-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbreastSimulationCode.py
executable file
·820 lines (726 loc) · 38.4 KB
/
breastSimulationCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#! /usr/bin/python
######################################################################################
## A Python script to simulate 3D peripherally dominated tumor growth and ##
## multi-region sequencing data via an agent-based model. Deme subdivision is ##
## assumed in order to model cell mixing and spatial contraint. 20 samples across ##
## all octants of the deme are recorded to profile simulated spatial tumor ##
## heterogeneity. This version assumes at most two drivers occur on the same ##
## lineage; the fitness of Tier1 and Tier2 driver lineages is 1+s and (1+s)^2, ##
## respectively. ##
## ##
## Author for breast-specific modifications: Katherine McNamara (Curtis Lab at Stanford)## ##
## Original author: Zheng Hu (Curtis Lab at Stanford) ## ##
######################################################################################
import sys,os,math,random
import numpy as np
from collections import Counter
import sets
class deme():
def __init__(self):
self.present= 0 ## whether the deme is empty or occupied: 0-empty;1-occupied
self.neutral = [] ## the neutral founder lineage after tumor tranformation
self.advant1 = [] ## the advantageous cells having one driver mutation
self.advant2 = [] ## the advantageous cells having two driver mutations
def createLattice(d):
"""
Create a 3D cubic lattice with side length of 2d+1 where each site contains a empty deme.
"""
lattice = {}
for x in range(0,2*d+1):
for y in range(0,2*d+1):
for z in range(0,2*d+1):
lattice[(x,y,z)] = deme()
return lattice
def neighbor26((a,b,c)):
"""
Moore neighbourhood: 26 neighbour sites of (a,b,c)
"""
neighbor = [(a+i,b+j,c+k)
for i in [-1,0,1]
for j in [-1,0,1]
for k in [-1,0,1]
if not (i==0 and j==0 and k==0)]
return neighbor
#def neighbor26((a,b,c)):
# """
# Moore neighbourhood: 26 neighbour sites of (a,b,c).
# """
# neighbor = [(a-1, b-1, c-1),(a-1, b-1, c),(a-1, b-1, c+1),(a-1, b, c-1),(a-1, b, c),(a-1, b, c+1),(a-1, b+1, c-1),(a-1, b+1, c),(a-1, b+1, c+1),(a, b-1, c-1),(a, b-1, c),(a, b-1, c+1),(a, b, c-1),(a, b, c+1),(a, b+1, c-1),(a, b+1, c),(a, b+1, c+1),(a+1, b-1, c-1),(a+1, b-1, c),(a+1, b-1, c+1),(a+1, b, c-1),(a+1, b, c),(a+1, b, c+1),(a+1, b+1, c-1),(a+1, b+1, c),(a+1, b+1, c+1)]
# return neighbor
def neighbor6((a,b,c)):
"""
von Neumann neighbourhood: 6 neighbour sites of (a,b,c).
"""
neighbor = [(a-1, b, c),(a+1, b, c),(a, b-1, c),(a, b+1, c),(a, b, c-1),(a, b, c+1)]
return neighbor
def localNeighbor((a,b,c),r):
"""
A function to search the local neighbour sites of (a,b,c) within an area of radius r in the 3D cubic lattice.
"""
neighbor = []
for x in range(-r,r+1):
for y in range(-r,r+1):
for z in range(-r,r+1):
if pow(x,2)+pow(y,2)+pow(z,2) < pow(r+1,2):
neighbor += [(a+x,b+y,c+z)]
return neighbor
def traceLineage(mlineage,mutid):
"""
A function to obtain the mutational lineage of a cell from the mutation id of the most recently occurred mutation in the cell.
