forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 11
/
strings.Rmd
680 lines (477 loc) · 28.4 KB
/
strings.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Strings
## Introduction
This chapter introduces you to string manipulation in Python. You'll learn the basics of how strings work and how to create them by hand, but the focus of this chapter will be on regular expressions, or regexps for short. Regular expressions are useful because strings usually contain unstructured or semi-structured data, and regexps are a concise language for describing patterns in strings. When you first look at a regexp, you'll think a cat walked across your keyboard, but as your understanding improves they will soon start to make sense.
### Prerequisites
This chapter will focus on the __pandas__ package for string manipulation.
```{python setup, message = FALSE, cache=FALSE}
import pandas as pd
import altair as alt
import numpy as np
```
## String basics
You can create strings with either single quotes or double quotes. You can read the pandas user guide on [working with text data](https://pandas.pydata.org/docs/user_guide/text.html) for more details.
```{python}
string1 = "This is a string"
string2 = 'If I want to include a "quote" inside a string, I use single quotes'
```
To include a literal single or double quote in a string you can use `\` to "escape" it:
```{python}
double_quote = "\"" # or '"'
single_quote = '\'' # or "'"
```
That means if you want to include a literal backslash, you'll need to double it up: `"\\"`.
Beware that the printed representation of a string is not the same as string itself, because the printed representation shows the escapes:
```{python}
x = "\" \\"
x
print(x)
```
There are a handful of other special characters. The most common are `"\n"`, newline, and `"\t"`, tab, but you can see the complete list in the [Python reference manual](https://docs.python.org/2.0/ref/strings.html). You'll also sometimes see strings like `"\u00b5"`, this is a way of writing non-English characters that works on all platforms:
```{python}
x = "\u00b5"
x
```
Multiple strings are often stored in a object series, which you can create with `[]`:
```{python}
pd.Series(["one", "two", "three"])
```
### String length
Python contains many functions to work with strings. We'll use the functions from pandas for use on series. These all start with `str`. For example, `str.length()` tells you the number of characters in a string:
```{python}
pd.Series(["a", "R for data science", np.nan]).str.len()
```
### Combining strings
To combine two or more strings, use `str_c()`:
```{python}
pd.Series(["x", "y"]).str.cat()
pd.Series(["x", "y", "z"]).str.cat()
```
Use the `sep` argument to control how they're separated:
```{python}
pd.Series(["x", "y"]).str.cat(sep = '_')
```
Like most other functions in Python, missing values are contagious. If you want them to print as `"NA"`, use `fillna()` or `na_rep = 'NA'`:
```{python}
x = pd.Series(["abc", np.nan])
x.str.cat()
x.str.cat(na_rep = "NA")
x.fillna('NA').str.cat()
```
### Subsetting strings
You can extract parts of a string using `str[]`. As well as the string, `str[]` takes `start:end` arguments which give the (inclusive) position of the substring:
```{python}
x = pd.Series(["Apple", "Banana", "Pear"])
x.str[0:3]
# negative numbers count backwards from end
x.str[-3:]
```
Note that `str[]` won't fail if the string is too short: it will just return as much as possible:
```{python}
pd.Series(["a"]).str[0:5]
```
You can also use the assign strings using `str.slice_replace()` to modify strings:
```{python}
x.str.slice_replace(0,0, repl = "5")
```
## Matching patterns with regular expressions
Regexps, or regex, are a very terse language that allow you to describe patterns in strings. They take a little while to get your head around, but once you understand them, you'll find them extremely useful.
### Basic matches
The simplest patterns match exact strings:
```{python}
x = pd.Series(["apple", "banana", "pear"])
x.str.replace("an", "-M-")
```
The next step up in complexity is `.`, which matches any character (except a newline):
```{python}
x.str.replace(".a.", "-M-")
```
But if "`.`" matches any character, how do you match the character "`.`"? You need to use an "escape" to tell the regular expression you want to match it exactly, not use its special behaviour. Like strings, regexps use the backslash, `\`, to escape special behaviour. So to match an `.`, you need the regexp `\.`. Unfortunately this creates a problem. We use strings to represent regular expressions, and `\` is also used as an escape symbol in strings. So to create the regular expression `\.` we need the string `"\\."`.
