-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathoptimization_old_3-19-19.py
741 lines (619 loc) · 24.2 KB
/
optimization_old_3-19-19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 18 11:17:47 2018
@author: ckielasjensen
"""
import numpy as np
import numba
import bezier as bez
class BezOptimization:
"""Bezier curve optimization class.
Use this along with the Bezier class to optimize trajectories.
The model dict is an important parameter used to help the reshapeVector
produce the desired output. The dict parameters that are supported are:
type - String representing the type of model. Currently, the
supported models are: 'dubins', 'uav', and 'general'
initPoints - Initial points of the vehicles
finalPoints - Final points of the vehicles
initSpeeds - Initial speeds of the vehicles
finalSpeeds - Final speeds of the vehicles
initAngs - Initial angles (in radians) of the vehicles that follow
the ROS standards REP103 where 0 rad is East
finalAngs - Final angles of the vehicles (in radians)
tf - Final time when the vehicles reach their final points.
:param nVeh: Number of vehicles
:type nVeh: int
:param dimension: Dimension of the vehicles. Currently only works for 2D
:type dimension: int
:param degree: Degree of the Bezier curves being used
:type degree: int
:param minimizeGoal: Element to be minimized. This string can be one of a
few different values:
vel - Minimize the sum of velocities of the vehicle trajectories
accel - Minimize the sum of accelerations of the vehicle
trajectories
jerk - Minimize the sum of jerks of the vehicle trajectories
euclidean - Minimize the sum of the Euclidean distance between the
control points of each trajectory.
:type minimizeGoal: str
:param maxSep: Maximum separation between vehicles at each point in time.
:type maxSep: float
:param minSpeed: Minimum speed of the vehicles
:type minSpeed: float
:param maxSpeed: Maximum speed of the vehicles
:type maxSpeed: float
:param maxAngRate: Maximum angular rate of the vehicles
:type maxAngRate: float
:param modelType: Model type being optimized. The models currently
supported are: 'dubins', 'uav', and 'general
:type modelType: str
:param maxSep: Maximum separation between vehicles.
:type maxSep: float
startPoints (np.array) - Initial positions of the vehicles in the
following format (for lower dimensions, omit the y and/or z values):
[ [v0x, v0y, v0z],
[v1x, v1y, v1z],
...
[vNx, vNy, vNz] ]
endPoints (np.array) - Final positions of the vehicles using the same
format found in startPoints.
minGoal (str) - Can be one of the following strings:
'pos' - Minimize distance traveled
'vel' - Minimize the velocity
'accel' - Minimize the acceleration
'jerk' - Minimize the jerk
"""
def __init__(self,
numVeh=1,
dimension=1,
degree=5,
minimizeGoal='Euclidean',
maxSep=0.9,
minSpeed=0,
maxSpeed=1e6,
maxAngRate=1e6,
modelType=None,
initPoints=None,
finalPoints=None,
initSpeeds=None,
finalSpeeds=None,
initAngs=None,
finalAngs=None,
tf=1.0):
self.nVeh = numVeh
self.dim = dimension
self.deg = degree
self.minGoal = minimizeGoal
self.maxSep = maxSep
self.minSpeed = minSpeed
self.maxSpeed = maxSpeed
self.maxAngRate = maxAngRate
self.model = {'type': modelType,
'initPoints': np.atleast_2d(initPoints),
'finalPoints': np.atleast_2d(finalPoints),
'initSpeeds': initSpeeds,
'finalSpeeds': finalSpeeds,
'initAngs': initAngs,
'finalAngs': finalAngs,
'tf': tf}
self.separationConstraints = lambda x: _separationConstraints(
x,
self.nVeh,
self.dim,
self.model,
self.maxSep)
self.minSpeedConstraints = lambda x: _minSpeedConstraints(
x,
self.nVeh,
self.dim,
self.model,
self.minSpeed)
self.maxSpeedConstraints = lambda x: _maxSpeedConstraints(
x,
self.nVeh,
self.dim,
self.model,
self.maxSpeed)
self.maxAngularRateConstraints = lambda x: _maxAngularRateConstraints(
x,
self.nVeh,
self.dim,
self.model,
self.maxAngRate)
self.objectiveFunction = lambda x: _objectiveFunction(
x,
self.nVeh,
self.dim,
self.model,
minGoal=self.minGoal)
def generateGuess(self, random=False, seed=None):
"""
Generates an initial guess for the optimizer. Set random to true to
add random noise to the initial guess. You can provide a seed for
deterministic results.
"""
if self.dim != 2:
msg = 'Optimization is currently built only for 2 dimensions.'
raise NotImplementedError(msg)
xGuess = []
for i in range(self.nVeh):
for j in range(self.dim):
line = np.linspace(
# self.startPoints[i, j],
# self.endPoints[i, j], self.deg+1)
self.model['initPoints'][i, j],
self.model['finalPoints'][i, j], self.deg+1)
if random:
np.random.seed(seed)
line = line + np.random.random(len(line))
xGuess.append(line[1:-1])
return np.concatenate(xGuess)
def _separationConstraints(x, nVeh, dim, model, maxSep):
"""Calculate the separation between vehicles.
The maximum separation is found by degree elevation.
NOTE: This only works for 2 dimensions.
:param x: Optimization vector
:type x: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D
:type dim: int
:param model: See model description in BezOptimization class description
:type model: dict
:param maxSep: Maximum separation between vehicles.
:type maxSep: float
"""
y = reshapeVector(x, nVeh, dim, model)
if model['type'].lower() == 'obstacles' or \
model['type'].lower() == 'timeopt':
nVeh += 2
obs = np.empty((4, y.shape[1]))
obs[0, :] = 3
obs[1, :] = 2
obs[2, :] = 6
obs[3, :] = 7
y = np.vstack((y, obs))
if nVeh > 1:
if model['type'].lower() == 'timeopt':
tf = x[-1]
else:
tf = model['tf']
distVeh = []
vehList = []
for i in range(nVeh):
vehList.append(bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf))
for i in range(nVeh):
for j in range(i, nVeh):
if j > i:
dv = vehList[i] - vehList[j]
distVeh.append(dv.normSquare().elev(10))
distances = np.concatenate([i.cpts.squeeze() for i in distVeh])
return (distances - maxSep**2).squeeze()
else:
return None
#def _separationConstraints(x, nVeh, dim, model, maxSep):
# """Calculate the separation between vehicles.
#
# The maximum separation is found by degree elevation.
#
# NOTE: This only works for 2 dimensions.
#
# :param x: Optimization vector
# :type x: numpy.ndarray
# :param nVeh: Number of vehicles
# :type nVeh: int
# :param dim: Dimension of the vehicles. Currently only works for 2D
# :type dim: int
# :param model: See model description in BezOptimization class description
# :type model: dict
# :param maxSep: Maximum separation between vehicles.
# :type maxSep: float
# """
#
# y = reshapeVector(x, nVeh, dim, model)
# if model['type'].lower() == 'obstacles' or \
# model['type'].lower() == 'timeopt':
# nVeh += 2
# obs = np.empty((4, y.shape[1]))
# obs[0, :] = 3
# obs[1, :] = 2
# obs[2, :] = 6
# obs[3, :] = 7
# y = np.vstack((y, obs))
#
# if nVeh > 1:
# if model['type'].lower() == 'timeopt':
# tf = x[-1]
# else:
# tf = model['tf']
#
# distVeh = []
# vehList = []
# for i in range(nVeh):
# vehList.append(bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf))
#
# for i in range(nVeh):
# for j in range(i, nVeh):
# if j > i:
# dv = vehList[i] - vehList[j]
# distVeh.append(dv.normSquare().min())
#
# return np.array(distVeh) - maxSep**2
# else:
# return None
def _minSpeedConstraints(x, nVeh, dim, model, minSpeed):
"""Creates the minimum velocity constraints.
Useful in systems such as aircraft who may not fall below a certain speed.
:param x: Optimization vector
:type x: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D.
:type dim: int
:param model: See model description in BezOptimization class description.
:type model: dict
:param minSpeed: Minimum speed of the vehicle.
:type minSpeed: float
:return: Inequality constraint for the minimum speed.
:rtype: float
"""
y = reshapeVector(x, nVeh, dim, model)
if model['type'].lower() == 'timeopt':
tf = x[-1]
else:
tf = model['tf']
speeds = []
for i in range(nVeh):
pos = bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf)
speed = pos.diff()
speeds.append(speed)
speedSqr = [curve.normSquare().elev(50) for curve in speeds]
speeds = np.concatenate([i.cpts.squeeze() for i in speedSqr])
return (speeds - minSpeed**2).squeeze()
def _maxSpeedConstraints(x, nVeh, dim, model, maxSpeed):
"""Creates the maximum velocity constraints.
