You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Initialized Tacotron model. Dimensions:
embedding: 256
speaker embedding: None
prenet out: 128
encoder out: 256
attention out: 256
concat attn & out: 512
decoder cell out: 256
decoder out (5 frames): 400
decoder out (1 frame): 80
postnet out: 256
linear out: 1025
2019-12-29 23:17:37.815177: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:37.848527: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:38.259727: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 970
major: 5 minor: 2 memoryClockRate (GHz) 1.329
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.31GiB
2019-12-29 23:17:38.273441: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:976] DMA: 0
2019-12-29 23:17:38.278149: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:986] 0: Y
2019-12-29 23:17:38.283045: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0)
Starting new training run at commit: None
Generated 8 batches of size 2 in 0.000 sec
Traceback (most recent call last):
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 204, in run
self._enqueue_next_group()
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in _enqueue_next_group
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 257, in _get_next_example
data_path = data_paths[self._offset[data_dir]]
IndexError: list index out of range
이 이후로 아무 진전 없이 그냥 멈춥니다... 여기저기 돌아다니고 hparams에서 min_tokens를 낮춰도 그러네요...
너무 학습할 데이터가 부족해서 그런걸까요. QAQ
The text was updated successfully, but these errors were encountered:
D:\python project\multi-speaker-tacotron-tensorflow>python train.py --data_path=datasets/first
[] MODEL dir: logs\first_2019-12-29_23-16-55
[] PARAM path: logs\first_2019-12-29_23-16-55\params.json
['datasets/first']
[!] Detect non-krbook dataset. May need to set sampling rate from 22050 to 20000
[*] git recv-parse HEAD:
becbd0a
==================================================
[] Checkpoint path: logs\first_2019-12-29_23-16-55\model.ckpt
[] Loading training data from: ['datasets/first\data']
[*] Using model: logs\first_2019-12-29_23-16-55
Hyperparameters:
adam_beta1: 0.9
adam_beta2: 0.999
attention_size: 128
attention_state_size: 256
attention_type: bah_mon
batch_size: 32
cleaners: korean_cleaners
dec_layer_num: 2
dec_prenet_sizes: [256, 128]
dec_rnn_size: 256
decay_learning_rate_mode: 0
dropout_prob: 0.5
embedding_size: 256
enc_bank_channel_size: 128
enc_bank_size: 16
enc_highway_depth: 4
enc_maxpool_width: 2
enc_prenet_sizes: [256, 128]
enc_proj_sizes: [128, 128]
enc_proj_width: 3
enc_rnn_size: 128
frame_length_ms: 50
frame_shift_ms: 12.5
griffin_lim_iters: 60
ignore_recognition_level: 0
initial_data_greedy: True
initial_learning_rate: 0.001
initial_phase_step: 8000
main_data: ['']
main_data_greedy_factor: 0
max_iters: 200
min_iters: 30
min_level_db: -100
min_tokens: 10
model_type: single
num_freq: 1025
num_mels: 80
post_bank_channel_size: 128
post_bank_size: 8
post_highway_depth: 4
post_maxpool_width: 2
post_proj_sizes: [256, 80]
post_proj_width: 3
post_rnn_size: 128
power: 1.5
preemphasis: 0.97
prioritize_loss: False
recognition_loss_coeff: 0.2
reduction_factor: 5
ref_level_db: 20
sample_rate: 22050
skip_inadequate: False
speaker_embedding_size: 16
use_fixed_test_inputs: False
filter_by_min_max_frame_batch: 100%|███████████████████████████████████████████████████| 30/30 [00:11<00:00, 2.66it/s]
[datasets/first\data] Loaded metadata for 14 examples (0.01 hours)
[datasets/first\data] Max length: 394
[datasets/first\data] Min length: 151
{'datasets/first\data': 1.0}
filter_by_min_max_frame_batch: 100%|███████████████████████████████████████████████████| 30/30 [00:10<00:00, 2.81it/s]
[datasets/first\data] Loaded metadata for 14 examples (0.01 hours)
[datasets/first\data] Max length: 394
[datasets/first\data] Min length: 151
{'datasets/first\data': 1.0}
========================================
model_type: single
Initialized Tacotron model. Dimensions:
embedding: 256
speaker embedding: None
prenet out: 128
encoder out: 256
attention out: 256
concat attn & out: 512
decoder cell out: 256
decoder out (5 frames): 400
decoder out (1 frame): 80
postnet out: 256
linear out: 1025
model_type: single
Initialized Tacotron model. Dimensions:
embedding: 256
speaker embedding: None
prenet out: 128
encoder out: 256
attention out: 256
concat attn & out: 512
decoder cell out: 256
decoder out (5 frames): 400
decoder out (1 frame): 80
postnet out: 256
linear out: 1025
2019-12-29 23:17:37.815177: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:37.848527: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:38.259727: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 970
major: 5 minor: 2 memoryClockRate (GHz) 1.329
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.31GiB
2019-12-29 23:17:38.273441: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:976] DMA: 0
2019-12-29 23:17:38.278149: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:986] 0: Y
2019-12-29 23:17:38.283045: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0)
Starting new training run at commit: None
Generated 8 batches of size 2 in 0.000 sec
Traceback (most recent call last):
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 204, in run
self._enqueue_next_group()
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in _enqueue_next_group
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 257, in _get_next_example
data_path = data_paths[self._offset[data_dir]]
IndexError: list index out of range
이 이후로 아무 진전 없이 그냥 멈춥니다... 여기저기 돌아다니고 hparams에서 min_tokens를 낮춰도 그러네요...
너무 학습할 데이터가 부족해서 그런걸까요. QAQ
The text was updated successfully, but these errors were encountered: