-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathadversarial.py
1108 lines (923 loc) · 70.4 KB
/
adversarial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import glob
import time
import shutil
import numpy as np
from collections import OrderedDict
import __future__
import logging
import matplotlib
import tensorflow as tf
import csv
from tensorflow.python import debug as tf_debug
from layers import *
from ops import *
from lib import _dice_eval, _save, _save_nii_prediction, _jaccard, _dice, _label_decomp, _indicator_eval, read_nii_image
np.random.seed(0)
contour_map = { # a map used for mapping label value to its name, used for output
"bg": 0,
"la_myo": 1,
"la_blood": 2,
"lv_blood": 3,
"aa": 4
}
verbose = True
logging.basicConfig(filename = "curr_log", level=logging.DEBUG, format='%(asctime)s %(message)s')
if verbose == True:
logging.getLogger().addHandler(logging.StreamHandler())
raw_size = [256, 256, 3] # original raw input size
volume_size = [256, 256, 3] # volume size after processing, for the tfrecord file
label_size = [256, 256, 1] # size of label
decomp_feature = { # configuration for decoding tf_record file
'dsize_dim0': tf.FixedLenFeature([], tf.int64),
'dsize_dim1': tf.FixedLenFeature([], tf.int64),
'dsize_dim2': tf.FixedLenFeature([], tf.int64),
'lsize_dim0': tf.FixedLenFeature([], tf.int64),
'lsize_dim1': tf.FixedLenFeature([], tf.int64),
'lsize_dim2': tf.FixedLenFeature([], tf.int64),
'data_vol': tf.FixedLenFeature([], tf.string),
'label_vol': tf.FixedLenFeature([], tf.string)}
class Full_DRN(object):
def __init__(self, channels, n_class, batch_size, cost_kwargs={}, network_config = {}):
##### Done this function
tf.reset_default_graph()
self.n_class = n_class # please note background is another class
self.batch_size = batch_size
self.mr_front_weights = [] # conv weights of MR path
self.ct_front_weights = [] # conv weights of CT path
self.cls_weights = [] # weights of feature discriminator
self.m_cls_weights = [] # weights for segmentation mask discriminator
self.joint_weights = [] # weights of joint part between CT and MRI. The final segmentor in our case
self.mr = tf.placeholder("float", shape=[None, volume_size[0], volume_size[1], channels], name = "mr_ph")
self.ct = tf.placeholder("float", shape=[None, volume_size[0], volume_size[1], channels])
self.ct_y = tf.placeholder("float", shape=[None, label_size[0], label_size[1], self.n_class])
self.mr_y = tf.placeholder("float", shape=[None, label_size[0], label_size[1], self.n_class])
self.mr_front_bn = tf.placeholder_with_default(False, shape = None, name = "main_batchnorm_training_switch")
self.joint_bn = tf.placeholder_with_default(False, shape = None, name = "joint_batchnorm_training_switch")
self.ct_front_bn = tf.placeholder_with_default(True, shape = None, name = "adapt_batchnorm_training_switch")
# these two are useless. They are not passed into the program
self.cls_bn = tf.placeholder_with_default(True, shape = None, name = "cls_batchnorm_training_switch")
self.m_cls_bn = tf.placeholder_with_default(True, shape = None, name = "mask_cls_batchnorm_training_switch")
self.network_config = network_config
self.mr_front_trainable = self.network_config["mr_front_trainable"]
self.ct_front_trainable = self.network_config["ct_front_trainable"]
self.joint_trainable = self.network_config["joint_trainable"]
self.cls_trainable = self.network_config["cls_trainable"]
self.m_cls_trainable = self.network_config["m_cls_trainable"]
self.keep_prob = tf.placeholder(tf.float32) # dropout keep probability
# Get features from MRI and CT path, for early layers
_mr_c4_2, _ct_c4_2, _mr_c6_2, _ct_c6_2 = self.create_zip_network(input_channel = channels,\
feature_base = 16, num_cls = n_class, keep_prob = self.keep_prob,\
main_bn = self.mr_front_bn, main_trainable = self.mr_front_trainable,\
adapt_bn = self.ct_front_bn, adapt_trainable = self.ct_front_trainable)
# Get features from MRI and CT, fromt the shared higher layers
with tf.variable_scope("", reuse = tf.AUTO_REUSE) as scope:
_ct_c9_2, _ct_b8, _ct_b7, _ct_logits = self.create_second_half( _ct_c6_2, feature_base = 16, input_channel = 3, num_cls = n_class, keep_prob = self.keep_prob, joint_bn = self.joint_bn, joint_trainable = self.joint_trainable)
_mr_c9_2, _mr_b8, _mr_b7, _mr_logits = self.create_second_half( _mr_c6_2, feature_base = 16, input_channel = 3, num_cls = n_class, keep_prob = self.keep_prob, joint_bn = self.joint_bn, joint_trainable = self.joint_trainable)
self.ct_conv9_2 = _ct_c9_2
self.mr_conv9_2 = _mr_c9_2
with tf.variable_scope("cls_scope", reuse = tf.AUTO_REUSE) as scope:
self._ct_class_logits = self.create_classifier(_ct_c4_2, _ct_c6_2, _ct_b7, _ct_c9_2, _ct_logits)
self._mr_class_logits = self.create_classifier(_mr_c4_2, _mr_c6_2, _mr_b7, _mr_c9_2, _mr_logits)
self.predictor = pixel_wise_softmax_2(_ct_logits) # segmentation logits of CT
self.compact_pred = tf.argmax(self.predicter, 3) # predictions
self.compact_y = tf.argmax(self.ct_y, 3) # ground truth
self.ct_dice_eval, self.ct_dice_eval_arr = _dice_eval(self.compact_pred, self.ct_y, self.n_class) # used for monitoring training process
self.ct_dice_eval_c1 = self.ct_dice_eval_arr[1]
self.ct_dice_eval_c2 = self.ct_dice_eval_arr[2]
self.ct_dice_eval_c3 = self.ct_dice_eval_arr[3]
self.ct_dice_eval_c4 = self.ct_dice_eval_arr[4]
self.mr_seg_valid = pixel_wise_softmax_2(_mr_logits) # segmentation logits of MRI
self.compact_mr_valid = tf.argmax(self.mr_seg_valid, 3)
self.compact_mr_y = tf.argmax(self.mr_y, 3)
self.mr_dice_eval, self.mr_dice_eval_arr = _dice_eval(self.compact_mr_valid, self.mr_y, self.n_class)
with tf.variable_scope("mask_cls_scope", reuse = tf.AUTO_REUSE) as scope:
self._ct_mask_logits = self.create_mask_critic(_ct_logits, num_cls = n_class) # auxilary D loss for masks
self._mr_mask_logits = self.create_mask_critic(_mr_logits, num_cls = n_class)
self.cost_kwargs = cost_kwargs
self.dis_loss, self.ct_gen_loss, self.fixed_coeff_reg, self.dis_reg, self.gen_reg = self._get_cost(_ct_logits, _mr_logits, self._ct_class_logits, self._mr_class_logits,\
self._ct_mask_logits, self._mr_mask_logits, self.cost_kwargs) # get cost
self.confusion_matrix = tf.confusion_matrix( tf.reshape(self.compact_y,[-1]), tf.reshape(self.compact_pred, [-1]), num_classes = self.n_class )
def create_zip_network(self, main_bn, main_trainable, adapt_bn, adapt_trainable, num_cls, feature_base = 16, input_channel = 3, keep_prob = 0.75):
