-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathapp.py
350 lines (321 loc) · 13.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import copy
import random
import gradio as gr
import numpy as np
import PIL.Image
# import spaces
import torch
from diffusers import (
AutoPipelineForText2Image,
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# 1.Description
title = r"""
<h1 align="center">ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/bytedance/res-adapter' target='_blank'><b>ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models</b></a>.<br>
We propose ResAdapter, a plug-and-play resolution adapter for enabling any diffusion model generate resolution-free images: no additional training, no additional inference and no style transfer.<br>
How to use:<br>
1. Choose a personalized diffusion model.
2. Choose a resadapter weights according to the model type (sd1.5 or sdxl).
3. Change generation resolution of images.
4. Enter a text prompt, as done in normal text-to-image models.
5. Click the <b>Submit</b> button to begin customization.
"""
article = r"""
---
**Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{cheng2024resadapter,
title={ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models},
author={Cheng, Jiaxiang and Xie, Pan and Xia, Xin and Li, Jiashi and Wu, Jie and Ren, Yuxi and Li, Huixia and Xiao, Xuefeng and Zheng, Min and Fu, Lean},
booktitle={arXiv preprint arxiv:2403.02084},
year={2024}
}
```
**Contact**
<br>
For any question, please feel free to contact us via [email protected] or [email protected].</b>
<br>
**Acknowledgements**
This template is powered from [InstantID](https://huggingface.co/spaces/InstantX/InstantID).
"""
tips = r"""
### Usage tips of ResAdapter
1. If you are not satisfied with interpolation images, try to increase the alpha of resadapter to 1.0.
2. If you are not satisfied with extrapolate images, try to choose the alpha of resadapter in 0.3 ~ 0.7.
3. If you find the images with style conflicts, try to decrease the alpha of resadapter.
4. If you find resadapter is not compatible with other accelerate lora, try to decrease the alpha of resadapter to 0.5 ~ 0.7.
"""
# 2.Global variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 3.Default model name
default_model_name = "dreamlike-art/dreamlike-diffusion-1.0"
default_pipe = AutoPipelineForText2Image.from_pretrained(default_model_name, torch_dtype=torch.float16)
default_pipe.scheduler = DPMSolverMultistepScheduler.from_config(default_pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
default_pipe = default_pipe.to(device)
# 4. Prepare examples
examples = [
[
"dreamlike-art/dreamlike-diffusion-1.0",
"resadapter_v2_sd1.5",
0.7,
"Award-winning photo of a mystical fox girl fox in a serene forest clearing, sunlight filtering through the trees,ethereal,enchanting,vibrant orange fur,piercing amber eyes,delicate floral crown, flowing gown,surrounded by a gentle breeze, whispering leaves,magical atmosphere,captured by renowned photographer Emily Thompson using a Nikon D850,creating a dreamlike and captivating image",
"NSFW, poor bad amateur assignment cut out ugly",
1024,
1024,
],
[
"dreamlike-art/dreamlike-diffusion-1.0",
"resadapter_v2_sd1.5",
0.7,
"Pictures of you, beautiful face, youthful appearance, ultra focus, face iluminated, face detailed, ultra focus, dreamlike images, pixel perfect precision, ultra realistic, vibrant, ultra focus, face ilumined, face detailed, 8k resolution, watercolor, detailed colors, ultra focus, 8k resolution, watercolor, razumov style. art by Carne Griffiths, Frank Frazetta, sf, intricate artwork masterpiece, ominous, golden ratio, in the oil painting style reminiscent of Konstantin Razumov's work, yet interspersed with the layered paper illusion effect characteristic of Eiko Ojala, Reimagined splashes of ink in the digital art style, evoking at once impressions of Alberto Seveso's signature pieces, model standing confidently at the center, trending on cgsociety, intricate, epic, trending on artstation, by artgerm, h. r. giger and beksinski, highly detailed, vibrant, production cinematic character render, ultra high quality model, sf, intricate artwork masterpiece, ominous, matte painting movie poster, golden ratio, trending on cgsociety, intricate, epic, trending on artstation, by artgerm, h. r. giger and beksinski, highly detailed, vibrant",
"NSFW, poor bad amateur assignment cut out ugly",
1024,
1024,
],
[
"Lykon/dreamshaper-xl-1-0",
"resadapter_v2_sdxl",
1.0,
"(masterpiece), (extremely intricate), (realistic), portrait of a girl, the most beautiful in the world, (medieval armor), metal reflections, upper body, outdoors, intense sunlight, far away castle, professional photograph of a stunning woman detailed, sharp focus, dramatic, award winning, cinematic lighting, octane render unreal engine, volumetrics dtx, (film grain, blurry background, blurry foreground, bokeh, depth of field, sunset, motion blur), chainmail",
