-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMax_CCT_CNN.py
61 lines (44 loc) · 1.4 KB
/
Max_CCT_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import json
import os
import cv2
import numpy as np
import random
import os
"""Prepare Data"""
images_path = "eccv_18_all_images_sm"
labels_path = "CaltechCameraTrapsECCV18.json"
with open(labels_path) as json_file:
data = json.load(json_file)
clist, cdict = [], {}
for category in data['categories']:
cdict[category['id']] = len(clist)
clist.append(category['name'])
num_categories = len(clist)
adict = {}
for annotation in data['annotations']:
adict[annotation['image_id']] = cdict[annotation['category_id']]
amount = 1000
dim = (1000, 500)
path_lst = next(os.walk(images_path))[2]
image_lst, label_lst = [], []
i = 1
for idx in random.sample(range(len(path_lst)), amount):
image = path_lst[idx]
imarr = cv2.imread(images_path + '/' + image, cv2.IMREAD_COLOR)
imarr = cv2.resize(imarr, dim, interpolation = cv2.INTER_AREA)
image_lst.append(imarr)
label_vec = np.zeros(num_categories)
label_vec[adict[image.split('.')[0]]] = 1
label_lst.append(label_vec)
if i % 50 == 0:
print(i / amount * 100, '% done')
i+=1
image_arr, label_arr = np.array(image_lst), np.array(label_lst)
path = 'data2/'
os.mkdir(path)
np.save(path + 'images.npy', image_arr)
np.save(path + 'labels.npy', label_arr)
np.savez(path + 'label_to_animal.npz', clist)