHho/fr16tq1qy5cuKDu3bvLxcVFTk5O5vWcnZ21dOlSNW3atEDvk4ODg1atWqWAgACdP39effr0kbOzs1xcXBQZGSknJyetWrVKDz30UKb1T58+rVdffVWvvvqq7O3t5eXlpZiYGHNml5OTkxYvXixfX99cxdW7d2+NHTtWJ06c0J9//qm6detmKHPkyBGNHz9e48ePN8drZGSkmaTz9PTUl19+ae7plt7WrVsVGxur8uXLq2PHjrmKDQAAoLRh5hgAAAAA4JbUq1cvnTp1SoGBgWrZsqXc3d0VEREhZ2dnNW3aVCNGjNC6devMmVE3u549e+rzzz/XY489pqZNm8rLy0uRkZHy8PBQy5Yt9cYbb+jYsWOqV69ehrqVK1fWnj179NVXX6lnz56qVKmS4uLilJSUJH9/fz344IN69913tWvXrgx17e3tNXfuXO3Zs0eDBw9W9erVlZycLMMw1KBBAz3xxBNas2ZNhnqNGjXSsWPHFBQUpDvuuEMODg5KTExU7dq1NXLkSB07dkx9+vQplHtVq1Yt/frrrxo/frxq1qwpwzDk4uKiPn36aN++ferZs2em9apUqaL169dr3Lhxuueee1SpUiXFxMTIwcFBDRo00DPPPKOjR4/mKe7y5cubM+yWLVuW4XyLFi20cuVKjRo1Ss2bN1fZsmUVFRUlFxcX3XHHHZo0aZKOHz+eYXaflbXNxx57TI6OjrmODwAAoDSxGIZhFHcQAAAAAAAAt7pdu3apXbt2ql27tv78809ZLJYCaTc2NtZMeP7xxx+qVatWgbQLAABwq2LmGAAAAAAAQBFo27atOnfurL/++kurVq0qsHbnzp2r6OhojRgxgsQYAABADjBzDAAAAAAAoIgcOXJEd9xxh+rXr6/Dhw/Lzi5/31uOiYlRzZo1lZCQoFOnTqlChQoFFCkAAMCty6G4AwAAAAAAACgtGjdurEWLFuns2bO6ePGiqlSpkq/2zp49q2eeeUZ33nkniTEAAIAcYuYYAAAAAAAAAAAASg32HAMAAAAAAAAAAECpQXIMAAAAAAAAAAAApQbJMQAAAAAAAAAAAJQaJMcAAAAAAAAAAABQapAcAwAAAAAAAAAAQKlBcgwAAAAAAAAAAAClBskxAAAAAAAAAAAAlBokxwAAAAAAAAAAAFBqkBwDAAAAAAAAAABAqfF/7KqpcGWsbO0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "from ndx_structured_behavior.plot import plot_events, plot_actions, plot_states, plot_trials\n",
+ "\n",
+ "# Get the events from file\n",
+ "events = nwbfile.get_acquisition(\"task_recording\").events\n",
+ "event_types = nwbfile.get_lab_meta_data(\"task\").event_types\n",
+ "\n",
+ "# Plot the data\n",
+ "fig = plot_events(\n",
+ " events=events[20:100],\n",
+ " event_types=event_types,\n",
+ " show_event_values=True,\n",
+ " figsize=(18,4),\n",
+ " marker_size=500,\n",
+ ")\n",
+ "plt.title(\"Events\", fontsize=18)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "b14f720f-2e2e-423a-ac16-35940f92e775",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABpAAAAGiCAYAAADgNoXpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfWklEQVR4nO3dd3gU5f7+8XvTewiETkhCQDooIOaAFEWkCIJSBaSKiopfgSOiKATkeAQ9YqcoVUG6WBEFqSIoCFIEhEMIHQKkkp7M7w9+u4ch2ZBsQhLC+3Vde7GZeZ55PjPZyZK988xYDMMwBAAAAAAAAAAAAPx/TsVdAAAAAAAAAAAAAEoWAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAACRFRETIYrGobdu2xV0KAAAAUOwIkAAAAAAAxSYmJkaenp6yWCyyWCw6cuRIoY+xZ88eRURE6N133y30bQMAAAClFQESAAAAAKDYLFq0SCkpKbav586dW+hj7NmzR5MmTbphgBQYGKjatWurevXqhV4DAAAAcKshQAIAAAAAFJs5c+ZIkkaOHClJWrBggTIzM4ullueee06HDh3SwoULi2V8AAAAoCQhQAIAAAAAFIs//vhDe/bsUZkyZTRt2jSFhobq7Nmz+v7774u7NAAAAOC2R4AEAAAAACgW1tlHffr0kYeHhwYOHCgpb5ex+/HHH9W3b18FBwfL09NTZcuWVaNGjTRy5Ej9+uuvtnYWi0VDhgyRJEVFRdnutWR9RERE2NpGRETIYrGobdu2dsfdvXu3Bg4cqODgYHl4eCggIEAtWrTQu+++q9TU1Bz7zJ8/XxaLRSEhIZKkXbt2qXfv3qpcubLc3d1Vo0YNjR49WjExMXbH3bFjh/r376/Q0FB5eHjI29tbwcHBatOmjV5//XWdOnXqhscMAAAAyA+X4i4AAAAAAHD7SUlJ0eLFiyXJFhwNHDhQkydP1rfffqvz58+rYsWK2folJSVp8ODBWr58uW2Zr6+vsrKytG/fPu3bt09btmzRnj17JEkVK1ZUcnKy4uPj5eTkpPLly5u25+Pjk+eap0+frjFjxsgwDEmSv7+/rly5ol9//VW//vqr5s2bpx9++EGVK1e2u43Fixdr8ODBSk9Pl7+/vzIyMhQZGanp06frxx9/1Pbt27PVtGDBAg0ZMsQ2rru7u1xcXHTixAmdOHFCmzdvVlBQkAYPHpznfQEAAABuhBlIAAAAAIAit3LlSsXGxqpmzZpq0aKFJKlGjRq69957lZGRYfc+REOGDNHy5cvl5OSkl156SSdPnlR8fLxiY2MVHR2tRYsW6R//+Iet/blz5/Tee+9JkoKCgnTu3DnT45///Gee6v322281evRoGYahbt266dixY4qNjVViYqIWLlwoX19f7d27Vz179rR7D6fo6GgNHTpUgwYN0okTJxQbG6uEhAR9+OGHcnV11YEDBzRt2jRTn6SkJI0cOVKGYWjAgAE6evSoUlJSFBcXp8TERO3cuVMvvviiKlSokKf9AAAAAPKKAAkAAAAAUOSsl6+zzj6yyu0yduvXr9eyZcskSR9++KHefPNNVatWzbY+MDBQ/fr104wZMwq93rFjx0qSWrVqpZUrVyo0NFSS5Obmpscff1yLFi2SJG3btk1ffvlljttISkpS37599cknnygoKEiS5OXlpWeffVYjR46UJH3xxRemPvv371dCQoK8vb01b948hYWF2dZ5e3uradOmmjZtmjp37ly4OwwAAIDbHgESAAAAAKBIHTt2TBs3bpTFYtHjjz9uWte7d295enrq0KFD2rZtm2mdNVRq0KCBRowYUWT17t27VwcPHpQkvfrqq3J2ds7WpmvXrmrevLmk7CHQtV599dUcl3fr1k2SdPToUSUlJdmWlylTRpKUlpamS5cuOVQ/AAAA4AgCJAAAAABAkZo3b54Mw1CrVq0UEhJiWufn56fu3btL+t8sJStroNSlS5eiKNNm586dkiQXFxe1adPGbrv27dub2l+vbNmyqlmzZo7rqlSpYnseExNjex4WFqY6deooPT1d99xzj6ZOnao9e/bYvUweAAAAUFgIkAAAAAAARSYrK0vz58+XlP3ydVaDBg2SJC1btkyJiYm25efOnZMkBQcH39wir3PhwgVJVy+R5+7ubred9XJ61vbX8/X1tdvXxcXF9jw9Pd323NnZWUuWLFFoaKiioqI0btw43XXXXfLz81P79u01Y8YM04wlAAAAoLAQIAEAAAAAiszatWt16tQpSdITTzwhi8WS7dGxY0dJUmJiou2eR5JksViKpebi1rhxYx06dEgrV67Uk08+qQYNGig5OVnr1q3TM888ozp16mjfvn3FXSYAAABKGQIkAAAAAECRuf6ydPlpX6lSJUlSVFRUodZ0IxUqVJAkXbx4UampqXbbWYMxa/vC5ObmpkcffVSzZs3Svn37FB0drZkzZ6ps2bI6efKkbdYWAAAAUFgIkAAAAAAARSI6Olpff/21JGnFihVKSEiw+/jtt98kXb3v0eHDhyVJLVq0kCR98803+RrXyenqr76GYThUd7NmzSRJGRkZ2rRpk91269atkyTdfffdDo2TH+XKldNTTz2lqVOnSpJ2796tS5cu3fRxAQAAcPsgQAIAAAAAFInPPvtM6enp8vf3V9euXeXj42P3cffdd6tOnTqS/jcLadiwYZKkAwcOaMaMGXke18/PT5IUGxvrUN2NGjVSvXr1JElTpkxRZmZmtjbff/+9duzYIUl67LHHHBonJ7nNeJIkT09P23NrUAYAAAAUBv53CQAAAAAoEtYgqFu3bnJzc7th+169ekmSFi5cqIyMDN13333q27evJOm5557Tyy+/bLtsnHT1EnOffvqpLWiyatCggSQpPj7edE+l/LDO9NmyZYt69uypyMhISVJ6eroWLVpkC41atGih7t27OzRGTpYsWaKWLVtq1qxZOnbsmG15Zmam1q5dq3HjxkmS/vGPfyggIKDQxgUAAAAIkAAAAAAAN9327dv1119/SfpfMHQj1nbnz5/Xd999J+lqCPXoo48qKytLb775poKCguTv768yZcqofPnyGj58uHbt2mXaTs2aNdWuXTtJUp8+feTn56eQkBCFhITo3XffzVMtXbp00TvvvCOLxaLVq1erRo0aCggIkI+PjwYMGKD4+Hg1bNhQy5cvl7Ozc562mReGYWjbtm16+umnFRYWJg8PDwUGBsrNzU0dO3bUqVOnVKVKFc2dO7fQxgQAAAAkAiQAAAAAQBGwzj7y9/fXgw8+mKc+DRs2VN26dU39vby8tHLlSn377bd65JFHVKVKFaWkpMjFxUWNGjXS888/r9mzZ2fb1ooVKzRq1CjdcccdSk9PV1RUlKKiovJ1WbtRo0Zp586dGjBggIKCgpSUlCRPT0+Fh4dr+vTp+v3331WlSpU8by8vHn74YS1cuFBDhgxR48aN5e/vr7i4OPn6+qp58+Z6/fXXdeDAAdvl/gAAAIDCYjEcvYsoAAAAAAAAAAAASiVmIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYOJS3AUAuPVlZWXpzJkz8vX1lcViKe5yAAAAAAAAAAA5MAxDCQkJqlKlipyccp9jRIAEoMDOnDmjoKCg4i4DAAAAAAAAAJAHJ0+eVLVq1XJtQ4AEoMB8fX0lXf2h4+fnV8zVAAAAAAAAAAByEh8fr6CgINtnurkhQAJQYNbL1vn5+REgAQAAAAAAAEAJl5dbkeR+gTsAAAAAAAAAAADcdgiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYEKABAAAAAAAAAAAABMCJAAAAAAAAAAAAJgQIAEAAAAAAAAAAMCEAAkAAAAAAAAAAAAmBEgAAAAAAAAAAAAwIUACAAAAAAAAAACACQESAAAAAAAAAAAATAiQAAAAAAAAAAAAYOJSGBvZu3ev1q5dq6ioKCUnJ2vOnDm2denp6YqOjpbFYlHlypULYzgAAAAAAAAAAADcRAUKkOLi4jR06FCtXr1akmQYhiwWS7YAqXHjxoqJidGff/6p+vXrF6hgAAAAAAAAAAAA3FwOX8IuPT1dnTp10urVq+Xl5aWHHnpIHh4e2dp5eXlpyJAhysrK0ooVKwpULAAAAAAAAAAAAG4+hwOkOXPmaPv27apRo4YOHz6sr7/+Wv7+/jm27dGjhyRp8+bNjg4HAAAAAAAAAACAIuJwgPTFF1/IYrFo+vTpqlKlSq5t77rrLjk5OenQoUOODgcAAAAAAAAAAIAi4nCAtG/fPlksFj344IM3bOvm5iZ/f39dunTJ0eEAAAAAAAAAAABQRBwOkJKSkuTr6ys3N7c8tU9PT5eLi4ujwwEAAAAAAAAAAKCIOBwgBQYGKj4+XomJiTdsGxkZqcTExBte6g4AAAAAAAAAAADFz+EA6Z577pEkfffddzds+8EHH0iSWrVq5ehwAAAAAAAAAAAAKCIOB0hDhw6VYRh67bXXdObMGbvtZs2apffee08Wi0VPPvmko8MBAAAAAAAAAACgiDh8U6KHHnpIPXr00MqVK9WsWTP169dPycnJkqTZs2crKipK3377rfbv3y/DMDR8+HDbrCUAAAAAAAAAAACUXBbDMAxHO6ekpGj48OFatGiRLBZLtvXWTQ8dOlQzZ86Ui4vDeRWAEiw+Pl7+/v6Ki4uTn59fcZcDAAAAAAAAAMhBfj7LdfgSdpLk4eGhzz77TJs3b9bjjz+usLAweXp6ys3NTdWrV1e/fv20ceNGffrpp4RHAAAAAAAAAAAAt4gCzUACAIkZSAAAAAAAAABwKyiyGUgAAAAAAAAAAAAofQr1unJRUVG6cOGCJKlChQoKDg4uzM0DAAAAAAAAAACgCBR4BtKZM2c0cuRIVahQQTVq1FB4eLjCw8NVo0YNlS9fXiNHjtSpU6cKo1YAAAAAAAAAAAAUgQLdA+nHH39Unz59FB8fL3ubsVgs8vX11ZIlS9SxY0eHCwVQcnEPJAAAAAAAAAAo+fLzWa7Dl7A7fPiwunfvrpSUFJUtW1ZPP/207r//flWtWlWSdPr0aW3YsEGzZs3SxYsX9eijj2r37t2qXbu2o0MCAAAAAAAAAACgCDg8A2nAgAFavHixGjVqpJ9++knly5fPsd3Fixf1wAMPaN++ferXr58+++yzAhUMoORhBhIAAAAAAAAAlHz5+SzX4XsgrV+/XhaLRZ9++qnd8EiSAgMD9cknn8gwDK1bt87R4QAAAAAAAAAAAFBEHA6QYmNj5ePjo2bNmt2w7d133y0fHx/FxsY6OhwAAAAAAAAAAACKiMMBUuXKlZWZmZnn9llZWapcubKjwwEAAAAAAAAAAKCIOBwgde7cWcnJyfr5559v2Hb9+vVKSkpSly5dHB0OAAAAAAAAAAAARcRiGIbhSMfz58/rzjvvlIeHh9auXas77rgjx3ZHjhxRhw4dlJqaqt27d6tChQoFKhhAyZOfG68BAAAAAAAAAIpHfj7LdThA2rx5s44dO6ZRo0YpJSVFvXr10v3336+qVatKkk6fPq0NGzZo+fLl8vDw0PTp0xUaGprjtlq3bu1ICQBKCAIkAAAAAAAAACj5iiRAcnJyksVicahAUwEWizIyMgq8HQDFhwAJAAAAAAAAAEq+/HyW61KQgRzMngp9GwAAAAAAAAAAACg8DgdIWVlZhVkHAAAAAAAAAAAASgin4i4AAAAAAAAAAAAAJQsBEgAAAAAAAAAAAEwcDpBq1qypqVOn6sKFC4VZDwAAAAAAAAAAAIqZwwHSsWPH9MorrygoKEi9e/fWunXrCrMuAAAAAAAAAAAAFBOHA6Tx48erSpUqSk9P14oVK9ShQwfVrFlT06ZNY1YSAAAAAAAAAADALcxiGIbhaOesrCx9//33mjVrln744QdlZmbKYrHIxcVF3bt31/Dhw/XAAw8UZr0ASqD4+Hj5+/srLi5Ofn5+xV0OAAAAAAAAACAH+fkst0AB0rXOnDmjOXPmaO7cuYqKirq6cYtFoaGhevLJJzV48GBVqFChMIYCUMIQIAEAAAAAAABAyVcsAZKVYRj68ccfNXv2bH377bdKT09nVhJQyhEgAQAAAAAAAEDJV6wB0rXOnDmjfv36afPmzVcHs1gkSTVr1tSYMWM0bNgwOTs736zhARQRAiQAAAAAAAAAKPny81mu080o4MSJE5o4caLuuecebdmyRdLV8OjOO++Us7Ozjhw5ohEjRig8PFzR0dE3owQAAAAAAAAAAAA4qNACpMzMTK1evVqdO3dWWFiYpkyZotOnT6ts2bIaM2aM/v77b+3atUsnT57UhAkT5O3trT/++EMvv/xyYZUAAAAAAAAAAACAQlDgS9gdP35cn3zyiebPn69z587JurkWLVpoxIgR6tWrl9zc3LL127lzp5o3b67KlSvr9OnTBSkBQDHjEnYAAAAAAAAAUPLl57NcF0cHWbFihWbPnq2ff/5ZhmHIMAz5+vpqwIABGjFihBo0aJBr/2bNmqlSpUo6d+6coyUAAAAAAAAAAADgJnA4QOrdu7ft+Z133qkRI0aoX79+8vb2zvM2cpqZBAAAAAAAAAAAgOLlcIDk4eGhPn36aMSIEWrevLlD2zh+/LijwwMAAAAAAAAAAOAmcThAOnPmjMqUKVOIpQAAAAAAAAAAAKAkcHK049dff63ly5fnuf2qVau0cOFCR4cDAAAAAAAAAABAEbEYhmE40tHJyUmVK1fW6dOn89Q+NDRUJ0+eVEZGhiPDASjB4uPj5e/vr7i4OPn5+RV3OQAAAAAAAACAHOTns1yHZyBJUn6zJwezKgAAAAAAAAAAABShAgVI+REfHy83N7eiGg4AAAAAAAAAAAAOKpIA6ddff1VMTIyqVq1aFMMBAAAAAAAAAACgAFzy2nDBggVasGCBadnly5d1//332+1jGIZiY2N14MABWSwWtWvXzvFKAQAAAAAAAAAAUCTyHCAdP35cGzduNC1LS0vLtsye2rVrKyIiIh+lAQAAAAAAAAAAoDjkOUBq27at6etJkybJx8dHY8aMsdvHyclJfn5+atCggdq2bStnZ2eHCwUAAAAAAAAAAEDRsBiGYTjS0cnJSZUqVdKZM2cKuyYAt5j4+Hj5+/srLi5Ofn5+xV1OkUpKy1C9CWslSX9N7iAvN5dcl+d3O/mtYeer7dRsynrT+p2vtlOgj4fD++JIv4LsD26eovi+nLx8Ra2mbZQkbRnbVkFlvQtt23l9rfH6u8rez4a8HpOi/plQ2N+3m/laxO0nt9fnteuul5f34ML6P0BBfgbebuff9fsr6ZZ/L7n+dVhSf9YXdh03a9vFdVyK4nWX08+sknielnQ3+jly/dcl/WeIo4rzZ4+1r5TzsS6u38kL632kOH4e8LOgdMjP51S32v93clLUP4dKi/x8luvwkYmMjGRGEQAAAAAAAAAAQCnkcIAUHBxcmHUAAAAAAAAAAACghHAq7gIAAAAAAAAAAABQshAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQLpFRUREyGKxqG3btsVdCuwYMGCALBaLli5dWtyl5Orpp5+WxWLRnDlzirsUAAAAAAAAAEAJQYCEYhUbG6uIiAhFREQoNja2uMuxa/Xq1YqIiNDq1avz1H7nzp1avHixGjRooN69e+fa9ujRo3r55Zd19913q3z58nJzc1OlSpXUsmVLTZo0SWfOnCmEPbDvlVdekZubmyZMmKCkpKSbOhYAAAAAAAAA4NZAgIRiFRsbq0mTJmnSpEklPkCaNGlSngOkMWPGyDAMTZw4URaLJcc2mZmZevHFF1W3bl29+eab2rlzp2JiYuTj46Po6Ght27ZNERERqlWrlt5+++1C3Buz6tWra8iQITpz5sxNHQcAAAAAAAAAcOsgQAIK2fbt27V582ZVqlRJjzzySI5tsrKy1KNHD7399tvKyMhQx44dtWnTJqWmpury5ctKTk7WDz/8oBYtWigpKUkvvviinn/++ZtW89NPPy1Jev/995WamnrTxgEAAAAAAAAA3BoKLUBKSUnR2bNndeLEiVwfQGk3c+ZMSVLfvn3l7OycY5spU6boq6++kiSNGzdOa9asUevWrW3t3dzc1KFDB23ZskUDBw6UJH3wwQf67LPPbkrNd955p+rXr69Lly5pxYoVN2UMAAAAAAAAAMCto0ABUlJSkiIiIlS7dm15e3urWrVqCg0NtfuoUaNGgYpdunSpOnXqpIoVK8rV1VVlypRRrVq19PDDD+ujjz5SSkpKtj67d+/WwIEDFRwcLA8PDwUEBKhFixZ699137c60iIiIkMViUdu2be3WsnHjRlkslhwvT3Z9//Xr1+uhhx5S+fLl5eHhobp162rSpEk51nutNWvWqH379ipTpox8fHzUuHFjTZs2Tenp6bn2c1RcXJwmT56sJk2ayM/PT56enqpVq5ZGjBihY8eO5djn+PHjtuNw/Phxu9sOCQmRxWLR/Pnzbcvatm2r0NBQ29ehoaG2bV1//OfPny+LxaKQkBBJ0k8//aROnTqpfPny8vT0VP369TVlyhS7x3Tw4MGyWCwaPHiw3RqvH0P63/d5wYIFkqQFCxaYarRYLNq4caOtfXx8vJYtWyZJ6tevX47jXLhwQW+++aYk6b777tMbb7xhtyYnJyfNnj1bdevWlSS9/PLLSktLM7UprNebtd7Zs2fn2g4AAAAAAAAAUPo5HCDFxsYqPDxcr7/+uo4cOSLDMG74yMrKcrjQoUOHqm/fvvrhhx904cIFeXh4KD09XUePHtU333yj5557TufOnTP1mT59upo2barPPvtMJ06ckIeHh65cuaJff/1Vo0aNUvPmzXX27FmHa8qLt956S+3bt9eaNWuUkZGhtLQ0HTp0SBEREercubMyMzNz7Gddv27dOsXFxcnV1VV//fWXXnrpJT3wwAPZQoSCOnDggBo0aKCJEydq9+7dSk9Pl6urq44ePaqZM2eqXr16WrlyZaGOWbZsWQUGBtq+DgwMVMWKFW2PsmXL5tjv448/VocOHfTDDz8oIyNDGRkZ+uuvv/Taa6+pRYsWiomJKbQa3dzcVLFiRXl4eEiSPDw8TDVWrFhRbm5utvabNm1ScnKyvL291aRJkxy3OW/ePCUnJ0tSrvdIsnJ3d9e4ceMkSadPn871PkyOvt4kqXXr1pKkX375RQkJCbnWBAAAAAAAAAAo3RwOkF5//XXt379fLi4uGj16tDZt2qQjR44oMjIy14cjtm7dqnnz5snJyUlTp07VpUuXlJCQoCtXrujixYtau3atBg0aZPog/9tvv9Xo0aNlGIa6deumY8eOKTY2VomJiVq4cKF8fX21d+9e9ezZM9cP1Qvizz//1Lhx4zRu3DhduHBBMTExio2N1YQJEyRJGzZssM1sudbXX3+tSZMmSZJ69eqlEydOKCYmRvHx8froo4+0fft2zZgxo9DqTEhIUNeuXXXq1ClVrVpV3333na5cuaL4+Hjt2bNH4eHhSk1NVf/+/fXnn38W2rirVq3S77//bvv6999/17lz52yPVatWZesTHR2tF154QT179jQdlxkzZsjd3V27d+/WsGHDCq3GFi1a6Ny5c+rTp48kqU+fPqYaz507pxYtWtjab968WZLUpEkTu5ev+/nnnyVJ5cqVU5s2bfJUR/fu3W1B04YNG3Js4+jrzapp06ZycXFRZmamfvnllzzVBQAAAAAAAAAonRwOkFavXi2LxaJ3331Xb7/9tlq1aqWwsDAFBwfn+nDEtm3bJEkPPPCAxo4da5qZUq5cOT344IOaP3++qlSpYls+duxYSVKrVq20cuVK26XS3Nzc9Pjjj2vRokW2bX/55ZcO1XUjsbGxeu211/TGG2/YZtr4+flp0qRJevTRRyVJX3zxRbZ+L7/8siSpTZs2WrJkiYKCgiRJnp6eeuaZZ/T+++8rNja20Or8+OOPFRkZKVdXV/3www/q3LmznJyuvjQaN26sH3/8USEhIUpNTdX48eMLbVxHJCUlqUWLFtmOy9NPP62PPvpIkvTll1+agqmitGPHDklXj5s9Bw4ckCTddddded6un5+f7RKQ+/fvz7GNo683K09PT9WuXVuS9Ouvv+ZaT2pqquLj400PAAAAAAAAAEDp4XCAdPr0aTk5OWnIkCGFWU+OypQpI+nq7JO8zBbau3evDh48KEl69dVXc5wJ0rVrVzVv3lxS7h+qF4S7u7v++c9/5riuW7dutlqvtXfvXv3111+SrtZuDXKuNXz4cFWtWrXQ6ly6dKkkqWfPnmrQoEG29b6+vrZAbs2aNYqLiyu0sR1h77gMGTJE1apVkyQtWbKkqMuSJJ05c0aSVL58ebttLl26JOlq+Jkf1lDI2v96jrze7I1h3Q97/v3vf8vf39/2sIZ5AAAAAAAAAIDSweEAqWzZsvL19bXdG+ZmateunTw8PLR79261atVKc+bMyfVyeDt37pQkubi45HqJsPbt25vaF7b69evLx8cnx3XW2VKXL182Lb+29latWuXY18nJSW3bti2UGtPS0myhwgMPPGC3nfVYZWVl6Y8//iiUsR2R1+Nys76nNxIdHS1Jdu/fdDM58nq7nrVu637Y8/LLLysuLs72OHnypAMVAwAAAAAAAABKKocDpHvvvVdxcXE6ffp0YdaTo7CwMH366afy8fHRr7/+qieeeEI1atRQhQoV1KdPH3311VcyDMPW/sKFC5KuzqZwd3e3u13rbBVr+8Lm6+trd52Li4skKSMjw7Q8v7UX1OXLl22zunKb1XTteDfreOXFjY6LdR+Kq8aUlBRJyrVG68wjezOJ7Ll48aKp//Uceb1dz9PTU9L/9sMed3d3+fn5mR4AAAAAAAAAgNLD4QDppZdekouLi15//fXCrMeu/v37KyoqSjNnzlSfPn0UFBSk6OhoLVu2TN27d1ebNm24DwuKnTXciYmJsdumXr16kqTdu3fnebvx8fE6duyYpKszjW4W6wyl/F5eDwAAAAAAAABQujgcIDVt2lTz58/XggULNGzYMNuH2zdT2bJl9dRTT2nJkiU6ceKEjh49qnHjxslisWjLli2KiIiQJFWoUEHS1Rkbqampdrd36tQpU3sr62yN3GZh3Kz7AF1be1pamt12hTXzq2zZsrZ7RFmPR06uXXft8bIeK6lojldej0txfU+t9z7K7VJx7dq1k3R1BtLGjRvztN0vv/zSNsvu/vvvL1iRubDWnds9nAAAAAAAAAAApZ/DAVKNGjU0fvx4OTs7a/78+apVq5bKly+vGjVq2H2EhYUVZu0KCwvTv//9b/Xr10+S9NNPP0mSmjVrJunq5bo2bdpkt/+6deskSXfffbdpeUBAgCTlel+XHTt2OF54Lq6tfcuWLTm2ycrKynPwcCNubm5q1KiRJGn9+vV221mPlZOTk5o0aWJbbj1Wkv3j9ffffys2NjbHdU5O/3sJXnsZQntyOy6GYdi+39bjeH2djn5PrXXeqEbr7KLcAtXBgwfb7h02efLkG24zNTVVU6dOlXT1Xkbdu3fPtX1BWO8tVrdu3Zs2BgAAAAAAAACg5HM4QDp+/LiOHz+upKQkGYYhwzB06dIl23J7D0fkNotI+t99W6wf8jdq1Mj2Qf6UKVNs9/i51vfff28LDB577DHTusaNG0uSzpw5k2OocOHCBX3yySf53Iu8adSoke3D+3/961/KysrK1mbu3Lm5zhbKr759+0qSVqxYof3792dbn5iYqGnTpkmSOnfuLH9/f9s6b29vWzC4cuXKHLf/r3/9y+7Y1947x17IlNP2cjouCxYssAVEffr0Ma2zfk9///33HEOkgwcPatWqVTes80Y1tm7dWpL022+/2W1TsWJFjR07VpK0YcMGjR8/3m7brKwsPfXUUzp48KAk6Y033pCbm1uuNTgqMjJS0dHRkqQ2bdrclDEAAAAAAAAAALcGhwOkefPm5fsxd+5ch8Z67rnn1Lt3b61cuVIXLlywLU9MTNTMmTO1cOFCSdJDDz1kW2edsbFlyxb17NnTNrMiPT1dixYtsoVGLVq0yDajo0WLFgoODpYkDRo0SDt37pRhGLaZP23bts0xwCgs1sBlw4YN6tevny0sSklJ0cyZM/Xcc8+pTJkyhTbeiBEjFBoaqvT0dHXq1Elr1qyx7d++ffvUoUMHRUZGyt3dXVOmTMnW33os586dq48//ljJycmSrs72eeKJJ7R06VJ5eXnlOHaZMmVUtWpVSVdfUxkZGbnW6uXlpa1bt2Y7LrNnz9aIESMkSd26dVPz5s1N/bp27SofHx+lp6erd+/eOnz4sKSrr4evvvpKDzzwgLy9ve2O26BBA0lXX0+HDh2y265t27aSpKioKJ0/f95uu4kTJ6pLly6SpH//+9/q3LmztmzZYgs709PT9eOPP6p169ZasGCBJOmZZ57RoEGD7G6zoKxhacWKFVWnTp2bNg4AAAAAAAAAoORzuXGTnN3MD7Kvl56eruXLl2v58uWSJB8fH7m4uJhmg9x7772mmRxdunTRO++8ozFjxmj16tVavXq1ypQpo6SkJNs9dBo2bKjly5fb7gFk5eTkpFmzZqlr1646fPiw7r77bnl5eSkrK0spKSmqVauWPvroo2wzlwrLI488ovHjx+tf//qXli5dqqVLlyogIEAJCQnKyMhQq1atdO+99+rf//53oYzn6+urr7/+Wh07dtSpU6fUuXNneXh4yM3NTfHx8ZIkd3d3ff7557aZPNd66aWXtGrVKv3111969tlnNXLkSPn5+Sk2Nlaurq5auHChxo0bp6ioqBzHf/rpp/Xaa6/pgw8+0OzZs1WhQgU5OTkpPDxcS5YsMbUtX768XnzxRY0cOdJ2XBITE5Weni7p6kyjOXPmZBvD399f7777roYPH67t27erTp068vX1VWpqqtLS0hQeHq4BAwboueeey7HGHj166JVXXlF0dLTq1q2rwMBAW+C0ZMkShYeHS7p66bfGjRvrzz//1Ndff63hw4fnuD0nJyd9+eWXGjt2rD744AOtWbNGa9askbOzs/z9/RUbG2sL8Tw8PBQREaGXXnopx20Vlq+//lpS9hl5AAAAAAAAAIDbj8MzkIrSa6+9pvfff1+PPPKI6tSpIxcXFyUmJqpChQpq37695s6dq40bN2abQTJq1Cjt3LlTAwYMUFBQkJKSkuTp6anw8HBNnz5dv//+u6pUqZLjmB06dNCWLVvUpUsXBQQEKDMzU0FBQRo3bpx27dqlSpUq3dR9njJlir799lvdf//98vPzU2pqqurWras333xT69evL/TLmDVo0EAHDhxQRESE7rzzTrm4uCg1NVVhYWF6+umndeDAAfXs2TPHvj4+Ptq6datGjx6t0NBQubi4yNXVVT169NCvv/5qu0SePa+88oree+89NWvWTK6urjp16pSioqJ07ty5HNs/++yzWrt2rTp27CgnJyc5OTmpTp06mjx5sn799VeVK1cux37Dhg3Td999ZzumGRkZuuOOO/Tmm29q06ZNuc5ACggI0ObNm9W3b19VrVpVcXFxioqKUlRUlFJSUkxtn3rqKUnSokWLct1vFxcXvfPOO/rrr780duxYNW3aVGXKlFFCQoLKlSunf/zjH5o4caKOHj1608OjxMREffXVV6b6AQAAAAAAAAC3L4dnIBWlsLAwjRw5UiNHjsx33yZNmuizzz5zaNx77rlH33zzTY7r2rZtK8MwclwXERGhiIiIXLedW3+rhx56yHRZvvyOkV/+/v6aOHGiJk6cmO++AQEB+s9//qP//Oc/Oa7P7f5XTk5Oev755/X888/nebz27durffv2+S1TnTp1UqdOnXJcN3jwYA0ePNhu3zp16uiLL7644RgDBgzQuHHjtHnzZkVFRdkuh2hPrVq1bJdcdERhvN5WrVqlpKQk3XfffVy+DgAAAAAAAABQ8BlIhmFo1apV6tWrl0JDQ+Xt7S1vb2+Fhoaqd+/eWr169Q2DEqA08fX11bhx42QYRoGCoaKSlZWladOmSZLeeOONYq4GAAAAAAAAAFASFChAOn/+vFq3bq1evXpp1apVioqKUnJyspKTkxUVFaWVK1eqR48eatOmjd3LkQGl0ahRoxQUFKQ5c+bo5MmTxV1OrpYvX64DBw6oV69etns5AQAAAAAAAABubw5fwi4tLU0dOnTQvn37ZBiGmjdvrvbt26tatWqSpFOnTmndunXasWOHfvnlF3Xq1Em//fabXF1dC614oKTy8PDQwoULtXHjRp04cUJBQUHFXZJd6enpmjhxooYMGVLcpQAAAAAAAAAASgiHA6QZM2Zo79698vPz0+eff64uXbpka/P666/r+++/V79+/bR3717NnDnTofsY4ca2bdumRx99NF99WrRooVWrVt2kitC2bVu1bdu2uMu4oQEDBhR3CQAAAAAAAACAEsbhS9gtW7ZMFotFH330UY7hkVXnzp310UcfyTAMLVmyxNHhcANpaWk6f/58vh6XL18u7rLzbPDgwTIMQ8ePHy/uUgAAAAAAAAAAKPUshmEYjnQsW7askpKSlJiYKBeX3CcyZWRkyMfHR15eXrdUaAEgb+Lj4+Xv76+4uDj5+fkVdzkAAAAAAAAAgBzk57Nch2cgJScny8vL64bhkSS5uLjIy8tLycnJjg4HAAAAAAAAAACAIuJwgFSxYkXFxcXpxIkTN2x7/PhxxcbGqmLFio4OBwAAAAAAAAAAgCLicIDUunVrGYahUaNGKber4BmGodGjR8tisahNmzaODgcAAAAAAAAAAIAi4nCAZA2FVq9erfvvv1/r169Xenq6bX16errWrVun++67T6tXr5bFYtGoUaMKpWgAAAAAAAAAAADcPBYjt+lDNzB9+nSNGTNGFotF0tV7HQUGBkqSLl68qIyMDNvspHfeeUcvvPBCwSsGUOLk58ZrAAAAAAAAAIDikZ/Pch2egSRJo0aN0tdff63atWvLMAylp6fr7NmzOnv2rNLT02UYhurVq6dvvvmG8AgAAAAAAAAAAOAWUaAZSNfat2+fdu7cqQsXLkiSKlSooGbNmqlhw4aFsXkAJRgzkAAAAAAAAACg5MvPZ7kuhTVow4YNCYsAAAAAAAAAAABKgQJdwg4AAAAAAAAAAAClDwESAAAAAAAAAAAATPJ0Cbv7779fkhQcHKx58+aZluWHxWLR+vXr890PAAAAAAAAAAAARSdPAdLGjRslSXXq1Mm2LD8sFku++wAAAAAAAAAAAKBo5SlAmjhxoiQpMDAw2zIAAAAAAAAAAACULhbDMIziLgLArS0+Pl7+/v6Ki4uTn59fcZcDAAAAAAAAAMhBfj7LdSqimgAAAAAAAAAAAHCLcDhAmjx5st555508t3///fc1efJkR4cDAAAAAAAAAABAEXH4EnZOTk6qVKmSzpw5k6f2oaGhOnHihDIzMx0ZDkAJxiXsAAAAAAAAAKDk4xJ2AAAAAAAAAAAAcFiRBUiXL1+Wh4dHUQ0HAAAAAAAAAAAABxVJgLR8+XIlJCSoevXqRTEcAAAAAAAAAAAACsAlrw3fe+89vffee6Zl0dHRqlGjht0+hmEoNjZW8fHxslgseuihhxyvFAAAAAAAAAAAAEUizwFSbGysjh8/blqWmZmZbZk97dq104QJE/JTGwAAAAAAAAAAAIpBngOk7t27KyQkRNLVmUVDhw6Vv7+/3n33Xbt9nJyc5OfnpwYNGigsLKygtQIAAAAAAAAAAKAIWAzDMBzp6OTkpEqVKunMmTOFXROAW0x8fLz8/f0VFxcnPz+/4i4HAAAAAAAAAJCD/HyWm+cZSNfLyspytCsAAAAAAAAAAABKMKfiLgAAAAAAAAAAAAAli8MB0vbt29WkSRM9++yzN2z7xBNPqEmTJtq5c6ejwwEAAAAAAAAAAKCIOBwgLV68WH/++adatWp1w7bh4eHas2ePFi9e7OhwAAAAAAAAAAAAKCIOB0ibNm2SJD344IM3bPvII49IkjZs2ODocAAAAAAAAAAAACgiDgdIp06dkr+/v8qWLXvDtuXKlZO/v79Onz7t6HAAAAAAAAAAAAAoIg4HSMnJycrKyspze8MwlJCQ4OhwAAAAAAAAAAAAKCIOB0gVKlRQQkKCzpw5c8O2p0+fVnx8vAIDAx0dDgAAAAAAAAAAAEXE4QApPDxckvTRRx/dsK21zT333OPocAAAAAAAAAAAACgiDgdIw4YNk2EYmjZtmmbPnm233axZszRt2jRZLBYNGzbM0eEAAAAAAAAAAABQRCyGYRiOdu7du7dWrFghi8WiBg0aqEuXLgoODpYkRUVF6ZtvvtGBAwdkGIZ69Oih5cuXF1rhAEqO+Ph4+fv7Ky4uTn5+fsVdDgAAAAAAAAAgB/n5LNelIAMtWLBAFotFy5cv1759+7R//37Tems21bdvX82ZM6cgQwEAAAAAAAAAAKCIOHwJO0ny9PTU0qVLtW7dOvXr10/BwcFyd3eXh4eHQkJC1L9/f/38889avHixPD09C6tmAAAAAAAAAAAA3EQFuoQdAEhcwg4AAAAAAAAAbgX5+Sy3QDOQ8iorK0vffPONunfvXhTDAQAAAAAAAAAAoAAKdA+kGzly5IjmzJmjhQsX6vz58zdzKAAAAAAAAAAAABSSQg+QkpKStGzZMs2ZM0fbtm2TJFmvkle3bt3CHg4AAAAAAAAAAACFrNACpO3bt2vOnDlatmyZEhMTJV0NjurUqaNevXqpV69eatCgQWENBwAAAAAAAAAAgJukQAFSdHS0Fi5cqLlz5+rQoUOS/jfbyGKx6Pfff1fTpk0LXiUAAAAAAAAAAACKTL4DJMMw9P3332vu3Ln69ttvlZGRIcMw5Onpqe7du2vQoEHq2LGjJC5ZBwAAAAAAAAAAcCvKc4D03//+V3PnztWCBQt09uxZGYYhi8Wie++9VwMHDlTv3r3l6+t7M2sFAAAAAAAAAABAEchzgFSrVi1ZLBYZhqHQ0FANHDhQAwcOVGho6M2sDwAAAAAAAAAAAEUs35ewe/755zVt2jS5ubndjHoAAAAAAAAAAABQzJzy2tDd3V2GYeiDDz5QlSpV9Oyzz2r79u03szYAAAAAAAAAAAAUgzwHSGfPntX777+vRo0a6fLly5oxY4Zatmyp2rVr64033tCJEyduZp0AAAAAAAAAAAAoIhbDMIz8dtq9e7c+/fRTffHFF4qNjZXFYpHFYlHr1q31+OOPa9iwYbJYLEpISJCXl9fNqBtACRIfHy9/f3/FxcXJz8+vuMsBAAAAAAAAAOQgP5/lOhQgWaWmpmrFihWaM2eONm3aJMMwZLFYbP+uXLlSXbp0kYtLvm+1BOAWQoAEAAAAAAAAACVfkQVI14qMjNTcuXO1YMECnTp16urGLRb5+/urW7du6tWrlx588EHCJKAUIkACAAAAAAAAgJKvWAIkK8MwtHbtWn366af65ptvlJ6eLovFIkkqU6aMLl26VJjDASgBCJAAAAAAAAAAoOTLz2e5ToU9uMViUceOHbVixQqdPn1ab7/9turWrSvDMBQbG1vYwwEAAAAAAAAAAKCQFXqAdK3AwECNHj1a+/fv17Zt2zRs2LCbORwAAAAAAAAAAAAKQZHdkCg8PFzh4eFFNRwAAAAAAAAAAAAcdFNnIAEAAAAAAAAAAODWQ4AEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMXIq7AAC3PsMwJEnx8fHFXAkAAAAAAAAAwB7rZ7jWz3RzQ4AEoMASEhIkSUFBQcVcCQAAAAAAAADgRhISEuTv759rG4uRl5gJAHKRlZWlM2fOyNfXVxaLpbjLybP4+HgFBQXp5MmT8vPzK+5yABQRzn3g9sS5D9yeOPeB2xPnPnB74tzPG8MwlJCQoCpVqsjJKfe7HDEDCUCBOTk5qVq1asVdhsP8/Px4UwFuQ5z7wO2Jcx+4PXHuA7cnzn3g9sS5f2M3mnlklXu8BAAAAAAAAAAAgNsOARIAAAAAAAAAAABMCJAA3Lbc3d01ceJEubu7F3cpAIoQ5z5we+LcB25PnPvA7YlzH7g9ce4XPothGEZxFwEAAAAAAAAAAICSgxlIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgASg1Pnpp5/Uu3dvBQcHy8PDQ56enqpRo4b69++vTZs25do3ISFBERERatiwoXx8fOTv76+7775b//nPf5SWllZEewDAEVu2bFGfPn1UrVo1ubu7q0KFCmrfvr2++OKLG/Y9f/68xowZo9q1a8vT01Nly5ZVq1at9Omnn8owjCKoHsD1kpKStGbNGk2ZMkWPPvqogoODZbFYZLFYFBERkadtFPTc/u9//6unnnpKoaGh8vDwUPny5dWhQwetXLmygHsHwJ6CnPuxsbH66quvNGHCBHXp0kWVK1e29Z0/f36ea+DcB4pWQc7706dP6+OPP1avXr1Us2ZNeXp6ytPTU6GhoXrsscf0888/56kGfh8Ail5Bzv1NmzZp/Pjx6tChg2rVqqWAgAC5urqqQoUKuu+++/T+++8rOTn5hjXwnp8HBgCUEllZWcZTTz1lSLI9PD09DU9PT9OyUaNG5dj/+PHjRkhIiK2dl5eX4e7ubvv6rrvuMi5fvlzEewUgL1566SXTeV6mTBnD1dXV9vUjjzxipKen59h3586dRrly5WxtfXx8DBcXF9vXHTp0MFJTU4t4jwBs2LDBdF5f+5g4ceIN+xf03P7uu+8MLy8vW3s/Pz/DycnJ9vWQIUOMrKysQtxjAIZRsHN/3rx5dvvOmzcvT+Nz7gNFz9Hz/sSJE4bFYjG19/LyyvYZwNChQ42MjAy72+H3AaB4FOQ9/6GHHjK19/b2Nry9vU3LQkNDjcOHD9vdBu/5ecMMJAClxvz58zVr1ixJUs+ePfX3338rKSlJSUlJOnTokLp16yZJmj59ur788ktT34yMDHXt2lXHjx9X5cqV9dNPP+nKlStKSkrSkiVL5Ovrq927d2vAgAFFvl8Acjdr1ixNnTpVktS3b1+dPHlSMTExSkhI0Pz58+Xt7a0vv/xSY8eOzdY3Li5OXbp00aVLl1SnTh39/vvvSkhI0JUrV/Thhx/K1dVVa9eu1QsvvFDEewVAkgICAtSuXTu9+OKL+uKLL1SpUqU89SvouR0ZGanevXsrKSlJLVu21OHDhxUXF6e4uDhNmDBBkjRv3jy99dZbhbWrAK7h6LkvSZUqVVKnTp00fvx4rVq1Kl/jcu4DxceR8z4zM1OGYahdu3ZasGCBTp8+rStXrigxMVEHDhywfQYwd+5cu7MZ+H0AKF6Ovuc/8MADev/99/XHH38oPj5eiYmJSkxM1MWLF/X+++/L09NTkZGReuSRR5SVlZWtP+/5+VDcCRYAFJa2bdsakoyaNWvmONMgLS3NqFGjhiHJ6Nu3r2ndp59+avsLg23btmXru3jxYtv6devW3bR9AJA/6enpRsWKFQ1JRpMmTYzMzMxsbWbMmGFIMlxcXIz//ve/pnWvvvqqbbbisWPHsvV94403DEmGs7Nzrn+5BKDw5fSXwsHBwXn6i8SCntsDBgwwJBmVKlUyYmJisq1/8sknbX+lyOxkoHAV5NzPqa/1//B5mYHEuQ8UD0fP+9jYWGPXrl1212dlZRkdO3a0zSpKTk7O1obfB4DiU5D3/BuZNWuW7f8AW7duzbae9/y8YwYSgFLj7NmzkqTGjRvLxcUl23pXV1fdeeedkqTExETTugULFkiS7rvvPv3jH//I1rdv374KDQ2VJC1cuLAwywZQALt27dL58+clSWPGjJGTU/b/2gwfPlxlypRRRkaGPv/8c9M66/l87Tl+rZEjR8rHx0eZmZlatGjRTdgDAPY4Ozs73Lcg5/aVK1ds1zwfMWKEypQpk63/yy+/LEmKj4/X6tWrHa4TQHYFOfcL0pdzHyg+jp67/v7+atKkid31FotFQ4cOlXT1M4CDBw9ma8PvA0DxKcj79o2Eh4fbnp86dcq0jvf8/CFAAlBq1KhRQ5L0559/KiMjI9v69PR07dmzR5LUrFkz2/KkpCT98ssvkqROnTrluG2LxaKOHTtKkn788cfCLBtAAURFRdme16tXL8c2zs7OuuOOOySZz9/Dhw/rxIkTkuyf+z4+PmrVqlW2vgBKroKe21u3brXdcNde/5CQENWtWzfH/gBuTZz7QOnk4eFhe56ZmWlax+8DQOm1ZcsW2/OwsDDTOt7z84cACUCpMWLECEnS0aNH9dhjj+no0aO2dYcPH1bv3r117NgxhYWFadSoUbZ1Bw8etF0PtUGDBna3b1137tw5Xb58+WbsAoACuP4XwpzW7d+/37bs2ud5Off/+uuvgpYIoAgU9NzOb/8DBw44VCeAkoVzHyidNm7cKElyc3Oz/VGZFb8PAKVLcnKyjhw5ojfeeENjxoyRJLVu3dr0R+QS7/n5RYAEoNTo2rWrpk+fLjc3N61YsUK1atWSl5eXvLy8VKdOHW3cuFEjRozQb7/9Jj8/P1u/M2fO2J5XrVrV7vavXXdtHwDFJyQkxPb82v8EXistLU1HjhyRdPUmuVeuXJGU/3PfemNOACVbQc9ta/+AgAB5enresD//JwBKB859oPSJjIzUzJkzJUl9+vQxfQ4g8fsAUBqcO3dOFotFFotFXl5euuOOOzR+/Hilpqaqa9eu+vLLL7P14T0/fwiQAJQqL7zwglatWqUKFSpIuvrXB9ZpqWlpaUpMTFRcXJypT0JCgu25l5eX3W1fu+7aPgCKT5MmTVSxYkVJ0tSpU3O8fOUHH3yg+Ph429fW55z7QOlU0HPb+jy3vteu5+cCUDpw7gOlS3Jysnr16qWkpCQFBgbqzTffzNaG3weAW5+zs7MqVqyoihUrmi5Z2atXL02bNk1ly5bN1of3/PwhQAJQaiQlJalPnz7q0qWLqlevrh9//FHR0dGKjo7Wjz/+qHr16umzzz5T8+bNtXfv3uIuF0AhcHFx0YQJEyRdvRxlly5d9McffygtLU3nzp3TW2+9pZdfflmurq62Pk5O/PcHAAAAKK0yMjLUr18/7dq1S66urlq0aJGqVKlS3GUBuAnKly+vc+fO6dy5c0pKStLJkyc1fvx4ffPNN2rUqJFmz55d3CXe8vgEBUCp8eKLL2rZsmWqXbu2tmzZovbt2yswMFCBgYFq3769Nm/erDvuuEMXL17Us88+a+vn6+tre56UlGR3+9euu7YPgOL1zDPP6J///Kckae3atWratKnc3d1VuXJljR07ViEhIRo7dqytfUBAgCTOfaC0Kui5bX2eW99r1/NzASgdOPeB0iEzM1P9+/fX6tWr5eLiosWLF+vBBx/MsS2/DwCli8ViUbVq1TRlyhQtWrRI6enpGjFihP78809TO97z84cACUCpkJCQYPurgmeffdY0bdXK09NTzz33nCRp69atunDhgiSZ/hLp9OnTdse4dh1/vQSULG+99Za2bt2qwYMHq379+goKClLz5s01ZcoU7d69W87OzpKk4OBgubm5Scr/ue/n5ycfH5+buBcACkNBz21r/5iYGNtlcHPrz/8JgNKBcx+49WVmZmrAgAFatmyZnJ2d9fnnn6tnz5522/P7AFB6Pfroo6pevbqysrI0Z84c0zre8/OHAAlAqfD333/b7n0SFhZmt12tWrVszyMjIyVJdevWtV3Sav/+/Xb7WtdVqlQpx2uoAiheLVu21Lx587R//36dOHFCO3bs0Pjx4+Xt7a2dO3dKklq0aGFr36BBA9vzvJz79erVu0mVAyhMBT2389u/fv36DtUJoGTh3AdubdaZR0uWLLGFR3369Mm1D78PAKVb1apVJUlHjx41Lec9P38IkACUCtfe0yQqKspuu/Pnz9ueW6egenl5qWXLlpKkH374Icd+hmFo7dq1kmR3+juAkun8+fNat26dJGngwIG25XfccYeqV68uyf65f+XKFW3ZskUS5z5wqyjouX3vvffK09Mz1/5RUVE6ePBgjv0B3Jo494FbV2Zmpvr166elS5fawqO+ffvesB+/DwCll2EYtj8cv/4SdLzn5w8BEoBSoU6dOrYf/p9++qltNtK1MjMzbZe5CwgIUO3atW3rBg0aJEnasGGDduzYka3v8uXLdezYMUnmD6ABlGyZmZl6+umnlZaWpubNm6tDhw62dRaLxXY+L1myRMePH8/W/6OPPlJiYqKcnZ3Vv3//oiobQAEU9Nz29vZWjx49JEkzZsxQXFxctv5Tp06VdPWX0e7duxfuDgAoFpz7wK3JOvNo2bJlcnFx0aJFi/IUHkn8PgDcqnL6zO968+bN07lz5yRJbdu2Na3jPT9/CJAAlAqenp564oknJEl//PGHunbtqn379ikrK0tZWVnau3evOnfurG3btkmSXnjhBds9UaSrAVLDhg1lGIZ69Oih9evXS5KysrK0fPlyDR8+XJLUqVMntWvXroj3DkBujh07pvHjx+uPP/5QSkqKpKvn7i+//KIHH3xQq1evVpkyZTR//nxZLBZT33/+85+qVKmSkpKS9NBDD2nXrl2SpLS0NM2YMUOvvfaaJOnJJ5/UHXfcUbQ7BkAxMTG6ePGi7ZGVlSXp6g1tr12emJho6lfQc3vy5Mny9vbW2bNn1bVrVx05ckTS1b9Cnjx5smbOnClJevXVVxUQEHDT9h+4XTl67ksyrb948aJteWJioml5TjfO5twHio8j5731nkdLly6Vi4uLFi9efMPL1l2P3weA4uXIub9161a1bt1an332mU6dOmXa3pEjRzRu3Dg99dRTkq7e5mLw4MHZxuU9Px8MACglkpKSjI4dOxqSbA93d3fD3d3dtOyxxx4zMjIysvWPjIw0QkJCbO28vLwMDw8P29d33XWXcfny5WLYMwC52b17t+kcDwgIMFxdXW1fV69e3di1a5fd/jt37jTKlStna+/r62vq/+CDDxopKSlFuEcArIKDg03nt73HoEGDsvUt6Ln93XffGV5eXrb2/v7+hrOzs+3rIUOGGFlZWTdx74HbV0HO/bz0k2RMnDgxx7E594Hi4ch5v2nTJttyV1dXo2LFirk+lixZkuPY/D4AFB9Hzv0NGzaY1nl4eBiBgYGGp6enaXnjxo2NyMhIu2Pznp83zEACUGp4enrq+++/1/Lly9WtWzdVq1ZNhmFIkoKCgtSjRw99++23Wrx4sWn2kVVISIj27t2rCRMmqEGDBrJYLHJ1dVXTpk319ttva/v27fzVAVAChYSEaMKECWrdurWqVKmiK1euyM/PTy1bttR//vMfHTx4UE2aNLHbv2nTpjpw4IBGjRqlWrVqKT09Xd7e3rr33nv1ySefaM2aNXJ3dy/CPQJQGAp6bnfu3Fl79+7V8OHDFRISopSUFAUEBKh9+/ZasWKF5s6dm21WI4BbH+c+cOuwzlSQpPT0dJ0/fz7XR3Jyco7b4fcB4NbStGlTffbZZxo2bJgaN24sf39/xcbGysnJSWFhYerVq5eWLFmiXbt2KSQkxO52eM/PG4th/XQVAAAAAAAAAAAAEPdAAgAAAAAAAAAAwHUIkAAAAAAAAAAAAGBCgAQAAAAAAAAAAAATAiQAAAAAAAAAAACYECABAAAAAAAAAADAhAAJAAAAAAAAAAAAJgRIAAAAAAAAAAAAMCFAAgAAAAAAAAAAgAkBEgAAAAAAAAAAAEwIkAAAAAAAAAAAAGBCgAQAAAAAxcRischisWjjxo3FXUqh2rhxo23fcOsqrtdnWlqawsLC5O7urpMnTxZ4e9u3b5fFYlHr1q0LoToAAIDbBwESAAAAADjA+uG6I4/58+cXd/lAifXBBx/o2LFjeuKJJxQUFFTg7YWHh6tDhw7asmWLvvzyy0KoEAAA4PbgUtwFAAAAAMCtqGLFijkuT0xM1JUrV3Jt4+npKUmqXbu2JMnLy+smVFh8vLy8bPsG5Mfly5c1ZcoUubu76+WXXy607UZERGjt2rUaN26cunbtKhcXPg4BAAC4Ef7HBAAAAAAOOHfuXI7LIyIiNGnSpFzbWB06dKjQ6yoJmjdvXmr3DTfX7NmzFRsbq549e6patWqFtt3w8HA1btxYf/75p1avXq2ePXsW2rYBAABKKy5hBwAAAAAAip1hGJo9e7YkacCAAYW+fes2Z82aVejbBgAAKI0IkAAAAACgmFjvibRx40bT8uPHj9vWHT9+XFFRURo+fLiqV68uDw8PhYWF6dVXX7VdKk+S9u/frwEDBigoKEgeHh6qVauWpkyZovT09FxrOH78uF544QXVr19fPj4+8vLyUp06dfR///d/OnHihEP7tXHjRlv915s/f74sFotCQkIkSbt27VLv3r1VuXJlubu7q0aNGho9erRiYmIcGluSduzYof79+ys0NFQeHh7y9vZWcHCw2rRpo9dff12nTp3KsV9aWpo+/vhj3XfffQoMDJSbm5sqVaqkbt26ac2aNXkad8iQIapZs6a8vLzk5+enevXqaejQoVq7dm2OfeLi4jR58mQ1adJEfn5+8vT0VK1atTRixAgdO3bM7ljXvnYSEhL06quvqk6dOvL09FS5cuXUpUsX7dixI9d6Y2Ji9OKLLyosLEweHh6qXLmyevXqpV27dt1wX0+dOqVRo0apfv368vb2lru7u6pUqaKmTZtq1KhR+v3332+4jeutW7dOkZGRKlOmjDp37my33aFDh/Tkk0/qjjvukJeXlzw8PBQUFKTw8HC98sordme/9evXT5K0fv36XI8tAAAA/j8DAAAAAFBoJk6caEgy8vLrlrXdhg0bTMsjIyNt61auXGmUKVPGkGT4+fkZzs7OtnWtWrUy0tLSjG+//dbw8vIyJBn+/v6GxWKxtenTp4/d8T///HPD3d3d1tbd3d3w9PS0fe3r62usXbs238dgw4YNdo/BvHnzDElGcHCwsWjRIsPV1dVWt5OTk61f/fr1jYSEhHyPPX/+fNP+u7u7G35+fravJRnz5s3L1u/48eNG/fr1bW0sFovh7+9v6vf000/nOGZGRobx/PPPm9p6e3sbAQEBtlr8/f2z9du/f79RrVo1Wx8PDw/D19fXVPuKFStyHNPaZvHixUbNmjVt/a2vA0mGm5ub3e9fZGSkERwcbGprPU5ubm7GV199Zff1uWfPHiMgIMC23tnZ2bSvkoxBgwbl9m3K0ejRow1JRocOHey2+fHHH02vWVdXV9v5YX1MnDjRbv+wsDBDkvHxxx/nuz4AAIDbDTOQAAAAAKAEGzZsmJo2baoDBw4oLi5OCQkJev/99+Xs7KwtW7Zo8uTJ6t+/v7p27arjx48rNjZW8fHxGj9+vCRp6dKlWrduXbbt/vTTTxo4cKAyMzM1duxYRUZGKjk5WVeuXNGhQ4fUq1cvJSQkqFevXg7PRMpNdHS0hg4dqkGDBunEiROKjY1VQkKCPvzwQ7m6uurAgQOaNm1avraZlJSkkSNHyjAMDRgwQEePHlVKSori4uKUmJionTt36sUXX1SFChVM/a5cuaKOHTvqwIEDatu2rTZu3Kjk5GTFxsYqNjZW77zzjnx8fDRz5ky999572cZ95ZVX9P7770uShg4dqsOHDysxMVGXL19WTEyMVq9erY4dO5r6JCQkqGvXrjp16pSqVq2q7777TleuXFF8fLz27Nmj8PBwpaamqn///vrzzz/t7vOzzz4rNzc3/fzzz7py5YoSExP122+/qXbt2kpLS9OTTz6prKwsU5/MzEz16tVLUVFRCggI0LJly3TlyhXFxcXpwIEDuueeezRo0CC7Y44ZM0YxMTFq0qSJfv31V6Wnp+vy5ctKSUnR33//rbffflv169e/4ffreps3b5Z09R5a9owYMUKpqal68MEHtW/fPqWlpSkmJkbJycnav3+/Jk2aZJvdlpN77rlHkrRp06Z81wcAAHDbKe4ECwAAAABKk8KegVS/fn0jJSUlW9/HH3/c1qZ9+/ZGVlZWtjatWrUyJBnDhg0zLc/MzDRq1aplSDJmzZplt76HH37YkGT83//93w335Vp5mYGkXGapWGei1KxZM1/j7tixwzb7Jz09Pc/9Jk+ebEgy2rRpY6SlpeXYZtWqVYYkIzAw0LTtw4cP22ZOjR07Ns9jvvnmm7YZNPv27cu2Pj4+3ggJCTEkGQ899FC29dZjWL58eeP8+fPZ1u/du9fWZuvWraZ1S5cuta1bt25dtr5XrlyxzdTJ6fVpnaW2bdu2PO/vjaSmptpm19mbdXX+/HlbTWfOnHFonLfeesuQZFSvXr0g5QIAANwWmIEEAAAAACXYqFGj5O7unm15hw4dbM/HjRuX4/2GrG327t1rWr5582YdOXJEgYGBeuKJJ+yOPXDgQEmye/+egnr11VdzXN6tWzdJ0tGjR5WUlJTn7ZUpU0bS1XsZXbp0Kc/95syZI0kaPXq0XF1dc2zTvXt3+fn56eLFi6Z7BC1YsEBZWVkqV66cJk2alOcxly5dKknq2bOnGjRokG29r6+vxo4dK0las2aN4uLictzOk08+mW1GlSQ1bNhQoaGhkrJ//5csWSJJatmypdq1a5etr5eXl23snFiP89mzZ+22ya8LFy4oMzNTklS+fPkc2/j6+srJyalAYwcGBhaoPwAAwO2EAAkAAAAASjB7l/OqWLGi7fndd9+da5uYmBjT8l9++UWSFBcXpypVqqhSpUo5PoYPHy5JioqKKvB+XK9s2bKqWbNmjuuqVKlie3597bkJCwtTnTp1lJ6ernvuuUdTp07Vnj17bMFETk6fPm3bv2HDhtk9FpUrV1ZiYqIk8/HYtm2bJKl9+/by8PDIU51paWm2UOeBBx6w2659+/aSpKysLP3xxx85trFeki0n1uN4+fJl0/KdO3dKku6//367fXNb16VLF0nSoEGDNGbMGG3atClfQV9OoqOjbc/Lli2bYxtPT09b4NWxY0dNmDBBO3bsUFpaWp7HsW47PT1dsbGxjhcMAABwGyBAAgAAAIASzNfXN8flLi4ueW6Tnp5uWn7mzBnb8vPnz9t9WMOb5OTkAu/H9ezVfG3dOdWeG2dnZy1ZskShoaGKiorSuHHjdNddd8nPz0/t27fXjBkzsgUd1mMhSRcvXsz1eFjvJXTtNs6dOydJCg4OznOdly9ftoVaVatWtduuWrVqtucXLlzIsU1ejuP1x9C6rbyOfb1p06bpvvvuU2Jiot555x21bdtWfn5+atasmSZOnKjTp0/b7WtPSkqK7XlOM+6sPv30UzVu3FjR0dF6/fXXFR4eLl9fX91777166623soVl1/P09MxxTAAAAGRHgAQAAAAAtxlreHHPPffIMIw8PW4VjRs31qFDh7Ry5Uo9+eSTatCggZKTk7Vu3To988wzqlOnjvbt22drf+3spIMHD+bpWAwePNjWJ6dLB5Z2ZcqU0c8//6wtW7Zo7NixatmypVxcXLRr1y5NnjxZtWrV0hdffJGvbZYrV872PLdZZ9WrV9cff/yhH374Qc8//7yaNm2qrKws/fLLLxo7dqxq1qypn3/+2W7/awOma8cEAABAdgRIAAAAAHCbqVSpkqSbc2m6ksDNzU2PPvqoZs2apX379ik6OlozZ85U2bJldfLkSQ0aNMjW1nosJMeOhyPHsmzZsnJ2dpYknTp1ym67a9fldJ8jR1m3ldtMobzMIrr33ns1depUbd26VbGxsfrqq6/UsGFDJScna+jQoTp//nyea7r2vkc3mkXk5OSkDh066L333tPOnTt1+fJlLVq0SNWrV1dMTIz69etn97J21m37+/vbvd8VAAAAriJAAgAAAIDbTMuWLSVdvfya9X44pVm5cuX01FNPaerUqZKk3bt369KlS5KkkJAQ26Xcvvnmm3xvu0WLFpKkn376Kc+XRHNzc1OjRo0kSevXr7fbbt26dZKuBiZNmjTJd232NGvWTJK0YcMGu21ym8WTEw8PDz388MNatWqVpKuXh9u6dWue+wcEBNjCuGPHjuVrbF9fX/Xr109z5syRJJ0/f940y+xakZGRkqS6devmawwAAIDbEQESAAAAANxm7rvvPtWsWVOSNGrUKLuzNaxuNCOkpEhNTc11/bX3v3Fy+t+vw8OHD5ckzZkzR7t37851G9cfi8GDB8vZ2VmXLl3SxIkT81xr3759JUkrVqzQ/v37s61PTEzUtGnTJEmdO3eWv79/nrd9I3369JEkbd26VRs3bsy2Pjk5WW+99VaOfTMyMmz3gsqJvWOcF61bt5Yk/fbbbzmuv9HrNC9j79ixQ5LUpk2bfNUGAABwOyJAAgAAAIDbjIuLi2bOnCkXFxdt3bpVrVu31vr165Wenm5rc+zYMc2cOVN33323Pv7442KsNu+WLFmili1batasWaZZLJmZmVq7dq3GjRsnSfrHP/6hgIAA2/oxY8aoYcOGSklJ0X333acPP/zQNkNJkmJjY7VmzRoNHDhQrVq1Mo1Zs2ZNvfjii5KkadOm6YknntCRI0ds6+Pj47V06VI98sgjpn4jRoxQaGio0tPT1alTJ61Zs8YWzOzbt08dOnRQZGSk3N3dNWXKlEI6Qlf16NHDNqOpR48eWrlype1eUAcPHlSnTp0UHR2dY99Tp06pVq1amjJlinbv3q2MjAzbur1792rAgAGSJG9v73yHNG3btpX0v5Dnetu2bVOjRo00ffp0HTx40Ha8DMPQtm3bNGLECElStWrVbDO8rpWZmaldu3ZJIkACAADIC5fiLgAAAAAAUPTatWun5cuXa+DAgdqxY4ceeOABubq6ys/PT4mJiabZPN27dy++QvPBGiRs27ZNkuTu7i4fHx/FxMTYwoYqVapo7ty5pn4+Pj764Ycf1KNHD23fvl0jR47U888/L39/f2VlZSk+Pt7W1jpz61pTpkxRQkKCPvroI82ZM0dz5syRj4+PXF1dFRsbK8Mwss0g8vX11ddff62OHTvq1KlT6ty5szw8POTm5mYbz93dXZ9//rkaN25cqMfJxcVFy5cvV9u2bXXy5En17NlT7u7u8vDwUFxcnNzc3LR8+XJ169Ytx/7Hjh3Ta6+9ptdee03Ozs7y9/dXYmKibYaQm5ub5s+fr7Jly+arrh49euj//u//dOjQIR05ckS1atXK1mbfvn0aPXq0Ro8ebXu9xsXF2YIsPz8/LV682HaPqWutX79eV65cUYUKFfTAAw/kqzYAAIDbETOQAAAAAOA21b17dx09elQTJ05U8+bN5ePjo9jYWLm7u6tx48Z64okn9OWXX9pm2JR0Dz/8sBYuXKghQ4aocePG8vf3V1xcnHx9fdW8eXO9/vrrOnDggOrUqZOtb5UqVbR161Z98cUXevjhh1W5cmUlJSUpLS1NISEh6tq1q959911t3rw5W19nZ2d9+OGH2rp1q/r376/q1asrPT1dhmGoXr16GjZsmFauXJmtX4MGDXTgwAFFRETozjvvlIuLi1JTUxUWFqann35aBw4cUM+ePW/KsapRo4b27Nmj0aNHKzQ0VIZhyMPDQz179tS2bdv08MMP59ivatWq+vrrrzVq1CiFh4ercuXKSkxMlIuLi+rVq6dnn31W+/fvd6juChUq2GZqLVq0KNv6u+++W8uWLdOIESPUtGlTBQYGKj4+Xh4eHrrzzjs1duxYHTx4MNssMSvrNocMGSJXV9d81wcAAHC7sRiGYRR3EQAAAAAAAJs3b1abNm0UFhamI0eOyGKxFMp2r1y5YgsF//77b9WoUaNQtgsAAFCaMQMJAAAAAACUCK1bt9aDDz6o//73v1q+fHmhbffDDz9UQkKCnnjiCcIjAACAPGIGEgAAAAAAKDH27dunO++8U3Xr1tXevXvl5FSwv31NTExUaGioUlJSdPToUVWsWLGQKgUAACjdXIq7AAAAAAAAAKuGDRtqzpw5On78uM6ePauqVasWaHvHjx/Xs88+q7vuuovwCAAAIB+YgQQAAAAAAAAAAAAT7oEEAAAAAAAAAAAAEwIkAAAAAAAAAAAAmBAgAQAAAAAAAAAAwIQACQAAAAAAAAAAACYESAAAAAAAAAAAADAhQAIAAAAAAAAAAIAJARIAAAAAAAAAAABMCJAAAAAAAAAAAABgQoAEAAAAAAAAAAAAk/8HibnNCsKaxdkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Get the actions from file\n",
