-
Notifications
You must be signed in to change notification settings - Fork 1
/
03_basic_data_analysis.html
241 lines (215 loc) · 187 KB
/
03_basic_data_analysis.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Gregor Pirs, Jure Demsar and Erik Strumbelj" />
<title>Basic data analysis</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(title);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans'),local(OpenSans),url(data:application/font-woff;base64,d09GRgABAAAAAE8YABIAAAAAhWwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAF8AAABgoT6eyWNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABZAAAAog9NGKRmcGdtAAADaAAABJsAAAe0fmG2EWdhc3AAAAgEAAAAEAAAABAAFQAjZ2x5ZgAACBQAADWFAABReBn1yj5oZWFkAAA9nAAAADYAAAA293bipmhoZWEAAD3UAAAAHwAAACQNzAapaG10eAAAPfQAAAIIAAADbLTLWYhrZXJuAAA//AAAChcAAB6Qo+uk42xvY2EAAEoUAAABuQAAAbz3ewp/bWF4cAAAS9AAAAAgAAAAIAJ2AgpuYW1lAABL8AAAAKwAAAEyFNwvSnBvc3QAAEycAAABhgAAAiiYDmoRcHJlcAAATiQAAADyAAABCUO3lqQAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAHgBY2Bm2cY4gYGVgYN1FqsxAwOjPIRmvsiQxviRg4mJm42NmZWFiYnlAQPTewcGhWgGBgYNBiAwdAx2ZgAK/P/LJv9PhKGFo5cpQoGBcT5IjsWDdRuQUmBgBgD40BA5AHgBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ/Bj3QYkS1m3sZ5lQAEsHgwiDBMZGP6/AfEQ5D8REAnUJfxnyv+3/1r/v/q3Eigi8W8PA1mAA0J1MzQy3GWYwdDP0Mcwk6GDoZGRn6ELAE09H/8AAAB4AXVUR3fbxhPfhRqr/6Cr3h8pi4wpN9K9V4QEYCrq7b2F0gC1R+XkS3rjKWXlfJeBfaF88jH1M6TfoqNzdWaXxZ0NM7/ftJ2ZpXfzzeVILi0uzM/NzkxPTU68Md64GQZ+vfa6d+P6tatXLl+6eOH8uVMnTxyvVg4fGisfhNfcV0f3luz/7Srmc9nMyPDQ4IDFWUUgjwMcKItSmEAASaNaEcFo069WAghjFIlAegyOQaNhIEhQxALHEqIeg2P0yHLjKUuvY+n1LbktrrKrOgUI/MUH0ebLc5Lk73yIBO4YeUrL5GGUIimuSx6mKl2tCDD8oKmCmGrkaT5Xh/p6rlphaS5PYp4kPAy3Un74OjeCdTi4nFosU6Qg+qRBsoazczLwHdeNqpVx3AW+oVjdhMThOo6YkGJTl862RFq5r263bbYSHyuswVrylsSBhHzVQKDU11g6hkfAxyOf/DVKJ1/HCvgBHtNRJ+b7eSYepeQ4VLZBqAeMjgM7/zyJJF1kuGw/YFpEq458Xrr65YTUa6VCEKGKVdJ+2FoBYYNKCwV1K6B2s1mJnPB7Ww6GtyO04ya/HHWPHs5P4J65NyVa5VA0E0LocwPci45b6tvMvohm1BYc1h12Xd2GrbbHVkjB1pzs6IKtOHeYd+JYhFasmfs9Zt+SZlo9pu8eg0utWZAKB8vjaxBQx7cSbK3Qdr2nBwM27vrXcUHtLolLJyJjK3CAbDcFDo3hsPZ63IH2RrsoWyskdB47jiKitFtcAgqj4wQQxN3PB81RCiCo0Y1jnUVYlOj5JHhJd2JBevIEeSQxDWzTN8PEE3AL90KtP11dVrC5II1L1w331pHFq10vPBGYeyUCFRvB7PAEzMltdubhb+lZ4dw9w86yyNfG++u0ZWOBkmsb+GrsrKGIN4R0XPQimnAEcj3CI6ZDR35zzHJEZlcW5cQCTMwty4umkB5B4ajHwVNhQDqdMLSAmClnhLScgYgMbQJESALUrtIvjpQz9LVxuIPSiYgQkjusZ01l4BERrPtdO9KfDErKQLne6EUbJlXHqTccNzL163tuES26ickjo5va6FIkCyIyaFEYA+lejuqlFxLWIYKmQG9W0tlMe0yXu80wPe/OavEJrd8srSFziSal30wMj5H2mH7T6H218RQ93qOFysDEgtLBoRuQUeXjyPQKexdLjoa4vtAQJiBsEXYutEo9T1/m5mUdBMbXFCzIq8Z6Yl5+7nyic+1mE3xisVatpBarpcC/mUs9/s3Csty2GRPfLMo7FrfqcS1KDxIntwVjnkEtjRJoFKEVHWmelIyxd7Y9xlqGHTSA0VfbnBks08M4W21bHczuJBrTiYixiBnsMF7PepCwTAdrGcy8UqZb5uWGvIyX9QpW0XJSrqE7hNzjjGU5u1vgRe6k5DVv4DZvpVnP6Vi0yMKLOhUvPUq9tCzvFhi5mV9KVNMvWpfRJg1bggjEml6Uz6KmiiN92dh+Gg19OHK4TmOC61TIcAFzsF7DPNQ0fkPjNzr4sMZHaEX5fk7uLZr9LHK9AW9KF2wU///BUfaOnlREfyrK/rv6Hyn3ISkAAAEAAwAIAAoADQAH//8AD3gBhXwHfFRV1vg5974yvZdMQspkSIYkQkgmhdAyIIQQWsSADCLSpajUiMgiAkuJNGmhKyJGDCyybCiyiGBHRGQtyLIuf2UX19UPy7oWyFz+972ZBxOE72N+L2+Yd+be0+5p99wBAscBBIN4ACjI4D4oUJEIVAbIL8wPYX4oP1TQ3um3+0v5dZz2bj44nsyKLhYPXKkaL1wCAhuuXcQ69dsWyAu7qF5PBMFqQzQRkzQgYvIQCuXleXYHlCXl2x1YZg+F7HxMDNAQLQoVetwuKZCZjRUTQqc/f7RjebisqAeuEQJXmpZUdA/3KgcgsJA2kL1xDNPDZqCyQAWdXiIy5YOHThUq4/KB1XFpgPr5heVtJuSQvJzxOeKB6HfEplzKWCEA4Sc+Vgqkw8bwIF16K7fg0ttNJr3DajEKBqfT5UlNkwXJKyD4hCRRlFySwU+TvTTJkJTh1wkms6l/pBWa08Fmt/WP+Nz2AWYcYEez3WwXvU5qECE/VB5ylJXl5993Hyc3zw6hkHaPoerldxVjh7eMX/F3hYWxu0KF382pcKpXsV+9QlS93Mj/Sz/ujinsVE1dDTszcEk1u4LpPdjXmDdw6UAsqFlUg7rmf2J+d3aGLmC757GBuEe55mHNXGxifZVrLtuNNUBhwbU6wSQ5IAOyoS2MCxcH7VmpXkHIdZlFP4BPtOvFdvlZZsncL0Kl1pZcS99Iam5eK1erfhFvrkviL9HDKc5X6OV/ChUq7aGEvw5U6QuFVCbEhOSSZHegODM7WOzxhOzZ2cVFJaXFIbfHK2cH7WlELuK3EnR5vHZJEkzvHZw35S933n0ucur5ky/MO7SraN2mrVuqGiNPnIt+NnTy6HF4fMkfvf+6EEjfkpWPh7rtXrJgp+NAk9hzQScj6194/+yxlZE72Ow0KvcdloMLbPcBiDD+2jdSW/Ek6MENfk55AfQMtwabaPC0aZWZ2a6Nob1NKgxRc3qemb/aF0jtk3xZPtkpc4Xjr3KVXE7WDfpi+sfVJ1RotwUyJVFVbE4ZV3JUPi0pLsq++XMM4A9Vd+/YcXcVvrtx7bLN61av2oINVTU11dU1NVV4cuPaFRvXrV7xDGPNH6+heQJpbMQaHLiz8R9fXb5w8dLl5vO7XnzhD7uef37Xxa8u//3ipa9pxpUqrt5AYeq1b8QPxVNg5BQWw13h9k4PpEqB3Lx2eW0DlmxfqkdfUhoy9Y6EnNZgW0t7MZ/6smlubka+I0NfFckQoDwPkjih+d4yrpTleTdRqoinJE6Ts7AULcTt8mRxQbYjMeLcXMpYwucgMgaCkrrMn668Z97YBwZHJm/+/hnWZ/KwOzazl5c2DerS+o2Xth9eshXXd7jTu7NHHeb98+VHfqw/+z/Cmp5zhvSZe3e/kSOubt2EO3tExnWrrbsy/51x94+aWFa/84V1k/bfx2Z1fWE0+2It+2zfxGEfAaBiMbBctRiug0CpIBLFUpyK2R+OumYgYrZB+cZAdoT4+TfM0CpsksEggGCxGoNUsV4J5sVpc5SGJE6pwxvIJgM3r97+1Kq1S7et2UQKUI/v7znOCn/8jpW80ohvKaN24aOatFEFAx8XLFYDFYItR0UbkQMljuIiEgx5HMS0efW2pWtXPbVdGZb9yjruPIInv/sR3z/+EisAhMFkrmCRXGCB9uEUKgoomw16o95qEwxoJiaT2cDtl84CUP5G4XWJOTBmWLK8olOmNOjMKhUpWZWHK5LZgl9279229we2OBUX50kuVjv5QDo7PBwnsvrhWJF+YDIuVagZDxeFHOF1MEKbsBMEQS+KJjOVdXJ1BKw61EH+feqSTzTz3I7ZA3Zuv+whshy3sDFL2TjctJR6n2SDsfFJ3A0I5ewXfAgugw7s+0XQG0SAfFVWHOEsr6TyphSHW5NHFc9J6Wa+7B3Dfp42HguHAUINniPlZCpQ/l0CogDIrW/8u85iv7sGv8ZzGzYAxjwV/MCxTwobJQCTWU8HRPQeruaaXpRqestVdUOXso7dupeF7px4Z8+ed3arKFc44AIg51W9ch4kIIiUEocmSk4sBpCcj15oUDRJXYYExl37RmirrkIv55rLASYJJF+S3t0nopeptU+E+mLrLK+lPgQyid3mCBU6UP1rVz8R2n770zc/Xf7x8s/Nn9fvaFi3rmFHPfmMLWRP4lycho/jNPY4W82Os88wiJ34K4tdAIQjAOQkx8YArcM2PaAOjSZBL8uolzAJFFvGDXd8ej67P2AvKpUkOYghcnK7zl300RBcsExwzJ/hbrd7GuYBwhgAIYtbTx/3+d4klJ3gtKCQnGIz9InYZEzqG8EkjSzNavCB/cXYlcQshhyMsZrI6PYLWc3lOG/vlA4rHr/3uTFD3r38/r+3fMKOke9W4oJ9G566u7au84CpOz/ct5R99wF7W6dIYjjnawrHIAh3hlungFOWgXoyzVKbHOr1eD19Il6vISsrrU8kSzbY+0QMGpdjgYh60zDTHJKHoyP4404pw27zB4o1o62gq+BLL299am8j+zv774zj995/dgTOZsOfWr3rnTWPj2h8qGbo1/M//kYYvmxfms7TtPrM54E7ns4vwBw0rFy/aNJjRRVTet31OgCBPABhongUDOCAzuE0h6gnxChToCJ1ulB0iH0jeqvscFBZotflk+hMQ5oJDqhrC/l//FxmAUlGYeK5Z6Jl5MDec2yJQdc+l5ViNduL1avoZ805eGll04jy6COKheT8S+U6kQwdw+lW6nPpXF4qtEoBziwAye3mMnRLkqlPRLqZdQlsKxTcLghkqhzjrLL5M+WgUwldSkjbL1HPLrCf51d8MHbv66zu/mcGl5Kz0YNZ0+mcf759kbEB29qGGrZiYWop2b2R9fYqnKnlWOVzqXqgNfQIB5LtRr8fQLLT7CyT0ZLaL2K0WFzU5e0TcfmojkckcgvcyhJ4pNlr8Bd63VyEhIbiGhfIBFGTq8R9lqcWB2Dl1G79Rn/9i8n08OU3L/760UX2E369YuvqVUPrI9VryFR8CXc5V/rYefbW7svv/YNdxUHv/OnFVQ1V8yse2Dde0UcAIY/zU4L0sA1FEQg3jJT0jVAJFBlqbOOrALk1dCOmkuHNF+mpaKOYunHhldNAlZhEyFGpz4R20C+c47Vmu+6gqXo9lewuq5TfXrLnZORk9Ink5JjAlNwvYvJBoF8E5N8qd9nN3jrmj7mOx8OPLDXqolpgwv0zZkpuzaeTynf+vWjNvnr22b+bsfDJR7+e+cL6dQ1bXlu3CDvOWfHIMytnrhJPHt7x4L7eg/48+8C5U0euLuu/f8ozr1xteHTRssdGru8V3kwfeHTMsN937/zksLEzFdlO5NQpNsMLWdAtnJlizzQYAAQu26AljUvWZbEQlyuJi1Ymcr8Iaal2jjKNg5qJ9Ctqx02jMyDFKHJw8TpUIvjHKhXZQlZ0/Iwe1eO++6/RVHpg2mv/uPbBuguPMtfKLU+tuXfjkIFraEVzg2tlMuZg6O57/vXBP1C3kZ3H9od2PPV81RMVE/aNAy3HEcaokRS34Ta+LAA8XotzQMRiizkRDVfN87X0JXae6NzkVR6Znehb6J8XL+Y3IKovXMjn0oEDMrkmmc2iXu9yGm0DIkab6hgTZklwj/T6FDccpXsmn6Rjlxv+knyrTFMR8+U/cF9+DiRwh/UCiChwdeXD58cDhSwsRjeikNNcTo83/0AtP2DDKLywji1nhxSezMTjgo9eVHOy3LBbJgIQ0OsEsToiIFRHrIjI4wHOlfxEz6a4ZOTXTLq9eTjdTofW1bEH6up+g5GIBDhGEr2BkRNVlMZTa/P3HKVyrMMKrF3H/KPYUAWjlGsXaRnXrxTIhrJwqp/bMtnphFYWIdgGoLWtddqASGuPzdA7YhNaqFZLvVJSEa48LZwUd4YSN4mJ+aq/ctSSXgtmD6gf2emV91/9KNj38bHd9l3PX0tq19dMnzFw3OSsgsWjj+zqPXn0w4On3e9nZ+NJLYFZ1yqkQ2ITFEM5zzwyA+1KLJ1kVwpAjsvSTgx3S+rQQeiisxv5Ky+9kGbnqUmllmSFEhOP6/G4ug6C2nJQUPdSt0td36R1IFMgbsUalrqlQAbw4KK1v1BwIH/udKqm8NCQbeMHP2LUtVk3rv7Fb4712N3Tt/DeaWvZt3+8wA7swe6Y/5cvjv3I1rHJn+AyhLM44ODVn14/7bBUDpq/hpxb8c388XfdM+rU3veu+Tws17Pv7O79aFvzMnvxc3aaHRq8sAZX4jgUsP7CfvYntoNhGYquJiAAAKJNPAIyWLjk0ojFqENR0SwqyILNaiG9I0bRYhFECoKD518xh6iplZYz+5W8H0OIlBsz/tURB6IHmnaT7itJORvb6A94cnbjGZYvHrnSg0zENwfPGTGddQIKJwCEo9xyW8ALGdA7nO0UUg1Wn89iEGQLjwd01iRrUlXEarWAxVcVsTjAWxUBevt4QnM9/gxBMbluwe4SAjxpj/mcgN0ef3cCt2IAhVVLsR/7+TIjjZjU9PTeY1ew4I9/Ovhn8cCeI/Nf9BnK2Pk3/kZ7TF00+6HoquhndauXPAGAMIdb09Oqr8gOu6jFpbdQb5IDekccglHi/HK2DL+4emRymUNIE3+Ro3WokKfbtNP37Cs0/7rxjQ0X2Cvs2Rex/NNLuysbxBB7lX3FPmdvl64rwyU44QusOVSzuj8AUTgmDuEc04FdsYcWQQ8COJyiuSoiUsFSFREct4ppwc9rSBlA+ZuAPZTBx2Az2Uo2CY/hIHysic/1z59PI/dU5CtWz+aJB9gi9gKmYebVKZgHgMq89Bc+r1GJWSSDAQXQoWAyS/reEUlCQsTeEUKRr3B03DZmUZBwxy/6S/MZmh+dTYZHt5OF4oH1LKc+eilhJj0UhpMlAKQ6pAbjTRPxSW45Q0CbAac3asPzwaNfrY9LTuyi2ilOhUvnI8SSohNapUJK7wiAaDLZe0dMgujtHRGdt4+8/HaphRyV9+rq5lT1xe9nfPc0a2IrDuKQL//9bve3DrL/so/Qj0kbVrGXCYuWZWXjUhzzD7xn/+D6GvYau8Q+Ze8H8LUY7WK6yuVQ2KdHBJ0giCCaTTraO6LTiQaJoshJV81RgnG/Qbydi5f/DYnpjc2ssZGSRrI3Ws1z7dXkYQC8NoLNxfFqVpwaNht1OotVT4GzFDJj9GrpGI15+JJiPpxLMg0v6dVv9AONx9jclFWuR6fyFGvI0TNxvRC+UjHmnkjBViRGg4Ix0Yn6RGzLWkgJZRVRDKHw1TvRrzc2NpL1J6JN5M0l0dc5snnk4+jCBF0QIT1soQCCJCMFzgtw3EBXxTekkO0+0aio0pV/bIp9V+KIgpPrUZJOFCUev/JSmsuNBjuVjDK1gKQgp2DnLbuZlRjwuJUAn2MY4nce4COtZjadZSsCntbhh6zRomMm0bbpo+bh4oGrVQLPOume7Uev/BCXo1IDsUG7sFsvcaytVpDB7jBS2aqjKCdypaUI4xPzabNJKZdj+WvNn+tsW4/RVB2xkGeEk582NR/nE3ZMwaxy2guAqFp99FZ5bu+IXqDW3hHqvLVNiOltBiTmueJRtpW9oZgjHIE9sBOOujo9+v1/fvn5h/9Eeb77LHuYa+94HIt1bArbxs6yU1iIuRjEAnYqZp+E8erqdUBRONnA+c75DE6XQaiKGAySLDuqIjKVEtavhpXmSgW/mlplYChutYXx7Ay7tLsRZ5PWUePGL949euKoYPr7t1HOh2jK6mdXrVC5wHaoXLBCCp+Zp8MeAIEa+OqmZtns6x0xC7KTL2yZM+MtlRs3J6I2pViG8q258sX7OOxndrH0tpz5ki3rzuqxivyf/DnN+WMCN1SGs8yIxKS3y0aDQdYTwePVm8EMVRGzmVDK5UepkSi6cntnp2Ku8ktw20SOf5bGNm4BcRXyGdhfcfkJ9jQ7/VXTzl2vfEZGRLeJB94/zf4+LjqZjFi9cuWqJwDVHIFw29ha4V6a0wSQ5BSFrGxTGvV4uH30CFSfoEoJiY4mt0CGlozy8D+o5jgx+6jmBbwy4BEI+9d3rHnZ0I/GN+7usnL1ey+xM389WLx/1+INHRbWXfoDLjz+6Z07su+YN73vyIFFvd959sV3qtf2nfFA35F3FQw8AoDgABCGcv7JvJ7iABSRUp1epgK3CYLmFeJ5qGYSi7k3IEsbWYFQyQrE9PWqJzjM14yPj2OHrLDdhgYZZafDrqOCmQ8UpzGUuFzsLkUnVHMYs4uij/2F/cJfFxrfee3ld8QDzf2vsC8wo5nuaa44+Mabh+ghQAAA4XW1/pMcNqJgMuooCJQqiPLlrxWvQhjgF8//SgXTwej3O6M/NmF1x8zWHdVaFh/5uU3bnwXkmg1yXz6aT6km+QwpyW6LRdQn2Q0U9TGTotqUGOKqNclWAjJldKcyenwSZ0h8cyc75y5CT3v2xU42u+nL9p6UYpSa0Nne7yy+1EQ/7PaW6/dbm0N88llHNx18ic5qnrv59RXv0YUK93QAQr1q9QNhhyCJ3ORLiskXFJMvtDT5KhocAz63Yu7rj/PIY0oTXmKdjuAkfHg/60QWROeQZnI4+gq5M9oX4lybrUY5GWGrIBJRpnoDiChTUeOcJmE+qKL+GCJdcNEhlrSb+Q6T8+R887zoCZJPFyv1ZQBBscZ6pWKmQyqDLKBgMIoCNwcUdUrMcuuKmVot8AvlzU6qi9roq82/0LSFwoaNC69OAIQGdoRMVnSRY2mRUFAYoxcJlTDIOdBSfeJRD5nMSvEEu4B+dkS6svyKX6HWC0A+i1c2Kd5c2XRy3h0mgYbo/4spg/KNEDuCzdrMFFACSacHOUgFevPMXj5rMb9CfMoLfOrSA+KF5b9KyigFJCgExOMgQVJYD1TWiQQEwrO+G5rpVFUTC3DfaPxsA1vG9pEg3dQ8jnwV9QJea2Zv0k3XKtUKsJLHIlEqwBgjmU/LQUfRp9mbCwCxTjhHHZIf9OA8AILRID2BkJ+s1ZoxwDW1OMStBHU83G1fm5MZ0+4QzhUdK3f33F8MRKk50lPCUEXzoVc4K1NnTEvz+Rw6yqMpYkzrFSFGI7jd1ooIt4LJFRHRA24o/98LVH4tX7NllapJZ7zS6LZn8QVeLKsVKjrQrxv43GPPvUychyc/VveH0F3HR77xCrNs/mPDWy89tOWB3js3Y1+b1GPe7Jq5dxTuORZ11TZuHC3LD00fOhwI7OVWtVZygRPSeVUt0+D1Wq2mVGqiGX4zmNwOu8HOhccRljzgqoiArYV5DSXF1SDB1sddEk825YBijeRQiVcrvHAqyJ5Pv/3+k0l/7GwKzGzQ6Wa811i/qXFjfb0wlJ1jP/DXxwMGLpdcbNHcsTuWvv7ll29fOPPJXwAQpnMOLxWGxbIaK6VuPU3ySmaOmQ0cHDPPzVmNGM9qlJ1DHgNzu6hmOGTcZXYV9f8d8HTbUOn8QrbvuW11Tz3swiw0oRPvyPQu96Sywe9+2mlNGRBlVqGU88fB+dM97E+VvGCx2CV7ht/htgIgmqhez9mjt1FnRYR6bscerSYTkLTqvTcUDPLPA6osi+JOiG7ST//n2W+/++TCTLMsNCxmTzdu3Ny4evOmNS9gNlr5647tA/rh0V+/mfny+4Gv3r54+i+fxLF0cN44IRk6hdOTDF4jpdzqtkrxGit4uRskyaUyyqIw6paZQyiRZQ632++JsUuivNbh53Kb+x/2JYp/e/+7qFl8eecf/zBk65bfb7WQLstc2AZl1GMH9v3fJxx/p2pttp/+c/eGrS8oUksFoBYpHVxK3cVlMjkJ4UaSuj0GvhQMgKIsVkScspUqq0GtY98IAxWmOZS1p2QNgeJSXkPW3DX3mE+zrxreeANH3lObN6LH8KHopW83l9G3+3TugmsDC9PnPNkLgEKQuYQCzplcKIVu8HC4a56vQ5YpvYtY4ESnSHIzW6Vn+Qzd72xlLbYWV0R0nXpFDJm6XKvOqvPk5pJekVxrm/JekTY2T7teEU9KnHUa+zj/8pXd+rzbxD1uragaVBdAqDC+jaAUkrJv/OXKcGMXmJOnbhQXF/F3QsHJVnf87VhB3sSqoa/te5X9jf3r7FdPzMgtC/ccNOnTtwb3ZPb6ZWdOPLzh7amPD50/4z8/1T4uVE5ICkzt9ewxXYdBbfPqVx54ddvqMauTndXFnYfmBnY+2PS66ypEhs2ZFOn5IO08/ZFvfn4cEPYCCD24nnuUzM5i0nFz7dF7vEkWvcMhVEQcNgOA3q0Y7xjlCatesVT2mALbtRUfM1P06cfm/+GZhgadoWD/jBMnyJuLfn/kk+jrfHXnDOow4N5XP4gWAxDYDoDjxAtAwcr9tZ3PJCDa7Ga5MmImVlQ04/3EwqZSIqAJJVQc3NDQ1CG3TceObXI7CJWYU1Zc0qFDaSkAubaKudSxTZAEd4Q9TqPRrNP5kj22yognrLcC1z6ISzW5xSTOhATTljhb3v2det7Zv/eNGZnLt9g16B6h+aqNHZHv0yaP8TSV89QGJTzetxgMRqNOEkSdYHeYAGw2nY7KRje1xiKGfD5zeUyFyuJsRTUiQi0bdclYkzcER73JeuD5E2zOnB07dKSgy2icydpGlxLpQTZOcjW/XTo9NjcO5nNT4GQCoiASQHfca2tMVBjHYVRo6SRfJQGoCAfcdruDiz+gdwRo66xWHrfb4RPMPm5p0302p1UPDkUPuCLEt534Igi1bHVIVIgEzfAqepHh1bRDypryyOa1DVNmblnVsDhFl79rIuIAXcHhmYdfJicWLNj3cnSLcv/zx9HjQmV99dDDg8e8+heuMZq2cnxdUBBOApeiri69x23S22xcWW02g/V2ytpSV72Jmrp7m4JG6NDUt95RNPXwJ+q8d0XUSWM2dhSfU9EknsU6wSyDnOwzeLgds1GbYvxvmcVylSHFilGFxE4PYRT74fKaf/wOTZcvobX5lZ3PPffii88/10Cy2I/swyeR/AFNmMfeZ1f/8rfzH545p1j5vdyW1apU+6E8nOEzCrKsS3foHJkBwQhWq7siYrXprboUaHXDzMdZ0GLBqpaeO2hPAhMUr62Y+gRHrThpU8Niry7c+PBf/+f7yzvryabGFc8+6xowcMRg1kUqqh9azT5h/1GcNr14+GTWl29fevfUeYVXHNNSlVexqMKW6qHJyT6bL8OfnOK1pqalecxOp8wtv80MFRHz/+Y2VT5yJ1l63Ul6r3vQ0njtQyL9GzaIW15cvXnjnI8uf/fJ57P0SQsajObpM/d9mHXp3YunT59birloRDO2a6z/9T38eEzFCzE9okGOpw1ywy6zXm8wEF4DsZrB4FYtg03rc2nRkaE5IY15ZEfvjt4eRQtfaahz6rrsFoaZNlk/fTbaJFSenDQjlrnS6XyW1twOtIplrqLzeuZaEfHYJKq/rj/5t8pdueG5kbsG25Hfpq50+j/e/+tjA/bXzF82+dmN88r/evSPL3Z6ftEjj7Yds+J13jSzsaHnpjbt7h4Uvrdr2aAH+yzaXLm4R1W3O7p2KO71FCCkX/uG7BQrwKPWJlwu3jPioEKS1+C0OXtFLGGbVeaCkj1xU3kqIVjV5ONWqo52xVGXhtxKNuHyEMcdA5NSJuSy17ZurRiBXdlrw2vN8lyzHQeQZdU9/83mRWePngiAsIOvrjKhElx8fh86ZZPJ4DS4PSaz2aZzWdVV7TFqEbMS/4daVmW0rJcrhBY127EvX9TPNNQl6UP7Z7zztlAZLeMO6GMSvnpozV2Dj54hp7RcjgiVau+HAQ0ms6hHK6jhiJZl+NX0NFTicIYQt7ER+76ptuiMte/tYyP4oI/8o0cx9iPtrx6K5UpSgI/Winsblz4lNc3rsZipYBZ0yQ7ubnTuxCyYK7c2A1U2Z2Rlk8LhUHSq1BmbsoRPKeSfcBbp2qSdPsY+3jNxsk5nLHCcaHqjg0snBF7dzc6QBZ3OvHR/dK5QyUaz6j5l+4tJbXTp7trW9eRvHClACAIIOpXGzLBdFiVAUWlxQZ3RLaD1pnQ4ngmjmhUfYgteQT9m/JktwFVH2Cn27hFSQLxsGO6IfhU9jUdYD0AgfL1LfHw3z/sVMqnHK5jB7OBLO0UHfIJCVam1GRJo46KKOdrSUrLvuwFOnfnuS/tYTsWfl/StKu2xq3cXzuCVn9wf+pn87mrGy5vtC03HtkAsZ6YPCZW3yJl7RUQr6npF0P2/5cz0oeZ/ksHR0+TL6D5y31Q6eN685sPxrixetlPl5/YlJxu9AFbZRbmnpqlpTq09K3F7TdV/bpXcPJZTfEtxCddDvj7d3EK4ZLfHjedrpx794PFH58/49MClCxdM44aRZaRxE+aPjywnw0Zg4ebdS6Xj7NzZoCl4FhAvMxuZrfluorSo0RSABN+tlHzx8nKeJv3cDAiV7Ijaw5Oq4OwWDQ4H8UFqqsXiE2laujso0QScEzYFFXSDxYr7U7DPVNCV5Dj2pcRw4eKhDx+Z/9jjp45OnvHwVFIePIvB49LSPRvZ+yPvJcsjvOq5cRenZNg4zJn2qEvdpyXVQg6tAS/XAzu1JvkcpuoIdVglCaojEuTngS3pjfw38rSkOlOZT8nQVNOmbD9lKoU5HFg8t2TMUz2mRrqPyi95omTcisrHK/sMJSfuLFn/UKvsVinhsvqH/RkZSeoOPFuKdcJwrcuYCALV8343AGpSu4xtNPOWXcZcCQNO1/Xt0PNKk/Gszp3Ly0IVZPfVC2Lfxb3C5ZVhQDjK7fd5dVemazjNozNTahCARxo62irVJxKnwUz4SzDKgg+07k9ljt9sw2apra1KOJCldLR6NAOuqD89OWHNwpPHcdniPisKChY+tHv7My8sX/FdifTO+xlov4LNXXfvoH7vstCH5z462QkQypUYSDzBpV4Zzk5y6s3mZI+dGD1OMS3dlORL6h/R+3xOcNr6RpxJIPa5uRWkRdPQzZ6Nm29lf5Lfinl2ypuduEqQxqONXTatnD0HG9jQblU05erVU2+99f/EEzUL+/1uGTs397MxS+7YtDz/xwtzsfO+U4psZqMkeIVtnHNByAibW0GmBSxtctLd7iwZeNSYn1gJchaVBku9il8r9co82Ja9clCxDnKwNLs0IXQ6VLV4+OLx8+eOq7t/UVXVgmF14+YuGrN42MKqeVtnzHh627QZW8mHj01aNmxh794Lhz059ZEFD/CHvfj7JZN+N2XbM1Onbd8BiscDEJT9Fw8MDrdzWGSj0WYS9URPTS6LW/YmGSwW2So5HBScbqsz3UmsTqvThG7JlATlWg+33RHrzL7lpjuGUOGj1uaovjBEKnH2HjYCJfY6dmGv72BvYGd+ARu7j1wgZ5vZ3Ma57Ec08RslQBKsgaxUVYkkUR726QUqUDlmFjgmiYqtbgjFLYRiI5p/YebmnxVpXPuF1kupUABdeGdcdiE4pdy0Dj5fmkmCgNS13E07lbRqK/n1/mCviN+tt/WK6OGGznh/s4t9I39VVFmLztSUlwuwZdCiRC2l/Kk33lG0dHD/qprTbw5/ZmTxqMV9Z8yYvelw/cCqjf/+6K9P9H9t4KLl7R+cvmJR99W/f6Ggbs3LPQbRnMF1WW0mD5q1NDW4IJjSKdy5prTH+klDl+fctXrZxm5rs9r27dWuY8e8oqHTRvWb0MVZPfnuKWXOMUCwWLTQ8eKH6u5TWpiTanKAI8lnpW495N90QCAhzctKeI/FxVnZpaXZWcU4pzgrq7Q0K6tYnFrUrl1RYUFBYfwOQGEM7xzvEdt5hxKeSwWDXmrNT0936a1esbSDZAKH1ZRuIuCwOYjJYXKk5AWcoRQByhNPBdhblgFRMxHuG90bnN2obu8KDjc3eYHM1py5DiFU2NqhNXTQOXMWz10weE77sRWvffDZq0880vHB5vXv4PB3les1tv2D02z76xP2YNvdezD3pT3s7N497JOXhMCeTTu3t/2dq9X3n575qfMjIXZI/Q7b/u6brOGD0zj0rT+wD/+wB3P2xr8GQKCCushU8W1OdzqUhlt5pRQDokeJazP8rQwGh88D1EYJNTvSOakf3feGku9qVGpqG4xTV8ojfbXWGSt18iYUtdZJXEnDlt0/edPztWvHjM+btnB+HauecmLUlAeov2bk6HHjJkhCcGFoRIcJs1jnI2OaCgRBqd8NhFraSI+CBGbICTupxI21YNTrBbMkWKwmUYegHGS5WbPRiyhjVuw2EAfPVEriM1kjLsUhtexzTK9lO0kQ1/dk29mzvXB9yo23qh9EHfeDXhAhJWwiKKAki0J1RCSQr20nattixUJOXfM71Bv9Hhc+CdeuaV3LRAIbAAjXdUoX16r7wqGgF3iOLui5Zpn1JodXKu1gsnFoi9Pi0DmtjnQHAR63E4fT4bythikCCP22ZKVVoUS+hp0Bqm51Fnr+L2UjHz5YPXLwfRNx36B+l3eeXrwWxYbNVy/8n+pGrtwd7tNtSfXsNFaLo9jTdPZ89ub/pXB47YrkEiRpzW3r+oJ09UfBJLnmAoG5dBi5LJ5U83Z/2GIGp7L7nGwzHPNQhS3J7yWaAKe27LkytvA6c/fPn39g4Oqa+fun195VPX3qwLunC2vmH9i/oGZlTdOCgdOm3l0zdZoiv/GASic8yQYLAMhwBiA6Q93NqCLLub9OUmpcstOLaHGCwAsItnQvZqjyadHEUVx6cz+0JMt+sjy645vIQH91edGont0XbPj9msiaPXiIVI2/NHhk35IePbMLh0yeP6V6/ZPPA4KflKlzBqAsnGkVRaCONIPUOstxn/MhJ+nrRKMzxUmcTl2yP92s88eVhKvIfTe2KDHRmKtlyd/2PpPpA3vsPbRzw4w1sz/8snbmA6Or7+w+pUPP8mXDl2wVvqx+wJu//YmVHWb32L5q0oAeXXrkBYa2LZl5056LnkfvwhP6xD0X5YAIN3pyAOvaT85494494cnCD133dnN3O1oEqNZDegiV4IHicLJoMOhs4HS6dC6+LeC2ulLMRKks6LWkMWHX6XqfaELKyMnTOhsGs13PNCxJNkz+Z/0Qg6GhAeewK698pKaNLwyr2caOScrsU1mzMEJygRWCYYcgIoBopDa7TidSq4jaQa/8RJkG7MortqVTEvILI6Z9PL1rzacn//ov0pY1S3t/raYhx5WrKDBA2ED6Yh0dqvitsEECMJuofkCEQsyAJOqq2jzatUOseZR82L1nz+7xMwlZzIVNAOBQIge7xQhgUfrILXa7jtog/71CzQq3qDNoZYbSkOzBpo31obZtOw24a8BDQx4ubWIXRk7UT9S1Kckrtu+bHgSEvqQKP1d3kPleHwFKDSZuX2mGBGlK3sc5EGO7FpnEzw8MXLlQ8pQsvpNv4K4ld9471NP2/hFAoDt1kaPi26q3zgo7lONnEnBvHfMfbr3iP964r4XTTjgzJSYsWHJ0V/3qF3eu3/B8lN07fsKwYRMeGCZM3nHw8LPP7T+w/TH+b/YjjwCBau4hdsY9BF+ZRr1AgMrEoJdu5R/4fBhELEUxdqM72c5aTGef1+IQVnvjPTGxCb3wfhzek01IufGW24c+AOIZzq8gnCYLACAbHrsGKMNHNDV6EPR/osTBA8ziYuCw7Tjs+ThseQz2CwV2Ou3PYeV9xMZBVchkAMkvnuAQM34FFf4CxEZ9KD5qXmxUIBBiM2mNMBxSoY3Sba1zpQWwlbVVwCXk5EIqmmhqKj93lzEgkm2zG3tH7IEWecP9w+9rGZ4ohslCYnXDUm9MGF2J0ihbnJBfkf59Rs7q4vv9Y9X1ozq9+dbRTwPhSMnYbk2zOnXtXqqkXKHH1tZM7NOvw5ip2e0XjzjcWDEhMjB/yIz70jFvcU/eGRvmVKrdoPJ0bltbq9R1v/YaDgTdn4hNzIa84ltA1MLCGETS7SCOQSAGkdoSIv86xGsg3HKMrOsQE6CUQxiaKGmtgtyAkWIwIMNxKIN5QK4xAIk3MIIVnNA/fAdPM+wIOhPaRNEtuvROycm7kHm7iMHM7wabASUqOtByowkglmHm5an5G8bOiYau9y/SAF7vYVQ2zqR5UUeUXdxLDtMT0SMkNXqR9Lhag0cfURpetbZG/AvZr2jRHOZSOkc5ztkqzrMIAf55rM9N5VmbON8PqhxBs8aRmyFqoTwG4b4dxLFrV2MQyS0hsq5DTACHylWC/hhXgUA+gFip9id54Z5wod3t1glmAKcgCUk+rogS11erXC6/JJ+WL8jcIsuyoNfbqiJ6Kri17tNEXW55EDWhHZV7uVhLarxnM5QhVqpNqbM3bcJ9eBf+bn/07S9xNlt4lIyKtaWSunqyntWxHSQcba5nhhhNYrmqS+3jurSmJdWx7jiVLwUx3sKsmLb5bgdRi4YYhP92EMegKQaR3RIiX4PgeGy65RhZ1yEmwMdxnW4b5z7CQrQJJmEDGMEX1st6ino0mXXgy0+0x2rMHLeOu0ewbTh8BHua7RiLw9m2MThS2DCa/3fbaLyfPTsaR+CIsWwrAOXzv877434CJ6RAQFkZnnRvmsAPExtcAA6rqFMCF0+a32f2945YHTpRoDazQHnjnES1lrm3+Fq4+YgL/ygm0lglwc7fxSoM1BZEj3qKzovZ1zsLv1479tEH9ykddGe2jnx04rGmh6Mjpu