-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_align_image_pair.py
354 lines (281 loc) · 18 KB
/
predict_align_image_pair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import random
import time
import torch
import yaml
import xpoint.datasets as datasets
import xpoint.models as models
import xpoint.utils as utils
from pick_GPU import pickGPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #str(pickGPU())
def synchronize():
if torch.cuda.is_available():
torch.cuda.synchronize()
def main():
parser = argparse.ArgumentParser(description='Predict the keypoints of an image')
parser.add_argument('-y', '--yaml-config', default='configs/cipdp.yaml', help='YAML config file')
parser.add_argument('-m', '--model-dir', default='model_weights/xpoint', help='Directory of the model')
parser.add_argument('-v', '--version', default='latest', help='Model version (name of the param file), none for no weights')
parser.add_argument('-i', '--index', default=0, type=int, help='Index of the sample to predict and show')
parser.add_argument('-r', '--radius', default=4, type=int, help='Radius of the keypoint circle')
parser.add_argument('-p', dest='plot', action='store_true', help='If set the prediction the results are displayed')
parser.add_argument('-e', dest='evaluation', action='store_true', help='If set the evaluation metrics are computed')
parser.add_argument('-tk', dest='threshold_keypoints', default=4, type=int, help='Distance below which two keypoints are considered a match')
parser.add_argument('-th', dest='threshold_homography', default=1, type=int, help='Homography correctness threshold')
parser.add_argument('-s', '--seed', default=0, type=int, help='Seed of the random generators')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
with open(args.yaml_config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join(args.model_dir, 'params.yaml'), 'r') as f:
# overwrite the model params
config['model'] = yaml.load(f, Loader=yaml.FullLoader)['model']
if "use_attention" in config["model"].keys() and config["model"]["use_attention"]["check"]:
pretrained_height,pretrained_width = config["model"]["use_attention"]["height"],config["model"]["use_attention"]["width"]
config["model"]["use_attention"]["model_parameters"]["DATA"]["IMG_SIZE"] =(pretrained_height,pretrained_width)
config["model"]["use_attention"]["height"] = config["dataset"]["height"]
config["model"]["use_attention"]["width"] = config["dataset"]["width"]
# check training device
device = torch.device("cpu")
if config['prediction']['allow_gpu']:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Predicting on device: {}'.format(device))
# dataset
dataset = getattr(datasets, config['dataset']['type'])(config['dataset'])
#subset_dataset = torch.utils.data.Subset(dataset, indices=range(1000)) #LOOK
loader_dataset = torch.utils.data.DataLoader(dataset, batch_size=config['prediction']['batchsize'],
shuffle=False, num_workers=config['prediction']['num_worker'])
# network
net = getattr(models, config['model']['type'])(config['model'])
weights = torch.load(os.path.join(args.model_dir, args.version + '.model'), map_location=torch.device('cpu'))
weights = utils.fix_model_weigth_keys(weights)
if args.version != 'none' and "use_attention" in config["model"].keys() and config['model']['use_attention']["check"] == 1 \
and config['model']['use_attention']["type"] =="Swinv2":
# Divide the weights into two dictionaries
encoder_weights = {k.replace("encoder.",""): v for k, v in weights.items() if k.startswith("encoder")}
other_weights = {k: v for k, v in weights.items() if not k.startswith("encoder")}
net.load_state_dict(other_weights,strict=False)
#net.encoder.load_state_dict(encoder_weights,strict=False)
if net.encoder.register_buff: #this if is not necessary actually setting strict=False solves it but i want to do it explicitly
net.encoder.load_state_dict(encoder_weights,strict=False) #True
else:
substrings_to_remove = ["attn_mask", "relative_coords_table", "relative_position_index"]
for key in list(weights.keys()): # Using list to iterate over a copy of the keys
if any(sub in key for sub in substrings_to_remove):
weights.pop(key)
missing_keys, unexpected_keys = net.load_state_dict(weights,strict=False)
# Count the successfully loaded weights
loaded_keys = set(weights.keys()) - set(missing_keys)
print(f"Successfully loaded {len(loaded_keys)} keys.")
print(f"Missing keys: {len(missing_keys)}")
print(f"Unexpected keys: {len(unexpected_keys)}")
if len(loaded_keys) < 1:
raise ValueError("No weights were loaded correctly! Please check the model and weights file.")
