-
Notifications
You must be signed in to change notification settings - Fork 4
/
load_vctk.py
112 lines (93 loc) · 5.12 KB
/
load_vctk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python
# coding: utf-8
import os
import numpy as np
from sklearn.model_selection import train_test_split
def get_person_label(pname):
return int(pname.replace('p', ''))
def get_samples_from_person(person_path, sample_count, mics):
"""
Return path of audio samples selected from a person folder.
Params:
person_path: Path for the person
sample_count: Number of samples to select
mics: Mic number of the selected audio samples. Can be one of [1], [2], [1, 2]. If both mics included
The code could return same audio files recorded from both mics.
Returns:
audio_paths: Relative path of the audio samples
"""
audio_files = os.listdir(person_path)
mic_string = ['mic'+ str(n) for n in mics ]
audio_files = [af for af in audio_files if af.split('.')[0].split('_')[-1] in mic_string]
sample_count = min(len(audio_files), sample_count)
audio_paths = [os.path.join(person_path, af) for af in audio_files]
return np.random.choice(audio_paths, sample_count, replace=False).tolist()
def get_model_data(data_main_dir, sample_per_person, split=[0.1, 0.1], shuffle=True, mics=[1,2], include_person=None):
"""
Return audio file paths and corresponding labels.
Params:
data_main_dir: Parent directory for the dataset
sample_per_person: Number of samples to select
split: Ratios for the test and validation sets. Default values are 0.1 for test and 0.1 for validation.
shuffle: Whether to shuffle the paths and labels before returning them. If you pass this false, consecutive audio files
will obtanied from same person.
mics: Mic number of the selected audio samples. Can be one of [1], [2], [1, 2]. If both mics included
The code could return same audio files recorded from both mics.
include_person: Persons to include in the data. Default is None. When passed None, it takes audios from all.
Returns:
audio paths and labels for each subset. Audio paths and labels are given as a single list for each subset
"""
all_audio_paths = []
labels = []
person_names = [pname for pname in os.listdir(data_main_dir) if 'p' in pname]
if include_person:
person_names = [pname for pname in person_names if pname in include_person]
person_paths = [os.path.join(data_main_dir, p) for p in person_names]
for i, ppath in enumerate(person_paths):
audio_paths = get_samples_from_person(ppath, sample_per_person, mics)
labels = labels + len(audio_paths) * [i]
all_audio_paths = all_audio_paths + audio_paths
if shuffle:
idx = np.arange(len(labels))
np.random.shuffle(idx)
labels = np.array(labels)[idx].tolist()
all_audio_paths = np.array(all_audio_paths)[idx].tolist()
tr_val_audio, test_audio, tr_val_labels, te_labels = train_test_split(all_audio_paths, labels, test_size=split[0], random_state=42)
tr_audio, val_audio, tr_labels, val_labels = train_test_split(tr_val_audio, tr_val_labels, test_size=split[1], random_state=42)
return [tr_audio, tr_labels], [val_audio, val_labels], [test_audio, te_labels]
def get_model_data_for_batch(data_main_dir, sample_per_person, person_count_per_batch , shuffle=True, mics=[1,2]):
"""
Return audio file paths and corresponding labels for a batch.
Params:
data_main_dir: Parent directory for the dataset
sample_per_person: Number of samples to select
person_count_per_batch: Number of persons to be added for each batch. Note that the batch number will be equal to
sample_per_person * person_count_per_batch
shuffle: Whether to shuffle the paths and labels before returning them. If you pass this false, consecutive audio files
will obtanied from same person.
mics: Mic number of the selected audio samples. Can be one of [1], [2], [1, 2]. If both mics included
The code could return same audio files recorded from both mics.
Returns:
audio_paths: Relative path of the audio samples
"""
all_audio_paths = []
labels = []
person_names = [pname for pname in os.listdir(data_main_dir) if 'p' in pname]
person_paths = [os.path.join(data_main_dir, p) for p in person_names]
person_labels = [get_person_label(pname) for pname in person_names]
# Sample persons
idx = np.arange(len(person_paths))
selected_idx = np.random.choice(idx, person_count_per_batch, replace=False)
# Select person names, paths and corresponding labels
person_names = np.array(person_names)[selected_idx].tolist()
person_paths = np.array(person_paths)[selected_idx].tolist()
for i, ppath in enumerate(person_paths):
audio_paths = get_samples_from_person(ppath, sample_per_person, mics)
labels = labels + len(audio_paths) * [i]
all_audio_paths = all_audio_paths + audio_paths
if shuffle:
idx = np.arange(len(labels))
np.random.shuffle(idx)
labels = np.array(labels)[idx].tolist()
all_audio_paths = np.array(all_audio_paths)[idx].tolist()
return all_audio_paths, labels