-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
473 lines (389 loc) · 19.8 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#
# Copyright (c) 2020, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from cuml.decomposition import PCA
import scanpy as sc
import cudf
import cupy as cp
import plotly.graph_objects as go
import dash
from flask import request
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css', dbc.themes.BOOTSTRAP]
colors = ["#406278", "#e32636", "#9966cc", "#cd9575", "#915c83", "#008000",
"#ff9966", "#848482", "#8a2be2", "#de5d83", "#800020", "#e97451",
"#5f9ea0", "#36454f", "#008b8b", "#e9692c", "#f0b98d", "#ef9708",
"#0fcfc0", "#9cded6", "#d5eae7", "#f3e1eb", "#f6c4e1", "#f79cd4"]
styles = {
'pre': {
'border': 'thin lightgrey solid',
'overflowX': 'scroll'
}
}
main_fig_height = 700
class Visualization:
def __init__(self, adata, markers=[],
re_cluster_callback=None,
n_components=50,
n_neighbors=50,
knn_n_pcs=50,
umap_min_dist = 0.3,
umap_spread = 1.0,
leiden_resolution = 0.4):
self.app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
self.adata = adata
self.curr_adata = adata
self.new_df = cudf.DataFrame()
self.tdf = None
# Values used for re-clustering
self.n_components = n_components
self.n_neighbors = n_neighbors
self.knn_n_pcs = knn_n_pcs
self.umap_min_dist = umap_min_dist
self.umap_spread = umap_spread
self.leiden_resolution = leiden_resolution
if re_cluster_callback:
self.re_cluster_func = re_cluster_callback
else:
self.re_cluster_func = self.re_cluster
self.markers = markers
self.reset()
self.app.layout = self.constuct_layout()
self.app.callback(
Output("hidden1", "children"),
[Input("bt_reset", "n_clicks")]) (self.reset_dialog)
self.app.callback(
Output("md_directions", "is_open"),
[Input("bt_open_directions", "n_clicks"),
Input("bt_close_directions", "n_clicks")],
[State("md_directions", "is_open")]) (self.toggle_directions_dialog)
self.app.callback(
Output('md_export', 'is_open'),
[Input('bt_export_df', 'n_clicks'),
Input("bt_close_export", "n_clicks")]) (self.export_current_df)
self.app.callback(
[Output('submit_labels', 'value'),
Output('point_index_cnt', 'children'),
Output('point_index_labels', 'value')],
[Input('basic-interactions', 'clickData'),
Input('basic-interactions', 'selectedData'),
Input('rerun_clustering', 'n_clicks'),
Input('rerun_point_index', 'n_clicks')],
[State("submit_labels", "value"),
State('point_index_labels', 'value')]) (self.handle_data_selection)
marker_outputs = [Output('basic-interactions', 'figure')]
for marker in self.markers:
marker_outputs.append(Output(marker + '-interactions', 'figure'))
self.app.callback(
marker_outputs,
[Input('rerun_clustering', 'n_clicks'),
Input('rerun_point_index', 'n_clicks')],
[State("submit_labels", "value"),
State('point_index_labels', 'value')]) (self.handle_re_cluster)
def re_cluster(self, adata_copy):
#### rerun clusterings
adata_copy.obsm["X_pca"] = PCA(n_components=self.n_components, output_type="numpy").fit_transform(adata_copy.X)
sc.pp.neighbors(adata_copy, n_neighbors=self.n_neighbors, n_pcs=self.knn_n_pcs, method='rapids')
sc.tl.umap(adata_copy, min_dist=self.umap_min_dist, spread=self.umap_spread, method='rapids')
adata.obs['leiden'] = rapids_scanpy_funcs.leiden(adata, resolution=self.louvain_resolution)
return adata_copy
def reset(self):
self.curr_adata = self.adata
self.tdf = self.build_tdf(self.curr_adata)
# self.curr_adata.obs["orig_index"] = self.tdf.index.to_array()
self.new_df = cudf.DataFrame()
def build_tdf(self, l_adata):
#df = cudf.DataFrame.from_gpu_matrix(
# l_adata.obsm["X_umap"], columns=["x", "y"]
#)
df = cudf.DataFrame(l_adata.obsm["X_umap"], columns=["x", "y"])
ldf = cudf.Series(l_adata.obs["leiden"].values)
df["labels"] = ldf.astype('int32')
for marker in self.markers:
df[marker] = cudf.Series(l_adata.obs[marker + "_raw"].values)
df[marker + '_labels'] = df["labels"]
df['point_index'] = df.index
df['barcode'] = l_adata.obs_names
#df["orig_index"] = l_adata.obs['orig_index'].values
return df
def constuct_layout(self):
fig = self.start_graph(self.tdf)
violins = self.update_violin_plot(self.tdf)
col_classes = {1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight'}
col_class = col_classes[12 / len(violins)] if len(violins) > 0 else None
divs_violin = []
for i in range(0, len(violins)):
divs_violin.append(
html.Div([dcc.Graph(id= self.markers[i] + '-interactions',
figure=violins[i])], className= col_class + ' columns'))
return html.Div([
html.Div(className='row', children=[
html.Div([dcc.Graph(id='basic-interactions', figure=fig),], className='nine columns',
style={'verticalAlign': 'text-top',}),
html.Div([
html.Div(className='row', children=[
dbc.Button("Directions", id="bt_open_directions"),
dbc.Modal([
dbc.ModalHeader("Directions"),
dbc.ModalBody(
dcc.Markdown("""
The main scatterplot shows the UMAP visualization of single cells.
### Re-running Clustering and Visualization
#### Reclustering by Clicking on Groups:
1. Click on any point in a Cluster of Interest. The cluster to which that point belongs to will populate the Cluster box.
2. Click **Recluster on Selected Cluster**.
#### Reclustering by entering cluster ID:
1. Manually enter the IDs of the cluster or clusters of interest in the Cluster box. For example, “1” or “1,2,3”
2. Click **Recluster on Selected Cluster**.
#### Reclustering by Selecting Points:
1. Use the **Box Select** or **Lasso Select** tool to select your points of interest. A number of points will populate the inthe Selected Points field .
2. Click **Recluster on Selected Points**.
### Exporting Data to a DataFrame
After performing re-clustering on selected cells, click "Export to Dataframe".
### Using the Toolbar
Hover the mouse over the top right corner of the screen to see a toolbar. Hover over each tool to see its name. The tool options from left to right are:
- **Camera:** download a snapshot of the current view as .png
- **Zoom:** Click and drag to select a region of the plot to zoom into
- **Pan:** Click and drag to shift the current view to a different region of the plot
- **Box Select/Lasso Select:** both these tools can be used to select a region on the plot. The selected points are exported under ‘selection data’. See below to export the selected points to a dataframe.
- **Zoom In/Zoom Out:** Zoom in and out centered on the current view.
"""),
),
dbc.ModalFooter(
dbc.Button("Close", id="bt_close_directions", className="ml-auto")
),
], id="md_directions"),
]),
html.Div(className='row', children=[
dcc.Markdown("""
**Click Data**
Click on points in the graph."""), ], style={'marginTop': 18,}),
html.Div(className='row', children=[
dcc.Input(id='submit_labels', type='text', style={'width': '80%',}),]),
html.Div(className='row', children=[
dbc.Button('Recluster on Selected Clusters', id='rerun_clustering', n_clicks=0)], style={'marginTop': 6,}),
html.Div(className='row', children=[
dcc.Markdown("""
**Selection Data**
Choose the lasso or rectangle tool in the graph's menu
bar and then select points in the graph.
"""),], style={'marginTop': 18,}),
html.Div(className='row', children=[
dcc.Input(id='point_index_labels', type='text', style={'width': '80%',}),]),
html.Div(className='row', children=[html.Div(id='point_index_cnt'),]),
html.Div(className='row', children=[
dbc.Button('Recluster on Selected Points', id='rerun_point_index', n_clicks=0),], style={'marginTop': 6,}),
html.Div(className='row', children=[
dbc.Button("Export to Dataframe", id="bt_export_df"),
dbc.Modal([
dbc.ModalHeader("Export"),
dbc.ModalBody(
dcc.Markdown("""
Export Successful. Please return to the notebook.
