forked from InternLM/InternLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
streaming_inference.py
692 lines (602 loc) · 22.2 KB
/
streaming_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# flake8: noqa
# isort: skip_file
# This logic is modified from ToRA:
# - https://github.com/microsoft/ToRA
#
# Copyright (c) Microsoft Corporation.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE
import argparse
import multiprocessing
import os
import re
import sys
import traceback
from math import isclose, ceil
from typing import Union
import jsonlines
import numpy as np
from datasets import load_dataset
from lagent import (INTERNLM2_META, ActionExecutor, HFTransformer,
Internlm2Agent, Internlm2Protocol, LMDeployPipeline,
IPythonInteractiveManager)
from pebble import ProcessPool
from sympy import N, simplify
from sympy.parsing.latex import parse_latex
from sympy.parsing.sympy_parser import parse_expr
from tqdm import tqdm
# --------------------- modify the system prompt as needed ---------------------
DEFAULT_PROMPT = (
'Integrate step-by-step reasoning and Python code to solve math problems '
'using the following guidelines:\n'
'- Analyze the question and write jupyter code to solve the problem;\n'
r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
'units. \n')
# ------------------------------------------------------------------------------
def parse_args():
parser = argparse.ArgumentParser(description='Math Code Interpreter')
parser.add_argument('--backend',
type=str,
default='lmdeploy',
help='Which inference framework to use.',
choices=['lmdeploy', 'hf'])
parser.add_argument(
'--model_path',
type=str,
default='internlm/internlm2-chat-7b',
help='Path or name to the model, could be HuggingFace model specifier.'
)
parser.add_argument(
'--output_path',
type=str,
required=True,
help='Path to save inference results to, should be a `jsonl` file')
parser.add_argument('--batch_size',
type=int,
default=100,
help='Agent inference batch size')
parser.add_argument(
'--max_turn',
type=int,
default=5,
help=
'Maximum number of interaction rounds between the agent and environment'
)
parser.add_argument(
'--tp',
type=int,
default=1,
help='Number of tensor parallelism. It may be required in LMDelpoy.')
parser.add_argument('--temperature',
type=float,
default=0.1,
help='Temperature in next token prediction')
parser.add_argument('--top_p',
type=float,
default=0.8,
help='Parameter for Top-P Sampling.')
parser.add_argument('--top_k',
type=int,
default=40,
help='Parameter for Top-K Sampling.')
parser.add_argument('--stop_words',
type=str,
default=['<|action_end|>', '<|im_end|>'],
action='append',
help='Stop words')
parser.add_argument('--max_new_tokens',
type=int,
default=512,
help='Number of maximum generated tokens.')
parser.add_argument(
'--do_infer',
default=True,
action=argparse.BooleanOptionalAction, # python > 3.8
help='Whether to launch model inference.')
# parser.add_argument(
# '--no-do_infer',
# dest='do_infer',
# action='store_false',
# help='Disable the inference.'
# )
parser.add_argument('--do_eval',
default=False,
action='store_true',
help='Whether to evaluate the inference results.')
parser.add_argument('--overwrite',
default=False,
action='store_true',
help='Whether to overwrite the existing result file')
return parser.parse_args()
def _fix_fracs(string):
substrs = string.split('\\frac')
new_str = substrs[0]
if len(substrs) > 1:
substrs = substrs[1:]
for substr in substrs:
new_str += '\\frac'
if len(substr) > 0 and substr[0] == '{':
new_str += substr
else:
try:
assert len(substr) >= 2
except Exception:
return string
a = substr[0]
b = substr[1]
if b != '{':
if len(substr) > 2:
post_substr = substr[2:]
new_str += '{' + a + '}{' + b + '}' + post_substr
else:
new_str += '{' + a + '}{' + b + '}'
else:
if len(substr) > 2:
post_substr = substr[2:]
new_str += '{' + a + '}' + b + post_substr
else:
new_str += '{' + a + '}' + b
string = new_str
return string
def _fix_a_slash_b(string):
if len(string.split('/')) != 2:
return string
a = string.split('/')[0]
b = string.split('/')[1]
try:
if 'sqrt' not in a:
a = int(a)
if 'sqrt' not in b:
b = int(b)
assert string == '{}/{}'.format(a, b)
new_string = '\\frac{' + str(a) + '}{' + str(b) + '}'
return new_string
except Exception:
return string
def _fix_sqrt(string):
_string = re.sub(r'\\sqrt(\w+)', r'\\sqrt{\1}', string)
return _string
def strip_string(string):
string = str(string).strip()
# linebreaks
string = string.replace('\n', '')
# right "."
string = string.rstrip('.')