net.to(device)
# put the network into the evaluation mode
net.eval()
#important for swin
with torch.no_grad():
if args.evaluation:
results = utils.compute_descriptor_metrics(net, loader_dataset, device, config['prediction'], args.threshold_keypoints, args.threshold_homography)
print('NN-mAP: {}'.format(results['nn_map']))
print('M-Score: {}'.format(results['m_score']))
print('Homography Correctness: {}'.format(results['h_correctness']))
# also add the params to store them
results['config'] = config
results['threshold_keypoints'] = args.threshold_keypoints
results['threshold_homography'] = args.threshold_homography
# save results
target_dir = os.path.join(args.model_dir, 'descriptor_evaluation')
if not os.path.isdir(target_dir):
os.makedirs(target_dir)
np.save(os.path.join(target_dir, os.path.split(args.model_dir.strip("/"))[-1] + '_' +
time.strftime("%Y-%m-%d_%H-%M-%S", time.gmtime())), results)
import json
import copy
mytarget_dir = os.path.join(args.model_dir, 'descriptor_evaluation',"results")
if not os.path.isdir(mytarget_dir):
os.makedirs(mytarget_dir)
keys_to_copy = ['nn_map', 'm_score','h_correctness','threshold_keypoints','threshold_homography']
myresults = {k: copy.deepcopy(results[k]) for k in keys_to_copy if k in results}
myresults["model_dir"] = args.model_dir
myresults["model_version"] = args.version
myresults["height-width"] = "{},{}".format(config["dataset"]["height"],config["dataset"]["width"])
myresults["detection_th"] = config["prediction"]["detection_threshold"]
myresults["dataset"] = config["dataset"]["filename"]
# Save dictionary to txt file
folder_path = mytarget_dir
file_name = os.path.split(args.model_dir.strip("/"))[-1] + '_' + args.version+".txt"
myresults_dir = os.path.join(mytarget_dir,utils.get_new_filename(folder_path, file_name))
#print(myresults_dir)
if args.plot:
plt.figure()
plt.title('PR curve')
plt.xlabel('precision')
plt.ylabel('recall')
plt.plot(results['recall_optical'], results['precision_optical'], 'r')
plt.plot(results['recall_thermal'], results['precision_thermal'], 'g')
plt.legend(['optical', 'thermal'])
plt.figure()
plt.title('Optical M-score')
plt.hist(results['m_score_optical'], 50)
plt.figure()
plt.title('Thermal M-score')
plt.hist(results['m_score_thermal'], 50)
plt.figure()
plt.title('Warp point distance error')
plt.hist(results['pts_dist'], 50)
plt.show()
# get the sample and move it to the right device
synchronize()
t_start = time.time()
data = dataset[args.index]
data = utils.data_to_device(data, device)
data = utils.data_unsqueeze(data, 0)
synchronize()
t_1 = time.time()
if not net.takes_pair():
out_optical = net(data['optical'])
out_thermal = net(data['thermal'])
else :
out_optical,out_thermal,out_hm = net(data) # give both
synchronize()
t_2 = time.time()
# compute the nms probablity
if config['prediction']['nms'] > 0:
out_optical['prob'] = utils.box_nms(out_optical['prob'] * data['optical']['valid_mask'],
config['prediction']['nms'],
config['prediction']['detection_threshold'],
keep_top_k=config['prediction']['topk'],
on_cpu=config['prediction']['cpu_nms'])
out_thermal['prob'] = utils.box_nms(out_thermal['prob'] * data['thermal']['valid_mask'],
config['prediction']['nms'],
config['prediction']['detection_threshold'],
keep_top_k=config['prediction']['topk'],
on_cpu=config['prediction']['cpu_nms'])
synchronize()
t_3 = time.time()
print('Loading the data took: {} s'.format(t_1 - t_start))
print('Two forward passes took: {} s, {} Hz'.format(t_2 - t_1,1/(t_2-t_1)))
print('Box nms: {} s'.format(t_3 - t_2))
if args.evaluation:
myresults["forward_info_HZ"] = 1/(t_2-t_1)
with open(myresults_dir, 'w') as file:
file.write(json.dumps(myresults, indent=4))
# display a sample
if args.plot:
# add homography to data if not available
if 'homography' not in data['optical'].keys():
data['optical']['homography'] = torch.eye(3, dtype=torch.float32).to(device).view(data['optical']['image'].shape[0],3,3)
if 'homography' not in data['thermal'].keys():
data['thermal']['homography'] = torch.eye(3, dtype=torch.float32).to(device).view(data['optical']['image'].shape[0],3,3)
for i, (optical, thermal,
prob_optical, prob_thermal,
mask_optical, mask_thermal,
H_optical, H_thermal,
desc_optical, desc_thermal) in enumerate(zip(data['optical']['image'],
data['thermal']['image'],
out_optical['prob'],
out_thermal['prob'],
data['optical']['valid_mask'],
data['thermal']['valid_mask'],
data['optical']['homography'],
data['thermal']['homography'],
out_optical['desc'],
out_thermal['desc'],)):
