-
Notifications
You must be signed in to change notification settings - Fork 11
/
MuG_GOT_global_new_residual.py
398 lines (354 loc) · 15.8 KB
/
MuG_GOT_global_new_residual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# a combination of track and match
# 1. load fullres images, resize to 640**2
# 2. warmup: set random location for crop
# 3. loc-match: add attention
import os
import cv2
import sys
import time
import torch
import logging
import argparse
import numpy as np
import torch.nn as nn
from libs.GOT_all_global_new_loader import VidListv1, VidListv2
import torch.backends.cudnn as cudnn
import libs.transforms_multi as transforms
from my_model_new_residual import track_match_comb as Model
from libs.loss import L1_loss, my_BCE_loss, my_L1_loss
from libs.concentration_loss import ConcentrationSwitchLoss as ConcentrationLoss
from libs.train_utils import save_vis, AverageMeter, save_checkpoint, log_current
from libs.utils import diff_crop
#from libs.deeplab_org import DeepLab_org
import torch.nn.functional as F
FORMAT = "[%(asctime)-15s %(filename)s:%(lineno)d %(funcName)s] %(message)s"
logging.basicConfig(format=FORMAT)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def parse_args():
parser = argparse.ArgumentParser(description='')
# file/folder pathes
parser.add_argument("--videoRoot", type=str, default="/raid/tracking_dataset/GOT-10k/train/", help='train video path')
parser.add_argument("--videoList", type=str, default="/Data2/Kinetices/compress/train.txt", help='train video list (after "train_256")')
parser.add_argument("--encoder_dir",type=str, default='weights/encoder_single_gpu.pth', help="pretrained encoder")
parser.add_argument("--decoder_dir",type=str, default='weights/decoder_single_gpu.pth', help="pretrained decoder")
parser.add_argument('--resume', type=str, default='', metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument("-c","--savedir",type=str,default="match_track_comb/",help='checkpoints path')
parser.add_argument("--Resnet", type=str, default="r18", help="choose from r18 or r50")
# main parameters
parser.add_argument("--pretrainRes",action="store_true")
parser.add_argument("--batchsize",type=int, default=1, help="batchsize")
parser.add_argument('--workers', type=int, default=16)
parser.add_argument("--patch_size", type=int, default=256, help="crop size for localization.")
parser.add_argument("--full_size", type=int, default=640, help="full size for one frame.")
parser.add_argument("--rotate",type=int,default=10,help='degree to rotate training images')
parser.add_argument("--scale",type=float,default=1.2,help='random scale')
parser.add_argument("--lr",type=float,default=0.0001,help='learning rate')
parser.add_argument('--lr-mode', type=str, default='poly')
parser.add_argument("--window_len",type=int,default=2,help='number of images (2 for pair and 3 for triple)')
parser.add_argument("--log_interval",type=int,default=10,help='')
parser.add_argument("--save_interval",type=int,default=100,help='save every x epoch')
parser.add_argument("--momentum",type=float,default=0.9,help='momentum')
parser.add_argument("--weight_decay",type=float,default=0.005,help='weight decay')
parser.add_argument("--device", type=int, default=4, help="0~device_count-1 for single GPU, device_count for dataparallel.")
parser.add_argument("--temp", type=int, default=1, help="temprature for softmax.")
# set epoches
parser.add_argument("--wepoch",type=int,default=10,help='warmup epoch')
parser.add_argument("--nepoch",type=int,default=20,help='max epoch')
# concenration regularization
parser.add_argument("--lc",type=float,default=1e4, help='weight of concentration loss')
parser.add_argument("--lc_win",type=int,default=8, help='win_len for concentration loss')
# orthorganal regularization
parser.add_argument("--color_switch",type=float,default=0.1, help='weight of color switch loss')
parser.add_argument("--coord_switch",type=float,default=0.1, help='weight of color switch loss')
print("Begin parser arguments.")