"ugly, deformed, noisy, blurry, low contrast, text, BadDream, 3d, cgi, render, fake, anime, open mouth, big forehead, long neck",
384,
768,
],
[
"Lykon/dreamshaper-xl-1-0",
"resadapter_v2_sdxl",
1.0,
"masterpiece, best quality, 1girl, sci-fi armor with black and red colors, glowing elements, redhair",
"ugly, deformed, noisy, blurry, low contrast, text, BadDream, 3d, cgi, render, fake, anime, open mouth, big forehead, long neck",
384,
768,
]
]
# 5. Themes
theme = gr.themes.Base(
font=[
gr.themes.GoogleFont("Libre Franklin"),
gr.themes.GoogleFont("Public Sans"),
"system-ui",
"sans-serif",
],
)
def run_for_examples(model_name, resadapter_model_name, resadapter_alpha, prompt, negative_prompt, width, height):
return generate(
model_name,
resadapter_model_name,
resadapter_alpha,
prompt,
negative_prompt,
width,
height,
guidance_scale = 7.5,
num_inference_steps = 25,
seed = 44,
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
# random seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_resadapter_for_pipe(pipe, resadapter_model_name, resadapter_alpha):
# load lora
pipe.load_lora_weights(
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
adapter_name="res_adapter",
)
pipe.set_adapters(["res_adapter"], adapter_weights=[resadapter_alpha])
# load normalization
pipe.unet.load_state_dict(
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
strict=False,
)
return pipe
# @spaces.GPU(enable_queue=True)
def generate(
model_name: str,
resadapter_model_name: str,
resadapter_alpha: float,
prompt: str,
negative_prompt: str = "",
width: int = 1024,
height: int = 1024,
guidance_scale: float = 7.5,
num_inference_steps: int = 25,
seed: int = 0,
) -> PIL.Image.Image:
global default_model_name, default_pipe, device
print(f'Generating image from: {prompt}')
generator = torch.Generator().manual_seed(seed)
if model_name == default_model_name:
pipe = copy.deepcopy(default_pipe)
pipe = pipe.to(device)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_name, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
pipe = pipe.to(device)
default_pipe = copy.deepcopy(pipe)
default_model_name = model_name
# inference baseline
base_image = pipe(
prompt=prompt,
width=width,
height=height,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
output_type="pil",
generator=generator,
).images[0]
# inference resadapter
pipe = load_resadapter_for_pipe(pipe, resadapter_model_name, resadapter_alpha)
resadapter_image = pipe(
prompt=prompt,
width=width,
height=height,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
output_type="pil",
generator=generator,
).images[0]
return [resadapter_image, base_image]
# 6. UI
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Row():
with gr.Column():
with gr.Row():
model_name_choices = [
"dreamlike-art/dreamlike-diffusion-1.0",
"Lykon/dreamshaper-xl-1-0",
]
model_name = gr.Dropdown(
label="model name",
choices=model_name_choices,
value="dreamlike-art/dreamlike-diffusion-1.0",
)
resadapter_model_name_choices = ["resadapter_v2_sd1.5", "resadapter_v2_sdxl"]
resadapter_model_name = gr.Dropdown(
label="resadapter model name",
choices=resadapter_model_name_choices,
value="resadapter_v2_sd1.5",
)
resadapter_alpha = gr.Slider(
label="resadapter alpha",
minimum=0,
maximum=1.0,
step=0.01,
value=0.7,
)
with gr.Column():
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
visible=True,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="NSFW, poor bad amateur assignment cut out ugly",
visible=True,
)
run_button = gr.Button("Submmit")
width = gr.Slider(
label="Width",
minimum=128,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=128,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label="CFG Scale",
minimum=0,
maximum=20,
step=0.5,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Sampling steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
resadapter_output = gr.Image(label="Resadapter images")
baseline_output = gr.Image(label="Baseline images")
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
model_name,
resadapter_model_name,
resadapter_alpha,
prompt,
negative_prompt,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[resadapter_output, baseline_output],
api_name="run",
)
gr.Examples(
examples=examples,
inputs=[model_name, resadapter_model_name, resadapter_alpha, prompt, negative_prompt, width, height],
outputs=[resadapter_output, baseline_output],
fn=run_for_examples,
cache_examples="lazy",
)
gr.Markdown(tips)
gr.Markdown(article)
if __name__ == "__main__":
demo.queue(max_size=20, api_open=False).launch(show_api=False, server_port=5002)