-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_iteration_conf_agnn.py
399 lines (332 loc) · 16.9 KB
/
train_iteration_conf_agnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 10:52:26 2018
@author: carri
"""
#区别于deeplab_co_attention_concat在于采用了新的model(siamese_model_concat_new)来train
import argparse
import torch
import torch.nn as nn
from torch.utils import data
import numpy as np
import pickle
import cv2
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc
import torch.backends.cudnn as cudnn
import sys
import os
from utils.balanced_BCE import class_balanced_cross_entropy_loss
import os.path as osp
#from psp.model import PSPNet
#from dataloaders import davis_2016 as db
from dataloaders import TripletImg_video1 as db #采用voc dataset的数据设置格式方法
import matplotlib.pyplot as plt
import random
import timeit
import time
#from psp.model1 import CoattentionNet #基于pspnet搭建的co-attention 模型
from deeplab.siamese_model_conf_gnn import GNNNet #siame_model 是直接将attend的model之后的结果输出
#from deeplab.utils import get_1x_lr_params, get_10x_lr_params#, adjust_learning_rate #, loss_calc
start = timeit.default_timer()
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="PSPnet Network")
# optimatization configuration
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default= 0.00025,
help="Base learning rate for training with polynomial decay.") #0.001
parser.add_argument("--weight-decay", type=float, default= 0.0005,
help="Regularization parameter for L2-loss.") # 0.0005
parser.add_argument("--momentum", type=float, default= 0.9,
help="Momentum component of the optimiser.")
parser.add_argument("--power", type=float, default= 0.9,
help="Decay parameter to compute the learning rate.")
# dataset information
parser.add_argument("--dataset", type=str, default='cityscapes',
help="voc12, cityscapes, or pascal-context.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--random-seed", type=int, default= 1234,
help="Random seed to have reproducible results.")
parser.add_argument('--logFile', default='log.txt',
help='File that stores the training and validation logs')
# GPU configuration
parser.add_argument("--cuda", default=True, help="Run on CPU or GPU")
parser.add_argument("--gpus", type=str, default="3", help="choose gpu device.") #使用3号GPU
return parser.parse_args()
args = get_arguments()
def configure_dataset_init_model(args):
args.batch_size = 16# 1 card: 5, 2 cards: 10 Number of images sent to the network in one step, 16 on paper
args.maxEpoches = 60 # 1 card: 15, 2 cards: 15 epoches, equal to 30k iterations, max iterations= maxEpoches*len(train_aug)/batch_size_per_gpu'),
args.data_dir = '/home/ubuntu/xiankai/dataset/DAVIS-2016' # 37572 image pairs
args.img_dir = '/raid/dataset'
args.data_list = './dataset/list/VOC2012/train_aug.txt' # Path to the file listing the images in the dataset
args.ignore_label = 255 #The index of the label to ignore during the training
args.input_size = '378, 378' #Comma-separated string with height and width of images
args.num_classes = 2 #Number of classes to predict (including background)
args.img_mean = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32) # saving model file and log record during the process of training
#Where restore model pretrained on other dataset, such as COCO.")
args.restore_from = './pretrained/deep_labv3/deeplab_davis_12_0.pth'#'./pretrained/deep_labv3/deeplab_davis_12_0.pth' #resnet50-19c8e357.pth''/home/xiankai/PSPNet_PyTorch/snapshots/davis/psp_davis_0.pth' #
args.snapshot_dir = './snapshots/davis_iteration_conf_gnn3_sa_org_init/' #Where to save snapshots of the model
args.resume = './snapshots/davis_iteration_conf_gnn3/co_attention_davis_149.pth' #checkpoint log file, helping recovering training
def adjust_learning_rate(optimizer, i_iter, epoch, max_iter):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = lr_poly(args.learning_rate, i_iter, max_iter, args.power, epoch)
#optimizer.param_groups[0]['lr'] = lr
if i_iter%3 ==0:
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = 0
else:
optimizer.param_groups[0]['lr'] = 0.01*lr
optimizer.param_groups[1]['lr'] = lr * 10
return lr
def loss_calc1(pred, label):
"""
This function returns cross entropy loss for semantic segmentation
"""
labels = torch.ge(label, 0.5).float()
#
batch_size = label.size()
#print(batch_size)
num_labels_pos = torch.sum(labels)
#
batch_1 = batch_size[0]* batch_size[2]
