-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer_utils.py
180 lines (164 loc) · 7.01 KB
/
layer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import tensorflow as tf
from keras.models import Model
from keras.engine import InputSpec
from keras.engine.topology import Layer
from keras.layers import Input, Conv2D, Activation, BatchNormalization
from keras.layers.merge import Add
from keras.utils import conv_utils
from keras.layers.core import Dropout
from keras.backend.common import normalize_data_format
def res_block(input, filters, kernel_size=(3,3), strides=(1,1), use_dropout=False):
"""
Instanciate a Keras Resnet Block using sequential API.
:param input: Input tensor
:param filters: Number of filters to use
:param kernel_size: Shape of the kernel for the convolution
:param strides: Shape of the strides for the convolution
:param use_dropout: Boolean value to determine the use of dropout
:return: Keras Model
"""
x = ReflectionPadding2D((1,1))(input)
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
if use_dropout:
x = Dropout(0.5)(x)
x = ReflectionPadding2D((1,1))(x)
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,)(x)
x = BatchNormalization()(x)
merged = Add()([input, x])
return merged
def spatial_reflection_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
"""
Pad the 2nd and 3rd dimensions of a 4D tensor.
:param x: Input tensor
:param padding: Shape of padding to use
:param data_format: Tensorflow vs Theano convention ('channels_last', 'channels_first')
:return: Tensorflow tensor
"""
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if data_format == 'channels_first':
pattern = [[0, 0],
[0, 0],
list(padding[0]),
list(padding[1])]
else:
pattern = [[0, 0],
list(padding[0]), list(padding[1]),
[0, 0]]
return tf.pad(x, pattern, "REFLECT")
# TODO: Credits
class ReflectionPadding2D(Layer):
"""Reflection-padding layer for 2D input (e.g. picture).
This layer can add rows and columns or zeros
at the top, bottom, left and right side of an image tensor.
# Arguments
padding: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding
is applied to width and height.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_height_pad, symmetric_width_pad)`.
- If tuple of 2 tuples of 2 ints:
interpreted as
`((top_pad, bottom_pad), (left_pad, right_pad))`
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, padded_rows, padded_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, padded_rows, padded_cols)`
"""
def __init__(self,
padding=(1, 1),
data_format=None,
**kwargs):
super(ReflectionPadding2D, self).__init__(**kwargs)
self.data_format = normalize_data_format(data_format)
if isinstance(padding, int):
self.padding = ((padding, padding), (padding, padding))
elif hasattr(padding, '__len__'):
if len(padding) != 2:
raise ValueError('`padding` should have two elements. '
'Found: ' + str(padding))
height_padding = conv_utils.normalize_tuple(padding[0], 2,
'1st entry of padding')
width_padding = conv_utils.normalize_tuple(padding[1], 2,
'2nd entry of padding')
self.padding = (height_padding, width_padding)
else:
raise ValueError('`padding` should be either an int, '
'a tuple of 2 ints '
'(symmetric_height_pad, symmetric_width_pad), '
'or a tuple of 2 tuples of 2 ints '
'((top_pad, bottom_pad), (left_pad, right_pad)). '
'Found: ' + str(padding))
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
if input_shape[2] is not None:
rows = input_shape[2] + self.padding[0][0] + self.padding[0][1]
else:
rows = None
if input_shape[3] is not None:
cols = input_shape[3] + self.padding[1][0] + self.padding[1][1]
else:
cols = None
return (input_shape[0],
input_shape[1],
rows,
cols)
elif self.data_format == 'channels_last':
if input_shape[1] is not None:
rows = input_shape[1] + self.padding[0][0] + self.padding[0][1]
else:
rows = None
if input_shape[2] is not None:
cols = input_shape[2] + self.padding[1][0] + self.padding[1][1]
else:
cols = None
return (input_shape[0],
rows,
cols,
input_shape[3])
def call(self, inputs):
return spatial_reflection_2d_padding(inputs,
padding=self.padding,
data_format=self.data_format)
def get_config(self):
config = {'padding': self.padding,
'data_format': self.data_format}
base_config = super(ReflectionPadding2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
if __name__ == "__main__":
input = Input(shape=(256, 256, 3))
x = ReflectionPadding2D(3)(input)
model = Model(input, x)
model.summary()