/9zy/NwbFk68SdWpPhmOUDNr2FDyl9dMMXV699l61D26bmvgOVZjp2ZRN9qTc7xVdOrI9LlUxpXLoVMfk7Nb7fDFELp2MQKbeDOAZzYhAZLSGyrkNMgA3xlRNMtEfCbHWUTvF5CmKjOFSQeO/frHjvH9+pMOtFUbKDBB6vWeALiC8fs96sl2LdkZoVarkRrHVH8v9lCDcaJGexM+zzQ42NZ9GHnuYrO3mL5LvvUdvFy4zXWq/B6ei/V+5Y9yQAqv0oW6R0aK94ppxcMTUAXpMJUu25YkGhw5Hbrl12RaQd5LrV3S5tj+vm0xpaZCBL2vZIQjWCo6Q2/2lnOTKUqE/1UYJv5ZAOKb36Lxv32p+OTCrfUnn27ofnjujZq094yVz2TcPf/v7+58IPi6dX3OnPyC0L3b917LZdPTcF8w/0mVQxcHZN+cTisqHF1YMuXO0r7Nv3562c52pXkOTnPL8TACXovgLUVWlXOH6L57V56vN2t3t+7FP1eajFc/Gz689fe+UW3xc/vP58whegruiOKsCNGRZehzj+cwyiTQwCqAIhKbtXOVDENWdkOJQLre3tedlIaF+WlJTe3ghi5y4pbYNtKyK+AqGgV6RD66BdECyZQU+xzqKriLgsNtBaO9R97viBxZsNL1corarUot3Jy/+qHSkOv7bLFExMz5TiAMaaVIb/wg7NmPnUc0VVb4+a/3xO8a6Hj/0reqcOO967tWbwurHswpy73lz03Mt7Jg1ZtfPpwzvoK7OWGon8BOY/+yddrEUqp/ie+4eMYP/9+yRWGwjyVpav5k5sXH9/5MVNo2XdQ6Sw4ektO5V1zXc4lW4kzreeMU+JFaqnVDtxVIn1ikl8vyqRVppEbn5e21993vp2z4/9rD7PafGcS1R7PsEQk1d7TaLX/gqAo9URXolZHHYXKGOgqI3xIgApTICovZYRgzDHIa79iUMMSoA4xl6IQTg0iG84RDrHQ4OYwA4CqBbHZ9d89VRlx1zyq6euqsJ5fsnUqhXwYN5jsTttkj7YRp9eETFSj91nsfLIR0+9LqSttY3QmLJw6/3b430QyITiIlAqxdlBMcj/lHpUk+6gRVqnV4kwil39+e/sK5T/9sUYXdkp9n3vr4YN77ll3OW+pzc8v7NpC3vppe0vPUtC7Ev2FzR/cQmlWcInr25+cGHXgtrefZ6cNHMlm8b+taaRbXjh4Aku21jXgbraqmOrzaLyJC1RNqNUrt0Vk/1HquySb/e8drD6PPN2z4+p45Ngi+d8fu35a9/f4vtcJtrzCSkx3Wh3fS2Ph2YhR9gJVO1CD4WTPAaDTSACKjsZTifKZjMqJ/QQ8tX1yhOfG8nPjUN6iccXE96Pp8ejezqVFHXsFCrqot3J8iefZP/q3KW8Y1m4nPwYfwOUY3tEGCUsjvv7PvxEa3orl8vQ6iZn76u47uxt1M+b2Kjnf3P2ZWVxBdGcfXw7QXSpTl4Si1SnX6L2X2yaUjNt+Dw0Xd40o6Z25NzmV4rxTJ9pvAljfYjl95r63Iuxboyetf0XbEBQGjL6zuy7cMOvu8aRRcWffLRjTHRO6DzXjNjutSq5e2KSf0PVDI8mmZuf107VNOfWz4851OeBFs+5ZLXnE/yxtZarrfrYDqw6wr2xGWIjpKsAWu+I2t+VyXex0jOkFJfNZpfsrQMOsKeYPHqqT+NdjB7q5euvRZPnb3oYUWsXUUomXo/W9JUVbx7J4HugOKR748Sz333/yd8fMwk63mSElTs38OYRzF9LmyID2Efsvwpjn83sV86KdcDaFQ1NOXQi58u3ce/ZMxo1nF6Nmgn7Y/TmxejV+puEyuv9TaJArLfsb+Iw6gkU6UvxFLggHe4Ot0uSrE5nKpjtqZKY4bc6eDxpBaOR51hGGj+Vwg8UUAc4b5zk4det2ia1fWVJO2TlvZF9aafq7NnSl1EYN4y9zJ7BYRgeN5RaonxdR8+Rfs09fmXXEH+ecs89LqzDiTgeF3ljSZmwlZ1m55QTGn6hNi32qy1yujAU0iAXCmBQuG26zkI8nqx8t7tVlk4oDOW1Mbbh0RHvSCKixdiunWg32pIyxcyKCIieFj7YoVjVRAeseV9R9a0q5rdyvYktTFkxnyvWs/Nzup6pu8B+ROnrBae6djz2+InL0aAOq4Y/e8+QDVf9G154buPm5xvWCb3mrjKRjN+7vp4xEwtQh3q8Y+a0KbPYz19MYDO5tw1mkLIPz3985rOPP/10x9NP7wBEE68Q7pH8YFF6wGWwWXmN0KJs3CSfKkwsE/Igzx1QzhIE0DR3nLfB89CcmUMWLuFF2u+WPJGTu3C+t3TBoiIAgpP5iG2lhdp+kEMyxSpMejflw753u9KSrHUfcfpp29njxj46a8zY3z3YPRTq3rmsqJu4b9TM2lGjps8c3qFLlw78AkQdn+k78TN1N5wPn+Szg2gC/nKrZc73En4mKLYb3o4vKU6BwvQ0olRTQpJEXXkDB/TOLAxZRpmn39tucP/KjIL21tHmqcL5rLZZnbvMquO3Tl1n1aldEci5Ff/FEyCCePMvngykw+K/eMIh5f8VUtYgffQ49lB7+R0HUNTpQenhP6WBBkscHEs5y+QZ1WF29yx63DMUTVyicNM3RdTpRZly061Rq55Od5RisXIk/bGKDPGARzmLjqmfcouq/e4LkcAKAEQZizSpY1khOWwS0KwXbHbQUZP2M1+x3pUgbyrhA/vjeGG9tcNjs9M6maNnb2B4FnXTeR1Tw7TF6DZldL0ZRcHuMIs2WRn9LW10DWe/ei9JQJ4ELUkjOsxJ7m6+QYbnXvbTY2Ow6D6FHh/7lTTBZZSVLOtqB8g4iCCHzeZK+dC1Y38ymWJ3vb5SBnteXszG7cAfyXB6EYzgPBD/URrIP3Wr6u+OqQ9OmDF94qRp5JtZj/9u9sx5C/icym8TiHvgB8gGOwAEwU4c/M4nELJA1RaoJelK5ZPTbBAIlYikk0WuCInpvPM3e2CJ+16ASv2UpGqjUBAIkMRRWhRNSeqtK6QAyGYBkJXxUyYgEkE7ZYLxAQJIVjbPWkkXx4+ZIJRzr1gnnuT0TQ2Xp3rTPZ5kI5Hl5NZ2wZDslYJtjN4kb/+ILklMTUvtHyFp1rT0tPw0qqdJaUlpzsxM6BvJlJ0W3iDhg5ZN3bwwdMsfKruRW2ZQbuRlt9evdcorVpPyolGwuJT/dUDsCHUKOz4AWfRHQvA065Z1snHLxtW7/oddaNewgZANO4LY+n9OPN+rQSxmD80rC7ed1/Rm9/puaEacl3tH9TwUsfXIpYPVzprl6o4iBXdYT0AUtDAtYc3y+EuJtrjkUwGEVlI650ylKvE+5ABA/HNTwuf9lc+BgItUcf0/AgZwQedwuks0ypTyaYjSqY+iqLe60l3E5aIWOZ1mxPuV70toergeGwR4g0v8V2eKi0otVJZJ05xV7GHcsHQO+0ESk9LSjDup6913x/KzVKdeX9THFGzb1v5TDDfpQ45bECoJ9+43cBcf0nCXXr/F8/43notvxJ6rVEnqc1TWG05X9cp+AAQRKWiHl2Knck80KgqljCAC4Aq1QvJpPHP6XaxCImp1FiUv6pwAUXstt2Ud9NrbHGJCAsQx9ufEKktsFtJBzroOMYF9EK/V+GK1mv8PflNJUQAAAAABAAAAARmahXJJOF8PPPUACQgAAAAAAMk1MYsAAAAAyehMTPua/dUJoghiAAAACQACAAAAAAAAeAFjYGRg4Oj9u4KBgXPN71n/qjkXAUVQwU0Ap6sHhAB4AW2SA6wYQRRF786+2d3atm3b9ldQ27atsG6D2mFt2zaC2ra2d/YbSU7u6C3OG7mIowAgGQFlKIBldiXM1CVQQRZiurMEffRtDLVOYqbqhBBSS/ohgnt9rG+ooxYiTOXDMvUBGbnWixwgPUgnUoLMJCOj5n1IP3Oe1ImajzZpD0YOtxzG6rSALoOzOiUm6ps4K8NJPs6vc/4cZ1UBv4u85FoRnHWr4azjkRqYKFej8hP3eqCfDER61uyT44DbBzlkBTwZD8h8/sMabOD3ZmFWkAiUs5f4f2SFNZfv6iTPscW+jOHynEzEcLULuaQbivCdW5SDNcrx50uFYLzFHYotZl1umvNM1tgNWX+V/3gdebi3ThTgVEMWKYci4kHZhxBie3TYx3rHbGr+Pdo7x4dIHTKe5DFn+O/j+W2VnE3ooW6isf0LIUENvZs1gf/LHojJwdpplCP5gn/5gi26FoYa19ZVFOJ6Sxuoz/q2Ti20IKVJdnqvYJwnhfPH/2f6YHoQF30aZaK9J8T026RxH5fA/WPW/8IW4zkpnIfoFLifGB86v0ffm5nbyRs5iaHR3hNBD0HSfTzoPugRM+hdN0x052KoHLBS0tdgpidAiEesDsgWYO73RWQz2LWIwjqnMe/uYISQtlbyf2NlT9Q9PoBcBnrO6I5ELoMeyHkNnIXGdv809H/DXNOTeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDFOsGAADAurFtJw/bt23btm3btm3btm3btq27UCik/1sq1CH0I9wl/DTSONInsjxyKcpGc0VrRNtGx0dXRF/FpFiV2KbYl3j++Jz4vkTaxKjEgcSXpJzMm6yb3ALkAnoCV0ARLAcOBjdCAJQJqgWNhJZDT2EbbgTPhz8h+ZFJyDbkFSqgVdGh6Br0BhbFFCwHVhNrj43DXuH58V74WcIkahHvyDRkLXIGeY18SxWl+lMHaIVuSc+h3zHpmNbMJOYuy7DF2E7sFvYMJ3Clf+3DHecNvjm/m38g1BYmioxYS5wqbhZ3S0Wl2tJkab50U04pl5CHy9vlmwqlZFJaK4uVnco55YlaUK2kNla7qEPV6epi9aMW01jN0zJohbRZ2mptj3ZWu6e91wE9vT5LX63v0c/q9/UPRiZjprHS2GmcNG4ar8yIOcycZC4yN5mHzMvmE/OrhVq6NcCaYC2wNlgHrAvWQ/t/e6w9115r77XP2fecrE4xp65zwM3lNnZnuBfdZ17E071sXj6vrTfP2+Hd8F74lJ/eL+Hv86/6D/23Qfogf1A+qB10CAYGk4LFwdaf2C+JfQAAAAABAAAA3QCKABYAVgAFAAIAEAAvAFwAAAEOAPgAAwABeAFljgNuBEAUhr/ajBr3AHVY27btds0L7MH3Wysz897PZIAO7mihqbWLJoahiJvpl+Wxc4HRIm6tyrQxwkMRtzNIooj7uSDDMRE+Cdk859Ud50z+TZKAPMaqyjsm+HDGzI37GlqiNTu/tj7E00x5rrBBXDWMWdUJdMrtUveHhCfCHJOeNB4m9CK+d91PWZgY37oBfov/iTvjKgfsss4mR5w7x5kxPZUFNtEoQ3gBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFNSzVaxFAQfhP9tprgntWkeR2PGvd1GRwqaiyhxd1bTpGXbm/BPdAbrFaMzy+T75H4YoxiYFN0UaWoDWhP2IGtZtNuNJMW0fS8E3XHLHJEiga66lFTq0cNtR5dXhLRpSbXJTpJB5U00XSrgOqEGqjqwvxA9GsekiJBw2KIekUPdQCSJZAQ86hE8QMVxDoqhgKMQDDaZ6csYH9Msxic9YIOVXgLK2XO01WzXkrLSGFTwp10yq05WdyQxp1ktLG5FgK8rF8/P7PpkbQcLa/J2Mh6Wu42D2sk7GXT657H+Y7nH/NW+Nzz+f9ov/07DXE7QQYAAA==) format("woff")}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local(OpenSans-Bold),url(data:application/font-woff;base64,d09GRgABAAAAAFIkABIAAAAAjFQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAGAAAABgonWhGGNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABdAAAAqhMtGpRmcGdtAAADbAAABKQAAAfgu3OkdWdhc3AAAAgQAAAADAAAAAwACAAbZ2x5ZgAACBwAADiOAABYHAyUF61oZWFkAABArAAAADYAAAA29+HHDmhoZWEAAEDkAAAAHwAAACQOKQeIaG10eAAAQQQAAAICAAADbOuUTaVrZXJuAABDCAAAChcAAB6Qo+uk42xvY2EAAE0gAAABugAAAbyyH8b/bWF4cAAATtwAAAAgAAAAIAJoAh9uYW1lAABO/AAAALcAAAFcGJAzWHBvc3QAAE+0AAABhgAAAiiYDmoRcHJlcAAAUTwAAADnAAAA+MgJ/GsAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAAADBQ8CvAAFAAgFmgUzAAABHwWaBTMAAAPRAGYB/AgCAgsIBgMFBAICBOAAAu9AACBbAAAAKAAAAAAxQVNDACAAIP/9Bh/+FACECI0CWCAAAZ8AAAAABF4FtgAAACAAA3gBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ2Bg3QYkS1m3sZ5lQAEscUDxagaG/29APAT5TwRIgnSJ/pny//W//v8P/u0Bigj9C2MgC3BAqKcM3xgZGLUZLjNsYmQCsoGY4S3DfYZNDAyMIQAKyCHTAAAAeAGNVEd320YQ3oUaqwO66gUpi6wpN9K9V4QEYCquKnxvoTRA7VE5+ZLemEvKyvkvA+tC+eRj6m9Iv0VH5+rMLEiml1XhzPdNn3n0rj6/EKn2/NzszO1bN29cv/bcdOtqGPjNxrPelcuXLl44f+7smdOnjh09crhe279vqrpXPuM+PbmzYj+2rVws5HMT42OjIxZnNQE8DmCkKiphIgOZtOo1EUx2/HotkGEMIhGAH6NTstUykExAxAKmEqSGMFl6aLn6J0svs/SGltwWF9lFSiEFfO1L0eMLMwrlT30ZCdgy8g2S0cMoZVRcFz1MVVStCCB8raOD2Md4abHQlM2VQr3G0kIRxSJKsF/eSfn+y9wI1v7gfGqxXBmDUKdBsgy3Z1TgO64b1WvTsE36hmJNExLGmzBhQoo1Kp2ti7T2QN/t2WwxPlRalsvJCwpGEvTVI4HWH0HlEByQPhx468dJ7HwFatIP4BBFvTY7zHPtt5Qcxqq2FPohw3bk1s9/RJI+Ml61HzISwWoCn1UuPSfEWWsdShHqWCe9R91FKWyp01JJ3wlw3Oy2Ao74/XUHwrsR2HGHn4/6rYez12DHzPMKrGooOgki+HtFumcdtzK0uf1PNMOxwDhN2HVpDOs9jy2iAt0ZlemCLTr3mHfkUARWTMyDAbOrTUx3wAzdY+niaOaUhtHq9LIMcOLrCXQXQSSv0GKkDdt+cVypt1fEuSORsRUwgrZrAsamYJy8fu+Ad0Mu2iYFhexjy9FIVLaLcxLDUJxABnH/97XOJAYQOOjWoewQ5hV4Pgpe0t9YkB49gh5JjAtb880y4Yi8AztlY7hdKitYm1PGpe8GO5vA4qW+FxwJfMosAk2X9n9X2cVVfnA36pzHNHJGbbITj75NTwpn4wQ7ySKfAu9u4kVOBVotr8LTsbMMIl4VynHBizBEJNVKBAfMNA9867j0InNX8+ranLw2s6DOmqIHBIbDfQR/CiOVk4XBY4VcNSeU5YxEaGgjIEIUZOMi/oeJag4mEB3PUOweCaG4wwbWWAYcEMGKn9mR/segY3R6zdYg2jipGKfZctzINQ/vxkJa9BOjR44W0OpTKAskcnjLTcKyuU/SVIWSKzKSHQHebYW9mfGYjfSHYfbT3+v877XhsIwGzEUaleEwITyE2u/0q0Yfqq0/0dMDWuicvDanKbjsB2RY+TQwOnfvbMUhiNPFyDCRwhZhdjE69Ty6FjoOoeX0spZz6qKxxu+ed523KNd2do1fm2/Ua6nFGqnkH8+kHv94bkFt2oyJj+fVPYtbzbgRpXuRU5uCMc+gFqEIGkWQQpFmUckZe2fTY6xr2FEDGH2px5nBcgOMs6WelWF2lmiKEiFjITOaMd7AehSxXIZ1DWZeymhkXmHMy3l5r2SVLSflBN1D5D5nLM/ZRomXuZOi16yBe7yb5j0ns+iihRdlFbd/S91eUBslhm7mPyZq0MNzmezgspUUgVimQ3kn6ug48mntu3E1+MuBy8u4JnkZCxkvQUGuNKAoG4RfIfxKho8TPoEnyndzdO/i7m8Dpwt4XrnSBvH45462t2hTEX4Bafun+q8jIzK/AAEAAgAIAAr//wAPeAF8egd8lFXW9zn3PmX6PNMnPZNJMRRDMkzmDYgZMRRDCEmMMUPJIgZEepHlRYyIiNhRUdYuS4ksy9reLDYsdOmLLC/Ly7L2CgKrrCJkLt+9T2YyYPl+D8804J5zT/n/zznPBQKbACSTvAEoqJAdtUhUJpQYjBJVAUrKSkIOJ1ZUOEKOUGkfV8ARiPB7E72m87WJZF58ibzhXPVE6QsAAnMufI4H9XXsUBh1UpOJSJLmQNWqNsasLkKhsrKnA/T1HCF9PQzSAPYtD5V5PW4lmFeIK86EcCRbObLp2lGjGxpH4+f0wLkjjU3NDSNGxYSMxbSdDkzomhE1SypQalCISvniob1lDuTL7injC1O+Mr/xmeJtxeRt/iJviJ8mmrjFOr0BJCZ3QAbkQFu0ypCZ45HcRqNJQkiT/LKsOO02s2Ryudze