forked from cshelton/pacman-ctf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graphicsDisplay.py
679 lines (581 loc) · 27.4 KB
/
graphicsDisplay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# graphicsDisplay.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from graphicsUtils import *
import math, time
from game import Directions
###########################
# GRAPHICS DISPLAY CODE #
###########################
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
DEFAULT_GRID_SIZE = 30.0
INFO_PANE_HEIGHT = 35
BACKGROUND_COLOR = formatColor(0,0,0)
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
INFO_PANE_COLOR = formatColor(.4,.4,0)
SCORE_COLOR = formatColor(.9, .9, .9)
PACMAN_OUTLINE_WIDTH = 2
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
GHOST_COLORS = []
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple
TEAM_COLORS = GHOST_COLORS[:2]
GHOST_SHAPE = [
( 0, 0.3 ),
( 0.25, 0.75 ),
( 0.5, 0.3 ),
( 0.75, 0.75 ),
( 0.75, -0.5 ),
( 0.5, -0.75 ),
(-0.5, -0.75 ),
(-0.75, -0.5 ),
(-0.75, 0.75 ),
(-0.5, 0.3 ),
(-0.25, 0.75 )
]
GHOST_SIZE = 0.65
SCARED_COLOR = formatColor(1,1,1)
GHOST_VEC_COLORS = list(map(colorToVector, GHOST_COLORS))
PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
PACMAN_SCALE = 0.5
#pacman_speed = 0.25
# Food
FOOD_COLOR = formatColor(1,1,1)
FOOD_SIZE = 0.1
# Laser
LASER_COLOR = formatColor(1,0,0)
LASER_SIZE = 0.02
# Capsule graphics
CAPSULE_COLOR = formatColor(1,1,1)
CAPSULE_SIZE = 0.25
# Drawing walls
WALL_RADIUS = 0.15
class InfoPane:
def __init__(self, layout, gridSize):
self.gridSize = gridSize
self.width = (layout.width) * gridSize
self.base = (layout.height + 1) * gridSize
self.height = INFO_PANE_HEIGHT
self.fontSize = 24
self.textColor = PACMAN_COLOR
self.drawPane()
def toScreen(self, pos, y = None):
"""
Translates a point relative from the bottom left of the info pane.
"""
if y == None:
x,y = pos
else:
x = pos
x = self.gridSize + x # Margin
y = self.base + y
return x,y
def drawPane(self):
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
def initializeGhostDistances(self, distances):
self.ghostDistanceText = []
size = 20
if self.width < 240:
size = 12
if self.width < 160:
size = 10
for i, d in enumerate(distances):
t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
self.ghostDistanceText.append(t)
def updateScore(self, score):
changeText(self.scoreText, "SCORE: % 4d" % score)
def setTeam(self, isBlue):
text = "RED TEAM"
if isBlue: text = "BLUE TEAM"
self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold")
def updateGhostDistances(self, distances):
if len(distances) == 0: return
if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances)
else:
for i, d in enumerate(distances):
changeText(self.ghostDistanceText[i], d)
def drawGhost(self):
pass
def drawPacman(self):
pass
def drawWarning(self):
pass
def clearIcon(self):
pass
def updateMessage(self, message):
pass
def clearMessage(self):
pass
class PacmanGraphics:
def __init__(self, zoom=1.0, frameTime=0.0, capture=False):
self.have_window = 0
self.currentGhostImages = {}
self.pacmanImage = None
self.zoom = zoom
self.gridSize = DEFAULT_GRID_SIZE * zoom
self.capture = capture
self.frameTime = frameTime
def checkNullDisplay(self):
return False
def initialize(self, state, isBlue = False):
self.isBlue = isBlue
self.startGraphics(state)
# self.drawDistributions(state)
self.distributionImages = None # Initialized lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def startGraphics(self, state):
self.layout = state.layout
layout = self.layout
self.width = layout.width
self.height = layout.height
self.make_window(self.width, self.height)
self.infoPane = InfoPane(layout, self.gridSize)
self.currentState = layout
def drawDistributions(self, state):
walls = state.layout.walls
dist = []
for x in range(walls.width):
distx = []
dist.append(distx)
for y in range(walls.height):
( screen_x, screen_y ) = self.to_screen( (x, y) )
block = square( (screen_x, screen_y),
0.5 * self.gridSize,
color = BACKGROUND_COLOR,
filled = 1, behind=2)
distx.append(block)
self.distributionImages = dist
def drawStaticObjects(self, state):
layout = self.layout
self.drawWalls(layout.walls)
self.food = self.drawFood(layout.food)
self.capsules = self.drawCapsules(layout.capsules)
refresh()
def drawAgentObjects(self, state):
self.agentImages = [] # (agentState, image)
for index, agent in enumerate(state.agentStates):
if agent.isPacman:
image = self.drawPacman(agent, index)
self.agentImages.append( (agent, image) )
else:
image = self.drawGhost(agent, index)
self.agentImages.append( (agent, image) )
refresh()
def swapImages(self, agentIndex, newState):
"""
Changes an image from a ghost to a pacman or vis versa (for capture)
"""
prevState, prevImage = self.agentImages[agentIndex]
for item in prevImage: remove_from_screen(item)
if newState.isPacman:
image = self.drawPacman(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image )
else:
image = self.drawGhost(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image )
refresh()
def update(self, newState):
