From c619dc8d9ab28298251964053a927906e9957f51 Mon Sep 17 00:00:00 2001 From: UShivani3 <56012908+UShivani3@users.noreply.github.com> Date: Fri, 22 Nov 2024 14:27:28 -0500 Subject: [PATCH] Adds baselines for rag24.test with umbrela qrel (#2630) * Adds baselines for rag24.test with umbrela qrel * Adds generated doc file and minor fixes * Typo fix --- .../regressions-rag24-doc-segmented-test.md | 101 ++++++++++++++++++ .../rag24-doc-segmented-test.template | 52 +++++++++ .../regression/rag24-doc-segmented-test.yaml | 101 ++++++++++++++++++ 3 files changed, 254 insertions(+) create mode 100644 docs/regressions/regressions-rag24-doc-segmented-test.md create mode 100644 src/main/resources/docgen/templates/rag24-doc-segmented-test.template create mode 100644 src/main/resources/regression/rag24-doc-segmented-test.yaml diff --git a/docs/regressions/regressions-rag24-doc-segmented-test.md b/docs/regressions/regressions-rag24-doc-segmented-test.md new file mode 100644 index 0000000000..378f87232f --- /dev/null +++ b/docs/regressions/regressions-rag24-doc-segmented-test.md @@ -0,0 +1,101 @@ +# Anserini Regressions: TREC 2024 RAG Track Test Topics + +**Models**: various bag-of-words approaches on segmented documents + +This page describes regression experiments for document ranking _on the segmented version_ of the MS MARCO V2.1 document corpus using the test queries, which is integrated into Anserini's regression testing framework. +This corpus was derived from the MS MARCO V2 _segmented_ document corpus and prepared for the TREC 2024 RAG Track. + +Here, we cover bag-of-words baselines where each _segment_ in the MS MARCO V2.1 segmented document corpus is treated as a unit of indexing. + +The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/rag24-doc-segmented-test.yaml). +Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/rag24-doc-segmented-test.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. + +From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end: + +``` +python src/main/python/run_regression.py --index --verify --search --regression rag24-doc-segmented-test +``` + +## Indexing + +Typical indexing command: + +``` +bin/run.sh io.anserini.index.IndexCollection \ + -threads 24 \ + -collection MsMarcoV2DocCollection \ + -input /path/to/msmarco-v2.1-doc-segmented \ + -generator DefaultLuceneDocumentGenerator \ + -index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \ + -storeRaw \ + >& logs/log.msmarco-v2.1-doc-segmented & +``` + +The setting of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus. + +For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md). + +## Retrieval + +Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule. +These evaluation resources are from the original V2 corpus, but have been "projected" over to the V2.1 corpus. + +After indexing has completed, you should be able to perform retrieval as follows: + +``` +bin/run.sh io.anserini.search.SearchCollection \ + -index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \ + -topics tools/topics-and-qrels/topics.rag24.test.txt \ + -topicReader TsvInt \ + -output runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.rag24.test.txt \ + -bm25 & + +bin/run.sh io.anserini.search.SearchCollection \ + -index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \ + -topics tools/topics-and-qrels/topics.rag24.test.txt \ + -topicReader TsvInt \ + -output runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.rag24.test.txt \ + -bm25 -rm3 -collection MsMarcoV2DocCollection & + +bin/run.sh io.anserini.search.SearchCollection \ + -index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \ + -topics tools/topics-and-qrels/topics.rag24.test.txt \ + -topicReader TsvInt \ + -output runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.rag24.test.txt \ + -bm25 -rocchio -collection MsMarcoV2DocCollection & +``` + +Evaluation can be performed using `trec_eval`: + +``` +bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.rag24.test.txt +bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.rag24.test.txt +bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.rag24.test.txt +bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.rag24.test.txt + +bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.rag24.test.txt +bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.rag24.test.txt +bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.rag24.test.txt +bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.rag24.test.txt + +bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.rag24.test.txt +bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.rag24.test.txt +bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.rag24.test.txt +bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.rag24.test-umbrela-all.