"""),
),
dbc.ModalFooter(dbc.Button("Close", id="bt_close_export", className="ml-auto")),
], id="md_export"),
], style={'marginTop': 6,}),
html.Div(className='row', children=[html.A(dbc.Button('Reload', id='bt_reset'), href='/'),],
style={'marginTop': 6,}),
], className='three columns', style={'marginTop': 90, 'verticalAlign': 'text-top',}),
]),
html.Div(className='row', children=divs_violin),
html.Div(id='hidden1', style={'display':'none'})
])
def start_graph(self, df):
fig = go.Figure(layout = {'colorscale' : {}})
for i in df['labels'].unique().values_host:
si = str(i)
query = 'labels == ' + si
gdf = df.query(query)
fig.add_trace(
go.Scattergl({
'x': gdf['x'].to_numpy(),
'y': gdf['y'].to_numpy(),
'text': gdf['labels'].to_numpy(),
'customdata': gdf['point_index'].to_numpy(),
'name': 'Cluster ' + si,
'mode': 'markers',
'marker': {'size': 3, 'color': colors[i % len(colors)]}
}))
fig.update_layout(
showlegend=True, clickmode='event', height=main_fig_height, title='UMAP', dragmode='select',
annotations=[
dict(x=0.5, y=-0.07, showarrow=False, text='UMAP_1', xref="paper", yref="paper"),
dict(x=-0.05, y=0.5, showarrow=False, text="UMAP_2", textangle=-90, xref="paper", yref="paper")])
return fig
def update_graph(self, df):
data = []
labels = df['labels'].unique().values_host
for i in labels:
si = str(labels[i])
query = 'labels == ' + si
gdf = df.query(query)
fig = {
'type':'scattergl',
'x': gdf['x'].to_numpy(),
'y': gdf['y'].to_numpy(),
'text': gdf['labels'].to_numpy(),
'customdata': gdf['point_index'].to_numpy(),
'name': 'Cluster ' + si,
'mode': 'markers',
'marker': {'size': 3, 'color': colors[i % len(colors)]} }
data.append(fig)
output = {
'data':data,
'layout':{'clickmode': 'event', 'showlegend': True, 'title': 'UMAP', 'dragmode': 'select'}
}
return output
def update_umap_viz(self, df, value):
df_labels = df['labels'].isin(value)
filters = df_labels.values
print(filters)
adata_copy = self.curr_adata[filters.get()]
self.curr_adata = adata_copy.copy()
adata_copy = self.re_cluster_func(adata_copy)
df = self.build_tdf(adata_copy)
return df, self.update_graph(df)
def update_selection(self, df, value):
umap_df = df['point_index'].isin(value)
filters = umap_df.values
adata_copy = self.curr_adata[filters.get()]
self.curr_adata = adata_copy.copy()
adata_copy = self.re_cluster_func(adata_copy)
df = self.build_tdf(adata_copy)
return df, self.update_graph(df)
def update_violin_plot(self, df):
violins = []
for marker in self.markers:
violins.append(self.graph_violin(df, marker))
return violins
def graph_violin(self, df, marker):
fig = go.Figure()
clusters = df['labels'].unique().values_host
marker_val = marker + '_val'
df[marker + '_val'] = df[marker].round(1)
#for i in clusters.values_host:
for i in clusters:
si = str(i)
query = 'labels == ' + si
gdf = df.query(query)
y = gdf[marker_val].to_numpy()
x = [i] * len(y)
fig.add_trace(
go.Violin({
'x': cp.asnumpy(x),
'y': cp.asnumpy(y),
'text': clusters.tolist(),
'name': 'Cluster ' + si
}))
fig.update_layout(
showlegend=True, clickmode='event', title=marker,
annotations=[
dict(x=0.5, y=-0.15, showarrow=False, text='Clusters', xref="paper", yref="paper"),
dict(x=-0.11, y=0.5, showarrow=False, text="Gene values", textangle=-90, xref="paper", yref="paper")])
return fig
def start(self, host, port=5000):
self.reset()
return self.app.run_server(
debug=False, use_reloader=False, host=host, port=port)
def reset_dialog(self, n_clicks):
