Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

단일 화자 모델을 학습하는데 오류납니다ㅠㅠ #72

Open
HumanKR opened this issue Dec 29, 2019 · 1 comment
Open

단일 화자 모델을 학습하는데 오류납니다ㅠㅠ #72

HumanKR opened this issue Dec 29, 2019 · 1 comment

Comments

@HumanKR
Copy link

HumanKR commented Dec 29, 2019

D:\python project\multi-speaker-tacotron-tensorflow>python train.py --data_path=datasets/first
[] MODEL dir: logs\first_2019-12-29_23-16-55
[
] PARAM path: logs\first_2019-12-29_23-16-55\params.json
['datasets/first']

[!] Detect non-krbook dataset. May need to set sampling rate from 22050 to 20000

[*] git recv-parse HEAD:
becbd0a

==================================================

[] Checkpoint path: logs\first_2019-12-29_23-16-55\model.ckpt
[
] Loading training data from: ['datasets/first\data']
[*] Using model: logs\first_2019-12-29_23-16-55
Hyperparameters:
adam_beta1: 0.9
adam_beta2: 0.999
attention_size: 128
attention_state_size: 256
attention_type: bah_mon
batch_size: 32
cleaners: korean_cleaners
dec_layer_num: 2
dec_prenet_sizes: [256, 128]
dec_rnn_size: 256
decay_learning_rate_mode: 0
dropout_prob: 0.5
embedding_size: 256
enc_bank_channel_size: 128
enc_bank_size: 16
enc_highway_depth: 4
enc_maxpool_width: 2
enc_prenet_sizes: [256, 128]
enc_proj_sizes: [128, 128]
enc_proj_width: 3
enc_rnn_size: 128
frame_length_ms: 50
frame_shift_ms: 12.5
griffin_lim_iters: 60
ignore_recognition_level: 0
initial_data_greedy: True
initial_learning_rate: 0.001
initial_phase_step: 8000
main_data: ['']
main_data_greedy_factor: 0
max_iters: 200
min_iters: 30
min_level_db: -100
min_tokens: 10
model_type: single
num_freq: 1025
num_mels: 80
post_bank_channel_size: 128
post_bank_size: 8
post_highway_depth: 4
post_maxpool_width: 2
post_proj_sizes: [256, 80]
post_proj_width: 3
post_rnn_size: 128
power: 1.5
preemphasis: 0.97
prioritize_loss: False
recognition_loss_coeff: 0.2
reduction_factor: 5
ref_level_db: 20
sample_rate: 22050
skip_inadequate: False
speaker_embedding_size: 16
use_fixed_test_inputs: False
filter_by_min_max_frame_batch: 100%|███████████████████████████████████████████████████| 30/30 [00:11<00:00, 2.66it/s]
[datasets/first\data] Loaded metadata for 14 examples (0.01 hours)
[datasets/first\data] Max length: 394
[datasets/first\data] Min length: 151

{'datasets/first\data': 1.0}

filter_by_min_max_frame_batch: 100%|███████████████████████████████████████████████████| 30/30 [00:10<00:00, 2.81it/s]
[datasets/first\data] Loaded metadata for 14 examples (0.01 hours)
[datasets/first\data] Max length: 394
[datasets/first\data] Min length: 151

{'datasets/first\data': 1.0}

========================================
model_type: single

Initialized Tacotron model. Dimensions:
embedding: 256
speaker embedding: None
prenet out: 128
encoder out: 256
attention out: 256
concat attn & out: 512
decoder cell out: 256
decoder out (5 frames): 400
decoder out (1 frame): 80
postnet out: 256
linear out: 1025

model_type: single

Initialized Tacotron model. Dimensions:
embedding: 256
speaker embedding: None
prenet out: 128
encoder out: 256
attention out: 256
concat attn & out: 512
decoder cell out: 256
decoder out (5 frames): 400
decoder out (1 frame): 80
postnet out: 256
linear out: 1025
2019-12-29 23:17:37.815177: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:37.848527: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-12-29 23:17:38.259727: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 970
major: 5 minor: 2 memoryClockRate (GHz) 1.329
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.31GiB
2019-12-29 23:17:38.273441: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:976] DMA: 0
2019-12-29 23:17:38.278149: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:986] 0: Y
2019-12-29 23:17:38.283045: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0)
Starting new training run at commit: None
Generated 8 batches of size 2 in 0.000 sec
Traceback (most recent call last):
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 204, in run
self._enqueue_next_group()
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in _enqueue_next_group
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 229, in
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
File "D:\python project\multi-speaker-tacotron-tensorflow\datasets\datafeeder.py", line 257, in _get_next_example
data_path = data_paths[self._offset[data_dir]]
IndexError: list index out of range

이 이후로 아무 진전 없이 그냥 멈춥니다... 여기저기 돌아다니고 hparams에서 min_tokens를 낮춰도 그러네요...
너무 학습할 데이터가 부족해서 그런걸까요. QAQ

@solalala-12
Copy link

batch를 가져오는거에서 부터 오류가 나는 것 같은데요, batch_size를 조절해보거나 데이터에 경로에 있는지 확인해보세요!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants