-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathheterogeneityMetrics.R
executable file
·177 lines (156 loc) · 6.82 KB
/
heterogeneityMetrics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#####helper functions############################
# preprocess mutation data for function "calculatePairwiseParam"
preprocessMuts <- function(data) {
# first get rid of clonal mutations
cols.ccf = grepl("ccf$", colnames(data))
test <- apply(data[,cols.ccf], 1, function(x) all(x>0.5))
if (length(which(test))>0) {data <- data[-which(test),]}
# also get rid of all mutations that are 0 across the samples we are interested in
test <- apply(data[,cols.ccf], 1, function(x) all(x==0))
if (length(which(test))>0) {data <- data[-which(test),]}
# get rid of mutations that don't have a depth of 20 across all samples
cols.refc = grepl("refc$", colnames(data))
cols.altc = grepl("altc$", colnames(data))
total.depth = data[,cols.refc]+ data[,cols.altc]
test <- apply(total.depth, 1, function(x) all(x>=20))
data <- data[which(test),]
return(data)
}
### keep clonal mutations for these calculations
preprocessHFR <- function(data) {
# get rid of mutations that don't have a depth of 20 across all samples
cols.refc = grepl("refc$", colnames(data))
cols.altc = grepl("altc$", colnames(data))
total.depth = data[,cols.refc]+ data[,cols.altc]
test <- apply(total.depth, 1, function(x) all(x>=20))
data <- data[which(test),]
return(data)
}
# one of the heterogeneity metrics
fst.hudson <- function(af, minAF=0.08) {
mafis = which(grepl("maf", colnames(af)))
keep = as.vector(apply(af, 1, function(x, mafis) {
maxmaf = max(as.numeric(x[mafis]))
if (maxmaf > minAF) { TRUE
} else {FALSE}
}, mafis=mafis)) #filter data
af = af[keep,]
Ns = c()
Ds = c()
for(k in 1:nrow(af)) {
n1 = af$depth1[k]
n2 = af$depth2[k]
p1 = af$maf1[k]
p2 = af$maf2[k]
N = (p1-p2)^2-(p1*(1-p1))/(n1-1)-(p2*(1-p2))/(n2-1) # covariance
D = p1*(1-p2)+p2*(1-p1) # standard deviations
Ns = c(Ns, N)
Ds = c(Ds, D)
}
Fst.h = mean(Ns)/mean(Ds)
return(Fst.h)
}
### calculate and output all summary statistics (heterogeneity metrics)
# using maf and dpeth information
# sampAB is a matrix containing information for both samples
# snA and snB are the sample names for samples A and B
subclonalMut_otherCancer <- function(sampAB, snA, snB, minAF=0.08, statsAF=0.08, highAF=0.2, ssAF=0) {
mafaAi = sampAB[,grep(paste(snA, "ccf$", sep=""), colnames(sampAB))]/2
mafaBi = sampAB[,grep(paste(snB, "ccf$", sep=""), colnames(sampAB))]/2
nbAi = 1
nbBi = 1
depthAi = sampAB[,grep(paste(snA, "refc", sep=""), colnames(sampAB))] +
sampAB[,grep(paste(snA, "altc", sep=""), colnames(sampAB))]
depthBi = sampAB[,grep(paste(snB, "refc", sep=""), colnames(sampAB))] +
sampAB[,grep(paste(snB, "altc", sep=""), colnames(sampAB))]
# subclonal mutations, and exclude cases where one sample had LOH
subAi = which(mafaAi > minAF & ((mafaBi == 0 & (nbBi != 0 | nbAi == 0)) | mafaBi != 0) )
mutsA = mafaAi[subAi]
# sample specific mutations
ssAi = intersect(subAi, which( mafaAi > minAF & mafaBi <= ssAF ))
subBi = which(mafaBi > minAF & ((mafaAi == 0 & (nbAi != 0 | nbBi == 0)) | mafaAi != 0) )
mutsB = mafaBi[subBi]
ssBi = intersect(subBi, which( mafaBi > minAF & mafaAi <= ssAF ))
KSD = as.numeric(ks.test( mutsA[which(mutsA > statsAF)], mutsB[which(mutsB > statsAF)] )$statistic)
allSubRows = union(subAi,subBi)
# for FST
mutsSub = data.frame( maf1 = mafaAi[allSubRows], depth1=depthAi[allSubRows], maf2 = mafaBi[allSubRows], depth2=depthBi[allSubRows] )
FST = fst.hudson(mutsSub, minAF=statsAF)
# for other stats
mutsA2 = mafaAi[intersect(subAi, which( mafaAi > statsAF ))]
mutsAh2 = mafaAi[intersect(subAi, which( mafaAi > highAF ))]
mutsASp2 = mafaAi[intersect(subAi, which( mafaAi > statsAF & mafaBi == 0))]
mutsASph2 = mafaAi[intersect(subAi, which( mafaAi > highAF & mafaBi == 0))]
mutsB2 = mafaBi[intersect(subBi, which(mafaBi > statsAF ))]
mutsBh2 = mafaBi[intersect(subBi, which(mafaBi > highAF ))]
mutsBSp2 = mafaBi[intersect(subBi, which(mafaBi > statsAF & mafaAi == 0))]
mutsBSph2 = mafaBi[intersect(subBi, which(mafaBi > highAF & mafaAi == 0))]
ratioHighSubA=length(mutsAh2)/length(mutsA2)
ratioHighSubB=length(mutsBh2)/length(mutsB2)
ratioHighSsA=length(mutsASph2)/length(mutsASp2)
ratioHighSsB=length(mutsBSph2)/length(mutsBSp2)
ratioSsA=length(mutsASp2)/length(allSubRows)
ratioSsB=length(mutsBSp2)/length(allSubRows)
ratioHRsA=length(mutsAh2)/length(allSubRows)
ratioHRsB=length(mutsBh2)/length(allSubRows)
# list for output
muts = list(rHighSub=mean(na.omit(c(ratioHighSubA,ratioHighSubB))),
rHighSs=mean(na.omit(c(ratioHighSsA,ratioHighSsB))),
rSs=mean(c(ratioSsA,ratioSsB)), rHRs=mean(c(ratioHRsA,ratioHRsB)),
FST=FST, KSD=KSD)
return(muts)
}
##################### main functions #######################
# pairwise heterogeneity metrics used for ABC inference
# takes in the raw data (ccfs, mafs, and depths of coverage) as input
calculatePairwiseParams <- function(data){
data = preprocessMuts(data)
col.names = colnames(data)
cols.ccf = grepl("ccf$", col.names)
data.ccf = data[,c(which(cols.ccf))];
#### calculate stats in a pairwise manner (and then average) using function
num_samples = ncol(data.ccf)
comb_matrix = combn(num_samples,2)
# create results vectors for all of the other stats
result = matrix(nrow = ncol(comb_matrix), ncol=6) # because 6 parametes
sample_names = substring(colnames(data.ccf), 0, nchar(colnames(data.ccf))-3)
## all possible combinations
for (i in 1:ncol(comb_matrix)) {
result[i,] = unlist(subclonalMut_otherCancer(data, sample_names[comb_matrix[1,i]], sample_names[comb_matrix[2,i]]))
}
# take the mean across all pairwise combos to come up with final values
result_final=colMeans(result)
return(result_final)
}
# v is a vector of the indices of the two CCFs to compare
# (or mafas, in which case need to change from 0.5 to 0.25 and 0.05 to 0.025)
calculateHFR <- function(data, v) {
n <- 0
totalhet <- 0
for (i in 1:(length(v)-1)) {
for (j in c((i+1):length(v))) {
a <- subset(data, data[,v[i]] > 0.5 & data[,v[j]] < 0.05)
b <- subset(data, data[,v[j]] > 0.5 & data[,v[i]] < 0.05)
c <- subset(data, data[,v[i]] > 0.5 & data[,v[j]] > 0.5)
het1 <- dim(a)[1] / (dim(a)[1]+dim(c)[1])
het2 <- dim(b)[1]/ (dim(b)[1]+dim(c)[1])
totalhet <- totalhet+het1+het2
n <- n+2
}
}
return(totalhet/n)
}
# v is a vector of the indices of the CCFs; the first one is treated as "pre" and the others as "post"
# (or mafas, in which case need to change from 0.5 to 0.25 and 0.1 to 0.05)
## this is for temporal HFR
calculatetHFR <- function(data, v) {
clonal <- 0.5
rare <- 0.1
a <- data
for (i in 2:(length(v))) {
a <- subset(a, a[,v[i]] > clonal)
}
b <- subset(a, a[,v[1]] < rare)
c <- subset(a, a[,v[1]] > clonal)
return(dim(b)[1]/(dim(b)[1] + dim(c)[1]))
}