# MR path starts from here
with tf.variable_scope('group_1') as scope:
w1_1 = weight_variable(shape = [3, 3, input_channel, feature_base], trainable = main_trainable)
conv1_1 = conv2d(self.mr, w1_1, keep_prob )
wr1_1 = weight_variable(shape = [ 3, 3, feature_base,feature_base], trainable = main_trainable)
wr1_2 = weight_variable(shape = [3, 3, feature_base, feature_base], trainable = main_trainable)
block1_1 = residual_block(conv1_1, wr1_1, wr1_2, keep_prob , is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_1_1' ) # here the scope is for bn
out1 = max_pool2d(block1_1, n = 2)
self.mr_front_weights.append(w1_1)
self.mr_front_weights.append(wr1_1)
self.mr_front_weights.append(wr1_2)
with tf.variable_scope('group_2') as scope:
wr2_1 = weight_variable(shape = [3, 3, feature_base, feature_base * 2], trainable = main_trainable)
wr2_2 = weight_variable(shape = [3, 3, feature_base * 2, feature_base * 2], trainable = main_trainable)
block2_1 = residual_block(out1, wr2_1, wr2_2, inc_dim = True,keep_prob = keep_prob, leak = True, is_train = main_bn, bn_trainable = main_trainable, scope = 'pred_2_1' )
out2 = max_pool2d(block2_1, n = 2)
self.mr_front_weights.append(wr2_1)
self.mr_front_weights.append(wr2_2)
with tf.variable_scope('group_3') as scope:
wr3_1 = weight_variable( shape = [3, 3, feature_base * 2, feature_base * 4], trainable = main_trainable )
wr3_2 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = main_trainable )
block3_1 = residual_block( out2, wr3_1, wr3_2, keep_prob, inc_dim = True, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_3_1' )
wr3_3 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = main_trainable )
wr3_4 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = main_trainable )
block3_2 = residual_block( block3_1, wr3_3, wr3_4,keep_prob = keep_prob, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_3_2' )
out3 = max_pool2d(block3_2, n = 2)
self.mr_front_weights.append(wr3_1)
self.mr_front_weights.append(wr3_2)
self.mr_front_weights.append(wr3_3)
self.mr_front_weights.append(wr3_4)
with tf.variable_scope('group_4') as scope:
wr4_1 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 8], trainable = main_trainable )
wr4_2 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = main_trainable )
block4_1 = residual_block( out3, wr4_1, wr4_2, keep_prob, inc_dim = True, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_4_1' )
wr4_3 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = main_trainable )
wr4_4 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = main_trainable )
block4_2 = residual_block( block4_1, wr4_3, wr4_4, keep_prob, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_4_2' )
self.mr_front_weights.append(wr4_1)
self.mr_front_weights.append(wr4_2)
self.mr_front_weights.append(wr4_3)
self.mr_front_weights.append(wr4_4)
with tf.variable_scope('group_5') as scope:
wr5_1 = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base * 16], trainable = main_trainable, name = "Variable" )
wr5_2 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable_1" )
block5_1 = residual_block( block4_2, wr5_1, wr5_2, keep_prob = keep_prob, inc_dim = True, leak = True, is_train = main_bn, bn_trainable = main_trainable, scope = 'pred_5_1' )
wr5_3 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable_2" )
wr5_4 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable_3" )
block5_2 = residual_block( block5_1, wr5_3, wr5_4, keep_prob = keep_prob, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_5_2' )
self.mr_front_weights.append( wr5_1 )
self.mr_front_weights.append( wr5_2 )
self.mr_front_weights.append( wr5_3 )
self.mr_front_weights.append( wr5_4 )
with tf.variable_scope('group_6') as scope:
wr6_1 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable" )
wr6_2 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable_1" )
block6_1 = residual_block( block5_2, wr6_1, wr6_2, keep_prob = keep_prob, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_6_1' )
wr6_3 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable , name = "Variable_2" )
wr6_4 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable, name = "Variable_3" )
block6_2 = residual_block( block6_1, wr6_3, wr6_4, keep_prob = keep_prob, is_train = main_bn, leak = True, bn_trainable = main_trainable , scope = 'pred_6_2' )
self.mr_front_weights.append( wr6_1 )
self.mr_front_weights.append( wr6_2 )
self.mr_front_weights.append( wr6_3 )
self.mr_front_weights.append( wr6_4 )
# DAM for CT path starts from here
with tf.variable_scope('adapt_1') as scope:
w1_1a = sharable_weight_variable(shape = [3, 3, input_channel, feature_base ], trainable = adapt_trainable, name = "Variable")
conv1_1a = conv2d(self.ct, w1_1a, keep_prob )
wr1_1a = sharable_weight_variable(shape = [ 3, 3, feature_base ,feature_base ], trainable = adapt_trainable, name = "Variable_1")
wr1_2a = sharable_weight_variable(shape = [3, 3, feature_base , feature_base ], trainable = adapt_trainable, name = "Variable_2")
block1_1a = residual_block(conv1_1a, wr1_1a, wr1_2a, keep_prob , is_train = adapt_bn, leak = True, bn_trainable = adapt_trainable, scope = 'adapt_1' )
out1a = max_pool2d(block1_1a, n = 2)
self.ct_front_weights.append(w1_1a)
self.ct_front_weights.append(wr1_1a)
self.ct_front_weights.append(wr1_2a)
with tf.variable_scope('adapt_2') as scope:
wr2_1a = sharable_weight_variable(shape = [3, 3, feature_base , feature_base * 2], trainable = adapt_trainable, name = "Variable")
wr2_2a = sharable_weight_variable(shape = [3, 3, feature_base * 2, feature_base * 2], trainable = adapt_trainable, name = "Variable_1")
block2_1a = residual_block(out1a, wr2_1a, wr2_2a, inc_dim = True,keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable, scope = 'adapt_2' )
out2a = max_pool2d(block2_1a, n = 2)
self.ct_front_weights.append(wr2_1a)
self.ct_front_weights.append(wr2_2a)
with tf.variable_scope('adapt_3') as scope:
wr3_1a = sharable_weight_variable( shape = [3, 3, feature_base * 2, feature_base * 4], trainable = adapt_trainable, name = "Variable" )
wr3_2a = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable, name = "Variable_1" )
block3_1a = residual_block( out2a, wr3_1a, wr3_2a, keep_prob, inc_dim = True, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable , scope = 'adapt_3_1' )