# remove inverse spaces
string = string.replace('\\!', '')
string = string.replace('\\ ', '')
# replace \\ with \
string = string.replace('\\\\', '\\')
string = string.replace('\\\\', '\\')
# replace tfrac and dfrac with frac
string = string.replace('tfrac', 'frac')
string = string.replace('dfrac', 'frac')
# remove \left and \right
string = string.replace('\\left', '')
string = string.replace('\\right', '')
# Remove unit: miles, dollars if after is not none
_string = re.sub(r'\\text{.*?}$', '', string).strip()
if _string != '' and _string != string:
# print("Warning: unit not removed: '{}' -> '{}'".format(string, _string))
string = _string
# Remove circ (degrees)
string = string.replace('^{\\circ}', '')
string = string.replace('^\\circ', '')
# remove dollar signs
string = string.replace('\\$', '')
string = string.replace('$', '')
string = string.replace('\\text', '')
string = string.replace('x\\in', '')
# remove percentage
string = string.replace('\\%', '')
string = string.replace('\%', '')
string = string.replace('%', '')
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
string = string.replace(' .', ' 0.')
string = string.replace('{.', '{0.')
# cdot
string = string.replace('\\cdot', '')
# inf
string = string.replace('infinity', '\\infty')
if '\\infty' not in string:
string = string.replace('inf', '\\infty')
string = string.replace('+\\inity', '\\infty')
# and
string = string.replace('and', '')
string = string.replace('\\mathbf', '')
# use regex to remove \mbox{...}
string = re.sub(r'\\mbox{.*?}', '', string)
# quote
string.replace("'", '')
string.replace('"', '')
# i, j
if 'j' in string and 'i' not in string:
string = string.replace('j', 'i')
# replace a.000b where b is not number or b is end, with ab, use regex
string = re.sub(r'(\d+)\.0+([^\d])', r'\1\2', string)
string = re.sub(r'(\d+)\.0+$', r'\1', string)
# if empty, return empty string
if len(string) == 0:
return string
if string[0] == '.':
string = '0' + string
# to consider: get rid of e.g. "k = " or "q = " at beginning
if len(string.split('=')) == 2:
if len(string.split('=')[0]) <= 2:
string = string.split('=')[1]
string = _fix_sqrt(string)
string = string.replace(' ', '')
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
string = _fix_fracs(string)
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
string = _fix_a_slash_b(string)
return string
def last_boxed_only_string(string):
idx = string.rfind('\\boxed')
if idx < 0:
idx = string.rfind('\\fbox')
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == '{':
num_left_braces_open += 1
if string[i] == '}':
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx:right_brace_idx + 1]
return retval
def extract_answer(pred_str: str, execute: bool = False) -> str:
if re.search('\boxed|boxed', pred_str):
answer = re.split('\boxed|boxed', pred_str)[-1]
if len(answer) == 0:
return ''
elif (answer[0] == '{'):
stack = 1
a = ''
for c in answer[1:]:
if (c == '{'):
stack += 1
a += c
elif (c == '}'):
stack -= 1
if (stack == 0): break
a += c
else:
a += c
else:
a = answer.split('$')[0].strip()
elif re.search('[Tt]he (final )?answer is:?', pred_str):
a = re.split('[Tt]he (final )?answer is:?',
pred_str)[-1].strip().rstrip('.')
elif pred_str.startswith('```python') and execute:
# fall back to program
from lagent import get_tool
a = get_tool('IPythonInteractive').exec(pred_str).value or ''
else: # use the last number
pred = re.findall(r'-?\d*\.?\d+', pred_str.replace(',', ''))
if len(pred) >= 1:
a = pred[-1]
else:
a = ''
# multiple lines
pred = a.split('\n')[0]
if pred != '' and pred[0] == ':':
pred = pred[1:]
if pred != '' and pred[-1] == '.':
pred = pred[:-1]
if pred != '' and pred[-1] == '/':
pred = pred[:-1]
pred = strip_string(pred)
return pred
def is_digit(s):
try:
float(str(s).replace(',', ''))
return True
except ValueError:
return False
def math_equal(
prediction: Union[bool, float, str],
reference: Union[float, str],
include_percentage: bool = True,
is_close: bool = True,
tolerance: float = 1e-4,
timeout: bool = False,
) -> bool:
"""Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
try: # 1. numerical equal
if is_digit(prediction) and is_digit(reference):
prediction = float(str(prediction).replace(',', ''))
reference = float(str(reference).replace(',', ''))
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if isclose(item, prediction, rel_tol=tolerance):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except Exception:
pass
if not prediction and prediction not in [0, False]:
return False
# 2. symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
## deal with [], (), {}
pred_str, ref_str = prediction, reference
if (prediction.startswith('[') and prediction.endswith(']')
and not reference.startswith('(')) or (
prediction.startswith('(') and prediction.endswith(')')
and not reference.startswith('[')):
pred_str = pred_str.strip('[]()')
ref_str = ref_str.strip('[]()')
for s in ['{', '}', '(', ')']:
ref_str = ref_str.replace(s, '')
pred_str = pred_str.replace(s, '')
if pred_str == ref_str:
return True
## [a, b] vs. [c, d], return a==c and b==d
if ((prediction.startswith('[') and prediction.endswith(']')) and
(reference.startswith('[') and reference.endswith(']'))
or (prediction.startswith('(') and prediction.endswith(')')) and
(reference.startswith('(') and reference.endswith(')'))):
pred_parts = prediction[1:-1].split(',')
ref_parts = reference[1:-1].split(',')
if len(pred_parts) == len(ref_parts):
if all([
math_equal(pred_parts[i], ref_parts[i], include_percentage,
is_close) for i in range(len(pred_parts))
]):
return True
# symbolic equal with sympy
if timeout:
if call_with_timeout(symbolic_equal_process, prediction, reference):
return True
else:
if symbolic_equal(prediction, reference):
return True
return False
def math_equal_process(param):
return math_equal(param[-2], param[-1])
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr]:
try:
return f(s)
except Exception:
pass
return s
a = _parse(a)
b = _parse(b)
try:
if simplify(a - b) == 0:
return True
except Exception:
pass
try:
if isclose(N(a), N(b), rel_tol=1e-3):
return True
except Exception:
pass
return False
def symbolic_equal_process(a, b, output_queue):
result = symbolic_equal(a, b)
output_queue.put(result)
def call_with_timeout(func, *args, timeout=1, **kwargs):
output_queue = multiprocessing.Queue()
process_args = args + (output_queue, )
process = multiprocessing.Process(target=func,
args=process_args,
kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def init_agent(backend: str, max_turn: int, model_path: str, tp: int,
**kwargs):
if backend == 'lmdeploy':
from lmdeploy import TurbomindEngineConfig
model = LMDeployPipeline(
path=model_path,
model_name='internlm2-chat',
meta_template=INTERNLM2_META,
pipeline_cfg=dict(backend_config=TurbomindEngineConfig(tp=tp)),
**kwargs)
elif backend == 'hf':
model = HFTransformer(path=model_path,
meta_template=INTERNLM2_META,
**kwargs)
else:
raise NotImplementedError
agent = Internlm2Agent(
llm=model,
protocol=Internlm2Protocol(meta_prompt=None,
interpreter_prompt=DEFAULT_PROMPT),
interpreter_executor=ActionExecutor(actions=[
IPythonInteractiveManager(max_workers=200,