agentIndex = newState._agentMoved
agentState = newState.agentStates[agentIndex]
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState)
prevState, prevImage = self.agentImages[agentIndex]
if agentState.isPacman:
self.animatePacman(agentState, prevState, prevImage)
else:
self.moveGhost(agentState, agentIndex, prevState, prevImage)
self.agentImages[agentIndex] = (agentState, prevImage)
if newState._foodEaten != None:
self.removeFood(newState._foodEaten, self.food)
if newState._capsuleEaten != None:
self.removeCapsule(newState._capsuleEaten, self.capsules)
self.infoPane.updateScore(newState.score)
if 'ghostDistances' in dir(newState):
self.infoPane.updateGhostDistances(newState.ghostDistances)
def make_window(self, width, height):
grid_width = (width-1) * self.gridSize
grid_height = (height-1) * self.gridSize
screen_width = 2*self.gridSize + grid_width
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
begin_graphics(screen_width,
screen_height,
BACKGROUND_COLOR,
"CS188 Pacman")
def drawPacman(self, pacman, index):
position = self.getPosition(pacman)
screen_point = self.to_screen(position)
endpoints = self.getEndpoints(self.getDirection(pacman))
width = PACMAN_OUTLINE_WIDTH
outlineColor = PACMAN_COLOR
fillColor = PACMAN_COLOR
if self.capture:
outlineColor = TEAM_COLORS[index % 2]
fillColor = GHOST_COLORS[index]
width = PACMAN_CAPTURE_OUTLINE_WIDTH
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
fillColor = fillColor, outlineColor = outlineColor,
endpoints = endpoints,
width = width)]
def getEndpoints(self, direction, position=(0,0)):
x, y = position
pos = x - int(x) + y - int(y)
width = 30 + 80 * math.sin(math.pi* pos)
delta = width / 2
if (direction == 'West'):
endpoints = (180+delta, 180-delta)
elif (direction == 'North'):
endpoints = (90+delta, 90-delta)
elif (direction == 'South'):
endpoints = (270+delta, 270-delta)
else:
endpoints = (0+delta, 0-delta)
return endpoints
def movePacman(self, position, direction, image):
screenPosition = self.to_screen(position)
endpoints = self.getEndpoints( direction, position )
r = PACMAN_SCALE * self.gridSize
moveCircle(image[0], screenPosition, r, endpoints)
refresh()
def animatePacman(self, pacman, prevPacman, image):
if self.frameTime < 0:
print('Press any key to step forward, "q" to play')
keys = wait_for_keys()
if 'q' in keys:
self.frameTime = 0.1
if self.frameTime > 0.01 or self.frameTime < 0:
start = time.time()
fx, fy = self.getPosition(prevPacman)
px, py = self.getPosition(pacman)
frames = 4.0
for i in range(1,int(frames) + 1):
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
self.movePacman(pos, self.getDirection(pacman), image)
refresh()
sleep(abs(self.frameTime) / frames)
else:
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
refresh()
def getGhostColor(self, ghost, ghostIndex):
if ghost.scaredTimer > 0:
return SCARED_COLOR
else:
return GHOST_COLORS[ghostIndex]
def drawGhost(self, ghost, agentIndex):
pos = self.getPosition(ghost)
dir = self.getDirection(ghost)
(screen_x, screen_y) = (self.to_screen(pos) )
coords = []
for (x, y) in GHOST_SHAPE:
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))
colour = self.getGhostColor(ghost, agentIndex)
body = polygon(coords, colour, filled = 1)
WHITE = formatColor(1.0, 1.0, 1.0)
BLACK = formatColor(0.0, 0.0, 0.0)
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
ghostImageParts = []
ghostImageParts.append(body)
ghostImageParts.append(leftEye)
ghostImageParts.append(rightEye)
ghostImageParts.append(leftPupil)
ghostImageParts.append(rightPupil)
return ghostImageParts
def moveEyes(self, pos, dir, eyes):
(screen_x, screen_y) = (self.to_screen(pos) )
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
new_x, new_y = self.to_screen(self.getPosition(ghost))
delta = new_x - old_x, new_y - old_y
for ghostImagePart in ghostImageParts:
move_by(ghostImagePart, delta)
refresh()
if ghost.scaredTimer > 0:
color = SCARED_COLOR
else:
color = GHOST_COLORS[ghostIndex]
edit(ghostImageParts[0], ('fill', color), ('outline', color))
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
refresh()
def getPosition(self, agentState):
if agentState.configuration == None: return (-1000, -1000)
return agentState.getPosition()
def getDirection(self, agentState):
if agentState.configuration == None: return Directions.STOP
return agentState.configuration.getDirection()
def finish(self):
end_graphics()
def to_screen(self, point):
( x, y ) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return ( x, y )
# Fixes some TK issue with off-center circles
def to_screen2(self, point):
( x, y ) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return ( x, y )
def drawWalls(self, wallMatrix):
wallColor = WALL_COLOR
for xNum, x in enumerate(wallMatrix):
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
for yNum, cell in enumerate(x):
if cell: # There's a wall here
pos = (xNum, yNum)
screen = self.to_screen(pos)
screen2 = self.to_screen2(pos)
# draw each quadrant of the square based on adjacent walls
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