```{python}
# To create the regular expression, we need \\
dot = '\\.'
# But the expression itself only contains one:
print(dot)
# And this tells pandas to look for an explicit .
pd.Series(["abc", "a.c", "bef"]).replace('a\\.c', '-M-', regex=True)
```
If `\` is used as an escape character in regular expressions, how do you match a literal `\`? Well you need to escape it, creating the regular expression `\\`. To create that regular expression, you need to use a string, which also needs to escape `\`. That means to match a literal `\` you need to write `"\\\\"` --- you need four backslashes to match one!
```{python}
x = pd.Series(["a\\b"])
print(x)
x.replace('\\\\', '-M-', regex = True)
```
In this book, I'll write regular expression as `\.` and strings that represent the regular expression as `"\\."`.
#### Exercises
1. Explain why each of these strings don't match a `\`: `"\"`, `"\\"`, `"\\\"`.
1. How would you match the sequence `"'\`?
### Anchors
By default, regular expressions will match any part of a string. It's often useful to _anchor_ the regular expression so that it matches from the start or end of the string. You can use:
* `^` to match the start of the string.
* `$` to match the end of the string.
You can also use pandas `startwith()` and `endswith()` that work similiar but return booleans.
```{python}
x = pd.Series(["apple", "banana", "pear"])
x.str.replace("^a", "-M-")
x.str.replace("a$", "-M-")
```
To remember which is which, try this mnemonic which I learned from [Evan Misshula](https://twitter.com/emisshula/status/323863393167613953): if you begin with power (`^`), you end up with money (`$`).
To force a regular expression to only match a complete string, anchor it with both `^` and `$`:
```{python}
x = pd.Series(["apple pie", "apple", "apple cake"])
x.str.replace("apple", "-M-")
x.str.replace("^apple$", "-M-")
```
You can also match the boundary between words with `\b`. I don't often use this in Python, but I will sometimes use it when I'm doing a search to find the name of a function that's a component of other functions. For example, I'll search for `\bsum\b` to avoid matching `summarise`, `summary`, `rowsum` and so on.
#### Exercises
1. How would you match the literal string `"$^$"`?
### Character classes and alternatives
There are a number of special patterns that match more than one character. You've already seen `.`, which matches any character apart from a newline. There are four other useful tools:
* `\d`: matches any digit.
* `\s`: matches any whitespace (e.g. space, tab, newline).
* `[abc]`: matches a, b, or c.
* `[^abc]`: matches anything except a, b, or c.
Remember, to create a regular expression containing `\d` or `\s`, you'll need to escape the `\` for the string, so you'll type `"\\d"` or `"\\s"`.
A character class containing a single character is a nice alternative to backslash escapes when you want to include a single metacharacter in a regex. Many people find this more readable.
```{python}
# Look for a literal character that normally has special meaning in a regex
x = pd.Series(["abc", "a.c", "a*c", "a c"])
x.str.replace("a[.]c", "-M-")
x.str.replace(".[*]c", "-M-")
x.str.replace("a[ ]", "-M-")
```
This works for most (but not all) regex metacharacters: `$` `.` `|` `?` `*` `+` `(` `)` `[` `{`. Unfortunately, a few characters have special meaning even inside a character class and must be handled with backslash escapes: `]` `\` `^` and `-`.
You can use _alternation_ to pick between one or more alternative patterns. For example, `abc|d..f` will match either '"abc"', or `"deaf"`. Note that the precedence for `|` is low, so that `abc|xyz` matches `abc` or `xyz` not `abcyz` or `abxyz`. Like with mathematical expressions, if precedence ever gets confusing, use parentheses to make it clear what you want:
```{python}
pd.Series(["grey", "gray"]).str.replace("r(e|a)", "-M-")
```
#### Exercises
1. Create regular expressions to find all words that:
1. Start with a vowel.
1. That only contain consonants. (Hint: thinking about matching
"not"-vowels.)
1. End with `ed`, but not with `eed`.
1. End with `ing` or `ise`.
1. Is "q" always followed by a "u"?
1. Write a regular expression that matches a word if it's probably written
in British English, not American English.
1. Create a regular expression that will match telephone numbers as commonly
written in your country.
