-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshow_image_farm.py
97 lines (85 loc) · 2.97 KB
/
show_image_farm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 12 14:10:30 2018
@author: zhang
"""
import tensorflow as tf
from model_TF_farm import D_on_G
from config import get_config
#from data import MNISTDataHandler
from ops import mkdir
from keras.models import load_model
from utils import load_images, load_images_with_C, load__class_images, load__class_images_with_C
import numpy as np
import matplotlib.pyplot as plt
from dataset_process_attitude_farm import jitter_maker_4sin, jitter2D, jitter_with_curve
from PIL import Image
from random import randint
import cv2
import argparse
def load_image(path):
img = Image.open(path).convert('L')
return img
def preprocess(path, x_b, y_b):
img = load_image(path)
# cv2.imres
img = np.array(img)
# if randint(0,1)==0:
# img = np.rot90(img,2)
# img = img / 255
img = img[x_b:x_b+256, y_b:y_b+256]
img = (img - 127.5) / 127.5
num = 5
out = np.zeros([5,256,256,1])
for i in range(num):
out[i,:,:,0] = img
return out
def uint_img(img):
return (img*127.5+127.5).astype(np.uint8)
parser = argparse.ArgumentParser()
parser.add_argument("--final_layer", type=int, help="choose the number of final layers", default = 128)
parser.add_argument("--alpha", type=float, help="choose the value of alpha", default = 1)
parser.add_argument("--max_pooling", type=bool, help="choose whether max_pooling is used", default = True)
parser.add_argument("--kernel_size", type=int, help="choose size of the kernel", default = 3)
args = parser.parse_args()
if __name__ == "__main__":
sess = tf.Session()
config = get_config(is_train=True)
restore = D_on_G(sess, config, "DIRNet", is_train=True)
restore.restore(config.ckpt_dir)
bo = 20
# figure 2
yaogan_x = preprocess('..//..//dataset//yaogan26//for_classification.png', 0, 0)
_,_, output,wrap_yaogan = restore.predict_one(yaogan_x[0], config)
plt.imshow(output[:,:,0], cmap='gray')
plt.grid(False)
plt.axis('off')
plt.title('Rstored image')
cv2.imwrite('results//restored2.png', uint_img(output[:,:,0]))
plt.show()
plt.plot(wrap_yaogan[:,0])
plt.title('Obtained attitude cross-track')
plt.grid(True)
plt.xlabel('Lines')
plt.ylabel('Pixel')
plt.savefig('results//cross-track-curve3.png')
plt.show()
# # figure 3
# yaogan_x = preprocess('..//..//dataset//yaogan26//for_classification_pale.png', 0, 0)
# _,_, output,wrap_yaogan = restore.predict_one(yaogan_x[0], config)
#
# plt.imshow(output[:,:,0], cmap='gray')
# plt.grid(False)
# plt.axis('off')
# plt.title('Rstored image')
## cv2.imwrite('results//restored1.png', uint_img(output[:,:,0]))
#
# plt.show()
#
# plt.plot(wrap_yaogan[:,0])
# plt.title('Obtained attitude cross-track')
# plt.grid(True)
# plt.xlabel('Lines')
# plt.ylabel('Pixel')
# plt.savefig('results//cross-track-curve3.png')
# plt.show()