Useful for limiting the maximum speed of a vehicle.
:param x: Optimization vector
:type x: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D
:type dim: int
:param model: See model description in BezOptimization class description
:type model: dict
:param maxSpeed: Maximum speed of the vehicle.
:type maxSpeed: float
:return: Inequality constraint for the maximum speed
:rtype: float
"""
y = reshapeVector(x, nVeh, dim, model)
if model['type'].lower() == 'timeopt':
tf = x[-1]
else:
tf = model['tf']
speeds = []
for i in range(nVeh):
pos = bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf)
speed = pos.diff()
speeds.append(speed)
speedSqr = [curve.normSquare().elev(10) for curve in speeds]
speeds = np.concatenate([i.cpts.squeeze() for i in speedSqr])
return (maxSpeed**2 - speeds).squeeze()
def _maxAngularRateConstraints(x, nVeh, dim, model, maxAngRate):
"""Creates the maximum angular rate constraint.
This is useful for a dubins car model that has a constraint on the maximum
angular rate. The dimension is assumed to be 2.
:param x: Optimization vector
:type x: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D
:type dim: int
:param model: See model description in BezOptimization class description
:type model: dict
:param maxAngRate: Maximum angular rate of the vehicle (in radians).
:type maxAngRate: float
:return: Inequality constraint for the maximum angular rate
:rtype: float
"""
y = reshapeVector(x, nVeh, dim, model)
if model['type'].lower() == 'timeopt':
tf = x[-1]
else:
tf = model['tf']
angularRates = []
for i in range(nVeh):
pos = bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf)
angRate = angularRateSqr(pos.elev(10))
angularRates.append(angRate)
angularRateCpts = np.concatenate(
[i.cpts.squeeze() for i in angularRates])
return (maxAngRate**2 - angularRateCpts).squeeze()
def _objectiveFunction(x, nVeh, dim, model, minGoal):
"""Objective function to be optimized.
:param x: Optimization vector
:type x: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D
:type dim: int
:param model: See model description in BezOptimization class description
:type model: dict
:param minGoal: Element to be minimized. This string can be one of a few
different values:
vel - Minimize the sum of velocities of the vehicle trajectories
accel - Minimize the sum of accelerations of the vehicle
trajectories
jerk - Minimize the sum of jerks of the vehicle trajectories
euclidean - Minimize the sum of the Euclidean distance between the
control points of each trajectory.
:type minGoal: str
:return: Cost of the current iteration according to the minGoal
:rtype: float
"""
y = reshapeVector(x, nVeh, dim, model)
tf = model['tf']
curves = []
minGoal = minGoal.lower()
if minGoal == 'euclidean':
return euclideanObjective(y, nVeh, dim)
elif minGoal == 'time':
return x[-1]
else:
for i in range(nVeh):
pos = bez.Bezier(y[i*dim:i*dim+dim, :], tf=tf)
vel = pos.diff()
if minGoal == 'accel':
accel = vel.diff()
curves.append(accel)
elif minGoal == 'jerk':
jerk = vel.diff().diff()
curves.append(jerk)
summation = 0.0
for curve in curves:
temp = curve.normSquare()
summation = summation + temp.cpts.sum()
return summation
@numba.jit(nopython=True)
def euclideanObjective(y, nVeh, dim):
"""Sums the Euclidean distance between control points.
The Euclidean difference between each neighboring pair of control points is
summed for each vehicle.
:param y: Optimized vector that has been reshaped using the reshapeVector
function.
:type y: numpy.ndarray
:param nVeh: Number of vehicles
:type nVeh: int
:param dim: Dimension of the vehicles. Currently only works for 2D
:type dim: int
:return: Sum of the Euclidean distances
:rtype: float
"""
summation = 0.0
temp = np.zeros(3)
length = y.shape[1]
for veh in range(nVeh):
for i in range(length-1):
for j in range(dim):
temp[j] = y[veh*dim+j, i+1] - y[veh*dim+j, i]
summation += np.linalg.norm(temp)
return summation
def angularRate(bezTraj):
"""
Finds the angular rate of the 2D Bezier Curve.
The equation for the angular rate is as follows:
psiDot = (yDdot*xDot - xDdot*yDot) / (xDot^2 + yDot^2)
Note the second derivative (Ddot) vs the first (Dot)
RETURNS:
RationalBezier - This function returns a rational Bezier curve because
we must divide two Bezier curves.