batch_1 = batch_1* batch_size[3]
weight_1 = torch.div(num_labels_pos, batch_1) # pos ratio
weight_1 = torch.reciprocal(weight_1)
#print(num_labels_pos, batch_1)
weight_2 = torch.div(batch_1-num_labels_pos, batch_1)
#print('postive ratio', weight_2, weight_1)
weight_22 = torch.mul(weight_1, torch.ones(batch_size[0], batch_size[1], batch_size[2], batch_size[3]).cuda())
#weight_11 = torch.mul(weight_1, torch.ones(batch_size[0], batch_size[1], batch_size[2]).cuda())
criterion = torch.nn.BCELoss(weight = weight_22)#weight = torch.Tensor([0,1]) .cuda() #torch.nn.CrossEntropyLoss(ignore_index=args.ignore_label).cuda()
#loss = class_balanced_cross_entropy_loss(pred, label).cuda()
return criterion(pred, label)
def loss_calc2(pred, label):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
# Variable(label.long()).cuda()
criterion = torch.nn.L1Loss()#.cuda() #torch.nn.CrossEntropyLoss(ignore_index=args.ignore_label).cuda()
return criterion(pred, label)
def get_1x_lr_params(model):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm layer,
requires_grad is set to False in deeplab_resnet.py, therefore this function does not return
any batchnorm parameter
"""
b = []
if torch.cuda.device_count() == 1:
#b.append(model.encoder.conv1)
#b.append(model.encoder.bn1)
#b.append(model.encoder.layer1)
#b.append(model.encoder.layer2)
#b.append(model.encoder.layer3)
#b.append(model.encoder.layer4)
b.append(model.encoder.layer5)
else:
b.append(model.module.encoder.conv1)
b.append(model.module.encoder.bn1)
b.append(model.module.encoder.layer1)
b.append(model.module.encoder.layer2)
b.append(model.module.encoder.layer3)
b.append(model.module.encoder.layer4)
b.append(model.module.encoder.layer5)
b.append(model.module.encoder.main_classifier)
for i in range(len(b)):
for j in b[i].modules():
jj = 0
for k in j.parameters():
jj+=1
if k.requires_grad:
yield k
def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last layer of the net,
which does the classification of pixel into classes
"""
b = []
b_module = []
if torch.cuda.device_count() == 1:
b.append(model.linear_e.parameters())
b.append(model.main_classifier.parameters())
else:
b.append(model.module.linear_e.parameters())
b.append(model.module.ConvGRU.parameters())
b.append(model.module.conv1.parameters())
b.append(model.module.gate.parameters())
b.append(model.module.bn1.parameters())
b.append(model.module.main_classifier1.parameters())
b.append(model.module.conv_fusion.parameters())
for j in range(len(b)):
for i in b[j]:
yield i
def lr_poly(base_lr, iter, max_iter, power, epoch):
if epoch<=2:
factor = 1
elif epoch>2 and epoch< 6:
factor = 1
else:
factor = 1
return base_lr*factor*((1-float(iter)/max_iter)**(power))
def netParams(model):
'''
Computing total network parameters
Args:
model: model
return: total network parameters
'''
total_paramters = 0
for parameter in model.parameters():
i = len(parameter.size())
#print(parameter.size())
p = 1
for j in range(i):
p *= parameter.size(j)
total_paramters += p
return total_paramters
def main():
print("=====> Configure dataset and pretrained model")
configure_dataset_init_model(args)
print(args)
print(" current dataset: ", args.dataset)
print(" init model: ", args.restore_from)
print("=====> Set GPU for training")
if args.cuda:
print("====> Use gpu id: '{}'".format(args.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
# Select which GPU, -1 if CPU
print("=====> Random Seed: ", args.random_seed)
torch.manual_seed(args.random_seed)
if args.cuda:
torch.cuda.manual_seed(args.random_seed)
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
cudnn.enabled = True
print("=====> Building network")
saved_state_dict = torch.load(args.restore_from)
model = GNNNet(num_classes=args.num_classes)
#print(model)
new_params = model.state_dict().copy()
calt = 0
for i in saved_state_dict["model"]:
#Scale.layer5.conv2d_list.3.weight
i_parts = i.split('.') # 针对多GPU的情况
#i_parts.pop(1)
#print('i_parts: ', '.'.join(i_parts[1:-1]))
#if not i_parts[1]=='main_classifier': #and not '.'.join(i_parts[1:-1]) == 'layer5.bottleneck' and not '.'.join(i_parts[1:-1]) == 'layer5.bn': #init model pretrained on COCO, class name=21, layer5 is ASPP
new_params['encoder'+'.'+'.'.join(i_parts[1:])] = saved_state_dict["model"][i]
print("=====> Loading init weights, pretrained COCO for VOC2012, and pretrained Coarse cityscapes for cityscapes")