if not dash.callback_context.triggered:
raise dash.exceptions.PreventUpdate
self.reset()
return ''
def toggle_directions_dialog(self, n1, n2, is_open):
if n1 or n2:
return not is_open
return is_open
def export_current_df(self, export_clicks, export_close):
if not dash.callback_context.triggered:
raise dash.exceptions.PreventUpdate
button_id = dash.callback_context.triggered[0]['prop_id'].split('.')[0]
if button_id == 'bt_close_export':
if export_close:
func = request.environ.get('werkzeug.server.shutdown')
if func is None:
raise RuntimeError('Not running with the Werkzeug Server')
func()
return False
elif button_id == 'bt_export_df':
self.new_df = self.tdf
return True
def handle_data_selection(self, clicked_cluster, selected_point_index, cluster_clicks, point_index_clicks,
selected_clusters, point_index_labels):
if not dash.callback_context.triggered:
raise dash.exceptions.PreventUpdate
comp_id, event_type = dash.callback_context.triggered[0]['prop_id'].split('.')
submit_labels = ''
point_cnt_str = ''
point_indexes = ''
if comp_id == 'basic-interactions' and event_type == 'clickData':
# Event - On selecting cluster on the main scatter plot
if not selected_clusters:
selected_labels = []
else:
selected_labels = list(map(int, selected_clusters.split(",")))
points = clicked_cluster['points']
for point in points:
selected_label = point['text']
if selected_label in selected_labels:
selected_labels.remove(selected_label)
else:
selected_labels.append(selected_label)
submit_labels = ','.join(map(str, selected_labels))
elif comp_id == 'basic-interactions' and event_type == 'selectedData':
# Event - On selection on the main scatterplot
if not selected_point_index:
raise dash.exceptions.PreventUpdate
selected_point_indexes = []
for point in selected_point_index['points']:
selected_point_indexes.append(point['customdata'])
if len(selected_point_indexes) <= 1:
raise dash.exceptions.PreventUpdate
point_cnt_str = str(len(selected_point_indexes)) + ' points selected'
point_indexes = ', '.join(map(str, selected_point_indexes))
elif comp_id == 'rerun_clustering' and event_type == 'n_clicks':
pass # required to make sure submit_labels is reset
elif comp_id == 'rerun_point_index' and event_type == 'n_clicks':
pass # required to make sure point_indexs is reset
else:
raise dash.exceptions.PreventUpdate
return submit_labels, point_cnt_str, point_indexes
def handle_re_cluster(self, rerun_clustering, rerun_point_index, selected_clusters, point_index_labels):
if not dash.callback_context.triggered:
raise dash.exceptions.PreventUpdate
comp_id, event_type = dash.callback_context.triggered[0]['prop_id'].split('.')
if comp_id == 'rerun_clustering' and event_type == 'n_clicks':
if not selected_clusters:
raise dash.exceptions.PreventUpdate
clusters = selected_clusters.split(",")
if len(clusters) >= 1:
clusters = list(map(int, clusters))
(self.tdf, figure) = self.update_umap_viz(self.tdf, clusters)
violins = self.update_violin_plot(self.tdf)
elif comp_id == 'rerun_point_index' and event_type == 'n_clicks':
if not point_index_labels:
raise dash.exceptions.PreventUpdate
# Event - On click 'recluster' buttom
selected_point_indexes = list(map(int, point_index_labels.split(",")))
(self.tdf, figure) = self.update_selection(self.tdf, selected_point_indexes)
violins = self.update_violin_plot(self.tdf)
else:
raise dash.exceptions.PreventUpdate
return tuple([figure] + violins)