+ "actions = nwbfile.get_acquisition(\"task_recording\").actions\n",
+ "action_types = nwbfile.get_lab_meta_data(\"task\").action_types\n",
+ "\n",
+ "# Plot the data\n",
+ "fig = plot_actions(\n",
+ " actions=actions[20:100],\n",
+ " action_types=action_types,\n",
+ " figsize=(18,4),\n",
+ " marker_size=500,\n",
+ ")\n",
+ "plt.title(\"Actions\", fontsize=18)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "68ecfe11-c8f4-4449-a1f9-23a331258fea",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAFVCAYAAAD/gzyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2DklEQVR4nOzdZ3hU1fr38e9O75UOoYqASJPeJKEJgooiIKgUCzY8CKKUAxJQKRZUFEERKR7A0KSqSAsE6ShNRUUhECBASO9tnhd5Zv6ETEIyCYTy+1zXvk6yV7vXnpkcztxnrWWYTCYTIiIiIiIiIiIiIiIiIkVkV9oBiIiIiIiIiIiIiIiIyK1JiSYRERERERERERERERGxiRJNIiIiIiIiIiIiIiIiYhMlmkRERERERERERERERMQmSjSJiIiIiIiIiIiIiIiITZRoEhEREREREREREREREZso0SQiIiIiIiIiIiIiIiI2UaJJREREREREREREREREbKJEk4iIiIiIiIiIiIiIiNhEiSYRERERERERERERERGxiUNpByAiIiIiIiJSVCaTiRUrVrBkyRJ++eUXLl68iL29PeXLl6dixYq0aNGC9u3b06lTJ7y8vCztPv74Y2JjY+nVqxeNGze+LrHdiDFERERERG4WhslkMpV2ECIiIiIiIiKFZU7ibN++3XLPwcEBLy8v4uPjyczMtNyfP38+gwcPtvxevXp1wsPD89wvSTdiDBERERGRm4W2zhMREREREZFbysCBA9m+fTv29va8/vrr/PXXX6SlpXH58mVSUlI4fPgw06dPp1GjRqUdqoiIiIjIbU9b54mIiIiIiMgt4++//2bdunUAvPPOO4wZMyZXuYODAw0bNqRhw4a8+eabpKSklEaYIiIiIiJ3DK1oEhERERERkVvGoUOHLD8/8sgj16zv6uoKQHBwMIZhEB4eDsCQIUMwDCPXdaVjx44RHBxMx44dqVWrFq6urnh5edGkSRPGjx9PVFRUnrGKOobZhg0b6N27N5UrV8bZ2RlfX1/uv/9+Zs+eTXp6er5zCwkJoXv37pQvXx5HR0d8fHyoXbs2Dz/8MLNmzSI1NfWaz0dEREREpLi0oklERERERERuSREREdSrV69QdT08PChfvjyXLl0iOzsbLy8vSxLKmp49e1oSRi4uLri5uRETE8OhQ4c4dOgQCxYsYMuWLdSpU8fmMVJSUhg4cCArVqyw3PPy8iIuLo6wsDDCwsJYtGgR33//Pb6+vrnaPvPMM8yfPz/X2BkZGZw4cYITJ06wbt06evToQfXq1Qv1fEREREREbKUVTSIiIiIiInLLaN68uWVlkPl8psIYNWoUkZGRBAQEAPDJJ58QGRmZ67pShw4dWLBgAeHh4aSkpHD58mVSU1PZvHkzLVq04OzZswwYMKBYYwwdOpQVK1ZQs2ZNFi9eTFxcHHFxcSQnJ7NmzRpq1qzJnj17eOaZZ3K127lzJ/Pnz8fOzo7p06dz+fJlEhISSEpKIioqio0bNzJo0CCcnJwK/2BFRERERGxkmEwmU2kHISIiIiIiIlJYQ4cOZe7cuQAYhkHjxo1p3bo1TZs2pUWLFtSvXz/fbeqqV69OeHg48+fPZ/DgwTaNn5iYyF133cWFCxcICwujXbt2RR4jLCyM+++/n3LlynHgwAFLcupKERER1K1bl6SkJH799VcaN24MwHvvvcfo0aPp2rUrGzdutGkOIiIiIiIlRSuaRERERERE5Jby+eefM2HCBNzd3TGZTPz66698/vnnPPvsszRo0IAKFSowcuRILly4cF3G9/DwoEOHDkDO6iJbzJs3D4Ann3zSapIJoEqVKgQFBQHkSij5+PgAcOnSJbKysmwaX0RERESkpCjRJCIiIiIiIrcUBwcHJk+ezNmzZ/nmm2947rnnaNSokWWruIsXL/LRRx9x7733sm/fPpvHWb9+Pf369aNmzZq4u7tjGIblWrZsGZCz6sgWP//8M5CTcKpQoUK+1+bNmwEs50UBdOrUCRcXF3799Vfat2/PvHnzOHnypM3zFBEREREpDofSDkBERERERETEFt7e3jz11FM89dRTAKSmprJz505mzpzJunXriIqKonfv3vz999+4uLgUut/s7Gyeeuopli5darnn4OCAr6+vJZkVFxdHamoqSUlJNsV+7tw5AOLj44mPj79m/eTkZMvPtWrV4quvvuLFF19k9+7d7N69G4CyZcsSFBTEgAEDePjhh/PdPlBEREREpCRpRZOIiIiIiIjcFlxcXOjcuTNr165l0KBBQM6Kox9//LFI/cybN4+lS5dib2/PW2+9xd9//01aWhrR0dFERkYSGRnJ448/DoCtxx6bt7ybPXs2JpPpmteCBQtytX/yyScJDw9nzpw59OvXj4CAAC5dusSyZcvo1asXHTp0KFQCS0RERESkuJRoEhERERERkdvO0KFDLT//+eefRWr77bffAvDcc88xadIk7rrrLuzscv/P58jIyGLFV6FCBSD3lnhF5efnxwsvvMC3337L6dOnOXHiBGPGjMEwDMLCwggODi5WjCIiIiIihaFEk4iIiIiIiNx2PDw8LD87OztbfjYnjApaiXTmzBkAmjRpYrU8MTGRvXv35tu+MGO0bdsWyDkHqqTUqlWLqVOnMmDAAAA2bdpUYn2LiIiIiORHiSYRERERERG5ZZw8eZK//vrrmvUWLlxo+fm+++6z/Ozl5QVAbGxsvm29vb0BOHz4sNXyt99+m4SEhHzbF2YM84qrY8eOMXv27HzrASQlJZGenm75PS0trcD6rq6uAHlWYYmIiIiIXA/6V6eIiIiIiIjcMn777Tfq1atHjx49WLRoEadOnbKUZWRk8OuvvzJkyBBmzJgBQIsWLWjXrp2lzr333gvAihUriImJsTpGt27dAJg7dy5ffvmlJckTGRnJiBEjeO+99/D39883xsKM0aFDB4YMGQLAK6+8wogRI/j3338t5WlpaezZs4c333yTatWqcfHiRUvZsGHD6Nu3LytXrsx1PzExkTlz5rBo0SIAevTokW+MIiIiIiIlxTDZenKpiIiIiIiIyA22ceNGSyLIzMnJCQ8PD2JiYnJtV3ffffexbt06KlWqZLm3Y8cOAgMDMZlM2NvbU65cOZycnAAsSavY2Fhat27N8ePHgZyVQV5eXsTFxWEymXjhhRdITU1l4cKFDBo0iAULFuSKpzBjAKSnp/PKK6/w1VdfWe55eHjg6OhIXFwc2dnZlvsRERFUrlwZgMGDB+daseXh4YGDg0OuFVTt2rXjxx9/xN3dvbCPVkRERETEJko0iYiIiIiIyC3lxIkTfP/99+zcuZNjx44RERFBUlISrq6uVKpUiSZNmvDYY4/Rp08fq9vH/fDDD8yYMYNff/2VmJgYS0Lnyv95HBMTw+TJk1m9ejVnz57F29ubBg0aMHToUJ544glLssdaoqmwY5jt3r2bL7/8krCwMM6dO0dmZib+/v7UrVuX+++/n8cff5wGDRpY6v/zzz98//33bNu2jT/++IPIyEgSExPx8/OjUaNG9O/fn4EDB2Jvb1/cRy0iIiIick1KNImIiIiIiIiIiIiIiIhNdEaTiIiIiIiIiIiIiIiI2ESJJhEREREREREREREREbGJEk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmziUdgAicufIzs7m3LlzeHp6YhhGaYcjIiIiIiIiIiIiIlaYTCYSEhKoVKkSdnYFr1lSoklEbphz584REBBQ2mGIiIiIiIiIiIiISCGcOXOGKlWqFFhHiSYRuWE8PT2BnD9OXl5epRyNiIiIiIiIiIiIiFgTHx9PQECA5TvdgijRJCI3jHm7PC8vLyWaRERERERERERERG5yhTkCpeCN9URERERERERERERERETyoUSTiBSZYRgYhkFoaGhphyIiIiIiIiIiIiIipUhb50mJWb16NYcOHaJx48b06tWrtMMREREREREREREREZHrTCuapMSsXr2aSZMmsXr16tIORUREREREREREREREbgAlmkRERERERERERERERMQmSjSJiIiIiIiIiIiIiIiITZRokgKFhITQvXt3ypcvj6OjIz4+PtSuXZuHH36YWbNmkZqaSmhoKIZhsHDhQgAWLlyIYRi5rtDQ0Dx9r1q1ip49e1K+fHmcnJwoX748PXv25Lvvvss3nsGDB2MYBoMHD8ZkMjFnzhxatGiBl5cXXl5etGvXjiVLlpToM4iIiGDEiBHUr18fd3d3nJ2dqVSpEk2bNmXEiBHs37/farvU1FQ+/vhj2rRpg6+vLy4uLlSrVo2BAwdy6NChfMcr6JmZBQYGYhgGwcHBBbZPSEhg/Pjx1K1bF1dXV/z9/enZsyd79+4tcM4xMTG88cYb1KpVCxcXFypWrEifPn04ePBgge1ERERERERERERE5M7iUNoByM3rmWeeYf78+ZbfPTw8yMjI4MSJE5w4cYJ169bRo0cPS5IoLi6O1NRUXFxc8Pb2ztWXk5OT5ef09HQGDhxISEgIAHZ2dnh7exMVFcWGDRvYsGED/fv3Z+HChTg6OuYbX//+/QkJCbG0j42N5eeff+bnn39m8+bNzJs3D8MwivUMDh8+TFBQEDExMQDY29vj5eVFZGQk58+f55dffiEmJoYFCxbkanf27Fm6devGsWPHAHB0dMTNzY3Tp0/zzTffsHjxYj7++GNeffXVYsVXkPPnz3Pfffdx4sQJXFxcsLOzIzo6mg0bNrBp0ybWrVtH165d87Q7deoUgYGBhIeHAzmvXXJyMitWrGDt2rUsX778usUsIiIiIiIiIiIiIrcWrWgSq3bu3Mn8+fOxs7Nj+vTpXL58mYSEBJKSkoiKimLjxo0MGjQIJycn2rRpQ2RkJP369QOgX79+REZG5rratGlj6XvcuHGEhIRgGAYTJkzg8uXLREdHExUVxbhx4wBYunQpEyZMyDe+1atXs2zZMt5++21iYmKIjo7mwoULDBs2DID58+fz6aefFvs5vP7668TExHDfffexe/duMjIyiI6OJjU1lb/++osPPviA+vXr52qTlZVF7969OXbsGN7e3vzvf/8jMTGR2NhY/vnnH3r27El2djbDhw/nhx9+KHaM+XnllVdwcnJi69atJCUlkZiYyL59+6hTpw7p6ekMHTqU7OzsPLH36dOH8PBwfH19WbZsGUlJScTFxfHbb7/RsmVLBg0adN1iFhEREREREREREZFbixJNYtWuXbsA6Ny5M2+++SZ+fn6WMn9/f7p27cqCBQuoVKlSkfo9e/Ysn3zyCQBjxoxh8uTJ+Pj4AODr68u7777LyJEjAZgxYwbnz5+32k9cXBzjx49n/PjxeHl5AVC2bFk+/fRTnnrqKQAmTZpEampqkeK7mvk5fPbZZ7Rq1cqyQsrJyYnatWvz+uuv88Ybb+Rqs2LFCsvWdMuWLePJJ5+0rOiqWbMm3333HS1btsRkMvHmm28WK76CODg4sG3bNoKCgrCzs8MwDJo3b25ZkRQeHs7u3btztVm5ciUHDhwAYPny5fTp0wcHh5yFj/fccw8//vgj/v7+hY4hLS2N+Pj4XJeIiIiIiIiIiIiI3D6UaBKrzMmfS5cukZWVVWL9rly5kszMTFxcXBgzZozVOuPHj8fZ2ZmMjAxWrFhhtY6rqyujRo2yWvbWW28BEB0dzaZNm4oVr/k55Jfwssa8JWDr1q2tbk3n4ODAxIkTATh27BhHjx4tVoz5GTp0KOXKlctzv0GDBtSoUQOAI0eO5Cr79ttvAWjbti2dOnXK09bNza1IybGpU6fi7e1tuQICAooyBRERERERERERERG5ySnRJFZ16tQJFxcXfv31V9q3b8+8efM4efJksfs1r5Zp3ry5ZSXS1Xx9fWnWrFmu+ldr1qxZvu1r165NlSpVCmxfWD179gRg0KBBvP7662zfvp3k5OQC25jH7Ny5c751goKCsLe3L5EY89OyZct8y8wr0aKjo3PdN8fSsWPHfNsWVHa1sWPHEhcXZ7nOnDlT6LYiIiIiIiIiIiIicvNTokmsqlWrFl999RUeHh7s3r2b5557jpo1a1KuXDn69evHmjVrMJlMRe734sWLAFSuXLnAeuZEkbn+1a7V3lyeX/vCeu+99wgKCiIxMZEZM2YQGBiIl5cXzZo1Y+LEiZw9ezZPm8LM0cXFhTJlypRIjPnx9PTMt8y8HV5GRkau+4WJ3fzaFIazszNeXl65LhERERERERERERG5fSjRJPl68sknCQ8PZ86cOfTr14+AgAAuXbrEsmXL6NWrFx06dLjtz9zx8fFh69athIWF8eabb9K2bVscHBw4ePAgkydPpnbt2ixdurS0wxQRERERERERERERKRVKNEmB/Pz8eOGFF/j22285ffo0J06cYMyYMRiGQVhYGMHBwUXqz3xmUERERIH1zOXWzhgCrK4kslaeX/uiateuHdOnT2fnzp3ExsayZs0aGjRoQEpKCs888wwXLlyw1C3MHFNTU7l8+bLVGM1b6qWmpubbPi4uzua5FMQcS0HP91rPXkRERERERERERETuHEo0SZHUqlWLqVOnMmDAAAA2bdpkKbOzy3k7FbSl3pVnL+WXLImNjc11lpM1Bw4cIDEx0WrZiRMnLEke83glycXFhYcffphVq1YBOQmhnTt3WsrNY27ZsiXfPkJDQ8nMzATyztHX1xcg3/OMEhIS+OOPP2yfQAHMsW/bti3fOlu3br0uY4uIiIiIiIiIiIjIrUeJJrEqLS2twHJXV1fg/5JLgOX8ndjY2Hzb9e7dGwcHB1JTU5k+fbrVOlOmTCEtLQ1HR0d69+5ttU5KSgoffPCB1bJ33nkHyFmN1aVLlwLnUZDMzEyys7PzLTc/A8j9HJ544gkAdu/ezU8//WS138mTJwNw7733cu+99+Yqb9SoEQArV660Ou4HH3xwzdfHVv369QNg586dhIaG5ilPSUnh/fffvy5ji4iIiIiIiIiIiMitR4kmsWrYsGH07duXlStXcvHiRcv9xMRE5syZw6JFiwDo0aOHpcycMAkLC+P48eNW+61cuTLDhw8HYNq0aUycONGSmIqNjWXChAmWRMbIkSOpWLGi1X68vb15++23mTp1KgkJCQBERUUxfPhwFi5cCMCECRNwcXGx9REQERFB7dq1eeedd/j1118tK5AAjhw5wlNPPQWAu7s7HTp0sJT17t2bli1bAtC3b1+WLFlCRkYGACdPnqR3797s3r0bgPfeey/PuP379wdg48aNTJw40XIOVlRUFOPGjeOdd97Bx8fH5nkVpHfv3tx3332Wn1euXElWVhYAf/zxB927d+fSpUvXZWwRERERERERERERufUYpoL2OZM71uDBgy0JGwAPDw8cHBxyrVZq164dP/74I+7u7gDExMRQp04dSyKiTJkylrJvv/2WVq1aAZCens7TTz/NsmXLgJzVQN7e3sTFxVlWEPXv35+FCxfi6OhoNa5BgwaRmppKSEgI9vb2eHl5ERsba9m2b+DAgcyfPz/XSqOiOnXqFDVq1LD8bm9vj7e3N4mJiaSnpwPg5OTE4sWLefzxx3O1PXv2LA888AC//fabpZ6bm5vl+dnZ2fHRRx/xn//8J8+4WVlZdOnSxbJ9nWEY+Pj4WNq+9957rF+/nu3btzNx4sQ852QZhgHkbH8XGBhodW6BgYH5tv/3338JDAy0bN3n7OyMi4sLcXFxODk5sXz5ch555JFrjmFNfHy85bU2r4ATERERERERERERkZtLUb7L1YomsWrChAnMnDmTRx99lLp16+Lg4EBiYiLlypWjS5cufP3114SGhloSSZBzttCOHTt44oknqFy5MnFxcYSHhxMeHk5qaqqlnpOTEyEhIaxYsYLu3bvj7+9PQkIC/v7+dO/enVWrVrFkyZI8SaarLV26lM8//5wmTZqQmZmJu7s7rVu3ZtGiRSxcuLBYSSbIWX21du1aRowYQatWrahYsSKJiYk4ODhwzz338Morr3Ds2LE8SSZz2wMHDjBjxgxatWqFq6srycnJBAQE8PTTT3Pw4EGrSSbISWht2LCBSZMmUbduXZycnDAMg65du7Jp0yZGjRpVrHldS82aNTl06BAjR46kRo0amEwmXFxcePzxx9m1axcPP/zwdR1fRERERERERERERG4dWtEkt5QrVzQtWLCgtMORItKKJhEREREREREREZGbn1Y0iYiIiIiIiIiIiIiIyHXnUNoBiIiUtupjNlh+PjWtRylGIiJSMsx/1/Q3TcR2+hyJ3Dz0eZSbWfUxG/TeFLmDXfmdUn70N0LuBFrRJCIiIiIiIiIiIiIiIjbRiia57e3atYvHHnusSG3atGnDqlWrrlNEIiIiIiIiIiIiIiK3ByWa5JayYMECFixYUKQ26enpXLhwoUhtoqOji1RfREREREREREREROROpK3z5LYXGBiIyWQq0hUaGlraYd/UAgMDMQyD4ODg0g5FREREREREREREREqREk0iIiIiIiIiIiIiIiJiEyWaRERERERERERERERExCZKNImIiIiIiIiIiIiIiIhNlGgSERERERERERERERERmyjRJHeswMBADMMgODiYjIwMPvzwQ5o1a4aPjw+GYRAaGmqpe+zYMYYOHUrt2rVxc3PDw8ODhg0b8t///peoqKg8fb/66qsYhsHjjz+epywjIwNPT08Mw6Bs2bKYTKY8dR544AEMw2DChAm57p88eZLp06fTrVs37r77btzd3fHw8OCee+7htdde4/Tp0yUy36ysLD799FPuu+8+3N3d8fPzIzAwkBUrVhTiyYqIiIiIiIiIiIjIncKhtAMQKW2pqakEBgaya9cuHBwcLEkgs/fee4+xY8eSnZ0NgJubGxkZGRw9epSjR48yf/58NmzYQJMmTSxtgoKC+OyzzwgNDcVkMuXqb9++fSQmJgIQFRXF0aNHadiwoaU8IyODnTt3AtCxY8dcsQ4ZMoTt27cD4OTkhKenJzExMfzxxx/88ccfLFiwgPXr19OuXTub55uWlsYjjzzCxo0bAbCzs8PJyYkdO3awfft2Ro8eXbQHLCIiIiIiIiIiIiK3La1okjverFmzOHLkCPPnzyc+Pp7o6GguXbpEw4YNmTdvHqNHj8bNzY13332X8+fPk5SURHJyMgcOHKBjx46cP3+ehx9+2JI8gv9bPXT58mUOHz6ca7xt27YB4OXlBcDWrVtzle/du5fk5GScnZ1p3bp1rrLGjRsza9Ys/vrrL1JSUoiKiiItLY29e/fSrVs34uLi6NevHykpKTbNF2Ds2LFs3LgRwzB45513iImJISYmhsjISF566SWmT5/OoUOHbH7eIiIiIiIiIiIiInL7UKJJ7niJiYksWbKEwYMH4+rqCoC/vz+Ojo6MGjUKgBUrVjBu3DgqVKgAgL29PU2bNmXjxo00bdqUiIgIvvrqK0uffn5+NGrUCMibSDL//tprrxVY3rp1a1xcXHKVffzxx7z88svUrl0bO7ucj6+DgwMtWrRg/fr1NGzYkHPnzrFy5coiz9fPz49z587x6aefAjB+/Hj++9//WhJi5cqV4/PPP6d///7ExcVd87lCzuqo+Pj4XJeIiIiIiIiIiIiI3D6UaJI7Xv369XnooYfy3F+5ciWxsbE0adKEBx54wGpbBwcH+vfvD2DZas4sKCgIyJ1ISktLY/fu3bi7uzNy5EjLlnRZWVmWOuYVT+b2hWVvb0+3bt0ALFvvWZPffCEnoZaZmYmrq6slyXa14ODgQsc0depUvL29LVdAQECh24qIiIiIiIiIiIjIzU+JJrnjtW3b1ur9n3/+GYA//viDChUq5HtNnjwZgPDw8FztzecrhYWFWRJJu3btIjU1lXbt2uHt7U3Lli2Ji4vj4MGDQM75Sbt37wbyTzSFhYUxePBg6tati4eHB4ZhWK733nsPgIiIiCLPF+DAgQMANGvWzLKS6Wp33303lStXzrePK40dO5a4uDjLdebMmUK1ExEREREREREREZFbg0NpByBS2sqVK2f1/rlz54Cc5E9qauo1+0lOTs71+/3334+9vT3x8fHs37+fVq1aWVYrmZNQHTt2JCwsjK1bt9KiRQt27dpFWloarq6utGzZMs8Yo0ePtiSTIGcVk6+vL05OTkDOtnhJSUkkJSUVeb4AFy9eBLhmIqlKlSqcPXu2wDoAzs7OODs7X7OeiIiIiIiIiIiIiNyatKJJ7nj29vZW75tXIfXr1w+TyXTN69SpU7nae3l50bRpU+D/ts8z/+eViSZr5W3btrUkj8w2bdpkSTK9/PLLHD16lLS0NKKjo4mMjCQyMpIRI0YAYDKZijxfEREREREREREREZGiUqJJJB8VKlQA8m6JVxRXntOUlJTEvn378PHx4b777gOgVatWuLq68vPPP5Oenp4nEXWlb7/9FoAHHniAWbNmce+99+ZJGkVGRtocK/zfaqdrrVYqzGomEREREREREREREbn9KdEkkg/zWUYHDx7k/PnzNvVhTjTt2rWLLVu2kJGRQYcOHbCzy/noOTk50bZtW5KTk9m8eTP79+/P1e5K5vONmjRpYnUsk8lkSVTZqlmzZkDOWU2JiYlW6/z9998FngElIiIiIiIiIiIiIncOJZpE8tGnTx98fHzIyMhg5MiRBW5Hl52dTWxsbJ777dq1w9HRkZSUFKZMmQLkXa1kTipNnjyZzMxMPDw8LAmfK3l7ewNw+PBhqzHMmTOHf//9t1Bzy0/v3r2xt7cnJSWFDz74wGqdyZMnF2sMEREREREREREREbl9KNEkkg8fHx8+/vhjIGfbuh49erB3716ys7OBnOTSH3/8wYcffkj9+vVZv359nj7c3d1p0aIFAHv37gXyJprMv5vL27dvj4ODQ56+unXrBsAPP/zA22+/TVJSEgCxsbFMmTKFV199FX9//2LNuXLlyrzyyisAvP3220ydOpWEhAQALl26xLBhw/jf//5nSXqJiIiIiIiIiIiIyJ1NiSaRAgwaNIjZs2fj5OTEDz/8QKtWrXBzc6NMmTK4uLhwzz33MGrUKI4fP45hGFb7uDKxVK5cOe69995c5c2aNcPT09Pyu7Vt8wAGDhxI+/btAXjrrbfw9PTEz88Pf39//vvf/9KtWzdeeuml4k6Z6dOn07lzZ7Kzsxk3bhy+vr74+flRvnx5Zs2axejRo2ncuHGxxxERERERERERERGRW58STSLX8OKLL/Lnn38yatQoGjVqhLOzM7GxsZYt7l599VU2bdpE//79rba/MnFkLYnk4OBgSSDlVwfA0dGRn376iYkTJ3L33Xfj6OiIyWSiRYsWzJ49m7Vr12Jvb1/M2YKLiws//PADn3zyCY0bN8bJyQmTyUT79u1ZtmwZ06ZNK/YYIiIiIiIiIiIiInJ7MEwFHTwjIlKC4uPj8fb2Ji4uDi8vr9IOx6L6mA2Wn09N61GKkYiIlAzz3zX9TROxnT5HIjcPfR7lZlZ9zAa9N0XuYFd+p5Qf/Y2QW1VRvsvViiYRERERERERERERERGxiRJNIiIiIiIiIiIiIiIiYhNtnSciN8zNunWeiNxYV28toG0ERERERERERERuLto6T0RERERERERERERERK47h5LoJDs7m4MHDxIeHk5ycjIDBw4siW5FRERERERERERERETkJlbsFU2ffvopFStWpFWrVvTr148hQ4bkKo+JieHee++lbt26XLhwobjDiYiIiIiIiIiIiIiIyE2iWImmV155hddee41Lly7h6emJYRh56vj6+nLffffx999/s3z58uIMJyIiIiIiIiIiIiIiIjcRmxNNP/74I7Nnz8bDw4PvvvuO2NhYypYta7XugAEDMJlMbN682eZARW4lq1evJjg4mNWrV5d2KCXm1KlTBAcHExwcXNqhiIiIiIiIiIiIiMhNwuZE05w5czAMg8mTJ/PII48UWLd169YAHD161NbhRG4pq1evZtKkSbddomnSpElMmjSptEMRERERERERERERkZuEzYmmvXv3AvDMM89cs663tzdeXl5ERkbaOpyIiIiIiIiIiIiIiIjcZGxONEVHR+Pt7Y2np2fhBrKzIzs729bhRERERERERERERERE5CZjc6LJy8uL+Ph4MjIyrlk3OjqauLg4ypQpY+twIsUSGhpKnz59qFy5Ms7OzpQpU4ZOnToxf/58srKy8tQPDg7GMAwCAwMBWLZsGR06dMDPzw93d3eaNm3KZ599lqdtaGgohmGwcOFCABYuXIhhGLmu0NDQYs8nMjKSN954g/r16+Pu7o67uzv169fnzTff5MKFC/k+A3MMBbEWZ/Xq1QkKCspTx3wNHjy42HMSERERERERERERkVuPg60NGzRowPbt29m7dy/t2rUrsO7SpUsxmUw0a9bM1uFEbDZy5Eg++ugjICdB4u3tTWxsLFu3bmXr1q3873//Y/Xq1fmuzhs9ejTvvfcehmHg4+NDamoqv/zyC7/88gvr169nzZo1ODs7A+Dk5ET58uWJi4sjNTUVFxcXvL29c/Xn5ORUrPls376dXr16ERsbC4C7uzsAv//+O7///jtfffUVa9euvebnsijKli1LfHw8MTExAJQvXz5X+dVzFBEREREREREREZE7g80rmh5//HFMJhPBwcEFbol3+PBhxo8fj2EY9O/f39bhRGzy2WefWZJMQ4cO5dy5c8TExBAXF8dHH32Eg4MDW7du5fnnn7fa/tChQ7z33nsMGzaMCxcuEB0dTUxMDG+//TaGYbBx40bGjh1rqd+mTRsiIyPp168fAP369SMyMjLX1aZNG5vnc+bMGUuS6Z577mHnzp0kJiaSmJjIjh07qFOnDjExMTzyyCOcPXvW5nGutn//flatWmX5/eo5ffLJJyU2loiIiIiIiIiIiIjcOmxOND3//PPcc889bNu2jS5durB+/XrLNmJ///03mzZt4j//+Q9t2rQhLi6OVq1a0adPnxILXORaUlJSmDhxIgD9+/fniy++oEKFCkDOKqDXXnuNGTNmABASEsLBgwfz9BEXF8fTTz/Np59+StmyZYGcbSPHjx/Pf//7XwA+/fRTzp07dyOmxJQpU4iNjcXX15ctW7bQtm1bS1n79u3ZvHkzXl5eREdHM3Xq1BsSU0HS0tKIj4/PdYmIiIiIiIiIiIjI7cPmRJOjoyMbNmzg7rvvZtu2bTzyyCNcvnwZgLp169KtWzdmzZpFSkoKDRo0YOXKldc8G0akJG3atIno6Ggg58wla15++WUqVqwIwJIlS6zWeeutt6zef+ONN3B1dSUzM5OVK1cWP+BrMJlMLFu2DIAXX3zRkjS7UpUqVXjxxRcB+Pbbb697TNcydepUvL29LVdAQEBphyQiIiIiIiIiIiIiJcjmRBNAtWrVOHjwIJMmTaJq1aqYTKZcV6VKlQgODmbXrl1WvxQXuZ4OHDgAQEBAAHfffbfVOvb29nTs2DFX/SsFBARw1113WW3r5eVF06ZN821b0k6ePGlJnHXu3Dnfel26dAHg8uXLnDx58rrHVZCxY8cSFxdnuc6cOVOq8YiIiIiIiIiIiIhIyXIobgdubm5MmDCBCRMmcO7cOc6dO0dWVhYVKlSgWrVqJRGjiE0uXrwIQOXKlQusV6VKlVz1r3SttuZya21L2pVjFBSXeT7mNjVq1LiucRXE2dkZZ2fnUhtfRERERERERERERK6vYiearlSpUiUqVapUkl2KiIiIiIiIiIiIiIjITapYW+eJ3MzKlSsHQERERIH1zOXm+lc6e/ZsgW3N5dbalrQrxyhoTleWXdnGweH/8sqpqalW28bFxRUnRBERERERERERERG5wxQ70WQymVi5ciV9+vShRo0auLu74+7uTo0aNejTpw8rV64kOzu7JGIVKZJmzZoBOYmXv/76y2qdrKwstm3bBkDz5s3zlJ85c4Z//vnHatuEhAQOHjyYaywzO7ucj5bJZLIteCtq1KiBn58fAFu2bMm33ubNmwHw9/fPtW2er6+v5ef8zkrau3dvvv2a5wQlOy8RERERERERERERuXUVK9F0+vRpWrduTd++fVm1ahXh4eGkpKSQkpJCeHg4q1atom/fvrRq1Yrw8PCSilmkULp06YK/vz8AwcHBVut88cUXnDt3DoD+/ftbrfP2229bvf/hhx+SkpKCg4MDvXv3zlXm5eUFQGxsrA2RW2cYBv369QNy4o6MjMxT59y5c3zxxRdA3vncfffduLq6ArBy5co8bbOzs5k6dWq+45vnBCU7LxERERERERERERG5ddmcaIqLi6NDhw7s378fk8lE69atGT9+PLNnz2b27NmMHz+eNm3aYDKZOHDgAEFBQdqWS24oV1dXS4Jp6dKlvPjii1y4cAGA5ORkZs6cyWuvvQZAv379aNq0aZ4+vL29WbhwIcOHDycqKgrIWck0ZcoUJk+eDMArr7yS52yye++9F4CwsDCOHz9eYnMaN24cPj4+REdH07lzZ3bt2mUp+/nnn+ncuTOxsbH4+fkxZsyYXG0dHR0tCbEpU6awbNky0tPTAfjzzz959NFHOXLkSL5j33333Tg5OQHw1VdfaVWTiIiIiIiIiIiIiGCYbPy2+M033+SDDz7Az8+PkJAQOnXqZLXetm3b6NOnDzExMYwaNYrp06cXK2CRoho5ciQfffQRkLMqyMfHh4SEBDIzMwEICgpizZo1eHp6WtoEBwczadIkOnToQMuWLXnvvfcsbePj48nKygKgc+fOrFu3DhcXl1xjxsTEUKdOHS5dugRAmTJlcHd3B+Dbb7+lVatWNs9n+/btPPLII5bErbnfpKQkAHx8fFi7di3t27fP0zYiIoKWLVtaVnE5Ojri6upKfHw8np6erFu3jsDAQCDns2v+2ey5555j3rx5ALi5uVGmTBkMw+Dxxx/ngw8+uGbs8fHxeHt7ExcXl2uFlIjcWaqP2ZDr91PTepRSJCIiIiIiIiIiYk1Rvsu1eUXTd999h2EYzJkzJ98kE+R8iT9nzhzLWU4iN9qMGTPYunUrvXv3pnz58iQmJuLp6UlQUBBff/01mzZtypVkutr06dP59ttvadeuHSaTCScnJxo3bswnn3zCjz/+mCfJBDnnIe3YsYMnnniCypUrExcXR3h4OOHh4aSmphZrPh06dOCPP/7g9ddfp169emRnZ2MymahXrx6jRo3ijz/+sJpkAqhSpQp79+7lueeeo3LlygB4eHgwcOBAfvnlFzp06FDg2LNmzSI4OJgGDRoAOdtnhoeHW1Z7iYiIiIiIiIiIiMidxeYVTeazXpKSkrCzKzhflZWVhYeHBwApKSm2DCdyQ125oik0NLS0w7ltaEWTiIBWNImIiIiIiIiI3OyK8l2ug62D+Pr6kpKScs0kE4C9vT0uLi6W5JSIiIiIiIiIiIiIiIjc+mzeOq9NmzbEx8fz119/XbPuX3/9RVxcHO3atbN1OBEREREREREREREREbnJ2JxoGjNmDI6Ojrz88sukpaXlWy89PZ2XX34ZR0dHxowZY+twIiIlrvqYDXm28BKR6+/UtB65LilZ+rsmUnz6HImUPvO/1fV5lJuV3p8ior8BIv/H5kRTs2bNWLZsGQcPHqRx48bMnz+fU6dOkZGRQUZGBqdOnWL+/Pk0adKEX375hRUrVnDfffeVZOwit6SQkBAqVKhQpGv48OGlHbaIiIiIiIiIiIiISB42n9Fkb29v+Tk+Pp7nnnuuwPq9evWyet8wDDIzM20NQ+S6CA4OJjg4+Lr0nZKSwoULF4rUJi4u7rrEIiIiIiIiIiIiIiJSHDYnmkwmU0nGIXLHGDx4MIMHDy7tMEREREREREREREREis3mRNO2bdtKMg4RuYWcOnWKGjVqAHDy5EmqV69eugGJiIiIiIiIiIiISKmwOdHUoUOHkoxDREREREREREREREREbjF2pR2AiIiIiIiIiIiIiIiI3JpsTjQ988wz7N27tyRjERERERERERERERERkVuIzYmmBQsW0KZNGxo1asTnn39OfHx8ScYlIiIiIiIiIiIiIiIiNzmbE01t27bFZDJx9OhRXn31VSpVqsSzzz57061yiomJYd68efTt25cGDRrg5+eHi4sL1apVY8CAAezZs8dqu+DgYAzDIDAwEIAtW7bQo0cPypYti4uLC/Xq1WPSpEmkpqZabT948GAMw2Dw4MEArFixgsDAQPz8/HBzc6Nx48Z88sknZGdnFxh/aGgoffr0oXLlyjg7O1OmTBk6derE/PnzycrKKtTY1ixYsADDMKhevfp1i/3MmTO8+eabNG7cGG9vb1xdXalVqxaPPPIIixYtyvfZ/fzzzzz11FNUq1YNFxcXvL29adGiBdOnTycxMbHAMQvr1KlTGIaBYRicOnWKf/75h6FDh1KjRg2cnZ3zPJfs7GwWL17Mgw8+SPny5XFycqJs2bJ07dqVpUuXYjKZctXPysrCx8cHwzBYv359nvGXLl1qGX/UqFF5ys+fP28p/+eff3LFsWXLFv7zn//QqlUrqlSpgpOTE/7+/nTo0IE5c+aQkZFRInM+e/YsL7zwAgEBATg7O1OlShWGDBnCiRMnCvmURUREREREREREROR2Z3OiKSwsjD/++IMRI0bg7+9PcnJyrlVOs2fPvilWOX3yySc899xzLF++nD/++MNy//Tp0yxdupQ2bdowc+bMAvt4//336dKlCz/88AOZmZmkp6dz/PhxgoODefDBB/NN+JgNGzaMPn36EBYWhslkIiUlhcOHD/Paa68xZMiQfNuNHDmSoKAgVqxYwfnz53FzcyM2NpatW7fyzDPP0LVrVxISEor2QIrI1ti/+eYb7r77bt5//30OHz5Mamoq7u7unD59mrVr1zJo0CCOHz+eq012djbDhw+nXbt2LF68mNOnT+Po6EhSUhL79+9nzJgxNGvWjPDw8BKd465du2jcuDFz587l4sWLODo65iqPjo4mKCiIp556ih9++IGLFy/i5uZGVFQUmzZtYsCAAfTq1Yv09HRLG3t7e+6//34Atm7dmmfMK+8VVF61alVq1apluX/69Gk6d+7Mp59+yt69e4mLi8PNzY3o6Gh27NjBSy+9RKdOnUhJSSnWnH/55RcaNGjAl19+SUREBPb29sTFxbFgwQKaNm3Kvn37CuxfRERERERERERERO4MNieaAOrUqcOHH35IREQES5Yssaz+OXr0KMOGDbspVjlVqlSJiRMncuDAAZKTk4mOjiYlJYV///2X4cOHAzkJnV9//dVq+8OHDzNmzBjGjBnDxYsXiYmJITY2lrfeeguAbdu2sXDhwnzHX7t2LXPnzmXGjBnExMQQExNDVFQUzz33HACLFi2ymmj47LPP+OijjwAYOnQo586dIyYmhri4OD766CMcHBzYunUrzz//fLGeT0FsjX3Dhg0MGjSI1NRU2rZtS1hYGCkpKURFRZGUlERYWBjPP/88Tk5OudpNnDiRmTNnUq5cOWbNmsXly5dJSEggJSWFbdu20aRJE/78808ee+yxa66mKooXXniB+vXrs3//fpKSkkhMTOSnn34CclYmPfbYY+zYsYPGjRuzbt06kpKSiI2NJTExkYULF1KuXDnWrl3L6NGjc/UbFBQEWE8kbdu2DQAvLy8OHz5MdHS01XJzH2YODg48+eSTrF271vJ8YmNjSUhIYP78+VSqVImwsDD++9//2jznhIQEHn30UWJiYqhatSo//fQTSUlJJCQksGvXLgICAnjhhRcK+3hFRERERERERERE5HZmKmEnTpwwjR492lShQgWTYRgmwzBMdnZ2poYNG5o+//xzU1xcXEkPWSyvvPKKCTA9++yzue5PnDjRBJgA08SJE622feyxx0yAqXPnznnKBg0aZGk/f/58q+2bNm1qAkzPPfdcrvvJyckmPz8/E2Dq37+/1bYzZ8609H/gwAGrYw8aNMj6pE0m0/z5802AqVq1aiUae0ZGhqlGjRomwNSuXTtTWlpavjFc6eTJkyZ7e3uTq6ur6dChQ1brxMfHm6pUqWICTN99912h+i1oPPMcq1WrZkpISLBab9GiRSbAVLduXVNsbKzVOgcOHDAZhmFycnIyXbhwwXL/0KFDJsBkGIYpKirKcj88PNwEmGrVqmUaMGCACTCtXLkyV5/mZ7hgwYIizWv//v0mwOTu7m5KSUmxac7Tp083ASYnJyfT77//nqf8/PnzJl9fX0tfJ0+ezDee1NRUU1xcnOU6c+aMCbhp/g5UG73eVG30+tIOQ0SkROnvmkjx6XMkUvrM/1bX51FuVnp/ioj+BsjtLi4urtDf5RZrRZM1tWrVYtq0aZw5c4aVK1fSsmVLTCYTx44ds6xyGjp0aK5t7EpTjx49ANi5c6fVcmdnZ6tn6AA88sgjABw5ciTf/gMCAhg0aJDVsocffthq+02bNllWuAQHB1tt+/LLL1OxYkUAlixZku/4xWFL7Nu2bePkyZMAfPTRR3lWLeVnwYIFZGVl0a1bNxo1amS1jqenJ7169QJg48aNheq3MIYNG4aHh4fVsnnz5gHw0ksv4e3tbbVO06ZNqV+/Punp6ZaVSAANGzbE398fk8mU6775544dO9KxY0cg96qn8PBwyzO8ekXTtTRr1oxy5cqRlJTEoUOH8q1X0Jy//fZbAPr06UO9evXylFeoUIEXX3yxUPFMnToVb29vyxUQEFCodiIiIiIiIiIiIiJyayjxRJNZWFgYy5Yt49ChQxiGgclkAiA5OZl58+bRsGFDXnvttRLdAi0///77L6NGjaJp06b4+Phgb2+PYRgYhsGDDz4IQEREhNW29evXz/cL+UqVKgHk2fbsSs2bN8cwjCK1P3DgAJCT6Ln77ruttrW3t7ckKcz1S5otse/atQvISUY0a9as0GP9/PPPAPz0009UqFAh32v+/PkAJXpOU9u2ba3ez8rKYs+ePUBOwq+guP788888cRmGYdlO0tqZTB07drS6vZ7555o1a1K1atU8caWnpzNnzhy6du1KpUqVcHZ2tryfDcPg4sWLQP7v6YLmnJ6eztGjRy3x5aegsiuNHTuWuLg4y3XmzJlCtRMRERERERERERGRW4NDSXZ26dIl5s+fz1dffcU///xjSS41bdqUl156iccff5xNmzbx6aefsmPHDj799FPKli17zfNkiuO7776jf//+pKWlWe55eXnh4uKCYRikp6cTExNDUlKS1faenp759u3gkPP4MjMz861TmPYZGRm57psTBZUrV863LUCVKlVy1S9ptsQeGRkJQLVq1Yo01rlz5wBISkrK97W4UnJycpH6L0i5cuWs3o+Ojra8b2JiYgrV19VxBQUFsXLlylyJpCtXNJUrV45q1arxxx9/EBkZSYUKFfI9nwlyXuvOnTtbkkEALi4ulClTBnt7eyDnc5idnV3gcyxozub3c0HvP/N771qcnZ1xdnYuVF0RERERERERERERufWUyIqmTZs20adPHwICAhg7diwnTpzA1dWVZ599lv3797N//36eeeYZvLy86N27N6GhocyZMweTycSCBQtKIgSrLl++zODBg0lLS6Njx46EhoaSnJxMXFwcFy5cIDIykuXLl1+38e9E+a2AupasrCwARo8ejclkuuYVGhpaYjGbEzT5xQTwww8/FCquq7c6NK/8+fPPPzl37hwnTpzgzJkz1K9f35LsuXr7vIISTSNGjODo0aP4+/vz9ddfc/78eVJSUrh06RKRkZFERkZaVpuZE71FmbOIiIiIiIiIiIiISFHYvKIpMjKSr7/+mnnz5nHq1CnLl9r33HMPL774IgMHDsTLyyvf9kOHDmXMmDElugXa1b7//nvi4+Px9fVl3bp1uLm5WZ3HzcacgCho67Mry69enWJebZSamppv27i4uOKEmK8KFSoARd/azrz93PV8PxSVv78/Dg4OZGZm2hxXvXr1qFChApGRkWzdutWy4unKreeCgoKYP38+W7dupVmzZpbX9ert6TIyMli1ahUAn332GU888USe8bKysoiKirIpVgA/Pz/s7e3Jysri7Nmz+dYrqExERERERERERERE7hw2r2iqWrUqEyZM4OTJkzg6OtK/f3+2b9/OsWPHGDZsWIFJJjMvL69cq0ZKmvk8mDp16lhNMgFs3rz5uo1vK/PZRhEREfz1119W62RlZVlWvjRv3jxXma+vL0CB5+Hs3bu3JELNo02bNkBOAq8oZ0eZzwzavHlzgQmyG8nR0ZEWLVoAsG7dOpv7ufKcpiu3zTO7ckWTubxOnTpUrFgxVz+XLl2yPJsmTZpYHWvnzp3Fen5OTk40bNgQ+L+VVdZcuRWgiIiIiIiIiIiIiNy5bE40ZWZmUr16daZNm0ZERASLFy+mffv2ReojJCTkun5h7e3tDcBff/1l9cv3Q4cOsWTJkus2vq26dOmCv78/QJ6t2My++OILy7lG/fv3z1XWqFEjAPbv32812fTHH39YVsaUtKCgIGrWrAnkbPOWnp5eqHbPPPMMDg4OREVFMXHixALrpqenk5iYWOxYC2Po0KFAzuq477//vsC60dHRVu9fmUgKDQ3Fzs7OknyCnLOQateuzcmTJ5k/fz5gfds8Ly8vy9aEhw8fzlOemZlZIued9evXD4Dly5fz559/5im/ePEic+bMKfY4IiIiIiIiIiIiInLrsznR9MMPP/DPP//w5ptvUqZMGZv6aNmyJR06dLA1hGvq2rUrdnZ2REdH8+STT1q2+0pPT2fZsmV07doVT0/P6za+rVxdXS0JpqVLl/Liiy9y4cIFAJKTk5k5cyavvfYakJMUaNq0aa72Dz30EB4eHmRkZNC3b19LsiAjI4M1a9bQuXNn3N3dr0vs9vb2fPbZZxiGwc6dO+nUqRM7d+4kOzsbyHn2oaGhPPXUU/z++++WdrVq1WLChAkAvPfeewwcOJBjx45ZyjMzMzl06BCTJ0/mrrvu4tChQ9cl/qs99dRTdO7cGZPJxKOPPso777xjSfABJCUlsW3bNl555RVLgu1q5qRReHg4kZGRNGnSBB8fn1x1zMko80oza4kmDw8Py8qvkSNHsnXrVstzPXbsGA8++CAHDhwo9mv70ksvUaVKFdLS0ujWrRtbtmyxbI25d+9eOnfubBlXRERERERERERERO5sNiea6tWrV6RzWs6dO8fp06dtHc4mtWvX5o033gBg1apVVKlSBR8fHzw8POjXrx8eHh7MnDnzhsZUWMOGDWPEiBFAzuqlihUr4ufnh7e3N8OHDycjI4OgoCDmzp2bp623tzcff/wxhmGwZ88e6tati5eXFx4eHvTq1YuqVasyefLk6xZ79+7dWbBgAc7OzuzcuZP27dvj5uZGmTJlcHd3JygoiMWLF+dZ7TRhwgQmTJiAYRh88803NGjQwNLOxcWFJk2aMHHiRM6cOWNZ2XO92dvbs3LlSnr27El6ejoTJkygcuXKeHt74+vri6enJx07duTzzz8nKSnJah933XUXAQEBlt+vPnsJ8iaWrlzxdKWPP/4Yd3d3zp49S6dOnXBzc8PLy4sGDRqwbds25s6da3Pi18zLy4vvvvsOHx8fTp06RefOnfHw8MDT05NWrVpx6tQpvvjii2KNISIiIiIiIiIiIiK3B5sTTdWrV7ecX1MYbdu2zXfFx/U0bdo0Fi1aRIsWLXB1dSUjI4O77rqLcePG8euvv1KpUqUbHlNhzZgxg61bt9K7d2/Kly9PYmIinp6eBAUF8fXXX7Np06Z8V2Q9++yzbNiwgY4dO+Ll5UVmZiZ3330306ZNY/v27ddtRZPZwIEDOX78OK+99hr33HMPDg4OpKSkUK1aNXr16sU333xDvXr1crUxDIPJkydz5MgRXn75ZerVq4e9vT1xcXH4+vrSpk0b3njjDXbt2mVZ2XMjeHl5sW7dOr7//nv69etH1apVSUtLIzk5mcqVK9O1a1emTp1qdZs5sysTSfklmszJs/r161OuXDmr/TRt2pR9+/bRt29fypQpQ3Z2Np6envTt25ddu3bx9NNPF3O2OZo1a8aRI0d47rnnqFy5MpmZmXh7ezNo0CB++eWXIn32RUREREREREREROT2ZZjMe2IVkZ2dHRUqVMi1jVhBatSowenTp8nKyrJlOBG5DcTHx+Pt7U1cXBxeXl6lHQ7Vx2wA4NS0HqUciYhIyak+ZoP+rokUkz5HIqXP/G910L/X5eak/z0pIvo3o9zuivJdrs0rmooqNTUVBweHGzWciIiIiIiIiIiIiIiIXGc3JPNz7tw5Ll26lO92YCIitrjy/+VoC/2/Tm5NxX3dpfTdSZ+90ni/3knPV26cO+1vrz5HUlh32mfjRtLn8PZ1u3xu9B4VKZzb5TNvjf4OiPyfQieaduzYQWhoaK57iYmJTJ48Od82JpOJ2NhYvv/+e0wmEy1btrQ5UBEREREREREREREREbm5FDrRtG3bNiZNmoRhGJZ7SUlJTJo06ZptTSYTLi4ujB071rYoRaw4c+YMzZs3L1KbgIAA9u/ff50iEhERERERERERERG5sxQ60VS9enU6dOhg+X379u04OjrSunXrfNvY2dnh5eXFvffey6BBg7jrrruKF63IFbKysrhw4UKR2ri4uFynaERERERERERERERE7jx2ha04aNAgtm3bZrkA/Pz8ct27+tqyZQvfffcdb7/99m2VZKpevTqGYbBgwYIbOm5WVhYzZsygSZMmuLu7YxgGhmGwevXqGxrHjRAcHIxhGAQGBuZbp3r16phMJqvXxIkTAejQoUOu+6dOnboxE7hJBAYGYhgGwcHBpR2KiIiIiIiIiIiIiNyGCr2i6Wrz58/H1dW1JGO5LZi/0B88eDDVq1cv0b5fe+01PvvsMwCcnJwoX748oFU6IiIiIiIiIiIiIiJSOmxONA0aNKgk47il1KpVCxcXF7y9vfOUmc+sCgwMLNFEU0JCAl988QUA7733HqNGjcp1XtbtpkyZMtSpU4eqVauWdigiIiIiIiIiIiIiIpIPmxNNd7ItW7bc8DGPHz9ORkYGAC+99NJtnWQCGDZsGMOGDSvtMEREREREREREREREpACFPqNJSldycrLlZw8Pj1KMREREREREREREREREJMctkWhq0KABhmFYzie60u7duzEMA8MwePzxx/OUZ2Rk4OnpiWEYuVYi7dmzh9GjR9O+fXuqVauGi4sLPj4+tGrViunTp5OYmJhvPNWrV8cwDBYsWGC5N3jw4FyrjIKCgixxGYZh8zZ6CxYswDAMAgMDLfeu7PfK+2arVq2iZ8+elC9f3nKWU8+ePfnuu+/yHccc/+DBgzGZTHz11Ve0a9cOf3//PHO1RUhICN27d6d8+fI4Ojri4+ND7dq1efjhh5k1axapqam56gcHB+c7P7MffviBLl264OPjg4eHB40aNeK9996zrPy6llOnTvHaa69Rv359PDw8cHNzo27dugwfPpzTp08XZ7q5XPl+SUhIYOzYsdSpUwdXV1fKlClDr1692Lt3b4F9ZGVl8fXXX9OxY0fKlCmDs7MzlStXpk+fPoSGhtoc28KFC3F0dMQwDP773//mKd+wYQO9e/emcuXKODs74+vry/3338/s2bNJT0+3eVwRERERERERERERuT3cElvnBQUFcezYMbZu3ZpnO7WtW7dafg4NDcVkMuVK+Ozbt4/ExEScnZ1p27at5X7r1q0tP7u5ueHm5kZMTAx79+5l7969LFq0iG3btlGuXLlCxejt7U358uW5cOECAL6+vjg5OVnKy5YtW7RJ/3+urq6UL1+e9PR0YmJiAChfvryl3M/Pz/Jzeno6AwcOJCQkBAA7Ozu8vb2Jiopiw4YNbNiwgf79+1uSC9aYTCb69OnDypUrLe3t7IqXj3zmmWeYP3++5XcPDw8yMjI4ceIEJ06cYN26dfTo0aNIybjg4GDLeVgAPj4+/P7774wePZoNGzbkeq2tWbx4Mc8++yxpaWkAODs7Y2dnx59//smff/7J/PnzWbFiBV27di3aZAsQExND8+bN+fPPP3FycsLFxYXLly+zZs0a1q1bx9y5c3nmmWfytIuLi6NXr16WhJK9vT2enp6cP3+eFStWsGLFCkaNGsX7779fpHimTZvG2LFjsbOz47PPPuOVV16xlKWkpDBw4EBWrFhhuefl5UVcXBxhYWGEhYWxaNEivv/+e3x9fW17ICIiIiIiIiIiIiJyy7slVjQFBQUBsH37drKzs3OVbdu2Dcj5Evzy5cscPnzYanmrVq1wcXGx3H/ooYcICQnh/PnzJCUlER0dTXJyMqtWraJOnTr8/vvvvPjii4WO8ZNPPiEyMtLy+6pVq4iMjLRc+/fvL9qk/79+/foRGRnJqlWrLPeu7PfK++PGjSMkJATDMJgwYQKXL18mOjqaqKgoxo0bB8DSpUuZMGFCvuOtWrWKNWvW8MEHHxATE0N0dDRxcXE88MADNsW/c+dO5s+fj52dHdOnT+fy5cskJCSQlJREVFQUGzduZNCgQbmScteydu1aS5KpT58+nD59mpiYGOLj45k1axZ79uxh9uzZ+bbftGkTAwcOJCsrizfffJOTJ0+SkpJCUlISx48fp0+fPiQkJFj6LimTJk3i4sWLLFu2jKSkJOLi4vj999/p0KED2dnZvPDCC/zyyy952j377LOEhobi5OTEzJkziY+PJyYmhnPnzlkSUx988AFz5swpVBwmk4nhw4czduxYnJ2dCQkJyZVkAhg6dCgrVqygZs2aLF68mLi4OOLi4khOTmbNmjXUrFmTPXv2WE2MiYiIiIiIiIiIiMid45ZINAUGBmJnZ0d0dDSHDh2y3E9LS2PXrl24ubkxdOhQIPcKpyt/NyerzNauXUvfvn2pUKGC5Z6rqyuPPvooW7ZswdnZmdWrV5doouF6Onv2LJ988gkAY8aMYfLkyfj4+AA5q6veffddRo4cCcCMGTM4f/681X4SExOZMWMGr7/+Ol5eXkDOCqSKFSvaFNeuXbsA6Ny5M2+++WauFVj+/v507dqVBQsWUKlSpUL3OXbsWAA6dOjAt99+S0BAAJDz+r388svMnDmT2NhYq22zs7N55ZVXyM7OZtasWUyfPt2ytZ1hGNSpU4dly5bx8MMPEx8fz4wZM2yatzVxcXEsX76cPn364OCQs5iwXr16/PDDD9SuXZvMzMw8ScC9e/eycuVKAD799FNeffVV3NzcAKhQoQLz5s2jd+/eAEyYMCHPFoRXS09P54knnmDmzJl4e3vz448/5tlyMiwsjP/973+UK1eO0NBQBgwYYHkvuLi48PDDD7N9+3bc3d1ZvXp1rs/k1dLS0oiPj891iYiIiIiIiIiIiMjt45ZINPn6+tKoUSMgdyJpz549pKSk0LZtW7p165anPC0tjd27dwN5E00FqVy5Mo0aNcJkMlkSJTe7lStXkpmZiYuLC2PGjLFaZ/z48Tg7O5ORkZFrS7Qr+fr68sILL5RYXOZk16VLl8jKyip2f0eOHOH3338HcuZjbVu/559/nsqVK1ttv2PHDv7++2/KlCnDc889l+84AwcOBGDjxo3Fjtmsbdu2dOrUKc99V1dX3njjDQB+/PFH4uLiLGXmbRCrVKmSb7xvv/02AFFRUWzatCnf8ePj4+nWrRvLli2jYsWK7Nixw+oZWPPmzQPgySeftCTxrlalShXLZ6qgZzR16lS8vb0tV379iYiIiIiIiIiIiMit6ZZINAF07NgRyJ1IMv/csWNH2rRpg7OzM2FhYZaExq5du0hNTcXV1ZVWrVrl6i87O5slS5bw8MMPU7VqVVxdXS2rWgzDYN++fQBERETciOkV24EDBwBo3ry5ZfXJ1Xx9fWnWrFmu+ldr3rx5kbaxu5ZOnTrh4uLCr7/+Svv27Zk3bx4nT560uT9z3A4ODrRv395qHTs7O6sJFICff/4ZyFldVKlSJSpUqGD1ev755wEIDw+3Odarmd/DBZVlZ2fn2j7PPN+goKB8z8qqV6+eJbGW3+t6/vx5OnTowLZt27j77rvZtWsXDRs2tFrX/IzmzZuX7/OpUKECmzdvBgp+RmPHjrVsuxcXF8eZM2fyrSsiIiIiIiIiIiIitx6HkujkyJEjbNy4kfDwcFJSUiwrIgAyMjK4dOkShmHYvP0a5HzR/uGHHxIWFkZmZiYODg6W85c6duxoSSZt376d/fv306pVK0t5mzZtciVPkpOT6dmzp6UcwMnJCT8/PxwdHQGIjo4mIyODpKQkm2O+kS5evAiQ70oesypVquSqf7Vy5cqVaFy1atXiq6++4sUXX2T37t2WFWZly5YlKCiIAQMG8PDDD2MYRqH6M8ddpkwZnJ2d861nnufVzp07B+S8Ly9cuHDN8VJSUgoVV2EU9NpcWXbla1OU1/Xs2bP5vq5ffvklkLP13ebNmwtcWWR+RoXd6i45OTnfMmdn5wJfJxERERERERERERG5tRVrRVNcXBy9e/emSZMmjBkzhs8//5wFCxbkqpORkUGjRo0ICAjgt99+s3ms+++/HwcHBxITE9m3bx/Jycns3bsXb29vmjZtCuRd9ZTf+Uzvvvsu27Ztw9XVlY8++ojw8HBSU1O5fPkykZGRREZG0rJlSwBMJpPNMd+K7O3tS7zPJ598kvDwcObMmUO/fv0ICAjg0qVLLFu2jF69etGhQ4cbdnaPebVby5YtMZlMhbpuBz179sTb25vU1FSGDBlSYHLI/Ixmz55dqOdz9WdeRERERERERERERO4cNieaMjIy6N69O6tXr8bNzY0ePXrg4uKSp56bmxtDhgwhOzs733OBCsPT09OSUNq6dSs7d+4kPT2d+++/35IcMSeUtm7dSlJSkmX7u6u3LPv2228BeOutt3jttdeoWrVqnhU1kZGRNsdaGswrka611Z+5vKRXLl2Ln58fL7zwAt9++y2nT5/mxIkTjBkzBsMwCAsLIzg4uFD9mOOOiooiPT0933pnz561er9ChQpAyW6JV1j5xXR12ZWvTUm9rk2bNmXz5s34+vqyZcsWevToke9qvdJ8RiIiIiIiIiIiIiJya7E50TRv3jz27NlDzZo1+fPPP1m7di3e3t5W6/bu3RuAHTt22DockDuRdOW2eWYtW7bEzc2NXbt2sWXLFjIyMvDw8KB58+a5+jGfE9OkSROr45w6dYoTJ07YFKM5YXWjV8JcefZSXFyc1TqxsbG5znIqTbVq1WLq1KkMGDAAgE2bNhWqnXmemZmZhIWFWa2TnZ1NaGio1bK2bdsCOYnE/M4zul6u3KoxvzI7O7tc70vzfLdt20Z2drbVtsePH7ckqgp6XZs1a8aWLVvw8/MjNDSU7t27k5iYmKee+RmtX7/+GjMSERERERERERERkTudzYmmpUuXYhgGH330EZUqVSqwbpMmTbCzs+P48eO2Dgf8X1Jp9+7d/PDDD7nuQc45S23btiUlJYUpU6YA0K5dOxwcch9FZU6IHT582Oo4Y8aMsTlGLy8vICepcyP17t0bBwcHUlNTmT59utU6U6ZMIS0tDUdHR0vy73pLS0srsNzV1RXISbAURsOGDalXrx6QswWiteTL119/ne8KoKCgIO666y4ARowYUeCqKMg5q6uk7Ny502oCLDU1lQ8//BCABx54AB8fH0vZE088AeSsePrqq6+s9vvWW28BOedWde7cucAYmjRpwtatWylTpgxhYWF069aNhISEXHWGDh0KwLFjx5g9e3aB/SUlJV3zGYqIiIiIiIiIiIjI7cvmRNPRo0cxDIOuXbtes66TkxPe3t5cvnzZ1uGAnJUWTk5OpKamcvjwYcqWLUuDBg1y1TEnnvbu3QvkPZ8JoFu3bgC88847rFq1iszMTABOnjzJgAEDWLZsGb6+vjbFeO+99wKwePHiAs/BKWmVK1dm+PDhAEybNo2JEydakl2xsbFMmDCB999/H4CRI0dSsWLFGxLXsGHD6Nu3LytXruTixYuW+4mJicyZM4dFixYB0KNHj0L3+e677wI5q3wGDBhgSSqlpqYyZ84chg0blitZcyUHBwfmzJmDg4MDO3fu5P7777esfjP7999/mTNnDs2bN+fzzz8v6pTz5e3tTe/evVmxYoXlPXf8+HF69OjB8ePHsbe3Z/LkybnatGjRwpIUfPXVV/nss88s76vIyEief/55li9fDsDbb79tdfvKqzVq1IitW7dStmxZfv75Zx544IFcZ2R16NCBIUOGAPDKK68wYsQI/v33X0t5Wloae/bs4c0336RatWq5XlcRERERERERERERubPYnGhKTk7G09MTJyenQtXPyMjIs7KoqNzc3GjZsqXl98DAwDxnK12dWLKWaHrnnXcoX748CQkJ9O7dG1dXV3x8fKhZsyZLly7l3XffpWHDhjbF+OKLLwKwcuVKfHx8qFKlCtWrV6ddu3Y29VcUU6ZMoW/fvphMJiZPnoy/vz9+fn74+/vzzjvvANC/f3/efvvt6x6LWUZGBsuXL+fxxx+nfPnyeHp64uvri6enJy+99BLp6em0a9eO//73v4Xu89FHH7XUDwkJISAgAD8/P0ufLVq04KWXXsq3fadOnVi+fDmenp7s3buXzp074+7uTpkyZXBxcaFWrVq89NJLHDhwIM/7qzgmTpxI2bJl6dOnDx4eHvj4+FCvXj22bt2KYRjMnj3bslXelebNm0eHDh1IT0/n1VdfxdvbGz8/PypVqmRZ5TRq1CjLe68wGjRoQGhoKOXLl2f37t106dIl1yq8OXPm8Nxzz2Eymfj444+pVasWnp6e+Pn54ebmRuvWrXn//fe5fPlyiT4jEREREREREREREbm12JxoKlOmDPHx8VbPeLnayZMnSUxMvOYWe4VxZeLoym3zzJo1a2bZvs7Ly4v77rsvT51q1apx4MABnn32WUtMLi4u9OzZk40bNzJ27Fib43vqqaf45ptvaNeuHW5ubpw/f57w8PB8t3IrSU5OToSEhLBixQq6d++Ov78/CQkJ+Pv70717d1atWsWSJUtwdHS87rGYTZgwgZkzZ/Loo49St25dHBwcSExMpFy5cnTp0oWvv/6a0NBQ3N3di9TvO++8w/r16+nYsSNeXl6kpaVRr149pk2bxpYtW66ZAO3VqxcnTpxg4sSJtGjRAg8PD2JjY3F2dqZRo0Y899xzfPfdd7zxxhvFmX4uvr6+7Nu3jzFjxlC1alXS0tLw8/PjoYce4ueff+b555+32s7b25stW7Ywb948AgMD8fT0JDExkQoVKtC7d2+2bdtmWa1WFPfccw+hoaFUrFiRffv20blzZ2JiYoCc99LcuXPZtWsXgwcPplatWmRlZVleu8DAQN566y2OHDlC5cqVi/VcREREREREREREROTWZZhMJpMtDXv37s3q1atZsmQJ/fr1A6BixYpcvHiRrKysXHVHjhzJxx9/zJAhQ5g3b17xoxa5hVSvXp3w8HDmz5/P4MGDSzucUhUfH4+3tzdxcXGWhHBxVB+zoVjtT00r/JaNcvMo7usupe9O+uyVxvv1Tnq+cuPcaX979TmSwrrTPhs3kj6Ht6/b5XOj96hI4dwun3lr9HdAbndF+S7X5hVNzzzzDCaTiQkTJnDu3Ll8633xxRd88sknGIbB0KFDbR1OREREREREREREREREbjI2H5rUo0cPevfuzcqVK2nWrBkDBgwgJSUFgC+//JLw8HDWr1/PsWPHMJlMPP/887nOVxIREREREREREREREZFbm81b5wGkpqby/PPPs3jxYgzDyFNu7vqZZ55hzpw5ODjYnNcSuWVp67z/U9Jb54mIiIiIiIiIiIhIySvKd7nFyvy4uLjwzTff8MILL/DVV1+xa9cuzp07R1ZWFhUqVKBt27YMHTqU+++/vzjD3DYee+wxdu3aVaQ2q1atok2bNtcposK7lWMvCc2bN+fMmTNFarN//34CAgKuU0QiIiIiIiIiIiIiIqWvRJYYtWvXjnbt2pVEV7e16OhoLly4UKQ26enp1ymaormVYy8Jly5dKvL8s7KyADh16tR1iEhEREREREREREREpPQVa+s8EZGi0NZ5IiIiIiIiIiIiIje/onyXa2frIHZ2dlSuXLnQ9WvUqKEzmkRERERERERERERERG4jNieaAIq6GEqLp0RERERERERERERERG4fxUo0FUV6ejp2djdsOBEREREREREREREREbnObkjmJzY2losXL+Lr63sjhhMREREREREREREREZEboNCHJh05coRDhw7lupeSksKiRYvybWMymYiNjWXFihVkZ2fTpEkTmwMVERERERERERERERGRm0uhE03fffcdkydPznUvPj6eIUOGXLOtyWTCMAxGjhxZ9AhFrgOTycSCBQv48ssvOXbsGHZ2dtStW5dnn32W559/niFDhrBw4UIGDRrEggUL8rRftWoVX3/9Nfv37ycmJgZfX1+aN2/Os88+y6OPPlri8f700098/fXX7N69m4sXL+Lq6kqVKlXo0KEDAwYMoHXr1pa6wcHBTJo0iQ4dOhAaGmq1v9DQUIKCgizPwpqEhARmzZrFmjVr+PPPP0lKSqJcuXK0bduW4cOH5xpTRERERERERERERO5MhU40+fj4ULVqVcvv4eHh2NnZUaVKlXzb2NnZ4eXlxb333svQoUNp37598aIVKQFZWVk8+eSThISEAGAYBj4+Phw4cIB9+/YRGhqKk5OT1bbp6ekMHDjQ0tbOzg5vb2+ioqLYsGEDGzZsoH///ixcuBBHR8dix5qcnMzgwYNZvny55Z6npyfZ2dkcPXqUo0ePEhYWlme1YXEdOnSIhx56iIiICADs7e1xc3MjIiKCkJAQli1bxrvvvsvYsWNLdFwRERERERERERERubUU+oym4cOHc/LkScsFULZs2Vz3rr7++ecffv31V7755hslmeSm8f7771sSRSNHjuTSpUtER0cTExPDlClT+Pbbb1m7dq3VtuPGjSMkJATDMJgwYQKXL18mOjqaqKgoxo0bB8DSpUuZMGFCicQ6ZMgQli9fjp2dHaNHj+bMmTPEx8cTGxvLpUuXWLx4cYmvLDp//jwPPPAAERERPPbYYxw4cICUlBTi4+O5cOECEyZMwN7ennHjxrF69eoSHVtEREREREREREREbi2FXtF0tYkTJ+Lh4VGSsYhcd0lJSUydOhWAZ599lg8//NBS5uXlxdixY0lLS2PSpEl52p49e5ZPPvkEgDFjxuTaStLX15d3332X1NRUZsyYwYwZMxg+fDgVK1a0OdYtW7awbNkyAD777DNeeumlXOVlypRhwIABDBgwwOYxrBk/fjwXL15kwIABLF68OFdZuXLlmDx5Mr6+vowcOZLg4GB69eqVb19paWmkpaVZfo+Pjy/RWEVERERERERERESkdBV6RdPVJk6cyOuvv16SsYhcdz/99JMl2fHf//7Xap3XX38dNze3PPdXrlxJZmYmLi4ujBkzxmrb8ePH4+zsTEZGBitWrChWrF9//TUA9957b54k0/WSmprKkiVLABg9enS+9QYOHAjA4cOHuXDhQr71pk6dire3t+UKCAgo2YBFREREREREREREpFTZnGgSuRX98ssvAFStWpUaNWpYrePp6UnTpk3z3D9w4AAAzZs3x8vLy2pbX19fmjVrlqu+rXbt2gVAz549i9VPURw8eJDU1FQAunbtSoUKFaxe9evXt7QJDw/Pt7+xY8cSFxdnuc6cOXPd5yAiIiIiIiIiIiIiN47NW+ddadeuXezcuZOIiAiSkpIwmUxW6xmGwbx580piSBGbXLp0CYBKlSoVWK9y5cp57l28eDHfsitVqVIlV31bRUZGAlCtWrVi9VMU586ds/xc0EqlKyUnJ+db5uzsjLOzc7HjEhEREREREREREZGbU7ESTX///TcDBgywrBIxM5lMGIZh9Z4STXIzuPr9eTMqjRizsrIsP6ekpODi4nLDYxARERERERERERGRW4fNW+ddvnyZjh07cvDgQcqVK0efPn0wmUy4uLjw1FNP0alTJzw8PDCZTPj7+zNo0CDLuS4ipaVs2bJA7pU71pw9ezbPvXLlygEQERFRYFtzubm+rSpUqAAUvDWdNQ4OOflj8xZ41sTFxRU4pi3jioiIiIiIiIiIiMidx+ZE08cff8zZs2dp2bIl//zzD99++y0A3t7eLFq0iJ9++olz587xxhtvEBUVhaurK/Pnzy+xwEVscd999wE5SZRTp05ZrZOYmMjBgwfz3L/y7KX8EjWxsbG5znIqjjZt2gCwbt26IrXz9fUFKPA8pL1791q937x5c5ycnGwaV0RERERERERERETuPDYnmjZs2IBhGEyZMgU3Nzerddzd3Zk+fTrDhw/niy++YPny5TYHKlISunbtipeXFwBTpkyxWuejjz6yeu5Q7969cXBwIDU1lenTp1ttO2XKFNLS0nB0dKR3797FivXZZ58F4LfffmP27NmFbteoUSMgZ9WWtYTSxYsXmTt3rtW27u7uDBgwAIDp06dz+vTpAseKjo4udFwiIiIiIiIiIiIicvuxOdH0zz//YBgG7du3z3U/PT09T90xY8YA8OWXX9o6nEiJcHd3Z/To0QDMnTuXN99805IsSUhIYPr06QQHB1tWBV2pcuXKDB8+HIBp06YxceJEYmNjgZyVTBMmTOD9998HYOTIkVSsWLFYsQYFBfHEE08AMGzYMMaOHZtr276oqCi++uorS0LKrE2bNlSrVg2AQYMGceDAAUwmE9nZ2YSGhhIYGEh2dna+406ZMoVKlSoRFRVF69at+eabb0hISLCUX7p0iZUrV/Loo4/Sv3//Ys1RRERERERERERERG5thslkMtnS0M3NDXd3dy5dumS55+HhQUZGBmlpaXnq+/n54ejoyIULF2yPVqQEZGZm0r9/f1asWAGAnZ0d3t7exMfHk5WVxdNPP41hGCxatIgXXniBOXPmWNqmp6fz9NNPs2zZslxt4+LiLMmb/v37s3DhQhwdHYsda3JyMk8//TSrVq2y3PPy8sIwDMv2fY0aNeLQoUO52m3cuJGHHnqIjIwMIOfzmp2dTWpqKrVr12by5MmWJJG1PwF//PEHvXr14q+//rLM08fHh7S0NJKSkiz1OnfuzKZNmwo9n/j4eMvzMq8sExEREREREREREZGbS1G+y7V5RVOlSpXybC9Wvnx5MjMz+ffff3Pdz8jIID4+Pt9zbURuJAcHB5YtW8ZXX31FixYtcHV1JTMzk2bNmvHVV1+xaNEiy0olHx+fXG2dnJwICQlhxYoVdO/eHX9/fxISEvD396d79+6sWrWKJUuWlEiSCXISRCtXrmT9+vU8+uijVKpUidTUVBwcHGjYsCH/+c9/rK4UfOCBBwgLC6Nnz574+vqSlZVFQEAAY8aM4eDBg1SoUKHAcevVq8eRI0f44osv6Nq1K2XKlCE+Ph6TycRdd91Fnz59+PLLLy0JNxERERERERERERG5M9m8oqlTp06EhoYSHh5OlSpVAHjiiSdYvnw5EydO5K233rLUnTt3Li+88AI1atTgn3/+KZnIRa4Tk8lE1apViYiIYNGiRTz99NOlHdJtQyuaRERERERERERERG5+N2RFk/lsptDQUMu9p59+GpPJxDvvvMMrr7zC3LlzGTZsGMOGDcMwDHr16mXrcCI3zDfffENERAQODg507ty5tMMREREREREREREREblp2Zxo6tOnD1WrVmXLli2Wez169OCJJ54gMzOTOXPm8OKLLzJ79mwyMjKoW7durlVOIqXJfEZTVFSU5d6FCxeYNm0azz//PAADBw6kYsWKpRWiiIiIiIiIiIiIiMhNz+at8/JjMpn46quvCAkJ4cyZM3h7e9OtWzdef/11vL29S3IoEZv5+PhYzgxzc3PD0dEx1xli7du3Z/369drerYRp67ybR/UxG0qsr1PTepRYXyJQsu9P0Hv0ZnY7/i3S+1duVqXxebsdP+MiRaH/TpBbxe3y9/pO+MzdLq+ViFxfJfW3IjstmTMf9y3Ud7kOJTLiFQzD4Pnnn7esChG5Gc2cOZMffviBX3/9lYsXL5KYmEjZsmVp3LgxTzzxBE8//TSOjo7FHufMmTM0b968SG0CAgLYv39/sccWEREREREREREREbneSjzRJHIrGDhwIAMHDrzu42RlZXHhwoUitXFxcblO0YiIiIiIiIiIiIiIlCybz2iys7OjcuXKha5fo0YNHByU15I7S/Xq1TGZTEW6Tp06Vdphi4iIiIiIiIiIiIgUis2JJsg5j+l61peSYxgGhmEQGhp6U/Z3PQUGBmIYBsHBwSXab3BwMIZhEBgYWKL93irji4iIiIiIiIiIiIjcsCVG6enp2NkVK68lckc4dOgQq1evxsfHh9dee620wxERERERERERERERydcNSTTFxsZy8eJFfH19b8RwYkWdOnUAcHNzK+VIbryqVatSp04dypQpU9qhFMqhQ4eYNGkS1apVKzDRVKZMGerUqUPVqlVvXHAiIiIiIiIiIiIiIlcodKLpyJEjHDp0KNe9lJQUFi1alG8bk8lEbGwsK1asIDs7myZNmtgcqBTP8ePHSzuEUlPQe/RWNmzYMIYNG1baYYiIiIiIiIiIiIjIHazQiabvvvuOyZMn57oXHx/PkCFDrtnWZDJhGAYjR44seoQiIiIiIiIiIiIiIiJyUyr0oUk+Pj5UrVrVcgHY2dnlunf1Vb16dRo2bMiTTz5JaGgoDzzwwHWbyI0QGBiIYRgEBweTnp7OtGnTaNiwIe7u7vj6+tKlSxd++OEHq20Nw8AwDEJDQwvVf0HtExISGD9+PHXr1sXV1RV/f3969uzJ3r178+27oPFjYmJ46623uO+++/Dy8sLJyYkKFSrQsGFDXnzxRbZs2VLgc7ElnsLKyMigTJkyGIbBzJkzC6z79ddfYxgGXl5eJCcnW+4X9FzNVq1aRc+ePSlfvjxOTk6UL1+enj178t1339kUd3JyMkuXLmXgwIE0btyYsmXL4uzsTKVKlejVq1eB7xNz8jY8PNzyupmvK+cQHByMYRgEBgbmG8evv/7KwIEDqVatGi4uLvj6+tKmTRs+/vhj0tLSrLZZsGABhmFQvXp1AA4ePEjfvn2pWLEizs7O1KxZk5EjRxITE2PTsxERERERERERERGR20ehVzQNHz6c4cOHW363s7OjbNmynDx58roEdjNLT0+nc+fOhIWF4eDggIeHB7GxsWzevJnNmzczceLEApMaxXH+/Hnuu+8+Tpw4gYuLC3Z2dkRHR7NhwwY2bdrEunXr6Nq1a6H7i4iIoG3btpw+fRrIeV29vb2JioriwoULHD16lOPHj9OpU6cbEs/VHB0deeKJJ5g1axbffPMN//nPf/Kt+8033wDQu3fvQp9FlZ6ezsCBAwkJCQFyz3/Dhg1s2LCB/v37s3DhQhwdHQsd97JlyywJI3Pyy8HBgfPnz7NmzRrWrFnD66+/zgcffJCrXfny5UlJSSE+Pt7yGbuSh4dHoWP46KOPeP311zGZTAB4e3uTlJTE7t272b17N/Pnz+fHH3+kYsWK+faxZMkSBg8eTEZGBt7e3mRmZnLy5Ek++ugjfvrpJ/bs2VOkmERERERERERERETk9lLoFU1XmzhxIq+//npJxnLL+Pzzz9m3bx9z5swhISGBmJgYTp8+zeOPPw7ApEmTWLt27XUZ+5VXXsHJyYmtW7eSlJREYmIi+/bto06dOqSnpzN06FCys7ML3V9wcDCnT5+mevXqbN68mfT0dKKjo0lLS+PUqVPMnj2bVq1a3bB4rBk4cCAABw4cyPesqdOnT7N9+/Zc9Qtj3LhxhISEYBgGEyZM4PLly0RHRxMVFcW4ceMAWLp0KRMmTChSzL6+vowaNYqdO3eSmJhIbGwsSUlJnDt3jkmTJuHo6MiHH36Y530SGRnJJ598AkBAQACRkZG5rlGjRhVq/PXr1zNy5EhMJhOPPPII//77L7GxsSQmJrJo0SI8PT05cuQIjz/+OFlZWVb7uHTpEs888wyDBg3i9OnTxMbGkpCQwGeffYajoyO//fYb7733XpGei4iIiIiIiIiIiIjcXpRoskFcXByff/45L7zwAi4uLkBOUiAkJIT7778fwJKkKGkODg5s27aNoKAg7OzsMAyD5s2bs3z5ciBnu7Xdu3cXur9du3YBMGXKFDp16oS9vT0A9vb2VKtWjRdffJFp06bdsHisadGiBXXq1AFg0aJFVussXrwYk8lE1apVC9xK7kpnz561JHXGjBnD5MmT8fHxAXISRe+++67lXLEZM2Zw/vz5Qsf8yCOP8P7779O2bdtcq6sqVqzIW2+9xZQpUwCuuR2grd58800A2rdvz8qVK6lRowYATk5OPP300yxevBjIef3z2x4wOTmZJ554grlz5xIQEACAm5sbr7zyCq+++iqQk4QrSFpaGvHx8bkuEREREREREREREbl92Jxoyk96ejpr167l/fffZ+bMmezcubOkhyh1AQEBlm3RrmRnZ8f48eMB+O233zh69GiJjz106FDKlSuX536DBg0syYQjR44Uuj9zYqUoSZTrGU9+nn76aeD/EkpXM2+b9+STT2IYRqH6XLlyJZmZmbi4uDBmzBirdcaPH4+zszMZGRmsWLHCxujz6tGjBwC7d+/Od0WRrY4cOcIff/wB5MRvTh5e6aGHHqJFixZAwcki8/v5ao888ggAJ06cyHUe1tWmTp2Kt7e35TInrERERERERERERETk9lDoRFNCQgKLFi1i0aJFpKWlWa1z4MABateuzaOPPsqYMWMYMWIEHTp0oE2bNkRGRpZY0KUtMDAw32RG+/btcXDIOfrqwIEDJT52y5Yt8y2rVKkSANHR0YXur2fPnkDOip6hQ4fy448/FmnVSUnHk5+nn34awzBybZFndvDgQUtipSjb5plfn+bNm+Pl5WW1jq+vL82aNctVv7AuXLjAxIkTad26Nf7+/jg4OGAYBoZhcM899wA5q4ZiYmKK1O+1mON0cHCgQ4cO+dbr0qVLrvpX8/Pz46677rJaZn5tgQLjHzt2LHFxcZbrzJkz14xfRERERERERERERG4dhU40bdmyhcGDB/Pxxx/j7Oycp/zixYs8+OCDREREYDKZcl179+7l4YcfLtHAS1PlypXzLXNxccHf3x/IeSYlzdPTM98yc4IrIyOj0P298cYb9O3bl4yMDObOnUv37t3x8fGhQYMGvPHGG/z55583NJ78VK1a1ZI0Ma9eMjP/3rx5c+rWrVvoPs2vT0GvJ0CVKlVy1S+M3bt3U7duXSZPnsyePXuIjo7G1dWVcuXKUb58ecqUKWOpm5SUVOh+C8McZ5kyZax+Vs2uNa/CvLZQ8Ovr7OyMl5dXrktEREREREREREREbh+FTjSFhYUBMGDAAKvl06dPJyoqCoBBgwbx888/c/jwYUaMGIHJZOLgwYMluvWYlAxHR0dCQkI4dOgQb731Fh07dsTNzY1jx47xwQcfUL9+fT788MPSDhP4v9VKK1asICUlBYDMzEzL1m/m7fVKW2ZmJv379yc2NpbGjRvz/fffEx8fT0JCAhcuXCAyMpI9e/ZY6lvbClBERERERERERERE5FZQ6ETTvn37MAyDbt26WS1fvHgxhmHw0EMPMX/+fFq3bk2DBg348MMPGTRoECaTiZUrV5ZY4KXp7Nmz+ZalpaVx+fJlgFxnF5nPyUlNTc23bVxcXAlFWHSNGjVi0qRJbNmyhdjYWDZv3sz9999PVlYWb7zxBocPHy612Mwef/xxXF1diY+PZ82aNQD89NNPXLx4EUdHR/r371+k/syvT0RERIH1zOXWzqKyZvfu3YSHh2Nvb8/69evp3r17ntVB13MrSXOcUVFR+W5zCUWfl4iIiIiIiIiIiIjI1QqdaDp//jwODg6Ws2Wu9Ntvv1m23/rPf/6Tp3z48OEA/Prrr7bGeVPZvn17vqtQwsLCyMzMBLCc7QM5Z/0A+Z5Rk5CQYDlnqLQ5ODjQqVMnNmzYgLOzMyaTic2bN5d2WHh6etKrVy/g/7bLM/9n9+7dc21HVxhXnr2UX5IvNjY211lOhWF+jcuWLZvvtnwFPU87u5yPpa0rnczzyszMzHOelbUYCjsvEREREREREREREZGrFTrRdOHCBby8vCxfgl9p3759ADg5OdGuXbs85ffeey+GYXDu3LlihHrzOH36NAsXLsxzPzs7mylTpgBwzz330KBBA0tZo0aNAPJd1fXBBx8UuPrkeiloTGdnZ8tKLGuve2kwb5/3008/8ffff1tWNpnvF0Xv3r1xcHAgNTWV6dOnW60zZcoU0tLScHR0pHfv3oXq19vbG8j5zFy4cCFPeUREBDNnzsy3vfkco9jY2EKNd7WGDRtaEsLvvPMOWVlZeep8//337N27F6DIK8FERERERERERERERMwKnT3IysoiPj7eatnBgwcBqFevHk5OTnnKHRwc8PX1tZyrc6vz9vbmpZdeYu7cuZat8M6cOUP//v3Ztm0bkPMF/5XMX+Zv3LiRiRMnWp5lVFQU48aN45133sHHx+fGTeL/q1atGmPHjmXPnj25kk4nTpzgySefJDk5GTs7Ox544IEbHps1Xbp0oUKFCmRmZjJgwABSUlLw9fWlZ8+eRe6rcuXKltV206ZNY+LEiZbkTmxsLBMmTOD9998HYOTIkVSsWLFQ/bZr1w53d3dMJhN9+/blr7/+AnI+Qxs3biQwMBDDMPJtf++99wIQHx/PsmXLijwvwJI4CwsL4/HHH+fkyZMAZGRksHjxYsv7sU2bNpZVYiIiIiIiIiIiIiIiRVXoRFO5cuXIzMzkn3/+yVO2e/duDMMocAuuxMRE3N3dbYvyJvPyyy/TrFkzhg4dipeXF35+flStWtWSFBg/fjyPPvporjaDBw8mKCgIgMmTJ+Pj44Ofnx/lypVj2rRpTJ8+3bLq6Ua6cOEC06ZNo3Xr1ri5ueHn54erqyu1a9dm+fLlGIbBhx9+aHXLxNJgb2/PgAEDACxb2vXt2xdnZ2eb+psyZQp9+/bFZDIxefJk/P398fPzw9/f35Is7N+/P2+//Xah+/T29uaDDz4AYMeOHdSpUwdPT088PDzo1q0bcXFxzJ8/P9/2d911F506dQKgX79+eHl5Ub16dapXr87HH39cqBh69uzJjBkzMAyD1atXU7NmTXx9ffHw8OCpp54iPj6eBg0asHz5csuqNRERERERERERERGRoip0oum+++4D4Msvv8x1/++//+bQoUMAdOjQwWrb8PBw0tPTqVKlio1h3lycnJzYsmULU6ZMoU6dOqSlpeHt7W0518haUsLe3p4NGzYwadIk6tati5OTE4Zh0LVrVzZt2sSoUaNKYSY5W9CNHTuW9u3bExAQYFl1dtdddzFkyBD279/Pa6+9Viqx5efqbfJs2TbPzMnJiZCQEFasWEH37t3x9/cnISEBf39/unfvzqpVq1iyZAmOjo5F6vfFF19kw4YNBAYG4uHhQWZmJpUrV+bVV1/l8OHDubZVtGbFihWMGDGCu+++m4yMDMLDwwkPDy/SdnojRozgwIEDPPXUUwQEBJCcnIyrqyutWrXio48+Yv/+/VSqVKlI8xIRERERERERERERuZJDYSv279+f1atX89FHH1GmTBkefvhhIiIieP311zGZTHh4ePDQQw9Zbbtjxw7g/7YEux04OTkxduxYxo4dW+g2rq6uvPXWW7z11ltWy0NDQ/NtazKZrtm/Le27dOlCly5drtl3ScdTHI0aNSrU+EWJo3fv3oU+g8ksODiY4ODgfMsffPBBHnzwwXzLC5qDj48PM2bMYMaMGTaPDzkJ4m+++abAOlcbPHgwgwcPLrBO9erVi/QaiIiIiIiIiIiIiMjtqdArmvr06cP9999PZmYmY8aM4Z577qFr164cPXoUwzAYOXIknp6eVtuGhIRgGAbt2rUrscBFRERERERERERERESkdBV6RRPAmjVrePrpp1m/fr3lnmEYPPfcc/mu0vn777/58ccfAQpc3SEid457J27Eztmt2P2cmtajBKK5c1Qfs8Hyc2k+uyvjsIVe99tb9TEbbqrXWO/X6+dme62h+K833ByveUnM42o3w7zEdtfr83at99rN+L4p6c/HzThHuTncjP89VxTX479LzG7l53IrK+g1vZGvyZ3y3rpe87zec9S/I0VubebPcEl97uLj4/H+uHB1i5Ro8vb2Zu3atZw4ccJyLlPz5s2pVq1avm0cHR1Zs2YNjo6O1KxZsyjDiYiIiIiIiIiIiIiIyE2sSIkms7vuuou77rqrUHWrV69O9erVbRlGbjPDhw8nJCSkSG0++eQT+vXrd50iEhERERERERERERGR4rAp0XSnCg0NLe0QbmlxcXFcuHChSG1SUlKuUzQiIiIiIiIiIiIiIlJcdqUdgNw5FixYgMlkynNNnDgRgA4dOuQpGzx4cOkGLSIiIiIiIiIiIiIi+dKKJpFb3KlTp1iwYAEAwcHBpRqLiIiIiIiIiIiIiNxZtKJJSl2ZMmWoU6cOVatWLe1QbkmnTp1i0qRJTJo0qbRDEREREREREREREZE7jFY0SakbNmwYw4YNK+0wRERERERERERERESkiLSiSURERERERERERERERGyiRNMNEhgYiGEYBAcHYzKZmDt3Li1btsTLywtPT09at27N//73vwL7WLVqFT179qR8+fI4OTlRvnx5evbsyXfffVdgu40bN/LYY49RpUoVnJyc8PLyombNmnTt2pUPPviA6Ohoq+0SEhKYNm0arVu3xs/PD2dnZwICAnjiiSfYvXu3zc/iasHBwRiGQWBgYJ6ywYMHYxgGgwcPBmDFihUEBgbi5+eHm5sbjRs35pNPPiE7O7vE4gHIzs5m2bJl9OrVi8qVK+Ps7EzZsmVp2rQpo0eP5tixY1bb2fLMTp06hWEYGIbBqVOnuHDhAsOHD6dGjRq4uLhQvnx5nnjiCY4fP56nbfXq1QkKCrL8bu7HfJmfW0nH+M8//zB06FBq1KiBs7Mz1atXv/ZDFREREREREREREZHbjrbOu8GysrJ49NFHWbNmDQ4ODri5uZGQkMCePXvYs2cPf//9d56zdtLT0xk4cCAhISEA2NnZ4e3tTVRUFBs2bGDDhg3079+fhQsX4ujomKvt5MmTmThxouV3Nzc3TCYTJ0+e5OTJk2zatIlmzZrlSfIcOnSIhx56iIiICADs7e1xc3MjIiKCkJAQli1bxrvvvsvYsWOvw1OybtiwYcyaNQs7Ozu8vLxISUnh8OHDvPbaa/zyyy8sXLiwRMaJioqid+/e7Nixw3LPx8eH1NRUfvnlF3755Rf+/PNPVq9enatdSTyz3377jWeeeYaLFy/i5uYGwMWLFwkJCeGHH35gx44dNGrUyFK/bNmyxMfHExMTA0D58uVz9eft7V3iMe7atYsXXniBxMRE3Nzc8rznREREREREREREROTOoRVNN9isWbMIDQ1lwYIFxMfHExcXx5kzZ3jooYcAeOedd/j7779ztRk3bhwhISEYhsGECRO4fPky0dHRREVFMW7cOACWLl3KhAkTcrULDw+3JK1GjhzJ2bNnSUpKIiEhgdjYWMLCwnj55Zfx9PTM1e78+fM88MADRERE8Nhjj3HgwAFSUlKIj4/nwoULTJgwAXt7e8aNG5cn2XK9rF27lrlz5zJjxgxiYmKIiYkhKiqK5557DoBFixaxdevWYo+TmZlJr1692LFjB87OzkyfPp2LFy8SExNDQkICZ8+e5YsvvuCee+7J1a6kntnTTz9N7dq12b9/P0lJSSQmJrJp0yYqVqxIfHw8r776aq76+/fvZ9WqVZbfIyMjc12ffPJJicf4wgsvUL9+/Vwx/vTTT0V70CIiIiIiIiIiIiJyW1Ci6QaLiYnhu+++Y9CgQbi6ugJQpUoVli9fTqVKlSxbtpmdPXvWkiwYM2YMkydPxsfHBwBfX1/effddRo4cCcCMGTM4f/68pe3evXvJzs7m7rvv5sMPP6RSpUqWMm9vb9q1a8esWbNo2rRprhjHjx/PxYsXGTBgACtXrqRp06aWVSvlypVj8uTJvPfee0DOtnc3QkxMDF988QUjRozAy8sLAH9/f+bOnWuJf+nSpcUeZ+HChfz8888YhsGqVat48803KVu2rKW8UqVKDB06lClTpuRqV1LPrHz58pZVZgAODg507tyZL774AoCwsDDLaqSiKqkY/f392bx5syVGgLvvvttq3bS0NOLj43NdIiIiIiIiIiIiInL7UKLpBmvbtm2uM3XMnJ2deeCBBwA4cuSI5f7KlSvJzMzExcWFMWPGWO1z/PjxODs7k5GRwYoVKyz3zQmphIQEkpKSChVfamoqS5YsAWD06NH51hs4cCAAhw8f5sKFC4XquzgCAgIYNGiQ1bKHH34YyP3cbPX1118D8OCDD/Lg/2vvzuNsrPs/jr/PzJl9R8Y+I2shd/asowhF0ZBCiIi677uiRGiQ3JaWO3cLldt0lyxF269byjIipShZkhRjC2EWs6/X7w/3uZpjzpnlzIxZvJ6Px3k8zlzf5fp8r3N9Xcd85ntdt91WpDalecwmT55sJiDz6tevnzw9PSVJ+/btK1JcZRXjX//6V/n7+xdpv//4xz8UFBRkvurXr1/MyAEAAAAAAAAAFRnPaLrCOnbs6LTMtuIoLi7O3LZr1y5JUvv27c2VPJcLCQlRu3bt9NVXX5n1JalDhw6qUaOGTp8+rY4dO2rChAnq1auXmjVrJovF4rCv3bt3Kz09XZJ06623FmlMx44dy/dsoNLWvn17pzE7Om6uyM7O1nfffSdJ5q0Mi6I0j5mz88Nqteqaa67RqVOnXBpnacbYpUuXIu932rRp5oo7Sbp48SLJJgAAAAAAAACoQkg0XWGXPw8pL6v10seRlZVlbvvjjz8kSXXr1i2w33r16tnVly6taFq5cqWGDRumAwcOmM/3CQoKUvfu3XX33Xdr6NCh5u3TJOn333833xd1pVJqamqR6pVEcY+bKy5cuGD2ERYWVuR2pXnMymqcpRljzZo1i7xfLy8veXl5Fbk+AAAAAAAAAKByIdFUxfXq1UtHjx7VunXrtGnTJu3YsUOHDx/WJ598ok8++UTz58/Xhg0bzERWTk6O2TYtLU3e3t7lFfoV52zFVGEqwzErzRjd3d1LIyQAAAAAAAAAQBXAM5oqONvqkZMnTxZYz1buaLWJn5+f7rvvPkVHR+uXX37RyZMntWDBAnl7e9utdJKkWrVqme+PHTtWGkOoNKpVq2au7irO2CvDMasMMQIAAAAAAAAAKh8STRVcu3btJF16VlNiYqLDOgkJCXbPcipM3bp1NWXKFE2ePFmS9MUXX5hl7du3l6enpyTpk08+KVHslY3ValWHDh0kFW/s5X3M3Nz+nMaGYTisU94xAgAAAAAAAACqJhJNFVxkZKSsVqvS09O1YMECh3XmzZunjIwMeXh4KDIy0tyekZFRYN8+Pj6S7BMVfn5+GjZsmCRpwYIFOn78eIF9xMXFFWkclcXYsWMlSf/973/13//+t0htyvuYBQYGmu8TEhIc1invGAEAAAAAAAAAVROJpgqubt26euSRRyRJ8+fPV1RUlJlMSEhI0MyZM7Vo0SJJ0qRJk1S7dm2z7YIFC9SvXz+9/fbbdrfey8jI0Jo1a8x2t99+u90+582bpzp16uj8+fO66aab9PbbbyspKcksP3funNauXatBgwbp3nvvLZNxl5f77rtPXbt2lWEYioyM1KJFi3T+/Hmz/Pfff9eLL76oJ5980q5deR6zpk2bmquV3nzzTaermq7mzxUAAAAAAAAAUDas5R0ACjdv3jydOHFCa9as0Zw5czR37lwFBQUpMTFRubm5kqR7771XzzzzjF273NxcffbZZ/rss88kXVrB5OPjo/j4eDMZcd111+mFF16wa1e7dm1t3LhRAwcO1C+//KKRI0fKzc1NwcHBysjIUEpKilm3V69eZTn0K85qteqDDz7QXXfdpW3btmnKlCl68sknFRQUpOzsbCUnJ0uS7rzzTrt25XnMfH19dd9992nZsmWaMmWKZs2apRo1ashisWjw4MF67rnnyj1GAAAAAAAAAEDVRKKpEvD09NTq1at19913a9myZdq1a5fi4+NVvXp1tWvXTuPGjdOgQYPytRs/frzq1q2rLVu2aN++fTp9+rQSExMVEhKiFi1aKDIyUg8++KC8vb3ztb3uuuu0d+9evfXWW1q7dq327NmjuLg4eXp6qnHjxrrxxhvVu3dvDR48+EocgiuqRo0aiomJ0cqVK7VixQrt3r1b8fHxCgkJUbNmzdS7d2/dd999+dqV5zF75ZVXVL9+fa1du1a//fabeWu8vKuxyjtGAAAAAAAAAEDVQ6LpComJiSm0zqxZszRr1iyn5ZGRkXbPYCpMnTp1NG7cOI0bN67IbfLy8vLS+PHjNX78eJfaF1VB446OjlZ0dHSB7UePHq3Ro0eXakxubm4aPny4hg8fXqx2rhyz8PBwp7e7yys2NrbA/UZFRSkqKqpcYwQAAAAAAAAAXF14RhMAAAAAAAAAAABcQqIJAAAAAAAAAAAALrEY3A8LwBVy8eJFBQUFKTExUYGBgeUdjlPhUz8t7xDKROz828u0/6Iet7KOA5WT7fwpq/PD1XldFc7XivpvWlkc25KOtaJ+3sUdV0UdR2VWUedRUVWlc6KqznMUT2WYkxXtO01xMVdcU5HPzSv9mTo7FpXx3HLlc61M48w7vsoUd2VUkf+NQNVQ2nO4OL/L5RlNKBWPPPKIVq9eXaw2L730koYOHVrqsezYsUN33XVXsdp07txZ69atK/VYAAAAAAAAAACoykg0oVQkJibq7NmzxWqTlpZWJrFkZmYWO5a4uLgyiQUAAAAAAAAAgKqMRBNKRXR0tKKjo8s7DElSRESEuCMkAAAAAAAAAABlz628A0DlEh4eLovFcsWTSjk5OXrhhRd04403ys/PTxaLRRaLRR9++OEVjaMyGT16tCwWi0aPHl3eoQAAAAAAAAAAqihWNKHUzJo1S9KlBEd4eHip9v3oo4/q5ZdfliR5enoqNDRUkuTt7V2q+wEAAAAAAAAAAEVHognF0qhRI3l7eysoKChf2ezZsyVdunVdaSaakpKStHTpUknSwoUL9fjjj8tisZRa/wAAAAAAAAAAwDUkmlAsmzZtuuL7/Pnnn5WVlSVJmjhxIkkmAAAAAAAAAAAqCJ7RhAovNTXVfO/v71+OkQAAAAAAAAAAgLxINFVwrVq1ksViMZ9PlNfXX38ti8Uii8WiwYMH5yvPyspSQECALBaL3Uqkb775Rk8++aS6deumsLAweXt7Kzg4WJ06ddKCBQuUnJzsNJ7w8HBZLBZFR0eb20aPHm23yqhnz55mXBaLxeXb6EVHR8tisSgiIsLclrffvNtt1q1bp/79+ys0NNR8llP//v31wQcfON2PLf7Ro0fLMAy9+eab6tq1q6pXr55vrMUVEREhi8WiWbNmKTMzU/Pnz9cNN9wgPz8/hYSEqHfv3lq/fn2h/bgyrsJ8/vnn5vkxevRoZWdn25V/9dVXGjFihHmOBAUFqUOHDoWeIwAAAAAAAACAqwe3zqvgevbsqf3792vz5s3661//ale2efNm831MTIwMw7BL+Hz77bdKTk6Wl5eXunTpYm6/6aabzPe+vr7y9fVVfHy8du7cqZ07d+o///mPtmzZopo1axYpxqCgIIWGhurs2bOSpJCQEHl6eprl11xzTfEG/T8+Pj4KDQ1VZmam4uPjJUmhoaFmebVq1cz3mZmZGjlypFavXi1JcnNzU1BQkM6fP69PP/1Un376qe6991699dZb8vDwcLg/wzA0ZMgQrV271mzv5lY6udjMzEz16tVL27Ztk9Vqlb+/vxISErRx40Zt3LhRUVFRmjVrlsN2JR2XI++8847GjBmjrKwsPfnkk5o/f75Zlpubq8cee0yLFy82t/n7+yslJUXfffedvvvuOy1fvlwbNmxQWFiY6wcFAAAAAAAAAFDpsaKpguvZs6ckaevWrcrNzbUr27JliyQpMDBQFy5c0I8//uiwvFOnTvL29ja3DxgwQKtXr9bp06eVkpKiuLg4paamat26dWrWrJl++uknTZgwocgxvvTSSzpz5oz587p163TmzBnz9d133xVv0P8zdOhQnTlzRuvWrTO35e037/annnpKq1evlsVi0cyZM3XhwgXFxcXp/PnzeuqppyRJK1eu1MyZM53ub926dfroo4/03HPPKT4+XnFxcUpMTFSfPn1cij+vV199Vd9++62WLFmipKQkxcfH6/jx4+ZKtNmzZ+vjjz/O1640xnW55557TiNHjlR2drb++c9/2iWZJCkqKkqLFy9WzZo19corr+jChQtKSkpSWlqatmzZohtvvFGHDh3SXXfdle+cBAAAAAAAAABcXUg0VXARERFyc3NTXFyc9uzZY27PyMjQjh075Ovrq/Hjx0uyX+GU92dbssrm448/1t13361atWqZ23x8fDRo0CBt2rRJXl5e+vDDD3X8+PEyGlXpOnXqlF566SVJ0tSpUzVnzhwFBwdLurS66tlnn9WkSZMkSS+88IJOnz7tsJ/k5GS98MILmjx5sgIDAyVdWslTu3btEseYmJioV199VQ8++KCZ9Ktfv75Wr16t7t27S5KZOCrtcdkYhqFJkybpiSeekIeHh1auXKlHHnnErk5sbKz+8Y9/yMfHR59//rkeeughc+WYh4eHIiIitHXrVtWrV0/ff/+9w+RYXhkZGbp48aLdCwAAAAAAAABQdZBoquBCQkLUunVrSfaJpG+++UZpaWnq0qWL+vbtm688IyNDX3/9taT8iaaC1K1bV61bt5ZhGNqxY0dpDKHMrV27VtnZ2fL29tbUqVMd1pkxY4a8vLyUlZWl999/32GdkJAQPfjgg2USY/369XX//ffn2+7m5qYZM2ZIkg4cOKB9+/aZZaU1LunSLfiGDx+uF198UQEBAfrvf/+roUOH5qsXHR2tnJwc9e3b1zzvLhcQEKCBAwdKkjZs2OB0n5L0j3/8Q0FBQearfv36BdYHAAAAAAAAAFQuJJoqgZtvvlmSfSLJ9v7mm29W586d5eXlpW3btiknJ0eStGPHDqWnp8vHx0edOnWy6y83N1fvvvuu7rjjDjVo0EA+Pj6yWCzm69tvv5UknTx58koMr8R27dolSWrfvr25EulyISEhateunV39y7Vv397u2VKlKSIiwu75WXl169ZNVqs1X2ylNa6kpCTdfvvtWrlypUJDQ7V161bdcsstDut+9dVXkqTPP/9ctWrVcvpavny5JOnYsWMFjnvatGlKTEw0XydOnCiwPgAAAAAAAACgcrGWdwAoXM+ePfX8889r27Ztys7OltVqNZ+/dPPNN5vJpK1bt+q7775Tp06dzPLOnTvbJU9SU1PVv39/s1ySPD09Va1aNXl4eEiS4uLilJWVpZSUlCs4Stf98ccfki6txipIvXr17OpfrmbNmqUbWB4Fxebt7a3q1avr7NmzdrGV1rjyPsvqk08+0Y033ui0r99//12SlJKSUqTPPzU1tcByLy8veXl5FdoPAAAAAAAAAKByYkVTJdC9e3dZrVYlJyfr22+/VWpqqnbu3KmgoCC1bdtWUv5VT86ez/Tss89qy5Yt8vHx0Ysvvqhjx44pPT1dFy5c0JkzZ3TmzBl17NhR0qVn+lxN3N3dyzuEMtGjRw/zlnUPPPCAzp0757SubUXck08+KcMwCn3FxMRciSEAAAAAAAAAACooEk2VQEBAgJlQ2rx5s7Zv367MzEx1797dTI7YEkqbN29WSkqKefs7WwLKZtWqVZKkp59+Wo8++qgaNGiQ75ZuZ86cKdPxlDbbSqTCbvVnKy/LlUvOnDp1ymlZRkaGLly4IMk+ttIaV3h4uGJiYhQWFqa9e/eqZ8+eTlc/1apVS1Lht8QDAAAAAAAAAEAi0VRp5E0k5b1tnk3Hjh3l6+urHTt2aNOmTcrKypK/v7/at29v14/tGTnObp8WGxurX3/91aUYbQmrK70SKu8zihITEx3WSUhIsHvm0ZW2detWp8fFdktE6c+x5H1fGuO69tprFRMTo/DwcB04cEAREREOE4pdunSRJG3cuFHp6elFGBkAAAAAAAAA4GpGoqmSsCWVvv76a61fv95um3TpOUtdunRRWlqa5s2bJ0nq2rWrrFb7x3AFBQVJkn788UeH+5k6darLMQYGBkq6lPy4kiIjI2W1WpWenq4FCxY4rDNv3jxlZGTIw8NDkZGRVzQ+STp+/LjeeuutfNtzc3PNz+v6669Xq1atzLLSHld4eLi2bt2qa6+9VgcPHlRERIROnz5tV2fMmDGyWq06f/68oqKiCuwvMzNTycnJBdYBAAAAAAAAAFRtJJoqiS5dusjT01Pp6en68ccfdc0119glJaQ/E087d+6UlP/5TJLUt29fSdLcuXO1bt06cyXN0aNHNWzYMK1Zs0YhISEuxdiyZUtJ0ooVK5SamupSH66oW7euHnnkEUnS/PnzFRUVZSa7EhISNHPmTC1atEiSNGnSJNWuXfuKxWYTFBSkiRMn6o033jBXCp04cUL33nuvuUJt7ty5dm3KYlwNGjTQ1q1b1bhxYx06dEg9evSwu61fo0aNNHPmTEnSwoULNXLkSO3fv98sz87O1p49ezRnzhw1btxYe/bsce2AAAAAAAAAAACqBBJNlYSvr686duxo/hwREZHv2UqXJ5YcJZrmzp2r0NBQJSUlKTIyUj4+PgoODta1116rlStX6tlnn9UNN9zgUowTJkyQJK1du1bBwcGqV6+ewsPD1bVrV5f6K4558+bp7rvvlmEYmjNnjqpXr65q1aqpevXqZgLn3nvv1TPPPFPmsTjy0EMPqV27dho/frwCAwNVrVo1NWjQQGvWrJEkzZgxQ4MGDcrXrizGVa9ePW3dulXNmjXT4cOH1aNHD/OWipI0c+ZMzZw5UxaLRW+//bZatWolX19f1ahRQ97e3rrxxhsVFRWlEydO5DsHAQAAAAAAAABXFxJNlUjexFHe2+bZtGvXzrx9XWBgoNq0aZOvTlhYmHbt2qWxY8eqTp06kiRvb2/1799fGzZs0LRp01yOb8SIEXr77bfVtWtX+fr66vTp0zp27JhOnjzpcp9F5enpqdWrV+v9999Xv379VL16dSUlJal69erq16+f1q1bp3fffVceHh5lHouz+DZt2qR58+apWbNmysjIUFBQkG655RZ9+umnThNFZTWuOnXqKCYmRtddd51+++039ejRQ8eOHZN06Vlbc+bM0d69e/XQQw/puuuuk7u7uxITExUSEqLOnTvriSee0I4dO8xnOgEAAAAAAAAArk7Wwqugopg9e7Zmz57ttNyWDChMvXr19Oabbzotj4mJcVoWGxtbYN8jRozQiBEjCo2hOCIiImQYRpHqRkZGFvsZTNHR0YqOjnYhsuLx9PTUtGnTXErmlcW4atWqpZ9++slpecuWLfXKK68Ua58AAAAAAAAAgKsLK5oAAAAAAAAAAADgElY0AbhibCvTLl68WM6RFCw3I7W8QygTZX3ci3rcKvrnj/JhO3/K6vxwdV5XhfO1ov6bVhbHtqRjraifd3HHVVHHUZlV1HlUVFXpnKiq8xzFUxnmZEX7TlNczBXXVORz80p/ps6ORWU8t1z5XCvTOPOOrzLFXRlV5H8jUDWU9hy29VeUu41ZjKLekwxAsUVERGjr1q2KiorSrFmzyjuccnfy5EnVr1+/vMMAAAAAAAAAABTBiRMnVK9evQLrsKIJV8Rdd92lHTt2FKvNunXr1Llz5zKKqOgqc+wVTZ06dXTixAkFBATIYrGUdzguu3jxourXr68TJ04oMDCwvMMByhXzAbiEuQD8ifkAXMJcAP7EfAD+xHxAZWEYhpKSklSnTp1C65JowhURFxens2fPFqtNZmZmGUVTPCWJPSYmpgwiqrzc3NwKzX5XJoGBgXwhAP6H+QBcwlwA/sR8AC5hLgB/Yj4Af2I+oDIICgoqUj0STbgiKnPCpTLHDgAAAAAAAABAWXIr7wAAAAAAAAAAAABQOZFoAoBi8vLyUlRUlLy8vMo7FKDcMR+AS5gLwJ+YD8AlzAXgT8wH4E/MB1RFFsMwjPIOAgAAAAAAAAAAAJUPK5oAAAAAAAAAAADgEhJNAAAAAAAAAAAAcAmJJgAAAAAAAAAAALiERBMAAAAAAAAAAABcQqIJAP5n27ZtGjp0qOrVqycvLy/VrFlTvXv31sqVKwtte/bsWU2ePFnNmjWTj4+PqlWrpm7duunNN9+UYRhXIHqgaFJTU7V+/XrNnTtXd911l8LCwmSxWGSxWDRr1qwi9VHS8/23337Tgw8+qIYNG8rb21vXXHON+vTpo7Vr15ZwdEDRlWQuJCQk6KOPPtLTTz+t/v37q3bt2mbb6OjoIsfAXEBFUZL5cOrUKb366qsaMmSIGjduLB8fH/n4+Khhw4a69957tXnz5iLFwHcpVAQlmQtbt27V9OnT1adPHzVp0kQhISHy8PBQzZo11bNnTy1evFhpaWmFxsC1ARVFafy/4XITJkww+wgPDy+0PtcGVBQlmQ+zZs0y6xb0+vXXXwvs5/vvv9eIESPM31nVrl1bgwYNKvJ3LaDMGQAA48knnzQkma/g4GDDw8PD/HnQoEFGVlaWw7a7du0yqlevbtb19/c3rFar+XOfPn2MjIyMKzwiwLEtW7bYnet5X1FRUYW2L+n5/umnnxq+vr5m/cDAQMPNzc38+f777zdyc3NLccSAYyWZC8uXL3fadvny5UXaP3MBFYmr8+H48eOGxWKxq+/r62v4+PjYbRszZoyRnZ3ttB++S6GiKMm14fbbb7er7+fnZ/j5+dlta9iwoXHo0CGnfXBtQEVS0v83XG7z5s1214ywsLAC63NtQEVSkvkQFRVlSDI8PDyM0NBQp6+jR4867eONN96wO/+DgoLs5pMrcxIobaxoAnDVW7p0qRYsWCBJuueee3TixAnFx8crKSlJ0dHR8vPz0wcffKApU6bka5uYmKj+/fvrwoULat68ub777jslJSUpJSVFL7/8sjw8PLRhwwY9+uijV3hUgHMhISG65ZZb9MQTT2jlypWqVatWkdqV9Hw/evSo7r77bqWmpqpLly46dOiQEhMTlZiYqKefflqStHz5ci1atKi0hgoUyNW5IEm1atVSv379NH36dK1bt65Y+2UuoCJyZT7k5OTIMAzdcssteuutt3Tq1CmlpKQoOTlZBw4c0J133ilJ+ve//+30r335LoWKxtVrQ69evbR48WJ9//33unjxopKTk5WcnKzz589r8eLF8vHx0dGjRzVo0CDl5ubma8+1ARVRSb4r5ZWamqpx48bJarWqXbt2hdbn2oCKqKTzoXPnzjpz5ozTl7NVfl9//bUmTJig7OxsDRw4UCdOnFBCQoLOnTunBx98UJI0e/ZsrVmzpqRDBEqmvDNdAFCesrKyjNDQUEOS0aZNGyMnJydfnddee82QZFitVuO3336zK5sxY4YhyfDx8TGOHDmSr+28efMMSYa7u3uBf70IXCmO/qI8LCysSH8FVdLzfcSIEYYko1atWkZ8fHy+8vHjx5t/vRsXF1fkMQGuKMlccNRWxVjRxFxARePqfEhISDB2797ttDw3N9fo27ev+ZfoaWlp+erwXQoVSUmuDYVZunSpea3Yvn17vnKuDahoSnM+PProo4YkY/r06caoUaMKXdHEtQEVTUnmg21FU48ePVzad9euXQ1JRqtWrYzMzMx85X369DEkGeHh4QWuIAfKGiuaAFzVdu/erbNnz0qSJk+eLDe3/P8sjhs3TsHBwcrOztY777xjV/af//xH0qWVUA0bNszX9m9/+5v8/f2Vk5OjFStWlMEIgOJxd3d3uW1JzveUlBTz2QITJ05UcHBwvvbTpk2TJF28eFEffvihy3ECRVGSuVCStswFVESuntNBQUFq06aN03KLxaIxY8ZIkpKTk3Xw4MF8dfguhYqkJP++F6ZTp07m+5MnT9qVcW1ARVRa8+Gbb77R4sWL1bRpU82YMaNIbbg2oKIpy+tDQY4cOaLt27dLkh5//HF5eHjkq2O7PsTGxurLL7+8ovEBeZFoAnBVO3bsmPn++uuvd1jH3d1dTZs2lSR9/vnn5vZDhw7p+PHjkqR+/fo5bOvv769u3brlawtUNiU937dv324+ANtZ+/DwcF133XUO2wNVBXMBVxtvb2/zfU5Ojl0Z36VwNdm2bZv5vlGjRnZlXBtQVWVkZGjMmDEyDEOvv/663TXBGa4NwJ+++OIL833fvn0d1unatasCAgIkMR9Qvkg0AcD/XP7LD0dl+/fvN7flfd+yZUunbW1lP/30U0lDBMpNSc/34rY/cOCAS3ECFR1zAVebmJgYSZKnp6f5hzs2fJdCVZeWlqbDhw9r3rx5mjx5siSpe/fu+Z5Rw7UBVdWcOXN08OBBjR07Vj169ChSG64NqKoOHDigli1bytfXV/7+/mrWrJnGjRunH374wWkb23yoWbOmatas6bCOu7u7mjdvbu4DKC8kmgBc1fI+bDHvF9q8MjMzdfjwYUmXHkqakpIiSfr999/NOnXr1nW6D1uZ7aHAQGVU0vPd1j4kJEQ+Pj6Fts+7P6AqYS7ganL06FEtWbJEkjR06FAFBgbalfNdClXRmTNnZLFYZLFY5Ovrq6ZNm2r69OnKyMjQgAED9MEHH+Rrw7UBVdEPP/yghQsXKjQ0VIsWLSpyO64NqKrOnz+vgwcPysfHRxkZGfrll1/05ptvqm3btk5vK2mbDwXNhbzlXB9Qnkg0AbiqtWnTRqGhoZKkBQsWKDs7O1+df/3rX7p48aL5s+19UlKSuc3X19fpPvKW5W0DVCYlPd9t7wtqm7ecuYKqirmAq0VaWpqGDBmi1NRU1ahRQ/Pnz89Xh+9SqIrc3d0VGhqq0NBQu9uEDRkyRAsXLlS1atXyteHagKomOztbY8aMUXZ2thYvXuzwuWPOcG1AVdOkSRMtXLhQhw4dUnp6ui5cuKCUlBRt2LBBbdu2lWEYevbZZ/X888/na8v1AZUJiSYAVzWr1aqnn35aknTw4EH1799f33//vTIzM3XmzBktWrRI06ZNs3vgopsb/3QCAAA4k52drWHDhmn37t3y8PDQihUrVKdOnfIOC7girrnmGp05c0ZnzpxRamqqTpw4oenTp+uTTz7RDTfcoNdff728QwTK3Pz587Vnzx71799fd999d3mHA5Sr4cOH64knnlDTpk3N3y15enrq1ltv1fbt29W+fXtJ0qxZs5SYmFieoQIlwm9LAVz1HnroIT3++OOSZP5FiZeXl2rXrq0pU6YoPDxcU6ZMMeuHhIRIkvmwRUlKTU112n/esrxtgMqkpOe77X1BbfOWM1dQVTEXUNXl5ORo+PDh+vDDD2W1WvXuu+/q1ltvdViX71Ko6iwWi+rVq6e5c+dqxYoVysrK0sSJE/Xjjz/a1ePagKrkp59+0jPPPCN/f3+9+uqrxW7PtQFXE29vb82bN0+SlJycrE2bNtmVc31AZUKiCQAkLVq0SNu3b9fo0aPVokUL1a9fXx06dNDcuXP1ww8/yN3dXZIUFhYmT09PSbL7y9xTp0457dtWFhgYKH9//zIcBVB2Snq+29rHx8crLS2t0Pb85TuqKuYCqrKcnByNGDFCa9askbu7u9555x0NHjzYaX2+S+Fqctddd6lBgwbKzc3VsmXL7Mq4NqAqefjhh5WZmanp06crJCREycnJdi/b7eoNwzC3ZWVlme25NuBqc9NNN5nvjxw5Yldmmw8FzYW85VwfUJ5INAHA/3Tp0kXLly/X/v37dfz4ce3cuVPTp0+Xn5+fdu3aJUnq3LmzWb9ly5bm+/379zvt11Z2/fXXl1HkQNkr6fle3PYtWrRwKU6gomMuoKqyrWRatWqVmWQaOnRogW34LoWrje1h7b/++qvddq4NqEqOHj0qSZo2bZoCAgLyvVasWCFJOn78uLntlVdeMdtzbQD+ZJsPf/zxh86dO+ewTk5Ojn7++WdJXB9Qvkg0AUAhzp49q40bN0qSRo4caW5v2rSpGjRoIEn67LPPHLZNSUnRtm3bJMnpbWOAyqCk53vXrl3l4+NTYPtjx47p4MGDDtsDVQVzAVVRTk6Ohg0bptWrV5tJpnvuuafQdnyXwtXEMAzzF/CX39qIawPwJ64NuNp888035vuGDRvalfXu3dt872w+fPXVV0pKSpLEfED5ItEEAAXIycnRhAkTlJmZqQ4dOqhPnz5mmcViMRNPq1atUmxsbL72r7zyipKTk+Xu7q7hw4dfqbCBUlfS893Pz0+RkZGSpNdee83hQ04XLFgg6dIvXwYOHFi6AwAqCOYCqhrbSqY1a9bIarVqxYoVRUoySXyXQtVhuxVYQZYvX64zZ85IkiIiIuzKuDagKomNjZVhGE5fo0aNknTptvS2bY8++qjZnmsDqhLDMAosz8jI0PTp0yVduhbccsstduXXXnutunbtKkl6/vnn7W4zaTN//nxJl+ZU9+7dSyNswCUkmgBc9Y4cOaLp06fr+++/V3p6uiQpNzdXX331lW699VZ9+OGHCg4OVnR0tCwWi13bxx9/XLVq1VJqaqpuv/127d69W5KUmZmp1157TTNnzpQkjR8/Xk2bNr2yAwOciI+P1/nz581Xbm6upEsPEM27PTk52a5dSc/3OXPmyM/PT6dPn9aAAQN0+PBhSZf+InHOnDlasmSJJGnGjBkKCQkps/EDNq7OBUl25efPnze3Jycn22139OBe5gIqIlfmg+2ZTKtXr5bVatW7775b6O3yLsd3KVQ0rsyF7du3q3v37nr77bd18uRJu/4OHz6sqVOn6sEHH5QkNWrUSKNHj863X64NqIhK8l2pJLg2oCJyZT58+eWX6tWrV77rQ1ZWljZt2qRu3bpp586dkqSnn35awcHB+fa7YMECubu768cff9Q999xjPo8pLi5ODz30kNavXy9JWrhwofl8caBcGABwlfvhhx8MSeYrJCTE8PDwMH9u0KCBsXv3bqftd+3aZVSvXt2sHxAQYNf+1ltvNdLT06/giICChYWF2Z3zzl6jRo3K17ak5/unn35q+Pr6mvWDgoIMd3d38+f777/fyM3NLcPRA38qyVwoSjtJRlRUlMN9MxdQ0bgyH7Zu3Wpu9/DwMEJDQwt8rVq1yuG++S6FisSVubBlyxa7Mm9vb6NGjRqGj4+P3fbWrVsbR48edbpvrg2oaEryXcmZUaNGGZKMsLCwAutxbUBFUxrXBx8fH6NGjRp257Kbm5vx1FNPFbjvN954w7BarWab4OBgw2KxFPp/DuBKYkUTgKteeHi4nn76aXXv3l116tRRSkqKAgMD1aVLFz3//PM6ePCg2rRp47R927ZtdeDAAT322GNq0qSJsrKy5Ofnp65du+qNN97Q+vXr5eXldQVHBJSdkp7vt912m/bu3atx48YpPDxc6enpCgkJUe/evfX+++/r3//+d76Vg0BVxFxAVWD7S17p0l/mnj17tsBXWlqaw374LoXKrm3btnr77bc1duxYtW7dWkFBQUpISJCbm5saNWqkIUOGaNWqVdq9e7fCw8Od9sO1AfgT1wZUBa1atdJzzz2nyMhINW3aVD4+PkpISJCPj49at26tv/71r9qzZ4+effbZAvt54IEHtHPnTg0bNkx169ZVamqqatasqYEDB2rTpk2aNWvWlRkQUACLYRRys0gAAAAAAAAAAADAAVY0AQAAAAAAAAAAwCUkmgAAAAAAAAAAAOASEk0AAAAAAAAAAABwCYkmAAAAAAAAAAAAuIREEwAAAAAAAAAAAFxCogkAAAAAAAAAAAAuIdEEAAAAAAAAAAAAl5BoAgAAAAAAAAAAgEtINAEAAAAAAAAAAMAlJJoAAAAAAAAAAADgEhJNAAAAAFDBWSwWWSwWxcTElHcopSomJsYcGyqv8jo/MzMz1ahRI3l5eenEiRMl7u+bb76RxWJR9+7dSyE6AACAqweJJgAAAAAoQ7Zfwrvyio6OLu/wgQrrX//6l44cOaIHHnhA9evXL3F/nTp1Up8+fbRt2zZ98MEHpRAhAADA1cFa3gEAAAAAQFUWGhrqcHtycrJSUlIKrOPj4yNJatasmSTJ19e3DCIsP76+vubYgOKIi4vT3Llz5eXlpWnTppVav7NmzdKGDRs0depUDRgwQFYrvzYBAAAoDN+YAAAAAKAMnTlzxuH2WbNmafbs2QXWsfn5559LPa6KoEOHDlV2bChbr7/+uhISEjR48GDVq1ev1Prt1KmTWrdurR9//FEffvihBg8eXGp9AwAAVFXcOg8AAAAAAFQahmHo9ddflySNGDGi1Pu39bl06dJS7xsAAKAqItEEAAAAABWc7ZlNMTExdttjY2PNstjYWB07dkzjxo1TgwYN5O3trUaNGmnGjBnmLfokaf/+/RoxYoTq168vb29vNWnSRHPnzlVWVlaBMcTGxurRRx9VixYt5O/vL19fXzVv3lyPPPKIjh8/7tK4YmJizPgvFx0dLYvFovDwcEnS7t27dffdd6t27dry8vLStddeq0mTJik+Pt6lfUvSzp07NXz4cDVs2FDe3t7y8/NTWFiYevTooWeeeUYnT5502C4zM1OvvvqqevbsqRo1asjT01O1atXSnXfeqfXr1xdpv/fff78aN24sX19fBQYG6vrrr9eYMWO0YcMGh20SExM1Z84ctWnTRoGBgfLx8VGTJk00ceJEHTlyxOm+8p47SUlJmjFjhpo3by4fHx9Vr15d/fv3186dOwuMNz4+Xk888YQaNWokb29v1a5dW0OGDNHu3bsLHevJkyf12GOPqUWLFvLz85OXl5fq1Kmjtm3b6rHHHtN3331XaB+X27hxo44eParg4GDddtttTuv9/PPPGj9+vJo2bSpfX195e3urfv366tSpk5566imnq+mGDRsmSdq0aVOBxxYAAAD/YwAAAAAArrioqChDklGU/5bZ6m3ZssVu+9GjR82ytWvXGsHBwYYkIzAw0HB3dzfLunXrZmRmZhr/93//Z/j6+hqSjKCgIMNisZh1hg4d6nT/77zzjuHl5WXW9fLyMnx8fMyfAwICjA0bNhT7GGzZssXpMVi+fLkhyQgLCzNWrFhheHh4mHG7ubmZ7Vq0aGEkJSUVe9/R0dF24/fy8jICAwPNnyUZy5cvz9cuNjbWaNGihVnHYrEYQUFBdu0mTJjgcJ/Z2dnG3//+d7u6fn5+RkhIiBlLUFBQvnb79+836tWrZ7bx9vY2AgIC7GJ///33He7TVufdd981GjdubLa3nQeSDE9PT6ef39GjR42wsDC7urbj5OnpaXz00UdOz889e/YYISEhZrm7u7vdWCUZo0aNKuhjcmjSpEmGJKNPnz5O63z++ed256yHh4c5P2yvqKgop+0bNWpkSDJeffXVYscHAABwtWFFEwAAAABUAWPHjlXbtm114MABJSYmKikpSYsXL5a7u7u2bdumOXPmaPjw4RowYIBiY2OVkJCgixcvavr06ZKk1atXa+PGjfn6/eKLLzRy5Ejl5ORoypQpOnr0qNLS0pSSkqKff/5ZQ4YMUVJSkoYMGeLyyqaCnDt3TmPGjNGoUaN0/PhxJSQkKCkpSS+//LI8PDx04MABLVy4sFh9pqam6m9/+5sMw9CIESP066+/Kj09XYmJiUpOTtauXbv0xBNPqGbNmnbtUlJS1LdvXx04cEARERGKiYlRWlqaEhISlJCQoBdeeEH+/v5asmSJXnrppXz7feqpp7R48WJJ0pgxY3To0CElJycrLi5O8fHx+vDDD9W3b1+7NklJSRowYIBOnjypunXr6tNPP1VKSoouXryoPXv2qFOnTsrIyNDw4cP1448/Oh3zww8/LE9PT23evFkpKSlKTk7Wt99+q2bNmikzM1Pjx49Xbm6uXZucnBwNGTJEx44dU0hIiNasWaOUlBQlJibqwIED6tixo0aNGuV0n5MnT1Z8fLzatGmjr7/+WllZWYqLi1N6erp++eUXPffcc2rRokWhn9flvvzyS0mXnvHlzMSJE5WRkaFbb71V+/btU2ZmpuLj45WWlqb9+/dr9uzZ5mo5Rzp27ChJ2rp1a7HjAwAAuOqUd6YLAAAAAK5Gpb2iqUWLFkZ6enq+tvfdd59Zp3fv3kZubm6+Ot26dTMkGWPHjrXbnpOTYzRp0sSQZCxdutRpfHfccYchyXjkkUcKHUteRVnRpAJWvdhWtjRu3LhY+925c6e5migrK6vI7ebMmWNIMnr06GFkZmY6rLNu3TpDklGjRg27vg8dOmSuxJoyZUqR9zl//nxzRc6+ffvylV+8eNEIDw83JBm33357vnLbMbzmmmuMs2fP5ivfu3evWWf79u12ZatXrzbLNm7cmK9tSkqKufLH0flpW/W2Y8eOIo+3MBkZGeZqPWeruM6ePWvG9Pvvv7u0n0WLFhmSjAYNGpQkXAAAgKsCK5oAAAAAoAp47LHH5OXllW97nz59zPdTp051+DwkW529e/fabf/yyy91+PBh1ahRQw888IDTfY8cOVKSnD5fqKRmzJjhcPudd94pSfr111+Vmppa5P6Cg4MlXXrW0oULF4rcbtmyZZKkSZMmycPDw2GdgQMHKjAwUOfPn7d7htFbb72l3NxcVa9eXbNnzy7yPlevXi1JGjx4sFq2bJmvPCAgQFOmTJEkrV+/XomJiQ77GT9+fL4VWpLUqlUrNWzYUFL+z3/VqlWSpC5duuiWW27J19bX19fctyO243z69GmndYrrjz/+UE5OjiTpmmuucVgnICBAbm5uJdp3jRo1StQeAADgakKiCQAAAACqAGe3EQsNDTXft2/fvsA68fHxdtu/+uorSVJiYqLq1KmjWrVqOXyNGzdOknTs2LESj+Ny1apVU+PGjR2W1alTx3x/eewFadSokZo3b66srCx17NhRCxYs0J49e8wEhiOnTp0yxzd27Finx6J27dpKTk6WZH88duzYIUnq3bu3vL29ixRnZmammfzp1auX03q9e/eWJOXm5ur77793WMd2KzhHbMcxLi7ObvuuXbskSTfffLPTtgWV9e/fX5I0atQoTZ48WVu3bi1WQtCRc+fOme+rVavmsI6Pj4+ZGOvbt6+efvpp7dy5U5mZmUXej63vrKwsJSQkuB4wAADAVYBEEwAAAABUAQEBAQ63W63WItfJysqy2/7777+b28+ePev0ZUvypKWllXgcl3MWc964HcVeEHd3d61atUoNGzbUsWPHNHXqVN14440KDAxU79699dprr+VLiNiOhSSdP3++wONhe9ZR3j7OnDkjSQoLCytynHFxcWbyq27duk7r1atXz3z/xx9/OKxTlON4+TG09VXUfV9u4cKF6tmzp5KTk/XCCy8oIiJCgYGBateunaKionTq1CmnbZ1JT0833ztawWfz5ptvqnXr1jp37pyeeeYZderUSQEBAeratasWLVqUL6l2OR8fH4f7BAAAQH4kmgAAAAAADtmSHB07dpRhGEV6VRatW7fWzz//rLVr12r8+PFq2bKl0tLStHHjRj300ENq3ry59u3bZ9bPu9rp4MGDRToWo0ePNts4umVhVRccHKzNmzdr27ZtmjJlirp06SKr1ardu3drzpw5atKkiVauXFmsPqtXr26+L2gVW4MGDfT999/rs88+09///ne1bdtWubm5+uqrrzRlyhQ1btxYmzdvdto+byIq7z4BAACQH4kmAAAAAIBDtWrVklQ2t8SrCDw9PXXXXXdp6dKl2rdvn86dO6clS5aoWrVqOnHihEaNGmXWtR0LybXj4cqxrFatmtzd3SVJJ0+edFovb5mj5zC5ytZXQSuPirIqqWvXrlqwYIG2b9+uhIQEffTRR2rVqpXS0tI0ZswYnT17tsgx5X0uU2Grktzc3NSnTx+99NJL2rVrl+Li4rRixQo1aNBA8fHxGjZsmNPb6dn6DgoKcvo8LgAAAFxCogkAAAAA4FCXLl0kXbrtm+15PVVZ9erV9eCDD2rBggWSpB9++EEXLlyQJIWHh5u3kPvkk0+K3Xfnzp0lSV988UWRb8Xm6empG264QZK0adMmp/U2btwo6VJipU2bNsWOzZl27dpJkrZs2eK0TkGrghzx9vbWHXfcoXXr1km6dFu67du3F7l9SEiImbQ7cuRIsfYdEBCgYcOGadmyZZKks2fP2q1ay+vo0aOSpOuuu65Y+wAAALgakWgCAAAAADjUs2dPNW7cWJL02GOPOV39YVPYCpOKIiMjo8DyvM/ncXP787/N48aNkyQtW7ZMP/zwQ4F9XH4sRo8eLXd3d124cEFRUVFFjvWee+6RJL3//vvav39/vvLk5GQtXLhQknTbbbcpKCioyH0XZujQoZKk7du3KyYmJl95WlqaFi1a5LBtdna2+awqR5wd46Lo3r27JOnbb791WF7YeVqUfe/cuVOS1KNHj2LFBgAAcDUi0QQAAAAAcMhqtWrJkiWyWq3avn27unfvrk2bNikrK8usc+TIES1ZskTt27fXq6++Wo7RFt2qVavUpUsXLV261G5VTE5OjjZs2KCpU6dKkm666SaFhISY5ZMnT1arVq2Unp6unj176uWXXzZXPElSQkKC1q9fr5EjR6pbt252+2zcuLGeeOIJSdLChQv1wAMP6PDhw2b5xYsXtXr1ag0aNMiu3cSJE9WwYUNlZWWpX79+Wr9+vZnA2bdvn/r06aOjR4/Ky8tLc+fOLaUjdElkZKS5QioyMlJr1641n1V18OBB9evXT+fOnXPY9uTJk2rSpInmzp2rH374QdnZ2WbZ3r17NWLECEmSn59fsZM5ERERkv5MBl1ux44duuGGG/Tiiy/q4MGD5vEyDEM7duzQxIkTJUn16tUzV4zllZOTo927d0si0QQAAFAU1vIOAAAAAABQcd1yyy167733NHLkSO3cuVO9evWSh4eHAgMDlZycbLc6aODAgeUXaDHYEg47duyQJHl5ecnf31/x8fFmUqJOnTr697//bdfO399fn332mSIjI/XNN9/ob3/7m/7+978rKChIubm5unjxolnXthIsr7lz5yopKUmvvPKKli1bpmXLlsnf318eHh5KSEiQYRj5ViQFBATo448/Vt++fXXy5Enddttt8vb2lqenp7k/Ly8vvfPOO2rdunWpHier1ar33ntPEREROnHihAYPHiwvLy95e3srMTFRnp6eeu+993TnnXc6bH/kyBHNnDlTM2fOlLu7u4KCgpScnGyuOPL09FR0dLSqVatWrLgiIyP1yCOP6Oeff9bhw4fVpEmTfHX27dunSZMmadKkSeb5mpiYaCa8AgMD9e6775rPwMpr06ZNSklJUc2aNdWrV69ixQYAAHA1YkUTAAAAAKBAAwcO1K+//qqoqCh16NBB/v7+SkhIkJeXl1q3bq0HHnhAH3zwgblip6K744479J///Ef333+/WrduraCgICUmJiogIEAdOnTQM888owMHDqh58+b52tapU0fbt2/XypUrdccdd6h27dpKTU1VZmamwsPDNWDAAP3zn//Ul19+ma+tu7u7Xn75ZW3fvl3Dhw9XgwYNlJWVJcMwdP3112vs2LFau3ZtvnYtW7bUgQMHNGvWLP3lL3+R1WpVRkaGGjVqpAkTJujAgQMaPHhwmRyra6+9Vnv27NGkSZPUsGFDGYYhb29vDR48WDt27NAdd9zhsF3dunX18ccf67HHHlOnTp1Uu3ZtJScny2q16vrrr9fDDz+s/fv3uxR3zZo1zZVfK1asyFfevn17rVmzRhMnTlTbtm1Vo0YNXbx4Ud7e3vrLX/6iKVOm6ODBg/lWndnY+rz//vvl4eFR7PgAAACuNhbDMIzyDgIAAAAAAKCovvzyS/Xo0UONGjXS4cOHZbFYSqXflJQUM3n4yy+/6Nprry2VfgEAAKoyVjQBAAAAAIBKpXv37rr11lv122+/6b333iu1fl9++WUlJSXpgQceIMkEAABQRKxoAgAAAAAAlc6+ffv0l7/8Rdddd5327t0rN7eS/S1tcnKyGjZsqPT0dP36668KDQ0tpUgBAACqNmt5BwAAAAAAAFBcrVq10rJlyxQbG6vTp0+rbt26JeovNjZWDz/8sG688UaSTAAAAMXAiiYAAAAAAAAAAAC4hGc0AQAAAAAAAAAAwCUkmgAAAAAAAAAAAOASEk0AAAAAAAAAAABwCYkmAAAAAAAAAAAAuIREEwAAAAAAAAAAAFxCogkAAAAAAAAAAAAuIdEEAAAAAAAAAAAAl5BoAgAAAAAAAAAAgEtINAEAAAAAAAAAAMAl/w9p7T3nsKKDcwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Get the states from file\n",
+ "states = nwbfile.get_acquisition(\"task_recording\").states\n",
+ "state_types = nwbfile.get_lab_meta_data(\"task\").state_types\n",
+ "\n",
+ "# Plot the data\n",
+ "plot_states(states=states[20:100],\n",
+ " state_types=state_types,\n",
+ " marker_size=500)\n",
+ "plt.title(\"States\", fontsize=18)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d811ac1c-771a-4fc0-a995-613065ae60fd",
+ "metadata": {},
+ "source": [
+ "## Accessing the trials\n",
+ "\n",
+ "The `TrialsTable` is a column-based table to store information about trials, one trial per row.\n",
+ "The table can be accessed from the file as `nwbfile.trials`.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "ca66b7b5-c6ac-405f-8297-8aeb6cc4d92e",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2024-08-28T11:41:33.949842Z",
+ "start_time": "2024-08-28T11:41:33.947843Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "trials = nwbfile.trials"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "cc9adeaf-ae23-403f-ad66-5a6ed695760f",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2024-08-28T11:41:35.210373Z",
+ "start_time": "2024-08-28T11:41:35.192278Z"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " start_time | \n",
+ " stop_time | \n",
+ " states | \n",
+ " events | \n",
+ " actions | \n",
+ " is_warm_up | \n",
+ " nose_in_center | \n",
+ " target_reward_delay | \n",
+ " block_type | \n",
+ " reward_delay | \n",
+ " ... | \n",
+ " is_rewarded | \n",
+ " is_violation | \n",
+ " is_opt_out | \n",
+ " wait_time | \n",
+ " wait_time_unthresholded | \n",
+ " wait_time_threshold | \n",
+ " wait_for_center_poke | \n",
+ " z_scored_wait_for_center_poke | \n",
+ " rewarded_port | \n",
+ " inter_trial_interval | \n",
+ "
\n",
+ " \n",
+ " id | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 16.2116 | \n",
+ " 44.1310 | \n",
+ " [0, 1, 2] | \n",
+ " [0, 1, 2, 3, 4] | \n",
+ " [0, 1, 2, 3, 4] | \n",
+ " False | \n",
+ " 0.948330 | \n",
+ " 1.5 | \n",
+ " Mixed | \n",
+ " 0.606090 | \n",
+ " ... | \n",
+ " False | \n",
+ " True | \n",
+ " False | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 15271.6804 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Right | \n",
+ " 26.7877 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 44.1310 | \n",
+ " 75.1291 | \n",
+ " [3, 4, 5] | \n",
+ " [5, 6, 7, 8, 9, 10, 11] | \n",
+ " [5, 6, 7, 8, 9, 10] | \n",
+ " False | \n",
+ " 1.149690 | \n",
+ " 1.5 | \n",
+ " Mixed | \n",
+ " 100.000000 | \n",
+ " ... | \n",
+ " False | \n",
+ " True | \n",
+ " False | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 15271.6804 | \n",
+ " 28.7726 | \n",
+ " 1.511654 | \n",
+ " Right | \n",
+ " 28.7726 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 75.1291 | \n",
+ " 77.0541 | \n",
+ " [6, 7, 8, 9, 10, 11, 12] | \n",
+ " [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] | \n",
+ " [11, 12, 13, 14, 15, 16, 17] | \n",
+ " False | \n",
+ " 0.819198 | \n",
+ " 1.5 | \n",
+ " Mixed | \n",
+ " 0.551172 | \n",
+ " ... | \n",
+ " True | \n",
+ " False | \n",
+ " False | \n",
+ " 0.5512 | \n",
+ " 0.5512 | \n",
+ " 15271.6804 | \n",
+ " 0.2159 | \n",
+ " -0.235383 | \n",
+ " Left | \n",
+ " 0.2159 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 77.0541 | \n",
+ " 81.9992 | \n",
+ " [13, 14, 15] | \n",
+ " [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3... | \n",
+ " [18, 19, 20, 21, 22] | \n",
+ " False | \n",
+ " 1.184697 | \n",
+ " 1.5 | \n",
+ " Mixed | \n",
+ " 100.000000 | \n",
+ " ... | \n",
+ " False | \n",
+ " True | \n",
+ " False | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 15271.6804 | \n",
+ " 3.6389 | \n",
+ " -0.025972 | \n",
+ " Left | \n",
+ " 1.3749 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 81.9992 | \n",
+ " 83.2778 | \n",
+ " [16, 17, 18] | \n",
+ " [48, 49, 50] | \n",
+ " [23, 24, 25, 26, 27] | \n",
+ " False | \n",
+ " 0.946593 | \n",
+ " 1.5 | \n",
+ " Mixed | \n",
+ " 100.000000 | \n",
+ " ... | \n",
+ " False | \n",
+ " True | \n",
+ " False | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 15271.6804 | \n",
+ " 0.1183 | \n",
+ " -0.241354 | \n",
+ " Right | \n",
+ " 0.1183 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 38 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " start_time stop_time states \\\n",
+ "id \n",
+ "0 16.2116 44.1310 [0, 1, 2] \n",
+ "1 44.1310 75.1291 [3, 4, 5] \n",
+ "2 75.1291 77.0541 [6, 7, 8, 9, 10, 11, 12] \n",
+ "3 77.0541 81.9992 [13, 14, 15] \n",
+ "4 81.9992 83.2778 [16, 17, 18] \n",
+ "\n",
+ " events \\\n",
+ "id \n",
+ "0 [0, 1, 2, 3, 4] \n",
+ "1 [5, 6, 7, 8, 9, 10, 11] \n",
+ "2 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] \n",
+ "3 [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3... \n",
+ "4 [48, 49, 50] \n",
+ "\n",
+ " actions is_warm_up nose_in_center \\\n",
+ "id \n",
+ "0 [0, 1, 2, 3, 4] False 0.948330 \n",
+ "1 [5, 6, 7, 8, 9, 10] False 1.149690 \n",
+ "2 [11, 12, 13, 14, 15, 16, 17] False 0.819198 \n",
+ "3 [18, 19, 20, 21, 22] False 1.184697 \n",
+ "4 [23, 24, 25, 26, 27] False 0.946593 \n",
+ "\n",
+ " target_reward_delay block_type reward_delay ... is_rewarded \\\n",
+ "id ... \n",
+ "0 1.5 Mixed 0.606090 ... False \n",
+ "1 1.5 Mixed 100.000000 ... False \n",
+ "2 1.5 Mixed 0.551172 ... True \n",
+ "3 1.5 Mixed 100.000000 ... False \n",
+ "4 1.5 Mixed 100.000000 ... False \n",
+ "\n",
+ " is_violation is_opt_out wait_time wait_time_unthresholded \\\n",
+ "id \n",
+ "0 True False NaN NaN \n",
+ "1 True False NaN NaN \n",
+ "2 False False 0.5512 0.5512 \n",
+ "3 True False NaN NaN \n",
+ "4 True False NaN NaN \n",
+ "\n",
+ " wait_time_threshold wait_for_center_poke z_scored_wait_for_center_poke \\\n",
+ "id \n",
+ "0 15271.6804 NaN NaN \n",
+ "1 15271.6804 28.7726 1.511654 \n",
+ "2 15271.6804 0.2159 -0.235383 \n",
+ "3 15271.6804 3.6389 -0.025972 \n",
+ "4 15271.6804 0.1183 -0.241354 \n",
+ "\n",
+ " rewarded_port inter_trial_interval \n",
+ "id \n",
+ "0 Right 26.7877 \n",
+ "1 Right 28.7726 \n",
+ "2 Left 0.2159 \n",
+ "3 Left 1.3749 \n",
+ "4 Right 0.1183 \n",
+ "\n",
+ "[5 rows x 38 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "trials[:].head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "1b7a20f0-94c2-46ac-8619-f2a606cafae0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABscAAANtCAYAAADM36WQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hU1f728XvS+6RAAgkBFGkiRXqVBBFFEdFQxALYsICHIiKgkYBKsYAiKB5FwIJ0EcFGC0WKFAE9AoJCqAmE9N7meZFn5k/IJKQSYL6f65rLsFfZvz17NOfMzVrbYDKZTAIAAAAAAAAAAABsgF1VFwAAAAAAAAAAAABcLYRjAAAAAAAAAAAAsBmEYwAAAAAAAAAAALAZhGMAAAAAAAAAAACwGYRjAAAAAAAAAAAAsBmEYwAAAAAAAAAAALAZhGMAAAAAAAAAAACwGYRjAAAAAAAAAAAAsBmEYwAAAAAAAAAAALAZhGMAAAAAAAAAAACwGYRjAADcAOrWrSuDwVDoNWzYMJ04ccJqm8Fg0LJly4qc02Qy6fXXX1fNmjXl6uqq7t276+jRo1c877Rp0yr7cgEAuCbk5uYqPDxcN910k1xdXVWvXj298cYbMplMkqTs7Gy98soratq0qdzd3RUYGKhBgwbp7NmzV5x7zpw5qlu3rlxcXNSuXTv99ttvBdozMjI0bNgw+fn5ycPDQ2FhYYqJiamU60S+K91vSYqIiFCjRo3k7u4uHx8fde/eXbt27Sp23qlTp6pNmzby9PSUv7+/+vTpoyNHjhToEx0drccff1w1atSQu7u7WrZsqRUrVlTKdQIAANgCwjEAAG4Au3fv1rlz5yyvdevWSZL69eun4ODgAm3nzp3TpEmT5OHhoZ49exY559tvv61Zs2Zp7ty52rVrl9zd3XX33XcrIyOjQL/JkycXmPvFF1+s1GsFAOBaMX36dH388ceaPXu2Dh06pOnTp+vtt9/Whx9+KElKS0vTvn37FB4ern379mnlypU6cuSIevfuXey8S5Ys0ejRozVx4kTt27dPzZs31913363z589b+owaNUrff/+9li1bps2bN+vs2bN66KGHKvV6bd2V7rckNWjQQLNnz9Yff/yhbdu2qW7duurRo4cuXLhQ5LybN2/WsGHDtHPnTq1bt07Z2dnq0aOHUlNTLX0GDRqkI0eOaPXq1frjjz/00EMPqX///vr9998r9ZoBAABuVAbTpX/FCQAA3BBGjhypNWvW6OjRozIYDIXab7/9drVs2VLz5s2zOt5kMikwMFAvvfSSxowZI0lKTExUQECAFixYoIcfflhS/sqxkSNHauTIkZV2LQAAXKt69eqlgICAAr9Pw8LC5Orqqq+++srqmN27d6tt27aKiopS7dq1rfZp166d2rRpo9mzZ0uS8vLyFBwcrBdffFHjxo1TYmKiqlevrkWLFqlv376SpMOHD6tx48basWOH2rdvX8FXCqls9zspKUlGo1Hr16/XnXfeWaLzXLhwQf7+/tq8ebPuuOMOSZKHh4c+/vhjPf7445Z+fn5+mj59up5++ulyXBUAAIBtYuUYAAA3mKysLH311Vd68sknrQZje/fu1f79+/XUU08VOcfx48cVHR2t7t27W44ZjUa1a9dOO3bsKNB32rRp8vPz0+2336533nlHOTk5FXcxAABcwzp27KgNGzbo77//liQdOHBA27ZtK3ZldmJiogwGg7y9va22Z2Vlae/evQV+B9vZ2al79+6W38F79+5VdnZ2gT6NGjVS7dq1C/2eRsUp7f3OysrSf//7XxmNRjVv3rzE50lMTJQk+fr6Fjj3kiVLFBcXp7y8PC1evFgZGRkKCQkp+wUBAADYMIeqLgAAAFSsVatWKSEhQUOGDLHaPm/ePDVu3FgdO3Ysco7o6GhJUkBAQIHjAQEBljZJ+s9//qOWLVvK19dX27dv1/jx43Xu3DnNmDGj/BcCAMA1bty4cUpKSlKjRo1kb2+v3NxcvfXWW3r00Uet9s/IyNArr7yigQMHysvLy2qf2NhY5ebmWv0dfPjwYUn5v6ednJwKBWyX/55GxSrp/V6zZo0efvhhpaWlqWbNmlq3bp2qVatWonPk5eVp5MiR6tSpk2677TbL8aVLl2rAgAHy8/OTg4OD3Nzc9O233+qWW26p0GsEAACwFYRjAADcYObNm6eePXsqMDCwUFt6eroWLVqk8PDwCjnX6NGjLT83a9ZMTk5OevbZZzV16lQ5OztXyDkAALhWLV26VF9//bUWLVqkJk2aaP/+/Ro5cqQCAwM1ePDgAn2zs7PVv39/mUwmffzxx1VUMcqjpPc7NDRU+/fvV2xsrD799FP1799fu3btkr+//xXPMWzYMP3555/atm1bgePh4eFKSEjQ+vXrVa1aNa1atUr9+/fX1q1b1bRp0wq/VgAAgBsd4RgAADeQqKgorV+/XitXrrTavnz5cqWlpWnQoEHFzlOjRg1JUkxMjGrWrGk5HhMToxYtWhQ5rl27dsrJydGJEyfUsGHD0l8AAADXkZdfflnjxo2zPIuzadOmioqK0tSpUwuEJeZgLCoqShs3bixy1ZgkVatWTfb29oqJiSlwPCYmxvL7uUaNGsrKylJCQkKB1WOX9kHFK+n9dnd31y233KJbbrlF7du3V/369TVv3jyNHz++2PmHDx+uNWvWaMuWLapVq5bl+D///KPZs2frzz//VJMmTSRJzZs319atWzVnzhzNnTu3Eq4WAADgxsYzxwAAuIHMnz9f/v7+uu+++6y2z5s3T71791b16tWLneemm25SjRo1tGHDBsuxpKQk7dq1Sx06dChy3P79+2VnZ1eivxkNAMD1Li0tTXZ2Bf9vtb29vfLy8ix/NgdjR48e1fr16+Xn51fsnE5OTmrVqlWB38F5eXnasGGD5Xdwq1at5OjoWKDPkSNHdPLkyWJ/T6N8SnK/rcnLy1NmZmaR7SaTScOHD9e3336rjRs36qabbip0XkllOjcAAACsY+UYAAA3iLy8PM2fP1+DBw+Wg0PhX/HHjh3Tli1b9MMPP1gd36hRI02dOlUPPvigDAaDRo4cqTfffFP169fXTTfdpPDwcAUGBqpPnz6SpB07dmjXrl0KDQ2Vp6enduzYoVGjRumxxx6Tj49PZV4qAADXhPvvv19vvfWWateurSZNmuj333/XjBkz9OSTT0rKD8b69u2rffv2ac2aNcrNzbU8E8zX11dOTk6SpDvvvFMPPvighg8fLil/2+LBgwerdevWatu2rd5//32lpqbqiSeekCQZjUY99dRTGj16tHx9feXl5aUXX3xRHTp0UPv27avgnbANV7rfqampeuutt9S7d2/VrFlTsbGxmjNnjs6cOaN+/fpZ5rn8fg8bNkyLFi3Sd999J09PT8tnxGg0ytXVVY0aNdItt9yiZ599Vu+++678/Py0atUqrVu3TmvWrLn6bwQAAMANgHAMAIAbxPr163Xy5EnLFzSX+/zzz1WrVi316NHDavuRI0eUmJho+fPYsWOVmpqqoUOHKiEhQZ07d9ZPP/0kFxcXSZKzs7MWL16siIgIZWZm6qabbtKoUaMKPIcMAIAb2Ycffqjw8HC98MILOn/+vAIDA/Xss8/q9ddflySdOXNGq1evlqRC2xJv2rRJISEhkvK3zYuNjbW0DRgwQBcuXNDrr7+u6OhotWjRQj/99JMCAgIsfWbOnCk7OzuFhYUpMzNTd999tz766KPKvWAbd6X7bW9vr8OHD2vhwoWKjY2Vn5+f2rRpo61bt1q2Q5QK32/zM+jMnwez+fPna8iQIXJ0dNQPP/ygcePG6f7771dKSopuueUWLVy4UPfee2/lXzgAAMANyGAymUxVXQQAAAAAAAAAAABwNfDMMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAACBJyszMVEREhDIzM6u6FAAAbAq/g20L9xsAAKDqGUwmk6mqiwAAAFUvKSlJRqNRiYmJ8vLyqupyAACwGfwOti3cbwAAgKrHyjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AyHqi4AAK51ubm5+vvvv+Xh4SGDwVDV5QCVJjk5WZJ05swZJSUlVXE1AADYDn4H2xbuNwAAQOUxmUxKSUlRgwYNZG9vX2Q/njkGAFdw6NAh3XrrrVVdBgAAAAAAAACgBP766y81bty4yHZWjgHAFdSsWVOSdPDgQfn4+FRxNUD5/PHHH7r33nv1ww8/qGnTpgXacnJytGPHDnXo0EEODvxPBAAArhZ+B9sW7jcAAEDl2bVrl/r27Wv5Trco/K8wALgCO7v8xzMGBgbKz8+viqsByuf8+fOSpICAANWqVatAW3Z2ttzc3BQUFCRHR8eqKA8AAJvE72Dbwv0GAACoPP/++6+k//tOtyjFtwIAAAAAAAAAAAA3EMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEANsNgMMhgMCgyMrKqSwEAAAAAAAAAVBGHqi4AqGqrVq3S/v371aJFC/Xp06eqywEAAAAAAAAAAJWIlWOweatWrdKkSZO0atWqqi4FAAAAAAAAAABUMsIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjHckJYsWaKePXsqICBAjo6O8vb2Vv369dW7d2/NmTNHGRkZioyMlMFg0MKFCyVJCxculMFgKPCKjIwsNPfKlSvVq1cvBQQEyMnJSQEBAerVq5e+/fbbIusZMmSIDAaDhgwZIpPJpLlz56pt27by8vKSl5eXOnfurEWLFlXoe3D69GmNGjVKTZo0kbu7u5ydnRUYGKhWrVpp1KhR2r17t9VxGRkZev/999WxY0f5+PjIxcVFderU0aBBg7R///4iz1fce2YWEhIig8GgiIiIYscnJyfrtddeU6NGjeTq6io/Pz/16tVLu3btKvaa4+Pj9fLLL6tevXpycXFRzZo11a9fP+3du7fYcQAAAAAAAAAA2+FQ1QUAFe3JJ5/U/PnzLX/28PBQdna2jh07pmPHjun777/XfffdZwm2EhMTlZGRIRcXFxmNxgJzOTk5WX7OysrSoEGDtGTJEkmSnZ2djEajYmNjtXbtWq1du1YDBw7UwoUL5ejoWGR9AwcO1JIlSyzjExIS9Ouvv+rXX3/V+vXrNW/ePBkMhnK9BwcOHFBoaKji4+MlSfb29vLy8lJ0dLTOnTunffv2KT4+XgsWLCgw7syZM7rnnnv0559/SpIcHR3l5uamkydP6ssvv9TXX3+t999/Xy+++GK56ivOuXPn1LJlSx07dkwuLi6ys7NTXFyc1q5dq3Xr1un7779Xjx49Co07ceKEQkJCFBUVJSn/3qWlpWn58uVavXq1li1bVmk1AwAAAAAAAACuH6wcww1l27Ztmj9/vuzs7DR9+nRdvHhRycnJSk1NVWxsrH7++WcNHjxYTk5O6tixo6KjozVgwABJ0oABAxQdHV3g1bFjR8vcEyZM0JIlS2QwGBQeHq6LFy8qLi5OsbGxmjBhgiTpm2++UXh4eJH1rVq1SkuXLtUbb7yh+Ph4xcXFKSYmRsOHD5ckzZ8/Xx9++GG534eXXnpJ8fHxatmypXbs2KHs7GzFxcUpIyNDf//9t9599101adKkwJjc3FyFhYXpzz//lNFo1FdffaWUlBQlJCTon3/+Ua9evZSXl6cRI0boxx9/LHeNRRk2bJicnJy0ceNGpaamKiUlRb/99psaNmyorKwsDR06VHl5eYVq79evn6KiouTj46OlS5cqNTVViYmJ+t///qd27dpp8ODBlVYzAAAAAAAAAOD6QTiGG8r27dslSd27d9fYsWPl6+trafPz81OPHj20YMECBQYGlmreM2fO6IMPPpAkjRs3TpMnT5a3t7ckycfHR2+99ZZGjx4tSZoxY4bOnTtndZ7ExES99tpreu211+Tl5SVJql69uj788EM99thjkqRJkyYpIyOjVPVdzvw+zJ49W+3bt7esRHNyclL9+vX10ksv6eWXXy4wZvny5ZZtC5cuXapHH33UsnLu5ptv1rfffqt27drJZDJp7Nix5aqvOA4ODtq0aZNCQ0NlZ2cng8GgNm3aWFZ+RUVFaceOHQXGrFixQnv27JEkLVu2TP369ZODQ/7C2FtvvVU//fST/Pz8SlxDZmamkpKSCrwAAAAAAAAAADcGwjHcUMyB1YULF5Sbm1th865YsUI5OTlycXHRuHHjrPZ57bXX5OzsrOzsbC1fvtxqH1dXV40ZM8Zq2+uvvy5JiouL07p168pVr/l9KCqks8a8XWSHDh2sblvo4OCgiRMnSpL+/PNP/fHHH+WqsShDhw6Vv79/oeNNmzbVTTfdJEk6ePBggbbFixdLkjp16qQ777yz0Fg3N7dSBXpTp06V0Wi0vIKDg0tzCQAAAAAAAACAaxjhGG4od955p1xcXPT777+rS5cumjdvno4fP17uec2rktq0aWNZ8XU5Hx8ftW7dukD/y7Vu3brI8fXr11etWrWKHV9SvXr1kiQNHjxYL730kjZv3qy0tLRix5jP2b179yL7hIaGyt7evkJqLEq7du2KbDOv+IuLiytw3FxLt27dihxbXNvlxo8fr8TERMvr1KlTJR4LAAAAAAAAALi2EY7hhlKvXj199tln8vDw0I4dO/T000/r5ptvlr+/vwYMGKDvvvtOJpOp1POeP39ekhQUFFRsP3O4Ze5/uSuNN7cXNb6k3n77bYWGhiolJUUzZsxQSEiIvLy81Lp1a02cOFFnzpwpNKYk1+ji4qJq1apVSI1F8fT0LLLNvFVidnZ2geMlqd18b0rC2dlZXl5eBV4AAAAAAAAAgBsD4RhuOI8++qiioqI0d+5cDRgwQMHBwbpw4YKWLl2qPn36qGvXrjf8M6S8vb21ceNGbd26VWPHjlWnTp3k4OCgvXv3avLkyapfv76++eabqi4TAAAAAAAAAICrjnAMNyRfX189++yzWrx4sU6ePKljx45p3LhxMhgM2rp1qyIiIko1n/kZWKdPny62n7nd2jOzJFldsWWtvajxpdW5c2dNnz5d27ZtU0JCgr777js1bdpU6enpevLJJxUTE2PpW5JrzMjI0MWLF63WaN5uMSMjo8jxiYmJZb6W4phrKe79vdJ7DwAAAAAAAACwDYRjsAn16tXT1KlT9cgjj0iS1q1bZ2mzs8v/16C47RYvfZZYUQFPQkJCgWeTWbNnzx6lpKRYbTt27JglmDKfryK5uLiod+/eWrlypaT8EGvbtm2WdvM5N2zYUOQckZGRysnJkVT4Gn18fCSpyOdzJScn69ChQ2W/gGKYa9+0aVORfTZu3Fgp5wYAAAAAAAAAXF8Ix3BDyczMLLbd1dVV0v8FYpIsz5NKSEgoclxYWJgcHByUkZGh6dOnW+0zZcoUZWZmytHRUWFhYVb7pKen691337Xa9uabb0rKX/V21113FXsdxcnJyVFeXl6R7eb3QCr4Pjz88MOSpB07duiXX36xOu/kyZMlSbfddptuu+22Au3NmzeXJK1YscLqed99990r3p+yGjBggCRp27ZtioyMLNSenp6ud955p1LODQAAAAAAAAC4vhCO4YYyfPhw9e/fXytWrND58+ctx1NSUjR37lx98cUXkqT77rvP0mYOebZu3arDhw9bnTcoKEgjRoyQJE2bNk0TJ060hGkJCQkKDw+3hC+jR49WzZo1rc5jNBr1xhtvaOrUqUpOTpYkxcbGasSIEVq4cKEkKTw8XC4uLmV9C3T69GnVr19fb775pn7//XfLSi9JOnjwoB577DFJkru7u7p27WppCwsLU7t27SRJ/fv316JFi5SdnS1JOn78uMLCwrRjxw5J0ttvv13ovAMHDpQk/fzzz5o4caLluW6xsbGaMGGC3nzzTXl7e5f5uooTFhamli1bWn5esWKFcnNzJUmHDh1Sz549deHChUo5NwAAAAAAAADg+kI4hhtKdna2li1bpr59+yogIECenp7y8fGRp6ennn/+eWVlZalz58569dVXLWPCwsJUvXp1xcfHq3Hjxqpevbrq1q2runXraufOnZZ+U6ZMUf/+/WUymTR58mT5+fnJ19dXfn5+llVfAwcO1BtvvFFkfX369FG/fv00YcIE+fj4yNfXV/7+/po1a5YkadCgQfrPf/5T7vfh33//VXh4uFq2bCkXFxf5+fnJ2dlZzZs3V2RkpJycnLRgwQL5+vpaxtjb22vFihVq0qSJEhMT9eijj8rDw0M+Pj66+eabtXr1atnZ2emDDz5Qz549C51zyJAhCg0NlSRNnjxZ3t7eluubNm2apk+fblldVtEcHBy0bNkyBQcHKy4uTn379pW7u7u8vb116623aseOHZbwEQAAAAAAAABg2wjHcEMJDw/XrFmz9OCDD6pRo0ZycHBQSkqK/P39ddddd+nzzz9XZGSk3N3dLWN8fHy0ZcsWPfzwwwoKClJiYqKioqIUFRWljIwMSz8nJyctWbJEy5cvV8+ePeXn56fk5GT5+fmpZ8+eWrlypRYtWiRHR8dia/zmm2/00Ucf6fbbb1dOTo7c3d3VoUMHffHFF1q4cGGBrQ7LIigoSKtXr9aoUaPUvn171axZUykpKXJwcNCtt96qYcOG6c8//1Tfvn2tjt2zZ49mzJih9u3by9XVVWlpaQoODtbjjz+uvXv3Fhne2dvba+3atZo0aZIaNWokJycnGQwG9ejRQ+vWrdOYMWPKdV1XcvPNN2v//v0aPXq0brrpJplMJrm4uKhv377avn27evfuXannBwAAAAAAAABcHwwmk8lU1UUAN7ohQ4Zo4cKFGjx4sBYsWFDV5aCUkpKSZDQaFRsbKz8/v6ouByiXffv2qVWrVtq7d69lO1Kz7Oxs/fDDD7r33nuvGPQDAICKw+9g28L9BgAAqDxbtmxR165dlZiYKC8vryL7sXIMAAAAAAAAAAAANoNwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2w6GqCwBg3fbt2/XQQw+VakzHjh21cuXKSqoIAAAAAAAAAIDrH+EYcBUsWLBACxYsKNWYrKwsxcTElGpMXFxcqfoDAAAAAAAAAGBrCMeAa1RISIhMJlNVlwEAAAAAAAAAwA2FZ44BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZjhUdQEAAKDsjh49quTk5BL3P3ToUCVWAwAAAAAAAFSc0n73deTIkRL1IxwDAOA6dfToUTVo0KBMY9PT0yu4GgAAAAAAAKDilOe7rythW0UAAK5TpflbM5dzdXWtwEoAAAAAAACAilWe776uhHAMAAAAAAAAAAAANoNwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2g3AMAAAAAAAAAAAANoNwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2g3AMAAAAAAAAAAAANoNwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2g3AMgM0ICQmRwWBQREREVZcCAAAAAAAAAKgihGMAAAAAAAAAAACwGYRjAAAAAAAAAAAAsBmEYwAAAAAAAAAAALAZhGMAAAAAAAAAAACwGYRjwHUmJCREBoNBERERys7O1nvvvafWrVvL29tbBoNBkZGRlr5//vmnhg4dqvr168vNzU0eHh5q1qyZXn31VcXGxhaa+8UXX5TBYFDfvn0LtWVnZ8vT01MGg0HVq1eXyWQq1Ofuu++WwWBQeHh4gePHjx/X9OnTdc8996hBgwZyd3eXh4eHbr31Vo0cOVInT56skOvNzc3Vhx9+qJYtW8rd3V2+vr4KCQnR8uXLS/DOAgAAAAAAAABsgUNVFwCgbDIyMhQSEqLt27fLwcHBElyZvf322xo/frzy8vIkSW5ubsrOztYff/yhP/74Q/Pnz9fatWt1++23W8aEhoZq9uzZioyMlMlkKjDfb7/9ppSUFElSbGys/vjjDzVr1szSnp2drW3btkmSunXrVqDWJ554Qps3b5YkOTk5ydPTU/Hx8Tp06JAOHTqkBQsWaM2aNercuXOZrzczM1MPPPCAfv75Z0mSnZ2dnJyctGXLFm3evFmvvPJK6d5gAAAAAAAAAMANiZVjwHVqzpw5OnjwoObPn6+kpCTFxcXpwoULatasmebNm6dXXnlFbm5ueuutt3Tu3DmlpqYqLS1Ne/bsUbdu3XTu3Dn17t3bEnhJ/7dK6+LFizpw4ECB823atEmS5OXlJUnauHFjgfZdu3YpLS1Nzs7O6tChQ4G2Fi1aaM6cOfr777+Vnp6u2NhYZWZmateuXbrnnnuUmJioAQMGKD09vUzXK0njx4/Xzz//LIPBoDfffFPx8fGKj49XdHS0nn/+eU2fPl379+8v8/sNAAAAAAAAALgxEI4B16mUlBQtWrRIQ4YMkaurqyTJz89Pjo6OGjNmjCRp+fLlmjBhgmrUqCFJsre3V6tWrfTzzz+rVatWOn36tD777DPLnL6+vmrevLmkwuGX+c8jR44str1Dhw5ycXEp0Pb+++/rhRdeUP369WVnl/+fHQcHB7Vt21Zr1qxRs2bNdPbsWa1YsaLU1+vr66uzZ8/qww8/lCS99tprevXVVy0hnr+/vz766CMNHDhQiYmJV3xfAQAAAAAAAAA3NsIx4DrVpEkT3X///YWOr1ixQgkJCbr99tt19913Wx3r4OCggQMHSpJlG0Kz0NBQSQXDr8zMTO3YsUPu7u4aPXq0ZbvC3NxcSx/zyjLz+JKyt7fXPffcI0mWbRmtKep6pfwQMCcnR66urpZg8HIRERElrikzM1NJSUkFXgAAAAAAAACAGwPPHAOuU506dbJ6/Ndff5UkHTp0yLJizBrzFoZRUVEFjnfr1k0zZ87U1q1blZubK3t7e23fvl0ZGRm6++67ZTQa1a5dO23dulV79+5V27ZtlZGRoR07dkgqOhzbunWr5s2bp507d+r06dNKTU0t1Of06dOlvl5J2rNnjySpdevWlhVjl2vQoIGCgoJ05syZIucxmzp1qiZNmnTFfgAAAAAAAACA6w8rx4DrlL+/v9XjZ8+elSRlZGQoJiamyJd5NVRaWlqB8XfccYfs7e2VlJSk3bt3S/q/VWHdunUr8E/z6rLt27crMzNTrq6uateuXaGaXnnlFd1xxx1auHChjhw5ooyMDPn4+CggIEABAQFyd3eXJKuB2ZWuV5LOnz8vSQoKCiqyjyTVqlWr2Haz8ePHKzEx0fI6depUicYBAAAAAAAAAK59hGPAdcre3t7qcfNWhwMGDJDJZLri68SJEwXGe3l5qVWrVpL+L/wy/7OocMz8z06dOsnJyanAfOvWrdPbb78tSXrhhRf0xx9/KDMzU3FxcYqOjlZ0dLRGjRolSTKZTKW+3srg7OwsLy+vAi8AAAAAAAAAwI2BcAy4wZi3Urx8u8TSuPS5Y6mpqfrtt9/k7e2tli1bSpLat28vV1dX/frrr8rKyioUnl1q8eLFkqS7775bc+bM0W233VYo6IqOji5zrdL/rSq70paJJdlSEQAAAAAAAABwYyMcA24w5mdz7d27V+fOnSvTHOZwbPv27dqwYYOys7PVtWtX2dnl/yfDyclJnTp1UlpamtavX2/ZftHa88bMWxLefvvtVs9lMpks4VpZtW7dWlL+s8dSUlKs9jl69GixzzQDAAAAAAAAANgGwjHgBtOvXz95e3srOztbo0ePLnarwry8PCUkJBQ63rlzZzk6Oio9PV1TpkyRVHhVmDkImzx5snJycuTh4WEJqS5lNBolSQcOHLBaw9y5c/Xvv/+W6NqKEhYWJnt7e6Wnp+vdd9+12mfy5MnlOgcAAAAAAAAA4MZAOAbcYLy9vfX+++9Lyt/S8L777tOuXbuUl5cnKT8QO3TokN577z01adJEa9asKTSHu7u72rZtK0natWuXpMLhmPnP5vYuXbrIwcGh0Fz33HOPJOnHH3/UG2+8odTUVElSQkKCpkyZohdffFF+fn7luuagoCANGzZMkvTGG29o6tSpSk5OliRduHBBw4cP11dffWUJ6gAAAAAAAAAAtotwDLgBDR48WB9//LGcnJz0448/qn379nJzc1O1atXk4uKiW2+9VWPGjNHhw4dlMBisznFpGObv76/bbrutQHvr1q3l6elp+bO1LRUladCgQerSpYsk6fXXX5enp6d8fX3l5+enV199Vffcc4+ef/758l6ypk+fru7duysvL08TJkyQj4+PfH19FRAQoDlz5uiVV15RixYtyn0eAAAAAAAAAMD1jXAMuEE999xzOnLkiMaMGaPmzZvL2dlZCQkJlu0PX3zxRa1bt04DBw60Ov7SsMta8OXg4GAJvYrqI0mOjo765ZdfNHHiRDVo0ECOjo4ymUxq27atPv74Y61evVr29vblvFrJxcVFP/74oz744AO1aNFCTk5OMplM6tKli5YuXapp06aV+xwAAAAAAAAAgOufwVTcA4kAAEpKSpLRaFRsbGy5t4AEKtK+ffvUqlWrMo3du3evWrZsWeBYdna2fvjhB917771ydHSsiBIBAEAJ8DvYtnC/AQAASqY8330lJibKy8uryHZWjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQBwnfL09KySsQAAAAAAAEBlq8zvrxwqbWYAAFCp6tevr7///lvJycmlGufp6an69etXUlUAAAAAAABA+ZXlu6+UlBR17dr1iv0IxwAAuI4RcgEAAAAAAOBGVdrvvpKSkkrUj20VAQAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMcqroAANeGVatWaf/+/WrRooX69OlT1eVUiBMnTmjBggWSpIiIiCqtBQAAAAAAAABwbWDlGABJ+eHYpEmTtGrVqqoupcKcOHFCkyZN0qRJk6q6FAAAAAAAAADANYJwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2g3AMuEZFRkaqX79+CgoKkrOzs6pVq6Y777xT8+fPV25ubqH+ERERMhgMCgkJkSQtXbpUXbt2la+vr9zd3dWqVSvNnj270NjIyEgZDAYtXLhQkrRw4UIZDIYCr8jIyHJfT3R0tF5++WU1adJE7u7ucnd3V5MmTTR27FjFxMQU+R6YayiOtTrr1q2r0NDQQn3MryFDhpT7mgAAAAAAAAAA1x+Hqi4AQGGjR4/WzJkzJeWHOkajUQkJCdq4caM2btyor776SqtWrZKnp6fV8a+88orefvttGQwGeXt7KyMjQ/v27dO+ffu0Zs0afffdd3J2dpYkOTk5KSAgQImJicrIyJCLi4uMRmOB+ZycnMp1PZs3b1afPn2UkJAgSXJ3d5ck/fXXX/rrr7/02WefafXq1ercuXO5znOp6tWrKykpSfHx8ZKkgICAAu2XXyMAAAAAAAAAwDawcgy4xsyePdsSjA0dOlRnz55VfHy8EhMTNXPmTDk4OGjjxo165plnrI7fv3+/3n77bQ0fPlwxMTGKi4tTfHy83njjDRkMBv38888aP368pX/Hjh0VHR2tAQMGSJIGDBig6OjoAq+OHTuW+XpOnTplCcZuvfVWbdu2TSkpKUpJSdGWLVvUsGFDxcfH64EHHtCZM2fKfJ7L7d69WytXrrT8+fJr+uCDDyrsXAAAAAAAAACA6wfhGHANSU9P18SJEyVJAwcO1CeffKIaNWpIyl9tNXLkSM2YMUOStGTJEu3du7fQHImJiXr88cf14Ycfqnr16pIkLy8vvfbaa3r11VclSR9++KHOnj17NS5JU6ZMUUJCgnx8fLRhwwZ16tTJ0talSxetX79eXl5eiouL09SpU69KTQAAAAAAAAAA20U4BlxD1q1bp7i4OEn5zxCz5oUXXlDNmjUlSYsWLbLa5/XXX7d6/OWXX5arq6tycnK0YsWK8hd8BSaTSUuXLpUkPffcc5ag71K1atXSc889J0lavHhxpddUEpmZmUpKSirwAgAAAAAAAADcGAjHgGvInj17JEnBwcFq0KCB1T729vbq1q1bgf6XCg4O1i233GJ1rJeXl1q1alXk2Ip2/PhxS9jXvXv3IvvdddddkqSLFy/q+PHjlV7XlUydOlVGo9HyCg4OruqSAAAAAAAAAAAVhHAMuIacP39ekhQUFFRsv1q1ahXof6krjTW3Wxtb0S49R3F1ma/n8jFVZfz48UpMTLS8Tp06VdUlAQAAAAAAAAAqiENVFwAA1xpnZ2c5OztXdRkAAAAAAAAAgErAyjHgGuLv7y9JOn36dLH9zO3m/pc6c+ZMsWPN7dbGVrRLz1HcNV3adukYB4f/y+8zMjKsjk1MTCxPiQAAAAAAAAAAG0M4BlxDWrduLSk/LPr777+t9snNzdWmTZskSW3atCnUfurUKf3zzz9WxyYnJ2vv3r0FzmVmZ5f/nwOTyVS24q246aab5OvrK0nasGFDkf3Wr18vSfLz89NNN91kOe7j42P5uaitDXft2lXkvOZrkir2ugAAAAAAAAAA1y/CMeAactddd8nPz0+SFBERYbXPJ598orNnz0qSBg4caLXPG2+8YfX4e++9p/T0dDk4OCgsLKxAm5eXlyQpISGhDJVbZzAYNGDAAEn5dUdHRxfqc/bsWX3yySeSCl9PgwYN5OrqKklasWJFobF5eXmaOnVqkec3X5NUsdcFAAAAAAAAALh+EY4B1xBXV1dLKPbNN9/oueeeU0xMjCQpLS1Ns2bN0siRIyVJAwYMUKtWrQrNYTQatXDhQo0YMUKxsbGS8leMTZkyRZMnT5YkDRs2TIGBgQXG3XbbbZKkrVu36vDhwxV2TRMmTJC3t7fi4uLUvXt3bd++3dL266+/qnv37kpISJCvr6/GjRtXYKyjo6MlxJsyZYqWLl2qrKwsSdKRI0f04IMP6uDBg0Weu0GDBnJycpIkffbZZ6weAwAAAAAAAAAQjgHXmuHDh2vUqFGS8ldb1axZU76+vjIajRoxYoSys7MVGhqqTz/91Or4Fi1aaOzYsZo1a5b8/f3l6+srHx8fvfrqqzKZTOrevbumTZtWaFxYWJiqV6+u+Ph4NW7cWNWrV1fdunVVt25d7dy5s8zXU6tWLa1atUpGo1H/+9//1KlTJ3l4eMjDw0OdO3fWoUOH5O3trVWrVikoKKjQ+KlTpyowMFDJyckaMGCAPDw8ZDQa1ahRI23atEkrV64s8txubm56/PHHJUljx46Vh4eH6tSpo7p162rMmDFlviYAAAAAAAAAwPWLcAy4Bs2YMUMbN25UWFiYAgIClJKSIk9PT4WGhurzzz/XunXr5OnpWeT46dOna/HixercubNMJpOcnJzUokULffDBB/rpp5/k4uJSaIyPj4+2bNmihx9+WEFBQUpMTFRUVJSioqKUkZFRruvp2rWrDh06pJdeekmNGzdWXl6eTCaTGjdurDFjxujQoUPq0qWL1bG1atXSrl279PTTT1vCMw8PDw0aNEj79u1T165diz33nDlzFBERoaZNm0qSTp48qaioKMuqOgAAAAAAAACAbTGY2GcMuCFERERo0qRJ6tq1qyIjI6u6nBtKUlKSjEajYmNjLc+EA25E2dnZ+uGHH3TvvffK0dGxqssBAMBm8DvYtnC/AQAAKo/5u9zExER5eXkV2Y+VYwAAAAAAAAAAALAZhGMAAAAAAAAAAACwGYRjAAAAAAAAAAAAsBkOVV0AgGvfkiVLNGLEiFKNGTBggD744INKqggAAAAAAAAAgLIhHANuEBEREYqIiKiUudPT0xUTE1OqMYmJiZVSCwAAAAAAAAAA5UE4BuCKhgwZoiFDhlR1GQAAAAAAAAAAlBvPHAMAAAAAAAAAAIDNIBwDAAAAAAAAAACAzSAcAwAAAAAAAAAAgM0gHAMAAAAAAAAAAIDNcKjqAgAAQL6jR48qOTm5VGM8PT1Vv379SqoIAAAAAAAAqFil+Q6ssr77IhwDAOAacPToUTVo0KBMY//++28CMgAAAAAAAFzzyvIdWGV898W2igAAXANKu2KsosYCAAAAAAAAV0tZvseqjO++CMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHAAAAAAAAAAAAYDMIxwAAAAAAAAAAAGAzCMcAAAAAAAAAAABgMwjHANiEEydOyGAwyGAw6MSJE1VdDgAAAAAAAACgihCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjl2D4uPjNW/ePPXv319NmzaVr6+vXFxcVKdOHT3yyCPauXOn1XEREREyGAwKCQmRJG3YsEH33XefqlevLhcXFzVu3FiTJk1SRkaG1fFDhgyRwWDQkCFDJEnLly9XSEiIfH195ebmphYtWuiDDz5QXl5esfVHRkaqX79+CgoKkrOzs6pVq6Y777xT8+fPV25ubonObc2CBQtkMBhUt27dSqv91KlTGjt2rFq0aCGj0ShXV1fVq1dPDzzwgL744osi37tff/1Vjz32mOrUqSMXFxcZjUa1bdtW06dPV0pKSrHnLKkTJ07IYDDIYDDoxIkT+ueffzR06FDddNNNcnZ2LvS+5OXl6euvv9a9996rgIAAOTk5qXr16urRo4e++eYbmUymAv1zc3Pl7e0tg8GgNWvWFDr/N998Yzn/mDFjCrWfO3fO0v7PP/8UqGPDhg36z3/+o/bt26tWrVpycnKSn5+funbtqrlz5yo7O7tCrvnMmTN69tlnFRwcLGdnZ9WqVUtPPPGEjh07VsJ3GQAAAAAAAABwo3Oo6gJQ2AcffKBJkyZJkuzt7eXl5SVJOnnypE6ePKnFixfr/fff13/+858i53jnnXf0yiuvSJKMRqOysrJ0+PBhRUREaPPmzVq3bp3s7e2LHD98+HDNmTNHdnZ28vLyUnp6ug4cOKCRI0dq3759WrhwodVxo0eP1syZMyVJBoNBRqNRCQkJ2rhxozZu3KivvvpKq1atkqenZ5nem5Ioa+1ffvmlhg4dagnAnJyc5OnpqZMnT+rff//V6tWr1axZM7Vo0cIyJi8vT6NGjdKsWbMsxzw8PJSamqrdu3dr9+7dmj9/vn7++WfVqVOnwq5x+/btevbZZ5WSkiI3Nzc5OjoWaI+Li9ODDz6oLVu2WI4ZjUbFxsZq3bp1WrdunRYvXqxly5bJyclJUv5n7Y477tD333+vjRs3qlevXgXm3Lhxo9WfLz9Wu3Zt1atXz3L85MmT6t69u+XPHh4ecnNzU1xcnLZs2aItW7Zo0aJF+vnnn+Xq6lrma963b5+6d++u+Ph4SZKrq6sSExO1YMECrVy5Up9++mmRcwMAAAAAAAAAbAcrx65BgYGBmjhxovbs2aO0tDTFxcUpPT1d//77r0aMGCEpP4T6/fffrY4/cOCAxo0bp3Hjxun8+fOKj49XQkKCXn/9dUnSpk2bigyIJGn16tX69NNPNWPGDMXHxys+Pl6xsbF6+umnJUlffPGF1XBk9uzZlmBs6NChOnv2rOLj45WYmKiZM2fKwcFBGzdu1DPPPFOu96c4Za197dq1Gjx4sDIyMtSpUydt3bpV6enpio2NVWpqqrZu3apnnnnGEiSZTZw4UbNmzZK/v7/mzJmjixcvKjk5Wenp6dq0aZNuv/12HTlyRA899NAVV62VxrPPPqsmTZpo9+7dSk1NVUpKin755RdJ+SvAHnroIW3ZskUtWrTQ999/r9TUVCUkJCglJUULFy6Uv7+/Vq9ebQlQzUJDQyVZD782bdokSfLy8tKBAwcUFxdntd08h5mDg4MeffRRrV692vL+JCQkKDk5WfPnz1dgYKC2bt2qV199tczXnJycrAcffFDx8fGqXbu2fvnlF6Wmpio5OVnbt29XcHCwnn322ZK+vQAAAAAAAACAG5kJ151hw4aZJJmeeuqpAscnTpxokmSSZJo4caLVsQ899JBJkql79+6F2gYPHmwZP3/+fKvjW7VqZZJkevrppwscT0tLM/n6+pokmQYOHGh17KxZsyzz79mzx+q5Bw8ebP2iTSbT/PnzTZJMderUqdDas7OzTTfddJNJkqlz586mzMzMImu41PHjx0329vYmV1dX0/79+632SUpKMtWqVcskyfTtt9+WaN7izme+xjp16piSk5Ot9vviiy9MkkyNGjUyJSQkWO2zZ88ek8FgMDk5OZliYmIsx/fv32+SZDIYDKbY2FjL8aioKJMkU7169UyPPPKISZJpxYoVBeY0v4cLFiwo1XXt3r3bJMnk7u5uSk9PL9M1T58+3STJ5OTkZPrrr78KtZ87d87k4+Njmev48ePF1pSRkWFKTEy0vE6dOmWSVOA9ASra3r17LZ/R0r727t1bITVkZWWZVq1aZcrKyqqQ+QAAQMnwO9i2cL8BAIAtK8t3YKX57isxMdEkyZSYmFhsP1aOXYfuu+8+SdK2bdustjs7O1t9JpQkPfDAA5KkgwcPFjl/cHCwBg8ebLWtd+/eVsevW7fOspIoIiLC6tgXXnhBNWvWlCQtWrSoyPOXR1lq37Rpk44fPy5JmjlzZqHVYUVZsGCBcnNzdc8996h58+ZW+3h6eqpPnz6SpJ9//rlE85bE8OHD5eHhYbVt3rx5kqTnn39eRqPRap9WrVqpSZMmysrKsqz4kqRmzZrJz89PJpOpwHHzz926dVO3bt0kFVxdFhUVZXkPL185diWtW7eWv7+/UlNTtX///iL7FXfNixcvliT169dPjRs3LtReo0YNPffccyWuaerUqTIajZZXcHBwiccCAAAAAAAAAK5thGPXqH///VdjxoxRq1at5O3tLXt7exkMBhkMBt17772SpNOnT1sd26RJkyJDhMDAQEkqtCXepdq0aSODwVCq8Xv27JGUH041aNDA6lh7e3tLsGLuX9HKUvv27dsl5QcorVu3LvG5fv31V0nSL7/8oho1ahT5mj9/vqT8AKmidOrUyerx3Nxc7dy5U1J+SFlcXUeOHClUl8FgUEhIiCTrzxjr1q2b1a0XzT/ffPPNql27dqG6srKyNHfuXPXo0UOBgYFydna2fJ4NBoPOnz8vqejPdHHXnJWVpT/++MNSX1GKa7vc+PHjlZiYaHmdOnWqxGMBAAAAAAAAANc2h6ouAIV9++23GjhwoDIzMy3HvLy85OLiIoPBoKysLMXHxys1NdXqeE9PzyLndnDIv+U5OTlF9inJ+Ozs7ALHzeFGUFBQkWMlqVatWgX6V7Sy1B4dHS1JqlOnTqnOdfbsWUlSampqkffiUmlpaaWavzj+/v5Wj8fFxVk+N/Hx8SWa6/K6QkNDtWLFigLh16Urx/z9/VWnTh0dOnRI0dHRqlGjRpHPG5Py73X37t0tAZYkubi4qFq1arK3t5ckXbhwQXl5ecW+j8Vds/nzXNznz/zZKwlnZ2c5OzuXuD8AAAAAAAAA4PrByrFrzMWLFzVkyBBlZmaqW7duioyMVFpamhITExUTE6Po6GgtW7asqsu8oRS10uxKcnNzJUmvvPKKTCbTFV+RkZEVVrM5VCqqJkn68ccfS1TX5dtgmldYHTlyRGfPntWxY8d06tQpNWnSxBJQXb61YnHh2KhRo/THH3/Iz89Pn3/+uc6dO6f09HRduHBB0dHRio6OtqzqM5lMpb5mAAAAAAAAAABKg3DsGvPDDz8oKSlJPj4++v7779W1a1e5uroW6GNe6XQtMYcmxW2Ld2n75auAzKu6MjIyihybmJhYnhKLVKNGDUml3/awrOMqk5+fn+W9LGtdjRs3tlzbxo0bC2ypaHbp1op///235b5evnVhdna2Vq5cKUmaPXu2nnjiCcvcZrm5uYqNjS1TrZLk6+trCc7OnDlTZL/i2gAAAAAAAAAAtoNw7BpjfrZRw4YN5ebmZrXP+vXrr2ZJJWJ+Vtfp06f1999/W+2Tm5trWWHUpk2bAm0+Pj6SVOyznXbt2lURpRbSsWNHSfmhY2mehWZ+Btb69euLDfWuJkdHR7Vt21aS9P3335d5nkufO3bplopml64cM7c3bNhQNWvWLDDPhQsXLO/N7bffbvVc27ZtK9f75+TkpGbNmkn6vxVs1ly6TSQAAAAAAAAAwHYRjl1jjEajJOnvv/+2Ghjs379fixYtutplXdFdd90lPz8/SSq0TZ/ZJ598YnlO18CBAwu0NW/eXJK0e/duqwHZoUOHLCuQKlpoaKhuvvlmSflbAGZlZZVo3JNPPikHBwfFxsZq4sSJxfbNyspSSkpKuWstiaFDh0rKX4X4ww8/FNs3Li7O6vFLw6/IyEjZ2dlZAjMp/9le9evX1/HjxzV//nxJ1rdU9PLysmxbeeDAgULtOTk5evXVV698UVcwYMAASdKyZct05MiRQu3nz5/X3Llzy30eAAAAAAAAAMD1j3DsGtOjRw/Z2dkpLi5Ojz76qGUruKysLC1dulQ9evSQp6dnFVdZmKurqyUU++abb/Tcc88pJiZGkpSWlqZZs2Zp5MiRkvKDjFatWhUYf//998vDw0PZ2dnq37+/JeDIzs7Wd999p+7du8vd3b1Sare3t9fs2bNlMBi0bds23Xnnndq2bZvy8vIk5b/3kZGReuyxx/TXX39ZxtWrV0/h4eGSpLfffluDBg3Sn3/+aWnPycnR/v37NXnyZN1yyy3av39/pdR/uccee0zdu3eXyWTSgw8+qDfffNMSSkpSamqqNm3apGHDhllCwcuZg66oqChFR0fr9ttvl7e3d4E+5gDNvKLPWjjm4eFhWWE3evRobdy40fK+/vnnn7r33nu1Z8+ect/b559/XrVq1VJmZqbuuecebdiwwfL8sl27dql79+6W8wIAAAAAAAAAbBvh2DWmfv36evnllyVJK1euVK1ateTt7S0PDw8NGDBAHh4emjVrVhVXad3w4cM1atQoSfmrxGrWrClfX18ZjUaNGDFC2dnZCg0N1aefflporNFo1Pvvvy+DwaCdO3eqUaNG8vLykoeHh/r06aPatWtr8uTJlVZ7z549tWDBAjk7O2vbtm3q0qWL3NzcVK1aNbm7uys0NFRff/11oVVl4eHhCg8Pl8Fg0JdffqmmTZtaxrm4uOj222/XxIkTderUKcsKqspmb2+vFStWqFevXsrKylJ4eLiCgoJkNBrl4+MjT09PdevWTR999JFSU1OtznHLLbcoODjY8ufLnyUmFQ7DLl1Zdqn3339f7u7uOnPmjO688065ubnJy8tLTZs21aZNm/Tpp5+qWrVqZb9g5a9Q+/bbb+Xt7a0TJ06oe/fu8vDwkKenp9q3b68TJ07ok08+Kdc5AAAAAAAAAAA3BsKxa9C0adP0xRdfqG3btnJ1dVV2drZuueUWTZgwQb///rsCAwOrusQizZgxQxs3blRYWJgCAgKUkpIiT09PhYaG6vPPP9e6deuKXPn21FNPae3aterWrZu8vLyUk5OjBg0aaNq0adq8eXOlrRwzGzRokA4fPqyRI0fq1ltvlYODg9LT01WnTh316dNHX375pRo3blxgjMFg0OTJk3Xw4EG98MILaty4sezt7ZWYmCgfHx917NhRL7/8srZv325ZQXU1eHl56fvvv9cPP/ygAQMGqHbt2srMzFRaWpqCgoLUo0cPTZ061eoWhGaXhl9FhWPmwK9Jkyby9/e3Ok+rVq3022+/qX///qpWrZry8vLk6emp/v37a/v27Xr88cfLebX5WrdurYMHD+rpp59WUFCQcnJyZDQaNXjwYO3bt8/yLDYAAAAAAAAAgG0zmMx7jwEArEpKSpLRaFRsbKzl2XpARdu3b1+hLWdLau/evWrZsmW5a8jOztYPP/yge++9V46OjuWeDwAAlAy/g20L9xsAANiysnwHVprvvszf5SYmJsrLy6vIfqwcAwAAAAAAAAAAgM0gHAMAAAAAAAAAAIDNIBwDAAAAAAAAAACAzXCo6gIAW3Lq1Cm1adOmVGOCg4O1e/fuSqoIAAAAAAAAAADbQjgGXEW5ubmKiYkp1RgXF5dKqgYAAAAAAAAAANtDOAZcRXXr1pXJZKrqMgAAAAAAAAAAsFk8cwwAAAAAAAAAAAA2g3AMAAAAAAAAAAAANoNwDAAAAAAAAAAAADaDcAwAAAAAAAAAAAA2w6GqCwAAoCyOHj2q5OTkqi6jwhw6dKiqSwAAAAAAAEAp3GjfT10N18p3YIRjAIDrztGjR9WgQYOqLuOa4enpWdUlAAAAAAAA2BS+n7p6KuO7L8IxAMB150b+GzlfffWVGjduXOL+np6eql+/fiVWBAAAAAAAgMvdyN9PXQ0l/Q6ssr77IhwDAOAa0rhxY7Vs2bKqywAAAAAAAAAqTVV/B2ZXZWcGAAAAAAAAAAAArjLCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMwjEAAAAAAAAAAADYDMIxG1G3bl0ZDAYtWLDgqp43NzdXM2bM0O233y53d3cZDAYZDAatWrXqqtZxNURERMhgMCgkJKRKxt8oQkJCZDAYFBERUdWlAAAAAAAAAABuQA5VXQCqnjmEGDJkiOrWrVuhc48cOVKzZ8+WJDk5OSkgIECS5OLiUqHnAQAAAAAAAAAAKAnCMRtRr149ubi4yGg0FmqbNGmSpPwVOxUZjiUnJ+uTTz6RJL399tsaM2aMDAZDhc1/ralWrZoaNmyo2rVrV3UpAAAAAAAAAACgCIRjNmLDhg1X/ZyHDx9Wdna2JOn555+/oYMxSRo+fLiGDx9e1WUAAAAAAAAAAIBi8MwxVJq0tDTLzx4eHlVYCQAAAAAAAAAAQD7CsUrStGlTGQwGy/O2LrVjxw4ZDAYZDAb17du3UHt2drY8PT1lMBgKrPjauXOnXnnlFXXp0kV16tSRi4uLvL291b59e02fPl0pKSlF1lO3bl0ZDAYtWLDAcmzIkCEFVnOFhoZa6jIYDGXeYnHBggUyGAwKCQmxHLt03kuPm61cuVK9evVSQECA5dlkvXr10rffflvkecz1DxkyRCaTSZ999pk6d+4sPz+/QtdaFkuWLFHPnj0VEBAgR0dHeXt7q379+urdu7fmzJmjjIyMAv0jIiKKvD6zH3/8UXfddZe8vb3l4eGh5s2b6+2337assLuSEydOaOTIkWrSpIk8PDzk5uamRo0aacSIETp58mR5LreASz8vycnJGj9+vBo2bChXV1dVq1ZNffr00a5du4qdIzc3V59//rm6deumatWqydnZWUFBQerXr58iIyPLXNvChQvl6Ogog8GgV199tVD72rVrFRYWpqCgIDk7O8vHx0d33HGHPv74Y2VlZZX5vAAAAAAAAACAGwPbKlaS0NBQ/fnnn9q4cWOhrfY2btxo+TkyMlImk6lASPXbb78pJSVFzs7O6tSpk+V4hw4dLD+7ubnJzc1N8fHx2rVrl3bt2qUvvvhCmzZtkr+/f4lqNBqNCggIUExMjCTJx8dHTk5Olvbq1auX7qL/P1dXVwUEBCgrK0vx8fGSpICAAEu7r6+v5eesrCwNGjRIS5YskSTZ2dnJaDQqNjZWa9eu1dq1azVw4EBLIGKNyWRSv379tGLFCst4O7vy5b5PPvmk5s+fb/mzh4eHsrOzdezYMR07dkzff/+97rvvvlIFiBEREZbnu0mSt7e3/vrrL73yyitau3ZtgXttzddff62nnnpKmZmZkiRnZ2fZ2dnpyJEjOnLkiObPn6/ly5erR48epbvYYsTHx6tNmzY6cuSInJyc5OLioosXL+q7777T999/r08//VRPPvlkoXGJiYnq06ePJQSzt7eXp6enzp07p+XLl2v58uUaM2aM3nnnnVLVM23aNI0fP152dnaaPXu2hg0bZmlLT0/XoEGDtHz5cssxLy8vJSYmauvWrdq6dau++OIL/fDDD/Lx8SnbGwIAAAAAAAAAuO6xcqyShIaGSpI2b96svLy8Am2bNm2SlP/F/cWLF3XgwAGr7e3bt5eLi4vl+P33368lS5bo3LlzSk1NVVxcnNLS0rRy5Uo1bNhQf/31l5577rkS1/jBBx8oOjra8ueVK1cqOjra8tq9e3fpLvr/GzBggKKjo7Vy5UrLsUvnvfT4hAkTtGTJEhkMBoWHh+vixYuKi4tTbGysJkyYIEn65ptvFB4eXuT5Vq5cqe+++07vvvuu4uPjFRcXp8TERN19991lqn/btm2aP3++7OzsNH36dF28eFHJyclKTU1VbGysfv75Zw0ePLhAkHglq1evtgRj/fr108mTJxUfH6+kpCTNmTNHO3fu1Mcff1zk+HXr1mnQoEHKzc3V2LFjdfz4caWnpys1NVWHDx9Wv379lJycbJm7okyaNEnnz5/X0qVLlZqaqsTERP3111/q2rWr8vLy9Oyzz2rfvn2Fxj311FOKjIyUk5OTZs2apaSkJMXHx+vs2bOWMO3dd9/V3LlzS1SHyWTSiBEjNH78eDk7O2vJkiUFgjFJGjp0qJYvX66bb75ZX3/9tRITE5WYmKi0tDR99913uvnmm7Vz506rYR4AAAAAAAAAwHYQjlWSkJAQ2dnZKS4uTvv377ccz8zM1Pbt2+Xm5qahQ4dKKriS7NI/mwM2s9WrV6t///6qUaOG5Zirq6sefPBBbdiwQc7Ozlq1alWFhiOV6cyZM/rggw8kSePGjdPkyZPl7e0tKX8V21tvvaXRo0dLkmbMmKFz585ZnSclJUUzZszQSy+9JC8vL0n5K71q1qxZprq2b98uSerevbvGjh1bYKWbn5+fevTooQULFigwMLDEc44fP16S1LVrVy1evFjBwcGS8u/fCy+8oFmzZikhIcHq2Ly8PA0bNkx5eXmaM2eOpk+fbtn20GAwqGHDhlq6dKl69+6tpKQkzZgxo0zXbU1iYqKWLVumfv36ycEhf6Fp48aN9eOPP6p+/frKyckpFFzu2rVLK1askCR9+OGHevHFF+Xm5iZJqlGjhubNm6ewsDBJUnh4eKHtKS+XlZWlhx9+WLNmzZLRaNRPP/1UaDvSrVu36quvvpK/v78iIyP1yCOPWD4LLi4u6t27tzZv3ix3d3etWrWqwL+T1mRmZiopKanACwAAAAAAAABwYyAcqyQ+Pj5q3ry5pILh186dO5Wenq5OnTrpnnvuKdSemZmpHTt2SCocjhUnKChIzZs3l8lksoQ717oVK1YoJydHLi4uGjdunNU+r732mpydnZWdnV1gu7xL+fj46Nlnn62wuswB3YULF5Sbm1vu+Q4ePKi//vpLUv71WNvy8ZlnnlFQUJDV8Vu2bNHRo0dVrVo1Pf3000WeZ9CgQZKkn3/+udw1m3Xq1El33nlnoeOurq56+eWXJUk//fSTEhMTLW3mLTJr1apVZL1vvPGGJCk2Nlbr1q0r8vxJSUm65557tHTpUtWsWVNbtmyx+ky3efPmSZIeffRRS/B4uVq1aln+nbrSezR16lQZjUbLq6g5AQAAAAAAAADXH8KxStStWzdJBcMv88/dunVTx44d5ezsrK1bt1pCmO3btysjI0Ourq5q3759gfny8vK0aNEi9e7dW7Vr15arq6tl9ZDBYNBvv/0mSTp9+vTVuLxy27NnjySpTZs2llU+l/Px8VHr1q0L9L9cmzZtSrXF4ZXceeedcnFx0e+//64uXbpo3rx5On78eJnnM9ft4OCgLl26WO1jZ2dnNfSRpF9//VVS/iquwMBA1ahRw+rrmWeekSRFRUWVudbLmT/DxbXl5eUV2FrRfL2hoaFFPvutcePGljCwqPt67tw5de3aVZs2bVKDBg20fft2NWvWzGpf83s0b968It+fGjVqaP369ZKu/B6NHz/esi1jYmKiTp06VWx/AAAAAAAAAMD1w6GqC7iRhYaG6r333tPWrVuVk5MjBwcHy/PEunXrZgnANm/erN27d6t9+/aW9o4dOxYIfNLS0tSrVy9LuyQ5OTnJ19dXjo6OkqS4uDhlZ2crNTX1Kl5l2Z0/f16SilwxZVarVq0C/S/n7+9foXXVq1dPn332mZ577jnt2LHDspKvevXqCg0N1SOPPKLevXvLYDCUaD5z3dWqVZOzs3OR/czXebmzZ89KkrKzsxUTE3PF86Wnp5eorpIo7t5c2nbpvSnNfT1z5kyR9/W///2vpPxtEdevX1/s6i3ze1TSLRDT0tKKbXd2di72XgEAAAAAAAAArl+sHKtEd9xxhxwcHJSSkqLffvtNaWlp2rVrl4xGo1q1aiWp8Oqyop439tZbb2nTpk1ydXXVzJkzFRUVpYyMDF28eFHR0dGKjo5Wu3btJEkmk+lqXeI1wd7evsLnfPTRRxUVFaW5c+dqwIABCg4O1oULF7R06VL16dNHXbt2vWrPoTKvKmzXrp1MJlOJXjeCXr16yWg0KiMjQ0888USxgZb5Pfr4449L9P4sWLDgKl0FAAAAAAAAAOBaQzhWiTw9PS0h2MaNG7Vt2zZlZWXpjjvusAQ65hBs48aNSk1NtWyNePl2dosXL5Ykvf766xo5cqRq165daOVSdHR0pV5PRTOv+LrSNpDm9opeIXYlvr6+evbZZ7V48WKdPHlSx44d07hx42QwGLR161ZFRESUaB5z3bGxscrKyiqy35kzZ6wer1GjhqSK3S6xpIqq6fK2S+9NRd3XVq1aaf369fLx8dGGDRt03333FbkqsirfIwAAAAAAAADA9YVwrJJdGn5duqWiWbt27eTm5qbt27drw4YNys7OloeHh9q0aVNgHvMzj26//Xar5zlx4oSOHTtWphrNIdvVXnF06bPEEhMTrfZJSEgo8GyyqlSvXj1NnTpVjzzyiCRp3bp1JRpnvs6cnBxt3brVap+8vDxFRkZabevUqZOk/PCzqOdzVZZLt/Esqs3Ozq7A59J8vZs2bVJeXp7VsYcPH7aEa8Xd19atW2vDhg3y9fVVZGSkevbsqZSUlEL9zO/RmjVrrnBFAAAAAAAAAABbRzhWycxB2I4dO/Tjjz8WOCblPzesU6dOSk9P15QpUyRJnTt3loNDwcfBGY1GSdKBAwesnmfcuHFlrtHLy0tSfhB1NYWFhcnBwUEZGRmaPn261T5TpkxRZmamHB0dFRYWdlXqyszMLLbd1dVVUn4oVBLNmjVT48aNJeVvj2ktMPr888+LXGkVGhqqW265RZI0atSoYlefSfnPnqso27ZtsxraZWRk6L333pMk3X333fL29ra0Pfzww5LyV5Z99tlnVud9/fXXJeU/h6179+7F1nD77bdr48aNqlatmrZu3ap77rlHycnJBfoMHTpUkvTnn3/q448/Lna+1NTUK76HAAAAAAAAAIAbF+FYJevUqZOcnJyUkZGhAwcOqHr16mratGmBPuawbNeuXZIKP29Mku655x5J0ptvvqmVK1cqJydHknT8+HE98sgjWrp0qXx8fMpU42233SZJ+vrrr4t9rlNFCwoK0ogRIyRJ06ZN08SJEy0BXUJCgsLDw/XOO+9IkkaPHq2aNWtelbqGDx+u/v37a8WKFTp//rzleEpKiubOnasvvvhCknTfffeVeM633npLUv5qqkceecQShGVkZGju3LkaPnx4gYDpUg4ODpo7d64cHBy0bds23XHHHZZVhmb//vuv5s6dqzZt2uijjz4q7SUXyWg0KiwsTMuXL7d85g4fPqz77rtPhw8flr29vSZPnlxgTNu2bS1B5osvvqjZs2dbPlfR0dF65plntGzZMknSG2+8IRcXlyvW0bx5c23cuFHVq1fXr7/+qrvvvrvAM9+6du2qJ554QpI0bNgwjRo1Sv/++6+lPTMzUzt37tTYsWNVp06dAvcVAAAAAAAAAGBbCMcqmZubm9q1a2f5c0hISKFnhV0ehlkLx958800FBAQoOTlZYWFhcnV1lbe3t26++WZ98803euutt9SsWbMy1fjcc89JklasWCFvb2/VqlVLdevWVefOncs0X2lMmTJF/fv3l8lk0uTJk+Xn5ydfX1/5+fnpzTfflCQNHDhQb7zxRqXXYpadna1ly5apb9++CggIkKenp3x8fOTp6annn39eWVlZ6ty5s1599dUSz/nggw9a+i9ZskTBwcHy9fW1zNm2bVs9//zzRY6/8847tWzZMnl6emrXrl3q3r273N3dVa1aNbm4uKhevXp6/vnntWfPnkKfr/KYOHGiqlevrn79+snDw0Pe3t5q3LixNm7cKIPBoI8//tiyjeKl5s2bp65duyorK0svvviijEajfH19FRgYaFlNNmbMGMtnrySaNm2qyMhIBQQEaMeOHbrrrrsKrHacO3eunn76aZlMJr3//vuqV6+ePD095evrKzc3N3Xo0EHvvPOOLl68WKHvEQAAAAAAAADg+kI4dhVcGnZduqWiWevWrS1bG3p5eally5aF+tSpU0d79uzRU089pcDAQEmSi4uLevXqpZ9//lnjx48vc32PPfaYvvzyS3Xu3Flubm46d+6coqKiitzmryI5OTlpyZIlWr58uXr27Ck/Pz8lJyfLz89PPXv21MqVK7Vo0SI5OjpWei1m4eHhmjVrlh588EE1atRIDg4OSklJkb+/v+666y59/vnnioyMlLu7e6nmffPNN7VmzRp169ZNXl5eyszMVOPGjTVt2jRt2LBBTk5OxY7v06ePjh07pokTJ6pt27by8PBQQkKCnJ2d1bx5cz399NP69ttv9fLLL5fn8gvw8fHRb7/9pnHjxql27drKzMyUr6+v7r//fv3666965plnrI4zGo3asGGD5s2bp5CQEHl6eiolJUU1atRQWFiYNm3aZFkVWBq33nqrIiMjVbNmTf3222/q3r274uPjJeV/lj799FNt375dQ4YMUb169ZSbm2u5dyEhIXr99dd18OBBBQUFlet9AQAAAAAAAABcvwwmk8lU1UUAuLbUrVtXUVFRmj9/voYMGVLV5VS5pKQkGY1GxcbGys/Pr6rLgaR9+/apVatWVV1Gpdi7d6/VvyRxNWRnZ+uHH37Qvffee1X/UgIAALaO38G2hfsNAMCN4Ub+fupqqKzvwMzf5SYmJloWJVnDyjEAAAAAAAAAAADYDMIxAAAAAAAAAAAA2AzCMQAAAAAAAAAAANgMh6ouANe2hx56SNu3by/VmJUrV6pjx46VVFHJXc+1V4Q2bdro1KlTpRqze/duBQcHV1JFAAAAAAAAAABUPcIxFCsuLk4xMTGlGpOVlVVJ1ZTO9Vx7Rbhw4UKprz83N1eSdOLEiUqoCAAAAAAAAACAqkc4hmJFRkZWdQlldj3XXhEIuAAAAAAAAAAAKIxnjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGYQjgEAAAAAAAAAAMBmEI4BAAAAAAAAAADAZhCOAQCuO+np6VVdQqXx9PSs6hIAAAAAAABwBTfy91NXQ1V/B+ZQpWcHAKAMXF1dJUlfffWVGjduXMXVVBxPT0/Vr1+/qssAAAAAAADAFdyo309dDdfCd2CEYwCA61bjxo3VsmXLqi4DAAAAAAAANorvp65PbKsIAAAAAAAAAAAAm0E4BgAAAAAAAAAAAJtBOAYAAAAAAAAAAACbQTgGAAAAAAAAAAAAm0E4BgAAAAAAAAAAAJtBOAYAAAAAAAAAAACbQTgGAAAAAAAAAAAAm0E4BgAAAAAAAAAAAJtBOAYAAAAAAAAAAACbQTgGAAAAAAAAAAAAm0E4BgAAAAAAAAAAAJtBOAYAAAAAAAAAAACbQTgGAAAAAAAAAAAAm0E4BlxHTCaT5s+frw4dOsjT01NGo1Ht2rXTf//7X5lMJg0ZMkQGg0FDhgyxOn7lypXq1auXAgIC5OTkpICAAPXq1UvffvttpdT7yy+/6OGHH1adOnXk6uoqX19fNWvWTC+++KJ27NhRoG9ERIQMBoNCQkKKnC8yMlIGg0EGg6HIPsnJyZo2bZo6dOggX19fOTs7Kzg4WA8//HChcwIAAAAAAAAAbI9DVRcAoGRyc3P16KOPasmSJZIkg8Egb29v7dmzR7/99psiIyPl5ORkdWxWVpYGDRpkGWtnZyej0ajY2FitXbtWa9eu1cCBA7Vw4UI5OjqWu9a0tDQNGTJEy5Ytsxzz9PRUXl6e/vjjD/3xxx/aunWr9u/fX+5zXWr//v26//77dfr0aUmSvb293NzcdPr0aS1ZskRLly7VW2+9pfHjx1foeQEAAAAAAAAA1w9WjgHXiXfeeccSbo0ePVoXLlxQXFyc4uPjNWXKFC1evFirV6+2OnbChAlasmSJDAaDwsPDdfHiRcXFxSk2NlYTJkyQJH3zzTcKDw+vkFqfeOIJLVu2THZ2dnrllVd06tQpJSUlKSEhQRcuXNDXX3+tDh06VMi5zM6dO6e7775bp0+f1kMPPaQ9e/YoPT1dSUlJiomJUXh4uOzt7TVhwgStWrWqQs8NAAAAAAAAALh+EI4B14HU1FRNnTpVkvTUU0/pvffek5+fnyTJy8tL48eP1+uvv674+PhCY8+cOaMPPvhAkjRu3DhNnjxZ3t7ekiQfHx+99dZbGj16tCRpxowZOnfuXLlq3bBhg5YuXSpJmj17tqZNm6ZatWpZ2qtVq6ZHHnlEH3/8cbnOc7nXXntN58+f1yOPPKIVK1aoVatWllVw/v7+mjx5st5++21J+Vs4AgAAAAAAAABsE+EYcB345ZdflJSUJEl69dVXrfZ56aWX5ObmVuj4ihUrlJOTIxcXF40bN87q2Ndee03Ozs7Kzs7W8uXLy1Xr559/Lkm67bbb9Pzzz5drrpLKyMjQokWLJEmvvPJKkf0GDRokSTpw4IBiYmKK7JeZmamkpKQCLwAAAAAAAADAjYFwDLgO7Nu3T5JUu3Zt3XTTTVb7eHp6qlWrVoWO79mzR5LUpk0beXl5WR3r4+Oj1q1bF+hfVtu3b5ck9erVq1zzlMbevXuVkZEhSerRo4dq1Khh9dWkSRPLmKioqCLnmzp1qoxGo+UVHBxc6dcAAAAAAAAAALg6HKq6AABXduHCBUlSYGBgsf2CgoIKHTt//nyRbZcyb31o7l9W0dHRkqQ6deqUa57SOHv2rOXn4laEXSotLa3ItvHjx1u2mpSkpKQkAjIAAAAAAAAAuEEQjgHXEYPBUNUlXFFV1Jibm2v5OT09XS4uLuWaz9nZWc7OzuUtCwAAAAAAAABwDWJbReA6UL16dUkFV0hZc+bMmULH/P39JUmnT58udqy53dy/rGrUqCGp+G0LrXFwyM/qzdsjWpOYmFjsOctyXgAAAAAAAACAbSEcA64DLVu2lJQf/Jw4ccJqn5SUFO3du7fQ8UufJVZUuJSQkFDg2WTl0bFjR0nS999/X6pxPj4+kqRTp04V2WfXrl1Wj7dp00ZOTk5lOi8AAAAAAAAAwLYQjgHXgR49esjLy0uSNGXKFKt9Zs6cafU5WmFhYXJwcFBGRoamT59udeyUKVOUmZkpR0dHhYWFlavWp556SpL0v//9Tx9//HGJxzVv3lxS/uo4ayHY+fPn9emnn1od6+7urkceeUSSNH36dJ08ebLYc8XFxZW4LgAAAAAAAADAjYVwDLgOuLu765VXXpEkffrppxo7dqwl4ElOTtb06dMVERFhWX11qaCgII0YMUKSNG3aNE2cOFEJCQmS8leMhYeH65133pEkjR49WjVr1ixXraGhoXr44YclScOHD9f48eMLbOkYGxurzz77zBKimXXs2FF16tSRJA0ePFh79uyRyWRSXl6eIiMjFRISory8vCLPO2XKFAUGBio2NlYdOnTQl19+qeTkZEv7hQsXtGLFCj344IMaOHBgua4RAAAAAAAAAHD9IhwDrhNjx45V3759JUnvvPOOqlevLl9fX/n4+GjcuHF69NFHdf/990uSXFxcCoydMmWK+vfvL5PJpMmTJ8vPz0++vr7y8/PTm2++KUkaOHCg3njjjQqpdd68eXrooYeUl5enadOmKTg4WEajUd7e3qpevbqeeeaZQltA2tnZ6ZNPPpGjo6OOHDmiNm3ayMPDQ+7u7goNDVVOTo7mzJlT5Dlr1qyp9evXq0GDBjp79qwGDRokb29v+fn5ycPDQ/7+/urbt69WrVpVbMgGAAAAAAAAALixEY4B1wkHBwctXbpUn332mdq2bStXV1fl5OSodevW+uyzz/TFF19YVoR5e3sXGOvk5KQlS5Zo+fLl6tmzp/z8/JScnCw/Pz/17NlTK1eu1KJFi+To6Fghtbq5uWnFihVas2aNHnzwQQUGBiojI0MODg5q1qyZ/vOf/+i///1voXF33323tm7dql69esnHx0e5ubkKDg7WuHHjtHfvXtWoUaPY8zZu3FgHDx7UJ598oh49eqhatWpKSkqSyWTSLbfcon79+um///2vli5dWiHXCQAAAAAAAAC4/jhUdQEASs5gMOipp54qtCWhJJlMJu3bt0+S1KRJE6vjw8LCyv1MsdK47777dN9995VqTLt27fT9999bbQsJCZHJZCp2vLOzs4YOHaqhQ4eW6rwAAAAAAAAAANvAyjHgBvHll1/q9OnTcnBwUPfu3au6HAAAAAAAAAAArkmEY8B1ZODAgVq+fLliY2Mtx2JiYjRt2jQ988wzkqRBgwapZs2aVVUiAAAAAAAAAADXNLZVBK4jP/74oxYvXiwp/7lejo6OSkxMtLR36dJFM2fOrKryAAAAAAAAAAC45hGOAdeRWbNm6ccff9Tvv/+u8+fPKyUlRdWrV1eLFi308MMP6/HHH5ejo2O5z3Pq1Cm1adOmVGOCg4O1e/fucp8bAAAAAAAAAIDKRDgGXEcGDRqkQYMGVfp5cnNzFRMTU6oxLi4ulVQNAAAAAAAAAAAVh3AMQCF169aVyWSq6jIAAAAAAAAAAKhwdlVdAAAAAAAAAAAAAHC1EI4BAAAAAAAAAADAZhCOAQAAAAAAAAAAwGZU6DPHLly4oKioKKWlpemOO+6oyKkBAAAAAAAAAACAcquQcGz16tWKiIjQgQMHJEkGg0E5OTmW9vj4eA0cOFCStGTJEhmNxoo4LQAAAACghI4ePark5OSqLsOmeXp6qn79+lflXNzvqnc17zcAAABKp9zh2LRp0/Tqq6/KZDIV2cfHx0eurq5avXq1li9frqeeeqq8pwUA2LCaNWtq4sSJqlmzZlWXAgDAdeHo0aNq0KBBVZcBSX///XelBybc72vH1bjfAACgavD91PWtXM8c27lzp1599VU5ODho5syZio2NVUBAgNW+jz32mEwmk9atW1eeUwIAoJo1ayoiIoL/8QEAQAmxgujacTXuBff72sG9AADgxsX3U9e3cq0c++CDDyRJ48eP14gRI4rt27VrV0nS77//Xp5TAgAAAAAAAAAAAGVWrpVjv/76qyRp+PDhV+xbrVo1ubu76+zZs+U5JQAAAAAAAAAAAFBm5QrHzp8/L09PT1WrVq1E/Z2dnZWVlVWeUwIAAAAAAAAAAABlVq5wzN3dXWlpacrNzb1i35SUFCUkJMjX17c8pwQAAAAAAAAAAADKrFzhWMOGDZWbm6uDBw9ese+qVauUl5enFi1alOeUAAAAAAAAAAAAQJmVKxzr3bu3TCaTpk6dWmy/06dPa9y4cTIYDAoLCyvPKQEAAAAAAAAAAIAyK1c4Nnz4cAUFBWnFihUaNGiQ/vzzT0tbdna2jh49qhkzZqhVq1Y6e/asGjRooMGDB5e7aAAAAAAAAAAAAKAsHMoz2MPDQ99//73uvvtuffXVV/r6668tbS4uLpafTSaTAgMDtWrVKjk6OpbnlAAAAAAAAAAAAECZlWvlmCS1aNFCBw4c0BNPPCFnZ2eZTKYCL0dHRw0ZMkR79uxRw4YNK6JmAAAAAAAAAAAAoEzKtXLMrEaNGpo3b54++ugj7d27V2fPnlVubq5q1KihNm3ayM3NrSJOAwAAAAAAAAAAAJRLuVeOXcrZ2VkdO3ZU3759NWDAAHXt2pVgDGVmMBhkMBgUGRl5Tc5XmUJCQmQwGBQREVGh80ZERMhgMCgkJKRC571ezg8AAAAAAAAAQLnCsSeffFKjR48ucf+xY8fqqaeeKs8pAVyD9u/fr4iICL3//vtVXQoAAAAAAAAAAMUqVzi2YMECLV68uMT9ly1bpgULFpTnlLAhDRs2VMOGDW1y9WHt2rXVsGFDVatWrapLKZH9+/dr0qRJVwzHqlWrpoYNG6p27dpXpzAAAAAAAAAAAC5TIc8cKymTyXQ1T4fr3OHDh6u6hCrzxRdfVHUJlWL48OEaPnx4VZcBAAAAAAAAALBhFfrMsSuJjY21yVVAAAAAAAAAAAAAuDZclXAsMTFR7733ntLS0lSvXr2rcUr8fyEhITIYDIqIiFBWVpamTZumZs2ayd3dXT4+Prrrrrv0448/Wh1rMBhkMBgUGRlZovmLG5+cnKzXXntNjRo1kqurq/z8/NSrVy/t2rWryLmLO398fLxef/11tWzZUl5eXnJyclKNGjXUrFkzPffcc9qwYUOx70tZ6imp7OxsVatWTQaDQbNmzSq27+effy6DwSAvLy+lpaVZjhf3vpqtXLlSvXr1UkBAgJycnBQQEKBevXrp22+/LVPdaWlp+uabbzRo0CC1aNFC1atXl7OzswIDA9WnT59iPydPPPGEJCkqKspy38yvS68hIiJCBoNBISEhRdbx+++/a9CgQapTp45cXFzk4+Ojjh076v3331dmZqbVMQsWLJDBYFDdunUlSXv37lX//v1Vs2ZNOTs76+abb9bo0aMVHx9fpvcGAAAAAAAAAHDjKNW2ipMmTdLkyZMLHIuJiZG9vX2JxhsMBoWFhZXmlKggWVlZ6t69u7Zu3SoHBwd5eHgoISFB69ev1/r16zVx4sRig5jyOHfunFq2bKljx47JxcVFdnZ2iouL09q1a7Vu3Tp9//336tGjR4nnO336tDp16qSTJ09Kkuzs7GQ0GhUbG6uYmBj98ccfOnz4sO68886rUs/lHB0d9fDDD2vOnDn68ssv9Z///KfIvl9++aUkKSwsrMSrKrOysjRo0CAtWbJEUsHrX7t2rdauXauBAwdq4cKFcnR0LHHdS5cutYRc5sDOwcFB586d03fffafvvvtOL730kt59990C4wICApSenq6kpCTZ2dmpevXqBdo9PDxKXMPMmTP10ksvWbZgNRqNSk1N1Y4dO7Rjxw7Nnz9fP/30k2rWrFnkHIsWLdKQIUOUnZ0to9GonJwcHT9+XDNnztQvv/yinTt3lqomAAAAAAAAAMCNpdQrx0wmk+VlMBgK/Lm4l6Ojo5588kmNGzeuMq4DV/DRRx/pt99+09y5c5WcnKz4+HidPHlSffv2lZQffK5evbpSzj1s2DA5OTlp48aNSk1NVUpKin777Tc1bNhQWVlZGjp0qPLy8ko8X0REhE6ePKm6detq/fr1ysrKUlxcnDIzM3XixAl9/PHHat++/VWrx5pBgwZJkvbs2VPks9NOnjypzZs3F+hfEhMmTNCSJUtkMBgUHh6uixcvKi4uTrGxsZowYYIk6ZtvvlF4eHipavbx8dGYMWO0bds2paSkKCEhQampqTp79qwmTZokR0dHvffee4U+J9HR0frggw8kScHBwYqOji7wGjNmTInOv2bNGo0ePVomk0kPPPCA/v33XyUkJCglJUVffPGFPD09dfDgQfXt21e5ublW57hw4YKefPJJDR48WCdPnlRCQoKSk5M1e/ZsOTo66n//+5/efvvtUr0vAAAAAAAAAIAbS6lWjg0ZMsSyHZrJZFK3bt3k6+urFStWFDnGzs5OXl5eatCggVxdXctVLMouMTFR8+bN05NPPmk5FhwcrCVLlig0NFRbtmzRhAkT1Lt37wo/t4ODgzZt2iR/f3/LsTZt2mjZsmVq1qyZoqKitGPHDnXq1KlE823fvl2SNGXKlAKrw+zt7VWnTh0999xzV7Uea9q2bauGDRvqyJEj+uKLLzRlypRCfb7++muZTCbVrl272G0GL3XmzBlLEDVu3LgCKzl9fHz01ltvKSMjQzNmzNCMGTM0YsSIYldZXeqBBx7QAw88UOh4zZo19frrr8vNzU0vv/yyZs2aVSmfk7Fjx0qSunTpohUrVlhWpDo5Oenxxx+Xt7e3evfure3bt+vbb7+1BLuXSktL0+DBg/Xpp59ajrm5uWnYsGH6999/NWPGDH3zzTeFVsACAAAAAAAAAGxHqVaO1alTR127dlXXrl0VEhKi2rVrq169epZj1l5dunRR8+bNCcaqWHBwsGXLvEvZ2dnptddekyT973//0x9//FHh5x46dGiBIMqsadOmuummmyRJBw8eLPF83t7ekvK3R7wW6inK448/Lun/QrDLmbdUfPTRR2UwGEo054oVK5STkyMXF5ciV2G+9tprcnZ2VnZ2tpYvX17G6gu77777JEk7duwocuVWWR08eFCHDh2SlF+/ta1a77//frVt21ZS/sq4opg/z5czB3/Hjh0r8Hw3azIzM5WUlFTgBQAAAAAAAAC4MZR6W8VLnThxQrt27aqoWlCJQkJCigxgunTpIgeH/EWEe/bsqfBzt2vXrsi2wMBASVJcXFyJ5+vVq5ek/JVTQ4cO1U8//VSq8KKi6ynK448/LoPBUGD7RLO9e/dawqDSbKlovj9t2rSRl5eX1T4+Pj5q3bp1gf4lFRMTo4kTJ6pDhw7y8/OTg4ODDAaDDAaDbr31Vkn5q7Pi4+NLNe+VmOt0cHBQ165di+x31113Feh/OV9fX91yyy1W28z3VtIV6586daqMRqPlFRwcXGx/AAAAAAAAAMD1o1zhGK4fQUFBRba5uLjIz89PknT+/PkKP7enp2eRbeZQLjs7u8Tzvfzyy+rfv7+ys7P16aefqmfPnvL29lbTpk318ssv68iRI1e1nqLUrl3bEvSYV4mZmf/cpk0bNWrUqMRzmu9PcfdTkmrVqlWgf0ns2LFDjRo10uTJk7Vz507FxcXJ1dVV/v7+CggIULVq1Sx9U1NTSzxvSZjrrFatmpydnYvsd6XrKsm9la58f8ePH6/ExETL69SpU8X2BwAAAAAAAABcP0r1zLErOX/+vE6fPq3U1FSr28iZ3XHHHRV5WtgYR0dHLVmyRBMmTNDKlSu1bds27dq1S3/++af+/PNPzZw5U9OnT9dLL71U1aVq0KBBioyM1PLlyzV79my5uroqJyfHsi2geevFqpaTk6OBAwcqISFBLVq00JQpU9S5c+cCYdM///xjWZVV3L/fNwJnZ+diQzoAAAAAAAAAwPWrQsKx2bNna9asWfrnn3+u2NdgMCgnJ6ciTotSOHPmTJFtmZmZunjxoiQVeBaXvb29cnNzlZGRUeTYxMTEiiuylJo3b67mzZtLyg93Nm/erMmTJ2vLli16+eWX1b17d0t7Venbt6+GDRumpKQkfffdd3r44Yf1yy+/6Pz583J0dNTAgQNLNZ/5/pw+fbrYfuZ2a89Ws2bHjh2KioqSvb291qxZY3VlWnR0dKlqLQ1znbGxscrMzCwymCrtdQEAAAAAAAAAcLlyb6v48MMPa8SIETp27JhMJtMVX3l5eRVRN0pp8+bNRa722bp1qyWwND+rSsp/dpWkIreUS05Otjw3q6o5ODjozjvv1Nq1a+Xs7CyTyaT169dXdVny9PRUnz59JP3fVormf/bs2bPAVoUlcemzxIoKJhMSEgo8m6wkzPe4evXqRW7ZWNz7aWeX/5+Ssq4oM1+XOeQsirmGkl4XAAAAAAAAAACXK1c4tnjxYi1dulReXl5avny55TlENWrUUE5Ojk6fPq358+frlltuUbVq1bRhwwbCsSpy8uRJLVy4sNDxvLw8TZkyRZJ06623qmnTppY286qrFStWWJ3z3XffVWZmZiVUW7zizuns7Cx7e3tJ/xfYVLVBgwZJkn755RcdPXpU3333XYHjpREWFiYHBwdlZGRo+vTpVvtMmTJFmZmZcnR0VFhYWInmNRqNkqSYmBjFxMQUaj99+rRmzZpV5HgvLy9J+cFcWTRr1ky33nqrJOnNN99Ubm5uoT4//PCDdu3aJUmlXnEHAAAAAAAAAIBZudKDBQsWyGAw6I033tBDDz0kV1fX/5vYzk6BgYEaPHiw9u3bp+DgYPXp00fHjh0rd9EoPaPRqOeff16ffvqpZZvEU6dOaeDAgdq0aZOk/FDiUuYA4ueff9bEiROVlJQkKX/ruwkTJujNN9+Ut7f31buI/69OnToaP368du7cWSAoO3bsmB599FGlpaXJzs5Od99991WvzZq77rrLEhg/8sgjSk9Pl4+Pj3r16lXquYKCgjRixAhJ0rRp0zRx4kRLIJWQkKDw8HC98847kqTRo0erZs2aJZq3c+fOcnd3l8lkUv/+/fX3339LknJzc/Xzzz8rJCREBoOhyPG33XabJCkpKUlLly4t9XVJsoR9W7duVd++fXX8+HFJUnZ2tr7++mvL57Fjx46W1XgAAAAAAAAAAJRWucKx33//XZL02GOPFTh++eowDw8PzZ49W8nJyUWudkHleuGFF9S6dWsNHTpUXl5e8vX1Ve3atS1BxmuvvaYHH3ywwJghQ4YoNDRUkjR58mR5e3vL19dX/v7+mjZtmqZPn14lz/SKiYnRtGnT1KFDB7m5ucnX11eurq6qX7++li1bJoPBoPfee8+yEqmq2dvb65FHHpEky3aH/fv3L/K5WlcyZcoU9e/fXyaTSZMnT5afn598fX3l5+dnCTgHDhyoN954o8RzGo1Gvfvuu5KkLVu2qGHDhvL09JSHh4fuueceJSYmav78+UWOv+WWW3TnnXdKkgYMGCAvLy/VrVtXdevW1fvvv1+iGnr16qUZM2bIYDBo1apVuvnmm+Xj4yMPDw899thjSkpKUtOmTbVs2TLL6kAAAAAAAAAAAEqrXOFYQkKCPD09C6wecnR0tGyveClzkHEtPAfKFjk5OWnDhg2aMmWKGjZsqMzMTBmNRstzuqwFKfb29lq7dq0mTZqkRo0aycnJSQaDQT169NC6des0ZsyYKriS/O0Jx48fry5duig4OFjp6emS8gOaJ554Qrt379bIkSOrpLaiXL6FYlm2VDRzcnLSkiVLtHz5cvXs2VN+fn5KTk6Wn5+fevbsqZUrV2rRokVydHQs1bzPPfec1q5dq5CQEHl4eCgnJ0dBQUF68cUXdeDAgQJbblqzfPlyjRo1Sg0aNFB2draioqIUFRVVqq0WR40apT179uixxx5TcHCw0tLS5Orqqvbt22vmzJnavXu3AgMDS3VdAAAAAAAAAABcymAymUxlHRwYGKj09HTFx8dbjgUEBCg2NlYXL14stOWeh4eHcnNzLWEGKl9ISIg2b96siRMnKiIioqrLAa5LSUlJMhqNio2NlZ+fX1WXA1Sa7Oxs/fDDD7r33ntLHbADAK5t+/btU6tWraq6DEjau3evWrZsWeBYRf8O5n5fO67G/QYAAMD/MX+Xm5iYKC8vryL7lWvlWFBQkJKSkpSSkmI51rhxY0myPMfKbN++fUpLS5Obm1t5TgkAAAAAAAAAAACUWbnCMfPfftq9e7fl2H333SeTyaQxY8Zo9+7dys7O1p49ezR48GAZDAZ16tSpfBUDAAAAAAAAAAAAZVSucMwchC1btsxy7Pnnn1dQUJCOHz+u9u3by8XFRe3atdP//vc/OTg46NVXXy130QAAAAAAAAAAAEBZOJRn8L333qtNmzYV2CrRw8NDGzdu1JAhQ7Rjxw7L8dq1a2vOnDlq165deU4JXFUjRozQkiVLSjXmgw8+0IABAyqpIgAAAAAAAAAAUB7lCsccHBzUtev/Y+++42s+//+PP05kyxQEsVU1taqo1gwtalSN2orqMKqf1qhRVaGKqmqr1UnFqj2qNasEtYraH/otFQRBZO91fn/4nfNJJCcyTkR43m+3963J+32N1/s6bznndl69rqtFpvPVq1dn7969BAcHc/nyZdzd3fH19cVgMOSnO8mDwMDAwg6hSIuMjOT69eu5qhMfH19A0YiIiIiIiIiIiIiISH7lKzl2N+XLl6d8+fIF2YVIgQoICCAgIKCwwxARERERERERERERESvJ155jgwYNYuTIkTkuP2bMGF599dX8dCkiIiIiIiIiIiIiIiKSZ/lKjgUEBLB8+fIcl1+1apVm4YiIiIiIiIiIiIiIiEihyVdyLLeMRuO97E5EREREREREREREREQkg3uaHAsNDcXZ2fledikiIiIiIiIiIiIiIiJiZnsvOomMjGTevHnExcVRp06de9GliMh9759//iE6OrqwwyiyXF1dqV69emGHISIiYlUF9fngzJkzVm9TCs/dnhO93iIiIg8ffc9UOPT9VNGVq+TY5MmTmTJlSoZz169fp1ixYjmqbzAY6NatW266FBF5IP3zzz88+uijhR1Gkfd///d/+gAiIiIPDH0+eDi4urrmq76ek6Ilv6+3iIhITujzQeHS91NFU65njqXfN8xgMOR4HzF7e3tefvllxo0bl9suRUQeOPo/eaxD4ygiIg+Se/G+tmTJEnx9fQu8H8maNf7P4tw8J3q9C5f+T3IREblX9P1I4dL4F025So4NHDgQPz8/4HaSrFWrVpQoUYI1a9ZYrGNjY4ObmxuPPvooTk5O+QpWRERERERE8s7X15cnn3yysMOQe0Svt4iIiIhI1nKVHKtUqRKVKlUy/16xYkW8vb1p0aKF1QMTERERERERERERERERsbZcL6uYXlBQkJXCEBERERERERERERERESl4NgXZ+M2bN4mKiirILkRERERERERERERERERyzOrJsaSkJMaMGUPJkiUpU6YMnp6ePPLII3z77bfW7kpEREREREREREREREQkV3KVHNu/fz/FihWjVKlSJCYmZrpuNBrp1KkTn376KWFhYRiNRoxGI//++y9vvvkmEyZMsFrgIiIiIiIiIiIiIiIiIrmVq+TYnj17MBqN9O7dGwcHh0zXFy1axLZt2wAoXbo0r7/+OiNGjKBSpUoYjUZmzpzJqVOnrBO5iIiIiIiIiIiIiIiISC7lKjn2xx9/YDAY6NSpU5bXv/rqKwAqVarEiRMn+O677/j00085efIktWvXJi0tjYCAgHwHLSIiIiIiIiIiIiIiIpIXuUqO/fvvvwA0atQo07WbN29y5MgRDAYD48ePp3Tp0uZrLi4uTJgwAaPRyB9//JHPkEVERERERERERERERETyJlfJsevXr+Pm5oarq2uma/v37zf//OKLL2a63q5dOwDOnTuX2xhFRERERERERERERERErCJXybHIyEhSU1OzvHbkyBEAKlasmGHWmImrqysuLi5ER0fnIUyR+4u/vz8GgwE/P7/CDkVERERERERERERERHLBNjeF3d3dCQsLIyoqCjc3twzXDh06BEC9evUs1jcYDBQrViwPYYrIgyQoKMi8/6C/v3+hxiIiIiIiIiIiIiIiD5dczRx77LHHAFi/fn2G83FxcezZsweDwcAzzzyTZd3o6Giio6MpVapU3iIVuY+ULFmSGjVqULFixcIOpUgKCgpi8uTJTJ48ubBDEREREREREREREZGHTK6SY88//zxGo5HJkydz5coV8/kPPviA2NhYADp16pRl3T///BOAGjVq5DVWkfvG8OHDOXv2LIsWLSrsUEREREREREREREREJBdytazi4MGD+eyzzwgKCuKRRx7hiSee4OrVqwQHB2MwGGjdurXF5NfPP/+MwWDgqaeeskrgIiIiIiIiIiIiIiIiIrmVq5ljJUuWZMWKFRQvXpzExEQOHjzI5cuXMRqNlC1blu+++y7LevHx8SxbtgyA1q1b5z9quSf8/PwwGAz4+/tjNBr54YcfaNSoEW5ubri6uvLMM8+wZMmSbNtYu3YtHTt2xNvbG3t7e7y9venYsSPr1q3Ltt7WrVvp2rUr5cuXx97eHjc3N6pWrUqbNm2YNWsWYWFhWdaLjo5mxowZPPPMM5QoUQIHBwcqVKhAr1692L9/f57H4k7+/v4YDAb8/PwyXRs4cCAGg4GBAwcCsHr1avz8/ChRogTOzs488cQTfPHFF6SlpVktHoC0tDRWrlxJ586d8fHxwcHBgVKlSlG/fn3Gjh3LqVOnsqyXlzELCgrCYDBgMBgICgri+vXrvP3221SpUgVHR0e8vb3p1asXZ8+ezVS3cuXKtGzZ0vy7qR3TYRo3a8d4/vx53njjDapUqYKDgwOVK1e++6CKiIiIiIiIiIiIyAMnVzPHAJ599llOnz7Nd999x7FjxwB46qmnePPNN/Hy8sqyzpEjR/Dz88POzo5mzZrlK2C591JTU+nSpQs///wztra2ODs7Ex0dzYEDBzhw4AD//PNPpr2jkpKS6N+/PytWrADAxsYGd3d3QkND2bhxIxs3bqR3794sXLgQOzu7DHWnTJnCpEmTzL87OztjNBq5cOECFy5c4LfffqNBgwaZElPHjh3jhRdeIDg4GIBixYrh7OxMcHAwK1asYOXKlXz00UeMHz++AEYpa8OHD2fu3LnY2Njg5uZGfHw8x48f55133uGvv/5i4cKFVuknNDSUbt26sXv3bvM5Dw8PEhIS+Ouvv/jrr7/4+++/M+0XaI0xO336NIMGDeLGjRs4OzsDcOPGDVasWMHmzZvZvXs3devWNZcvVaoUUVFRhIeHA+Dt7Z2hPXd3d6vHuG/fPgYPHkxMTAzOzs6ZnjkREREREREREREReXjkauaYSYUKFZg6dSq//vorv/76Kx988IHFxBhA06ZNWbVqFT/99BM2NnnqUgrR3LlzCQwMJCAggKioKCIjI7l8+TIvvPACAFOnTuWff/7JUOe9995jxYoVGAwGJk6cyK1btwgLCyM0NJT33nsPgGXLljFx4sQM9S5evGhOtI0cOZIrV64QGxtLdHQ0ERER7Nmzh2HDhuHq6pqh3rVr12jbti3BwcF07dqVw4cPEx8fT1RUFNevX2fixIkUK1aM9957L1OCqKBs2LCBH374gdmzZxMeHk54eDihoaG89tprACxatIgdO3bku5+UlBQ6d+7M7t27cXBw4OOPP+bGjRuEh4cTHR3NlStX+O6773j88ccz1LPWmL388stUr16dQ4cOERsbS0xMDL/99htly5YlKiqKt956K0P5Q4cOsXbtWvPvISEhGY4vvvjC6jEOHjyYmjVrZohx27ZtuRtoEREREREREREREXkwGEUsaNGihREwAsYdO3Zkup6QkGAsV66cETBOnTrVfD44ONhoa2trBIzjx4/Psu2RI0caAaOdnZ3x6tWr5vMrVqwwAsZHH300V7EOGjTICBj79Oljsczs2bONgLFu3bq5ajsrkyZNMgLGFi1aZLo2YMAA87gtWLAgy/r169c3AsbXXnst37HMmzfPCBgNBoNx48aNOa6XnzG7cOGC+R4fe+wxY1xcXKa6GzZsMJe5fPlyhms7d+40X7sXMVaqVMkYHR2dbV/ZiYyMNALG0NDQPLdxpyNHjpjj05H348iRI1Z7TcRoTEpKMq5fv96YlJRU2KGIiDyU7sXnA7133p9y8x6cm+dEr/f9SZ+5RETE2vQ9k76fkv8xfZcbGRmZbTlN45K7atKkSYY9okwcHBxo27YtACdOnDCfX7NmDSkpKTg6OjJu3Lgs23z//fdxcHAgOTmZ1atXm897eHgAt/eYio2NzVF8CQkJ/PTTTwCMHTvWYrn+/fsDcPz4ca5fv56jtvOjQoUKDBgwIMtrnTp1AjKOW179+OOPALRv35727dvnqI41x2zUqFE4OTllOt+uXTvs7e0BOHnyZI7iKqgYhw8fjouLS477TkxMJCoqKsMhIiIiIiIiIiIiIg+GXO85Jg+fRo0aWbxWrlw5AMLCwsznDh8+DEDDhg1xc3PLsp6npycNGjRg79695vJwe/+6kiVLcu3aNRo1asSQIUN47rnnqFGjBgaDIcu2jhw5QkJCAgBt2rTJ0T1dvHgx015X1tawYUOLMWc1bnmRkpLCoUOHAMzLXOaENcfM0vNha2tLqVKluHLlSp7u05oxNmnSJFd9T58+PdM+eiIiIiIiIiIiIiLyYFByTO7qzv290rO1vf0IJScnm8/duHEDAB8fn2zbLV++fIbycHvm2LJly+jTpw+nT58271fl7u5O8+bN6dGjBz179sTOzs5c5+rVq+afczojLC4uLkfl8iO345YXt27dMrdRqVKlHNez5pgV1H1aM8bSpUvnqu/x48czcuRI8+9RUVFUqFAhV22IiIiIiIiIiIiIyP1JyTG57zz33HNcuHCBtWvX8vvvv7Nv3z7++ecffvnlF3755RdmzJjB1q1bzcm31NRUc934+HgcHR0LK/R7ztLMtLspCmNmzRiLFSuWq/IODg44ODjkuT8RERERERERERERuX9pzzGxOtMsneDg4GzLma5nNaunePHivPzyywQEBPB///d/BAcH8/HHH+Po6JhhRhlAmTJlzD9fvHjRGrdQZJQoUcI8iy43914UxqwoxCgiIiIiIiIiIiIiRY+SY2J1DRo0AG7vPRYZGZllmYiIiAx7k92Nj48PY8aMYdSoUQD89ttv5msNGzbE3t4egF9++SVfsRc1tra2PPXUU0Du7r2wx8zG5n9/eoxGY5ZlCjtGEREREREREREREXkwKTkmVtetWzdsbW1JSEjg448/zrLMtGnTSExMxM7Ojm7dupnPJyYmZtu2k5MTkDG5Urx4cfr06QPAxx9/zKVLl7JtIywsLEf3UVS8+uqrAGzatIlNmzblqE5hj5mbm5v554iIiCzLFHaMIiIiIiIiIiIiIvJgylVy7IMPPuDo0aMFFYs8IHx8fHj77bcBmDFjBpMmTTInQCIiIpg4cSKffPIJACNHjqRs2bLmuh9//DHt2rVj8eLFGZZlTExMZOXKleZ6HTp0yNDntGnTKFeuHKGhoTzzzDMsXryY6Oho8/WbN2+yZs0aunTpQu/evQvkvgvLyy+/TNOmTTEajXTr1o1PPvmE0NBQ8/WrV6/y2WefMXbs2Az1CnPMHn30UfOssHnz5lmcPfYwv64iIiIiIiIiIiIiUjBylRybOnUqDRo0oGLFirz11lv89ttvpKSkFFRsUoRNmzaNHj16YDQamTJlCl5eXpQoUQIvLy+mTp0KQO/evfnwww8z1EtLS2PLli3079+fChUq4OzsjJeXF05OTvTs2ZPIyEh8fX2ZPXt2hnply5Zl+/btPProo1y9epX+/fvj4eGBl5cXLi4ulC5dmpdeeon169