For example, the input ID (most recently occurred mutation) of target cell is "100" and the output is "1-12-35-56-100", which is the mutation lineage of the cell
mlineage - the list that could be used to recover the mutational lineage given the most recent mutation id of a lineage
mutid - the mutation ID of the most recently occurred mutation in the cell
"""
recent_muts = mutid.split(',') # it is possible that multiple mutations occur during in a cell division. For instance, the mutation id of most recently occurred mutations is "100,101"
recent_muts = [int(t) for t in recent_muts]
first_mut = recent_muts[0] # the first mutation id in a multi-mutation event
trace = []
while first_mut > 0:
trace += recent_muts
recent_muts = mlineage[first_mut].split(',')
recent_muts = [int(t) for t in recent_muts]
first_mut = recent_muts[0]
return trace
def lowerORupper(value):
"""
A function to choose the upper or lower integral value given a non-integral number
"""
lower_int = int(value)
upper_int = lower_int+1
if random.random() < value-lower_int:
return upper_int
else:
return lower_int
def initiateFirstDeme_v1(maxsize,lineage,current_id,sfit):
"""
The growth of the initial deme from a single transformed tumor cell via a random discrete-time birth-death process
v1 - one-tier driver model
maxsize - size limit of a deme
lineage - a list that stores the lineage information of mutations
current_id - the starting mutation ID
sfit - selection fitness of advantageous mutations
"""
neu_list = [str(current_id)]
adv_list = []
current_deme_size = 1
while current_deme_size < maxsize:
n1,n2 = len(neu_list),len(adv_list) #n1 and n2 are the current number of neutral founder cells and advantageous cells, respectively
neu_divcells = int(n1*birth_rate+1) #number of dividing cells of neutral lineage in this generation. The other cells will die in the next generation
neu_list = random.sample(neu_list,neu_divcells)*2
if n2 > 0:
adv_divcells = lowerORupper(n2*birth_rate*(1+sfit)) #number of dividing cells of advantageous lineage in this generation
adv_list = random.sample(adv_list,adv_divcells)*2
n1,n2 = len(neu_list),len(adv_list)
current_deme_size = n1+n2
if n1 > 0:
new_mut1 = np.random.poisson(mut_rate*n1) # the total number of mutations occurring in a generation follows Poission distribution with lambda=u*n
mut_assig1 = Counter(np.random.choice(n1,new_mut1))
for x1 in mut_assig1.keys():
nmut = mut_assig1[x1]
new_mut1 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut1))
#if nmut > 1:
# for t in new_mut1:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [neu_list[x1]]
neu_list[x1] = mut_str
if n2 > 0:
new_mut2 = np.random.poisson(mut_rate*n2)
mut_assig2 = Counter(np.random.choice(n2,new_mut2))
for x2 in mut_assig2.keys():
nmut = mut_assig2[x2]
new_mut2 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut2))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv_list[x2]]
adv_list[x2] = mut_str
if random.random() < adv_rate*n1: # occurence of advantageous mutation on the neutral lineage
current_id += 1
current_n1 = len(neu_list)
lineage += [str(neu_list[current_n1-1])]
adv_list += [str(current_id)]
neu_list = neu_list[0:current_n1-1]
return neu_list,adv_list,current_id,lineage
def initiateFirstDeme_v2(maxsize,lineage,current_id,sfit):
"""
The growth of the initial deme from a single transformed tumor cell via a random discrete-time birth-death process
v2 - two-tier driver model
maxsize - size limit of a deme
lineage - a list that stores the lineage information of mutations
current_id - the starting mutation ID
sfit - selection fitness of advantageous mutations
"""
neu_list = [str(current_id)]
adv1_list = []
adv2_list = []
current_deme_size = 1
while current_deme_size < maxsize:
n1,n2,n3 = len(neu_list),len(adv1_list),len(adv2_list)
neu_divcells = int(n1*birth_rate+1) #number of dividing cells in this generation
neu_list = random.sample(neu_list,neu_divcells)*2
if n2 > 0:
adv1_divcells = lowerORupper(n2*birth_rate*(1+sfit)) #number of dividing cells in this generation
adv1_list = random.sample(adv1_list,adv1_divcells)*2
if n3 > 0:
adv2_divcells = lowerORupper(n3*birth_rate*pow(1+sfit,2)) #number of dividing cells in this generation
adv2_list = random.sample(adv2_list,adv2_divcells)*2
n1,n2,n3 = len(neu_list),len(adv1_list),len(adv2_list)
current_deme_size = n1+n2+n3
if n1 > 0:
new_mut1 = np.random.poisson(mut_rate*n1)
mut_assig1 = Counter(np.random.choice(n1,new_mut1))
for x1 in mut_assig1.keys():
nmut = mut_assig1[x1]
new_mut1 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut1))
#if nmut > 1:
# for t in new_mut1:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [neu_list[x1]]
neu_list[x1] = mut_str
if n2 > 0:
new_mut2 = np.random.poisson(mut_rate*n2)
mut_assig2 = Counter(np.random.choice(n2,new_mut2))
for x2 in mut_assig2.keys():
nmut = mut_assig2[x2]
new_mut2 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut2))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv1_list[x2]]
adv1_list[x2] = mut_str
if n3 > 0:
new_mut3 = np.random.poisson(mut_rate*n3)
mut_assig3 = Counter(np.random.choice(n3,new_mut3))
for x3 in mut_assig3.keys():
nmut = mut_assig3[x3]
new_mut3 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut3))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv2_list[x3]]
adv2_list[x3] = mut_str
if random.random() < adv_rate*n1:
current_id += 1
current_n1 = len(neu_list)
lineage += [str(neu_list[current_n1-1])]
adv1_list += [str(current_id)]
neu_list = neu_list[0:current_n1-1]
if random.random() < adv_rate*n2:
current_id += 1
current_n2 = len(adv1_list)
lineage += [str(adv1_list[current_n2-1])]
adv2_list += [str(current_id)]
adv1_list = adv1_list[0:current_n2-1]
return neu_list,adv1_list,adv2_list,current_id,lineage
def demeGrowthFission_v1(neu_list,adv_list,lineage,current_id,current_deme_number,sfit):
"""
A function to simulate deme expansion and fission and keep track of the mutational lineages
v1 - one-tier driver model
"""
current_deme_size = len(neu_list)+len(adv_list)
while current_deme_size < 2*deme_size: #when the deme size doubles, it will split into two offspring demes
n1,n2 = len(neu_list),len(adv_list)
neu_divcells = lowerORupper(n1*birth_rate) #number of dividing cells in this generation
neu_list = random.sample(neu_list,neu_divcells)*2
if n2 > 0:
adv_divcells = lowerORupper(n2*birth_rate*(1+sfit)) #number of dividing cells in this generation
adv_list = random.sample(adv_list,adv_divcells)*2
n1,n2 = len(neu_list),len(adv_list)
current_deme_size = n1+n2
if current_deme_number < 5*pow(10,7)/deme_size: #stop mutation occurring when the tumor size is larger than 5*10^7 cells. The reason is that late occuring mutations have very small chance to present at detectable frequency even under selection.
