-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
34 lines (18 loc) · 955 Bytes
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# -*- coding: UTF-8 -*-
import tensorflow as tf
EPS = 1e-12
def gan_loss_discriminator(predict_real, predict_fake):
return tf.reduce_mean(-(tf.log(predict_real + EPS) + tf.log(1 - predict_fake + EPS)))
def gan_loss_generator(predict_fake):
return tf.reduce_mean(-tf.log(predict_fake + EPS))
def L1_loss(real, fake):
return tf.reduce_mean(tf.abs(real - fake))
def wgan_loss_discriminator(predict_real, predict_fake):
return tf.abs(- tf.reduce_mean(predict_real) + tf.reduce_mean(predict_fake))
def wgan_loss_generator(predict_fake):
return tf.abs(- tf.reduce_mean(predict_fake))
def lsgan_loss_discriminator(predict_real, predict_fake):
return (tf.reduce_mean(tf.squared_difference(predict_real, 1)) +
tf.reduce_mean(tf.squared_difference(predict_fake, 0))) * 0.5
def lsgan_loss_generator(predict_fake):
return tf.reduce_mean(tf.squared_difference(predict_fake, 1))