### Repetition
The next step up in power involves controlling how many times a pattern matches:
* `?`: 0 or 1
* `+`: 1 or more
* `*`: 0 or more
Notice the use of `n = 1` which functions like the R package `stringr::str_<TYPE>` the default argument for `str.replace()` of `n = -1` functions like `stringr::str_<TYPE>_all`.
```{python}
x = pd.Series(["1888 in Roman numerals: MDCCCLXXXVIII"])
x.str.replace("CC?", "-M-", n = 1)
x.str.replace("CC+", "-M-", n = 1)
x.str.replace('C[LX]+', "-M-", n = 1)
```
Note that the precedence of these operators is high, so you can write: `colou?r` to match either American or British spellings. That means most uses will need parentheses, like `bana(na)+`.
You can also specify the number of matches precisely:
* `{n}`: exactly n
* `{n,}`: n or more
* `{,m}`: at most m
* `{n,m}`: between n and m
```{python}
x.str.replace("C{2}", "-M-", n = 1)
x.str.replace("C{2,}", "-M-", n = 1)
x.str.replace("C{2,3}", "-M-", n = 1)
```
By default these matches are "greedy": they will match the longest string possible. You can make them "lazy", matching the shortest string possible by putting a `?` after them. This is an advanced feature of regular expressions, but it's useful to know that it exists:
```{python}
x.str.replace("C{2,3}?", "-M-", n = 1)
x.str.replace('C[LX]+?', "-M-", n = 1)
```
#### Exercises
1. Describe the equivalents of `?`, `+`, `*` in `{m,n}` form.
1. Describe in words what these regular expressions match:
(read carefully to see if I'm using a regular expression or a string
that defines a regular expression.)
1. `^.*$`
1. `"\\{.+\\}"`
1. `\d{4}-\d{2}-\d{2}`
1. `"\\\\{4}"`
1. Create regular expressions to find all words that:
1. Start with three consonants.
1. Have three or more vowels in a row.
1. Have two or more vowel-consonant pairs in a row.
1. Solve the beginner regexp crosswords at
<https://regexcrossword.com/challenges/beginner>.
### Grouping and backreferences
We will use a few csv files that contain one column labeld `name`. The `fruit` names and `words` as taken from the `stringr::fruit` character vectors.
```{python}
fruit = pd.read_csv("https://github.com/byuidatascience/data4python4ds/raw/master/data-raw/fruit/fruit.csv")
words = pd.read_csv("https://github.com/byuidatascience/data4python4ds/raw/master/data-raw/words/words.csv")
fruit
words
```
Earlier, you learned about parentheses as a way to disambiguate complex expressions. Parentheses also create a _numbered_ capturing group (number 1, 2 etc.). A capturing group stores _the part of the string_ matched by the part of the regular expression inside the parentheses. You can refer to the same text as previously matched by a capturing group with _backreferences_, like `\1`, `\2` etc. For example, the following regular expression finds all fruits that have a repeated pair of letters.
```{python}
fruit[fruit['name'].str.contains('(..)\\1')]
```
#### Exercises
1. Describe, in words, what these expressions will match:
1. `(.)\1\1`
1. `"(.)(.)\\2\\1"`
1. `(..)\1`
1. `"(.).\\1.\\1"`
1. `"(.)(.)(.).*\\3\\2\\1"`
1. Construct regular expressions to match words that:
1. Start and end with the same character.
1. Contain a repeated pair of letters
(e.g. "church" contains "ch" repeated twice.)
1. Contain one letter repeated in at least three places
(e.g. "eleven" contains three "e"s.)
## Tools
Now that you've learned the basics of regular expressions, it's time to learn how to apply them to real problems. In this section you'll learn a wide array of string functions that let you:
* Determine which strings match a pattern.
* Find the positions of matches.
* Extract the content of matches.
* Replace matches with new values.
* Split a string based on a match.
A word of caution before we continue: because regular expressions are so powerful, it's easy to try and solve every problem with a single regular expression. In the words of Jamie Zawinski:
> Some people, when confronted with a problem, think “I know, I’ll use regular
> expressions.” Now they have two problems.
As a cautionary tale, check out this regular expression that checks if a email address is valid:
```
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:
\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)
?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)
?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t]
)*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*
)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)
*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r
\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t
]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(
?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t
])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?
:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)
?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)
?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:
\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])
*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\
.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(
?:\r\n)?[ \t])*))*)?;\s*)
```
This is a somewhat pathological example (because email addresses are actually surprisingly complex), but is used in real code. See the stackoverflow discussion at <http://stackoverflow.com/a/201378> for more details.
Don't forget that you're in a programming language and you have other tools at your disposal. Instead of creating one complex regular expression, it's often easier to write a series of simpler regexps. If you get stuck trying to create a single regexp that solves your problem, take a step back and think if you could break the problem down into smaller pieces, solving each challenge before moving onto the next one.
### Detect matches
To determine if a character vector matches a pattern, use `str.contains()`. It returns a logical vector the same length as the input:
```{python}
x = pd.Series(["apple", "banana", "pear"])
x.str.contains("e")
```
Remember that when you use a logical vector in a numeric context, `FALSE` becomes 0 and `TRUE` becomes 1. That makes `sum()` and `mean()` useful if you want to answer questions about matches across a larger vector:
```{python}
# How many common words start with t?
words.name.str.contains("^t").sum()
# What proportion of common words end with a vowel?
words.name.str.contains("[aeiou]$").mean()
```
When you have complex logical conditions (e.g. match a or b but not c unless d) it's often easier to combine multiple `str.contains()` calls with logical operators, rather than trying to create a single regular expression. For example, here are two ways to find all words that don't contain any vowels:
```{python}
# Find all words containing at least one vowel, and negate
no_vowels_1 = ~words.name.str.contains("[aeiou]")
# Find all words consisting only of consonants (non-vowels)
no_vowels_2 = words.name.str.contains("^[^aeiou]+$")
no_vowels_1.tolist() == no_vowels_2.tolist()
```
The results are identical, but I think the first approach is significantly easier to understand. If your regular expression gets overly complicated, try breaking it up into smaller pieces, giving each piece a name, and then combining the pieces with logical operations.
As you saw above, a common use of `str.containst()` is to select the elements that match a pattern:
```{python}
words[words['name'].str.contains("x$")]
```
Typically, however, your strings will be one column of a data frame, and you'll want to use filter instead:
```{python}
df = pd.DataFrame({
'words': words.name,
'i': words.index})
df.query('words.str.contains("x$")')
```
A variation on `str.contains()` is `str_count()`: rather than a simple yes or no, it tells you how many matches there are in a string:
```{python}
x = pd.Series(["apple", "banana", "pear"])
x.str.count("a")
# On average, how many vowels per word?
words.name.str.count("[aeiou]").mean()
```
You can use `str.count()` with `assign()`:
```{python}
df.assign(
vowels = words.name.str.count("[aeiou]"),
consonants = words.name.str.count("[^aeiou]")
)
```
Note that matches never overlap. For example, in `"abababa"`, how many times will the pattern `"aba"` match? Regular expressions say two, not three:
```{python}
pd.Series(["abababa"]).str.count("aba")
```
#### Exercises
1. For each of the following challenges, try solving it by using both a single
regular expression, and a combination of multiple `str.contains()` calls.
1. Find all words that start or end with `x`.
1. Find all words that start with a vowel and end with a consonant.
1. Are there any words that contain at least one of each different
vowel?
1. What word has the highest number of vowels? What word has the highest
proportion of vowels? (Hint: what is the denominator?)
### Extract matches
To extract the actual text of a match, use `str.findall()`. To show that off, we're going to need a more complicated example. I'm going to use the [Harvard sentences](https://en.wikipedia.org/wiki/Harvard_sentences), which were designed to test VOIP systems, but are also useful for practicing regexps. These are provided in `stringr::sentences`:
```{python, cache = FALSE}
sentences = pd.read_csv("https://github.com/byuidatascience/data4python4ds/raw/master/data-raw/sentences/sentences.csv")
sentences.count
```
Imagine we want to find all sentences that contain a colour. We first create a vector of colour names, and then turn it into a single regular expression:
```{python, cache=FALSE}
colours = pd.Series(["red", "orange", "yellow", "green", "blue", "purple"])
colour_match = colours.str.cat(sep = "|")
colour_match
```
Now we can select the sentences that contain a colour, and then extract the colour to figure out which one it is:
```{python}
has_colour = sentences.query('name.str.contains(@colour_match)')
matches = has_colour.name.str.findall(colour_match)
matches.head()
```
Note that `str.findall()` extracts all matches. You'll learn more about lists in [lists](#lists) and [iteration].