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.rag24.test.txt +``` + +## Effectiveness + +With the above commands, you should be able to reproduce the following results: + +| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| +|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------| +| RAG 24: Test queries | 0.0861 | 0.0873 | 0.0929 | +| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| +| RAG 24: Test queries | 0.7010 | 0.6687 | 0.6791 | +| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**| +| RAG 24: Test queries | 0.3290 | 0.3256 | 0.3307 | +| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| +| RAG 24: Test queries | 0.1395 | 0.1318 | 0.1384 | +| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**| +| RAG 24: Test queries | 0.3467 | 0.3521 | 0.3667 | diff --git a/src/main/resources/docgen/templates/rag24-doc-segmented-test.template b/src/main/resources/docgen/templates/rag24-doc-segmented-test.template new file mode 100644 index 0000000000..3adb582398 --- /dev/null +++ b/src/main/resources/docgen/templates/rag24-doc-segmented-test.template @@ -0,0 +1,52 @@ +# Anserini Regressions: TREC 2024 RAG Track Test Topics + +**Models**: various bag-of-words approaches on segmented documents + +This page describes regression experiments for document ranking _on the segmented version_ of the MS MARCO V2.1 document corpus using the test queries, which is integrated into Anserini's regression testing framework. +This corpus was derived from the MS MARCO V2 _segmented_ document corpus and prepared for the TREC 2024 RAG Track. + +Here, we cover bag-of-words baselines where each _segment_ in the MS MARCO V2.1 segmented document corpus is treated as a unit of indexing. + +The exact configurations for these regressions are stored in [this YAML file](${yaml}). +Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. + +From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end: + +``` +python src/main/python/run_regression.py --index --verify --search --regression ${test_name} +``` + +## Indexing + +Typical indexing command: + +``` +${index_cmds} +``` + +The setting of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus. + +For additional details, see explanation of [common indexing options](${root_path}/docs/common-indexing-options.md). + +## Retrieval + +Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule. +These evaluation resources are from the original V2 corpus, but have been "projected" over to the V2.1 corpus. + +After indexing has completed, you should be able to perform retrieval as follows: + +``` +${ranking_cmds} +``` + +Evaluation can be performed using `trec_eval`: + +``` +${eval_cmds} +``` + +## Effectiveness + +With the above commands, you should be able to reproduce the following results: + +${effectiveness} diff --git a/src/main/resources/regression/rag24-doc-segmented-test.yaml b/src/main/resources/regression/rag24-doc-segmented-test.yaml new file mode 100644 index 0000000000..2b90cfa291 --- /dev/null +++ b/src/main/resources/regression/rag24-doc-segmented-test.yaml @@ -0,0 +1,101 @@ +--- +corpus: msmarco-v2.1-doc-segmented +corpus_path: collections/msmarco/msmarco_v2.1_doc_segmented/ + +index_path: indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ +collection_class: MsMarcoV2DocCollection +generator_class: DefaultLuceneDocumentGenerator +index_threads: 24 +index_options: -storeRaw +index_stats: + documents: 113520750 + documents (non-empty): 113520750 + total terms: 22707699649 + +metrics: + - metric: MAP@100 + command: bin/trec_eval + params: -c -M 100 -m map + separator: "\t" + parse_index: 2 + metric_precision: 4 + can_combine: no + - metric: MRR@100 + command: bin/trec_eval + params: -c -M 100 -m recip_rank + separator: "\t" + parse_index: 2 + metric_precision: 4 + can_combine: true + - metric: nDCG@10 + command: bin/trec_eval + params: -c -m ndcg_cut.10 + separator: "\t" + parse_index: 2 + metric_precision: 4 + can_combine: true + - metric: R@100 + command: bin/trec_eval + params: -c -m recall.100 + separator: "\t" + parse_index: 2 + metric_precision: 4 + can_combine: false + - metric: R@1000 + command: bin/trec_eval + params: -c -m recall.1000 + separator: "\t" + parse_index: 2 + metric_precision: 4 + can_combine: false + +topic_reader: TsvInt +topics: + - name: "RAG 24: Test queries" + id: rag24.test + path: topics.rag24.test.txt + qrel: qrels.rag24.test-umbrela-all.txt + +models: + - name: bm25-default + display: BM25 (default) + params: -bm25 + results: + MAP@100: + - 0.0861 + MRR@100: + - 0.7010 + nDCG@10: + - 0.3290 + R@100: + - 0.1395 + R@1000: + - 0.3467 + - name: bm25-default+rm3 + display: +RM3 + params: -bm25 -rm3 -collection MsMarcoV2DocCollection + results: + MAP@100: + - 0.0873 + MRR@100: + - 0.6687 + nDCG@10: + - 0.3256 + R@100: + - 0.1318 + R@1000: + - 0.3521 + - name: bm25-default+rocchio + display: +Rocchio + params: -bm25 -rocchio -collection MsMarcoV2DocCollection + results: + MAP@100: + - 0.0929 + MRR@100: + - 0.6791 + nDCG@10: + - 0.3307 + R@100: + - 0.1384 + R@1000: + - 0.3667