if n1 > 0:
new_mut1 = np.random.poisson(mut_rate*n1)
mut_assig1 = Counter(np.random.choice(n1,new_mut1))
for x1 in mut_assig1.keys():
nmut = mut_assig1[x1]
new_mut1 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut1))
#if nmut > 1:
# for t in new_mut1:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [neu_list[x1]]
neu_list[x1] = mut_str
if n2 > 0:
new_mut2 = np.random.poisson(mut_rate*n2)
mut_assig2 = Counter(np.random.choice(n2,new_mut2))
for x2 in mut_assig2.keys():
nmut = mut_assig2[x2]
new_mut2 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut2))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv_list[x2]]
adv_list[x2] = mut_str
if random.random() < adv_rate*n1:
current_id += 1
current_n1 = len(neu_list)
lineage += [str(neu_list[current_n1-1])]
adv_list += [str(current_id)]
neu_list = neu_list[0:current_n1-1]
#n1,n2 = len(neu_list),len(adv_list)
random.shuffle(neu_list)
if len(neu_list) > 0:
offspring_neu = np.random.binomial(len(neu_list),0.5) # the offpring deme size is determined by a Binomial distribution B(n,0.5)
else:
offspring_neu = 0
neu_list1=neu_list[0:offspring_neu]
neu_list2=neu_list[offspring_neu:len(neu_list)]
random.shuffle(adv_list)
if len(adv_list) > 0:
offspring_adv = np.random.binomial(len(adv_list),0.5)
else:
offspring_adv = 0
adv_list1=adv_list[0:offspring_adv]
adv_list2=adv_list[offspring_adv:len(adv_list)]
return neu_list1,neu_list2,adv_list1,adv_list2,current_id,lineage
def demeGrowthFission_v2(neu_list,adv1_list,adv2_list,lineage,current_id,current_deme_number,sfit):
"""
A function to simulate deme growth and fission and keep track of the mutational lineages
v2 - two-tier driver model
"""
current_deme_size = len(neu_list)+len(adv1_list)+len(adv2_list)
while current_deme_size < 2*deme_size:
n1,n2,n3 = len(neu_list),len(adv1_list),len(adv2_list)
if n1 > 0:
neu_divcells = lowerORupper(n1*birth_rate) #number of dividing cells in this generation
neu_list = random.sample(neu_list,neu_divcells)*2
if n2 > 0:
adv1_divcells = lowerORupper(n2*birth_rate*(1+sfit)) #number of dividing cells in this generation
adv1_list = random.sample(adv1_list,adv1_divcells)*2
if n3 > 0:
adv2_divcells = lowerORupper(n3*birth_rate*pow(1+sfit,2)) #number of dividing cells in this generation
adv2_list = random.sample(adv2_list,adv2_divcells)*2
n1,n2,n3 = len(neu_list),len(adv1_list),len(adv2_list)
current_deme_size = n1+n2+n3
if current_deme_number < 5*pow(10,7)/deme_size: # stop mutation occurence when the tumor size is larger than 10^4*5000 = 5*10^7
if n1 > 0:
new_mut1 = np.random.poisson(mut_rate*n1)
mut_assig1 = Counter(np.random.choice(n1,new_mut1))
for x1 in mut_assig1.keys():
nmut = mut_assig1[x1]
new_mut1 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut1))
#if nmut > 1:
# for t in new_mut1:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [neu_list[x1]]
neu_list[x1] = mut_str
if n2 > 0:
new_mut2 = np.random.poisson(mut_rate*n2)
mut_assig2 = Counter(np.random.choice(n2,new_mut2))
for x2 in mut_assig2.keys():
nmut = mut_assig2[x2]
new_mut2 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut2))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv1_list[x2]]
adv1_list[x2] = mut_str
if n3 > 0:
new_mut3 = np.random.poisson(mut_rate*n3)
mut_assig3 = Counter(np.random.choice(n3,new_mut3))
for x3 in mut_assig3.keys():
nmut = mut_assig3[x3]
new_mut3 = range(current_id+1,current_id+1+nmut)
mut_str = ",".join(map(str,new_mut3))
#if nmut > 1:
# for t in new_mut2:
# multi_events[str(t)] = mut_str
for xn in range(0,nmut):
current_id += 1
lineage += [adv2_list[x3]]
adv2_list[x3] = mut_str
if random.random() < adv_rate*n1:
current_id += 1
current_n1 = len(neu_list)
lineage += [str(neu_list[current_n1-1])]
adv1_list += [str(current_id)]
neu_list = neu_list[0:current_n1-1]
if random.random() < adv_rate*n2:
current_id += 1
current_n2 = len(adv1_list)
lineage += [str(adv1_list[current_n2-1])]
adv2_list += [str(current_id)]
adv1_list = adv1_list[0:current_n2-1]