#### Exercises
1. In the previous example, you might have noticed that the regular
expression matched "flickered", which is not a colour. Modify the
regex to fix the problem.
1. From the Harvard sentences data, extract:
1. The first word from each sentence.
1. All words ending in `ing`.
1. All plurals.
### Grouped matches
Earlier in this chapter we talked about the use of parentheses for clarifying precedence and for backreferences when matching. You can also use parentheses to extract parts of a complex match. For example, imagine we want to extract nouns from the sentences. As a heuristic, we'll look for any word that comes after "a" or "the". Defining a "word" in a regular expression is a little tricky, so here I use a simple approximation: a sequence of at least one character that isn't a space. `str.findall()` gives us the complete match:
```{python}
noun = '(a|the) ([^ ]+)'
has_noun = sentences.query('name.str.contains(@noun)')
has_noun.name.str.findall(noun).head()
```
(Unsurprisingly, our heuristic for detecting nouns is poor, and also picks up adjectives like smooth and parked.)
#### Exercises
1. Find all words that come after a "number" like "one", "two", "three" etc.
Pull out both the number and the word.
1. Find all contractions. Separate out the pieces before and after the
apostrophe.
### Replacing matches
`str.replace()` allows you to replace matches with new strings. The simplest use is to replace a pattern with a fixed string:
```{python}
x = pd.Series(["apple", "banana", "pear"])
x.str.replace( "[aeiou]", "-", n = 1)
x.str.replace( "[aeiou]", "-")
```
Instead of replacing with a fixed string you can use backreferences to insert components of the match. In the following code, I flip the order of the second and third words.
```{python}
sentences.name.str.replace("([^ ]+) ([^ ]+) ([^ ]+)", "\\1 \\3 \\2").head()
```
#### Exercises
1. Replace all forward slashes in a string with backslashes.
1. Implement a simple version of `str_to_lower()` using `replace_all()`.
1. Switch the first and last letters in `words`. Which of those strings
are still words?
### Splitting
Use `str.split()` to split a string up into pieces. For example, we could split sentences into words:
```{python}
sentences.name.str.split(" ").head()
```
Because each component might contain a different number of pieces, this returns an object with list elements. If you want all items in each list to a row you can use `explode()`:
```{python}
sentences.name.str.split(" ").explode()
```
You can also request a maximum number of pieces:
```{python}
fields = pd.Series(["Name: Hadley", "Country: NZ", "Age: 35"])
fields.str.split(": ", n = 2)
```
#### Exercises
1. Split up a string like `"apples, pears, and bananas"` into individual
components.
1. What does splitting with an empty string (`""`) do? Experiment, and
then read the documentation.
### Find matches
`str.find()` gives you the starting positions of each match and a `-1` for non-matches. This is particularly useful when none of the other functions does exactly what you want.
## Other types of pattern
When you use a pattern that's a string, the default is for the `str.` functions to use the pattern as a regex. For some `str.` functions you can change this by using the `regex = False` argument:
You can use the other arguments to control details of the match:
* `case = False` allows characters to match either their uppercase or
lowercase forms. The default is `case = True` if the pattern is a string.
```{python}
bananas = pd.Series(["banana", "Banana", "BANANA"])
bananas.str.replace('banana', "-R-")
bananas.str.replace('banana', "-R-", case = True)
bananas.str.replace('banana', "-R-", case = False)
```
### Exercises
1. What are the five most common words in `sentences`?
## strings in Python
<!-- https://jakevdp.github.io/WhirlwindTourOfPython/14-strings-and-regular-expressions.html -->
The pandas `str.` functions are built using the Python string functions. Jake VanderPlas' [Whirlwind Tour of Python](https://github.com/jakevdp/WhirlwindTourOfPython) provides examples of [string manipulation](https://jakevdp.github.io/WhirlwindTourOfPython/14-strings-and-regular-expressions.html) using Python's built in methods.
If you find yourself struggling to do something with `str.` in pandas, it's worth taking a look at the built in tools.