ci_lock=os.path.join(
os.path.dirname(__file__),
'.ipython.lock'))
]),
max_turn=max_turn)
return agent
def predict(args):
def process(d, k):
d['idx'] = k
d['query'] = d['problem']
gt = extract_answer(d['solution'])
if '\\boxed{90\\text{ square\nunits}}' in d['solution']:
gt = '90'
elif '$6$ is our answer' in d['solution']:
gt = '6'
elif gt.startswith('x\\in'):
gt = gt[len('x\\in'):]
gt = strip_string(gt)
d['gt'] = gt
d['pred'], d['steps'] = [], []
d['error'] = None
return d
dataset = load_dataset('lighteval/MATH', split='test').map(process, True)
agent = init_agent(
backend=args.backend,
max_turn=args.max_turn,
model_path=args.model_path,
tp=args.tp,
temperature=args.temperature,
stop_words=args.stop_words,
top_p=args.top_p,
top_k=args.top_k,
max_new_tokens=args.max_new_tokens,
)
num_batches = ceil(len(dataset) / args.batch_size)
with jsonlines.open(args.output_path, 'w', flush=True) as f:
for i in tqdm(range(num_batches)):
batch = dataset.select(
range(i * args.batch_size,
min((i + 1) * args.batch_size, len(dataset))))
try:
rets = agent.batch_chat(batch['query'])
for item, ret in zip(batch, rets):
item['steps'] = ret.inner_steps
last = item['steps'][-1]
item['pred'].append(
extract_answer(last['content']) if last['role'] ==
'language' else '😭')
f.write(item)
except Exception as e:
err = str(traceback.format_exc())
print(f'Processing batch data error: {e}\n{err}')
for item in batch:
item['error'] = err
f.write(item)
finally:
agent._interpreter_executor.actions[
'IPythonInteractiveManager'].reset()
def evaluate(args):
samples = [sample for sample in jsonlines.open(args.output_path)]
scores = []
timeout_cnt = 0
with ProcessPool() as pool:
future = pool.map(
math_equal_process,
[(idx, pred, sample['gt']) for idx, sample in enumerate(samples)
for pred in sample['pred']],
timeout=20,
)
iterator = future.result()
with tqdm(total=len(samples), desc='Evaluate') as progress_bar:
while True:
try:
result = next(iterator)
scores.append(result)
except StopIteration:
break
except TimeoutError as error:
print(error)
scores.append(False)
timeout_cnt += 1
except Exception as error:
print(error.__traceback__)
scores.append(False)
# sys.exit()
progress_bar.update(1)
idx = 0
score_mat = []
for sample in samples:
sample['score'] = scores[idx:idx + len(sample['pred'])]
assert len(sample['score']) == len(sample['pred'])
score_mat.append(sample['score'])
idx += len(sample['pred'])
max_len = max([len(s) for s in score_mat])
for i, s in enumerate(score_mat):
if len(s) < max_len:
score_mat[i] = s + [s[-1]] * (max_len - len(s)) # pad
# output mean of each column of scores
col_means = np.array(score_mat).mean(axis=0)
mean_score = list(np.round(col_means * 100, decimals=1))
result_str = f'Num samples: {len(samples)}\n' \
f'Num scores: {len(scores)}\n' \
f'Sum scores: {sum(scores)}\n' \
f'Timeout samples: {timeout_cnt}\n' \
f"Empty samples: {len([s for s in samples if not s['pred'][-1]])}\n" \
f'Mean score: {mean_score}\n'
# each type score
if 'type' in samples[0]:
type_scores = {}
for sample in samples:
if sample['type'] not in type_scores:
type_scores[sample['type']] = []
type_scores[sample['type']].append(sample['score'][-1])
type_scores = {
k: np.round(np.array(v).mean() * 100, decimals=1)
for k, v in type_scores.items()
}
type_scores = {
k: v
for k, v in sorted(type_scores.items(), key=lambda item: item[0])
}
result_str += f'Type scores: {type_scores}\n'
print(result_str)
if __name__ == '__main__':
args = parse_args()
if args.do_infer and os.path.exists(
args.output_path) and not args.overwrite:
args.do_infer = False
print(f'File {args.output_path} already exists. '
f'Please add the `--overwrite` flag if needed.')
if args.do_infer:
predict(args)
if args.do_eval:
if not args.do_infer:
evaluate(args)
else:
import subprocess
res = subprocess.run(
[
sys.executable, __file__, '--output_path',
args.output_path, '--no-do_infer', '--do_eval'
],
capture_output=True,
text=True,
check=True,
)
print(res.stdout)