"""
if bezTraj.dim != 2:
msg = ('The input curve must be two dimensional,\n'
'instead it is {} dimensional'.format(bezTraj.dim))
raise ValueError(msg)
x = bezTraj.x
xDot = x.diff()
xDdot = xDot.diff()
y = bezTraj.y
yDot = y.diff()
yDdot = yDot.diff()
numerator = yDdot*xDot - xDdot*yDot
denominator = xDot*xDot + yDot*yDot
cpts = numerator.cpts / (denominator.cpts)
weights = denominator.cpts
return bez.RationalBezier(cpts, weights)
def angularRateSqr(bezTraj):
"""
Finds the squared angular rate of the 2D Bezier Curve.
The equation for the angular rate is as follows:
psiDot = ((yDdot*xDot - xDdot*yDot))^2 / (xDot^2 + yDot^2)^2
Note the second derivative (Ddot) vs the first (Dot)
RETURNS:
RationalBezier - This function returns a rational Bezier curve because
we must divide two Bezier curves.
"""
if bezTraj.dim != 2:
msg = ('The input curve must be two dimensional,\n'
'instead it is {} dimensional'.format(bezTraj.dim))
raise ValueError(msg)
x = bezTraj.x
xDot = x.diff()
xDdot = xDot.diff()
y = bezTraj.y
yDot = y.diff()
yDdot = yDot.diff()
numerator = yDdot*xDot - xDdot*yDot
numerator = numerator*numerator
denominator = xDot*xDot + yDot*yDot
denominator = denominator*denominator
cpts = numerator.cpts / (denominator.cpts)
weights = denominator.cpts
return bez.RationalBezier(cpts, weights)
def reshapeVector(x, nVeh, dim, model=None):
"""
Converts the input vector x into a matrix that includes the start and end
control points of a Bezier curve for each vehicle in each dimension.
INPUTS:
x - Vector of points to be optimized. The length of the vector depends
on the number of vehicles, dimension, and model.
nVeh - Number of vehicles.
dim - Dimension of the trajectories (typically 2 or 3)
model - Dictionary of the model parameters. The dictionary must include
the following values:
* type: Name of the model. The model names currently supported are
"dubins", "generic", and "uav". See below for more information
regarding each model.
* initAngs: Vector of initial angles, in radians, for each vehicle
where each element corresponds to the ith vehicle. The angles
follow ROS's REP 103. X is East, Y is North, and Z is up.
* finalAngs: Same as initAngs but the final angles instead of the
initial angles.
RETURNS:
2D numpy array of Bezier curve control points for each vehicle where
each row corresponds to the dimension of the current vehicle. The array
will look like this:
[[v1x0, v1x1, ..., v1xDegree],
[v1y0, v1y1, ..., v1yDegree],
[v1z0, v1z1, ..., v1zDegree],
[v1dim0, v1dim1, ..., v1dimDegree],
[v2x0, v2x1, ..., v2xDegree],
...
[vnVehx0, vnVehx1, ..., vnVehxDegree]]
Model Types:
Dubins: Uses the Dubin's car model for a differential drive vehicle.
This model type requires the following parameters in the model
dictionary: initPoints, finalPoints, initSpeeds, finalSpeeds, initAngs,
finalAngs, tf.
The input vector x will not include the first two and last two control
points for each vehicle. The vector should look like the following
[X02, X03, X04, ..., X0DEG-1,
Y02, ..., Y0DEG-1,
X12, ..., X1DEG-1,
...
XN2, ..., XNDEG-1]
Note that it is DEG-1 and not DEG-2 because the degree of a Bezier
curve is already 1 less than the total number of control points.
UAV:
Generic: The only fixed values for the generic model are the start and
end points. The input vector x should look like the following
[X01, X02, X03, ..., X0DEG,
Y01, ..., Y0DEG,
Z01, ..., Z0DEG,
...
XN1, ..., XNDEG]
The input vector is of the following form:
[initAngle0, finalAngle0, X01, X02, ..., X0DEG, Y01, Y02, ..., Y0DEG,
initAngle1, finalAngle1, X11, X12, ..., X1DEG, Y11, Y12, ..., Y1DEG,
...
initAngleNVEH, finalAngleNVEH, ... ]
"""
x = np.array(x)
numRows = int(nVeh*dim)
numCols = int(x.size/numRows)
if model['type'].lower() == 'timeopt':
timeOptTf = x[-1]
x = x[:-1]
x = x.reshape((numRows, numCols))
# Dict params used by all models
modelType = model['type'].lower()
initPoints = np.array(model['initPoints'])
finalPoints = np.array(model['finalPoints'])
if modelType == 'dubins' or modelType == 'obstacles' or \
modelType == 'timeopt':
"""
Dubin's model input vector:
[X02, X03, X04, ..., X0DEG-1,
Y02, ..., Y0DEG-1,
X12, ..., X1DEG-1,
...
XN2, ..., XNDEG-1]
"""
if dim != 2:
msg = 'The Dubin''s car model only accepts 2 dimensions.'
raise ValueError(msg)
degree = numCols + 4 - 1
y = np.empty((numRows, degree+1))
# Dict params used by Dubin's model specifically
initSpeeds = np.array(model['initSpeeds'])
finalSpeeds = np.array(model['finalSpeeds'])
initAngs = np.array(model['initAngs'])
finalAngs = np.array(model['finalAngs'])
if modelType == 'timeopt':
tf = timeOptTf
else:
tf = model['tf']
initMag = initSpeeds*tf/degree
finalMag = finalSpeeds*tf/degree
# print('InitPoints: {}'.format(initPoints))
# print('InitAngs: {}'.format(initAngs))
# print('InitMag: {}'.format(initMag))
# print('y[::2, 1]: {}'.format(y[::2, 1]))
y[:, 2:-2] = x
y[::2, 0] = initPoints[:, 0] # init X
y[1::2, 0] = initPoints[:, 1] # init Y
y[::2, -1] = finalPoints[:, 0] # final X
y[1::2, -1] = finalPoints[:, 1] # final Y
y[::2, 1] = initPoints[:, 0] + initMag*np.cos(initAngs) # X
y[1::2, 1] = initPoints[:, 1] + initMag*np.sin(initAngs) # Y
y[::2, -2] = finalPoints[:, 0] - finalMag*np.cos(finalAngs) # X
y[1::2, -2] = finalPoints[:, 1] - finalMag*np.sin(finalAngs) # Y
elif modelType == 'generic':
"""
Generic model input vector:
[X01, X02, X03, ..., X0DEG,
Y01, ..., Y0DEG,
Z01, ..., Z0DEG,
...
XN1, ..., XNDEG]
"""
degree = numCols + 2 - 1
y = np.empty((numRows, degree+1))
y[::2, 0] = initPoints[:, 0]
y[1::2, 0] = initPoints[:, 1]
y[::2, -1] = finalPoints[:, 0]
y[1::2, -1] = finalPoints[:, 1]
y[:, 1:-1] = x
elif modelType == 'uav':
pass
elif modelType == '3d':
degree = numCols + 2 - 1
y = np.empty((numRows, degree+1))
y[::3, 0] = initPoints[:, 0]
y[1::3, 0] = initPoints[:, 1]
y[2::3, 0] = initPoints[:, 2]
y[::3, -1] = finalPoints[:, 0]
y[1::3, -1] = finalPoints[:, 1]
y[2::3, -1] = finalPoints[:, 2]
y[:, 1:-1] = x
# elif modelType == 'timeopt':
# degree = numCols + 2 - 1
# y = np.empty((numRows, degree+1))
#
# y[::2, 0] = initPoints[:, 0]
# y[1::2, 0] = initPoints[:, 1]
# y[::2, -1] = finalPoints[:, 0]
# y[1::2, -1] = finalPoints[:, 1]
# y[:, 1:-1] = x
# elif modelType == 'obstacles':
# """
# Obstacles model input vector:
# [X01, X02, X03, ..., X0DEG,
# Y01, ..., Y0DEG,
# Z01, ..., Z0DEG,
# ...
# XN1, ..., XNDEG]
# """
# degree = numCols + 2 - 1
# y = np.empty((numRows, degree+1))
#
# y[::2, 0] = initPoints[:, 0]
# y[1::2, 0] = initPoints[:, 1]
# y[::2, -1] = finalPoints[:, 0]
# y[1::2, -1] = finalPoints[:, 1]
# y[:, 1:-1] = x
else:
msg = '{} is not a valid model type.'.format(modelType)
raise ValueError(msg)
return y.astype(float)