wr3_3a = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable, name = "Variable_2" )
wr3_4a = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable , name = "Variable_3" )
block3_2a = residual_block( block3_1a, wr3_3a, wr3_4a,keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable, scope = 'adapt_3_2' )
out3a = max_pool2d(block3_2a, n = 2)
self.ct_front_weights.append(wr3_1a)
self.ct_front_weights.append(wr3_2a)
self.ct_front_weights.append(wr3_3a)
self.ct_front_weights.append(wr3_4a)
with tf.variable_scope('adapt_4') as scope:
wr4_1a = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 8], trainable = adapt_trainable, name = "Variable" )
wr4_2a = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable , name = "Variable_1" )
block4_1a = residual_block( out3a, wr4_1a, wr4_2a, keep_prob, inc_dim = True, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable, scope = 'adapt_4_1' )
wr4_3a = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable , name = "Variable_2" )
wr4_4a = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable , name = "Variable_3" )
block4_2a = residual_block( block4_1a, wr4_3a, wr4_4a, keep_prob, is_train = adapt_bn, leak = True, bn_trainable = adapt_trainable, scope = 'adapt_4_2' )
self.ct_front_weights.append(wr4_1a)
self.ct_front_weights.append(wr4_2a)
self.ct_front_weights.append(wr4_3a)
self.ct_front_weights.append(wr4_4a)
with tf.variable_scope('adapt_5') as scope:
wr5_1a = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base * 16], trainable = adapt_trainable, name = "Variable" )
wr5_2a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable_1" )
block5_1a = residual_block( block4_2a, wr5_1a, wr5_2a, keep_prob = keep_prob, leak = True, inc_dim = True, is_train = adapt_bn, bn_trainable = adapt_trainable, scope = 'adapt_5_1' )
wr5_3a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable_2" )
wr5_4a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable_3" )
block5_2a = residual_block( block5_1a, wr5_3a, wr5_4a, keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable , scope = 'adapt_5_2' )
self.ct_front_weights.append( wr5_1a )
self.ct_front_weights.append( wr5_2a )
self.ct_front_weights.append( wr5_3a )
self.ct_front_weights.append( wr5_4a )
with tf.variable_scope('adapt_6') as scope:
wr6_1a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable" )
wr6_2a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable_1" )
block6_1a = residual_block( block5_2a, wr6_1a, wr6_2a, keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable , scope = 'adapt_6_1' )
wr6_3a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable , name = "Variable_2" )
wr6_4a = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = adapt_trainable, name = "Variable_3" )
block6_2a = residual_block( block6_1a, wr6_3a, wr6_4a, keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable , scope = 'adapt_6_2' )
self.ct_front_weights.append( wr6_1a )
self.ct_front_weights.append( wr6_2a )
self.ct_front_weights.append( wr6_3a )
self.ct_front_weights.append( wr6_4a )
return block4_2, block4_2a, block6_2, block6_2a
def create_second_half(self, input_feature, joint_bn, joint_trainable, num_cls, feature_base = 16, input_channel = 3, keep_prob = 0.75):
with tf.variable_scope('group_7', reuse = tf.AUTO_REUSE) as scope:
wr7_1 = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base * 32], trainable = joint_trainable , name = "Variable" )
wr7_2 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_1" )
block7_1 = residual_block( input_feature, wr7_1, wr7_2, keep_prob = keep_prob, leak = True, inc_dim = True, is_train = joint_bn, bn_trainable = joint_trainable , scope = 'pred_7_1' )
wr7_3 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_2" )
wr7_4 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_3" )
block7_2 = residual_block( block7_1, wr7_3, wr7_4, keep_prob = keep_prob, leak = True, is_train = joint_bn, bn_trainable = joint_trainable , scope = 'pred_7_2' )
self.mr_front_weights.append( wr7_1 )
self.mr_front_weights.append( wr7_2 )
self.mr_front_weights.append( wr7_3 )
self.mr_front_weights.append( wr7_4 )
with tf.variable_scope('group_8', reuse = tf.AUTO_REUSE) as scope:
wr8_1 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable" )
wr8_2 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_1" )
block8_1 = DR_block( block7_2, wr8_1, wr8_2, keep_prob = keep_prob, leak = True, is_train = joint_bn, rate = 2, bn_trainable = joint_trainable , scope = 'pred_8_1' )
wr8_3 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_2" )
wr8_4 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_3" )
block8_2 = DR_block( block8_1, wr8_3, wr8_4, keep_prob = keep_prob, leak = True, is_train = joint_bn, rate = 2, bn_trainable = joint_trainable , scope = 'pred_8_2' )
self.mr_front_weights.append( wr8_1 )
self.mr_front_weights.append( wr8_2 )
self.mr_front_weights.append( wr8_3 )
self.mr_front_weights.append( wr8_4 )
with tf.variable_scope('group_9', reuse = tf.AUTO_REUSE) as scope:
w9_1 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable" )
conv9_1 = conv_bn_relu2d( block8_2, w9_1, keep_prob, leak = True, is_train = joint_bn, bn_trainable = joint_trainable , scope = 'pred_9_1' )
w9_2 = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = joint_trainable , name = "Variable_1" )
conv9_2 = conv_bn_relu2d( conv9_1, w9_2, keep_prob, leak = True, is_train = joint_bn, bn_trainable = joint_trainable , scope = 'pred_9_2' )
self.mr_front_weights.append( w9_1 )
self.mr_front_weights.append( w9_2 )
with tf.variable_scope('group_10', reuse = tf.AUTO_REUSE) as scope:
local_size = 8 * 8
w10_1 = sharable_weight_variable( shape = [3, 3, feature_base * 32, local_size * num_cls * 8], trainable = joint_trainable , name = "Variable" )
conv10_1 = conv2d( conv9_2, w10_1, keep_prob_ = keep_prob, padding = 'SYMMETRIC')
self.mr_front_weights.append(w10_1)
flat_conv10_1 = PS(conv10_1, r = 8, n_channel = num_cls * 8, batch_size = self.batch_size) # phase shift
with tf.variable_scope('output', reuse = tf.AUTO_REUSE) as scope:
w11_1 = sharable_weight_variable( shape = [5, 5, num_cls * 8, num_cls], trainable = joint_trainable , name = "Variable" )
logits = conv2d( flat_conv10_1, w11_1, keep_prob_ = 1., padding = 'SYMMETRIC' )
return conv9_2, block8_2, block7_2, logits
def create_classifier(self, input_conv4, input_conv6, input_b7, input_conv9, seg_logits, feature_base = 16, keep_prob = 0.75, cls_bn = True, cls_trainable = True):