eTlpZ2z8bhXrC1tWXdunU0a9aMhIQExowZQ+nSpfH09MTV1RUfHx9GjhzJ33//naFeYY6Zs7MzL7/8MgBjxozBxcWFSpUqUblyZUaPHn1fxCgiIiIiIiIiIiIiDybb3BT+z3/+w4YNGwgKCmLu3Ll8/fXXuLm50b59ezp16kT79u1xdXUtqFilCLG3t2fFihX06NGD+fPnc/jwYcLDw/Hy8qJBgwa8/vrrdOnSJVO9N954Ax8fH3bu3MnJkye5du0akZGReHp6UrNmTbp168bgwYNxdHTMVNfX15cTJ06wcOFC1qxZw7FjxwgLC8Pe3p5HHnmEevXq0bp1a1566aV7MQT3VMmSJQkMDGTZsmUsXbqUI0eOEB4ejqenJzVq1KB169bmZFR6hTlmc+fOpUKFCqxZs4bz58+bl01MP+utsGMUERERERERERERkQePwWhpPbNsnDx5kvXr17N+/XrzMosGgwE7Ozv8/Px48cUX6dSpEz4+PlYPWETkXouKisLd3Z3Q0FC8vLys0uZff/1F/fr1rdLWw+zIkSM8+eSThR3GAyM5OZlNmzbRvn177OzsCjscEZGHzr34fKD3zvtTbt6Dc/Oc6PW+P+kzl4iIWJu+Zypc+sx1fzF9lxsZGYmbm5vFcrlaVtGkdu3aTJw4kSNHjnDp0iW++uornn32WYxGI9u2bWP48OFUrFiRhg0b8tFHH3Hq1Kk834iIiIiIiIiIiIiIiIiIteQpOZZe+fLlGTZsGNu2bePmzZv89NNPdO/eHVdXV44cOcIHH3xA3bp1qVatGqNGjWLXrl3aG0hEREREREREREREREQKRb6TY+m5ubnRq1cvli9fzs2bN9m6dSuDBw+mXLlyXLhwgc8++4xWrVrh7e3NK6+8Yl6SUUREREREREREREREROResC2ohu3s7GjdujWtW7fm66+/5siRI6xfv54NGzZw8uRJFi1aRJUqVahXr15BhSCSrbfffpsVK1bkqs4XX3xBz549rR7Lvn376Nq1a67qNG7cmLVr11o9FhERERERERERERGRB1mBJcfuVL9+ferXr8+HH37IhQsX+Pnnn/Hx8blX3YtkEhkZyfXr13NVJz4+vkBiSUpKynUsYWFhBRKLiIiIiIiIiIiIiMiD7J4lx9KrUqUK77zzTmF0LWIWEBBAQEBAYYcBgJ+fH0ajsbDDEBERERERERERERF54Fl1zzERERERERERERERERGR+5mSYyIiIiIiIiIiIiIiIvLQUHJMREREREREREREREREHhpKjomIiIiIiIiIiIiIiMhDw7awAxARKSpOnjyJm5ubVdo6c+aMVdoRKQjHjx/Hxkb//4yIyL2mzweSk/dgPScPDn3mEhERa9HnA5HcU3JMRCSH2rVrR0JCQmGHIem4uroWdggPlPPnzwPQvHlz4uPjCzkaEREpCHrvvD8V1HuwXu/7kz5ziYiIPFj0matoUnJMRKQQLVmyBF9f38IOo0hydXWlevXqhR3GAyUmJqawQxAREQru84HeO+9feXkPvttzotf7/qXPXCIiUlD0PdO9p89cRZeSYyIihcjX15cnn3yysMMQERGR+4g+H0hO6DkRERGRO+nzgUjOWTU5lpCQQHh4OMnJydmWq1ixojW7FREREREREREREREREcmRfCfH4uLimDlzJsuWLePcuXN3LW8wGEhJSclvtyIiIiIiIiIiIiIiIiK5lq/kWEREBM2bN+f06dMYjcYc1clpORERERERERERERERERFry1dy7MMPP+TUqVPY2dnx1ltv8eKLL1KuXDlsbbWVmYiIiIiIiIiIiIiIiNx/8pXFWr9+PQaDgc8//5yhQ4daKyYRERERERERERERERGRAmGTn8pXrlzBxsaGV155xVrxiIiIiIiIiIiIiIiIiBSYfM0cK1GiBAkJCTg6OlorHhEREREREREREREREZECk6+ZY02bNiUyMpIrV65YKx4RERERERERERERERGRApOv5NjYsWOxtbXlww8/tFY8IiIiIiIiIiIiIiIiIgUmX8mx+vXrExAQwMKFC3n11Vf5999/rRWXiFVVrlwZg8FAQEDAPe03NTWV2bNnU69ePYoXL47BYMBgMLB+/fp7GkdRMnDgQAwGAwMHDizsUERERERERERERETkAZSvPceqVq0KQLFixQgICCAgIIASJUrg6upqsY7BYOD8+fP56VbEqvz9/YHbSZnKlStbte133nmHr776CgB7e3u8vb0BtE+fiIiIiIiIiIiIiEghyVdyLCgoKNO5W7ducevWLYt1DAZDfroUyZNq1arh6OiIu7t7pmuTJ08GwM/Pz6rJsejoaL777jsAZs6cyejRo/X8i4iIiIiIiIiIiIgUsnwlxxYsWGCtOEQK1O+//37P+zx79izJyckADB06VIkxEREREREREREREZH7QL6SYwMGDLBWHCIPnLi4OPPPLi4uhRiJiIiIiIiIiIiIiIiY2BR2APJgql27NgaDwbzfVnr79+/HYDBgMBh46aWXMl1PTk7G1dUVg8GQYcbXgQMHGDt2LM2aNaNSpUo4Ojri4eHB008/zccff0xMTIzFeCpXrozBYCAgIMB8buDAgRlmc7Vs2dIcl8FgyPMSiwEBARgMBvz8/Mzn0reb/rzJ2rVr6dixI97e3ua9yTp27Mi6dess9mOKf+DAgRiNRubNm0fTpk3x8vLKdK+55efnh8FgwN/fn6SkJGbMmEGdOnUoXrw4np6etG7dms2bN9+1nbzc191s27bN/HwMHDiQlJSUDNf37t1Lv379zM+Iu7s7Tz311F2fERERERERERERERF5OORr5piIJS1btuTUqVPs2LGD4cOHZ7i2Y8cO88+BgYEYjcYMSao///yTmJgYHBwcaNKkifn8M888Y/7Z2dkZZ2dnwsPDOXjwIAcPHmTRokXs3LmT0qVL5yhGd3d3vL29uX79OgCenp7Y29ubr5cqVSp3N/3/OTk54e3tTVJSEuHh4QB4e3ubr5coUcL8c1JSEv3792fFihUA2NjY4O7uTmhoKBs3bmTjxo307t2bhQsXYmdnl2V/RqOR7t27s2bNGnN9Gxvr5L2TkpJ47rnn2LNnD7a2tri4uBAREcH27dvZvn07kyZNwt/fP8t6+b2vrCxZsoRBgwaRnJzM2LFjmTFjhvlaWloaI0aMYM6cOeZzLi4uxMbGcujQIQ4dOsSCBQvYunUrlSpVyvugiIiIiIiIiIiIiEiRZpVv0I1GI2vXrqV79+5UqVKF4sWLU7x4capUqUKPHj1Yv349RqPRGl1JEdGyZUsAdu3aRVpaWoZrO3fuBMDNzY1bt25x/PjxLK8//fTTODo6ms+/8MILrFixgmvXrhEbG0tYWBhxcXGsXbuWGjVq8N///pchQ4bkOMYvvviCkJAQ8+9r164lJCTEfBw6dCh3N/3/9ezZk5CQENauXWs+l77d9Offe+89VqxYgcFgYOLEidy6dYuwsDBCQ0N57733AFi2bBkTJ0602N/atWv5+eefmTVrFuHh4YSFhREZGUnbtm3zFH96X3/9NX/++Sfffvst0dHRhIeHc+nSJfOMv8mTJ7Nhw4ZM9axxX3eaNWsW/fv3JyUlhc8//zxDYgxg0qRJzJkzh9KlSzN37lxu3bpFdHQ08fHx7Ny5k3r16vH333/TtWvXTM+kiIiIiIiIiIiIiDxEjPkUEhJibNq0qdHGxsZoY2NjNBgMGQ7T+WbNmhmvXbuW3+6kiAgLCzPa2NgYAeORI0fM5xMSEoxOTk5GZ2dn4+jRo42A8dNPP81Qt2XLlkbA6O/vn+P+goODjQ4ODkaDwWC8ePFipuuVKlUyAsYFCxZkugYYAePOnTtz3F9O7Ny509y2pZhtbW2NgHH8+PFZlhk5cqQRMNrZ2RmvXr2a4dqAAQPM7c+ZM8eqsbdo0cLc9vz58zNdT01NNTZv3twIGGvWrJnhmrXua8CAAUaj0WhMS0szjhgxwggY7e3tjcuXL8/U3oULF4zFihUzOjk5GY8dO5Zln1FRUcby5csbAeO6deuyvf+EhARjZGSk+bh8+bIRMDo6OprHxVpH+n8fIoXt0KFDxvXr1xudnJys/qzr0KFDh46cH/p88PDJy3uwnpOiS5+5dOjQoUNHQR36fCBiNEZGRhoBY2RkZLbl8jVzLCkpibZt27Jv3z6MRiMNGzZkwoQJfPPNN3zzzTdMmDCBp556CqPRyN69e2nXrh3Jycn56VKKCE9PT+rWrQtkXEbxwIEDxMfH06RJE55//vlM1xMTE9m/fz/wv9lnOeHj40PdunUxGo3s27fPGrdQ4NasWUNKSgqOjo6MGzcuyzLvv/8+Dg4OJCcns3r16izLeHp6Mnjw4AKJsUKFCrzyyiuZztvY2PD+++8DcPr0aU6ePGm+Zq37gtt/Y/r27ctnn32Gq6srmzZtomfPnpnKBQQEkJqayvPPP29+7u7k6upK586dAdi6davFPgGmT5+Ou7u7+ahQoUK25UVERERERERERESk6MjXnmPffPMNJ06cwM3NjSVLltCxY8dMZT788EM2bdpEnz59OHHiBN9++y1vvfVWfrqVIqJVq1YcPXqUHTt2MHr0aOB/ibBWrVrRuHFjHBwc2LNnD6mpqRQrVox9+/aRkJCAk5MTTz/9dIb20tLSWL58OcuXL+fYsWPcvHmThISETP0GBwcX/M1ZweHDhwFo2LAhbm5uWZbx9PSkQYMG7N2711z+Tg0bNsywV5o1+fn5ZdgPLr1mzZpha2tLSkoKhw8fpnbt2oD17is6OpoOHTqwfft2vL292bx5M/Xq1cuy7N69ewHYtm0bZcqUsXg/MTExAFy8eNFiGYDx48czcuRI8+9RUVFKkImIiIiIiIiIiIg8IPI1c2zlypUYDAbmzp2bZWLMpH379sydOxej0cjy5cvz06UUIaaZX3v27CElJQX4335irVq1MifAoqKizPt7ma43btw4Q8InLi6O5557jr59+/LLL79w+fJl0tLSKFGiBN7e3nh7e2NnZwdAbGzsPbvH/Lhx4wZwe9ZbdsqXL5+h/J1Kly5t3cDSyS42R0dHvLy8gIyxWeu+1q5dy/bt2wH45ZdfLCbGAK5evQrcfu2vX79u8TA9G3FxcdnG5uDggJubW4ZDRERERERERERERB4M+UqOnTlzBjs7uyyXObtTz549sbe358yZM/npUoqQ5s2bY2trS0xMDH/++SdxcXEcPHgQd3d36tevD9xOksH/ZpSZ/nvnkoofffQRO3fuxMnJic8++4yLFy+SkJDArVu3CAkJISQkhEaNGgFgNBrv1S3eF4oVK1bYIRSIFi1amGdrvfbaa9y8edNi2dTUVADGjh2L0Wi86xEYGHgvbkFERERERERERERE7kP5So7Fx8fj7OyMre3dV2e0tbXF2dmZ+Pj4/HQpRYirq6s5CbZjxw7++OMPkpKSaN68uTmhY0qC7dixg9jYWP7880/gf0kzE9OMww8++IB33nmHihUrZlruLyQkpEDvx9pMM77utgyk6XpBzhCz5MqVKxavJSYmcuvWLSBjbNa6r8qVKxMYGEilSpU4ceIELVu2tDjLzLSU4t2WSxQRERERERERERERyVdyzNvbm8jISC5dunTXskFBQURERODt7Z2fLqWISZ/8Sr+kokmjRo1wdnZm3759/P777yQnJ+Pi4kLDhg0ztHP58mUAi0vrBQUFce7cuTzFaEqy3esZZw0aNABu79EVGRmZZZmIiIgMe3jda7t27bI4LumXyzTdS/qfrXFfVatWJTAwkMqVK3P69Gn8/PyyTII2adIEgO3bt2e5D52IiIiIiIiIiIiIiEm+kmPNmzfHaDQyYsSIbBMLRqORkSNHYjAYaNGiRX66lCLGlAjbv38/mzdvznAOwN7eniZNmhAfH8+0adMAaNq0aabZiO7u7gAcP348y37GjRuX5xhN+0lFRETkuY286NatG7a2tiQkJPDxxx9nWWbatGkkJiZiZ2dHt27d7ml8AJcuXWLhwoWZzqelpZlfr8cff5zatWubr1n7vipXrsyuXbuoWrUqZ86cwc/Pj2vXrmUoM2jQIGxtbQkNDWXSpEnZtpeUlERMTEy2ZURERERERERERETkwZWv5Jgp4bV+/XpatWplnvljkpyczPbt22nZsiXr16/HYDAwYsSIfActRUeTJk2wt7cnISGB48ePU6pUqQyJFPhfsuzgwYNA5v3GAJ5//nkApk6dytq1a80zli5cuECfPn1YuXIlnp6eeYqxVq1aACxdupS4uLg8tZEXPj4+vP322wDMmDGDSZMmmRN0ERERTJw4kU8++QS4/W+tbNmy9yw2E3d3d4YOHcoPP/xgnpF1+fJlevfubZ4JOHXq1Ax1CuK+KlasyK5du3jkkUf4+++/adGiRYYlH6tVq8bEiRMBmDlzJv379+fUqVPm6ykpKRw7dowpU6bwyCOPcOzYsbwNiIiIiIiIiIiIiIgUeflKjj3xxBPMmjULo9HI7t27adOmDS4uLvj4+ODj44OLiwtt27Zl9+7dAMyaNYsnnnjCGnFLEeHs7EyjRo3Mv/v5+WXaK+zOZFhWybGpU6fi7e1NdHQ03bp1w8nJCQ8PD6pWrcqyZcv46KOPqFOnTp5iHDJkCABr1qzBw8OD8uXLU7lyZZo2bZqn9nJj2rRp9OjRA6PRyJQpU/Dy8qJEiRJ4eXmZk069e/fmww8/LPBYsjJs2DAaNGjAG2+8gZubGyVKlKBixYqsXLkSgPfff58uXbpkqlcQ91W+fHl27dpFjRo1+Oeff2jRooV5uU2AiRMnMnHiRAwGA4sXL6Z27do4OztTsmRJHB0dqVevHpMmTeLy5cuZnkEREREREREREREReXjkKzkGMGLECDZs2ECNGjUwGo0kJydz7do1rl27RnJyMkajkccff5xffvmFd955xwohS1GTPtmVfklFkwYNGpiXNnRzc+PJJ5/MVKZSpUocPnyYV199lXLlygHg6OhIx44d2bp1K+PHj89zfP369WPx4sU0bdoUZ2dnrl27xsWLFwkODs5zmzllb2/PihUrWL16Ne3atcPLy4vo6Gi8vLxo164da9eu5aeffsLOzq7AY7EU3++//860adOoUaMGiYmJuLu78+yzz7Jx40aLya2Cuq9y5coRGBiIr68v58+fp0WLFly8eBG4vXfclClTOHHiBMOGDcPX15dixYoRGRmJp6cnjRs35t1332Xfvn3mPcpERERERERERERE5OFjMGa3WVgunTx5ksOHD3Pjxg0ASpcuTYMGDTItoyci9zc/Pz927drFpEmT8Pf3L+xwCl1UVBTu7u44Ojqal5e0liNHjmSZEBYpDIcPH+bKlSv07t2b+Pj4wg5HROShpc8HD5+8vAfrOSm69JlLREQKij4fiPzvu9zIyEjzpJys2Fqz09q1aysRJiIiIiIiIiIiIiIiIvetfC+rKCIiIiIiIiIiIiIiIlJUKDkmIiIiIiIiIiIiIiIiD40cL6vYqlUrACpVqsSCBQsynMsNg8HA77//nut6IoWha9eu7Nu3L1d11q5dS+PGjQsoopwryrGLiIiIiIiIiIiIiBSUHCfHAgMDAXjssccyncsNg8GQ6zoihSUsLIzr16/nqk5SUlIBRZM7+Yk9L/+2RURERERERERERESKghwnxyZNmgRAyZIlM50TeVAV5SRRUY5dRERERERERERERKSg5Do5drdzIiIiIiIiIiIiIiIiIvcrm8IOQEREREREREREREREROReyVdybMqUKcyePTvH5efMmcOUKVPy06WIiIiIiIiIiIiIiIhInuUrOebv78+sWbNyXP6zzz5j8uTJ+elSREREREREREREREREJM+0rKKIiIiIiIiIiIiIiIg8NO5pciwsLAxHR8d72aWIyH3N1dW1sEMQMXNxcSnsEEREBH0+eBjl5T1Yz0nRpc9cIiJSUPT5QCTnbO9VR6tWrSI6OpoaNWrcqy5FRKxq8+bNuLm5Wa09V1dXqlevbrX2RPKrWrVq/P333+zevRsbG00uFxEpDPp88HDK7XuwnpOiTZ+5RESkIOjzgUju5Co59sUXX/DFF19kOHfz5k2qVq1qsY7RaCQiIoKoqCgMBgMdOnTIW6QiIoWsdu3aeHl5FXYYIgWubt262NnZFXYYIiIiDx29Bz9c9HqLiIiIFJ5cJcciIiIICgrKcC41NTXTOUueffZZPvjgg9x0KSIiIiIiIiIiIiIiImI1uUqOde7cmcqVKwO3Z4QNGjQId3d3Pv/8c4t1bGxscHNzo1atWlSrVi0/sYqIiIiIiIiIiIiIiIjki8FoNBrzWtnGxoYyZcpw9epVa8YkInJfiYqKwt3dnWlbpzG+zfg8tzN7/2yiEqNwc7i9b5np55HPjLRWqA+NWl/XIiYpBhd7F04NO1XY4RSa9M+UNZ6jz/Z+RtXQqvxb8l9GNBlxX8UmIvIwKMi/nQ/C3+UH4R4syc17cHbjYLp29NpR6pWtV2TH6kF+rUGfuURExPr0flA49P1UwcvLs236LjcyMhI3NzeL5fKVHBMReRiY/qBWmVaFf8f/m+d2ys8uz5XoK/i4+gCYfw4eGWytUB8ahskG88/GSQ/v21j6Z8oaz9Ejnz3Cp1U/ZdS/ozg34tx9FZuIyMOgIP92Pgh/lx+Ee7AkN+/B2Y2D6ZqNwYY0Y1qRHasH+bUGfeYSERHr0/tB4dD3UwUvL892TpNjNtYKUkREREREREREREREROR+l6/k2IEDB3jyySd5880371r2tdde48knn+Tw4cP56VJEREREREREREREREQkz/KVHPvpp584fvw4zZo1u2vZp59+mmPHjvHTTz/lp0sRERERERERERERERGRPMtXcmzXrl0AtGnT5q5lu3TpAsDOnTvz06WIiIiIiIiIiIiIiIhInuUrORYcHIy7uzslSpS4a1kvLy/c3d25cuVKfroUERERERERERERERERybN8Jcfi4+NJS0vLcXmj0Uh0dHR+upSHhL+/PwaDAT8/v8IORSzo168fBoOBFStWFHYo2RoyZAgGg4H58+cXdigiIiIiIiIiIiIich/IV3KsdOnSREdHc/Xq1buWvXLlClFRUZQsWTI/XYoUKREREfj7++Pv709ERERhh2PR+vXr8ff3Z/369Tkqf/jwYX766Sdq1apFjx49si177tw5xo8fT8OGDSlVqhT29vaUKVOGJk2aMHny5Bz9/ciP9957D3t7ez744APi4uIKtC8RERERERERERERuf/lKzn29NNPAzB37ty7ljWVadSoUX66FClSIiIimDx5MpMnT77vk2OTJ0/OcXJs1KhRGI1GJk2ahMFgyLJMamoq7777Lr6+vsyYMYPDhw8THh6Oi4sLN2/eZN++ffj7+1O9enVmzZplxbvJqGLFirzyyitcvXq1QPsRERERERERERERkaIhX8mxV199FaPRyMyZM/n+++8tlvvuu++YOXMmBoOBV199NT9dikghO3DgALt376ZMmTJ06dIlyzJpaWl069aNWbNmkZKSwvPPP8+uXbtITEwkLCyM+Ph4tmzZQuPGjYmLi+Pdd9/lP//5T4HFPGTIEADmzJlDYmJigfUjIiIiIiIiIiIiIve/fCXHWrduzUsvvURqaipDhw6lbt26TJgwge+//57vv/+eCRMmUKdOHYYNG0ZaWhpdu3alXbt21opdRArBt99+C0CvXr0oVqxYlmWmTp3Kzz//DMC4cePYvHkzzZs3N5e3t7enbdu27Nmzh/79+wPw5Zdfsnjx4gKJ+YknnqBmzZrcunWL1atXF0gfIiIiIiIiIiIiIlI05Cs5BrBw4UK6d++O0Wjk5MmTzJgxg6FDhzJ06FBmzJjBqVOnMBqN9OrVi0WLFlkj5gfWihUraNeuHd7e3tjZ2eHh4UH16tXp1KkTc+fOJSEhIVOdo0eP0r9/fypVqoSjoyOenp40btyYzz//3OIMGX9/fwwGA35+fhZjCQwMxGAwZLlk3p31f//9dzp06ECpUqVwdHTE19eXyZMnZxlveps3b6Z169Z4eHjg4uJC3bp1mTlzJsnJydnWy6vIyEimTJnCk08+iZubG05OTlSvXp2hQ4fy77//ZlknKCjIPA5BQUEW265cuTIGg4GAgADzOT8/P6pUqWL+vUqVKua27hz/gIAADAYDlStXBuC3336jXbt2lCpVCicnJ2rWrMnUqVMtjunAgQMxGAwMHDjQYox39gH/e50XLlwI3P73nD5Gg8FAYGCguXxUVBQrV64EoE+fPln2c+PGDWbMmAFAy5YtmTZtmsWYbGxs+P777/H19QVg/PjxJCUlZShjrefNFG92s1xFRERERERERERE5MGX7+SYk5MTK1asYPv27fTp04dKlSrh4OCAo6MjlStXpm/fvuzYsYOffvoJJycna8T8QBo0aBC9evViy5Yt3LhxA0dHR5KTkzl37hy//PILw4cPJyQkJEOdzz77jPr167N48WIuXbqEo6MjsbGx7N+/nxEjRvDUU09x7dq1Ao37k08+oXXr1mzevJmUlBSSkpI4e/Ys/v7+tG/fntTU1Czrma5v376dyMhI7Ozs+O9//8vYsWN57rnnMiVI8uv06dPUqlWLSZMmcfToUZKTk7Gzs+PcuXN8++23PP7446xZs8aqfZYoUYKSJUuafy9ZsiTe3t7mo0SJElnW+/rrr2nbti1btmwhJSWFlJQU/vvf/zJx4kQaN25MeHi41WK0t7fH29sbR0dHABwdHTPE6O3tjb29vbn8rl27iI+Pp3jx4jz55JNZtrlgwQLi4+MBst2TzMTBwYFx48YBcOXKlWz3Pcvr8wbQvHlzAPbu3Ut0dHS2MYmIiIiIiIiIiIjIgyvfyTGTVq1asWTJEv7991/i4uKIjY3l/PnzLF68ONsZSgJ//PEHCxYswMbGho8//phbt24RHR1NbGwsoaGhbN26lQEDBmRIUvz666+MHDkSo9HIiy++yL///ktERAQxMTEsWrQIV1dXTpw4YV72siAcP36ccePGMW7cOG7cuEF4eDgRERF88MEHAOzcudM8Iym9DRs2MHnyZAC6d+/OpUuXCA8PJyoqirlz53LgwAG++eYbq8UZHR3NCy+8QHBwMD4+PmzcuJHY2FiioqI4duwYTz/9NImJifTt25fjx49brd+1a9dy6NAh8++HDh0iJCTEfKxduzZTnZs3b/LOO+/w0ksvZRiXb775BgcHB44ePWrVffsaN25MSEgIPXv2BKBnz54ZYgwJCaFx48bm8rt37wbgySeftLik4o4dOwDw8vKiRYsWOYqjc+fO5iTazp07syyT1+fNpH79+tja2pKamsrevXtzFJeIiIiIiIiIiIiIPHislhy7m7S0NH755Rc6d+58r7osMvbt2wfAc889x5gxYzLMKPLy8qJNmzYEBARQrlw58/kxY8YA0KxZM9asWWNevs/e3p6XX36ZpUuXmttet25dgcQdERHBxIkTmTZtmnmGlJubG5MnT6Zr164ALFu2LFO98ePHA9CiRQuWL19OhQoVgNuzEIcNG8acOXOIiIiwWpxff/01Fy5cwM7Oji1bttC+fXtsbG4/+nXr1mXbtm1UrlyZxMREJkyYYLV+8yIuLo7GjRtnGpchQ4Ywd+5cANatW5ch6XYvHTx4ELg9bpacPn0agHr16uW4XTc3N6pWrQrAqVOnsiyT1+fNxMnJiRo1agCwf//+bONJTEwkKioqwyEiIiIiIiIiIiIiD4YCT479888/jBs3jvLly9O5c2d++eWXgu6yyPHw8ABuzxrKySyvEydOcObMGQDef//9LGfwvPDCCzz11FNA9gmD/HBwcGD06NFZXnvxxRfNsaZ34sQJ/vvf/wK3YzclqdJ7/fXX8fHxsVqcK1asAOCll16iVq1ama67urqak42bN28mMjLSan3nhaVxeeWVVyhfvjwAy5cvv9dhAXD16lUASpUqZbHMrVu3gNuJ3dwwJbxM9e+Ul+fNUh+m+7Bk+vTpuLu7mw9TolJEREREREREREREir4CSY7FxcUREBBAs2bNeOyxx/jkk08ICQnBaDTy2GOPFUSXRdqzzz6Lo6MjR48epVmzZsyfP58LFy5YLH/48GEAbG1ts122rnXr1hnKW1vNmjVxcXHJ8ppplltYWFiG8+ljb9asWZZ1bWxsrLYUZ1JSkjlh8txzz1ksZxqrtLQ0/vrrL6v0nRc5HZeCek3v5ubNmwAW90srSHl53u5kitt0H5aMHz+eyMhI83H58uU8RCwiIiIiIiIiIiIi9yNbazZ24MAB5s+fz8qVK4mJiQEwJ8S6d+9O9+7ds5y587CrVq0a8+bNY8iQIezfv9+85FupUqVo2bIlffr0oVOnTuY9mW7cuAHcngXj4OBgsV3TLCNTeWtzdXW1eM3W9vajlZKSkuF8bmPPr7CwMPNsvOxmo6Xvr6DGKyfuNi6meyisGBMSEgCyjdHLy4srV65YnAFmSWhoqLl+VvLyvN3JyckJ+N99WOLg4JDtPYqIiIiIiIiIiIhI0ZXv5NjNmzdZtGgRP/74I2fPngVuJ8QADAYDhw4don79+vnt5oHXt29f2rVrx6pVq9i5cyf79u3j8uXLrFy5kpUrV9KsWTN+/fVX3NzcCjtUeYh5eXlx7do1wsPDLZZ5/PHHuXLlCkePHs1xu1FRUfz777/A7RliBcU0syy3Sz6KiIiIiIiIiIiIyIMjT8sqGo1GNm7cSLdu3ShfvjxjxozhzJkzODo60qtXL7Zs2WIu6+vra7VgH3QlSpRg8ODBLF++nEuXLnHu3DnGjRuHwWBgz549+Pv7A1C6dGng9kybxMREi+0FBwdnKG9immWT3eyZgtp3K33sSUlJFstduXLFKv2VKFHCvCebaTyykv5a+vEyjRXcm/HK6bgU1mtq2mssu+ULn332WeD23mGBgYE5anfdunXmpHqrVq3yF2Q2THFnt2eaiIiIiIiIiIiIiDzYcpUcO3/+PBMmTKBChQp06tSJdevWkZKSQtOmTfnhhx8ICQlh6dKltGnTpqDifahUq1aN6dOn06dPHwB+++03ABo0aADcXkJu165dFutv374dgIYNG2Y47+npCZDtPkoHDx7Me+DZSB/7nj17siyTlpaW46TK3djb21OnTh0Afv/9d4vlTGNlY2PDk08+aT5vGiuwPF7/93//R0RERJbXbGz+90/MlPzJTnbjYjQaza+3aRzvjDOvr6kpzrvF+PjjjwOYZ3llZeDAgTg6OgIwZcqUu7aZmJjIxx9/DNzeO6xz587Zls8P015+StqLiIiIiIiIiIiIPLxylRyrXr06M2bM4OrVq1SuXJlJkyZx7tw5du3axauvvprtnkBiWXazv+B/+ySZEhh16tQxJymmTp1q3lMrvU2bNpmTIb17985wrW7dugBcvXo1y4TJjRs3+OGHH3J5FzlTp04dc2Lio48+Ii0tLVOZH3/8MdtZXrnVq1cvAFavXs2pU6cyXY+JiWHmzJkAtG/fHnd3d/O14sWLU61aNQDWrFmTZfsfffSRxb7TL4NpKYGWVXtZjcvChQvNya+ePXtmuGZ6TQ8dOpRlguzMmTOsXbv2rnHeLcbmzZsD8Oeff1os4+3tzZgxYwDYuXMnEyZMsFg2LS2NwYMHc+bMGQCmTZuGvb19tjHk1YULF7h58yYALVq0KJA+REREREREREREROT+l6dlFf/zn/9w5swZJk2aRJUqVawd00Nn+PDh9OjRgzVr1nDjxg3z+ZiYGL799lsWLVoEQIcOHczXTDNt9uzZw0svvWSeEZOcnMzSpUvNCbHGjRtnmonTuHFjKlWqBMCAAQM4fPgwRqPRPGPLz88vy+SMtZiSSTt37qRPnz7mRFhCQgLffvstw4cPx8PDw2r9DR06lCpVqpCcnEy7du3YvHmz+f5OnjxJ27ZtuXDhAg4ODkydOjVTfdNY/vjjj3z99dfEx8cDt2dpvfbaa6xYsQJnZ+cs+/bw8MDHxweABQsWkJKSkm2szs7O/PHHH5nG5fvvv2fo0KEAvPjiizz11FMZ6r3wwgu4uLiQnJxMjx49+Pvvv4Hbz8PPP//Mc889R/HixS32W6tWLeD282TaOzArfn5+AFy8eJHr169bLDdp0iQ6duwIwPTp02nfvj179uwxJ3KTk5PZtm0bzZs3Z+HChQAMGzaMAQMGWGwzv0yJYG9vbx577LEC60dERERERERERERE7m+5So45ODhgNBr58ssvKVeuHG+++SYHDhwoqNgeGsnJyaxatYqXXnoJb29vXF1d8fT0xNXVlaFDh5KUlETTpk0zzMDp2LEjs2fPxmAwsH79eqpWrYqnpycuLi7069ePqKgoateuzapVq8x7bpnY2Njw3XffYWdnx99//03Dhg1xcXGhePHitGzZkpSUFObOnVtg99ulSxfzvaxYsYIKFSpQokQJ8/0+9dRT5kSQNbi6urJhwwZ8fHwIDg6mffv2FC9eHHd3d+rUqcO+fftwcHBgyZIl5hlY6Y0dO5bHH3+c5ORk3nzzTVxcXPD09KRixYosWrSIgICAbPewGjJkCABffvklLi4uVKxYkcqVK5tntKVXqlQpPvvsM1auXGkeFzc3NwYPHkxCQgJ169Zl/vz5meq5u7vz+eefYzAYOHDgAI899hhubm64uLjQuXNnKlasyJQpUyzG2K1bN0qVKkV4eDi+vr6UKlWKypUrU7ly5Qz/xn19fc1jtGHDBovt2djYsG7dOkaMGIGtrS2bN2+mefPmODg44OXlhaOjI23btmXv3r04OjoyY8aMAn3m0sd750xKEREREREREREREXm45Co5du3aNebMmUOdOnUICwvjm2++oUmTJtSoUYNp06Zx6dKlgorzgTZx4kTmzJlDly5deOyxx7C1tSUmJobSpUvTunVrfvzxRwIDAzPN/BkxYgSHDx+mX79+VKhQgbi4OJycnHj66af57LPPOHToEOXKlcuyz7Zt27Jnzx46duyIp6cnqampVKhQgXHjxnHkyBHKlClToPc8depUfv31V1q1aoWbmxuJiYn4+voyY8YMfv/9d6svrVerVi1Onz6Nv78/TzzxBLa2tiQmJlKtWjWGDBnC6dOneemll7Ks6+Liwh9//MHIkSOpUqUKtra22NnZ0a1bN/bv359lkiu99957jy+++IIGDRpgZ2dHcHAwFy9eJCQkJMvyb775Jlu3buX555/HxsYGGxsbHnvsMaZMmcL+/fvx8vLKst6rr77Kxo0bzWOakpLCo48+yowZM9i1a1e2M8c8PT3ZvXs3vXr1wsfHh8jISC5evMjFixdJSEjIUHbw4MEALF26NNv7trW1Zfbs2fz3v/9lzJgx1K9fHw8PD6Kjo/Hy8uKZZ54xL806duzYbNvKr5iYGH7++ecM8YuIiIiIiIiIiIjIw8lgNBqNeal49OhR5s2bx7Jly4iIiMBgMGAwGGjevDkvv/wyr776KgaDgejoaItLzonIbQEBAbzyyitUqlSJoKCgwg4nW9HR0ZQvX57o6GguXLhgXqLzfrZo0SIGDBhAy5Yt2bFjR67rR0VF4e7uTpVpVfh3/L95jqP87PJcib6Cj+vtpTZNPwePtN4eew8Lw2SD+WfjpDy9jT0Q0j9T1niOHvnsET6t+imj/h3FuRHn7qvYREQeBgX5t/NB+Lv8INyDJbl5D85uHEzXbAw2pBnTiuxYPcivNegzl4iIWJ/eDwqHvp8qeHl5tk3f5UZGRuLm5maxXJ72HAOoV68ec+fO5dq1ayxevJgWLVpgNBoJDAzktddeM5fbtm3bXfdZEpGiw9XVlXHjxmE0Gs17393P0tLSmDlzJgDTpk0r5GhEREREREREREREpLDlOTlm4uDgQN++fdmxYwfnzp1jwoQJ+PjcnhVhNBrp1q0bpUuX5pVXXmHTpk1KlIk8AEaMGEGFChWYP38+ly9fLuxwsrVq1SpOnz5N9+7defrppws7HBEREREREREREREpZPlOjqVXpUoVPvzwQy5evMimTZvo2rUrtra2REREsGjRIl544QW8vb2t2aWIFAJHR0cWLVrE+PHj7/u9BpOTk5k0aRKffPJJYYciIiIiIiIiIiIiIvcB24Jo1GAw8Pzzz/P8888TGhrKokWL+PHHH/nvf/9LREREQXQpD7h9+/bRtWvXXNVp3Lgxa9euLaCIxM/PDz8/v8IO46769etX2CGIiIiIiIiIiIiIyH2kQJJj6ZUsWZKRI0cycuRIDhw4wI8//ljQXcoDKCkpievXr+eqTlhYWAFFY30DBw5k4MCBhR2GiIiIiIiIiIiIiMgDr8CTY+k9/fTT2vNH8sTPzw+j0VjYYchD7vX6r+er/shnRhKVGIWbgxtAhp8ld2qWqklMUgwu9i6FHUqhuvOZyq83n3oTQv//f/PJ2rGJiDwMCvJv54Pwd/lBuAdLcvMenN04mK4dvXaUemXrFdmxepBfa9BnLhERsT69HxQOfT9V8Ary2TYYlXEQEclWVFQU7u7uhIaG4uXlVdjhiBSY5ORkNm3aRPv27bGzsyvscERERB4aeg9+uOj1FhERESk4pu9yIyMjcXOznFSzuYcxiYiIiIiIiIiIiIiIiBQqJcdERERERERERERERETkoaHkmIiIiIiIiIiIiIiIiDw0lBwTERERERERERERERGRh4aSYyIiIiIiIiIiIiIiIvLQUHJMREREREREREREREREHhq5So5VqlSJt99+m99//53U1NSCiklERERERERERERERESkQOQqOXb58mW++uor2rRpQ6lSpejXrx+rVq0iJiamoOITERERERERERERERERsZpcJceOHj3KBx98QN26dYmIiOCnn36iV69elCpVivbt2/Ptt99y9erVgopVREREREREREREREREJF9sc1O4bt261K1bl0mTJnH58mV+/vln1q9fz+7du9myZQtbt25l+PDh1K9fn86dO9OpUydq1qxZULGLiIg8MGbPhqgocHODkSMLOxoRERERERERERHru1++AzMYjUZjfhuJjIxk06ZNrF+/ni1bthAdHY3BYACgatWq5kRZ06ZNzedFRIqKqKgo3N3dCQ0NxcvLq7DDkQdU+fJw5Qr4+EBwcOHEkJyczKZNm2jfvj12dnaFE4SIiMhDSO/BDxe93iIiIvIwK+jvwEzf5UZGRuLm5maxXK6WVbTE3d2d3r17s2LFCkJDQ9m8eTNvvPEGZcuW5fz583z66af4+fnh7e3NoEGDWL9+PfHx8dboWkRERERERERERERERCTHrJIcS8/Ozo62bdvyzTffEBwczMGDBxk/fjyPP/44oaGhBAQE0K1bN0qVKsWCBQus3b2IiIiIiIiIiIiIiIiIRVZPjt2pYcOGfPTRR5w8eZJz587x6aef0qRJExITE7l8+XJBdy8iIiIiIiIiIiIiIiJiZnsvO6tatSojRoxgxIgR3Lp1i7CwsHvZvYiIiIiIiIiIiIiIiDzkCnzmmCVeXl5Ur169sLoXsYqgoCAMBgMGg4GgoKDCDqfAJSUlUa1aNRwcHO7JzM/U1FRmz55NvXr1KF68uHms169fby4TFxfHxIkT8fX1xcnJyVzm2LFjxMTEUKpUKTw9Pbl161aBxysiIiIiIiIiIiIi9797OnNMip7169dz7NgxnnjiCTp37lxk+8gLf39/AAYOHEjlypULNZb7xZdffsm///7LsGHDqFChQrZld+3axU8//cTu3bu5du0aCQkJlCpVijp16tCxY0cGDhyIk5NTtm288847fPXVVwDY29vj7e0NgKOjo7lMz549+fXXXwFwcnIyl7Gzs8PFxYVRo0Yxfvx4pkyZwhdffJHnexcRERERERERERGRB0OhzRyTomH9+vVMnjw5w0ydothHXkyePJnJkydnOyPMzs6OGjVqUKNGDezs7O5dcIUgLCyMqVOn4uDgwPjx4y2Wu3XrFh06dMDPz4/vv/+es2fPkpCQgKOjI8HBwWzatIlhw4ZRvXp1fvvtN4vtREdH89133wEwc+ZMEhISCAkJISQkhOeffx6As2fPmhNjK1asIC4uzlymZs2aAAwfPpySJUvyzTffcO7cOWsNh4iIiIiIiIiIiIgUUUqOieSDj48PZ8+e5ezZs/j4+BR2OAXq+++/JyIighdeeIHy5ctnWeb69es8/fTTbNq0iWLFivHWW29x+vRpEhISiIiIIDw8nAULFlChQgWuXLlC+/btWblyZZZtnT17luTkZACGDh2KwWDIVObkyZPA7WVae/TokWU7Li4u9O3bl+TkZD7//PM83LmIiIiIiIiIiIiIPEiUHBORuzIajXz//fcA9OvXz2KZPn36cO7cOezs7Fi3bh1z5szh8ccfN5fx8PBg4MCBHD16lLp165KSksKgQYM4e/Zspvbi4uLMP7u4uGTZp6mMpesmppiXLFmSoV0RERERERERERERefgoOfYQWrFiBe3atcPb2xs7Ozs8PDyoXr06nTp1Yu7cuSQkJBAYGIjBYGDhwoUALFy4EIPBkOEIDAw0txkSEsKXX37Jiy++iK+vL+7u7jg5OfHII4/w2muvcfr06Uxx5LYPk1OnTvHGG29QvXp1nJ2dcXFxoU6dOkyYMIHQ0NB8j8/AgQMzzFJq2bJlhpjS7z8WFBRkPn/n8oum+zO1deLECXr37k25cuVwcnLC19eXWbNmkZKSYq6zd+9eOnfuTNmyZXF0dKRWrVrMnTsXo9GYbcx5GRN/f38MBgN+fn4ArFmzhjZt2lC6dGlsbGzMe64BbN++nQsXLuDh4UH79u2zbO/XX39lx44dAEyYMIEXXnjBYrxeXl6sWrUKR0dHYmNjmThxovlaQEBAhriADOPv5+dnjn3gwIEAXLx4MUMZ03mTBg0aUL16dSIjI1mxYoXFuERERERERERERETkwWdb2AHIvTVo0CAWLFhg/t3FxYXk5GTOnTvHuXPn+OWXX+jQoQP29vZ4e3sTGRlp3i/K3d09Q1v29vbmn8eNG2dOctna2uLm5kZcXBznz5/n/PnzLFmyhKVLl9KtW7cM9XPTB9zee2r8+PGkpaUB4OzsTHJyMidPnuTkyZMsWLCAjRs3Uq9evTyPkbu7O97e3ly/fh0AT0/PDHGUKlUq121u3ryZrl27kpCQgLu7O4mJiZw9e5Z3332XI0eOsGzZMubNm8eQIUNIS0vDzc2NxMRETp8+zfDhw7l8+TIzZszIsm1rjMmoUaOYPXs2BoMBDw8PbGwy5s23bNkCQKNGjSzurfb1118D4OrqyqhRo+46JtWrV6d3794sWLCAtWvXEhISQpkyZXBycsLb25ukpCTCw8MB8Pb2NtcrUaIELi4ueHt7Ex8fT1RUFDY2NhlelzufI4DmzZvzzz//sGXLFl555ZW7xiciIiIiIiIiIiIiDybNHHuI/PHHHyxYsAAbGxs+/vhjbt26RXR0NLGxsYSGhrJ161YGDBiAvb09jRs3JiQkhJ49ewLQs2dPQkJCMhyNGzc2t/3II4/wySefcPLkSeLj47l16xaJiYmcOnWKvn37kpiYyIABA7h69aq5Tm77mD9/PmPHjsXZ2ZmPPvqIa9euERsbS1xcHIcPH6ZVq1Zcu3aNTp06ERMTk+dx+uKLLwgJCTH/bkrcmI5Dhw7lus0+ffrw4osvcvHiRSIiIoiMjGT8+PEALF++nBkzZjBs2DCGDRtGSEgIERERhIWFmWdAffLJJ/zf//1fpnatMSZHjhxh9uzZjB07luvXrxMWFkZsbGyGBNLu3bsBeOqpp7JsIyUlhT179gDQpk2buy5zaNK1a1cA0tLS2LVrF/C/52Dt2rXmcunHf+3atYwePZqQkBC++OILACpUqJChjOl8eo0aNcpwLyIiIiIiIiIiIiLycMpXcszGxgYfH58cl69SpQq2tpqsVlj27dsHwHPPPceYMWMoUaKE+ZqXlxdt2rQhICCAcuXK5brt999/n9GjR1OrVi3za2xjY0PNmjVZsmQJHTp0IDY2lh9//DFPsUdHRzN69GgAVq9ezXvvvUeZMmUAKFasGPXr12fr1q3Ur1+f4OBg5s2bl6d+CkrDhg1ZtmwZFStWBG7Prpo2bRrNmjUDYPz48QwYMIA5c+ZQunRp4PaMtXnz5lGlShXS0tJYuXJlhjatNSYxMTGMHDmSGTNmmGdfOTg4UKlSJQCSkpI4evQoAHXr1s2yjaCgIGJjYwFyNWvviSeeMP986tSpHNfLC1NcISEhXLhwoUD7EhEREREREREREZH7V75njt1tL6T8lhfr8fDwAODmzZukpqbe0747dOgA3J69lhdr1qwhIiKCevXq0bZt2yzL2Nra0rt3bwC2bt2at0ALyNixYzPsY2aS/l5MM8nSK1asGM8++yxwe8+y9Kw1JjY2NowdO9Zi7Ddu3DA/L5aWlLx165b5Zy8vL4tt3alkyZJZtlEQ0veVfgZjVhITE4mKispwiIiIiIiIiIiIiMiD4Z5O40pKSsq0l5HcO88++yyOjo4cPXqUZs2a8eqrr9KqVSuqVKlilfaPHz/Od999xx9//EFQUBAxMTGZkqHBwcF5anvv3r0AnDlzxjw7Kivx8fEAXLx4MU/9FBRLyxGa9tIqUaIEVatWzbaMaf8tE2uNySOPPGKerZaVmzdvmn9OP9uwqEkfe/p7ysr06dOZPHlyQYckIiIiIiIiIiIiIoXgniXHIiIiuHHjBp6enveqS7lDtWrVmDdvHkOGDGH//v3s378fuD0bqGXLlvTp04dOnTplOcPpbr766ivefvtt0tLSADAYDLi7u+Pg4ADcTtBERUWZl97LLdNMn4SEBBISEu5aPi4uLk/9FBRXV9csz5uWoLR0PX2Z5OTkDOetNSbZJcZM7ZuYXs87pZ8tlpsZYKGhoVm2URCcnJzMP99tvMaPH8/IkSPNv0dFRVGhQoUCi01ERERERERERERE7p1cJcdOnDjBsWPHMpyLj49n0aJFFusYjUYiIiJYvXo1aWlpudqPSKyvb9++tGvXjlWrVrFz50727dvH5cuXWblyJStXrqRZs2b8+uuvuLm55bjNM2fO8M4775CWlkb37t159913qVu3Lvb29uYy8+fP57XXXsvzspqmZf169uzJ8uXL89TGg8ZaY1KsWLFsr6dPWt05e82kUqVKFC9enNjYWP76668c923aywygZs2aOa6XF2FhYeaf75aIc3BwsJgIFBEREREREREREZGiLVfJsXXr1jFlypQM56KionjllVfuWtdoNGIwGDLMxpDCUaJECQYPHszgwYMBOH/+PPPmzePjjz9mz549+Pv7M3v27By3t3r1alJTU/H19WX58uVZLp0ZEhKSr5hNywbeb8slFqZ7NSbp9xlLn2BKz87OjmbNmrFlyxa2bdtGdHR0trPhTNauXQvc3vfMz8/PKvFakj52S3uniYiIiIiIiIiIiMiDL1cbgHl4eFCxYkXzAbe/1E5/7s6jcuXK1KlTh759+xIYGEjbtm0L5EYk76pVq8b06dPp06cPAL/99pv5minRld2Mr8uXLwNQt25di3vKbd++3WL9nPTRpEkTAI4cOcK1a9cslrMm0/KSeZ3tVtDu1Zh4enqaE3H//vuvxXJDhw4FICYmJkfJ1X/++cc8461Lly7Z7ptmDRcuXABuL1NZvXr1Au1LRERERERERERERO5fuUqOvf3221y4cMF8wO0ZGOnP3XmcP3+eo0ePsnjxYpo1a1YgNyE5k5iYmO11055M6RNcpuUVIyIiLNZzd3cH4OTJk1kmkjZv3kxgYKDF+jnpo3v37nh4eJCcnMzIkSOzTVilpaVl21ZO5SSuwnQvx6R58+YA/PnnnxbLvPDCC+bZXx999BG//vqrxbK3bt2ie/fuJCQk4OzszIcffpjn2HLq4MGDANSvX5/ixYsXeH8iIiIiIiIiIiIicn/KVXLsTpMmTWLUqFHWikUK2PDhw+nRowdr1qzhxo0b5vMxMTF8++235r3jOnToYL5Wq1YtAPbs2cPZs2ezbPf5558H4PTp07z55pvm5etiY2P57rvveOmll7Ld4yknfXh4ePD5558DsHz5cjp06MDBgwdJS0sDbid/zpw5w6effkrNmjWzTczklCmupUuXEhcXl+/2rO1ejokp6WVKMGXFYDCwbNkyqlatSnJyMl26dOHtt9/mzJkz5jKRkZEsXLiQJ598kuPHj1OsWDHmzZuHr69vnmPLKVPsLVq0KPC+REREREREREREROT+peTYQyQ5OZlVq1bx0ksv4e3tjaurK56enri6ujJ06FCSkpJo2rQpEyZMMNfp1q0bpUqVIjw8HF9fX0qVKkXlypWpXLkyBw4cAODZZ5+lV69eAHzzzTd4eXnh6emJu7s7Q4YMwdfXF39/f4tx5aQPgAEDBvDNN99gb2/P5s2befrpp3F2dqZkyZI4Ojry+OOPM3r0aM6ePWteEjE/hgwZAsCaNWvw8PCgfPnyVK5cmaZNm+a7bWu5V2PSrVs37OzsOHv2LP/884/FcmXKlOHAgQO0bduWlJQU5syZw+OPP46TkxOenp54eHgwcOBALl26RNmyZfn111/p3bt3nuPKqaioKHbt2gVgXj5URERERERERERERB5O+UqOSdEyceJE5syZQ5cuXXjsscewtbUlJiaG0qVL07p1a3788UcCAwMzLDnn6enJ7t276dWrFz4+PkRGRnLx4kUuXrxIQkKCudzSpUv5/PPPqVOnDg4ODqSmplK7dm2mT5/O3r17cXFxsRhXTvuA2wmrv//+m9GjR1O3bl0cHByIiIjAxcWFBg0a8NZbb/Hbb79ZJeHSr18/Fi9eTNOmTXF2dubatWtcvHiR4ODgfLdtTfdiTEqXLk2XLl2A2691dkqVKsWWLVvYsWMHr732GjVq1MDe3p74+Hh8fHxo164dc+fO5dy5c+ZZhwVtzZo1JCQk0KhRI+rWrXtP+hQRERERERERERGR+5PBmN1GRTl0/vx5Vq5cyYkTJwgLCyM5OdlyhwYDv//+e367FJF7bPfu3bRo0YJq1arxzz//WGV23r3SqlUrdu7cycKFC+nfv3+u60dFReHu7k5oaGi2S4SK5Ef58nDlCvj4QGHl4JOTk9m0aRPt27fHzs6ucIIQERF5COk9+OGi11tEREQeZgX9HZjpu9zIyEjc3NwslrPNb0eTJ09m6tSppKWlkZM8W1H6Ql1E/qd58+a0adOGbdu2sWrVKnr06FHYIeXIwYMH2blzJzVr1qRv376FHY6IiIiIiIiIiIiIFLJ8JceWLl3K5MmTAShXrhxt27alXLly2NrmO+cmIvehWbNm8cQTTzBlyhReeuklbGzu/5VZTfvdzZw5k2LFihVuMCIiIiIiIiIiIiJS6PKVxZo7dy4AnTp1YuXKldjb21slKBG5P9WuXZv58+cTFBTEtWvX8PHxKeyQshUTE8PTTz/N888/T/v27Qs7HBERERERERERERG5D+QrOXbq1CkMBgNff/21EmNyXypTpkyu64SEhBRAJA+OgQMHFnYIOebi4sKkSZMKOwwRERERERERERERuY/kKzlmMBhwc3OjXLly1opHxKquX79e2CGIiIiIiIiIiIiIiMh9JF8bBj322GPExcWRmJhorXhErMpoNOb6EBERERERERERERGRB1e+Zo699tprDB48mFWrVtGvXz9rxSQiIvLQGTkSoqLAza2wIxERERERERERESkY98t3YPlKjr3++uts3LiR//znP1SsWJHmzZtbKy4REZGHysiRhR2BiIiIiIiIiIhIwbpfvgPLV3JsypQp1K1blz179tCyZUuaNGlCo0aNcHV1zbbeBx98kJ9uRURERERERERERERERPIkX8kxf39/DAYDcHtvpz/++IO9e/fetZ6SYyIiIiIiIiIiIiIiIlIY8pUca968uTk5JiIiIiIiIiIiIiIiInK/y1dyLDAw0EphiIiIiIiIiIiIiIiIiBQ8m8IOQEREREREREREREREROReUXJMREREREREREREREREHhr5WlYxvRMnTrB161YuXrxIfHw88+fPN19LTk7m5s2bGAwGypYta60uRURERERERERERERERHIl38mxyMhIBg0axPr16wEwGo0YDIZMybG6desSHh7O8ePHqVmzZn67FREREREREREREREREcm1fC2rmJycTLt27Vi/fj3Ozs506NABR0fHTOWcnZ155ZVXSEtLY/Xq1fnpUkRERERERERERERERCTP8jVzbP78+Rw4cIBq1aqxa9cuypUrR9myZblx40amst26dWPWrFns3r07P12KiIgwezZERYGbG4wcWdjRiIiIiIiIiIjIw0bfTxVt+UqOLVu2DIPBwGeffUa5cuWyLVuvXj1sbGw4e/ZsfroUERFh9my4cgV8fPThQ0RERERERERE7j19P1W05WtZxZMnT2IwGGjTps1dy9rb2+Pu7s6tW7fy06WIiIiIiIiIiIiIiIhInuUrORYXF4erqyv29vY5Kp+cnIytbb4mq4mIiIiIiIiIiIiIiIjkWb6SYyVLliQqKoqYmJi7lr1w4QIxMTF3XX5RREREREREREREREREpKDkKznWqFEjADZu3HjXsl9++SUAzZo1y0+XIiIiIiIiIiIiIiIiInmWr+TYoEGDMBqNTJw4katXr1os99133/HFF19gMBh444038tOlyH0pKCgIg8GAwWAgKCiosMMpcElJSVSrVg0HBwcuX75c2OFYlJaWRs2aNbGzs+Pvv/8u7HBERERERERERERE5D6Qr+RYhw4d6NatG+fOnaNBgwaMHj2a+Ph4AL7//nsmTJhA3bp1GTZsGEajkddee80820yKlvXr1+Pv78/69euLdB954e/vj7+//0OR9MqpL7/8kn///ZfXXnuNChUqZFt2165dDB48GF9fXzw8PHB0dKRChQp06NCBb775xvw3oyDY2NgwceJEUlJSGDNmTIH1IyIiIiIiIiIiIiJFh21+G1i8eDGOjo4sXbqUzz77zHx+6NChABiNRuD2LLO5c+fmtzspJOvXr2fhwoUMGDCAzp07F9k+8mLy5MkA+Pn5Ubly5SzL2NnZUaNGDfPPD7KwsDCmTp2Kg4MD48ePt1ju1q1b9O/fn02bNpnPOTg44OjoSHBwMMHBwWzatImPPvqIBQsW0Lp16wKJt0ePHnz44Yds2LCB3bt307x58wLpR0RERERERERERESKhnzNHANwdHRk8eLF7N69m5dffplq1arh5OSEvb09FStWpE+fPgQGBjJv3jxsbfOdixO5L/n4+HD27FnOnj2Lj49PYYdToL7//nsiIiJ44YUXKF++fJZlrl+/ztNPP82mTZsoVqwYb731FqdPnyYhIYGIiAjCw8NZsGABFSpU4MqVK7Rv356VK1cWSLw2Nja8/vrrAMycObNA+hARERERERERERGRosNq2aqmTZvStGlTazUnIvcho9HI999/D0C/fv0slunTpw/nzp3Dzs6ONWvW8MILL2Qo4+HhwcCBA3nhhRd49tlnOX78OIMGDaJOnTo89thjVo+7d+/ejB49ms2bN3Pp0iUqVqxo9T5EREREREREREREpGjI98wxKbpWrFhBu3bt8Pb2xs7ODg8PD6pXr06nTp2YO3cuCQkJBAYGYjAYWLhwIQALFy7EYDBkOAIDA81thoSE8OWXX/Liiy/i6+uLu7s7Tk5OPPLII7z22mucPn06Uxy57cPk1KlTvPHGG1SvXh1nZ2dcXFyoU6cOEyZMIDQ0NN/jM3DgQAwGg/n3li1bZogp/RKLQUFB5vN37k1muj9TWydOnKB3796UK1cOJycnfH19mTVrFikpKeY6e/fupXPnzpQtWxZHR0dq1arF3LlzzcuUWpKXMfH398dgMODn5wfAmjVraNOmDaVLl8bGxgZ/f39z2e3bt3PhwgU8PDxo3759lu39+uuv7NixA4AJEyZkSoyl5+XlxapVq3B0dCQ2NpaJEydmKuPn54fBYMDf3x+j0cgPP/xAo0aNcHNzw9XVlWeeeYYlS5ZkOy7e3t60atWKtLQ05s+fn21ZEREREREREREREXmw5Ss51rp1a5YsWUJcXJy14pF7ZNCgQfTq1YstW7Zw48YNHB0dSU5O5ty5c/zyyy8MHz6ckJAQ7O3t8fb2xtHREbi9jKa3t3eGw97e3tzuuHHj+M9//sOGDRs4d+4ctra2pKSkcP78eebPn0/9+vVZs2ZNhlhy2wfcXh6vbt26/PDDD5w7dw6DwUBycjInT55k2rRp1KlTh6NHj+ZrjNzd3fH29jb/7unpmSGmUqVK5brNzZs306hRI5YvX05cXByJiYmcPXuWd999l5dffhmAefPm0aJFCzZs2EB8fDyJiYmcPn2a4cOHZ7vHlzXGZNSoUbz00kts376dlJQUbGwy/onYsmULAI0aNbK4t9rXX38NgKurK6NGjbrrmFSvXp3evXsDsHbtWkJCQrIsl5qaSpcuXXjjjTf466+/MBgMxMTEcODAAV5++WUmTZqUbT+mvcZM9yAiIiIiIiIiIiIiD6d8Jcd+//13BgwYQJkyZRg4cCDbt2+3VlxSgP744w8WLFiAjY0NH3/8Mbdu3SI6OprY2FhCQ0PZunUrAwYMwN7ensaNGxMSEkLPnj0B6NmzJyEhIRmOxo0bm9t+5JFH+OSTTzh58iTx8fHcunWLxMRETp06Rd++fUlMTGTAgAFcvXrVXCe3fcyfP5+xY8fi7OzMRx99xLVr14iNjSUuLo7Dhw/TqlUrrl27RqdOnYiJicnzOH3xxRcZEjWmxI3pOHToUK7b7NOnDy+++CIXL14kIiKCyMhIc8Jr+fLlzJgxg2HDhjFs2DBCQkKIiIggLCyMgQMHAvDJJ5/wf//3f5natcaYHDlyhNmzZzN27FiuX79OWFgYsbGxvPLKK+Yyu3fvBuCpp57Kso2UlBT27NkDQJs2bXBxccnRuHTt2hWAtLQ0du3alWWZuXPnEhgYSEBAAFFRUURGRnL58mXzzLSpU6fyzz//WOyjUaNGAPz111/5ei5EREREREREREREpGjLV3KsX79+ODs7ExMTw+LFi2nbti0VKlRg/PjxWS6fJ/eHffv2AfDcc88xZswYSpQoYb7m5eVFmzZtCAgIoFy5crlu+/3332f06NHUqlULW9vbW9rZ2NhQs2ZNlixZQocOHYiNjeXHH3/MU+zR0dGMHj0agNWrV/Pee+9RpkwZAIoVK0b9+vXZunUr9evXJzg4mHnz5uWpn4LSsGFDli1bZt7zytXVlWnTptGsWTMAxo8fz4ABA5gzZw6lS5cGbs9YmzdvHlWqVCEtLY2VK1dmaNNaYxITE8PIkSOZMWOGeVacg4MDlSpVAiApKck886xu3bpZthEUFERsbCwA9erVy/G4PPHEE+afT506lWWZ8PBw1q1bx4ABA3BycgKgfPnyrFq1inLlymU5NumZ4klJSclTYlNEREREREREREREHgz5So4tWrSI69evs3jxYp577jlsbGy4cuUKM2fOpE6dOtSvX585c+Zw8+ZNa8UrVuDh4QHAzZs3SU1Nvad9d+jQAbg9ey0v1qxZQ0REBPXq1aNt27ZZlrG1tTUv07d169a8BVpAxo4dm2EfM5P095LV0onFihXj2WefBW7vWZaetcbExsaGsWPHWoz9xo0b5ufF0pKSt27dMv/s5eVlsa07lSxZMss20mvSpAktW7bMdN7BwcF833eOTXolSpQwLxOZfuZiVhITE4mKispwiIiIiIiIiIiIiMiDwTa/DTg7O9O3b1/69u1LSEgIS5cuZcmSJRw/fpyjR49y7NgxRo8eTdu2bXn55Zd58cUXcXBwsEbskkfPPvssjo6OHD16lGbNmvHqq6/SqlUrqlSpYpX2jx8/znfffccff/xBUFAQMTExGI3GDGWCg4Pz1PbevXsBOHPmjHl2VFbi4+MBuHjxYp76KSiWliM07W1WokQJqlatmm2Z8PDwDOetNSaPPPKIebZaVtInudPPNrxXTMsiZsU0yzEsLMxiGRsbG9zd3QkPD79rwn769OlMnjw5b4GKiIiIiIiIiIiIyH0t38mx9MqUKcOoUaMYNWoUp06dYtGiRSxbtowrV66wceNGNm3ahLu7e7ZfYEvBq1atGvPmzWPIkCHs37+f/fv3A7dnA7Vs2ZI+ffrQqVOnLGc43c1XX33F22+/TVpaGgAGgwF3d3dzQjQ+Pp6oqCjz0nu5ZZrxk5CQQEJCwl3Lx8XF5amfguLq6prledMSlJaupy+TnJyc4by1xiS7xJipfRNLCe70s8UszQDLSmhoaJZtpJeXsbmTk5MT4eHhdx2n8ePHM3LkSPPvUVFRVKhQIds6IiIiIiIiIiIiIlI05GtZxezUqlWLmTNncunSJX777TcaNGiA0WgkMjKyoLqUXOjbty8XL17k22+/pWfPnlSoUIGbN2+ycuVKOnfuTIsWLXK9lNyZM2d45513SEtLo3v37vz5558kJCQQHh5OSEgIISEhzJ49GyDTTLKcMi3r17NnT4xG412PoKCgPPVTlFhrTIoVK5ZtP+mTVnfOXjOpVKkSxYsXB+Cvv/7K8T2Y9jIDqFmzZo7r5ZYpMX+3JR8dHBxwc3PLcIiIiIiIiIiIiIjIg6HAkmMA165dY/bs2YwaNYojR44UZFeSByVKlGDw4MEsX76cS5cuce7cOcaNG4fBYGDPnj34+/vnqr3Vq1eTmpqKr68vy5cvp2HDhtjb22coExISkq+YTcsG3m/LJRamezUm6fcZszT7087OjmbNmgGwbds2oqOjc9T22rVrgdtLH/r5+eUvUAvi4+PNM8Ys7ZkmIiIiIiIiIiIiIg8+qyfH4uPjWbp0KW3btqVixYqMGTOGEydOYDQaefLJJ/nss8+s3aVYSbVq1Zg+fTp9+vQB4LfffjNfs7G5/ahkN+Pr8uXLANStW9dc/k7bt2+3WD8nfTRp0gSAI0eOcO3aNYvlrMm0vGReZ7sVtHs1Jp6enuZE3L///mux3NChQwGIiYkxzxTMzj///MPy5csB6NKlS7b7puXHhQsXzD/7+voWSB8iIiIiIiIiIiIicv+zWnJs+/btDBgwAG9vb/r3789vv/1GamoqPj4+jB07llOnTnH48GH+85//WKtLyaPExMRsrzs5OQFkSHCZlpWLiIiwWM/d3R2AkydPZplI2rx5M4GBgRbr56SP7t274+HhQXJyMiNHjsw2YZWWlpZtWzmVk7gK070ck+bNmwPw559/WizzwgsvmGd/ffTRR/z6668