Skip to content

Latest commit

 

History

History
73 lines (51 loc) · 2.48 KB

lagent_zh-CN.md

File metadata and controls

73 lines (51 loc) · 2.48 KB

Lagnet

English | 简体中文

简介

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:

image

本文主要介绍 Lagent 的基本用法。更全面的介绍请参考 Lagent 中提供的 例子

安装

通过 pip 进行安装 (推荐)。

pip install lagent

同时,如果你想修改这部分的代码,也可以通过以下命令从源码编译 Lagent:

git clone https://github.com/InternLM/lagent.git
cd lagent
pip install -e .

运行一个 ReAct 智能体的网页样例

# 需要确保已经安装 streamlit 包
# pip install streamlit
streamlit run examples/react_web_demo.py

然后你就可以在网页端和智能体进行对话了,效果如下图所示

image

用 InternLM2.5-Chat 构建一个 ReAct 智能体

**注意:**如果你想要启动一个 HuggingFace 的模型,请先运行 pip install -e .[all]。

# Import necessary modules and classes from the "lagent" library.
from lagent.agents import ReAct
from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.llms import HFTransformer

# Initialize the HFTransformer-based Language Model (llm) and provide the model name.
llm = HFTransformer('internlm/internlm2_5-7b-chat')

# Initialize the Google Search tool and provide your API key.
search_tool = GoogleSearch(api_key='Your SERPER_API_KEY')

# Initialize the Python Interpreter tool.
python_interpreter = PythonInterpreter()

# Create a chatbot by configuring the ReAct agent.
chatbot = ReAct(
    llm=llm,  # Provide the Language Model instance.
    action_executor=ActionExecutor(
        actions=[search_tool, python_interpreter]  # Specify the actions the chatbot can perform.
    ),
)
# Ask the chatbot a mathematical question in LaTeX format.
response = chatbot.chat('若$z=-1+\sqrt{3}i$,则$\frac{z}{{z\overline{z}-1}}=\left(\ \ \right)$')

# Print the chatbot's response.
print(response.response)  # Output the response generated by the chatbot.
>>> $-\\frac{1}{3}+\\frac{{\\sqrt{3}}}{3}i$