# get the keypoints
pred_optical = torch.nonzero((prob_optical.squeeze() > config['prediction']['detection_threshold']).float())
pred_thermal = torch.nonzero((prob_thermal.squeeze() > config['prediction']['detection_threshold']).float())
kp_optical = [cv2.KeyPoint(c[1], c[0], args.radius) for c in pred_optical.cpu().numpy().astype(np.float32)]
kp_thermal = [cv2.KeyPoint(c[1], c[0], args.radius) for c in pred_thermal.cpu().numpy().astype(np.float32)]
# get the descriptors
if desc_optical.shape[1:] == prob_optical.shape[1:]:
# classic descriptors, directly take values
desc_optical_sampled = desc_optical[:, pred_optical[:,0], pred_optical[:,1]].transpose(0,1)
desc_thermal_sampled = desc_thermal[:, pred_thermal[:,0], pred_thermal[:,1]].transpose(0,1)
else:
H, W = data['optical']['image'].shape[2:]
desc_optical_sampled = utils.interpolate_descriptors(pred_optical, desc_optical, H, W)
desc_thermal_sampled = utils.interpolate_descriptors(pred_thermal, desc_thermal, H, W)
# match the keypoints
matches = utils.get_matches(desc_optical_sampled.cpu().numpy(),
desc_thermal_sampled.cpu().numpy(),
config['prediction']['matching']['method'],
config['prediction']['matching']['knn_matches'],
**config['prediction']['matching']['method_kwargs'])
# mask the image if requested
optical *= mask_optical
thermal *= mask_thermal
# convert images to numpy arrays
im_optical = cv2.cvtColor((np.clip(optical.squeeze().cpu().numpy(), 0.0, 1.0) * 255.0).astype(np.uint8),cv2.COLOR_GRAY2RGB)
im_thermal = cv2.cvtColor((np.clip(thermal.squeeze().cpu().numpy(), 0.0, 1.0) * 255.0).astype(np.uint8),cv2.COLOR_GRAY2RGB)
# draw the matches
out_image = cv2.drawMatches(im_optical, kp_optical, im_thermal, kp_thermal, matches, None, flags=2)
#cv2.namedWindow('matches', cv2.WINDOW_NORMAL)
#cv2.resizeWindow('matches', out_image.shape[1]*2, out_image.shape[0]*2 + 50)
cv2.imshow('matches', out_image)
# align images to estimate homography and get good matches
optical_pts = np.float32([kp_optical[m.queryIdx].pt for m in matches]).reshape(-1,1,2)
thermal_pts = np.float32([kp_thermal[m.trainIdx].pt for m in matches]).reshape(-1,1,2)
#print("Above or equal to 4.5" if tuple(map(int, cv2.__version__.split('.')[:2])) >= (4, 5) else "Below 4.5")
if optical_pts.shape[0] < 4 or thermal_pts.shape[0] < 4:
H_est = np.eye(3,3)
matchesMask = []
else:
if tuple(map(int, cv2.__version__.split('.')[:2])) >= (4, 5):
#LONG LIVE MAGSAC!
print("Using MAGSAC")
H_est, mask = cv2.findHomography(
optical_pts,
thermal_pts,
method=cv2.USAC_MAGSAC,
ransacReprojThreshold=config['prediction']['reprojection_threshold'],
confidence=0.9999,
maxIters=10000,
)
else:
print("Using RANSAC")
H_est, mask = cv2.findHomography(optical_pts, thermal_pts, cv2.RANSAC, ransacReprojThreshold=config['prediction']['reprojection_threshold'])
matchesMask = mask.ravel().tolist()
warped_image = cv2.warpPerspective(im_optical, H_est, im_optical.shape[:2][::-1], borderMode=cv2.BORDER_CONSTANT)
cv2.imshow('warped optical with estimated homography', warped_image)
# correct matches mask
H_gt = np.matmul(H_thermal.cpu().numpy(), np.linalg.inv(H_optical.cpu().numpy()))
warped_optical = utils.warp_keypoints(optical_pts.squeeze()[:,::-1], H_gt)[:,::-1]
diff = thermal_pts.squeeze() - warped_optical
diff = np.linalg.norm(diff, axis=1)
matchesMask = (diff < config['prediction']['reprojection_threshold']).tolist() # 4 is reprojection threshold i guess?? #matchesMask = (diff < 4.0).tolist()
inlier_matches = [matches[k] for k in range(len(matchesMask)) if matchesMask[k] == 1]
# draw refined matches
out_image_refined = cv2.drawMatches(im_optical,
kp_optical,
im_thermal,
kp_thermal,
inlier_matches,
outImg=None,
matchColor=(0, 255, 0),
singlePointColor=(0, 0, 255),
flags=0,)
#matchesMask = matchesMask)
#cv2.namedWindow('refined_matches', cv2.WINDOW_NORMAL)
#cv2.resizeWindow('refined_matches', out_image_refined.shape[1]*2, out_image_refined.shape[0]*2 + 50)
cv2.imshow('refined_matches', out_image_refined)
out_img_name=os.path.join(args.model_dir, 'descriptor_evaluation',"index_{}_matches.png".format(args.index))
cv2.imwrite(out_img_name,out_image_refined)
# compare estimated and computed homography
print('--------------------------------------------------------')
print('Estimated Homography:')
print(H_est)
print('Ground Truth Homography:')
print(np.matmul(H_thermal.cpu().numpy(), np.linalg.inv(H_optical.cpu().numpy())))
print('--------------------------------------------------------')
cv2.waitKey(0)
if __name__ == "__main__":
main()