args = parser.parse_args()
assert args.videoRoot is not None
assert args.videoList is not None
if not os.path.exists(args.savedir):
os.mkdir(args.savedir)
args.savepatch = os.path.join(args.savedir,'savepatch')
args.logfile = open(os.path.join(args.savedir,"logargs.txt"),"w")
args.multiGPU = args.device == torch.cuda.device_count()
if not args.multiGPU:
torch.cuda.set_device(args.device)
if not os.path.exists(args.savepatch):
os.mkdir(args.savepatch)
args.vis = True
if args.color_switch > 0:
args.color_switch_flag = True
else:
args.color_switch_flag = False
if args.coord_switch > 0:
args.coord_switch_flag = True
else:
args.coord_switch_flag = False
try:
from tensorboardX import SummaryWriter
global writer
writer = SummaryWriter()
except ImportError:
args.vis = False
print(' '.join(sys.argv))
print('\n')
args.logfile.write(' '.join(sys.argv))
args.logfile.write('\n')
for k, v in args.__dict__.items():
#print(k, ':', v)
args.logfile.write('{}:{}\n'.format(k,v))
args.logfile.close()
return args
def get_1x_lr_params(model):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm layer,
requires_grad is set to False in deeplab_resnet.py, therefore this function does not return
any batchnorm parameter
"""
b = []
#print('prams:', type(model.parameters()))
if torch.cuda.device_count() == 1:
b.append(model.encoder.layer5)
else:
#b.append(model.module.encoder.feature)
b.append(model.module.gray_encoder)
#b.append(model.module.encoder.feature.)
for i in range(len(b)):
for j in b[i].modules():
jj = 0
for k in j.parameters():
jj+=1
if k.requires_grad:
yield k
def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last layer of the net,
which does the classification of pixel into classes
"""
b = []
b_module=[]
if torch.cuda.device_count() == 1:
b.append(model.linear_e.parameters())
b.append(model.main_classifier.parameters())
else:
b_module.append(model.module.weak_conv1)
b_module.append(model.module.memory_encoder)
b_module.append(model.module.fusion3_1)
b_module.append(model.module.fusion3_2)
b_module.append(model.module.fusion2_1)
b_module.append(model.module.fusion2_2)
b.append(model.module.weak_bn.parameters())
b.append(model.module.weak_conv2_1.parameters())
b.append(model.module.weak_conv2_2.parameters())
b.append(model.module.weak_conv2_3.parameters())
b.append(model.module.linear_e.parameters())
#b.append(model.module.corr_layer.parameters())
for j in range(len(b)):
for i in b[j]:
yield i
for i in range(len(b_module)):
for j in b_module[i].modules():
jj = 0
for k in j.parameters():
jj+=1
if k.requires_grad:
yield k
def adjust_learning_rate(args, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if args.lr_mode == 'step':
lr = args.lr * (0.1 ** (epoch/100 // args.step))
elif args.lr_mode == 'poly':
lr = args.lr * (1 - epoch/100 / args.nepoch) ** 0.9
else:
raise ValueError('Unknown lr mode {}'.format(args.lr_mode))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def create_loader(args):
print('ok!')