# NE quadrant
if (not nIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
if (nIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (eIsWall) and (not neIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# NW quadrant
if (not nIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
if (nIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (wIsWall) and (not nwIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# SE quadrant
if (not sIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
if (sIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (eIsWall) and (not seIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
# SW quadrant
if (not sIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
if (sIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (wIsWall) and (not swIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
def isWall(self, x, y, walls):
if x < 0 or y < 0:
return False
if x >= walls.width or y >= walls.height:
return False
return walls[x][y]
def drawFood(self, foodMatrix ):
foodImages = []
color = FOOD_COLOR
for xNum, x in enumerate(foodMatrix):
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0]
if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
imageRow = []
foodImages.append(imageRow)
for yNum, cell in enumerate(x):
if cell: # There's food here
screen = self.to_screen((xNum, yNum ))
dot = circle( screen,
FOOD_SIZE * self.gridSize,
outlineColor = color, fillColor = color,
width = 1)
imageRow.append(dot)
else:
imageRow.append(None)
return foodImages
def drawCapsules(self, capsules ):
capsuleImages = {}
for capsule in capsules:
( screen_x, screen_y ) = self.to_screen(capsule)
dot = circle( (screen_x, screen_y),
CAPSULE_SIZE * self.gridSize,
outlineColor = CAPSULE_COLOR,
fillColor = CAPSULE_COLOR,
width = 1)
capsuleImages[capsule] = dot
return capsuleImages
def removeFood(self, cell, foodImages ):
x, y = cell
remove_from_screen(foodImages[x][y])
def removeCapsule(self, cell, capsuleImages ):
x, y = cell
remove_from_screen(capsuleImages[(x, y)])
def drawExpandedCells(self, cells):
"""
Draws an overlay of expanded grid positions for search agents
"""
n = float(len(cells))
baseColor = [1.0, 0.0, 0.0]
self.clearExpandedCells()
self.expandedCells = []
for k, cell in enumerate(cells):
screenPos = self.to_screen( cell)
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
block = square(screenPos,
0.5 * self.gridSize,
color = cellColor,
filled = 1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
def clearExpandedCells(self):
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
for cell in self.expandedCells:
remove_from_screen(cell)
def updateDistributions(self, distributions):
"Draws an agent's belief distributions"
# copy all distributions so we don't change their state
distributions = list(map(lambda x: x.copy(), distributions))
if self.distributionImages == None:
self.drawDistributions(self.previousState)
for x in range(len(self.distributionImages)):
for y in range(len(self.distributionImages[0])):
image = self.distributionImages[x][y]
weights = [dist[ (x,y) ] for dist in distributions]
if sum(weights) != 0:
pass
# Fog of war
color = [0.0,0.0,0.0]
colors = GHOST_VEC_COLORS[1:] # With Pacman
if self.capture: colors = GHOST_VEC_COLORS
for weight, gcolor in zip(weights, colors):
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
changeColor(image, formatColor(*color))
refresh()
class FirstPersonPacmanGraphics(PacmanGraphics):
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
self.showGhosts = showGhosts
self.capture = capture
def initialize(self, state, isBlue = False):
self.isBlue = isBlue
PacmanGraphics.startGraphics(self, state)
# Initialize distribution images
walls = state.layout.walls
dist = []
self.layout = state.layout
# Draw the rest
self.distributionImages = None # initialize lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def lookAhead(self, config, state):
if config.getDirection() == 'Stop':
return
else:
pass
# Draw relevant ghosts
allGhosts = state.getGhostStates()
visibleGhosts = state.getVisibleGhosts()
for i, ghost in enumerate(allGhosts):
if ghost in visibleGhosts:
self.drawGhost(ghost, i)
else:
self.currentGhostImages[i] = None
def getGhostColor(self, ghost, ghostIndex):
return GHOST_COLORS[ghostIndex]
def getPosition(self, ghostState):
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
return (-1000, -1000)
else:
return PacmanGraphics.getPosition(self, ghostState)
def add(x, y):
return (x[0] + y[0], x[1] + y[1])
# Saving graphical output
# -----------------------
# Note: to make an animated gif from this postscript output, try the command:
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
# convert is part of imagemagick (freeware)
SAVE_POSTSCRIPT = False
POSTSCRIPT_OUTPUT_DIR = 'frames'
FRAME_NUMBER = 0
import os
def saveFrame():
"Saves the current graphical output as a postscript file"
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
if not SAVE_POSTSCRIPT: return
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
FRAME_NUMBER += 1
writePostscript(name) # writes the current canvas