forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathparams.py
110 lines (88 loc) · 2.19 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# path
# local
#data_path_base = './datasets'
logdir_path = 'cases'
case = 'out'
# remote
# data_path_base = '/data/private/vc/datasets'
# logdir_path = 'data/private/vc/logdir'
class Default:
# signal processing
sr = 16000
frame_shift = 0.006 # seconds
frame_length = 0.071 # seconds #71
hop_length = 96 # 80 samples. This is dependent on the frame_shift.
win_length = 1136 # 400 samples. This is dependent on the frame_length.
n_fft = 1136
preemphasis = 0.97
n_mels = 90
n_mfcc = 60
n_iter = 60 # Number of inversion iterations
duration = 2
max_db = 40
min_db = -50
# model
hidden_units = 256 # alias = E
num_banks = 16
num_highway_blocks = 4
norm_type = 'ins' # a normalizer function. value = bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 32
class Train1:
# path
data_path = 'Data/Train/*.wav'
# model
hidden_units = 128 # alias = E
num_banks = 8
num_highway_blocks = 4
norm_type = 'ins' # a normalizer function. value = bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 20
lr = 0.0003
num_epochs = 1000
steps_per_epoch = 100
save_per_epoch = 2
num_gpu = 1
class Train2:
# path
data_path = 'Data/Train/Target/*.wav'
# model
hidden_units = 256 # alias = E
num_banks = 8
num_highway_blocks = 8
norm_type = 'ins' # a normalizer function. value = bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 50
lr = 0.0003
lr_cyclic_margin = 0.
lr_cyclic_steps = 5000
clip_value_max = 3.
clip_value_min = -3.
clip_norm = 10
num_epochs = 10000
steps_per_epoch = 100
save_per_epoch = 50
test_per_epoch = 1
num_gpu = 1
class Test1:
# path
data_path = 'Data/Test/*.wav'
# test
batch_size = 32
class Test2:
data_path = 'Data/Train/Target/*.wav'
# test
batch_size = 3
class Convert:
# pathD:\deepvoice\convertaudio
data_path = 'convertaudio/*.wav'
# convert
one_full_wav = True
batch_size = 1
emphasis_magnitude = 1.2