"""
domain discriminator for MRI features and CT features
"""
with tf.variable_scope('cls_0') as scope:
flat_input_conv4 = PS(input_conv4, r=8, n_channel=2, batch_size=self.batch_size) # 2
flat_input_conv4 = tf.tile(flat_input_conv4, [1, 1, 1, 3]) # 6 in total
flat_input_conv6 = PS(input_conv6, r=8, n_channel=4, batch_size=self.batch_size) # 10 in total
flat_input_b7 = PS(input_b7, r=8, n_channel=8, batch_size=self.batch_size) # 18 in total
flat_input_conv9 = PS(input_conv9, r = 8, n_channel = 8, batch_size = self.batch_size) # 26 in total
input_comp = simple_concat2d(flat_input_conv4, flat_input_conv6) # 10
input_comp = simple_concat2d(input_comp, flat_input_b7) # 18
input_comp = simple_concat2d(input_comp, flat_input_conv9) # 26
input_comp = simple_concat2d(input_comp, seg_logits) # 31 in total
input_comp = simple_concat2d(input_comp, tf.expand_dims(tf.cast(tf.argmax(seg_logits, 3), tf.float32), 3)) # 1
with tf.variable_scope('cls_1') as scope:
wr1_1c = sharable_weight_variable( shape = [3, 3, feature_base * 2, feature_base * 4], trainable = cls_trainable , name = "Variable" )
wr1_2c = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = cls_trainable , name = "Variable_1" )
block1_1c = residual_block( input_comp, wr1_1c, wr1_2c, keep_prob = keep_prob, inc_dim = True, is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_1' , leak = True )
wr1_3d = sharable_weight_variable( shape = [3,3, feature_base * 4, feature_base * 4], trainable = cls_trainable, name = "Variable_2" )
out1c = conv_bn_relu2d( block1_1c, wr1_3d, keep_prob, strides = [1,2,2,1], is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_1_3', leak = True )
self.cls_weights.append( wr1_1c )
self.cls_weights.append( wr1_2c )
self.cls_weights.append( wr1_3d )
with tf.variable_scope('cls_2') as scope:
wr2_1c = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base *8], trainable = cls_trainable , name = "Variable" )
wr2_2c = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base *8], trainable = cls_trainable , name = "Variable_1" )
block2_1c = residual_block( out1c, wr2_1c, wr2_2c, keep_prob = keep_prob, inc_dim = True, is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_2' , leak = True )
wr2_3d = sharable_weight_variable( shape = [5,5, feature_base * 8, feature_base * 8], trainable = cls_trainable, name = "Variable_2" )
out2c = conv_bn_relu2d( block2_1c, wr2_3d, keep_prob, strides = [1,2,2,1], is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_2_3', leak = True )
self.cls_weights.append( wr2_1c )
self.cls_weights.append( wr2_2c )
self.cls_weights.append( wr2_3d )
self.debug_out2c = out2c
self.debug_wr2_2c = wr2_2c
with tf.variable_scope('cls_3') as scope:
wr3_1c = sharable_weight_variable( shape = [3, 3, feature_base * 8, feature_base *16], trainable = cls_trainable , name = "Variable" )
wr3_2c = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base *16], trainable = cls_trainable , name = "Variable_1" )
block3_1c = residual_block( out2c, wr3_1c, wr3_2c, keep_prob = keep_prob, inc_dim = True, is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_3' , leak = True )
wr3_3d = sharable_weight_variable( shape = [3,3, feature_base * 16, feature_base * 16], trainable = cls_trainable, name = "Variable_2" )
out3c = conv_bn_relu2d( block3_1c, wr3_3d, keep_prob, strides = [1,2,2,1], is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_3_3', leak = True )
self.cls_weights.append( wr3_1c )
self.cls_weights.append( wr3_2c )
self.cls_weights.append( wr3_3d )
with tf.variable_scope('cls_4') as scope:
wr4_1c = sharable_weight_variable( shape = [3, 3, feature_base * 16, feature_base *32], trainable = cls_trainable , name = "Variable" )
wr4_2c = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base *32], trainable = cls_trainable , name = "Variable_1" )
block4_1c = residual_block( out3c, wr4_1c, wr4_2c, keep_prob = keep_prob, inc_dim = True, is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_4' , leak = True )
wr4_3d = sharable_weight_variable( shape = [3,3, feature_base * 32, feature_base * 32], trainable = cls_trainable, name = "Variable_2" )
out4c = conv_bn_relu2d( block4_1c, wr4_3d, keep_prob, strides = [1,2,2,1], is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_4_3', leak = True )
self.cls_weights.append( wr4_1c )
self.cls_weights.append( wr4_2c )
self.cls_weights.append( wr4_3d )
with tf.variable_scope('cls_5') as scope:
wr5_1c = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base *32], trainable = cls_trainable , name = "Variable" )
wr5_2c = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base *32], trainable = cls_trainable , name = "Variable_1" )
block5_1c = residual_block( out4c, wr5_1c, wr5_2c, keep_prob = keep_prob, is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_5' , leak = True )
wr5_3d = sharable_weight_variable( shape = [5,5, feature_base * 32, feature_base * 32], trainable = cls_trainable, name = "Variable_2" )
out5c = conv_bn_relu2d( block5_1c, wr5_3d, keep_prob, strides = [1,4,4,1], is_train = cls_bn, bn_trainable = cls_trainable, scope = 'cls_5_3', leak = True )
self.cls_weights.append( wr5_1c )
self.cls_weights.append( wr5_2c )
self.cls_weights.append( wr5_3d )
with tf.variable_scope('cls_6') as scope:
wr6_1c = sharable_weight_variable( shape = [3, 3, feature_base * 32, feature_base *32], trainable = cls_trainable , name = "Variable" )
conv_6c = conv_bn_relu2d(out5c, wr6_1c, strides = [1,2,2,1], keep_prob = keep_prob, padding = "SYMMETRIC", scope = 'cls_6', is_train = cls_bn, bn_trainable = cls_trainable, leak = True)
self.cls_weights.append( wr6_1c )
with tf.variable_scope('cls_out') as scope:
wc_out = sharable_weight_variable( shape = [ feature_base* 32 * 4,1 ], trainable = cls_trainable , name = "Variable" )
out6c_flat = tf.reshape(conv_6c, [-1, feature_base * 32 * 4])
cls_logits = tf.matmul(out6c_flat, wc_out)
self.cls_weights.append(wc_out)
return cls_logits
def create_mask_critic(self, input_mask, feature_base = 16, keep_prob = 0.75, num_cls = 5, m_cls_bn = True, m_cls_trainable = True):
"""
domain discriminator for MRI and CT segmentation maskS
"""
with tf.variable_scope('mask_cls_1') as scope:
wr1_1m = sharable_weight_variable( shape = [3, 3, num_cls, feature_base], trainable = m_cls_trainable , name = "Variable" )
