-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtablon.sh
executable file
·84 lines (70 loc) · 2.54 KB
/
tablon.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env bash
echo "Generando DFs con vars categoricas y numericas"
python3 ETL/Extract/numerical_categoric_dataset.py
echo ""
echo -e "\e[92m\e[5mPreprocesamos variables categoricas\e[0m"
python3 ETL/Preprocessing/categorical.py
echo ""
echo -e "\e[92m\e[5mProcesamos variables categoricas\e[0m"
python3 ETL/Transform/categorical/global.py
echo ""
#
echo -e "\e[92m\e[5mImputamos valores numericos\e[0m"
python3 ETL/Transform/numeric/impute_numerical.py
echo ""
#
echo -e "\e[92m\e[5mCreamos variables KMeans\e[0m"
python3 ETL/Transform/numeric/kmeans.py
echo ""
echo -e "\e[92m\e[5mProcesamos variables de fechas\e[0m"
python3 ETL/Transform/dates/dates.py
echo ""
echo -e "\e[92m\e[5mProcesamos variable AvSigVersion extra\e[0m"
python3 ETL/Transform/avsigver_extra_info/avsigversion_extra.py
echo ""
echo -e "\e[92m\e[5mProcesamos variables groupBy categoricas\e[0m"
python3 ETL/Transform/groupBys/groupBy_cat.py
echo ""
echo -e "\e[92m\e[5mProcesamos variables groupBy numericas\e[0m"
python3 ETL/Transform/groupBys/groupBy_num.py
echo ""
echo -e "\e[92m\e[5mGeneramos TRAIN / TEST de las variables nuevas\e[0m"
python3 ETL/Load/train_test_new_variables.py
echo ""
echo -e "\e[92m\e[5mPasamos de CSV a NPY\e[0m"
python3 ETL/Transform/to_npy/from_csv_to_npy.py
echo ""
# echo -e "\e[92m\e[5mEntrenamos modelo de LightGBM\e[0m"
# python3 model/LightGBM/sklearn/train.py
# echo ""
# echo -e "\e[92m\e[5mPredicciones de LightGBM\e[0m"
# python3 model/LightGBM/sklearn/test.py
# echo ""
# echo -e "\e[92m\e[5mSubmitting predictions\e[0m"
# kaggle competitions submit -c microsoft-malware-prediction -f submissions/lgbc_model_6.csv -m "Nuevos datos V4
# max_depth=10,
# n_estimators=10000,
# learning_rate=0.05,
# num_leaves=256,
# colsample_bytree=0.2,
# objective='binary',
# n_jobs=-1"
# echo ""
#echo -e "\e[92m\e[5mEntrenamos modelo de CatBoost\e[0m"
#python3 model/CatBoost/train.py
#echo ""
#
#echo -e "\e[92m\e[5mPredicciones de CatBoost\e[0m"
#python3 model/CatBoost/test.py
#echo ""
#echo -e "\e[92m\e[5mSubmitting predictions\e[0m"
#kaggle competitions submit -c microsoft-malware-prediction -f submissions/catboost_raw.csv -m "CatBoost raw depth=9, iterations=600,
# eval_metric='AUC',
# random_seed=42,
# logging_level='Verbose',
# allow_writing_files=False,
# metric_period=50,
# early_stopping_rounds=20,
# learning_rate=0.1,
# bagging_temperature=0.9"
#echo ""