Wy966dYvu3buTkJCAs7MzH374YZ5ju5uDBw8C4O3tTY0aNQqsHxERERERERERERG5v+UrOXbq1CnGjh1LhQoVaNu2LUuWLCEmJobixYubE2QXL15k+vTpPP7449aKWfJp+PDh9OjRgzVr1nDjxg3z+ZiYGL799lsWLVoEQIcOHczXatWqBcCePXs4e/Zslu0+//zzAJw+fZo333zTvPRebGws3333HS+99FK2ez3lpA8PDw8+//xzAJYvX06HDh04ePAgaWlpwO3kz5kzZ/j000+pWbNmtomZnDLFtXTpUuLi4vLdnrXdyzExJb1MiaasGAwGli1bRtWqVUlOTqZLly68/fbbnDlzxlwmMjKShQsX8uSTT3L8+HGKFSvGvHnzCnRGlynmFi1aFFgfIiIiIiIiIiIiInL/s81P5Tp16mAwGDAajdjY2NCqVSv69+9P165dcXZ2tlaMYmXJycmsWrWKVatWAeDi4oKtrW2GGUVNmzZlwoQJ5t+7devGe++9x82bN/H19aVkyZIUL14cuJ2Qefrpp3n22Wfp1asXy5cv55tvvuGbb77Bw8OD6OhoUlNTqV+/PgMHDuStt97KMq6c9AEwYMAA4uPjefvtt9m8eTObN2/GwcEBFxcXoqKiSE5ONrdpWhIxP4YMGcLevXtZs2YNGzZsoHTp0tja2lK+fHn++OOPfLdvDfdqTLp168bbb7/N2bNn+eeff6hevXqW5cqUKcOBAwd4+eWX2bp1K3PmzGHOnDk4Ojri6OiY4VkrW7YsP/74ozm5WhDS0tLYuHEjgHnZUBERERERERERERF5OOV7WcXHH3+cjz/+mEuXLrFt2zb69eunxNh9buLEicyZM4cuXbrw2GOPYWtrS0xMDKVLl6Z169b8+OOPBAYGmhNTcHu/qd27d9OrVy98fHyIjIzk4sWLXLx4kYSEBHO5pUuX8vnnn1OnTh0cHBxITU2ldu3aTJ8+nb179+Li4mIxrpz2AbcTVn///TejR4+mbt26ODg4EBERgYuLCw0aNOCtt97it99+o3fv3vker379+rF48WKaNm2Ks7Mz165d4+LFiwQHB+e7bWu6F2NSunRpunTpAtx+rbNTqlQptmzZwo4dO3jttdeoUaMG9vb2xMfH4+PjQ7t27Zg7dy7nzp0r0MQYwK5duwgODsbHx4eOHTsWaF8iIiIiIiIiIiIicn8zGLPboOgujh07xhNPPGHFcETkfrd7925atGhBtWrV+Oeff6wyO6+gDRo0iAULFjB58mQ++OCDXNePiorC3d2d0NDQbJcGlXunfHm4cgV8fOA+y1MXacnJyWzatIn27dtjZ2dX2OGIiIg8NPQe/HDR6y0iIvJg0PdT9yfTd7mRkZG4ublZLJevmWNKjIk8fJo3b06bNm04f/68eWnO+9nly5dZunQppUqV4p133inscERERERERERERESkkOV7WcXcOHDgALt3776XXYpIAZg1axY2NjZMmTKFtLS0wg4nW9OmTSMpKQl/f/9s/08BEREREREREREREXk42OamsI2NDWXLluXKlSuZro0YMYKoqCjmz59vsX6XLl24efMmKSkpuY9URO4btWvXZv78+QQFBXHt2jV8fHwKO6QspaWlUbFiRaZOncobb7xR2OGIiIiIiIiIiIiIyH0gV8kxAEtblC1fvpwbN25kmxzLrr5IQSpTpkyu64SEhBRAJA+OgQMHFnYId2VjY8P48eMLOwwRERERERERERERuY/kOjkmUhRdv369sEMQEREREREREREREZH7gJJj8lDQjEUREREREREREREREQElx0REpAgaORKiosDNrbAjERERERERERGRh5G+nyralBwTEZEiZ+TIwo5AREREREREREQeZvp+qmizKewARERERERERERERERERO4VJcdERERERERERERERETkoaHkmIiIiIiIiIiIiIiIiDw0cr3n2PXr1ylWrJjF69ldMxqNGAyG3HYpIiIiIiIiIiIiIiIiYhW5To4ZjcaCiENERERERERERERERESkwOUqOTZp0qSCikNERERERERERERERESkwCk5JiIiIiIiIiIiIiIiIg8Nm8IOQEREREREREREREREROReyfWeYyIiIg+C2bMhKgrc3GDkyMKORkREpGDpfe/hotdbRERE5N7TZ7CiRckxERF5KM2eDVeugI+PPrCIiMiDT+97Dxe93iIiIiL3nj6DFS1aVlFEREREREREREREREQeGkqOiYiIiIiIiIiIiIiIyENDyTERERERERERERERERF5aCg5JiIiIiIiIiIiIiIiIg8NJcdERERERERERERERETkoaHkmMh9pnLlyhgMBgICAgql/379+mEwGFixYkWh9G9NaWlp1KxZEzs7O/7+++/CDkdERERERERERERE7gNKjhWQgIAA/P39CQwMLOxQHlhBQUH4+/vj7+9f2KE8MA4fPsxPP/1ErVq16NGjR7Zlz507x/jx42nYsCGlSpXC3t6eMmXK0KRJEyZPnszVq1cLNNb169fj7+/P+vXrLZaxsbFh4sSJpKSkMGbMmAKNR0RERERERERERESKBiXHCkhAQACTJ09WcqwABQUFMXnyZCZPnlzYoTwwRo0ahdFoZNKkSRgMhizLpKam8u677+Lr68uMGTM4fPgw4eHhuLi4cPPmTfbt24e/vz/Vq1dn1qxZBRbr+vXrmTx5crbJMYAePXrw+OOPs2HDBnbv3l1g8YiIiIiIiIiIiIhI0aDkmIgAcODAAXbv3k2ZMmXo0qVLlmXS0tLo1q0bs2bNIiUlheeff55du3aRmJhIWFgY8fHxbNmyhcaNGxMXF8e7777Lf/7zn3t8JxnZ2Njw+uuvAzBz5sxCjUVERERERERERERECp+SYyICwLfffgtAr169KFasWJZlpk6dys8//wzAuHHj2Lx5M82bNzeXt7e3p23btuzZs4f+/fsD8OWXX7J48eJ7cAeW9e7dm2LFirF582YuXbpUqLGIiIiIiIiIiIiISOEqcsmxy5cvM2bMGJ544gnc3d1xcnKiWrVqvPjiiyxatIiEhIRMdfbu3Uu/fv2oVKkSjo6OuLu789RTT/Hxxx8TExOTZT8DBw7EYDAwcOBAAFavXo2fnx8lSpTA2dmZJ554gi+++IK0tLQM9QICAjAYDOzatQuAyZMnYzAYMhxBQUFWj9FoNDJv3jyaNm2Kl5cXBoOBgICAnA/sHfz8/DAYDPj7+5OUlMSMGTOoU6cOxYsXx9PTk9atW7N58+a7trN27Vo6duyIt7c39vb2eHt707FjR9atW2exTk7uq3LlyrRs2dJc584xNr1ueWVqJzAwkJCQEIYPH06VKlVwdHSkTJky9O3bl7Nnz2bbRkJCAp9//jmNGzfG09MTR0dHKlWqRP/+/Tl27FieY/voo48wGAwUK1bMnNAySUtLY+nSpbRv39485qVKlaJNmzYsW7YMo9GYZZtRUVGsXLkSgD59+mRZ5saNG8yYMQOAli1bMm3aNIsx2tjY8P333+Pr6wvA+PHjSUpKylDmzn9jWTH9e6pcubL5XGBgIAaDgYULFwKwcOHCTK//ncuZent706pVK9LS0pg/f77F/kRERERERERERETkwVekkmOLFy/m0Ucf5ZNPPuH48eMkJCRQvHhxLl26xIYNGxgwYECGhEVaWhpvv/02TZs2ZenSpVy6dAk7OztiY2M5dOgQ48aNo0GDBly8eDHbfocPH0737t3Zs2cPRqOR+Ph4jh8/zjvvvMMrr7ySoayTkxPe3t7Y2dkBULx4cby9vTMc6WflWCNGo9FI9+7def3119m/fz9GoxEbG+u8tElJSTz33HOMHz+eM2fOYG9vT0REBNu3b6d9+/b4+/tbrNerVy+6devGxo0bCQ0NxcXFhdDQUDZu3EjXrl3p06cPycnJebqvUqVK4enpaS575xi7u7tb5f4vXLhAvXr1mDt3LtevX8fOzo7r16/z008/Ua9ePbZs2ZJlvStXrtCwYUNGjBjB/v37iY2NxdHRkUuXLrF48WLq16/Pl19+matY0tLSGD58OO+//z6Ojo6sXr2aIUOGmK+HhYXRsmVL+vXrx+bNm7lx4wbOzs6Ehoby22+/0adPHzp37pwpSQWwa9cu4uPjKV68OE8++WSW/S9YsID4+HiAbPckM3FwcGDcuHHm8bjb3mA5ZUqyOjo6AuDo6Jjp9be3t89Ur3nz5gAWXzMREREREREREREReTgUmeTYxo0bGTBgAAkJCTRp0oQ9e/YQHx9PaGgosbGx7Nmzh9dffz3Dl+KTJk1izpw5lC5dmrlz53Lr1i2io6OJj49n586d1KtXj7///puuXbtmmgFmsmHDBn744Qdmz55NeHg44eHhhIaG8tprrwGwaNEiduzYYS7fs2dPQkJCaNy4MQCjR48mJCQkw1GhQgWrxrh27Vp+/vlnZs2aRXh4OGFhYURGRtK2bdt8j/vXX3/Nn3/+ybfffkt0dDTh4eFcunSJl156Cbg9M27Dhg2Z6r333nusWLECg8HAxIkTuXXrFmFhYYSGhvLee+8BsGzZMiZOnGix7+zu69ChQ6xdu9Zc9s4x/uKLL/J97wAjRozA3t6ebdu2ERsbS3R0NAcPHqR27dokJCTQs2dPgoODM9RJTU2lW7dunDp1Cnd3d5YsWUJMTAwRERGcP3+ejh07mpOiOZl9B5CYmEiPHj2YO3cuHh4ebNu2LcO+YKmpqXTt2pXdu3fzxBNP8MsvvxAbG0tERAQxMTEsXLiQ0qVLs2HDBsaOHZup/d27dwPw5JNPWlxS0fSce3l50aJFixzF3blzZ3MSbefOnTmqczeNGzcmJCSEnj17Av/7N5f+MP37S69Ro0YA/PXXXxZnY4qIiIiIiIiIiIjIg69IJMdSUlJ46623MBqNNG3alB07dtC0aVPzLCJ7e3uaNm3K999/z+OPPw5AUFAQ06dPx8nJiW3btjFs2DBKlCgBgJ2dHX5+fuzatYvy5cvz119/ZZngAQgPD+e7775jxIgRuLm5AbeTAz/88AP169cHbid58sJaMcbExDB79mxGjRpljtHFxYWyZcvmKa70IiMj+frrrxk8eLB5pk6FChVYsWKFeSaOKdllcuXKFXNyaty4cUyZMgUPDw8APD09+eijjxg5ciQAs2fP5tq1a/f8vnIqPj6eLVu20Lp1a3OS56mnnmL79u2UKFGCqKgopk+fnqHO6tWrOXjwIAArV66kb9++5qRt1apVWbduHY0aNcJoNDJmzJi7xmBKCK5ZswYfHx/27NlDs2bNMpT56aef2LVrF4899hiBgYF07NgRZ2dn4Pbsxf79+7Np0yYMBgNff/01N27cyFDfFG/dunUtxnH69GkA6tWrd9eYTdzc3KhatSoAp06dynG9gmCKOyUlhUOHDmVbNjExkaioqAyHiIiIiIiIiIiIiDwYikRybOfOnVy4cAGAzz77LMsl0+4UEBBAamoqzz//vMUv/F1dXencuTMAW7duzbJMhQoVGDBgQJbXOnXqBMCJEyfuGk9Bxujp6cngwYPzFMPdVKhQIdPSkXB7T6n3338fuJ00OXnypPnamjVrSElJwdHR0bys3p3ef/99HBwcSE5OZvXq1VmWKcj7yqnu3bub981Kr3Tp0uYlDVesWJHhmun3Z555hjZt2mSqa2try6RJk4DbCaP0Y3enq1ev0qxZM3Pia9++fdSqVStTOdM+WkOHDrW4pGT9+vWpWbMmSUlJmWZxXb16Fbi9XKUlt27dAm4nh3OjZMmSGeoXlhIlSpgT6qb7tWT69Om4u7ubj/SzPUVERERERERERESkaLMt7AByYt++fQCUKVOGBg0a5KjO3r17Adi2bRtlypSxWM60vJqlPb0aNmxocW+lcuXKAbf3esoLa8aYk4RhXvj5+Vm8/2bNmmFra0tKSgqHDx+mdu3aABw+fNgcl2nG1508PT1p0KABe/fuNZe/U0HeV061atUq22vTpk3j1q1bXLhwgSpVqgD/u//nnnvOYt2WLVtSrFgxUlNTM4xdemfPnsXf35+LFy/yzDPP8Ouvv5pnFqaXmprKgQMHAPD392fatGkW+zU9q3c+Szdv3gTIsv0HhY2NDe7u7oSHh5vv15Lx48ebZzcCREVFKUEmIiIiIiIiIiIi8oAoEsmxkJAQACpVqpTjOqaZIbGxscTGxt61fFxcXJbnXV1dLdaxtb09fMnJyTmOKz1rxVi6dOk89Z8TPj4+Fq85Ojri5eXF9evXMyzTZ/o5u7oA5cuXz1D+TgV5XzmV3T2kv3bjxg1zciwn9+/o6EjJkiUzjV16H3/8MQDe3t5s27YNFxeXLMuFhYWRmJgI3F4GNCfufJYSEhIAcHBwsFjHy8uLK1eu5HoGWGhoqLl+YXNyciI8PNx8v5Y4ODhkOxYiIiIiIiIiIiIiUnQViWUVLc1cyk5qaioAY8eOxWg03vUIDAy0ctT3LsZixYrdw6jvnQf1vnKqe/fu2Nvbc/36dYYOHWp+Xu6U/vzmzZtz9Cz5+/tnaMOUuMouuWbaz+/o0aM5voeoqCj+/fdfAGrWrJnjegXFNHPufkjUiYiIiIiIiIiIiEjhKBLJMdOSg5aWFbRWnXutKMR45coVi9cSExPNs4jSz/Iy/RwcHJxt26br98MMMUuyu//013J7/wkJCVmOXXrt27dn3bp1ODg4sGTJEl5++eUsE2ReXl7mWYx5fZZMe41lt0Tos88+C9zeOyynyeR169ZhNBqBzEtUmmLObhZXZGRkjvrJifj4eHNf2e2tJiIiIiIiIiIiIiIPtiKRHGvcuDFwe3lFS/tT3alJkyYAbN++/a5LqBUEG5vbQ2tKDGSlsGPMiV27dlm8hz179pCSkgKQYS8408+HDx+2mNyIiIjIsDdZXpjGGLIf5/zYuXPnXa+VKFHCvKQi/O/+f//9d4t1AwMDzWOX3f23b9+en3/+GUdHR5YtW0afPn3M9Uzs7Ox46qmnAPjll1/uckdZM80KM83yysrAgQNxdHQEYMqUKXcd88TERPPSkOXKlaNz584Zrnt6egJw+fJli20cPHjQ4rWc/BtL78KFC+affX19c1RHRERERERERERERB48RSI51rJlS6pWrQrAiBEjSEpKumudQYMGYWtrS2hoKJMmTcq2bFJSEjExMVaJ1cTNzQ24nQSypLBjzIlLly6xcOHCTOfT0tKYNm0acDuxUrt2bfO1bt26YWtrS0JCgjk5cqdp06aRmJiInZ0d3bp1y1NspjGG7Mc5P1atWsXff/+d6XxoaCjfffcdAD179sxwrVevXgDs37+fbdu2ZaqbkpLClClTAKhVqxa1atXKNoa2bduyYcMGnJycWLlyJb169cq0z90bb7wBwKZNm9i0aVO27WU1O6x58+YA/PnnnxbreXt7M2bMGOB2YnDChAkWy6alpTF48GDOnDkD3H697e3tM5SpW7cuAIcOHcoyQXbmzBnWrl1rsY+c/BtLz5Ro8/b2pkaNGjmqIyIiIiIiIiIiIiIPniKRHCtWrBhfffUVBoOBP/74g2effZY//viDtLQ04HbiKDAwkH79+vHf//4XgGrVqjFx4kQAZs6cSf/+/Tl16pS5zZSUFI4dO8aUKVN45JFHOHbsmFVjNiU8Nm3aZHFpvsKOMSfc3d0ZOnQoP/zwg3l22+XLl+ndu7d55tTUqVMz1PHx8eHtt98GYMaMGUyaNMmcwIiIiGDixIl88sknAIwcOZKyZcvmKbZHH33UnHCZN29egcwec3R05Pnnn2f79u3m9g8dOsRzzz1HaGgorq6ujBs3LkOdbt260ahRIwB69OjBTz/9ZE5mXbhwgW7durF//37g9uueE61bt+bXX3/F2dmZNWvW0KNHjwxJ4n79+vHcc89hNBrp0qULU6dO5erVq+brsbGx7Ny5kzfffNOcaE7Pz88PuL0s4/Xr1y3GMWnSJDp27AjA9OnTad++PXv27DEv95icnMy2bdto3ry5Oak6bNgwBgwYkKmtF154AReX/8fencfZXPf/H3+e2fcxMxgZzKBCSItUsgwhyVVKdlm6KpQrcbXpohkuieqnVLp0lVCWyBahpAyyRalQlAxjm9GY1ewz5/P7Y77nczlmMfsZ5nG/3c6tM+e9fF6f5XQ+zuu8328f5eTkqH///mYSMicnR59//rm6desmb2/vImOxvce2b9+uw4cPF1nPxpYc69y582XrAgAAAAAAAACuYsYVZOHChYa7u7shyZBkuLu7G0FBQYaLi4v52v79+836VqvVmDx5smGxWMxyT09PIygoyHB2djZfk2R89913dtsaPny4IckYPnx4kfHMnz/fkGSEhoYWKPv9998NDw8PQ5Lh5ORkBAcHG6GhoUZoaKhx8uTJKouxrDp37mxIMiZOnGh06NDBkGS4uroaAQEBdjFNmjSp0PZZWVlG//79zXpOTk5GQECA4eTkZL42aNAgIzs7u0Db0uzX3//+d7M/Ly8vo1GjRkZoaKjxz3/+s1z7b+vzo48+MurVq2f27+PjY3f9ffHFF4W2P3XqlNGyZUuzrpubm1GrVi274zF79uxC24aGhhqSjPnz5xcoi4qKMry9vQ1JRu/evY2srCyzLDk52ejdu7fd+fHz8zNq1apld325uLgUut02bdoYkoz//ve/xR6bnJwcY/z48XbvO2dnZyMwMNDu/Hp4eBgzZswotq8PP/zQLjZfX1/Dzc3NkGTccccdxrvvvlvkeywhIcGoU6eO2bZ27drme2zXrl12dfPy8owGDRoYkow1a9YUG1NhkpOTDUlGfHx8qdui+goJMQwp/7/Il52dbaxZs6bQ/zcDAK5sfO5VbxX9Gcz5rt645wIA4OrEPVj1YPsuNzk5udh6V8TIMZthw4bp8OHDeuaZZ3TDDTfIxcVFGRkZCg0NVZ8+ffTJJ5/YrSVksVg0depU/fLLL3ryySfVokULOTs7Kzk5WQEBAWrfvr2ee+457dy501z/q6Jcd9112rJli+6//37VqVNH58+f14kTJ3TixAm7NaMcGWNJuLm56ZtvvtH06dPVrFkzZWVlyd/fX3fffbfWr1+vf//730W2W7ZsmVasWKF7771XQUFBSk1NVVBQkO69916tWrVKS5Yskaura7nimzNnjiIjI81pHWNiYnTixAnFx8eXq1+bxo0ba//+/XrqqadUp04dZWdnq27duho0aJD279+v++67r9B2ISEh2rdvn2bNmqU77rhDnp6eSk9PV8OGDfXII4/ohx9+0NNPP13qeDp37qwvv/xSvr6++uKLL9SnTx9lZWVJyp9mcN26ddqwYYMGDBigRo0aKSsrS+np6QoJCVGPHj306quvFjpNpCSNGjVKkrR48eJiY3BxcdGsWbP066+/6vnnn9ett96qWrVqmef3zjvvVEREhI4ePaoXXnih2L7+/ve/a/369eratav8/PyUm5ur66+/XjNmzNDWrVuLHTkWEBCgbdu2aeDAgQoJCVFycrL5Hrt0Db+tW7fq1KlTCgkJMUe+AQAAAAAAAABqJothVMJcdLjihYeHa+vWrYqIiFBkZKSjw6lyFotFUv7aWrYpB692qampatCggVJTUxUdHa3Q0FBHh1RhHn30Uc2fP19TpkzRyy+/XOr2KSkp8vf3V3x8vIKCgiohQjhCgwbS6dNSSIh06pSjo6kecnJytGHDBvXq1avcP14AAFQvfO5VbxX9Gcz5rt645wIA4OrEPVj1YPsuNzk5WX5+fkXWu6JGjgGoPLb10wzD0MyZMx0dToU5efKkFi9erDp16uiZZ55xdDgAAAAAAAAAAAcjOQbANH78eDVs2FDz5s3TyZMnHR1OhZg+fbqys7MVGRlZ7C8FAAAAAAAAAAA1g4ujAwBQfXh4eOjjjz9WVFSUYmJi1LBhQ0eHVC5Wq1WNGjXStGnT9MQTTzg6HAAAAAAAAABANUBy7Cr20EMPaefOnaVqs2rVKrVv376SIqpa9erVK3Wb2NjYSojkyhIeHn7VrLPm5OSkiRMnOjoMAAAAAAAAAEA1QnLsKpaQkKC4uLhStcnOzpYkRUVFVUJEVau0+34xwzAqMBIAAAAAAAAAAFBdkBy7il0NCa7yIMEFoDgTJkgpKRJL0QEAagI+92oWzjcAAEDV4x7sykJyDABQI02Y4OgIAACoOnzu1SycbwAAgKrHPdiVxcnRAQAAAAAAAAAAAABVheQYAAAAAAAAAAAAagySYwAAAAAAAAAAAKgxSI4BAAAAAAAAAACgxiA5BgAAAAAAAAAAgBqD5BgAAAAAAAAAAABqDJJjAAAAAAAAAAAAqDFIjgEAAAAAAAAAAKDGIDkGAAAAAAAAAACAGsPF0QEAAIDymTVLSkmR/PykCRMcHQ2k8p0TR7R1VLxX8rbL2wfvW6B8eA8BAIDKxv0GUDlK896y1d2/X7r55op9P1oMwzAqpisAuDqlpKTI399f8fHxCgoKcnQ4QAENGkinT0shIdKpU2XvJycnRxs2bFCvXr3k6upacQHWQOU5J45o66h4r+Rtl7ePinrfAjXV1fYe4jO4ZuF8A8CV4Wq73wCqi9K8t2x1nZwkq7VkbWzf5SYnJ8vPz6/IekyrCAAAAAAAAAAAgBqD5BgAAAAAAAAAAABqDJJjAAAAAAAAAAAAqDFIjgEAAAAAAAAAAKDGIDkGAAAAAAAAAACAGoPkWAUZMWKELBaLRowYUeF9b9++Xffdd5/q1KkjZ2dnWSwW9enTp8K3g+ohLCxMFotFCxYscMj2hw4dKovFomXLljlk+xXJarWqZcuWcnV11ZEjRxwdDgAAAAAAAACgGnBxdAAo3u7du9W1a1fl5ubKYrEoKChIzs7OCggIkCRFRkZKyk/OhYWFOS5QBzh+/LiZQLIdB5TPvn37tGTJErVq1Ur9+/cvtu7Ro0c1b948bd68WcePH1dycrICAwPVtGlT9ejRQ48//rjq169fabGuWbNGP/30k2666aYik8VOTk6aPHmyBg0apOeff16ff/55pcUDAAAAAAAAALgyMHKsmnvrrbeUm5uru+66S/Hx8frrr78UGxur+fPnS5KmTJmiKVOm6Pjx444N1AGOHz9u7j8qxj//+U8ZhqGIiAhZLJZC6+Tl5em5555TixYtNGPGDO3bt0+JiYny8fHRX3/9pZ07dyoyMlLXXXed3njjjUqLdc2aNZoyZYrWrFlTbL3+/fvrhhtu0Nq1a7Vt27ZKiwcAAAAAAAAAcGUgOVbNHThwQJI0cOBABQYGOjgaXM12796tbdu2qV69enrwwQcLrWO1WtW3b1+98cYbys3NVc+ePbV161ZlZWUpISFBGRkZ+vLLL9W+fXulp6frueee09NPP13Fe2LPyclJjz/+uCTptddec2gsAAAAAAAAAADHIzlWzaWnp0uSfHx8HBwJrnZz586VlJ+IdXZ2LrTOtGnTzKkJX3zxRW3cuFGdOnUy67u5uemee+7R9u3bNWzYMEnSO++8o08++aQK9qBogwYNkrOzszZu3KiYmBiHxgIAAAAAAAAAcCySY1Xk+PHjeuaZZ9SyZUv5+PjIy8tLzZs317hx4wr9st5ischisZjTJY4cOdJ8zWKxaMSIEXbT3nXp0sWuvLzrj4WHh8tisSgyMlLZ2dmaMWOGbrzxRnl7eysgIEDdu3fXxo0bL9vPqlWr1Lt3bwUHB8vNzU3BwcHq3bu3Vq9eXWQb276NGDFChmHoww8/VIcOHRQUFCSLxaIFCxYoLCxMXbp0MdtcvO+2tuVh6ycqKkqxsbEaO3asGjduLA8PD9WrV09DhgzR4cOHi+0jMzNTb731ltq3b6+AgAB5eHgoNDRUw4YN008//VTm2F555RVZLBY5OzubCS0bq9WqxYsXq1evXuYxr1Onjnr06KGlS5fKMIxC+0xJSdHy5cslSYMHDy60zrlz5zRjxgxJ+dfb9OnTi4zRyclJ//3vf9WiRQtJ0sSJE5WdnW1X5+LzXJQFCxYUuJ6joqJksVi0cOFCSdLChQsLnP+oqCi7foKDg9W1a1dZrVbNmzevyO0BAAAAAAAAAK5+JMeqwOLFi9W8eXPNnj1bv/76q3JzcyVJR44c0dtvv61WrVpp06ZNdm2Cg4MVHBwsJ6f8U+Tn52e+FhwcLGdnZwUHB5v1AwIC7Mrr1KlTIbFnZ2erW7dumjhxon777Te5ubkpKSlJmzdvVq9evRQZGVlku4EDB6pv375av3694uPj5ePjo/j4eK1fv14PPfSQBg8erJycnCK3bRiG+vXrp8cff1y7du2SYRjm8ahTp44CAgLMuhfve3BwsPz9/Stk/6Ojo3XzzTdrzpw5iouLk6urq+Li4rRkyRLdfPPN+vLLLwttd/r0ad12220aP368du3apbS0NHl4eCgmJkaffPKJbr31Vr3zzjulisVqtWrs2LGaNGmSPDw8tGLFCo0ePdosT0hIUJcuXTR06FBt3LhR586dk5eXl+Lj4/X1119r8ODB6tOnT4EklSRt3bpVGRkZ8vb21i233FLo9ufPn6+MjAxJKnZNMht3d3e9BqSVFgAAhphJREFU+OKL5vG43NpgJWVLsnp4eEiSPDw8Cpx/Nze3Au06deokSUWeMwAAAAAAAABAzUByrJJ9/fXXGjZsmPLy8vT8888rOjpaGRkZSktL0+HDh9WvXz+lpqaqX79+diPIYmNjFRsbq4YNG0qSZs+ebb4WGxurefPmKTY21qy/atUqu/K9e/dWSPzvvfeevv/+e82dO1epqalKTExUTEyMHn74YUnSlClTtHbt2gLtXnrpJS1btkwWi0WTJ0/W+fPnlZCQoPj4eL300kuSpKVLl2ry5MlFbnvVqlX6/PPP9cYbbygxMVEJCQlKTk7WPffco71792rVqlUFjpftMXv27ArZ//Hjx8vNzU2bNm1SWlqaUlNTtWfPHrVu3VqZmZkaMGCATp06ZdcmLy9Pffv21cGDB+Xv769FixbpwoULSkpK0p9//qnevXvLarVq3LhxJRp9J0lZWVnq37+/5syZo1q1amnTpk1264Ll5eXpoYce0rZt23TTTTdp3bp1SktLU1JSki5cuKCFCxeqbt26Wrt2rV544YUC/W/btk2SdMsttxQ5peK3334rSQoKClLnzp1LFHefPn3MJNqWLVtK1OZy2rdvr9jYWA0YMECSNGDAgALnv3379gXa3X777ZKkH3/8URcuXKiQWAAAAAAAAAAAVx6SY5XIarXqqaeektVq1Zw5czRz5kyFhYWZU781a9ZMy5cv1/3336+UlBTNmjXL0SEXkJycrPfee0+jRo0yR+o0bNhQy5YtM0fi2JJdNqdPnzaTUy+++KKmTp2qWrVqScof4fbKK69owoQJkqRZs2bp7NmzhW77woULmjVrlv75z3/Kz89PUv7aa9dcc02F72dRMjIy9OWXX6p79+5mkqddu3bavHmzAgMDlZKSoldffdWuzYoVK7Rnzx5J0vLlyzVkyBBzJFOTJk20evVq3X777TIMQ88///xlY7AlBFeuXKmQkBBt375dHTt2tKuzZMkSbd26Vc2bN1dUVJR69+4tLy8vSZK3t7eGDRumDRs2yGKx6L333tO5c+fs2tvibdOmTZFxHDp0SJJ08803XzZmGz8/PzVp0kSSdPDgwRK3qwy2uHNzcy+bPM7KylJKSordAwAAAAAAAABwdSA5Vom2bdumP/74Q7Vr19Zjjz1WZL1hw4ZJkr766quqCq3EGjZsqJEjRxZ43cnJSZMmTZKUnzQ5cOCAWbZy5Url5ubKw8PDnFbvUpMmTZK7u7tycnK0YsWKQusEBARo1KhRFbAXZdevXz9z3ayL1a1b15zScNmyZXZltr/vvPNO9ejRo0BbFxcXRURESMpPGF187C515swZdezY0Ux87dy5U61atSpQz7aO1pgxY4qcUvLWW29Vy5YtlZ2dXWAU15kzZySp2Ok4z58/Lyl/5Fhp1K5d2669owQGBprTctr2tyivvvqq/P39zYdtBCcAAAAAAAAA4MpHcqwS7dixQ1L+yJ/69eurXr16hT4ef/xxSdKJEyccGW6hwsPDi1xbqmPHjnJxcZEk7du3z3zd9vy2224zR3xdKiAgQG3bti3Q9mK33XZboWtHVaWuXbtetuz8+fOKjo42X7ftT7du3Yps26VLF3P6wqL2//Dhw2rfvr0OHDigO++8Uzt27FCjRo0K1MvLy9Pu3bslSZGRkUVeZ/Xq1dORI0ckFbzW/vrrL0n5CaSrlZOTk5k4tO1vUSZOnKjk5GTzcfLkyaoIEQAAAAAAAABQBVwcHcDVzDY6JScnR3FxcZetn5GRUdkhlVpISEiRZR4eHgoKClJcXJzdNH2258W1laQGDRrY1b9U3bp1SxtuhStuHy4uO3funBo3bmw+v1xbDw8P1a5du8Cxu9jMmTMlScHBwdq0aZN8fHwKrZeQkKCsrCxJUmJiYjF78z/p6el2f2dmZkqS3N3di2wTFBSk06dPl3oEWHx8vNne0Tw9PZWYmGjub1Hc3d2LPRYAAAAAAAAAgCsXI8cqUV5eniSZ60uV5IH/sY2sqqn69esnNzc3xcXFacyYMeb1dKmLX9+4cWOJrrPIyEi7PmyJq+KSazfccIMkaf/+/SXeh5SUFB07dkyS1LJlyxK3qywJCQmSqkeiDgAAAAAAAADgGCTHKlG9evUkVc/pEkvq9OnTRZZlZWWZo4guHuVle37q1Kli+7aVV4cRYkUpbv8vLivt/mdmZhZ67C7Wq1cvrV69Wu7u7lq0aJEeeeSRQhNkQUFB5vSWZb3WbGuN2ZJHhbn77rsl5U8jGRUVVaJ+V69ebSZ9L52i0hZzcaO4kpOTS7SdksjIyDC3VdzaagAAAAAAAACAqxvJsUp01113SZJiY2OLXFeqvGzrgVXWqLOtW7cW2ff27duVm5srSeb6YRc/37dvX5HJjaSkJLu1ycrCyel/l29l7f+WLVsuWxYYGGhOqSj9b/+/+eabIttGRUWZx664/e/Vq5c+//xzeXh4aOnSpRo8eLDZzsbV1VXt2rWTJK1bt+4ye1Q426gw2yivwowYMUIeHh6SpKlTp172mGdlZZlTQ9avX199+vSxKw8ICJCkYtfz2rNnT5FltvNf0nN/8bpwLVq0KFEbAAAAAAAAAMDVh+RYJerSpYuuvfZaSdL48eOVnZ1dbP3iRu0Uxc/PT1J+sqkyxMTEaOHChQVet1qtmj59uqT8xErr1q3Nsr59+8rFxUWZmZlmcuRS06dPV1ZWllxdXdW3b98yxWbbd6ny9v+zzz7TkSNHCrweHx+v999/X5I0YMAAu7KBAwdKknbt2qVNmzYVaJubm6upU6dKklq1aqVWrVoVG8M999yjtWvXytPTU8uXL9fAgQOVk5NjV+eJJ56QJG3YsEEbNmwotr/CrrNOnTpJkr7//vsi2wUHB+v555+XlJ8Y/Ne//lVkXavVqlGjRum3336TlH++3dzc7Oq0adNGkrR3795CE2S//fabVq1aVeQ2Snvt2xJtwcHBatasWYnaAAAAAAAAAACuPiTHKpGLi4vmzp0rFxcXfffdd+rUqZO++eYbu8TGsWPHNHfuXN1222167733Sr0NW2Jl8eLFSk9Pr7DYbfz9/TVmzBh98MEH5pR0J0+e1KBBg8yRU9OmTbNrExISonHjxkmSZsyYoYiICDOBkZSUpMmTJ+v111+XJE2YMEHXXHNNmWK7/vrrzYTLhx9+WCmjxzw8PNSzZ09t3rzZ7H/v3r3q1q2b4uPj5evrqxdffNGuTd++fXX77bdLkvr3768lS5aY5zw6Olp9+/bVrl27JEmvvfZaieLo3r27vvjiC3l5eWnlypXq37+/XbJ16NCh6tatmwzD0IMPPqhp06bpzJkzZnlaWpq2bNmip556Sk2aNCnQf3h4uKT8aRnj4uKKjCMiIkK9e/eWJL366qvq1auXtm/fbk73mJOTo02bNqlTp05mUvXJJ5/U8OHDC/T1t7/9TT4+PsrJyVH//v3NJGROTo4+//xzdevWTd7e3kXGYrv2t2/frsOHDxdZz8aWHOvcufNl6wIAAAAAAAAArl4kxyrZ3Xffrc8++0y+vr7as2eP+YV/7dq15eHhoaZNm2rMmDHat2+fOUViaYwePVqStHLlStWqVUsNGjRQWFiYOnToUCHxP/nkk2rbtq2eeOIJ+fn5KTAwUI0aNdLy5cslSZMmTdKDDz5YoN306dPVv39/GYahqVOnKigoSIGBgQoKCjKTaYMGDdK///3vMsfm5eWlRx55RJL0/PPPy8fHR6GhoQoLC9Ozzz5b5n4v9uabbyozM1Pdu3eXj4+PfH191a5dO/38889yd3fX0qVL1ahRI7s2zs7OWrlypVq2bKnk5GQNGTJEPj4+CggIUJMmTbR27Vo5OTlp9uzZuvfee0scS9euXbVhwwZ5e3trzZo16tu3r5kgs22zd+/eys7O1uTJkxUSEiJ/f38FBATI19dXXbt21Xvvvae0tLQCfbdo0cIcybV27doiY3ByctLq1as1fvx4ubi4aOPGjerUqZPc3d0VFBQkDw8P3XPPPdqxY4c8PDw0Y8YMzZkzp9C+/P399dZbb8lisWj37t1q3ry5/Pz85OPjoz59+qhRo0bmCLvC9O3bV3Xq1FFiYqJatGihOnXqKCwsTGFhYdq9e7ddXavVqvXr10uSBg8eXPyBBgAAAAAAAABc1UiOVYE+ffro6NGjioiIULt27eTj46OkpCS5u7urTZs2euyxx7R69Wo999xzpe576NCh+uSTT9ShQwd5eXnp7NmzOnHihE6dOlUhsbu5uembb77R9OnT1axZM2VlZcnf319333231q9fX2Ryy83NTcuWLdOKFSt07733KigoSKmpqQoKCtK9996rVatWacmSJXJ1dS1XfHPmzFFkZKQ5rWNMTIxOnDih+Pj4cvVr07hxY+3fv19PPfWU6tSpo+zsbNWtW1eDBg3S/v37dd999xXaLiQkRPv27dOsWbN0xx13yNPTU+np6WrYsKEeeeQR/fDDD3r66adLHU/nzp315ZdfytfXV1988YX69OmjrKwsSfnTDK5bt04bNmzQgAED1KhRI2VlZSk9PV0hISHq0aOHXn311UKniZSkUaNGScofhVgcFxcXzZo1S7/++quef/553XrrrapVq5Z5fu+8805FRETo6NGjeuGFF4rt6+9//7vWr1+vrl27ys/PT7m5ubr++us1Y8YMbd26tdiRYwEBAdq2bZsGDhyokJAQJScn68SJEzpx4oQ5ytFm69atOnXqlEJCQsyRbwAAAAAAAACAmsliVMZcdLjihYeHa+vWrYqIiFBkZKSjw6lytlF8W7ZsMaccvNqlpqaqQYMGSk1NVXR0tEJDQx0dUoV59NFHNX/+fE2ZMkUvv/xyqdunpKTI399f8fHxCgoKqoQIgfJp0EA6fVoKCZHK89uInJwcbdiwQb169Sr3jxdquvKcE0e0dVS8V/K2y9tHRb1vgZrqansP8Rlcs3C+AeDKcLXdbwDVRWneW7a6Tk6S1VqyNrbvcpOTk+Xn51dkPUaOAZAkc/00wzA0c+ZMR4dTYU6ePKnFixerTp06euaZZxwdDgAAAAAAAADAwUiOATCNHz9eDRs21Lx583Ty5ElHh1Mhpk+fruzsbEVGRhb7SwEAAAAAAAAAQM3g4ugAAFQfHh4e+vjjjxUVFaWYmBg1bNjQ0SGVi9VqVaNGjTRt2jQ98cQTjg4HAAAAAAAAAFANkBy7ij300EPauXNnqdqsWrVK7du3r6SIqla9evVK3SY2NrYSIrmyhIeHXzXrrDk5OWnixImODgMAAAAAAAAAUI2QHLuKJSQkKC4urlRtsrOzJUlRUVGVEFHVKu2+X8wwjAqMBAAAAAAAAAAAVBckx65iV0OCqzxIcAGoKSZMkFJSJJbVqz7Kc04c0dZR8V7J2y5vH7xvgfLhPQQAACob9xtA5SjNe8tWd/9+6eabK/b9aDHIIABAsVJSUuTv76/4+HgFBQU5Ohyg0uTk5GjDhg3q1auXXF1dHR0OAAA1Bp/BNQvnGwAAoPLYvstNTk6WXzHZNKcqjAkAAAAAAAAAAABwKJJjAAAAAAAAAAAAqDFIjgEAAAAAAAAAAKDGIDkGAAAAAAAAAACAGoPkGAAAAAAAAAAAAGoMkmMAAAAAAAAAAACoMUiOAQAAAAAAAAAAoMYgOQYAAAAAAAAAAIAag+QYAAAAAAAAAAAAagwXRwcAADXRrFlSSork5ydNmODoaAAAQHXA/QFKgusEAABcivsDoPRIjgGAA8yaJZ0+LYWEcNMCAADycX+AkuA6AQAAl+L+ACg9plUEAAAAAAAAAABAjUFyDAAAAAAAAAAAADUGyTEAAAAAAAAAAADUGCTHAAAAAAAAAAAAUGOQHAMAAAAAAAAAAECNQXIMqCHCwsJksVi0YMECh2x/6NChslgsWrZsWZVut2fPnrJYLPr222+rdLsAAAAAAAAAgOqJ5NgVZsGCBYqMjFRUVJSjQ7lqHT9+XJGRkYqMjHR0KFeNffv2acmSJWrVqpX69+9foNyWuBsxYkSFb9t2Hp999llZrdYK7x8AAAAAAAAAcGUhOXaFWbBggaZMmUJyrBIdP35cU6ZM0ZQpUxwdylXjn//8pwzDUEREhCwWS5Vu+4477tA999yj/fv3a9GiRVW6bQAAAAAAAABA9UNyDECl2r17t7Zt26Z69erpwQcfdEgMo0ePliS99tprDtk+AAAAAAAAAKD6IDkGoFLNnTtXkjRw4EA5Ozs7JIZevXopMDBQhw4d0o4dOxwSAwAAAAAAAACgeiA59n9Onjyp559/XjfddJP8/f3l6emppk2b6oEHHtDHH3+szMzMAm127NihoUOHKjQ0VB4eHvL391e7du00c+ZMXbhwodDtjBgxwm5tpRUrVig8PFyBgYHy8vLSTTfdpNmzZxdYG2nBggWyWCzaunWrJGnKlCmyWCx2j+PHj1d4jIZh6MMPP1SHDh0UFBQki8WiBQsWlPzAXiI8PFwWi0WRkZHKzs7WjBkzdOONN8rb21sBAQHq3r27Nm7ceNl+Vq1apd69eys4OFhubm4KDg5W7969tXr16iLblGS/wsLC1KVLF7PNpce4vGti2fqJiopSbGysxo4dq8aNG8vDw0P16tXTkCFDdPjw4WL7yMzM1FtvvaX27dsrICBAHh4eCg0N1bBhw/TTTz+VObZXXnlFFotFzs7OZkLLxmq1avHixerVq5d5zOvUqaMePXpo6dKlMgyj0D5TUlK0fPlySdLgwYPLFFdZ3zMXc3NzU9++fSVJ//3vf8sUBwAAAAAAAADg6uDi6ACqg08++URPPPGEmQBzc3OTr6+vYmJidOzYMa1du1Y33nijbrrpJkn5iYLx48fr7bffNvvw8fFRWlqa9u7dq71792r+/Pn66quvFBoaWuR2x44dqzlz5sjJyUl+fn7KyMjQzz//rGeeeUY//vijFi5caNb19PRUcHCwEhISlJOTI29vb/n4+Nj1d/GonIqI0TAM9evXTytXrpSTk5P8/f3l5FQx+dTs7Gx169ZN27dvl4uLi3x8fJSUlKTNmzdr8+bNioiIUGRkZKHthg0bpmXLlkmSGVd8fLzWr1+v9evXa9CgQVq4cKFcXV1LvV916tRRSkqKEhMTJUnBwcF2bf39/Stk/6OjozVo0CDFxsbK09NTrq6uiouL05IlS7Rq1SqtXr1aPXv2LNDu9OnT6tmzpw4ePChJcnV1lZeXl2JiYvTJJ59o8eLFeuutt/SPf/yjxLFYrVY9/fTTmjNnjjw8PLRkyRK76Q8TEhL04IMPatu2beZrtmP+9ddf6+uvv9ann36qzz77TG5ubnZ9b926VRkZGfL29tYtt9xS2sNUQGneM5fq1KmTPvjgA3311VfljgMAAAAAAAAAcOWq8SPH1q9fr+HDhyszM1N33XWXtm/froyMDMXHxystLU3bt2/X448/bvelf0REhN5++23VrVtXc+bM0fnz55WamqqMjAxt2bJFN998s44cOaKHHnqoyNEsa9eu1QcffKBZs2YpMTFRiYmJio+P12OPPSZJ+vjjj/Xtt9+a9QcMGKDY2Fi1b99ekvTss88qNjbW7tGwYcMKjXHVqlX6/PPP9cYbbygxMVEJCQlKTk7WPffcU+7j/t577+n777/X3LlzlZqaqsTERMXExOjhhx+WlD8ybu3atQXavfTSS1q2bJksFosmT56s8+fPKyEhQfHx8XrppZckSUuXLtXkyZOL3HZx+7V3716tWrXKrHvpMZ49e3a5912Sxo8fLzc3N23atElpaWlKTU3Vnj171Lp1a2VmZmrAgAE6deqUXZu8vDz17dtXBw8elL+/vxYtWqQLFy4oKSlJf/75p3r37i2r1apx48aVaPSdJGVlZal///6aM2eOatWqpU2bNtklxvLy8vTQQw9p27Ztuummm7Ru3TqlpaUpKSlJFy5c0MKFC1W3bl2tXbtWL7zwQoH+bQm1W265pdxTKpb2PXOp22+/XZIUFxd32dF5AAAAAAAAAICrmFGD5eTkGI0bNzYkGR06dDCysrIu2yY6OtpwdnY2PD09jZ9++qnQOikpKUaDBg0MScbq1avtyoYPH25IMiQZ8+fPL7T9rbfeakgyHnvssQJlnTt3NiQZERERVRLj22+/XeR2ysIWvyRj3rx5Bcrz8vKMTp06GZKMli1b2pWdOnXKcHFxMSQZEydOLLT/CRMmGJIMV1dX48yZM3ZlJd2vLVu2mPUqmq1fNzc349dffy1QHhcXZwQGBhqSjCeffNKu7NNPPzXbf/XVVwXa5uTkGLfffrshyWjVqlWB8tDQULvrLikpyTwfISEhxoEDBwq0+fjjjw1JRvPmzY2kpKRC92nfvn2GxWIx3NzcjLi4OLuyjh07GpKMsWPHFnlMLo5t+PDhBcrK+565mI+PjyHJ+Oijj4qtl5mZaSQnJ5uPkydPGpKM+Pj4YtuVRkiIYUj5/wWqi+zsbGPNmjVGdna2o0MBgBqJ+4OaqzSfwVwnVz7uuQAAFY37A+B/kpOTDUlGcnJysfVq9MixLVu2KDo6WpL05ptvFpgSrjALFixQXl6eevbsqTZt2hRax9fXV3369JGkIqdwa9iwoYYPH15o2f333y9J+uWXXy4bT2XGGBAQoFGjRpUphstp2LChRo4cWeB1JycnTZo0SZJ06NAhHThwwCxbuXKlcnNz5eHhoRdffLHQfidNmiR3d3fl5ORoxYoVhdapzP0qqX79+qlFixYFXq9bt65Gjx4tSebUkTa2v++880716NGjQFsXFxdFRERIkg4ePGh37C515swZdezYUVu3blXz5s21c+dOtWrVqkC9efPmSZLGjBlT5JSSt956q1q2bKns7Gxt2bKlwHak/Okqy6si3jNBQUF2cRXl1Vdflb+/v/m4eFQmAAAAAAAAAODKVqPXHNu5c6ckqV69emrbtm2J2uzYsUOStGnTJtWrV6/IehcuXJAknThxotDy2267TRaLpdCy+vXrS8pf66ksKjLGkiQMyyI8PLzI/e/YsaNcXFyUm5urffv2qXXr1pKkffv2mXH5+fkV2jYgIEBt27bVjh07zPqXqsz9KqmuXbsWWzZ9+nSdP39e0dHRaty4saT/7X+3bt2KbNulSxc5OzsrLy/P7thd7PDhw4qMjNSJEyd055136osvvlBgYGCBenl5edq9e7ckKTIyUtOnTy9yu7Zr9dJr6a+//pKkQvsvrYp4zwQGBurEiRNmXEWZOHGiJkyYYP6dkpJCggwAAAAAAAAArhI1OjkWGxsrSQoNDS1xG9uIk7S0NKWlpV22fnp6eqGv+/r6FtnGxSX/tOTk5JQ4rotVVIx169Yt0/ZLIiQkpMgyDw8PBQUFKS4uTufOnTNftz0vrq0kNWjQwK7+pSpzv0qquH24uOzcuXNmcqwk++/h4aHatWsXOHYXmzlzpiQpODhYmzZtko+PT6H1EhISlJWVJUlKTEwsZm/+59JrKTMzU5Lk7u5eovbFqYj3jKenp11cRXF3d6+QmAEAAAAAAAAA1U+NnlaxqFEoxcnLy5MkvfDCCzIM47KPqKioCo666mJ0dnauwqirztW6XyXVr18/ubm5KS4uTmPGjDGvl0td/PrGjRtLdC1FRkba9WGbxrCkybXKZhtZZosLAAAAAAAAAFDz1OjkmG3KwaKmFayoNlXtSojx9OnTRZZlZWXp/PnzkuxHedmenzp1qti+beXVYYRYUYrb/4vLSrv/mZmZhR67i/Xq1UurV6+Wu7u7Fi1apEceeaTQBFlQUJA5Iqus15JtrbGyThFa0WxxVMQaaAAAAAAAAACAK1ONTo61b99eUv70ikWtT3Wpu+66S5K0efPmy07NVhmcnPJPmWEYRdZxdIwlsXXr1iL3Yfv27crNzZUku7XgbM/37dun5OTkQtsmJSXZrU1WFrZjLBV/nMtjy5Ytly0LDAw0p1SU/rf/33zzTZFto6KizGNX3P736tVLn3/+uTw8PLR06VINHjzYbGfj6uqqdu3aSZLWrVt3mT0q3A033CBJOnbsWJnaV6TU1FTFx8dLklq0aOHgaAAAAAAAAAAAjlKjk2NdunRRkyZNJEnjx49Xdnb2Zds8+uijcnFxUXx8vCIiIoqtm52drQsXLlRIrDZ+fn6S8pNARXF0jCURExOjhQsXFnjdarVq+vTpkvITK61btzbL+vbtKxcXF2VmZprrZl1q+vTpysrKkqurq/r27Vum2GzHWCr+OJfHZ599piNHjhR4PT4+Xu+//74kacCAAXZlAwcOlCTt2rVLmzZtKtA2NzdXU6dOlSS1atVKrVq1KjaGe+65R2vXrpWnp6eWL1+ugQMHFliz64knnpAkbdiwQRs2bCi2v8JGh3Xq1EmS9P333xfbtirs27dPVqtVLi4uZgIZAAAAAAAAAFDz1OjkmLOzs959911ZLBZ99913uvvuu/Xdd9/JarVKyk8cRUVFaejQofr1118lSU2bNtXkyZMlSa+99pqGDRumgwcPmn3m5ubqp59+0tSpU3Xttdfqp59+qtCYbQmPDRs2FDk1n6NjLAl/f3+NGTNGH3zwgTm67eTJkxo0aJA5cmratGl2bUJCQjRu3DhJ0owZMxQREWEmr5KSkjR58mS9/vrrkqQJEybommuuKVNs119/vdzc3CRJH374YaWMHvPw8FDPnj21efNms/+9e/eqW7duio+Pl6+vr1588UW7Nn379tXtt98uSerfv7+WLFliJrOio6PVt29f7dq1S1L+eS+J7t2764svvpCXl5dWrlyp/v372yWJhw4dqm7duskwDD344IOaNm2azpw5Y5anpaVpy5Yteuqpp8xE88XCw8Ml5U/LGBcXV8KjUzn27NkjSbrlllvk4+Pj0FgAAAAAAAAAAI5To5NjknTvvfdqwYIFcnd313fffaeOHTvKy8tLtWvXlre3t7p06aLFixfbJQwmT56syZMny2Kx6JNPPlHr1q3NNh4eHrr55psVERGhkydPymKxVGi8w4cPl4eHh44ePapGjRqpXr16CgsLU1hYmN1aVI6MsSSefPJJtW3bVk888YT8/PwUGBioRo0aafny5ZKkSZMm6cEHHyzQbvr06erfv78Mw9DUqVMVFBSkwMBABQUFmcm0QYMG6d///neZY/Py8tIjjzwiSXr++efl4+Oj0NBQhYWF6dlnny1zvxd78803lZmZqe7du8vHx0e+vr5q166dfv75Z7m7u2vp0qVq1KiRXRtnZ2etXLlSLVu2VHJysoYMGSIfHx8FBASoSZMmWrt2rZycnDR79mzde++9JY6la9eu2rBhg7y9vbVmzRr17dvXvN5t2+zdu7eys7M1efJkhYSEyN/fXwEBAfL19VXXrl313nvvKS0trUDfLVq0UJs2bSRJa9euLccRKz/b9gcPHuzQOAAAAAAAAAAAjlXjk2OSNGzYMB0+fFjPPPOMbrjhBrm4uCgjI0OhoaHq06ePPvnkE7s1iiwWi6ZOnapffvlFTz75pFq0aCFnZ2clJycrICBA7du313PPPaedO3dW+PRt1113nbZs2aL7779fderU0fnz53XixAmdOHHCbs0oR8ZYEm5ubvrmm280ffp0NWvWTFlZWfL399fdd9+t9evXF5nccnNz07Jly7RixQrde++9CgoKUmpqqoKCgnTvvfdq1apVWrJkiVxdXcsV35w5cxQZGWlO6xgTE6MTJ06Ya1aVV+PGjbV//3499dRTqlOnjrKzs1W3bl0NGjRI+/fv13333Vdou5CQEO3bt0+zZs3SHXfcIU9PT6Wnp6thw4Z65JFH9MMPP+jpp58udTydO3fWl19+KV9fX33xxRfq06ePsrKyJOVPM7lu3Tpt2LBBAwYMUKNGjZSVlaX09HSFhISoR48eevXVVwudJlKSRo0aJUlavHhxqeOqKMeOHdOuXbvk6empYcOGOSwOAAAAAAAAAIDjWYzKmDMOKEJ4eLi2bt2qiIgIRUZGOjqcKmcbpbdlyxZzysGrXWpqqho0aKDU1FRFR0crNDS0ymOYOnWqIiIiNHLkSH300Uelbp+SkiJ/f3/Fx8crKCioQmJq0EA6fVoKCZEuGvQJOFROTo42bNigXr16lftHBgCA0uP+oOYqzWcw18mVj3suAEBF4/4A+B/bd7nJycny8/Mrsh4jxwBUKtv6aYZhaObMmVW+/bS0NL3zzjtyd3dXRERElW8fAAAAAAAAAFC9kBwDUOnGjx+vhg0bat68eTp58mSVbvvdd99VfHy8nn76aYeMWgMAAAAAAAAAVC8ujg4AwNXPw8NDH3/8saKiohQTE6OGDRtW2ba9vb0VGRmpZ555psq2CQAAAAAAAACovkiOodQeeugh7dy5s1RtVq1apfbt21dSRFWrXr16pW4TGxtbCZFcWcLDwx2yztrYsWOrfJsAAAAAAAAAgOqL5BhKLSEhQXFxcaVqk52dLUmKioqqhIiqVmn3/WKGYVRgJAAAAAAAAAAAoLRIjqHUroYEV3mQ4EJFmDBBSkmR/PwcHQkAAKguuD9ASXCdAACAS3F/AJQeyTEAcIAJExwdAQAAqG64P0BJcJ0AAIBLcX8AlJ6TowMAAAAAAAAAAAAAqgrJMQAAAAAAAAAAANQYJMcAAAAAAAAAAABQY5AcAwAAAAAAAAAAQI1BcgwAAAAAAAAAAAA1BskxAAAAAAAAAAAA1BgkxwAAAAAAAAAAAFBjkBwDAAAAAAAAAABAjUFyDAAAAAAAAAAAADWGi6MDAACgtB54QEpOlvz9pc8/d3Q0VxaOHQAAjjFrlpSSIvn5SRMmODoaVDbONwAAVz++Y6meBg4sWT2SYwCAK84XX0hWq+TE+OdS49gBAOAYs2ZJp09LISEkS2oCzjcAAFc/vmOpnr78smT1OG0AAAAAAAAAAACoMUiOAQAAAAAAAAAAoMYgOQYAAAAAAAAAAIAag+QYAAAAAAAAAAAAagySY6g0x48fl8VikcVi0fHjxx0dTqXLzs5W06ZN5e7urpMnTzo6nAoTHh4ui8WiyMhIR4dSpMjISFksFoWHhxco69mzpywWi7799tuqDwwAAAAAAAAAUO2QHCuHNWvWKDIyUmvWrLmit1EWkZGRioyMrBFJr5J65513dOzYMT322GNq2LChXdnFicKSPBYsWOCYnbgK2ZJ6zz77rKxWq2ODAQAAAAAAAAA4nIujA7iSrVmzRgsXLtTw4cPVp0+fK3YbZTFlyhRJ+aOKwsLCCq3j6uqqZs2amc+vZgkJCZo2bZrc3d01ceLEYuv6+fnJ09Oz2DqXK69KjRo1UrNmzVS7dm1Hh1Imd9xxh+655x599dVXWrRokYYNG+bokAAAAAAAAAAADkRyDJUmJCREhw8fdnQYVeK///2vkpKS9PDDD6tBgwbF1p09e7ZGjBhRNYFVgI8//tjRIZTb6NGj9dVXX+m1114jOQYAAAAAAAAANRzTKgLlZBiG/vvf/0qShg4d6uBoUJhevXopMDBQhw4d0o4dOxwdDgAAAAAAAADAgUiOXWLZsmW69957FRwcLFdXV9WqVUvXXXed7r//fs2ZM0eZmZmKioqSxWLRwoULJUkLFy4ssGZUVFSU2WdsbKzeeecdPfDAA2rRooX8/f3l6empa6+9Vo899pgOHTpUII7SbsPm4MGDeuKJJ3TdddfJy8tLPj4+uvHGG/Wvf/1L8fHx5T4+I0aMkMViMf/u0qWLXUwXT7F48Tpbl65NZts/W1+//PKLBg0apPr168vT01MtWrTQG2+8odzcXLPNjh071KdPH11zzTXy8PBQq1atNGfOHBmGUWzMZTkmkZGRslgsCg8PlyStXLlSPXr0UN26deXk5GSuYyVJmzdvVnR0tGrVqqVevXqV4CiWzs6dO+Xi4iKLxaI333yz0DqnTp1SUFCQLBaLHn/8cbuy8PBwWSwWRUZGKjs7WzNmzNCNN94ob29vBQQEqHv37tq4cWOR27+4/aXCwsLMNdIuXLigl19+Wa1bt5avr2+h533Hjh0aOnSoQkND5eHhIX9/f7Vr104zZ87UhQsXij0OGzduVPfu3VWrVi35+PioTZs2eu2115STk1NsO0lyc3NT3759JclMZAIAAAAAAAAAaiamVbzIo48+qvnz55t/+/j4KCcnR0ePHtXRo0e1bt063XfffXJzc1NwcLCSk5OVmZlpfsl/MTc3N/P5iy++aCa5XFxc5Ofnp/T0dP3555/6888/tWjRIi1evNj88t7WvjTbkKTXXntNEydOlNVqlSR5eXkpJydHBw4c0IEDBzR//nytX79eN998c5mPkb+/v4KDgxUXFydJCggIsIujTp06pe5z48aNeuihh5SZmSl/f39lZWXp8OHDeu655/TDDz9o6dKl+vDDDzV69GhZrVb5+fkpKytLhw4d0tixY3Xy5EnNmDGj0L4r4pj885//1KxZs2SxWFSrVi05OdnnlL/88ktJ0u23314pa6u1b99eERERevnll/Xiiy8qPDzcLl6r1aqhQ4cqISFBLVq00OzZswvtJzs7W926ddP27dvl4uIiHx8fJSUlafPmzdq8ebMiIiIKTYCVxPnz53Xrrbfq999/l5ubm7y8vOzKrVarxo8fr7ffftt8zcfHR2lpadq7d6/27t2r+fPn66uvvlJoaGiB/iMjI8117iSpVq1a+vXXX/XCCy9o/fr1uuuuuy4bY6dOnfTBBx/oq6++KtM+AgAAAAAAAACuDowc+z/fffed5s+fLycnJ82cOVPnz59Xamqq0tLSFB8fr6+++krDhw+Xm5ub2rdvr9jYWA0YMECSNGDAAMXGxto92rdvb/Z97bXX6vXXX9eBAweUkZGh8+fPKysrSwcPHtSQIUOUlZWl4cOH68yZM2ab0m5j3rx5euGFF+Tl5aVXXnlFZ8+eVVpamtLT07Vv3z517dpVZ8+e1f3333/ZETrFmT17tmJjY82/V61aZRfT3r17S93n4MGD9cADD+jEiRNKSkpScnKyJk6cKEn69NNPNWPGDD355JN68sknFRsbq6SkJCUkJJjrdr3++uv6/fffC/RbEcfkhx9+0KxZs/TCCy8oLi5OCQkJSktL08iRI80627ZtkyS1a9eu1PteUv/6178UHh6u7OxsDRw4UGlpaWbZtGnTtHXrVrm7u2vp0qUFElM27733nr7//nvNnTtXqampSkxMVExMjB5++GFJ0pQpU7R27doyxRcZGamUlBStXr1aFy5cUGJiok6ePKm6detKkiIiIvT222+rbt26mjNnjvn+ysjI0JYtW3TzzTfryJEjeuihh8xEps3atWvNxFi/fv0UExOjxMREpaSkaM6cOdq9e7f+85//XDbG22+/XZIUFxdXY9bCAwAAAAAAAAAUwoBhGIYxc+ZMQ5LRo0ePErcZPny4IckYPnx4ubZ93333GZKMf//732XaRkpKilGrVi1DkvHll18WWicnJ8e49dZbDUnGm2++Wa54DcMwJBmSjC1bthRZJzo62qwXHR1tV7ZlyxazrHv37obVai3QvmPHjmadxx57rEB5bm6u0bhx40KPXXmPSUREhLntCRMmFLmPWVlZhrOzsyHJWLFiRZH1Lj4Wfn5+RnBwcLGPwpw6dcoICgoyJBkjRowwDMMwvvvuO3P7s2fPLrRd586dzW3PmzevQHleXp7RqVMnQ5LRsmXLIttHREQUKAsNDTUkGc7OzsaPP/5Y5L47Ozsbnp6exk8//VRonZSUFKNBgwaGJGP16tV2ZTfccIMhyejcubORl5dXoO3cuXPN/evcuXOh/dv4+PgYkoyPPvqo2HqXSk5ONiQZ8fHxpWqHyuPkZBhS/n9ROsUdu+zsbGPNmjVGdnZ21QcGAMBVLiQk/zM4JKRgGZ/BVx/ONwAAVz++n6qeLJb873KTk5OLrcfIsf9Tq1YtSdJff/2lvLy8Kt32fffdJyl/9FpZrFy5UklJSbr55pt1zz33FFrHxcVFgwYNkqRqN63cCy+8YLeOmc3F+2IbSXYxZ2dn3X333ZLy1yy7WEUdEycnJ73wwgtFxn7u3DnzeinplJIpKSmKi4sr9lGYkJAQffTRR5KkBQsW6D//+Y8GDx6svLw89e7dW08//XSx223YsKHdiLeL93HSpEmSpEOHDunAgQMl2o+L9ezZs8ipKRcsWKC8vDz17NlTbdq0KbSOr6+v+vTpI8n+XPzyyy/69ddfJUmTJk0qMKWlJD3++OMKCQkpUZxBQUGSZDdKszBZWVlKSUmxewAAAAAAAAAArg6sOfZ/7r77bnl4eGj//v3q2LGj/v73v6tr165q3LhxhfT/888/6/3339d3332n48eP68KFCzIMw67OqVOnytT3jh07JEm//fab6tWrV2S9jIwMSdKJEyfKtJ3KUtR0hMHBwZKkwMBANWnSpNg6iYmJdq9X1DG59tprzakBC/PXX3+ZzwMDA4usd7H58+ebU0KW1v3336+xY8fq3Xff1ZNPPilJuuaaa+zWyitKeHh4oUlISerYsaNcXFyUm5urffv2qXXr1qWKq7g1v2znYtOmTcWeC9vUlhefi3379knKT2R27Nix0HZOTk4KDw/X4sWLLxtnYGCgTpw4YXfeCvPqq6/arXEGAAAAAAAAALh6kBz7P02bNtWHH36o0aNHa9euXdq1a5ek/NFAXbp00eDBg3X//fcXmVwozrvvvqtx48aZaylZLBb5+/vL3d1dUn6CJiUlxW4dqdKwjYLJzMxUZmbmZeunp6eXaTuVxdfXt9DXXVxcii2/uE5OTo7d6xV1TIpLjNn6t7Gdz8r2xhtvaPXq1Tp9+rQk6aOPPlLt2rUv26640VUeHh4KCgpSXFyczp07V+qYijtOtnORlpZWomv84nNhi6V27drFHt8GDRqUKE5PT09Juuw1MXHiRE2YMMH8OyUlRQ0bNizRNgAAAAAAAAAA1RvTKl5kyJAhOnHihObOnasBAwaoYcOG+uuvv7R8+XL16dNHnTt3LvX0ar/99pueeeYZWa1W9evXT99//70yMzOVmJio2NhYxcbGatasWZJUYCRZSdmm9RswYIAMw7js4/jx42XazpWkoo6Js7NzsduxTdMnFRy9VlnWr19vJsYkaevWrVWy3eIUd5xs5+KFF14o0bmIioqqtDgTEhIk2Z+3wri7u8vPz8/uAQAAAAAAAAC4OpAcu0RgYKBGjRqlTz/9VDExMTp69KhefPFFWSwWbd++XZGRkaXqb8WKFcrLy1OLFi306aef6rbbbpObm5tdndjY2HLFbJuqrrpNl+hIVXVMLl5nzJZ4qUwnT57UY489Jkm68cYbJUmvvfaavv3228u2vTihdqmsrCydP39e0uVHy5VWec6FLZb4+HhlZ2cXWa+4fbuY7RyVdH04AAAAAAAAAMDVh+TYZTRt2lSvvvqqBg8eLEn6+uuvzTInp/zDV9yIr5MnT0qS2rRpY9a/1ObNm4tsX5Jt2NZ7+uGHH3T27Nki61Uk2/SSZR3tVtmq6pgEBASYyZ9jx45V2nak/BFYQ4YMUWJiom644Qbt3r1bDz74oKxWqx555BEzuVWUrVu3Fnm+tm/frtzcXElS27ZtKzRu27nYvHlziaa4vJgtltzcXG3fvr3QOlartUSjzVJTUxUfHy9JatGiRaniAAAAAAAAAABcPUiO/Z+srKxiy21rFV2c4LJNtZaUlFRkO39/f0nSgQMHCk1MbNy4sdgv9kuyjX79+qlWrVrKycnRhAkTik1YWa3WYvsqqZLE5UhVeUw6deokSfr+++/L3EdJTJs2Tdu3b5e7u7s+/fRTeXp66sMPP1SDBg105swZjRw5stj2MTExWrhwYYHXrVarpk+fLkm64YYb1Lp16wqN+9FHH5WLi4vi4+MVERFRbN3s7GxduHDB/PvGG280E1mvvPKKuW7fxT766COdOnXqsnHs27dPVqtVLi4uZsIOAAAAAAAAAFDzkBz7P2PHjlX//v21cuVKnTt3znz9woULmjt3rj7++GNJ0n333WeWtWrVSlL+qJvDhw8X2m/Pnj0lSYcOHdJTTz1lTuuWlpam999/Xw8//HCx6x+VZBu1atXSW2+9JUn69NNPdd9992nPnj1mIsFqteq3337T//t//08tW7bUF198cdnjcTm2uBYvXqz09PRy91fRqvKYhIeHS5L27NlT3rCLtGPHDv373/+WJL3++utmAiswMFCLFi2Sk5OT1q1bp3fffbfIPvz9/TVmzBh98MEH5giukydPatCgQdqyZYuk/ARcRWvatKkmT54sKX8KyGHDhungwYNmeW5urn766SdNnTpV1157rX766Se79q+88ookacuWLRo8eLCZCMvMzNTcuXM1duxY1apV67Jx2M7PLbfcIh8fnwrYMwAAAAAAAADAlYjk2P/JycnRZ599pocffljBwcHy9fVVQECAfH19NWbMGGVnZ6tDhw7617/+Zbbp27ev6tSpo8TERLVo0UJ16tRRWFiYwsLCtHv3bknS3XffrYEDB0qS/vOf/ygoKEgBAQHy9/fX6NGj1aJFi2LXMSvJNiRp+PDh+s9//iM3Nzdt3LhRd9xxh7y8vFS7dm15eHjohhtu0LPPPqvDhw+bUyKWx+jRoyVJK1euVK1atdSgQQOFhYWpQ4cO5e67olTVMenbt69cXV11+PBh/fHHH5etP27cONWrV6/Yx7hx48z6SUlJGjx4sPLy8tS7d2/94x//sOuvc+fO5nX53HPP6cCBA4Vu98knn1Tbtm31xBNPyM/PT4GBgWrUqJGWL18uSZo0aZIefPDBsh6GYk2ePFmTJ0+WxWLRJ598otatW9udi5tvvlkRERE6efJkgXPx4IMPmvu3bNkyNWzYUIGBgeZ7s127dhozZsxlY1i7dq0kmVOkAgAAAAAAAABqJpJj/2fy5Ml6++239eCDD6p58+ZycXHRhQsXVLduXXXv3l0fffSRoqKi5O3tbbYJCAjQtm3bNHDgQIWEhCg5OVknTpzQiRMn7NZWWrx4sd566y3deOONcnd3V15enlq3bq1XX31VO3bsKHYUS0m3IeUnrI4cOaJnn31Wbdq0kbu7u5KSkuTj46O2bdvqH//4h77++msNGjSo3Mdr6NCh+uSTT9ShQwd5eXnp7NmzOnHiRImmt6tKVXFM6tatayaVFi9efNn6KSkpiouLK/aRnJxs1n/88ccVExOjevXq6aOPPiq0z4iICLVv316ZmZkaOHCgMjIyCtRxc3PTN998o+nTp6tZs2bKysqSv7+/7r77bq1fv94cmVYZLBaLpk6dql9++UVPPvmkWrRoIWdnZyUnJysgIEDt27fXc889p507dxY65eG0adP0xRdfqGvXrvLz81NWVpZatGihGTNm6JtvvpGbm1ux2z927Jh27dolT09PDRs2rLJ2EwAAAAAAAABwBbAYxS3GBKBEtm3bps6dO6tp06b6448/KmR0XkUJDw/X1q1bFRERUewoxavZ1KlTFRERoZEjRxaZYCxOSkqK/P39FR8fX+w0qKg6zs6S1So5OUl5eY6O5spS3LHLycnRhg0b1KtXL7m6ujomQAAArlINGkinT0shIdKlvynkM/jqw/kGAODqx/dT1ZOTU4oMw1/Jycny8/Mrul4VxgRctTp16qQePXrozz//1GeffebocHCRtLQ0vfPOO3J3d1dERISjwwEAAAAAAAAAOBjJMaCCvPHGG3JyctLUqVNltVodHQ7+z7vvvqv4+Hg9/fTTCg0NdXQ4AAAAAAAAAAAHc3F0AMDVonXr1po3b56OHz+us2fPKiQkxNEhQZK3t7ciIyP1zDPPODoUAAAAAAAAAEA1QHKsBqtXr16p28TGxlZCJFePESNGODoEXGLs2LGODgEAAAAAAAAAUI2QHKvB4uLiHB0CqkBUVJSjQwAAAAAAAAAAoNogOVaDGYbh6BAAAAAAAAAAAACqFMkxAMAVp3dvKTlZ8vd3dCRXHo4dAACOMWGClJIi+fk5OhJUBc43AABXP75jqZ569pQ2brx8PZJjAIArzuefOzqCKxfHDgAAx5gwwdERoCpxvgEAuPrxHUv19OmnJUtYOlV+KAAAAAAAAAAAAED1QHIMAAAAAAAAAAAANQbJMQAAAAAAAAAAANQYJMcAAAAAAAAAAABQY5AcAwAAAAAAAAAAQI1BcgwAAAAAAAAAAAA1BskxAAAAAAAAAAAA1BgkxwAAAAAAAAAAAFBjkBwDAAAAAAAAAABAjeHi6AAAAEDZzJolpaRIfn7ShAkVVxdlU5ZjXNbzUp7zeSW2vdLb8/4DKgbvJQAAUNm43wAqXnneVw88ICUnS/7+0uefl6zNu++WrJ7FMAyjdOEAQM2SkpIif39/xcfHKygoyNHhAKYGDaTTp6WQEOnUqfLXzcnJ0YYNG9SrVy+5urpWfMBXudKcj/K0KU+7K7Xtld6+vNsGkO9qfi/xGVyzcL4BoPq6mu83AEcpz/vK2VmyWiUnJykvr2Rt6tdP0dmz/kpOTpafn1+R9ZhWEQAAAAAAAAAAADUGyTEAAAAAAAAAAADUGCTHAAAAAAAAAAAAUGOQHAMAAAAAAAAAAECNQXKsmhsxYoQsFotGjBhR4X1v375d9913n+rUqSNnZ2dZLBb16dOnwreD6iEsLEwWi0ULFixwyPaHDh0qi8WiZcuWVel2e/bsKYvFom+//bZKtwsAAAAAAAAAqJ5IjtVQu3fvVteuXbVhwwadP39egYGBCg4OVkBAgCQpMjJSkZGROn78uGMDdYDjx4+b+4+KsW/fPi1ZskStWrVS//79C5TbEneVkQS2ncdnn31WVqu1wvsHAAAAAAAAAFxZXBwdABzjrbfeUm5uru666y6tXbtWgYGBduVTpkyRJIWHhyssLMwBETrO8ePHzf0nQVYx/vnPf8owDEVERMhisVTptu+44w7dc889+uqrr7Ro0SINGzasSrcPAAAAAAAAAKheGDlWQx04cECSNHDgwAKJMaAi7d69W9u2bVO9evX04IMPOiSG0aNHS5Jee+01h2wfAAAAAAAAAFB9kByrodLT0yVJPj4+Do4EV7u5c+dKyk/EOjs7OySGXr16KTAwUIcOHdKOHTscEgMAAAAAAAAAoHogOXaFO378uJ555hm1bNlSPj4+8vLyUvPmzTVu3DjFxMQUqG+xWGSxWMy1xEaOHGm+Zlvz6eJp77p06WJXXt4pFsPDw2WxWBQZGans7GzNmDFDN954o7y9vRUQEKDu3btr48aNl+1n1apV6t27t4KDg+Xm5qbg4GD17t1bq1evLrKNbd9GjBghwzD04YcfqkOHDgoKCpLFYtGCBQsUFhamLl26mG0u3veKWBPL1k9UVJRiY2M1duxYNW7cWB4eHqpXr56GDBmiw4cPF9tHZmam3nrrLbVv314BAQHy8PBQaGiohg0bpp9++qnMsb3yyiuyWCxydnY2E1o2VqtVixcvVq9evcxjXqdOHfXo0UNLly6VYRiF9pmSkqLly5dLkgYPHlymuC4+b5K0YsUKhYeHKzAwUF5eXrrppps0e/bsYtcTc3NzU9++fSVJ//3vf8sUBwAAAAAAAADg6sCaY1ewxYsX6+9//7uysrIkSe7u7nJyctKRI0d05MgRzZ8/XytWrFCPHj3MNsHBwZKkv/76S1arVX5+fvL09DTLnZ2dFRwcrLi4OElSQECA3NzczPI6depUSOzZ2dnq1q2btm/fLhcXF/n4+CgpKUmbN2/W5s2bFRERUeh6X9nZ2Ro2bJiWLVsmSXJycpK/v7/i4+O1fv16rV+/XoMGDdLChQvl6upa6LYNw1C/fv20cuVKs72Tk5O5fykpKUpMTJT0v+Nl4+/vXyH7Hx0drUGDBik2Nlaenp5ydXVVXFyclixZolWrVmn16tXq2bNngXanT59Wz549dfDgQUmSq6urvLy8FBMTo08++USLFy/WW2+9pX/84x8ljsVqterpp5/WnDlz5OHhoSVLlthNf5iQkKAHH3xQ27ZtM1+zHfOvv/5aX3/9tT799FN99tlndteKJG3dulUZGRny9vbWLbfcUtrDVMDYsWM1Z84cOTk5yc/PTxkZGfr555/1zDPP6Mcff9TChQuLbNupUyd98MEH+uqrr8odBwAAAAAAAADgysXIsSvU119/rWHDhikvL0/PP/+8oqOjlZGRobS0NB0+fFj9+vVTamqq+vXrZzeCLDY2VrGxsWrYsKEkafbs2eZrsbGxmjdvnmJjY836q1atsivfu3dvhcT/3nvv6fvvv9fcuXOVmpqqxMRExcTE6OGHH5YkTZkyRWvXri3Q7qWXXtKyZctksVg0efJknT9/XgkJCYqPj9dLL70kSVq6dKkmT55c5LZXrVqlzz//XG+88YYSExOVkJCg5ORk3XPPPdq7d69WrVpV4HjZHrNnz66Q/R8/frzc3Ny0adMmpaWlKTU1VXv27FHr1q2VmZmpAQMG6NSpU3Zt8vLy1LdvXx08eFD+/v5atGiRLly4oKSkJP3555/q3bu3rFarxo0bV6LRd5KUlZWl/v37a86cOapVq5Y2bdpklxjLy8vTQw89pG3btummm27SunXrlJaWpqSkJF24cEELFy5U3bp1tXbtWr3wwgsF+rcl1G655ZZyT6m4du1affDBB5o1a5YSExOVmJio+Ph4PfbYY5Kkjz/+WN9++22R7W+//XZJUlxc3GVH5wEAAAAAAAAArl4kx65AVqtVTz31lKxWq+bMmaOZM2cqLCzMnLKvWbNmWr58ue6//36lpKRo1qxZjg65gOTkZL333nsaNWqUPDw8JEkNGzbUsmXL1KlTJ0kyk102p0+fNpNTL774oqZOnapatWpJyh/h9sorr2jChAmSpFmzZuns2bOFbvvChQuaNWuW/vnPf8rPz09S/tpr11xzTYXvZ1EyMjL05Zdfqnv37uY0lu3atdPmzZsVGBiolJQUvfrqq3ZtVqxYoT179kiSli9friFDhpgjtZo0aaLVq1fr9ttvl2EYev755y8bgy0huHLlSoWEhGj79u3q2LGjXZ0lS5Zo69atat68uaKiotS7d295eXlJkry9vTVs2DBt2LBBFotF7733ns6dO2fX3hZvmzZtynCU7CUmJur999/X+PHjzfMWFBSkDz74QLfeequk/MRoUa677jpzjb1du3aVOx4AAAAAAAAAwJWJ5NgVaNu2bfrjjz9Uu3Ztc9RMYYYNGyZJ1XIauYYNG2rkyJEFXndyctKkSZMkSYcOHdKBAwfMspUrVyo3N1ceHh568cUXC+130qRJcnd3V05OjlasWFFonYCAAI0aNaoC9qLs+vXrpxYtWhR4vW7duho9erQkmVNH2tj+vvPOO+2myrRxcXFRRESEJOngwYN2x+5SZ86cUceOHc3E186dO9WqVasC9ebNmydJGjNmTJFTSt56661q2bKlsrOztWXLlgLbkSpmOs6GDRtq+PDhhZbdf//9kqRffvml2D6CgoLs4ipKVlaWUlJS7B4AAAAAAAAAgKsDybEr0I4dOyTlj/ypX7++6tWrV+jj8ccflySdOHHCkeEWKjw83BwxdamOHTvKxSV/Obx9+/aZr9ue33bbbebIoUsFBASobdu2Bdpe7LbbbiuwNlZV69q162XLzp8/r+joaPN12/5069atyLZdunQxpy8sav8PHz6s9u3b68CBA7rzzju1Y8cONWrUqEC9vLw87d69W5IUGRlZ5HVWr149HTlyRFLBa+2vv/6SJAUGBhYZc0nddtttRV4z9evXl5S/PlpxbHHY4irKq6++Kn9/f/Nhm4YUAAAAAAAAAHDlc3F0ACg926iXnJwcxcXFXbZ+RkZGZYdUaiEhIUWWeXh4KCgoSHFxcXbT9NmeF9dWkho0aGBX/1J169YtbbgVrrh9uLjs3Llzaty4sfn8cm09PDxUu3btAsfuYjNnzpQkBQcHa9OmTeZUg5dKSEhQVlaWpPwpDUsiPT3d7u/MzExJkru7e4naF8fX17fIMlsyNScnp9g+PD097eIqysSJE80pOiUpJSWFBBkAAAAAAAAAXCUYOXYFysvLkyRzfamSPPA/tpFVNVW/fv3k5uamuLg4jRkzxryeLnXx6xs3bizRdRYZGWnXh20aw5Im1yqbbWSZLa6iuLu7y8/Pz+4BAAAAAAAAALg6kBy7AtWrV09S9ZwusaROnz5dZFlWVpbOnz8vyX6Ul+35qVOniu3bVl4dRogVpbj9v7istPufmZlZ6LG7WK9evbR69Wq5u7tr0aJFeuSRRwpNkAUFBZkjssp6rdnWGrvcdIdVxRZHRayBBgAAAAAAAAC4MpEcuwLdddddkqTY2Ngi15UqL9vaTpU16mzr1q1F9r19+3bl5uZKkrl+2MXP9+3bp+Tk5ELbJiUl2a1NVhZOTv97W1TW/m/ZsuWyZYGBgeaUitL/9v+bb74psm1UVJR57Irb/169eunzzz+Xh4eHli5dqsGDB5vtbFxdXdWuXTtJ0rp16y6zR4W74YYbJEnHjh0rU/uKlJqaqvj4eElSixYtHBwNAAAAAAAAAMBRSI5dgbp06aJrr71WkjR+/HhlZ2cXW78so3Zs08glJSWVum1JxMTEaOHChQVet1qtmj59uqT8xErr1q3Nsr59+8rFxUWZmZnmulmXmj59urKysuTq6qq+ffuWKbaLp9CrrP3/7LPPdOTIkQKvx8fH6/3335ckDRgwwK5s4MCBkqRdu3Zp06ZNBdrm5uZq6tSpkqRWrVqpVatWxcZwzz33aO3atfL09NTy5cs1cODAAmt2PfHEE5KkDRs2aMOGDcX2V9h11qlTJ0nS999/X2zbqrBv3z5ZrVa5uLiYCWYAAAAAAAAAQM1DcuwK5OLiorlz58rFxUXfffedOnXqpG+++cYusXHs2DHNnTtXt912m957771Sb8OWWFm8eLHS09MrLHYbf39/jRkzRh988IEyMzMlSSdPntSgQYPMkVPTpk2zaxMSEqJx48ZJkmbMmKGIiAgzeZWUlKTJkyfr9ddflyRNmDBB11xzTZliu/766+Xm5iZJ+vDDDytl9JiHh4d69uypzZs3m/3v3btX3bp1U3x8vHx9ffXiiy/atenbt69uv/12SVL//v21ZMkS85xHR0erb9++2rVrlyTptddeK1Ec3bt31xdffCEvLy+tXLlS/fv3t0u2Dh06VN26dZNhGHrwwQc1bdo0nTlzxixPS0vTli1b9NRTT6lJkyYF+g8PD5eUPy1jXFxcCY9O5dizZ48k6ZZbbpGPj49DYwEAAAAAAAAAOA7JsSvU3Xffrc8++0y+vr7as2ePunXrJm9vb9WuXVseHh5q2rSpxowZo3379plTJJbG6NGjJUkrV65UrVq11KBBA4WFhalDhw4VEv+TTz6ptm3b6oknnpCfn58CAwPVqFEjLV++XJI0adIkPfjggwXaTZ8+Xf3795dhGJo6daqCgoIUGBiooKAgM5k2aNAg/fvf/y5zbF5eXnrkkUckSc8//7x8fHwUGhqqsLAwPfvss2Xu92JvvvmmMjMz1b17d/n4+MjX11ft2rXTzz//LHd3dy1dulSNGjWya+Ps7KyVK1eqZcuWSk5O1pAhQ+Tj46OAgAA1adJEa9eulZOTk2bPnq177723xLF07dpVGzZskLe3t9asWaO+ffuaCTLbNnv37q3s7GxNnjxZISEh8vf3V0BAgHx9fdW1a1e99957SktLK9B3ixYt1KZNG0nS2rVry3HEys+2/cGDBzs0DgAAAAAAAACAY5Ecu4L16dNHR48eVUREhNq1aycfHx8lJSXJ3d1dbdq00WOPPabVq1frueeeK3XfQ4cO1SeffKIOHTrIy8tLZ8+e1YkTJ3Tq1KkKid3NzU3ffPONpk+frmbNmikrK0v+/v66++67tX79+iKTW25ublq2bJlWrFihe++9V0FBQUpNTVVQUJDuvfderVq1SkuWLJGrq2u54pszZ44iIyPNaR1jYmJ04sQJc82q8mrcuLH279+vp556SnXq1FF2drbq1q2rQYMGaf/+/brvvvsKbRcSEqJ9+/Zp1qxZuuOOO+Tp6an09HQ1bNhQjzzyiH744Qc9/fTTpY6nc+fO+vLLL+Xr66svvvhCffr0UVZWlqT8aSbXrVunDRs2aMCAAWrUqJGysrKUnp6ukJAQ9ejRQ6+++mqh00RK0qhRoyTlj0J0lGPHjmnXrl3y9PTUsGHDHBYHAAAAAAAAAMDxLEZlzBkHFCE8PFxbt25VRESEIiMjHR1OlbON4tuyZYs55eDVLjU1VQ0aNFBqaqqio6MVGhpa5TFMnTpVERERGjlypD766KNSt09JSZG/v7/i4+MVFBRUCRECZdOggXT6tBQSIl3utwslqZuTk6MNGzaoV69e5f6RQU1UmvNRnjblaXeltr3S25d32wDyXc3vJT6DaxbONwBUX1fz/QbgKOV5Xzk7S1ar5OQk5eWVrE39+ik6e9ZfycnJ8vPzK7IeI8cAVCrb+mmGYWjmzJlVvv20tDS98847cnd3V0RERJVvHwAAAAAAAABQvZAcA1Dpxo8fr4YNG2revHk6efJklW773XffVXx8vJ5++mmHjFoDAAAAAAAAAFQvLo4OAMDVz8PDQx9//LGioqIUExOjhg0bVtm2vb29FRkZqWeeeabKtgkAAAAAAAAAqL5IjqHUHnroIe3cubNUbVatWqX27dtXUkRVq169eqVuExsbWwmRXFnCw8Mdss7a2LFjq3ybAAAAAAAAAIDqi+QYSi0hIUFxcXGlapOdnS1JioqKqoSIqlZp9/1ihmFUYCQAAAAAAAAAAKC0SI6h1K6GBFd5kOACAAAAAAAAAODKRXIMAIAr1IQJUkqK5OdXsXVRNmU5xmU9L+U5n1di2yu9Pe8/oGLwXgIAAJWN+w2g4pXnfdW7t5ScLPn7l7zN2LHSv/51+XoWg2EwAFCslJQU+fv7Kz4+XkFBQY4OB6g0OTk52rBhg3r16iVXV1dHhwMAQI3BZ3DNwvkGAACoPLbvcpOTk+VXTEbOqQpjAgAAAAAAAAAAAByK5BgAAAAAAAAAAABqDNYcA4ASyszMVEZGhqPDACpNbm6uJCkuLk7Ozs4OjgYAgJojLy9PUv79pu3zGFcv7rkAAAAqT2pqaonqkRwDgBI6ceKEEhMTHR0GUGmSk5MlSfPnz5fVanVwNAAA1By+vr5q2rSpoqOj5eTEBC9XO+65AAAAKk9mZmaJ6nHXDQAAJP3vV+sAAKBqubjwu9WahHsuAAAAxyM5BgAAAAAAAAAAgBqD5BgAAAAAAAAAAABqDJJjAAAAAAAAAAAAqDFIjgEAAAAAAAAAAKDGIDkGAAAAAAAAAACAGoPkGAAAAAAAAAAAAGoMkmMAAAAAAAAAAACoMUiOAQAAAAAAAAAAoMYgOQYAAAAAAAAAAIAaw8XRAQAAYLFY5OPjIz8/P3l5ecnV1VWSlJWVpZSUFJ0/f15Wq9XBUQJA9XPHHXeoUaNGqlu3rry9veXi4qILFy7oxIkT2rlzp86dO+foEAGgSM7Ozrruuuvk4uKirKws/fHHH44OCQBQiOHDhyssLKzI8kWLFunPP/+suoAAoAKQHAMAOFytWrUUEhIiScrMzFRqaqqcnJzk5eWl4OBg+fv7Kzo6Wnl5eQ6OFACql44dO8rV1VVxcXFmIqxOnTpq06aNWrVqpWXLlvFlM4Bqq169enJ2dnZ0GACAEvr111+VnZ1d4PXU1FQHRAMA5UNyDADgcIZhKCEhQefPn1dWVpb5uouLi0JDQ+Xp6alrrrlGp06dcmCUAFD9fPrppzpz5kyBHw+0bdtW9913n+6//37NmjVLhmE4KEIAKJy3t7cCAgKUkJCgwMBAR4cDACiBTZs2KTk52dFhAECFYM0xAIDDJSUl6cyZM3aJMUnKzc3VmTNnJEl+fn6yWCyOCA8Aqq2TJ08WOqp23759SkhIkI+Pj+rUqeOAyACgaBaLRfXr11dmZqbi4+MdHQ4AAABqIJJjAIBqLTMzU5Lk5OTEtDsAUAq2pBlT0gKoburWrSs3NzedOXOGka0AAABwCKZVBABUa25ubpIkq9XKF7wAUEI33nijateurfPnzyshIcHR4QCAyd3dXbVr11ZSUpLS09Pl6urq6JAAACV0yy23yNPTU4Zh6Pz58zp8+LBSUlIcHRYAlAnJMQBAtRYUFCRJunDhAr8sBoAitG/fXnXq1JGrq6vq1KmjunXrKiUlRStXruT/nQCqlZCQEOXl5Sk2NtbRoQAASqlTp052f/fo0UPbtm3Ttm3bHBQRAJQdyTEAQLXl4+OjgIAAWa1WnTt3ztHhAEC11bRpUzVp0sT8OykpSatXr9bZs2cdGBUA2AsKCpKXl5dOnTrFjAAAcAU5ceKEfvzxR508eVIXLlyQn5+fbrjhBnXq1EldunRRVlaW9uzZ4+gwAaBUSI4BAKolNzc3NWjQQBaLRbGxsebaYwCAgj755BNJ+dOVBQcHq1OnTho5cqS+/fZbbd++3cHRAYDk6uqqunXrKi0tTUlJSY4OBwBQClFRUXZ/JyQk6LvvvtOZM2f0yCOPqHPnzvrhhx+Um5vrmAABoAycHB0AAACXcnFxUVhYmFxcXBQfH6/z5887OiQAuCJkZWUpJiZGS5Ys0ZkzZ9SlSxfVr1/f0WEBgK655hpZLBadPn3a0aEAACrIsWPHdPr0aXl6eiokJMTR4QBAqTByDABQrTg7OyssLExubm5KTExkPQoAKAOr1apDhw6pfv36uv7663XmzBlHhwSghvPz81NeXl6BL08tFouk/JFljRs3liSdPHmS0QcAcIVISEhQSEiIfH19HR0KAJQKyTEAQLXh5OSk0NBQeXh4KDk5mV8WA0A5pKenS5K8vb0dHAkA5HN2di7y/0lOTk5mmS1hBgCo/jw8PCRJ2dnZDo4EAEqH5BgAoFqwWCxq1KiRvLy8lJqaqlOnTjk6JAC4ooWGhkrK/zUvADjawYMHC33d1dVVzZo1U1ZWlv74448qjgoAUB5eXl7mPefZs2cdHA0AlA5rjgEAqoUGDRrIx8dHaWlpiomJkWEYjg4JAKq1hg0bqmnTpgVed3JyUrt27XTjjTcqJydHhw4dckB0AAAAuBo0aNBAzZo1KzCq19/fXwMGDJCbm5sOHz6s1NRUB0UIAGXDyDEAgMMFBQXJ399fkpSbm6v69esXWi82NlZ5eXlVGRoAVFuBgYHq06eP0tLSdPbsWaWnp8vLy0vBwcHy9fVVTk6O1qxZo5SUFEeHCgAAgCtUUFCQ+vTpo9TUVJ09e1aZmZmqVauWrrnmGrm6uurcuXNat26do8MEgFIjOQYAcDhnZ2fzuS1JVphz586RHAOA/3PixAlt375doaGhCg4OlpeXl/Ly8pSUlKRff/1Ve/bsUWJioqPDBAAAwBXs9OnT2rt3r0JCQhQSEiIPDw/l5OQoNjZWv/76q/bt26fc3FxHhwkApUZyDADgcOfOndO5c+ccHQYAXFGSkpL07bffOjoMACiXnJycItcjAwA4Xnx8vDZs2ODoMACgwrHmGAAAAAAAAAAAAGoMkmMAAAAAAAAAAACoMUiOAQAAAAAAAAAAoMYgOQYAAAAAAAAAAIAag+QYAAAAAAAAAAAAagySYwAAAAAAAAAAAKgxSI4BAAAAAAAAAACgxiA5BgAAAAAAAAAAgBqD5BgAAAAAAAAAAABqDJJjAAAAAAAAAAAAqDFIjgEAAAAAAAAAAKDGIDkGAAAAAAAAAACAGoPkGAAAAAAAAAAAAGoMkmMAAAAAAAAAAACoMVwcHQAAVHeGYUiS0tLS5OTEbwpw9UpLS1N6eroyMzNltVodHQ4AADVGZmam0tPTdeHCBe43awDuuQAAACpPVlaWpP99p1sUkmMAcBnnz5+XJPXo0cPBkQAAAAAAAAAALic1NVX+/v5FlpMcA4DLCAwMlCTFxMQU+z9U4EqXkpKihg0b6uTJk/Lz83N0OAAA1Bh8BtcsnG8AAIDKYxiGUlNTVb9+/WLrkRwDgMuwTW3j7+/PP15RI/j5+XGtAwDgAHwG1yycbwAAgMpRkgEOTGYOAAAAAAAAAACAGoPkGAAAAAAAAAAAAGoMkmMAcBnu7u6KiIiQu7u7o0MBKhXXOgAAjsFncM3C+QYAAHA8i2EYhqODAAAAAAAAAAAAAKoCI8cAAAAAAAAAAABQY5AcAwAAAAAAAAAAQI1BcgwAAAAAAAAAAAA1BskxAA5lsVhK/OjSpUuB9pGRkSVqe/To0TLFd/z4cS1atEjjx49X586d5efnZ/Z5/PjxYtsahqFdu3Zp0qRJCg8PV3BwsFxdXeXv769bb71VEydO1OnTpy8bQ0pKil555RW1bdtW/v7+8vLy0vXXX69x48bp1KlTZdovVL3yXOvHjx8vVfuRI0eWOc4///xTo0aNUuPGjeXh4aE6deronnvu0cqVK4ttFx4eftm4GjRoUKpYjh07Jm9vb7P9ggULyrxfAABI0tdff63+/fsrNDRUHh4e8vT0VJMmTTRkyBBt3bq10Dbp6enauHGjpk2bpoceekihoaHmZ1NkZGSFxbZ27Vr97W9/U7169eTm5qZrrrlGDzzwgDZu3HjZtnl5efrkk0/UvXt31a5dW+7u7mrQoIEGDRqkXbt2XbZ9VlaW3nnnHXXo0EEBAQHy8PBQWFiYHnvsMf36668VsXsOUZbz/eOPP2rKlCm6//771bx5cwUFBcnV1VVBQUG666679MorryghIaHMMZ0+fVrvvfee+vXrp2uvvVaenp7y9PRU48aNNWjQIH377bdFtq2oe8Lc3FzNmzdP3bt3V926deXq6ipfX1+1bt1a48aN059//lnm/QMAALhiGADgQMHBwcU+AgMDDUmGJOO5554r0D4iIsKQZLi6uhbbT3R0dJniGz58uLn9Sx+X63PatGl29S0Wi1GrVi3DYrGYr/n5+Rmff/55kX389ttvRlhYmFnf3d3dqFWrll37b7/9tkz7hqpVnms9Jibmsu39/f3N9nPmzClTjOvXrze8vLzsri8nJyfz75EjRxpWq7XQtp07dzYkGd7e3kXGePPNN5c4FqvVanTp0sXuPTR//vwy7RcAAFar1Rg1apTd54qnp6fh6elp99r48eMLtN2yZUuR94MRERHlji03N9cYMmSI3T1jQECA4ezsbL72j3/8o8j2qampRrdu3cy6zs7ORkBAgPkZ7uTkZLz22mtFtj979qxx8803m+1dXV2NgIAAu/vPxYsXl3s/q1J5zvdTTz1lV8fDw8Pw9fW1e6127drGzp07Sx1XTEyM3b8FJBleXl4F4nr00UeN3NzcQtuX954wISHBuP322+225+vra7i4uNid8+XLl5d6/wAAAK4kJMcAVGtvvPGG+Y+0w4cPFyi3Jcc6d+5cKdsfOXKk0bRpU6N///7GjBkzjFdffbXEybGIiAjDz8/PGD16tPHtt98a6enphmEYRnp6urFy5UqjUaNGhiTDzc3N+PXXXwu0T09PN5o0aWJIMoKCgoyVK1caOTk5hmEYxh9//GHce++9ZgLj5MmTFb7vqFqXu9YvZ+zYseYXP4mJiaVuf+zYMcPb29uQZNx1113GkSNHDMPI/8Lt5ZdfNmObOXNmoe1tybGK+JLQMAxj7ty5hiSjffv2JMcAAOX20UcfmZ8nDz/8sPH777+bZYcPHzYeeOABs3zVqlV2bbds2WIEBAQYd999t/Hcc88ZS5cuNerVq1dhn3svvviiue1x48YZ8fHxhmEYxoULF4w33njDTFrMnj270PYDBw40k2DTp083UlJSDMPIT4I8//zzZt+F/SDLarWan7Wenp7GBx98YGRkZBiGYRhnzpwxhg0bZibM9u3bV+59rSrlOd8LFy40Xn/9dWPXrl1291SpqanGwoULjTp16hiSjLp16xpJSUmliis6OtqQZNx9993GwoULjdOnTxuGYRh5eXnGoUOH7OKaNGlSmfb9cveEtnMqyYiMjDSvt9zcXCMqKspo2bKl2f7UqVNligEAAOBKQHIMQLXWokULQ5LRoUOHQssrOzl26S82L/7l8OWSY/v37zcSEhKKLD927Jj5K9G///3vBcrfeecdc1tr1qwpUJ6RkWGEhoaavy7Fle1y13pxMjIyzF94Dx06tEzbHzp0qCHJqFevXqFfpDzxxBNmMraw67oik2MxMTGGn5+fERgYaOzZs4fkGACg3MLDww1JxrXXXmv+2Ohi2dnZ5o+SBg4caFdW2Age2z1YeT/3/vrrL8Pd3d2QZPTp06fQOi+88IIhyahVq5aRnJxsV/bLL7+Yn5PPPPNMoe0HDBhg7nteXp5d2bp168z2b731VqHt77jjDkOS0bVr1zLsoWOU53xfzldffWUes0WLFpWqbVJSkvHDDz8UWW61Wo2ePXsakgwfHx8zUVlSl7snzMzMNK+34cOHF9rH0aNHzf2bO3duqbYPAABwJWHNMQDV1s6dO/Xbb79Jkh577DGHxODs7FzmtjfddJMCAgKKLG/cuLG5ttTevXsLlK9fv16SdN111+mBBx4oUO7h4aGnn35akrRs2TJlZGSUOVY4Vnmv9VWrVikxMbHM7dPS0sw1xcaMGaNatWoVqDNx4kRJ+WvgrVmzptTbKI1Ro0YpJSVFb7zxhurWrVup2wIA1Axnz56VJLVp00YuLi4Fyl1dXXXTTTdJki5cuGBXVp77wcv55ptvlJWVJUl67rnnCq3z/PPPS5KSkpIKfAZv2LDBfH659kePHtV3331nV2a73/T29taTTz5ZaHtbv99++61iYmKK251qozzn+3LuuOMO83lp1//19/fXLbfcUmS5xWLRo48+asZluz8sqcvdEyYmJprXW9u2bQvto2nTpgoMDDRjAAAAuFqRHANQbc2bN09S/j8i+/Xr5+BoKoeHh4ek/EXUL3XixAlJ0g033FBk+xYtWkjKT27s2LGjEiJEVSjvtW5rf91116lz586lbv/dd9+ZydV777230DphYWHm9bZp06ZSb6OkPv74Y23cuFFdu3YtchF5AABKq0mTJpKkn3/+Wbm5uQXKc3Jy9NNPP0kqOmlQGWz3e1LR93yBgYHmj0Uu/Qy2tff391f9+vULbd+8eXNZLJZi21977bVydXUttL3t87+w9tVVZZ7v7du3m8+bNm1a9iCLYPv3gVT4vxGKc7l7wuDgYHl7e0uS9u3bV2gff/75pxISEiRV7XsBAACgqpEcA1AtXbhwQcuXL5ckDRo0SF5eXsXWP3TokFq1aiUvLy/5+PioWbNmevzxx7V///6qCLdMcnJyzIRW69ati6xX3D+KLy47cOBAxQWHKlPaa/1Sx44d05YtWyRJf//738sUw8GDB83nrVq1KrKerezQoUNF1lm8eLHCwsLk7u6uWrVqqW3btvrXv/6lM2fOXDaOuLg4jR8/Xh4eHnr//fdLsQcAABRvzJgxkvJHTw0aNEhHjx41y44cOaL+/fvr2LFjatq0qcaPH++QGEtyz1fU/Z7Vai2yrdVqlWEYxba/2u43K/p8Z2Vl6fjx43r33Xf1yCOPSMpPKP7tb3+r8NijoqIkSW5ubrr++utL3K4k94QWi0WjRo2SJC1cuFBTpkzR+fPnJeWf561bt5ozVvTr169MP7oCAAC4UpAcA1Atffrpp+Y0HiWZJi4+Pl6//fabPD09lZWVpd9//10ffvihbr31Vk2aNKmywy2TWbNmKS4uTpL0+OOPFygPCwuTlJ+IsH2hcamLkxolST6g+inttX6pjz76SIZhyMXFRcOHDy9TDLZrJyAgQJ6enkXWCwkJsatfmKNHj+rMmTPy9vZWSkqKfvjhB02fPl0tWrTQ6tWri43jqaeeUkJCgl5++WVde+21ZdgTAAAK97e//U1vvvmm3NzctGLFCl133XXy8vKSl5eXmjdvrqioKI0ZM0bff/+9/Pz8qiwu2/2eZH9fd7HY2FgzgXHpZ7CtfWpqqt0otIsVd79oa3/06FFlZmaWun11VVHn28PDQxaLRR4eHmrcuLH+8Y9/KDExUXfddZe++eYbubu7V2jc0dHRmjt3riRpwIABpboWS3pP+Morr2jYsGGSpMjISNWuXVv+/v7y8PBQeHi4MjIyNHPmTC1durR8OwMAAFDNkRwDUC19+OGHkvLXCbj11luLrHfdddfptdde05EjR5SZmanz588rLS1NX331lW699VYZhqFXXnlF/+///b+qCr1EvvvuO7388suS8kcLde3atUCdXr16Scr/R/KSJUsKlF+4cEFvv/22+XdKSkolRYvKVNJrvTB5eXlasGCBJOm+++5TvXr1yhRDamqqJF121Jqt3Fb/YuHh4Zo/f75Onz6trKwsJSQkKDExUfPnz1fdunWVkpKiAQMGaPfu3YX2/dlnn2nlypW68cYbi1wzBQCA8njmmWe0atUqc4rCjIwMc1rh7OxsXbhwQcnJyVUaU9euXc0EyyuvvFJonYtfv/R+7+LpkKdNm1bq9rb7zczMzELvl/Py8jRjxowi21dnFXG+69WrZzcVoSR16dJFb731lho1alSh8WZkZKhfv35KT09X7dq17Y775ZTmntDDw0MffvihXn/9dXMqzZSUFHP6yfT0dCUkJJhrkwEAAFy1DACoZg4ePGhIMiQZ77zzTpn7ycjIMG677TZDkuHj42MkJSWVO7YtW7aYsUVHR5epj99++82oU6eOIclo2bKlkZKSUmi9CxcuGI0bNzYkGd7e3sZ//vMfIz4+3sjMzDR27Nhh3HnnnYYkw8XFxZBkjB49uhx7Bkco77X+xRdfmO3XrVtX5jgef/xxQ5IREhJSbL2XXnrJkGS4ubmVqv+jR48atWrVMiQZHTt2LFAeHx9v1K1b13BycjL27NljVxYdHW3u4/z580u1XQAAbNLS0oz+/fsbkoy2bdsamzZtMv766y/jr7/+MjZt2mS0bdvWkGTUrl3b+Pnnny/bX2hoqCHJiIiIKHdszz33nPlZN2TIEOO3334zsrOzjRMnThgvvPCCYbFYDFdXV0OS4eHhUaB9v379zPbjx483oqOjjezsbOPIkSPGyJEjDUlm++bNm9u1tVqtxu23327eU77yyivGmTNnjOzsbOOnn34y7rvvPrv2PXv2LPf+VoWKPt+GYRhxcXHGG2+8YQQEBBgWi8WYPHlyhcWbk5Nj9OnTxzzWX331Vanal+ae8NixY0br1q0NScbAgQONffv2GampqUZMTIyxYMEC45prrjEkGbfeequRmppant0CAACo1kiOAah2nnnmGfMf/4mJieXq6+uvvzb/obhy5cpyx1be5NiRI0fMf3A2a9bMOHv2bLH1Dx06ZH75cunDYrEYr732mlG7dm1DkjFx4sQy7hUcpbzXuu1LlJCQECM3N7fMcUyYMMGQZAQEBBRbzxZvUFBQqbfxr3/9y7xu4+Pj7cqGDBliSDLGjRtXoB3JMQBARXjyySfN+6+MjIwC5enp6cb1119vSDI6dOhw2f4qMjmWk5NjDBw4sND7PUnGHXfcYYwePdqQZFxzzTUF2qekpBhdu3Ytsv0DDzxg3jPceeedBdqfPn3aaNOmTZHtn3rqKTOZNGjQoHLvb1Wo6PN9sT179hhOTk7l/nGSTW5urpnIc3FxMT777LNS91HSe8Lc3FwzMTZs2LBC6xw6dMhwd3c3JBmTJk0qdSwAAABXCqZVBFCtZGdna9GiRZKkvn37qlatWuXq78477zSfHzt2rFx9ldfvv/+uLl266OzZs7r++uu1ZcuWy06Dd8MNN+jAgQN6/fXXFR4ersaNG+u6665T//79tXXrVo0bN05JSUmSVKoFu+F45b3W4+Li9MUXX0iSRowYIWdn5zLHUr9+fUlSYmKiOd1QYU6fPm1XvzRs70XDMBQdHW2+vnXrVi1evFjXXHONXnzxRV24cMHukZ6ebtbNysrShQsXlJaWVurtAwBqrtTUVP33v/+VlL++pYeHR4E6np6eGjt2rKT86a/PnTtXZfG5uLho6dKlWr9+vQYMGKDmzZsrNDRUHTt21Ntvv61t27aZn4eF3e/5+vrq66+/1pIlS/TAAw/ouuuuU1hYmLp166aFCxdq9erVSkhIKLJ9/fr1tWfPHs2dO1f33HOPmjZtqqZNm+pvf/ub1q5dq3fffdc8HlfC/WZln+927dqpQ4cOkmRup6zy8vI0dOhQLV++XM7Ozlq0aJEefvjhUvVRmnvCTZs26cCBA5KkZ599ttA6N9xwg+677z5J0sqVK0sVCwAAwJXExdEBAMDFPv/8c8XHx0uSHnvsMQdHU3FsibEzZ87ouuuu05YtW3TNNdeUqK2vr6+effbZQv8Bu3fvXnN9gPbt21dozKhc5b3WP/74Y+Xm5spisejRRx8tVyytWrUynx88eFC33XZbofUOHjwoSWrZsmW5tncxW6Ls7Nmzl31PjB49WqNHj5a/v7+ZFAYA4HJ+//13836padOmRda77rrrzOfR0dHmWlVVpVevXuYaYJfat2+fpKLv95ycnDRo0CANGjSoQFlubq5+/vnnYtu7u7tr1KhRGjVqVIGyc+fOKSYmptj21UlVnO+QkBBJ0tGjR8sYZX5ibMiQIVq2bJmZGBswYECp+ynNPeGvv/5qPi/Jsbn4B00AAABXG0aOAahWPvzwQ0nStddeq86dO5e7v927d5vPGzduXO7+yuL3339XeHi4zpw5o+uvv15RUVFlGnlTGNvIo9tvv/2K+CUv/qe81/q8efMk5S8K36RJk3LF0qFDB3l6ekqSvvzyy0LrnDhxQr/99pskqUePHqXehu29aLFYFBYWVrZAAQAoAyen//2z98SJE0XWi4uLM5/7+vpWakylsX//fjOpMWzYsFK3X7dunZKTk+Xp6al+/fqVuv3ixYsl5SeEunbtWur2Va0qzrdtRoqyXid5eXkaPHiwXWJs4MCBZeqrNPeEpT021el9AAAAUNFIjgGoNmJiYrR582ZJ0qOPPiqLxVJsfcMwii3PysrSv/71L0mSt7e37r777ooJtBRsibGLp1KsqMTY7t279Z///EeSNGnSpArpE1WjtNf6pb777jsdOXJEUsWMsPT29lbfvn0lSf/5z3+UnJxcoM7MmTMl5X9J0qdPH7uyy70Xo6OjNWfOHEn5vzivXbu2WTZixAgZ+WugFvq4+BfL8+fPl2EYjBoDAJRK8+bNzR+BfPjhh+aooovl5eWZU+QFBASoWbNmVRpjUdLT0zVmzBhJ0sMPP6zmzZuXqv1ff/1lzj7w1FNPKSAgoFTt//zzT/373/+WJE2cOFEuLtV/8pnynO+8vLzL3td88803+v777yVJ4eHhpY7PNmJs+fLlcnFx0eLFi8ucGCvtPeEtt9xiPrf9O+JSsbGxWr16tST7KeoBAACuNiTHAFQbH330kaxWq1xcXDRixIjL1t+2bZu6deumTz75RKdOnTJfz8nJ0TfffKOOHTtqz549kqSXX3650DWdwsPDix3JkpOTo/j4ePNxcdIgMTHRriwnJ8eu7dGjR801xpo1a1amEWOzZ8/WkiVL7H7Zeu7cOf2///f/1L17d+Xk5OiJJ55Q7969S9UvHKu01/qlbKPOAgMD9dBDD5WozYgRI2SxWIpMxE2dOlXe3t46e/as/va3v+mPP/6QJKWlpWnq1KmaO3eupPxE7KVfrM2YMUPDhw/Xxo0b7RJXKSkp+vjjj9W+fXslJibK1dXVTLIBAFBVPD09zcTBjz/+qL/97W86cOCArFarrFarfvnlF/Xq1Us7d+6UJD3zzDMF1m269L7ParVKyk9eXfz6hQsXCmw/MjLS/Aw+fvx4gfI9e/Zo+vTp+vXXX5WdnS0pf23SL7/8Uh06dNCePXvUsGFD84cml1q/fr1mz56tP//8U3l5eWZcn332me68804dO3ZMbdq00dSpUwtt//HHH+uDDz7QqVOnzP1KTk7WvHnzzM/wnj176sknn7zcoa4WynO+T548qZtvvlnvv/++jh07ZpcoO3nypGbMmKEHHnhAhmEoMDBQ48ePL7D94s63bY2xZcuWycXFRUuWLCnTVIo2pb0n7Nixo9q0aSNJevfddzVhwgSdOXNGkpSZmakvv/xSnTp1UnJysiwWiyZMmFDm2AAAAKo9AwCqgby8PKNRo0aGJOP+++8vUZstW7YYksyHp6enUbt2bcPV1dV8zcnJyXjppZeK7KNz586GJCM0NLRE2yjusWXLFru2I0eONMv8/PyM4ODgYh+FeeCBB8w+PDw8DD8/P/Nvi8Vi/OMf/zDy8vJKdLxQPZTlWr9YcnKy4eXlZUgynn766RK3Gz58uHntFGX9+vVm35IMf39/w9nZ2fx75MiRhtVqLdAuIiLC7r3g6+trBAYGGk5OTnZ9rVy5stT7Gx0dbfYxf/78UrcHAMAwDCM9Pd3o2bOn3eeVu7u74e7ubvfaoEGDjNzc3ALtQ0NDS3Q/OHz48AJtL/6cjI6OLlC+evVqu/u7wMBAu8/fVq1aFdrO5s033zTrOjs7GwEBAXafwZ06dTLOnz9fZPtx48aZdV1dXY1atWoZFovFfO3hhx82MjIySnKYq42ynu+L7zskGW5ubkbt2rUNb29vu9cbN25s/Pjjj4Vuu7jzvXXrVrtjfbl/H3z66adF7mNZ7wmPHj1qNGnSxG5/fHx87K4ZZ2dnY/bs2SXuEwAA4EpU/edEAFAjbN682Vzou6TTxLVu3VpvvPGGdu3apQMHDig+Pl5JSUny8vLSDTfcoI4dO+qJJ55Q69atKzP0Itl+eSvlj6BJSUkpdR+jRo2Sn5+fvv/+e509e1bZ2f+/vTsPquo84zj+Q5Z7QRZR44KKItCoqLhEpTGKNirGxKUVYketBhcS46gVR8ampq5/VO2kTWqtpqWxHU00xiSmi7FuRAmGVKNhGU20ghE1bnCByyIIp39kOAW5F0ExJvD9zNyZ63m357z3OgM+Pu8pU/fu3RUZGam4uDhFREQ0Zsj4FtzLd726HTt2qLi4+J7H12XcuHFKS0vTunXrtH//fl25ckX+/v7q37+/nn/+efPoxTvFxMTIMAwdO3ZM586d082bN1VQUCB/f3/17NlTY8aMUVxcnNq3b9+o8QIAUF+enp7617/+pd27d2vbtm06ceKErl27JhcXF3Xp0kWDBw9WbGysnn766W89toEDB2rp0qU6cuSIsrOzlZubqzZt2qhv37569tlnFRsbW+dxhqNHj9aCBQuUnJysixcvqqCgQO3bt9egQYM0bdo0xcTE1HmE85QpU1RcXKxjx47p0qVLKi4uVufOnfX4448rNjZWUVFRD+K2H6h7/bwDAgK0a9cuJSUlKTU1VZcvX9aNGzfk6uqqwMBAhYeHa+LEiZo6dap5dGNDVP/9oLy8vMbpEI6UlJQ4bbvXnwmDg4OVlpamP/3pT9qzZ48yMjJks9lktVoVGBioyMhIvfjii+rbt2+95wQAAPg+cjGMuxyoDQAAAAAAAAAAADQRPHMMAAAAAAAAAAAAzQbJMQAAAAAAAAAAADQbJMcAAAAAAAAAAADQbJAcAwAAAAAAAAAAQLNBcgwAAAAAAAAAAADNBskxAAAAAAAAAAAANBskxwAAAAAAAAAAANBskBwDAAAAAAAAAABAs0FyDAAAAAAAAAAAAM0GyTEAAAAAAAAAAAA0GyTHAAAAAAAAAAAA0GyQHAMAAAAAPBAuLi5ycXFRUlLSww6lUSUlJZn3hu+vh/X9LCsrU3BwsCwWiy5evHjf833yySdycXHR8OHDGyE6AACA5oHkGAAAAACglqrEwb28tm7d+rDDB76zfv/73+v8+fOaM2eOunTpct/zRUREKCoqSkePHtV7773XCBECAAA0fW4POwAAAAAAwHdP+/btHV632+0qKiqqs4+np6ck6dFHH5UkeXl5PYAIHx4vLy/z3oCGyM3N1dq1a2WxWPSLX/yi0eZduXKl9u3bp2XLlmn8+PFyc+OfewAAAOrCT0sAAAAAgFq+/vprh9dXrlypVatW1dmnypkzZxo9ru+CwYMHN9l7w4P1+uuvy2azKTo6Wp07d260eSMiIhQeHq7PP/9c77//vqKjoxttbgAAgKaIYxUBAAAAAAAeMMMw9Prrr0uSpk+f3ujzV825ZcuWRp8bAACgqSE5BgAAAAB4IKqeQZaUlFTjenZ2ttmWnZ2tCxcuaO7cuQoMDJTValVwcLCWL19uHt8oSRkZGZo+fbq6dOkiq9Wq0NBQrV27VuXl5XXGkJ2drZ///OcKCwuTt7e3vLy81KNHDy1atEhfffXVPd1XUlKSGf+dtm7dKhcXF3Xr1k2SdOLECT377LPq2LGjLBaLunfvrvj4eOXl5d3T2pKUmpqqadOmKSgoSFarVS1btlTXrl0VGRmpNWvWKCcnx+G4srIybdq0SSNHjlTbtm3l4eGhDh06aOLEidq7d2+91o2NjVVISIi8vLzk6+urXr16adasWdq3b5/DMfn5+Vq9erUGDBggX19feXp6KjQ0VPPmzdP58+edrlX9u1NYWKjly5erR48e8vT0VJs2bfTMM88oNTW1znjz8vK0dOlSBQcHy2q1qmPHjoqJidGJEyfueq85OTlavHixwsLC1LJlS1ksFgUEBGjgwIFavHix/vOf/9x1jjsdOHBAWVlZatWqlcaNG+e035kzZxQXF6cf/OAH8vLyktVqVZcuXRQREaGXXnrJadXi1KlTJUkHDx6sc28BAAAgyQAAAAAAoJ5WrFhhSDLq8+tkVb/Dhw/XuJ6VlWW27d6922jVqpUhyfD19TVcXV3NtmHDhhllZWXGP/7xD8PLy8uQZPj5+RkuLi5mnylTpjhdf9u2bYbFYjH7WiwWw9PT0/yzj4+PsW/fvgbvweHDh53uwRtvvGFIMrp27Wps377dcHd3N+Nu0aKFOS4sLMwoLCxs8Npbt26tcf8Wi8Xw9fU1/yzJeOONN2qNy87ONsLCwsw+Li4uhp+fX41xL7zwgsM1b9++bSxcuLBG35YtWxr+/v5mLH5+frXGZWRkGJ07dzbHWK1Ww8fHp0bs77zzjsM1q/q8+eabRkhIiDm+6nsgyfDw8HD6+WVlZRldu3at0bdqnzw8PIw9e/Y4/X6eOnXK8Pf3N9tdXV1r3KskY+bMmXV9TA7Fx8cbkoyoqCinff7973/X+M66u7ubfz+qXitWrHA6Pjg42JBkbNq0qcHxAQAANCdUjgEAAAAAHprZs2dr4MCByszMVH5+vgoLC/Xaa6/J1dVVR48e1erVqzVt2jSNHz9e2dnZstlsKigo0C9/+UtJ0s6dO3XgwIFa8+7fv18zZsxQRUWFEhISlJWVpZKSEhUVFenMmTOKiYlRYWGhYmJi7rmCrC7Xr1/XrFmzNHPmTH311Vey2WwqLCzUxo0b5e7urszMTK1fv75BcxYXF2vBggUyDEPTp0/XuXPnVFpaqvz8fNntdh0/flxLly5Vu3btaowrKirS2LFjlZmZqREjRigpKUklJSWy2Wyy2Wx65ZVX5O3trc2bN+vVV1+tte5LL72k1157TZI0a9YsffHFF7Lb7crNzVVeXp7ef/99jR07tsaYwsJCjR8/Xjk5OerUqZP++c9/qqioSAUFBTp16pQiIiJ069YtTZs2TZ9//rnTe54/f748PDx06NAhFRUVyW6369NPP9Wjjz6qsrIyxcXFqbKyssaYiooKxcTE6MKFC/L399fbb7+toqIi5efnKzMzU0OGDNHMmTOdrrlkyRLl5eVpwIABOnbsmMrLy5Wbm6vS0lJ9+eWX+s1vfqOwsLC7fl53OnLkiKRvnlnnzLx583Tr1i2NGTNG6enpKisrU15enkpKSpSRkaFVq1aZVYmODBkyRJL00UcfNTg+AACAZuVhZ+cAAAAAAN8fjV05FhYWZpSWltYa+7Of/czsM3r0aKOysrJWn2HDhhmSjNmzZ9e4XlFRYYSGhhqSjC1btjiNb8KECYYkY9GiRXe9l+rqUzmmOqqLqiqIQkJCGrRuamqqWbVVXl5e73GrV682JBmRkZFGWVmZwz7vvvuuIclo27Ztjbm/+OILs+ItISGh3mv++te/Niuf0tPTa7UXFBQY3bp1MyQZTz/9dK32qj185JFHjKtXr9ZqT0tLM/skJyfXaNu5c6fZduDAgVpji4qKzAorR9/PqurClJSUet/v3dy6dcusinRWLXf16lUzpsuXL9/TOhs2bDAkGYGBgfcTLgAAQJNH5RgAAAAA4KFZvHixLBZLretRUVHm+2XLljl8vldVn7S0tBrXjxw5orNnz6pt27aaM2eO07VnzJghSU6fl3W/li9f7vD6xIkTJUnnzp1TcXFxvedr1aqVpG+eHXbz5s16j0tMTJQkxcfHy93d3WGfSZMmydfXVzdu3KjxTK6//vWvqqysVJs2bbRq1ap6r7lz505JUnR0tHr37l2r3cfHRwkJCZKkvXv3Kj8/3+E8cXFxtSrhJKlPnz4KCgqSVPvz37FjhyRp6NChevLJJ2uN9fLyMtd2pGqfr1y54rRPQ127dk0VFRWSpEceecRhHx8fH7Vo0eK+1m7btu19jQcAAGguSI4BAAAAAB4aZ0fMtW/f3nw/aNCgOvvk5eXVuP7xxx9LkvLz8xUQEKAOHTo4fM2dO1eSdOHChfu+jzu1bt1aISEhDtsCAgLM93fGXpfg4GD16NFD5eXlGjJkiNatW6dTp06ZSRdHLl26ZN7f7Nmzne5Fx44dZbfbJdXcj5SUFEnS6NGjZbVa6xVnWVmZmbAaNWqU036jR4+WJFVWVuqzzz5z2KfqmEBHqvYxNze3xvXjx49Lkn70ox85HVtX2zPPPCNJmjlzppYsWaKPPvqoQUlMR65fv26+b926tcM+np6eZjJv7Nix+tWvfqXU1FSVlZXVe52qucvLy2Wz2e49YAAAgCaO5BgAAAAA4KHx8fFxeN3Nza3efcrLy2tcv3z5snn96tWrTl9ViamSkpL7vo87OYu5etyOYq+Lq6urduzYoaCgIF24cEHLli1T//795evrq9GjR+uPf/xjrSRO1V5I0o0bN+rcj6pnd1Wf4+uvv5Ykde3atd5x5ubmmgm7Tp06Oe3XuXNn8/21a9cc9qnPPt65h1Vz1XftO61fv14jR46U3W7XK6+8ohEjRsjX11ePPfaYVqxYoUuXLjkd60xpaan53lGlZJU///nPCg8P1/Xr17VmzRpFRETIx8dHTzzxhDZs2FArEXgnT09Ph2sCAACgJpJjAAAAAIAmpSoxM2TIEBmGUa/X90V4eLjOnDmj3bt3Ky4uTr1791ZJSYkOHDigF198UT169FB6errZv3pV2enTp+u1F88995w5xtFxlk1dq1atdOjQIR09elQJCQkaOnSo3NzcdOLECa1evVqhoaF66623GjRnmzZtzPd1VQsGBgbqs88+04cffqiFCxdq4MCBqqys1Mcff6yEhASFhITo0KFDTsdXT55VXxMAAAA1kRwDAAAAADQpHTp0kPRgjkv8LvDw8NBPfvITbdmyRenp6bp+/bo2b96s1q1b6+LFi5o5c6bZt2ovpHvbj3vZy9atW8vV1VWSlJOT47Rf9TZHzxW7V1Vz1VXhVZ/qryeeeELr1q1TcnKybDab9uzZoz59+qikpESzZs3S1atX6x1T9eeM3a36q0WLFoqKitKrr76q48ePKzc3V9u3b1dgYKDy8vI0depUp0ctVs3t5+fn9PlyAAAAIDkGAAAAAGhihg4dKumbIwGrnj/VlLVp00bPP/+81q1bJ0k6efKkbt68KUnq1q2bebzg3//+9wbP/fjjj0uS9u/fX+9j+jw8PNS3b19J0sGDB532O3DggKRvkkEDBgxocGzOPPbYY5Kkw4cPO+1TV/WVI1arVRMmTNC7774r6ZsjC5OTk+s93t/f30w0nj9/vkFr+/j4aOrUqUpMTJQkXb16tUZ1YHVZWVmSpJ49ezZoDQAAgOaG5BgAAAAAoEkZOXKkQkJCJEmLFy92WmVT5W6VPN8Vt27dqrO9+vOmWrT4/6/7c+fOlSQlJibq5MmTdc5x514899xzcnV11c2bN7VixYp6x/rTn/5UkvTOO+8oIyOjVrvdbtf69eslSePGjZOfn1+9576bKVOmSJKSk5OVlJRUq72kpEQbNmxwOPb27dvms9cccbbH9TF8+HBJ0qeffuqw/W7f0/qsnZqaKkmKjIxsUGwAAADNDckxAAAAAECT4ubmps2bN8vNzU3JyckaPny4Dh48qPLycrPP+fPntXnzZg0aNEibNm16iNHW344dOzR06FBt2bKlRvVRRUWF9u3bp2XLlkmSfvjDH8rf399sX7Jkifr06aPS0lKNHDlSGzduNCvLJMlms2nv3r2aMWOGhg0bVmPNkJAQLV26VJK0fv16zZkzR2fPnjXbCwoKtHPnTv34xz+uMW7evHkKCgpSeXm5nnrqKe3du9dMOqWnpysqKkpZWVmyWCxau3ZtI+3QNyZPnmxWok2ePFm7d+82n712+vRpPfXUU7p+/brDsTk5OQoNDdXatWt18uRJ3b5922xLS0vT9OnTJUktW7ZscAJqxIgRkv6fwLpTSkqK+vbtq9/+9rc6ffq0uV+GYSglJUXz5s2TJHXu3NmszKuuoqJCJ06ckERyDAAA4G7cHnYAAAAAAAA0tieffFK7du3SjBkzlJqaqlGjRsnd3V2+vr6y2+01qrAmTZr08AJtgKokSUpKiiTJYrHI29tbeXl5ZiIlICBAf/nLX2qM8/b21ocffqjJkyfrk08+0YIFC7Rw4UL5+fmpsrJSBQUFZt+qirvq1q5dq8LCQv3hD39QYmKiEhMT5e3tLXd3d9lsNhmGUavyy8fHRx988IHGjh2rnJwcjRs3TlarVR4eHuZ6FotF27ZtU3h4eKPuk5ubm3bt2qURI0bo4sWLio6OlsVikdVqVX5+vjw8PLRr1y5NnDjR4fjz58/r5Zdf1ssvvyxXV1f5+fnJbreblV0eHh7aunWrWrdu3aC4Jk+erEWLFunMmTM6e/asQkNDa/VJT09XfHy84uPjze9rfn6+maTz9fXVm2++aT7TrbqDBw+qqKhI7dq106hRoxoUGwAAQHND5RgAAAAAoEmaNGmSzp07pxUrVmjw4MHy9vaWzWaTxWJReHi45syZo/fee8+sjPqumzBhgv72t78pNjZW4eHh8vPzU35+vnx8fDR48GCtWbNGmZmZ6tGjR62xAQEBSk5O1ltvvaUJEyaoY8eOKi4uVllZmbp166bx48frd7/7nY4cOVJrrKurqzZu3Kjk5GRNmzZNgYGBKi8vl2EY6tWrl2bPnq3du3fXGte7d29lZmZq5cqV6tevn9zc3HTr1i0FBwfrhRdeUGZmpqKjox/IXnXv3l2nTp1SfHy8goKCZBiGrFaroqOjlZKSogkTJjgc16lTJ33wwQdavHixIiIi1LFjR9ntdrm5ualXr16aP3++MjIy7inudu3amRV227dvr9U+aNAgvf3225o3b54GDhyotm3bqqCgQFarVf369VNCQoJOnz5dq7qvStWcsbGxcnd3b3B8AAAAzYmLYRjGww4CAAAAAACgqTty5IgiIyMVHByss2fPysXFpVHmLSoqMhOeX375pbp3794o8wIAADRVVI4BAAAAAAB8C4YPH64xY8bov//9r3bt2tVo827cuFGFhYWaM2cOiTEAAIB6oHIMAAAAAADgW5Kenq5+/fqpZ8+eSktLU4sW9/f/lu12u4KCglRaWqpz586pffv2jRQpAABA0+X2sAMAAAAAAABoLvr06aPExERlZ2frypUr6tSp033Nl52drfnz56t///4kxgAAAOqJyjEAAAAAAAAAAAA0GzxzDAAAAAAAAAAAAM0GyTEAAAAAAAAAAAA0GyTHAAAAAAAAAAAA0GyQHAMAAAAAAAAAAECzQXIMAAAAAAAAAAAAzQbJMQAAAAAAAAAAADQbJMcAAAAAAAAAAADQbJAcAwAAAAAAAAAAQLNBcgwAAAAAAAAAAADNxv8AOK5ADl+4ovsAAAAASUVORK5CYII=",
+ "text/plain": [
+ "