out1m = conv_bn_relu2d( input_mask, wr1_1m, keep_prob, strides = [1,2,2,1], is_train = m_cls_bn, bn_trainable = m_cls_trainable, scope = 'mask_cls_1', leak = True ) # use strided conv instead of maxpool to
self.m_cls_weights.append( wr1_1m )
with tf.variable_scope('mask_cls_2') as scope:
wr2_1m = sharable_weight_variable( shape = [3, 3, feature_base, feature_base ], trainable = m_cls_trainable , name = "Variable" )
wr2_2m = sharable_weight_variable( shape = [3, 3, feature_base, feature_base ], trainable = m_cls_trainable , name = "Variable_1" )
block2_1m = residual_block( out1m, wr2_1m, wr2_2m, keep_prob = keep_prob, inc_dim = False, is_train = m_cls_bn, bn_trainable = m_cls_trainable, scope = 'm_cls_2' , leak = True )
wr2_3d = sharable_weight_variable( shape = [5,5, feature_base, feature_base * 2], trainable = m_cls_trainable, name = "Variable_2" )
out2m = conv_bn_relu2d( block2_1m, wr2_3d, keep_prob, strides = [1,4,4,1], is_train = m_cls_bn, bn_trainable = m_cls_trainable, scope = 'm_cls_2_3', leak = True )
self.m_cls_weights.append( wr2_1m )
self.m_cls_weights.append( wr2_2m )
self.m_cls_weights.append( wr2_3d )
with tf.variable_scope('mask_cls_3') as scope:
wr3_1m = sharable_weight_variable( shape = [3, 3, feature_base * 2, feature_base * 4], trainable = m_cls_trainable , name = "Variable" )
wr3_2m = sharable_weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4 ], trainable = m_cls_trainable , name = "Variable_1" )
block3_1m = residual_block( out2m, wr3_1m, wr3_2m, keep_prob = keep_prob, inc_dim = True, is_train = m_cls_bn, bn_trainable = m_cls_trainable, scope = 'm_cls_3' , leak = True )
wr3_3d = sharable_weight_variable( shape = [5,5, feature_base * 4, feature_base * 8], trainable = m_cls_trainable, name = "Variable_2" )
out3m = conv_bn_relu2d( block3_1m, wr3_3d, keep_prob, strides = [1,4,4,1], is_train = m_cls_bn, bn_trainable = m_cls_trainable, scope = 'm_cls_3_3', leak = True )
self.m_cls_weights.append( wr3_1m )
self.m_cls_weights.append( wr3_2m )
self.m_cls_weights.append( wr3_3d )
with tf.variable_scope('mask_cls_4') as scope:
wr4_1m = sharable_weight_variable( shape = [5, 5, feature_base * 8, feature_base * 16], trainable = m_cls_trainable , name = "Variable" )
conv_4m = conv_bn_relu2d(out3m, wr4_1m, strides = [1,4,4,1], keep_prob = keep_prob, padding = "SYMMETRIC", scope = 'm_cls_4', is_train = m_cls_bn, bn_trainable = m_cls_trainable, leak = True)
self.m_cls_weights.append( wr4_1m )
with tf.variable_scope('m_cls_out') as scope:
wm_out = sharable_weight_variable( shape = [ feature_base* 16 * 4,1 ], trainable = m_cls_trainable , name = "Variable" )
out5m_flat = tf.reshape(conv_4m, [-1, feature_base * 16 * 4])
m_cls_logits = tf.matmul(out5m_flat, wm_out)
self.m_cls_weights.append(wm_out)
return m_cls_logits
def _get_cost(self, ct_logits, mr_logits, ct_cls_logits, mr_cls_logits, ct_mask_logits, mr_mask_logits, cost_kwargs):
miu_dis = cost_kwargs["miu_dis"] # coefficient for discriminator loss
miu_gen = cost_kwargs["miu_gen"] # used to be 0.5 0.5 1
lambda_mask_loss = cost_kwargs.pop("lambda_mask_loss", 1.0) # weighting of mask critic score
self.miu_dis = tf.Variable(miu_dis, name = "miu_dis") # coefficient for discrminator
self.miu_gen = tf.Variable(miu_gen, name = "miu_gen")
# loss for main critic and mask critic
dis_loss = -1 * self.miu_dis * tf.reduce_mean( mr_cls_logits - ct_cls_logits ) # loss functions of WGAN
gen_loss = -1 * self.miu_gen * tf.reduce_mean( ct_cls_logits )
m_dis_loss = -1 * self.miu_dis * tf.reduce_mean( mr_mask_logits - ct_mask_logits )
m_gen_loss = -1 * self.miu_gen * tf.reduce_mean( ct_mask_logits )
############ L2 norm regularizer ######################
reg_coeff = cost_kwargs.pop("regularizer", 1.0e-4) # regularizer coefficients for non-GAN parts
mr_front_reg = sum([tf.nn.l2_loss(variable) for variable in self.mr_front_weights]) # regulizer for MRI varibles, fixed for the unsupervised setting
joint_reg = sum([tf.nn.l2_loss(variable) for variable in self.joint_weights]) # regularizer for joint part, fixed for the unsupervised setting
fixed_coeff_reg = reg_coeff * (mr_front_reg + joint_reg) # for training observation to confirm the source segmenter is not updated
gan_reg_coeff = cost_kwargs.pop("gan_regularizer", 1.0e-4) # regularizer coefficients for GAN parts, note, seems that it works well when it is larger
gen_reg = gan_reg_coeff * self.miu_gen * sum([tf.nn.l2_loss(variable) for variable in self.ct_front_weights]) # regulizers for WGAN
dis_reg = gan_reg_coeff * self.miu_dis * sum([tf.nn.l2_loss(variable) for variable in self.cls_weights])
m_dis_reg = gan_reg_coeff * self.miu_dis * sum([tf.nn.l2_loss(variable) for variable in self.m_cls_weights])
dis_loss += lambda_mask_loss * m_dis_loss
gen_loss += lambda_mask_loss * m_gen_loss
dis_reg += lambda_mask_loss * m_dis_reg
return dis_loss, gen_loss, fixed_coeff_reg, dis_reg, gen_reg
def _get_variables_by_scope(self):
"""
Group different variables (MR, CT, GAN, etc)to different groups
"""
logging.info("extent of joint part and segmenter need to be manually set, including variables and bns")
self.adapt_vars = [] # variables for adaptation (CT)
self.cls_vars = [] # variables for domain-classifier (i.e. discriminator) for WGAN
self.seg_vars = [] # variables for segmentation, fixed higher layers in source segmenter
self.mri_seg_vars = [] # variables for segmentation, MRI early players, fixed as well
var_list = tf.contrib.framework.get_variables()
for var in var_list:
if "cls" in var.name:
self.cls_vars.append(var)
elif "adapt" in var.name:
self.adapt_vars.append(var)
elif "output" in var.name:
self.seg_vars.append(var)
self.mri_seg_vars.append(var)
elif "group" in var.name:
_group_name = var.name.split("/")[0]
_group_no = float(_group_name.split("_")[-1] )
self.mri_seg_vars.append(var)
def restore(self, sess, model_path, no_gan=False, clear_rms=False):
"""
Restores a session from a checkpoint
:param sess: current session instance
:param model_path: path to file system checkpoint location
:param no_gan: only restore mr variables
:param clear_rms: does not restore RMSprop internal variables, please set is true
"""
saver = tf.train.Saver(tf.contrib.framework.get_variables() + tf.get_collection_ref("internal_batchnorm_variables") )
logging.info("Model restored from file: %s" % model_path)
if no_gan is True:
logging.info("I only load the main variables! without batchnorm!!!")