model.load_state_dict(new_params) #只用到resnet的第5个卷积层的参数
#print(model.keys())
if args.cuda:
#model.to(device)
if torch.cuda.device_count()>1:
print("torch.cuda.device_count()=",torch.cuda.device_count())
model = torch.nn.DataParallel(model).cuda() #multi-card data parallel
else:
print("single GPU for training")
model = model.cuda() #1-card data parallel
start_epoch=0
print("=====> Whether resuming from a checkpoint, for continuing training")
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model"])
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model.train()
cudnn.benchmark = True
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
print('=====> Computing network parameters')
total_paramters = netParams(model)
print('Total network parameters: ' + str(total_paramters))
db_train = db.PairwiseImg(train=True, inputRes=input_size, db_root_dir=args.data_dir, img_root_dir=args.img_dir, transform=None) #db_root_dir() --> '/path/to/DAVIS-2016' train path
trainloader = data.DataLoader(db_train, batch_size= args.batch_size, shuffle=True, num_workers=0)
optimizer = optim.SGD([{'params': get_1x_lr_params(model), 'lr': 1*args.learning_rate }, #针对特定层进行学习,有些层不学习
{'params': get_10x_lr_params(model), 'lr': 10*args.learning_rate}],
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer.zero_grad()
logFileLoc = args.snapshot_dir + args.logFile
if os.path.isfile(logFileLoc):
logger = open(logFileLoc, 'a')
else:
logger = open(logFileLoc, 'w')
logger.write("Parameters: %s" % (str(total_paramters)))
logger.write("\n%s\t\t%s" % ('iter', 'Loss(train)\n'))
logger.flush()
print("=====> Begin to train")
train_len=len(trainloader)
print(" iteration numbers of per epoch: ", train_len)
print(" epoch num: ", args.maxEpoches)
print(" max iteration: ", args.maxEpoches*train_len)
for epoch in range(start_epoch, int(args.maxEpoches)):
np.random.seed(args.random_seed + epoch)
for i_iter, batch in enumerate(trainloader,0): #i_iter from 0 to len-1
#print("i_iter=", i_iter, "epoch=", epoch)
target, target_gt, search, search_gt, search_1, search_gt_1 = batch['target_0'], batch['target_gt_0'], batch['target_1'], batch['target_gt_1'], batch['target_2'], batch['target_gt_2']
images, labels, images1, labels1 = batch['img'], batch['img_gt'],batch['img1'], batch['img_gt1']
#print(labels.size())
images.requires_grad_()
images = Variable(images).cuda()
labels = Variable(labels.float().unsqueeze(1)).cuda()
images1.requires_grad_()
images1 = Variable(images1).cuda()
labels1 = Variable(labels1.float().unsqueeze(1)).cuda()
target.requires_grad_()
target = Variable(target).cuda()
target_gt = Variable(target_gt.float().unsqueeze(1)).cuda()
search.requires_grad_()
search = Variable(search).cuda()
search_gt = Variable(search_gt.float().unsqueeze(1)).cuda()
search_1.requires_grad_()
search_1 = Variable(search_1).cuda()
search_gt_1 = Variable(search_gt_1.float().unsqueeze(1)).cuda()
optimizer.zero_grad()
lr = adjust_learning_rate(optimizer, i_iter+epoch*train_len, epoch,
max_iter = args.maxEpoches * train_len)
#print(images.size())
start_time = time.time()
if i_iter%3 ==0: #对于静态图片的训练
pred1, pred2, pred3, pred4, pred5 = model(images, images, images1)
loss = 0.1*(loss_calc1(pred4, labels) + 0.8* loss_calc2(pred4, labels) + loss_calc1(pred5, labels1) + 0.8* loss_calc2(pred5, labels1) )
loss.backward()
else:
pred1, pred2, pred3, pred4, pred5 = model(target, search, search_1)
loss = loss_calc1(pred1, target_gt) + 0.8* loss_calc2(pred1, target_gt) + \
loss_calc1(pred2, search_gt) + 0.8* loss_calc2(pred2, search_gt) + \
loss_calc1(pred3, search_gt_1) + 0.8* loss_calc2(pred3, search_gt_1)#class_balanced_cross_entropy_loss(pred, labels, size_average=False)
loss.backward()
optimizer.step()
end_time = time.time()
#print('time length:', end_time-start_time)
print("===> Epoch[{}]({}/{}): Loss: {:.10f} lr: {:.5f}".format(epoch, i_iter, train_len, loss, lr))
logger.write("Epoch[{}]({}/{}): Loss: {:.10f} lr: {:.5f}\n".format(epoch, i_iter, train_len, loss, lr))
logger.flush()
print("=====> saving model")
state={"epoch": epoch+1, "model": model.state_dict()}
torch.save(state, osp.join(args.snapshot_dir, 'co_attention_'+str(args.dataset)+"_"+str(epoch)+'.pth'))
end = timeit.default_timer()
print( float(end-start)/3600, 'h')
logger.write("total training time: {:.2f} h\n".format(float(end-start)/3600))
logger.close()
if __name__ == '__main__':
main()