dataset_train_warm = VidListv1(args.videoRoot, args.videoList, args.patch_size, args.rotate, args.scale)
dataset_train = VidListv2(args.videoRoot, args.videoList, args.patch_size, args.window_len, args.rotate, args.scale, args.full_size)
if args.multiGPU:
train_loader_warm = torch.utils.data.DataLoader(
dataset_train_warm, batch_size=args.batchsize, shuffle = True, num_workers=args.workers, pin_memory=True, drop_last=True)
train_loader = torch.utils.data.DataLoader(
dataset_train, batch_size=args.batchsize, shuffle = True, num_workers=args.workers, pin_memory=True, drop_last=True)
else:
train_loader_warm = torch.utils.data.DataLoader(
dataset_train_warm, batch_size=args.batchsize, shuffle = True, num_workers=0, drop_last=True)
train_loader = torch.utils.data.DataLoader(
dataset_train, batch_size=args.batchsize, shuffle = True, num_workers=0, drop_last=True)
return train_loader_warm, train_loader
my_creteria = nn.BCEWithLogitsLoss()
def train(args):
loader_warm, loader = create_loader(args)
print('length:', len(loader))
cudnn.benchmark = True
best_loss = 1e10
start_epoch = 0
# color_switch=args.color_switch_flag, coord_switch=args.coord_switch_flag)
model = Model(args.pretrainRes, args.encoder_dir, args.decoder_dir, temp = args.temp, Resnet = args.Resnet, color_switch = args.color_switch_flag, coord_switch = args.coord_switch_flag)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
new_params = model.state_dict().copy()
for i in checkpoint['state_dict']:
# Scale.layer5.conv2d_list.3.weight
i_parts = i.split('.') # 针对多GPU的情况
#print('i_parts: ', '.'.join(i_parts))
# if not i_parts[1]=='main_classifier': #and not '.'.join(i_parts[1:-1]) == 'layer5.bottleneck' and not '.'.join(i_parts[1:-1]) == 'layer5.bn': #init model pretrained on COCO, class name=21, layer5 is ASPP
new_params['.'.join(i_parts[1:])] = checkpoint['state_dict'][i]
model.load_state_dict(new_params)
#model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{} ({})' (epoch {})".format(args.resume, best_loss, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.multiGPU:
model = torch.nn.DataParallel(model).cuda()
closs = ConcentrationLoss(win_len=args.lc_win, stride=args.lc_win,
F_size=torch.Size((args.batchsize//torch.cuda.device_count(),2, args.patch_size//8, args.patch_size//8)), temp = args.temp)
closs = nn.DataParallel(closs).cuda()
optimizer = torch.optim.Adam([{'params': get_1x_lr_params(model), 'lr': 1.0*args.lr }, #针对特定层进行学习,有些层不学习
{'params': get_10x_lr_params(model), 'lr': 10*args.lr}], args.lr, weight_decay=args.weight_decay) # momentum=args.momentum,
#torch.optim.Adam(filter(lambda p: p.requires_grad, model._modules['module'].parameters()),args.lr)
else:
closs = ConcentrationLoss(win_len=args.lc_win, stride=args.lc_win,
F_size=torch.Size((args.batchsize,2,
args.patch_size//8,
args.patch_size//8)), temp = args.temp)
model.cuda()
closs.cuda()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),args.lr)
for epoch in range(start_epoch, args.nepoch):
if epoch < args.wepoch:
lr = adjust_learning_rate(args, optimizer, epoch)
print("Base lr for epoch {}: {}.".format(epoch, optimizer.param_groups[0]['lr']))
best_loss = train_iter(args, loader_warm, model, closs, optimizer, epoch, best_loss)
else:
lr = adjust_learning_rate(args, optimizer, epoch-args.wepoch)
print("Base lr for epoch {}: {}.".format(epoch, optimizer.param_groups[0]['lr']))
best_loss = train_iter(args, loader, model, closs, optimizer, epoch, best_loss)
def forward(frame1, frame1_org, frame1_sal, frame2, model, warm_up, patch_size=None, segments=None):
n, c, h, w = frame1.size()
if warm_up:
output = model(frame1, frame2)
else:
#print('second stage size:', frame1.size(), frame2.size())
output = model(frame1, frame1_org, frame1_sal, frame2, warm_up=False, patch_size=[patch_size//8, patch_size//8],segments=segments)
new_c = output[2] #new location
# gt patch
# print("HERE2: ", frame2.size(), new_c, patch_size)
color2_gt = diff_crop(frame2, new_c[:,0], new_c[:,2], new_c[:,1], new_c[:,3], patch_size, patch_size)
output.append(color2_gt)
return output
def train_iter(args, loader, model, closs, optimizer, epoch, best_loss):
losses = AverageMeter()
batch_time = AverageMeter()
losses = AverageMeter()
c_losses = AverageMeter()
model.train()
end = time.time()
if args.coord_switch_flag:
coord_switch_loss = nn.L1Loss()
sc_losses = AverageMeter()
if epoch < 1 or (epoch>=args.wepoch and epoch< args.wepoch+2):
thr = None
else:
thr = 2.5
train_len = len(loader)
for i,item in enumerate(loader):
#print('iteration:', i, len(item))
frames = item[0]
frames_pair = item[1]
segments = item[2]
segments = torch.stack(segments, dim=1)
#print('segment:',segments.size())
org_pair = item[3]
frame1_var = frames[0].cuda()
frame2_var = frames[1].cuda()
frame1_org = frames_pair[0].cuda()
frame1_sal = org_pair[0].cuda()
if epoch < args.wepoch:
output = forward(frame1_var, frame2_var, model, warm_up=True)
color2_est = output[0]
aff = output[1]
b,x,_ = aff.size()
color1_est = None
if args.color_switch_flag:
color1_est = output[2]
loss_ = L1_loss(color2_est, frame2_var, 10, 10, thr=thr, pred1=color1_est, frame1_var = frame1_var)
if epoch >=1 and args.lc > 0:
constraint_loss = torch.sum(closs(aff.view(b,1,x,x))) * args.lc
c_losses.update(constraint_loss.item(), frame1_var.size(0))
loss = loss_ + constraint_loss
else:
loss = loss_
#if(i % args.log_interval == 0):
# save_vis(color2_est, frame2_var, frame1_var, frame2_var, args.savepatch)
else:
# print("input: ", frame1_var.size(), frame2_var.size())
output = forward(frame1_var, frame1_org, frame1_sal, frame2_var, model, warm_up=False, patch_size = args.patch_size, segments = segments)
color2_est = output[0]
aff = output[1]
new_c = output[2]
coords = output[3]
pred_1 = output[4]
gt_mask1 = output[5]
Fcolor2_crop = output[-1]
b,x,x = aff.size()
color1_est = None
count = 5
constraint_loss = torch.sum(closs(aff.view(b,1,x,x))) * args.lc
c_losses.update(constraint_loss.item(), frame1_var.size(0))
if args.color_switch_flag:
count += 1
color1_est = output[count]
pred_1 = F.upsample(pred_1, gt_mask1.size()[2:], mode='bilinear')
my_l1_loss = my_L1_loss(pred_1, gt_mask1)
print('output range:', torch.max(pred_1), torch.min(pred_1), torch.max(gt_mask1), torch.min(gt_mask1))
gt_mask1 = F.sigmoid(gt_mask1).detach()
gt_mask1[gt_mask1 > 0.2] = 1
gt_mask1[gt_mask1 < 0.2] = 0
frame_loss = my_l1_loss+my_creteria(pred_1, gt_mask1)#* (1 - 0.05)#my_BCE_loss(pred_1, gt_mask1) #
#gt_self = F.sigmoid(pred_1).detach()
#gt_self[gt_self > 0.2] = 1
#gt_self[gt_self <= 0.2] = 0
#frame_loss = frame_loss + my_creteria(pred_1, gt_self) * 0.05
#loss_color = L1_loss(color2_est, Fcolor2_crop, 10, 10, thr=thr, pred1=color1_est, frame1_var = frame1_var)
#print('loss:', frame_loss, loss_color, constraint_loss)
loss_ = frame_loss #0.01*loss_color + 0.01*constraint_loss
if args.coord_switch_flag:
count += 1
grids = output[count]
C11 = output[count+1]
loss_coord = args.coord_switch * coord_switch_loss(C11, grids)
loss = loss_ + loss_coord
sc_losses.update(loss_coord.item(), frame1_var.size(0))
else:
loss = loss_
#if(i % args.log_interval == 0):
# save_vis(color2_est, Fcolor2_crop, frame1_var, frame2_var, args.savepatch, new_c)
losses.update(loss.item(), frame1_var.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if((i + epoch*train_len) % args.save_interval == 0):
is_best = losses.avg < best_loss
best_loss = min(losses.avg, best_loss)
checkpoint_path = os.path.join(args.savedir, str(epoch+1)+'checkpoint_latest.pth.tar')
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
}, is_best, filename=checkpoint_path, savedir = args.savedir)
log_current(epoch, losses.avg, best_loss, filename = "log_current.txt", savedir=args.savedir)
return best_loss
if __name__ == '__main__':
args = parse_args()
train(args)
writer.close()