random.shuffle(neu_list)
if len(neu_list) > 0:
offspring_neu = np.random.binomial(len(neu_list),0.5)
else:
offspring_neu = 0
neu_list1=neu_list[0:offspring_neu]
neu_list2=neu_list[offspring_neu:len(neu_list)]
random.shuffle(adv1_list)
if len(adv1_list) > 0:
offspring_adv1 = np.random.binomial(len(adv1_list),0.5)
else:
offspring_adv1 = 0
adv1_list1=adv1_list[0:offspring_adv1]
adv1_list2=adv1_list[offspring_adv1:len(adv1_list)]
random.shuffle(adv2_list)
if len(adv2_list) > 0:
offspring_adv2 = np.random.binomial(len(adv2_list),0.5)
else:
offspring_adv2 = 0
adv2_list1=adv2_list[0:offspring_adv2]
adv2_list2=adv2_list[offspring_adv2:len(adv2_list)]
return neu_list1,neu_list2,adv1_list1,adv1_list2,adv2_list1,adv2_list2,current_id,lineage
def seqProcessing(sp,sample_keys,mlineage,size_par,mean_depth,purity):
"""
Model the random sampling process in NGS and report the sequencing allele frequencies in a sample of cells
sp- the lattice space
sample_keys- the locations for the demes in a bulk sample
size_par- variance parameter for negative-binomial distribution
mean_depth- the mean depth of the sequencing
purity- tumor purity
"""
all_cur_id = [] # all most recently occurred mutations
all_mut_id = [] # all mutations in the sampled cells
for key in sample_keys:
smuts = list(sp[key].neutral + sp[key].advant1 + sp[key].advant2)
all_cur_id += smuts
sample_size = 10000 # the number of cells for sequencing analysis
sample_id = random.sample(all_cur_id,sample_size)
id_count = Counter(sample_id)
for x in id_count.keys():
xlineage = traceLineage(mlineage,x)
all_mut_id += xlineage*id_count[x]
mut_count = Counter(all_mut_id)
prob_par=size_par*1.0/(size_par+mean_depth)
sampleAF = {} # a dictionary storing the mutation IDs and corresponding depth and allele frequency the seq data
for x in mut_count.keys():
true_af = mut_count[x]*0.5*purity/sample_size # the true allele frequency in the sample
if true_af > 0.001: # filter mutations with very low frequency that is not detectable by ~100X sequencing depth
site_depth = np.random.negative_binomial(size_par,prob_par)
if site_depth >= 15: # seq depth cutoff for "calling" a mutation
var_reads = np.random.binomial(site_depth,true_af)
seq_af = var_reads*1.0/site_depth
if var_reads >= 4: # variant reads cutof for "calling" a mutation
sampleAF[str(x)] = (site_depth,seq_af)
return sampleAF
def highMuts(sp,position,mlineage,cutoff):
"""
Obtain the high-frequency mutations (vaf>cutoff) in a particular deme
sp - the lattice space
position - the location of the deme
mlineage - mutation lineage dictionary
cutoff - the VAF cutoff for a "high-frequency" mutation, e.g. 0.4
"""
all_cur_id = sp[position].neutral + sp[position].advant1 + sp[position].advant2
all_mut_id = []
sample_size = 100
sample_id = random.sample(all_cur_id,sample_size)
id_count = Counter(sample_id)
for y in id_count.keys():
xlineage = traceLineage(mlineage,y)
all_mut_id += xlineage*id_count[y]
mut_count = Counter(all_mut_id)
highAF_muts = []
for x in mut_count.keys():
allele_freq = mut_count[x]*1.0/sample_size
if allele_freq > cutoff:
highAF_muts += [int(x)]
return highAF_muts
def pubMutGenerator(n,size_par,mean_depth,purity):
"""
A function to generate the public clonal mutations occured during the multi-step tumorigenesis before transformation.
n- number of clonal mutations
size_par- variation parameter in the negative binomial distribution
mean_death- mean seq depth
"""
prob_par=size_par*1.0/(size_par+mean_depth)
mean_af = 0.5*purity
depth_pub = []
maf_pub = []
for k in range(0,n):
correct = 0
while correct == 0:
site_depth = np.random.negative_binomial(size_par,prob_par)
if site_depth >= 15:
correct =1
var_reads = np.random.binomial(site_depth,mean_af)
site_maf = var_reads*1.0/site_depth
depth_pub += [site_depth]
maf_pub += [site_maf]
return depth_pub,maf_pub
def localSampling(region,sample_number,cutoff):
"""
A function to sampling the locations of multiple bulk samples in a local region.
"""
success = 0
while success == 0:
locations = random.sample(region,sample_number)
repeat = sample_number*(sample_number-1)
minall = 999
for x in range(0,repeat):
rs = random.sample(locations,2)
min_distance = min([abs(rs[0][0]-rs[1][0]),abs(rs[0][1]-rs[1][1]),abs(rs[0][2]-rs[1][2])])
if min_distance < minall:
minall = min_distance
if min_distance > 2*cutoff:
success = 1
return locations
def bulkTissueSampling(sp,location,radius):
"""
A function to sampling a bulk sample in a local region.
"""
local_region = localNeighbor(location,radius)
bulk_tissue = []
for x in local_region:
if sp[x].present == 1:
bulk_tissue += [x]
return bulk_tissue
def lineageDashLink(mlist):
"""
Transform the mutation lineage from list (e.g [1,3,10,20]) to dash-linked string (e.g. 1-3-10-20)
"""
if len(mlist) > 0:
dstring = str(mlist[0])
for x in mlist[1:len(mlist)]:
dstring += "-"
dstring += str(x)
return dstring
else:
return "0"
def missingDepth(vafdata,absent_muts,mean_depth):
"""
Randomly generate the sequencing depth for the mutation-absent sites across samples
"""
for x in absent_muts:
done = 0
while done == 0:
missing_depth = np.random.negative_binomial(2,2.0/(2+mean_depth))
if missing_depth >= 15:
done = 1
vafdata[str(x)] = (missing_depth,0)
return vafdata
#############main script to simulate a tumor and multi-region sequencing data#########
###parameter intiation###
s_coef = float(sys.argv[1]) # the selection coefficient, ranges from 0 to 0.5
repl = int(sys.argv[2]) # replication of simulation
rd = 60 # the side length of the 3D space, may need to be increased for very small demes
deme_size = 5000 # the deme size, ranges from 1K to 50K
final_tumor_size = pow(10,9) # the number of cells in the final tumor (1 billion cells)
final_deme_number = final_tumor_size/deme_size # the final number of demes in the tumor
birth_rate = 0.55 # the birth probability at each cell generation during tumor growth
mut_rate = 0.6 # the neutral mutation rate at whole exonic region
adv_rate = pow(10,-5) if s_coef > 0 else 0
percentage = int(s_coef*100) # the percentage form of the selection
npub=50 # the number of public mutation to be generated, based on our breast cohort
seq_depth=100 # the average sequencing depth, based on utilized mutaiton from our breast cohort
mut_id = 0
mutlineage = ['0'] # the lineage tracer
######################################################################################
first_neu,first_adv1,first_adv2,mut_id,mutlineage = initiateFirstDeme_v2(deme_size,mutlineage,mut_id,s_coef) #the growth of the fisrt deme from single transformed cell
print "No. of neutral, tie1 and tie2 advantageous mutations in the first deme:",len(first_neu),len(first_adv1),len(first_adv2)
space = createLattice(rd)
space[(rd,rd,rd)].present = 1
space[(rd,rd,rd)].neutral = list(first_neu)
space[(rd,rd,rd)].advant1 = list(first_adv1)
space[(rd,rd,rd)].advant2 = list(first_adv2)
current_keys = [(rd,rd,rd)]
current_deme_number = 1 #current deme number
surface_keys = [(rd,rd,rd)]
surface_deme_number = 1
deme_time_generation = 0
while current_deme_number < final_deme_number:
new_keys = []
for w in range(0,surface_deme_number): # deme expansion occurs in the surface of a tumor
ckey = random.choice(surface_keys)
if space[ckey].present == 1:
#rx,ry,rz = ckey[0],ckey[1],ckey[2]
nei_sites = neighbor26(ckey) # neighbor sites of (rx,ry,rz)
empty_sites = [key for key in nei_sites if space[key].present == 0] # the empty neighbor sites
empty_site_number = len(empty_sites)
if empty_site_number > 0:
rand_prob = random.random()
if rand_prob < 1-math.exp(-empty_site_number*0.25): # the probability for a deme to grow and divide is proportional to the # of empty neighbor sites
pre_neu = list(space[ckey].neutral)
pre_adv1 = list(space[ckey].advant1)
pre_adv2 = list(space[ckey].advant2)
post_neu_l1,post_neu_l2,post_adv1_l1,post_adv1_l2,post_adv2_l1,post_adv2_l2,mut_id,mutlineage = demeGrowthFission_v2(pre_neu,pre_adv1,pre_adv2,mutlineage,mut_id,current_deme_number,s_coef)
space[ckey].neutral = list(post_neu_l1)
space[ckey].advant1 = list(post_adv1_l1)
space[ckey].advant2 = list(post_adv2_l1)
nkey = random.choice(empty_sites)
space[nkey].neutral = list(post_neu_l2)
space[nkey].advant1 = list(post_adv1_l2)
space[nkey].advant2 = list(post_adv2_l2)
space[nkey].present = 1
current_keys += [nkey]
current_deme_number += 1
new_keys += [nkey]
else:
print "something is wrong!"
###update surface###
surface_update = list(surface_keys+new_keys)
surface_keys = []
for fkey in surface_update:
neisites = neighbor26(fkey)
random.shuffle(neisites)
for key in neisites:
if space[key].present == 0:
surface_keys += [fkey]
break
surface_deme_number = len(surface_keys)
current_deme_number = len(current_keys)
deme_time_generation += 1
print "generation, no. of demes in surface and whole tumor=",deme_time_generation,surface_deme_number,current_deme_number
# sample from the periphery to get demes that are farther apart ... using surface keys
quadrant1,quadrant2,quadrant3,quadrant4,quadrant5,quadrant6,quadrant7,quadrant8 = [],[],[],[],[],[],[],[] #surface demes in the eight quadrants
for pky in surface_keys:
if pky[0] > rd and pky[1] > rd and pky[2] > rd:
quadrant1 += [pky]
if pky[0] < rd and pky[1] < rd and pky[2] < rd:
quadrant2 += [pky]
if pky[0] < rd and pky[1] > rd and pky[2] > rd:
quadrant3 += [pky]
if pky[0] > rd and pky[1] < rd and pky[2] < rd:
quadrant4 += [pky]
if pky[0] > rd and pky[1] > rd and pky[2] < rd:
quadrant5 += [pky]
if pky[0] < rd and pky[1] < rd and pky[2] > rd:
quadrant6 += [pky]
if pky[0] > rd and pky[1] < rd and pky[2] > rd:
quadrant7 += [pky]
if pky[0] < rd and pky[1] > rd and pky[2] < rd:
quadrant8 += [pky]
# sample 3 times each from the first 4 demes and 2x each from the 2nd 4 demes for a total of 20 samples
locat1_1 = random.choice(quadrant1) # location of bulk tissue1
locat1_2 = random.choice(quadrant1) # location of bulk tissue1
locat1_3 = random.choice(quadrant1) # location of bulk tissue1
locat2_1 = random.choice(quadrant2)
locat2_2 = random.choice(quadrant2)
locat2_3 = random.choice(quadrant2)
locat3_1 = random.choice(quadrant3)
locat3_2 = random.choice(quadrant3)
locat3_3 = random.choice(quadrant3)
locat4_1 = random.choice(quadrant4)
locat4_2 = random.choice(quadrant4)
locat4_3 = random.choice(quadrant4)
locat5_1 = random.choice(quadrant5)
locat5_2 = random.choice(quadrant5)
locat6_1 = random.choice(quadrant6)
locat6_2 = random.choice(quadrant6)
locat7_1 = random.choice(quadrant7)
locat7_2 = random.choice(quadrant7)
locat8_1 = random.choice(quadrant8)
locat8_2 = random.choice(quadrant8)
sample20 = [locat1_1,locat1_2,locat1_3,locat2_1,locat2_2,locat2_3,locat3_1,locat3_2,locat3_3,locat4_1,locat4_2,locat4_3,locat5_1,locat5_2,locat6_1,locat6_2,locat7_1,locat7_2,locat8_1,locat8_2]
# sample a radius of 3 demes around the center of the sample, the radius can be adjusted to generate larger or smaller samples
tissue1_1 = bulkTissueSampling(space,sample20[0],3)
tissue1_2 = bulkTissueSampling(space,sample20[1],3)
tissue1_3 = bulkTissueSampling(space,sample20[2],3)
tissue2_1 = bulkTissueSampling(space,sample20[3],3)
tissue2_2 = bulkTissueSampling(space,sample20[4],3)
tissue2_3 = bulkTissueSampling(space,sample20[5],3)
tissue3_1 = bulkTissueSampling(space,sample20[6],3)
tissue3_2 = bulkTissueSampling(space,sample20[7],3)
tissue3_3 = bulkTissueSampling(space,sample20[8],3)
tissue4_1 = bulkTissueSampling(space,sample20[9],3)
tissue4_2 = bulkTissueSampling(space,sample20[10],3)
tissue4_3 = bulkTissueSampling(space,sample20[11],3)
tissue5_1 = bulkTissueSampling(space,sample20[12],3)
tissue5_2 = bulkTissueSampling(space,sample20[13],3)
tissue6_1 = bulkTissueSampling(space,sample20[14],3)
tissue6_2 = bulkTissueSampling(space,sample20[15],3)
tissue7_1 = bulkTissueSampling(space,sample20[16],3)
tissue7_2 = bulkTissueSampling(space,sample20[17],3)
tissue8_1 = bulkTissueSampling(space,sample20[18],3)
tissue8_2 = bulkTissueSampling(space,sample20[19],3)
maf1_1 = seqProcessing(space,tissue1_1,mutlineage,2,seq_depth,1)
maf1_2 = seqProcessing(space,tissue1_2,mutlineage,2,seq_depth,1)
maf1_3 = seqProcessing(space,tissue1_3,mutlineage,2,seq_depth,1)
maf2_1 = seqProcessing(space,tissue2_1,mutlineage,2,seq_depth,1)
maf2_2 = seqProcessing(space,tissue2_2,mutlineage,2,seq_depth,1)
maf2_3 = seqProcessing(space,tissue2_3,mutlineage,2,seq_depth,1)
maf3_1 = seqProcessing(space,tissue3_1,mutlineage,2,seq_depth,1)
maf3_2 = seqProcessing(space,tissue3_2,mutlineage,2,seq_depth,1)
maf3_3 = seqProcessing(space,tissue3_3,mutlineage,2,seq_depth,1)
maf4_1 = seqProcessing(space,tissue4_1,mutlineage,2,seq_depth,1)
maf4_2 = seqProcessing(space,tissue4_2,mutlineage,2,seq_depth,1)
maf4_3 = seqProcessing(space,tissue4_3,mutlineage,2,seq_depth,1)
maf5_1 = seqProcessing(space,tissue5_1,mutlineage,2,seq_depth,1)
maf5_2 = seqProcessing(space,tissue5_2,mutlineage,2,seq_depth,1)
maf6_1 = seqProcessing(space,tissue6_1,mutlineage,2,seq_depth,1)
maf6_2 = seqProcessing(space,tissue6_2,mutlineage,2,seq_depth,1)
maf7_1 = seqProcessing(space,tissue7_1,mutlineage,2,seq_depth,1)
maf7_2 = seqProcessing(space,tissue7_2,mutlineage,2,seq_depth,1)
maf8_1 = seqProcessing(space,tissue8_1,mutlineage,2,seq_depth,1)
maf8_2 = seqProcessing(space,tissue8_2,mutlineage,2,seq_depth,1)
MAF_file = open("tumor"+str(repl)+"_simVAF_deme"+str(deme_size)+"_s"+str(percentage)+"percent.txt","w")
MAF_file.write("mut_id"+" "+"public"+" "+"depth1_1"+" "+"maf1_1"+" "+"depth1_2"+" "+"maf1_2"+" "+"depth1_3"+" "+"maf1_3"+" "+"depth2_1"+" "+"maf2_1"+" "+"depth2_2"+" "+"maf2_2"+" "+"depth2_3"+" "+"maf2_3"+" "+"depth3_1"+" "+"maf3_1"+" "+"depth3_2"+" "+"maf3_2"+" "+"depth3_3"+" "+"maf3_3"+" "+"depth4_1"+" "+"maf4_1"+"depth4_2"+" "+"maf4_2"+"depth4_3"+" "+"maf4_3"+"depth5_1"+" "+"maf5_1"+"depth5_2"+" "+"maf5_2"+"depth6_1"+" "+"maf6_1"+"depth6_2"+" "+"maf6_2"+"depth7_1"+" "+"maf7_1"+"depth7_2"+" "+"maf7_2"+"depth8_1"+" "+"maf8_1"+"depth8_2"+" "+"maf8_2")
MAF_file.write("\n")
for k in range(0,npub):
pdepth,pmaf = pubMutGenerator(20,2,seq_depth,1)
MAF_file.write("c"+str(k+1)+" "+"1"+" "+str(pdepth[0])+" "+str(pmaf[0])+" "+str(pdepth[1])+" "+str(pmaf[1])+" "+str(pdepth[2])+" "+str(pmaf[2])+" "+str(pdepth[3])+" "+str(pmaf[3])+" "+str(pdepth[4])+" "+str(pmaf[4])+" "+str(pdepth[5])+" "+str(pmaf[5])+" "+str(pdepth[6])+" "+str(pmaf[6])+" "+str(pdepth[7])+" "+str(pmaf[7])+" "+str(pdepth[8])+" "+str(pmaf[8])+" "+str(pdepth[9])+" "+str(pmaf[9])+" "+str(pdepth[10])+" "+str(pmaf[10])+" "+str(pdepth[11])+" "+str(pmaf[11])+" "+str(pdepth[12])+" "+str(pmaf[12])+" "+str(pdepth[13])+" "+str(pmaf[13])+" "+str(pdepth[14])+" "+str(pmaf[14])+" "+str(pdepth[15])+" "+str(pmaf[15])+" "+str(pdepth[16])+" "+str(pmaf[16])+" "+str(pdepth[17])+" "+str(pmaf[17])+" "+str(pdepth[18])+" "+str(pmaf[18])+" "+str(pdepth[19])+" "+str(pmaf[19]))
MAF_file.write("\n")
muts_all = sets.Set(maf1_1.keys()) | sets.Set(maf1_2.keys()) | sets.Set(maf1_3.keys()) | sets.Set(maf2_1.keys()) | sets.Set(maf2_2.keys()) | sets.Set(maf2_3.keys()) | sets.Set(maf3_1.keys()) | sets.Set(maf3_2.keys()) | sets.Set(maf3_3.keys()) | sets.Set(maf4_1.keys()) | sets.Set(maf4_2.keys()) | sets.Set(maf4_3.keys()) | sets.Set(maf5_1.keys()) | sets.Set(maf5_2.keys()) | sets.Set(maf6_1.keys()) | sets.Set(maf6_2.keys()) | sets.Set(maf7_1.keys()) | sets.Set(maf7_2.keys()) | sets.Set(maf8_1.keys()) | sets.Set(maf8_2.keys())
absent1_1 = muts_all-sets.Set(maf1_1.keys())
absent1_2 = muts_all-sets.Set(maf1_2.keys())
absent1_3 = muts_all-sets.Set(maf1_3.keys())
absent2_1 = muts_all-sets.Set(maf2_1.keys())
absent2_2 = muts_all-sets.Set(maf2_2.keys())
absent2_3 = muts_all-sets.Set(maf2_3.keys())
absent3_1 = muts_all-sets.Set(maf3_1.keys())
absent3_2 = muts_all-sets.Set(maf3_2.keys())
absent3_3 = muts_all-sets.Set(maf3_3.keys())
absent4_1 = muts_all-sets.Set(maf4_1.keys())
absent4_2 = muts_all-sets.Set(maf4_2.keys())
absent4_3 = muts_all-sets.Set(maf4_3.keys())
absent5_1 = muts_all-sets.Set(maf5_1.keys())
absent5_2 = muts_all-sets.Set(maf5_2.keys())
absent6_1 = muts_all-sets.Set(maf6_1.keys())
absent6_2 = muts_all-sets.Set(maf6_2.keys())
absent7_1 = muts_all-sets.Set(maf7_1.keys())
absent7_2 = muts_all-sets.Set(maf7_2.keys())
absent8_1 = muts_all-sets.Set(maf8_1.keys())
absent8_2 = muts_all-sets.Set(maf8_2.keys())
maf1_1 = missingDepth(maf1_1,absent1_1,seq_depth)
maf1_2 = missingDepth(maf1_2,absent1_2,seq_depth)
maf1_3 = missingDepth(maf1_3,absent1_3,seq_depth)
maf2_1 = missingDepth(maf2_1,absent2_1,seq_depth)
maf2_2 = missingDepth(maf2_2,absent2_2,seq_depth)
maf2_3 = missingDepth(maf2_3,absent2_3,seq_depth)
maf3_1 = missingDepth(maf3_1,absent3_1,seq_depth)
maf3_2 = missingDepth(maf3_2,absent3_2,seq_depth)
maf3_3 = missingDepth(maf3_3,absent3_3,seq_depth)
maf4_1 = missingDepth(maf4_1,absent4_1,seq_depth)
maf4_2 = missingDepth(maf4_2,absent4_2,seq_depth)
maf4_3 = missingDepth(maf4_3,absent4_3,seq_depth)
maf5_1 = missingDepth(maf5_1,absent5_1,seq_depth)
maf5_2 = missingDepth(maf5_2,absent5_2,seq_depth)
maf6_1 = missingDepth(maf6_1,absent6_1,seq_depth)
maf6_2 = missingDepth(maf6_2,absent6_2,seq_depth)
maf7_1 = missingDepth(maf7_1,absent7_1,seq_depth)
maf7_2 = missingDepth(maf7_2,absent7_2,seq_depth)
maf8_1 = missingDepth(maf8_1,absent8_1,seq_depth)
maf8_2 = missingDepth(maf8_2,absent8_2,seq_depth)
# output the mafs for the 20 samples, the first number indicates which octant of the tumor the sample is take from
for mt in sorted(muts_all):
MAF_file.write(str(mt)+" "+"0"+" "+str(maf1_1[mt][0])+" "+str(maf1_1[mt][1])+" "+str(maf1_2[mt][0])+" "+str(maf1_2[mt][1])+" "+str(maf1_3[mt][0])+" "+str(maf1_3[mt][1])+" "+str(maf2_1[mt][0])+" "+str(maf2_1[mt][1])+" "+str(maf2_2[mt][0])+" "+str(maf2_2[mt][1])+" "+str(maf2_3[mt][0])+" "+str(maf2_3[mt][1])+" "+str(maf3_1[mt][0])+" "+str(maf3_1[mt][1])+" "+str(maf3_2[mt][0])+" "+str(maf3_2[mt][1])+" "+str(maf3_3[mt][0])+" "+str(maf3_3[mt][1])+" "+str(maf4_1[mt][0])+" "+str(maf4_1[mt][1])+" "+str(maf4_2[mt][0])+" "+str(maf4_2[mt][1])+" "+str(maf4_3[mt][0])+" "+str(maf4_3[mt][1])+" "+str(maf5_1[mt][0])+" "+str(maf5_1[mt][1])+" "+str(maf5_2[mt][0])+" "+str(maf5_2[mt][1])+" "+str(maf6_1[mt][0])+" "+str(maf6_1[mt][1])+" "+str(maf6_2[mt][0])+" "+str(maf6_2[mt][1])+" "+str(maf7_1[mt][0])+" "+str(maf7_1[mt][1])+" "+str(maf7_2[mt][0])+" "+str(maf7_2[mt][1])+" "+str(maf8_1[mt][0])+" "+str(maf8_1[mt][1])+" "+str(maf8_2[mt][0])+" "+str(maf8_2[mt][1])+" ")
MAF_file.write("\n")