-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_feature.py
53 lines (42 loc) · 1.68 KB
/
face_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
'''
@Author: David Vu
Run the pretrained model to extract 128D face features
'''
import tensorflow as tf
from architecture import inception_resnet_v1 as resnet
import numpy as np
class FaceFeature(object):
def __init__(self, face_rec_graph, model_path = '/media/zhr/DOC/FaceRec-master/models/model-20170512-110547.ckpt-250000'):
'''
:param face_rec_sess: FaceRecSession object
:param model_path:
'''
print("Loading model...")
with face_rec_graph.graph.as_default():
self.sess = tf.Session()
self.x = tf.placeholder('float', [None,160,160,3]); #default input for the NN is 160x160x3
self.embeddings = tf.nn.l2_normalize(
resnet.inference(self.x, 0.6, phase_train=False)[0], 1, 1e-10); #some magic numbers that u dont have to care about
saver = tf.train.Saver() #saver load pretrain model
saver.restore(self.sess, model_path)
print("Model loaded")
def get_features(self, input_imgs):
images = load_data_list(input_imgs,160)
return self.sess.run(self.embeddings, feed_dict = {self.x : images})
#some image preprocess stuff
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1 / std_adj)
return y
def load_data_list(imgList, image_size, do_prewhiten=True):
images = np.zeros((len(imgList), image_size, image_size, 3))
i = 0
for img in imgList:
if img is not None:
if do_prewhiten:
img = prewhiten(img)
images[i, :, :, :] = img
i += 1
return images