variables = tf.global_variables()
reader = tf.pywrap_tensorflow.NewCheckpointReader(model_path)
var_keep_dic = reader.get_variable_to_shape_map()
variables_to_restore = []
for v in variables:
if v.name.split(':')[0] in var_keep_dic:
if ("adapt" in v.name) or ("cls" in v.name) or("Adam" in v.name):
continue
if ("group" in v.name) or ("output" in v.name):
logging.info("restoring "+str(v.name))
variables_to_restore.append(v)
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, model_path)
logging.info("Model restored from file: %s, the pre-trained MRI model (without bn params)" % model_path)
return 0
if clear_rms is True:
logging.info("Calculating RMS parameters from beginning")
variables = tf.global_variables()
reader = tf.pywrap_tensorflow.NewCheckpointReader(model_path)
var_keep_dic = reader.get_variable_to_shape_map()
variables_to_restore = []
for v in variables:
if v.name.split(':')[0] in var_keep_dic:
if ("RMS" in v.name) :
continue
else:
logging.info("restoring "+str(v.name))
variables_to_restore.append(v)
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, model_path)
logging.info("Model restored from file: %s and RMS variables are ignored" % model_path)
return 0
try: # else, just restore as much as possible
saver.restore(sess, model_path)
logging.info("Model restored from file: %s" % model_path)
except:
variables = tf.global_variables()
reader = tf.pywrap_tensorflow.NewCheckpointReader(model_path)
var_keep_dic = reader.get_variable_to_shape_map()
variables_to_restore = []
for v in variables:
if v.name.split(':')[0] in var_keep_dic:
skip_flg = False
for kwd in self.network_config["restore_skip_kwd"]: # if it is manully specified to be skipped, don't restore it
if kwd in v.name:
skip_flg = True
break
if skip_flg is False:
variables_to_restore.append(v)
logging.info("cannot fully restore the model, restoring "+str(v.name))
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, model_path)
logging.info("Model restored from file: %s with relaxation" % model_path)
class Trainer(object):
"""
Train a unet instance
"""
def __init__(self, net, mr_train_list, mr_val_list, ct_train_list, ct_val_list,\
adapt_var_list, mr_var_list, old_bn_list, new_bn_list,\
test_label_list = None, test_nii_list = None,\
num_cls=None, batch_size = 6,\
opt_kwargs={}, train_config = {}):
self.net = net
self.batch_size = batch_size
self.num_cls = num_cls # including background
self.opt_kwargs = opt_kwargs
self.ct_train_list = ct_train_list # a list of training files
self.ct_val_list = ct_val_list # a list of validation files
self.mr_train_list = mr_train_list # a list of training files for MRI
self.mr_val_list = mr_val_list
self.test_label_list = test_label_list # test files (npz format)
self.test_nii_list = test_nii_list # test files (npz format)
self.adapt_var_list = adapt_var_list # a list of variables in CT path
self.mr_var_list = mr_var_list # a list of variables in MRI path in correspondance with variables in adapt_var_list, this is used for manually initialize variables in CT path with those of MRI path
self.old_bn_list = old_bn_list # a list of batch_norm internal variables in baseline model
self.new_bn_list = new_bn_list # a list of batch_norm internal variables for the MRI path in current model
self.ct_train_queue = tf.train.string_input_producer(ct_train_list, num_epochs = None, shuffle = True) # tensorflow input queue for CT supervision (disabled), CT and MRI
self.ct_val_queue = tf.train.string_input_producer(ct_val_list, num_epochs = None, shuffle = True)
self.mr_train_queue = tf.train.string_input_producer(mr_train_list, num_epochs = None, shuffle = True)
self.mr_val_queue = tf.train.string_input_producer(mr_val_list, num_epochs = None, shuffle = True)
self.train_config = train_config # configuations for training
self.lr_update_flag = train_config["lr_update"]
def next_batch(self, input_queue, capacity = 120, num_threads = 2, min_after_dequeue = 30, label_type = 'float'):
reader = tf.TFRecordReader()
fid, serialized_example = reader.read(input_queue)
parser = tf.parse_single_example(serialized_example, features = decomp_feature)
dsize_dim0 = tf.cast(parser['dsize_dim0'], tf.int32)
dsize_dim1 = tf.cast(parser['dsize_dim1'], tf.int32)
dsize_dim2 = tf.cast(parser['dsize_dim2'], tf.int32)
lsize_dim0 = tf.cast(parser['lsize_dim0'], tf.int32)
lsize_dim1 = tf.cast(parser['lsize_dim1'], tf.int32)
lsize_dim2 = tf.cast(parser['dsize_dim2'], tf.int32)
data_vol = tf.decode_raw(parser['data_vol'], tf.float32)
label_vol = tf.decode_raw(parser['label_vol'], tf.float32)
data_vol = tf.reshape(data_vol, raw_size)
label_vol = tf.reshape(label_vol, raw_size)
data_vol = tf.slice(data_vol, [0,0,0],volume_size)
label_vol = tf.slice(label_vol, [0,0,1], label_size)
data_feed, label_feed, fid_feed = tf.train.shuffle_batch([data_vol, label_vol, fid], batch_size =self.batch_size , capacity = capacity, \
num_threads = num_threads, min_after_dequeue = min_after_dequeue)
pair_feed = tf.concat([data_feed, label_feed], axis = 3) # concatenate them
return pair_feed, fid_feed
def _get_optimizer(self, training_iters, global_step):
"""
Use RMSprop instead of Adam for training WGAN
"""
learning_rate = self.opt_kwargs.pop("learning_rate", None) # default set to 0.0002
self.LR_refresh = learning_rate
self.learning_rate_node = tf.Variable(learning_rate)
# optimizer for discriminator/ domain classifier
dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_node,
**self.opt_kwargs).minimize(self.net.dis_loss + 1.0 / self.train_config['dis_sub_iter'] * self.net.dis_reg,
global_step=global_step,\
var_list = self.net.cls_vars)
# optimizer for training generator
gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_node,
**self.opt_kwargs).minimize(self.net.ct_gen_loss + 1.0 / self.train_config['gen_sub_iter'] * self.net.gen_reg,
global_step=global_step,\
var_list = self.net.adapt_vars)
# clip operation for WGAN for Lipschitz constrain
self.clip_op = [tf.assign(var, tf.clip_by_value(var, -0.03, 0.03)) for var in self.net.cls_vars if "Variable" in var.name]
return dis_optimizer, gen_optimizer
def _initialize(self, training_iters, output_path):
"""
initialization and tensorboard setting
"""
self.global_step = tf.Variable(0)
scalar_summaries = [] # tensorboard summaries
scalar_summaries.append(tf.summary.scalar('fixed_coeff_reg', self.net.fixed_coeff_reg)) # regulizer of MRI segemter weights, monitor MRI weights unchanged
scalar_summaries.append(tf.summary.scalar('discriminator_loss', self.net.dis_loss))
scalar_summaries.append(tf.summary.scalar('generator_loss', self.net.ct_gen_loss))
scalar_summaries.append(tf.summary.scalar('ct_dice_eval_c1_lv_myo', self.net.ct_dice_eval_c1))
scalar_summaries.append(tf.summary.scalar('ct_dice_eval_c2_la_blood', self.net.ct_dice_eval_c2))
scalar_summaries.append(tf.summary.scalar('ct_dice_eval_c3_lv_blood', self.net.ct_dice_eval_c3))
scalar_summaries.append(tf.summary.scalar('ct_dice_eval_c4_aa', self.net.ct_dice_eval_c4))
scalar_summaries.append(tf.summary.scalar('mri_dice', self.net.mr_dice_eval)) # set to show absolute value for mr segmentation
train_images = []
train_images.append(tf.summary.image('ct_pred', tf.expand_dims(tf.cast(self.net.compact_pred, tf.float32), 3 )) ) # ct prediction
train_images.append(tf.summary.image('ct_image', tf.expand_dims(tf.cast(self.net.ct[:,:,:,1], tf.float32), 3 )) )
train_images.append(tf.summary.image('ct_gt', tf.expand_dims(tf.cast(self.net.compact_y, tf.float32), 3))) # ground truth for CT segmentation
train_images.append(tf.summary.image('mri_validation_pred', tf.expand_dims(tf.cast(self.net.compact_mr_valid, tf.float32), 3 )) ) # mri segmentation for debugging
train_images.append(tf.summary.image('mri_image', tf.expand_dims(tf.cast(self.net.mr[:,:,:,1], tf.float32), 3 )) )
train_images.append(tf.summary.image('mri_gt', tf.expand_dims(tf.cast(self.net.compact_mr_y, tf.float32), 3))) # ground truth for CT segmentation
val_images = []
val_images.append(tf.summary.image('ct_val_pred', tf.expand_dims(tf.cast(self.net.compact_pred, tf.float32), 3))) # prediction for validation
val_images.append(tf.summary.image('ct_image', tf.expand_dims(tf.cast(self.net.ct[:,:,:,1], tf.float32), 3)))
val_images.append(tf.summary.image('ct_val_gt', tf.expand_dims(tf.cast(self.net.compact_y, tf.float32), 3)))
self.net._get_variables_by_scope() # get variable groups
self.dis_optimizer, self.gen_optimizer = self._get_optimizer(training_iters, self.global_step) # get optimizers
scalar_summaries.append(tf.summary.scalar('learning_rate', self.learning_rate_node))
# get summary writers
self.scalar_summary_op = tf.summary.merge(scalar_summaries)
self.train_image_summary_op = tf.summary.merge(train_images)
self.val_image_summary_op = tf.summary.merge(val_images)
# variable initializers
init_glb = tf.global_variables_initializer()
init_loc = tf.variables_initializer(tf.local_variables())
return init_glb, init_loc
def _adapt_copy_weights(self, internal = False):
if internal is False:
if len(self.mr_var_list) != len(self.adapt_var_list):
raise ValueError("cannot copy weight to adaptation because of incorrect varaible lists")
with tf.variable_scope("", reuse = True):
for idx in range(len(self.mr_var_list)):
logging.info("Now initializing adaptation variable %s with mainstream variable %s"%( self.adapt_var_list[idx], self.mr_var_list[idx] ))
_curr_mr_var = tf.get_default_graph().get_tensor_by_name(self.mr_var_list[idx])
_curr_adapt_var = tf.get_default_graph().get_tensor_by_name(self.adapt_var_list[idx])
upd_op = tf.assign(_curr_adapt_var,_curr_mr_var)
upd_op.eval()
else:
logging.info("automatically seeks for variable correspondance")
all_var_list = tf.contrib.framework.get_variables()
self.mr_var_list = []
self.adapt_var_list = []
for v in all_var_list:
if ("RMS" in v.name) or ("Adam" in v.name):
continue
else:
if "group" in v.name:
self.mr_var_list.append(v)
elif "adapt" in v.name:
self.adapt_var_list.append(v)
else:
continue
if len(self.mr_var_list) != len(self.adapt_var_list):
raise ValueError("cannot copy weight to adaptation because of incorrect varaible list")
for _curr_adapt_var, _curr_mr_var in zip(self.adapt_var_list, self.mr_var_list):
upd_op = tf.assign(_curr_adapt_var,_curr_mr_var)
upd_op.eval()
logging.info("adaptation module has been initialized! Please remember that it is a one-time operation")
def _load_batch_norm_weights(self, output_path):
"""
convenience function for loading weights from eariler version of baseline model for the CT/MR segmentation network
old_bn_list: a list of bn variable names in baseline model
new_bn_list: a list of bn Variable names in current model
"""
if len(self.old_bn_list) != len(self.new_bn_list):
raise ValueError("two mappings mismatch")
checkpoint = tf.train.get_checkpoint_state(output_path)
self.copy_bn_dict = {}
for old_var, new_var in zip(self.old_bn_list, self.new_bn_list):
n_group = new_var.split("_")[1]
new_var = "group_" + n_group + "/" + new_var
self.copy_bn_dict[old_var] = new_var
old_variable = tf.contrib.framework.load_variable( output_path, old_var )
new_variable = tf.get_default_graph().get_tensor_by_name(new_var)
upd_op = tf.assign(new_variable, old_variable)
upd_op.eval()
logging.info("%s has send value to %s"%(old_var, new_var))
return 0
def train(self, output_path, restore=True, restored_path=None, training_iters=200, epochs=1000, dropout=0.75, display_step=5):
self.output_path = output_path
if not os.path.exists(output_path):
logging.info("Allocating '{:}'".format(output_path))
os.makedirs(output_path)
self._initialize_logs()
save_path = os.path.join(output_path, "model.cpkt")
if epochs == 0:
return save_path
init_glb, init_loc = self._initialize(training_iters, output_path)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # False
with tf.Session(config=config) as sess:
sess.run([ init_glb, init_loc] )
coord = tf.train.Coordinator()
# For restore models, there are three situations:
# 1. warming up discriminator, init from MRI segmenter: "restore_from_baseline=True, clear_rms=True"
# if restore_from_baseline set True, clear_rms whatever,
# this would restore the pre-trained MRI segmenter (without BN), this works together with following lines 1076-1079 to manually load BN
# 2. after warming up discriminator, start training GAN: "restpre_from_baseline=False, clear_rms=True"
# this would restore the entire GAN system with warmed up discriminator (excluding RMS from optimizer)
# 3. fine-tune GAN from a breakpoint: "restore_from_baseline=False, clear_rms=False"
if restore:
if restored_path is None:
raise Exception("No restore path is provided")
ckpt = tf.train.get_checkpoint_state(restored_path)
if ckpt and ckpt.model_checkpoint_path:
self.net.restore(sess, ckpt.model_checkpoint_path, no_gan = self.train_config["restore_from_baseline"], clear_rms = self.train_config["clear_rms"])
if self.train_config["restore_from_baseline"] is True: # here initialize the MRI and CT part with the pre-trained MRI segmenter, only call once beginning train
self._load_batch_norm_weights(restored_path) # load batchnorm variables of MRI-specific and joint part
print("initializing from baseline model!")
self._adapt_copy_weights() # copy MRI weights to CT adaptation layers for initialization
if self.lr_update_flag is True: # manually reset learning rate when needed
sess.run( tf.assign(self.learning_rate_node, self.LR_refresh) )
logging.info("New learning rate %s has been loaded"%str(self.LR_refresh))
train_summary_writer = tf.summary.FileWriter(output_path + "/train_log" + self.train_config['tag'], graph=sess.graph)
val_summary_writer = tf.summary.FileWriter(output_path + "/val_log" + self.train_config['tag'], graph=sess.graph)
ct_feed_all, ct_feed_fid = self.next_batch(self.ct_train_queue)
ct_feed_val, ct_feed_val_fid = self.next_batch(self.ct_val_queue)
mr_feed_all, mr_feed_fid = self.next_batch(self.mr_train_queue)
mr_feed_val, mr_feed_val_fid = self.next_batch(self.mr_val_queue)
threads = tf.train.start_queue_runners(sess = sess, coord = coord, start = True)
# read iteration configurations
dis_interval = self.train_config['dis_interval'] # frequency of discriminator updates, default 1. if set 2, update discriminator every 2 iterations
gen_interval = self.train_config['gen_interval'] # frequency of generator updates, default 1. if set 2, update generator every 2 iterations
dis_sub_iter = self.train_config['dis_sub_iter'] # number of sub-iteration in one updates, recommended to be larger than gen_sub_iter
gen_sub_iter = self.train_config['gen_sub_iter']
# set if we what to increase *_sub_iter every <sub_iter_upd_interval>.
# for example, if this is set 1, and sub_iter_upd_interval is 100, then increase dis_sub_iter by 1 every 100 iterations
dis_sub_iter_inc = self.train_config.pop('dis_sub_iter_inc', 0)
gen_sub_iter_inc = self.train_config.pop('gen_sub_iter_inc', 0)
sub_iter_upd_interval = self.train_config.pop('iter_upd_interval', 999999999999)
for epoch in range(epochs):
for step in range((epoch*training_iters), ((epoch+1)*training_iters)):
logging.info("Running step %s epoch %s ..."%(str(step), str(epoch)))
start = time.time()
# according to DCGAN paper, first update discriminator
if dis_interval == 0:
pass
elif (step % dis_interval == 0) and (step != 0):
for itr_dummy in range(dis_sub_iter):
# read samples from the pipeline, decomp them and feed them into the discriminator
ct_batch, ct_fid = sess.run([ct_feed_all, ct_feed_fid])
ct_raw_y = ct_batch[:,:,:,3]
ct_batch = ct_batch[:,:,:,0:3]
ct_batch_y = _label_decomp(self.num_cls, ct_raw_y)
mr_batch, mr_fid = sess.run([mr_feed_all, mr_feed_fid])
mr_raw_y = mr_batch[:,:,:,3]
mr_batch = mr_batch[:,:,:,0:3]
mr_batch_y = _label_decomp(self.num_cls, mr_raw_y)
_, _ = sess.run((self.dis_optimizer, self.learning_rate_node),
feed_dict={ self.net.mr: mr_batch,
self.net.ct: ct_batch,
self.net.mr_front_bn: False,
self.net.joint_bn: False,
self.net.ct_front_bn: False,
self.net.cls_bn: True,
self.net.keep_prob: dropout})
# clip operation
sess.run(self.clip_op)
logging.info("discriminator updated %s of %s"%(str(itr_dummy),str(dis_sub_iter)))
# update generator
if gen_interval == 0:
pass
elif (step % gen_interval == 0) and (step != 0):
for _ in range(gen_sub_iter):
ct_batch, ct_fid = sess.run([ct_feed_all, ct_feed_fid])
ct_raw_y = ct_batch[:,:,:,3]
ct_batch = ct_batch[:,:,:,0:3]
ct_batch_y = _label_decomp(self.num_cls, ct_raw_y)
_, _ = sess.run((self.gen_optimizer, self.learning_rate_node),
feed_dict={ self.net.ct: ct_batch,
self.net.mr_front_bn: False,
self.net.joint_bn: False,
self.net.ct_front_bn: True,
self.net.cls_bn: False,
self.net.keep_prob: dropout})
logging.info("generator updated")
# if we need to update iteration configurations, do it here
if (step % sub_iter_upd_interval == 0) and (step != 0):
dis_sub_iter += dis_sub_iter_inc
gen_sub_iter += gen_sub_iter_inc
logging.info("sub iterations updated!")
logging.info("Training step %s epoch %s has been finished!"%(str(step), str(epoch)))
logging.info("Time elapsed %s seconds"%(str(time.time() - start)))
# evaluation and write them to tensorboard
if step % display_step == 0:
# training batch
train_ct_batch = sess.run(ct_feed_all)
train_ct_raw_y = train_ct_batch[:,:,:,3]
train_ct_batch = train_ct_batch[:,:,:,0:3]
train_ct_batch_y = _label_decomp(self.num_cls, train_ct_raw_y)
mr_batch, mr_fid = sess.run([mr_feed_all, mr_feed_fid])
mr_raw_y = mr_batch[:,:,:,3]
mr_batch = mr_batch[:,:,:,0:3]
mr_batch_y = _label_decomp(self.num_cls, mr_raw_y)
self.output_minibatch_stats(sess, train_summary_writer, step, train_ct_batch, train_ct_batch_y, mr_batch, mr_batch_y)
if step % (display_step * 1) == 0:
# validation batch
ct_batch = sess.run(ct_feed_val)
ct_raw_y = ct_batch[:,:,:,3]
ct_batch = ct_batch[:,:,:,0:3]
ct_batch_y = _label_decomp(self.num_cls, ct_raw_y)
mr_batch = sess.run(mr_feed_val)
mr_raw_y = mr_batch[:,:,:,3]
mr_batch = mr_batch[:,:,:,0:3]
mr_batch_y = _label_decomp(self.num_cls, mr_raw_y)
self.output_minibatch_stats(sess, val_summary_writer, step, ct_batch, ct_batch_y, mr_batch, mr_batch_y, detail = True)
# save and restore the model periodically
if step % (self.train_config["checkpoint_space"]) == 0:
if step == 0:
continue
else:
save_path = _save(sess, save_path, global_step = self.global_step.eval())
print('*********************** save path ******************: ', save_path)
logging.info("Model has been saved ...")
last_ckpt = tf.train.get_checkpoint_state(output_path)
if last_ckpt and last_ckpt.model_checkpoint_path:
self.net.restore(sess, last_ckpt.model_checkpoint_path)
logging.info("Model has been restored for re-allocation")
# learning rate decay
_pre_lr = sess.run(self.learning_rate_node)
sess.run( tf.assign(self.learning_rate_node, _pre_lr *\
self.train_config['lr_decay_factor']) )
logging.info("Global step %s"%str(self.global_step.eval()))
logging.info("Optimization Finished!")
coord.request_stop()
coord.join(threads)
return save_path
def output_minibatch_stats(self, sess, summary_writer, step, ct_batch, ct_batch_y, mr_batch, mr_batch_y, detail = False):
"""
minibatch stats for tensorboard observation
"""
if detail is not True:
summary_str, summary_img = sess.run([\
self.scalar_summary_op,
self.train_image_summary_op],
feed_dict={\
self.net.ct_front_bn : False,
self.net.mr_front_bn : False,
self.net.joint_bn : False,
self.net.cls_bn : False,
self.net.mr: mr_batch,
self.net.mr_y: mr_batch_y,
self.net.ct: ct_batch,
self.net.ct_y: ct_batch_y,
self.net.keep_prob: 1.\
})
else:
_, curr_conf_mat, summary_str, summary_img = sess.run([\
self.net.compact_pred,
self.net.confusion_matrix,
self.scalar_summary_op,
self.train_image_summary_op],
feed_dict={\
self.net.ct_front_bn : False,
self.net.mr_front_bn : False,
self.net.joint_bn : False,
self.net.cls_bn : False,
self.net.mr: mr_batch,
self.net.mr_y: mr_batch_y,
self.net.ct: ct_batch,
self.net.ct_y: ct_batch_y,
self.net.keep_prob: 1.\
})
_indicator_eval(curr_conf_mat)
summary_writer.add_summary(summary_str, step)
summary_writer.add_summary(summary_img, step)
summary_writer.flush()
def test_eval(self, sess, output_path, flip_correction = True):
all_cm = np.zeros([self.num_cls, self.num_cls])
pred_folder = os.path.join(output_path, "dense_pred")
try:
os.makedirs(pred_folder)
except: