-
Notifications
You must be signed in to change notification settings - Fork 20
/
main.py
429 lines (358 loc) · 15.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import json
import os
import sys
import einops
import lightning as L
import lpips
import omegaconf
import torch
import wandb
# Add MAST3R and PixelSplat to the sys.path to prevent issues during importing
sys.path.append('src/pixelsplat_src')
sys.path.append('src/mast3r_src')
sys.path.append('src/mast3r_src/dust3r')
from src.mast3r_src.dust3r.dust3r.losses import L21
from src.mast3r_src.mast3r.losses import ConfLoss, Regr3D
import data.scannetpp.scannetpp as scannetpp
import src.mast3r_src.mast3r.model as mast3r_model
import src.pixelsplat_src.benchmarker as benchmarker
import src.pixelsplat_src.decoder_splatting_cuda as pixelsplat_decoder
import utils.compute_ssim as compute_ssim
import utils.export as export
import utils.geometry as geometry
import utils.loss_mask as loss_mask
import utils.sh_utils as sh_utils
import workspace
class MAST3RGaussians(L.LightningModule):
def __init__(self, config):
super().__init__()
# Save the config
self.config = config
# The encoder which we use to predict the 3D points and Gaussians,
# trained as a modified MAST3R model. The model's configuration is
# primarily defined by the pretrained checkpoint that we load, see
# MASt3R's README.md
self.encoder = mast3r_model.AsymmetricMASt3R(
pos_embed='RoPE100',
patch_embed_cls='ManyAR_PatchEmbed',
img_size=(512, 512),
head_type='gaussian_head',
output_mode='pts3d+gaussian+desc24',
depth_mode=('exp', -mast3r_model.inf, mast3r_model.inf),
conf_mode=('exp', 1, mast3r_model.inf),
enc_embed_dim=1024,
enc_depth=24,
enc_num_heads=16,
dec_embed_dim=768,
dec_depth=12,
dec_num_heads=12,
two_confs=True,
use_offsets=config.use_offsets,
sh_degree=config.sh_degree if hasattr(config, 'sh_degree') else 1
)
self.encoder.requires_grad_(False)
self.encoder.downstream_head1.gaussian_dpt.dpt.requires_grad_(True)
self.encoder.downstream_head2.gaussian_dpt.dpt.requires_grad_(True)
# The decoder which we use to render the predicted Gaussians into
# images, lightly modified from PixelSplat
self.decoder = pixelsplat_decoder.DecoderSplattingCUDA(
background_color=[0.0, 0.0, 0.0]
)
self.benchmarker = benchmarker.Benchmarker()
# Loss criteria
if config.loss.average_over_mask:
self.lpips_criterion = lpips.LPIPS('vgg', spatial=True)
else:
self.lpips_criterion = lpips.LPIPS('vgg')
if config.loss.mast3r_loss_weight is not None:
self.mast3r_criterion = ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2)
self.encoder.downstream_head1.requires_grad_(True)
self.encoder.downstream_head2.requires_grad_(True)
self.save_hyperparameters()
def forward(self, view1, view2):
# Freeze the encoder and decoder
with torch.no_grad():
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self.encoder._encode_symmetrized(view1, view2)
dec1, dec2 = self.encoder._decoder(feat1, pos1, feat2, pos2)
# Train the downstream heads
pred1 = self.encoder._downstream_head(1, [tok.float() for tok in dec1], shape1)
pred2 = self.encoder._downstream_head(2, [tok.float() for tok in dec2], shape2)
pred1['covariances'] = geometry.build_covariance(pred1['scales'], pred1['rotations'])
pred2['covariances'] = geometry.build_covariance(pred2['scales'], pred2['rotations'])
learn_residual = True
if learn_residual:
new_sh1 = torch.zeros_like(pred1['sh'])
new_sh2 = torch.zeros_like(pred2['sh'])
new_sh1[..., 0] = sh_utils.RGB2SH(einops.rearrange(view1['original_img'], 'b c h w -> b h w c'))
new_sh2[..., 0] = sh_utils.RGB2SH(einops.rearrange(view2['original_img'], 'b c h w -> b h w c'))
pred1['sh'] = pred1['sh'] + new_sh1
pred2['sh'] = pred2['sh'] + new_sh2
# Update the keys to make clear that pts3d and means are in view1's frame
pred2['pts3d_in_other_view'] = pred2.pop('pts3d')
pred2['means_in_other_view'] = pred2.pop('means')
return pred1, pred2
def training_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
# Predict using the encoder/decoder and calculate the loss
pred1, pred2 = self.forward(view1, view2)
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=False
)
# Log losses
self.log_metrics('train', loss, mse, lpips)
return loss
def validation_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
# Predict using the encoder/decoder and calculate the loss
pred1, pred2 = self.forward(view1, view2)
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=False
)
# Log losses
self.log_metrics('val', loss, mse, lpips)
return loss
def test_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
num_targets = len(batch['target'])
# Predict using the encoder/decoder and calculate the loss
with self.benchmarker.time("encoder"):
pred1, pred2 = self.forward(view1, view2)
with self.benchmarker.time("decoder", num_calls=num_targets):
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips, ssim = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=True
)
# Log losses
self.log_metrics('test', loss, mse, lpips, ssim=ssim)
return loss
def on_test_end(self):
benchmark_file_path = os.path.join(self.config.save_dir, "benchmark.json")
self.benchmarker.dump(os.path.join(benchmark_file_path))
def calculate_loss(self, batch, view1, view2, pred1, pred2, color, mask, apply_mask=True, average_over_mask=True, calculate_ssim=False):
target_color = torch.stack([target_view['original_img'] for target_view in batch['target']], dim=1)
predicted_color = color
if apply_mask:
assert mask.sum() > 0, "There are no valid pixels in the mask!"
target_color = target_color * mask[..., None, :, :]
predicted_color = predicted_color * mask[..., None, :, :]
flattened_color = einops.rearrange(predicted_color, 'b v c h w -> (b v) c h w')
flattened_target_color = einops.rearrange(target_color, 'b v c h w -> (b v) c h w')
flattened_mask = einops.rearrange(mask, 'b v h w -> (b v) h w')
# MSE loss
rgb_l2_loss = (predicted_color - target_color) ** 2
if average_over_mask:
mse_loss = (rgb_l2_loss * mask[:, None, ...]).sum() / mask.sum()
else:
mse_loss = rgb_l2_loss.mean()
# LPIPS loss
lpips_loss = self.lpips_criterion(flattened_target_color, flattened_color, normalize=True)
if average_over_mask:
lpips_loss = (lpips_loss * flattened_mask[:, None, ...]).sum() / flattened_mask.sum()
else:
lpips_loss = lpips_loss.mean()
# Calculate the total loss
loss = 0
loss += self.config.loss.mse_loss_weight * mse_loss
loss += self.config.loss.lpips_loss_weight * lpips_loss
# MAST3R Loss
if self.config.loss.mast3r_loss_weight is not None:
mast3r_loss = self.mast3r_criterion(view1, view2, pred1, pred2)[0]
loss += self.config.loss.mast3r_loss_weight * mast3r_loss
# Masked SSIM
if calculate_ssim:
if average_over_mask:
ssim_val = compute_ssim.compute_ssim(flattened_target_color, flattened_color, full=True)
ssim_val = (ssim_val * flattened_mask[:, None, ...]).sum() / flattened_mask.sum()
else:
ssim_val = compute_ssim.compute_ssim(flattened_target_color, flattened_color, full=False)
ssim_val = ssim_val.mean()
return loss, mse_loss, lpips_loss, ssim_val
return loss, mse_loss, lpips_loss
def log_metrics(self, prefix, loss, mse, lpips, ssim=None):
values = {
f'{prefix}/loss': loss,
f'{prefix}/mse': mse,
f'{prefix}/psnr': -10.0 * mse.log10(),
f'{prefix}/lpips': lpips,
}
if ssim is not None:
values[f'{prefix}/ssim'] = ssim
prog_bar = prefix != 'val'
sync_dist = prefix != 'train'
self.log_dict(values, prog_bar=prog_bar, sync_dist=sync_dist, batch_size=self.config.data.batch_size)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.encoder.parameters(), lr=self.config.opt.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [self.config.opt.epochs // 2], gamma=0.1)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "epoch",
"frequency": 1,
},
}
def run_experiment(config):
# Set the seed
L.seed_everything(config.seed, workers=True)
# Set up loggers
os.makedirs(os.path.join(config.save_dir, config.name), exist_ok=True)
loggers = []
if config.loggers.use_csv_logger:
csv_logger = L.pytorch.loggers.CSVLogger(
save_dir=config.save_dir,
name=config.name
)
loggers.append(csv_logger)
if config.loggers.use_wandb:
wandb_logger = L.pytorch.loggers.WandbLogger(
project='splatt3r',
name=config.name,
save_dir=config.save_dir,
config=omegaconf.OmegaConf.to_container(config),
)
if wandb.run is not None:
wandb.run.log_code(".")
loggers.append(wandb_logger)
# Set up profiler
if config.use_profiler:
profiler = L.pytorch.profilers.PyTorchProfiler(
dirpath=config.save_dir,
filename='trace',
export_to_chrome=True,
schedule=torch.profiler.schedule(wait=0, warmup=1, active=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(config.save_dir),
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA
],
profile_memory=True,
with_stack=True
)
else:
profiler = None
# Model
print('Loading Model')
model = MAST3RGaussians(config)
if config.use_pretrained:
ckpt = torch.load(config.pretrained_mast3r_path)
_ = model.encoder.load_state_dict(ckpt['model'], strict=False)
del ckpt
# Training Datasets
print(f'Building Datasets')
train_dataset = scannetpp.get_scannet_dataset(
config.data.root,
'train',
config.data.resolution,
num_epochs_per_epoch=config.data.epochs_per_train_epoch,
)
data_loader_train = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
val_dataset = scannetpp.get_scannet_test_dataset(
config.data.root,
alpha=0.5,
beta=0.5,
resolution=config.data.resolution,
use_every_n_sample=100,
)
data_loader_val = torch.utils.data.DataLoader(
val_dataset,
shuffle=False,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
# Training
print('Training')
trainer = L.Trainer(
accelerator="gpu",
benchmark=True,
callbacks=[
L.pytorch.callbacks.LearningRateMonitor(logging_interval='epoch', log_momentum=True),
export.SaveBatchData(save_dir=config.save_dir),
],
check_val_every_n_epoch=1,
default_root_dir=config.save_dir,
devices=config.devices,
gradient_clip_val=config.opt.gradient_clip_val,
log_every_n_steps=10,
logger=loggers,
max_epochs=config.opt.epochs,
profiler=profiler,
strategy="ddp_find_unused_parameters_true" if len(config.devices) > 1 else "auto",
)
trainer.fit(model, train_dataloaders=data_loader_train, val_dataloaders=data_loader_val)
# Testing
original_save_dir = config.save_dir
results = {}
for alpha, beta in ((0.9, 0.9), (0.7, 0.7), (0.5, 0.5), (0.3, 0.3)):
test_dataset = scannetpp.get_scannet_test_dataset(
config.data.root,
alpha=alpha,
beta=beta,
resolution=config.data.resolution,
use_every_n_sample=10
)
data_loader_test = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
masking_configs = ((True, False), (True, True))
for apply_mask, average_over_mask in masking_configs:
new_save_dir = os.path.join(
original_save_dir,
f'alpha_{alpha}_beta_{beta}_apply_mask_{apply_mask}_average_over_mask_{average_over_mask}'
)
os.makedirs(new_save_dir, exist_ok=True)
model.config.save_dir = new_save_dir
L.seed_everything(config.seed, workers=True)
# Training
trainer = L.Trainer(
accelerator="gpu",
benchmark=True,
callbacks=[export.SaveBatchData(save_dir=config.save_dir),],
default_root_dir=config.save_dir,
devices=config.devices,
log_every_n_steps=10,
strategy="ddp_find_unused_parameters_true" if len(config.devices) > 1 else "auto",
)
model.lpips_criterion = lpips.LPIPS('vgg', spatial=average_over_mask)
model.config.loss.apply_mask = apply_mask
model.config.loss.average_over_mask = average_over_mask
res = trainer.test(model, dataloaders=data_loader_test)
results[f"alpha: {alpha}, beta: {beta}, apply_mask: {apply_mask}, average_over_mask: {average_over_mask}"] = res
# Save the results
save_path = os.path.join(original_save_dir, 'results.json')
with open(save_path, 'w') as f:
json.dump(results, f)
if __name__ == "__main__":
# Setup the workspace (eg. load the config, create a directory for results at config.save_dir, etc.)
config = workspace.load_config(sys.argv[1], sys.argv[2:])
if os.getenv("LOCAL_RANK", '0') == '0':
config = workspace.create_workspace(config)
# Run training
run_experiment(config)