generated from streamlit/chatbot-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
56 lines (47 loc) · 2.34 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from openai import OpenAI
# Show title and description.
st.title("💬 Chatbot")
st.write(
"This is a simple chatbot that uses OpenAI's GPT-3.5 model to generate responses. "
"To use this app, you need to provide an OpenAI API key, which you can get [here](https://platform.openai.com/account/api-keys). "
"You can also learn how to build this app step by step by [following our tutorial](https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps)."
)
# Ask user for their OpenAI API key via `st.text_input`.
# Alternatively, you can store the API key in `./.streamlit/secrets.toml` and access it
# via `st.secrets`, see https://docs.streamlit.io/develop/concepts/connections/secrets-management
openai_api_key = st.text_input("OpenAI API Key", type="password")
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.", icon="🗝️")
else:
# Create an OpenAI client.
client = OpenAI(api_key=openai_api_key)
# Create a session state variable to store the chat messages. This ensures that the
# messages persist across reruns.
if "messages" not in st.session_state:
st.session_state.messages = []
# Display the existing chat messages via `st.chat_message`.
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Create a chat input field to allow the user to enter a message. This will display
# automatically at the bottom of the page.
if prompt := st.chat_input("What is up?"):
# Store and display the current prompt.
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate a response using the OpenAI API.
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
)
# Stream the response to the chat using `st.write_stream`, then store it in
# session state.
with st.chat_message("assistant"):
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})