7CxVUnw+v9+tmKTcgEEymzPRlgN2e5rHaeOXyeeiisnJFagMOSsqSkr45kL8Tr450SfM5/y1V66pGvBwTV1BcYcDEX67QjQkbo8cigTplyVI2OHh/6zdXHO4+iR6SjoxMPzo8O21h2tPx7O2lmylNV/tY5Nwubj3fXUA/8BuFveBr74CoNB84V6pSnFCLhRCL7g7OijfR7Oy3FalR49AcXYRFBnsQUcgkAYO6H15j6wiAGu+I+Ao6pleFDAWKJZMX+aImNunWOpiskIVH796ewAqEzvV9gqX9nQ4Qd8S/1V/ScSM/rmsTP9FfNUNIvzuVlRPMFxY5PB6fY6iwsJw3/JIOOTx+lT+WzaR+xYWecrR7fWFFanqi/33nnn9+v+MvXr7mk933/v5Gy3PrN6yZjg7WFV1D5s2oGoh7nx+k2vvTrkeDT0HKlieXvvakkfecj/5uKnhm6iNHRk27a6bevTL+clH3ulVkX3cBTJUXjip/CDvBiO4wQ95PB6qo/len0+WTRpofo8nLa04mB3UgpeX5PbMLEzzKz4/tapOlXt5a1llpXhN7FF7r8zJ37o/iN15Q2XhvsE8RdajOqwFyrwFGETXr/0F9u9dNnZsWW9869X1azow9qe/kpc7D52mPRf//HcJFrR1npvf9sWX336EO7/9x7lqeUMn6frt8y+//ZD/JjzecOGEAnxvWdzjpTAzWtHbGjRhlhdMXqvLVZSWnl5kpSoChLJVtcwXSPea8vNLSrT0dEnTegyPaZIUqIlJLnSKhAV/pfBuhb9EbE53bYVIM/3S45hfiZ+7th8IFPHN5QuXcscms1vF8kiAZ2qBsEEEFQX7FnJDeNy+8nIF2JLZ7/77DPtk3rJhVV9vefPD+57CzCF98cr82+s631s4/vbxrKPf1XjT0Iqrh/+uafTMxR+9e++mxqZnxzzx5l8embstxo7PeX0Ju3DjoqYJA7C611hyd3hAtH/zpD5jAAVm4DM6Zjj5C5WIAIu9DuxCIB0kuvEBAKGBbSTz+L+3Qm7UZjaZqCSBqtrN+VQgmAMTua3joeaMhBTicTt9wULS8PSj5x58eNk9Z5c9RUrRiPte3MTKzvyHRd5Yh9vFygP4yq3JlfmyfHG+so1LyP/5yqgRNVjuDPclRSGvk7Q+/ejZJY89/OA5sTT7ifVb+zru/OEM7tv0EisFhErSJGUpbrBBOOo3ms0ypVZUVc0umUyqilarYrDxpN1aJrKQuykJwvwz/yPMUOCTXSqlRa6CiEzJy8U4J8DWf/jpM/eeOMZeLMKpxYqbPTyx088Oz8MKtnMuFqefm4gzAKEZPpUqpG1g5qivGRSjkSKAxWo2giJRKOFCysqS4vjNhQXCAa4Bxz1HEI+yNlx0FBextqOk9SjezW49yhaIHbGzuBtOggKe1wgFWVapDCXbdSNt5ghfoNCgMxLA3X1v++dV+eg/vIsdR9MJYWVcS5rISqDg+CuVQQLkSiTc7QoHPANIGq49dw6wi7GwgmvujZoUrrSRNsaMLqjsmfjnkYu4aU6SlJZ28xECNyqt0mMrM2pBricBidueiNS5iDcRA0ir4h+y4yQgGJP/DwLVF05IQ+W9XLoPLou6LYoTFPCnGT0jYkaV2kfEaBok8y+1kkYCeeDQnIEyQI2nUrlDE3kkDT3PzsfZhXMoxZHGw2OmTRl7w+SpLeQoW8gexttwNi7C6ewO9hD7/usTaELr8eOAMA+A1nJtTNAj6jJKAAZEs8WgqihJRgX9wJHOkYoXkf8iwR2RiKKqRRiitWw3lYdnr30cDzNae/8Tw/1L3sS5gFALINXpKDQgmp1pQxW86M3O8aoqMTlNtTGnSjATM2tjXEgCYfS3hKyuCkFHkzBeScI6WKhFVxLuD+EQLt4TkOo6CU5f1drrhvrrVly/dspDayfe+8EtQx7fuJG0HcbZLyyc1r+5qXbojtE1xa0dt4x/5c31r9hA6MYtP5DrVgijoiV5Po6KKs3MBOCVStFlgez8bG57v8/vq4tZ/Gilfr8pX7VqJm1EzJQGeg3j5/xX8ruWMbrG4oduFyXxMEFyQlkpkMeJTvhKbCMY1j/o2ykPlEmSr335KxvYPvbZydev29P65KNrX58+c92zfxv6+Kil76PnU1Sl6fe+l694//zIweMjUO1ZPnH2TU3fxqa09+l/6OHXAQgEAaSZuhddMDiaZ1epkRAzpTKAxyVzrnGh7JLreGi7qF1VqO5WvoGQ0DwF584uo3cpz4sCBzc9T9SAQPKgoqI082X2QfxhshCzXmZ5Jmoo6MvOYAk7gCWH6cudN5+98oSroZZNBoRWbuEw1ygDmqI9OZ36aJrbbTPYqIFmZrldRpdFA27ONADF4/HXxjyKYhkRU9LgYsIJ6e+pgHAkGUjkgUhLSBg2N9w3IMwpylMaKScT/n6efcC+PLN8xActmMGOhu+4bH6EpsV/yAgOoO0n9/+HnR2B5h7hr455LAPJ1+wc+1i1AYGhXOs6eQf4IR+uigYUp8WSlweZTnAWFNpz6mJ2u4d60kbEPGnUwENEvUTbVJbqTCjIAQJlPo8IXEUNdQEJcCAhMvd/gvy8Q3E6TmsbErv++Z2tRuuN/7f1X+zsNyv/vYhoN066sbVlcRuZiq/iWvuP7rEb/7LuhyPfsFPLMffdxfMnz7+1fu5qEc0RPdM6QIHLo14FgCDKRFYNMiWU1MaoAsLfupYpQwobhpDby4OfkoJ4iZQWPyy9jNLm8wLSdEtUyzvBB3lwOVwbLXYqnl6U+o3+Qo/Hnp1ttBtL+ihOZyBQXGwBS0Z9zJIGwfoYXGwTYYlLnVeWdKFwoCSqAj0/LqoW8qk7kShFiku3kK9cfCPVHyDedt/qpeyLL06zk4uXtU1DyfXfE2fPmrng0Ccjbhg+flxtq7zz3ZUzXhrU/O6sjqN73mrbXD2iY/Kzm89vbBp7Y/3VcwaOI3vqq674XdnlYysH1Ym8GajvcgekQQFURnOzZJfFEgyCCwqLtNy6mKZRrzd9RMyrUkMdR+Nfdbfu7DIBzCIaw0J5kS16edcXuNOdBXwbyU1J1ewxtvTOqxtHP/3+JIOl3xOz3v0nmr9Y+f2d8VNjp4xrbbm7jQ5mdazJdtYzasufW2r+83/H0fEE+3DTXbdNum1+Hfd4stOSZuvMURh1OXnyAPjtnsaYXeumMPAnaOwXTOb4NVYT72PqU+xG7xcf6mPNQAQX6/IUcHKmcllV1UUlBRXFZdIaYyZNUjgzJ6Rpm8u6mKrApzM0vUgYbrTrbF2SFHbS18Xa5GhSmF5P7JYqZODSiqKajIK/VYNEqQIEZRigFxShVFwJURhGD6JU0ZlDP443kvW7ccNSPH2abWFfCns140peoYDeNeZHHSqlRgkMcp00ViJSV30QKhkjagSue7JMQH4304/FkrTgKC9Tjh69VLueUScBrhFPNVAUJJTKEur6Ce0u1dCFuorNZH28UayJb2IaDjjNtKWsWmioXPicrpB365FYFc3LTU9PA+B2dlqdhUV2QCMFCAazGmNBl900ImaXkg7mVCR4KJVkyfpRJFR5F86oRckaXOFoe0m/7W6YevPVY5uWvzf1w3P7vm99YGyIHU4139VjH6ob1tLvqqpxR9u2r5m2onVI9RVXsHUX9eMTLkxQdnCc6AuVEIv2VCsq3G5XOGzt77rMZaWBtEDvNOgN0au8hkhEMg3QTPzqkVUq5feAklS7rOucMleiPU7ivc6kQtuiYCqrfNTdlVF8fxLxCKgtj3iUQC44+jrzOa06UfyDSESH3x2j106vnpWmTXnhlT1o+UfT/qt9NdGau79/Zhf73+exCP2T2Pz/ZefZXez6I/gIyv/EkRs7Yf3IFpM1FG27n5x++NQ9Q/otPPTGQSQBH/Pd/9Yf/vjjne1sx152gh0p6f3eKHwYW3/EZZ93sA627uCCpcfMzwj7AIC8WN4IKljh6miAWKkBQZHNZgqip6CSZLOSmpjVSs0yBZocIpTouZRiZWGortKL8gsDiITjI5Uik+LHJ7FXiYTziRJnywoMgWdwNFstbzxXRcbikdvy72CqiPvXAaQznI/t4Idczsm9VLdbktKzzeY83vfZ7QGDlqalDY9ZNLRSTbODPb0mZneCvyYG9BLcSxY9KQVDSTe5ArmSp7voCQYwWfE4HPqnwOu4AyOYNn/C/fPZh2fjx7C84/aZ8xev2nXHraxT3vDKpkVrHaacdQ++/xGdXTuy8Zr4NrZo3PgNgDCXI/UBnh9eKI36VZeLN+NWnxscUBNzSKpskmtiJleyNBOvSfVEKuQRD2+0Iw4l2BUdoTI+ZiikBS+9h9OfOtrxL7aJvdiOkQOHDrc2tEs72U/HmW846xyGi3DSZ3j9azd1FvUDImwoz+E2NIBd1OtGAIdVkjTZUhOTqWTlLbMzaamUcEELnGVzAbVA0BHKleew8ew2Ng534wR8gL3Dxq5ZjO/xGuQP7A55A7ubrcHDnUMBdY8RLs0Mg6L5BgnAqphMiBbFWBOzKNxLAnII3zehaKqJofOXXkp5iCsitPAkbol0bqDV8RN4ijmIm4tl7zK2BLqkUsalGqFvNN1AqVkBQDQJoSl5QlZS0MVSLhaCX7P9dHD8OHKMEwKWxLu8KBdxL6ZDTbQo3e8nNquVEFemy2DIsGlmjQdbOr9BNkt+r+zlsmTu1FB3wd0z5VlnstgW8BBwKLpv9YJL5RlPdMKNOALkU1L14E93sr+yVfg43vTxgZtW/GXnd1vevKGVHafhuOnyAlyMU3AcPjDybB377rOT591Y2mUHeYJu/Ug004jIzW+QJFm2GGhNrMaABoNsUijK3QmbMnfKFN2XPIHtjr/NdmE5uRrDZG78Xj5t2EIGAOCFiawBT+ozgRw+bSAGXiPLwM0MRsr79e4NCw4Rxa5IJL6kRnJurq0bOKEZy79hDV4k7gVL5JHn1l4AdgYS+tfxVS0wMJpjIcRkNiOAzUBl2cq/UrNZoXwP3VtwpgBXF1eWAOXEQAdVfSMRDKBcx1awhYvEZm7FB7CZETKxJf4D39CN6/Hf8XkJ6VIlly6LPUkqBVCQArccJKJUl6GXoPq6r3PD1MsbzldfSPxvRcyR3dAvmukGo9nI1bbxUPHKisdJjEQxq9QGilBcN36X0mUp6hA6Y9DpEYujXuXykscVRBpkK4wudhzbcaSC07GdfUgtRrZEms9Wzok3cw1WSi3nqklH6R3oPr8kYcedOm6WR9NMYETFagVwUFlRVM1MVW5RVLtHv11adI/EnAKwL1KEcM/JO9nv43fpSiwh81U7+qQGdrQtXseFv4FZvycdQPQ8+VKfDHgE0jgAfBZF8RpdNTGjRO01Mer6daQROSBexQQy16Hxpkj+kj3BXubXE3gz1vNr/PlDb76Bs9nSNzaSY+xxdivejVP5tZCj0mP/OYvf4smfoAvtpHU62rkEFkhGowdsNrvdbQXBV3ZNM9TENGr/TSzoRn/ZLXHoEyAo4ckJSx+au+BBspEdYacX8yA6iCb0UGXmlKkTd504Fz8rb/gchAXYat0CdkjjEZynUFmSCDVIJg9AhmYypVOVEwBXRFK5UWSV22N7Ev4uHU92T9OQe+LX7PPaKziWzWZnfL9pJMZW1bO5OPS3LSUP1S3lg9poocvnk0ySppm8njQw8cTzu4wWMA6PAZgtFm40C/WaRcikzJbSWfPzuXKqQ0sxKLdfgl3BF0A82brsgaXLW7gB12EPzH7oTqxuZWvZKtp73M0Tm+Pz4vvlDUeOLdxZwVwPk1KRVS2cQX0ce4s4n+RlpKcHICC7LeCGy4rdAbAELNlGX3ZNzCdRYyq+uhvwVHHWrRpn+IvGGoVFl/MhDadWMcJP9LZen9cr+din7JuOx/ZeN2FqnzFL7767DtWvZu2f2TrnyermlsJrn977BC7f/lkz5g4srx3e8+orqypveeqmzf8qL/13n8KGgcUDKqrHbRP6FwNIYiqrimdLCgBFNBhVKlHOuxSdv3y2lARgcoLtYrOlOn53IGEMEF7k+dXC13JCQdThQHSbDQaX08hRhsdSYuuXVBAOtyLx4BHI6+6CYLnlEXbyLfYFex/D9zz7BAf0ztqVZ+7EwHn6YufCPz33/DraBqjXfyHBI2K+RonRKAOiVZYkC3BDJ+q9VNpUJOaj+sXtVx6h57CC2dmLTMMKdPlKFXO0a4DY+dTwvZeN/qJLhrqRy8gSsx+T0e52yQh+v2ynlszMrKwci9mcnemSzdRvt6NJiOSi+EtCbgo1UyM3WkiKOMKJUtMlGvCIi78nPihD2fPbzWFJ6WPdxqngfix9q9Sr9HQdwoJDth5mUy/nm1hKoRixV/mpUJxwVT85trLi1EAa6twb+aS+9uuhNBsStmnSbVMVzTXLnPpUo6oYTYpJ0C2VLGYDkWXJqFCUkhDL9evG+ooUZ3VpjZj8Izex59h6fnXg56wfNmF/DGMtC5Pi+GHyHdka/47Y4j27dJCYyF2B7wZVlZEQEERvNFFF4QqiSgVDdslOjEH5Z65AarLLowIDZAGWchEZbA/LwDo6mozsXBTfQUqoXleVJiZ0RugfzTJISFUVEExmlYuSRP1I0IAGUcZdOgxNpl1qFqqPbALSzPPvkbfjTVJ6vIrs30m/RXi/0ykkLWUbyWw9T7KjVgXRIIFRJlTBfN2EuvH0BNZX4iUpmc0y8bOPPmIblXMHz60Xa1gA6MDkVFt/ZIKYnGpfnBa6sUmAHY9/mJhqI4S4fJ+QL55xoKIY+VYNoOZTiaaCvQtCfCFHMMy1CH34IX7GMmfKjQd/UoR8AzFIA+R3QIHeUTdBWVYkSTznFd6SVJko0DW+xLKLeyTRZYcwiGjADQ/jqVO8uP6KGOiGzmqyKN4maq1OtpHWXhja9SRIRonoRhEaJZ5K0NrOFyl//vMAAGKNdIQ+qATAwK1gBjVKRVTIdwCUpB/rioP0XWLww7EvHPD6PGRL5ZkqbKpcLx3ptW2gZ/z7GYIdmjju9pfm6E8Zq6OFTovBQvLy/P78LIMhaEkbFrNYZLfbPjjm5jWdnDM4JnvBk0Az/y+ZVYSeXlcUJWdMvMcN9+1u8h0omny9N6YT+huGr1r0xzd+Or/5xbv/On7T8Y9PswO/X3znY5MWPHHDsNfXvfono1K6rn7f+K3vx32E27h55MJbxwOBFVznDsUNTsjh7BvIojRg1Mw2n89szrWA2WPUFFDSh8QUL7iGxEC7mCz83SHi7H5mUeZ0aISzRVANCgTlw1AfH9d2D8WobftHX+7YNsMT+hpLLZbJM2ZOJJNvaZk+Q5rNdrPv2XH2t6XzFTdbPuiJ9jP3rwh0PPOXNWvWAMLoCyfoMWk2eDi6esRYymclxCubh8RkDexcM++lZZJuOTk32SdwmnJoYkjgUBQyIf4DZqJx81Mjh9525cmTzcuHVf/BTQZgFvauOZFVwBH49ZIydr4kH4iQK81M2CcaDRi9Gi+obTZhqFy7xwIOIyi6fTTdPt5ft4+oT4Q+ecShOXlPGioU/BLkji3iOnVPiAnZ9vHnOw9ON/mw7Jv+1omT5kyVp7dNmDnLjWVoRx7zq9vG4YSfTjyy5vt7ViWNk9BynD61y+DMEKROSUpzOLKcJlOm3+OkzuoYFVUUVMesmuoZHFNTel5aloiry3bI3RbgrbNeR4XKwOMJ6AVAxMMtOP2GaQZcT2aVs+/Y3zDt7LdoiJfID985vmNc3Qb61PyZM+d3NmAPdGAahth3Jx+789Eel5+4rCjB7nSOkgMeuCKa7SZElSn1+qwAPhndyHVz283akJgZqJ4bgp8v7QVDiRwWFgxH9KfOeieocBWpiZ1l+9eu3bj/ufm1o2uv6ocGOq9zCZ23rKHh3ZdLPsoafsVgoKAwtzSV26sYyiEKd0SrzFlZAwZIfRwOUqzmSkGUpIHpPXr4fJFg8Kp0K1jRqlj7qv2GxYy5Eke5wr7FpDpWXFxYWDksVqi5e1fH3BkXz+n4pxIOWz79gRHv0LneqJs2FQ76ewKfPao+pSsqEvmsj+ykQFfCF6ZeRcGFyUQK8v26El/4WGzqS33OfxjpXbL2ndc3sTfYvm9+vP3WksHVg5tvOnmsZKGTFc2buvrNabOfa5w5/drrmura10otT/ceNqZjJ5Xzew187smt/1i1bPw9We5Roeh1xYVrZ732vkM6L1UOHVlb2WcEHT5q0qRRuwBhBYC0lmeDB8LRdATw2Y0Wg8Fo9Nolp1MaEnNqJkCjR6D/JfU5336yUOPaKqJJEuCQeFQirWX7O+6YxfZjqapqE/61bQ958LsXt8S/40CwpeDekav/vh0ILAPAD7lsA1jEZFcyGsFksprtJg9Rr4kR6DJ/ZWoO7uobKtNnnyJUlrW3X3ttO14phMgLHn98yIjzPqkFgFxoY259XSt4oSTqd/L0JgaDT/NcE9PAaBctOk/sjOTEKYEwCRGJxwB6tajQpMDBcxoHXzN8CJbum6GLZe60066mRmnd+eJXN6mThXRIWPMH/Un+NdGgxLmTUKrIsmYzWa0Gg8lkN4P41WCzUcXkofbu2oTf3cjSZdpuokXRuGOyi1dx22KswGZWhYd5AffOIrF9jYxdh40sI74Et93MVivueDXr0gYPcG0ouF4DRIkAevQioLvExgPivyvuhO7qQJ5BQRgeLXS7XPrsKDMzI6PAajSaTPkuq9WRKzu46XwOzWzPRJNH7+G7krl7+OC8ePqbjJDCRIiEfKFykdziVfBd8q+ke9n++uvnTGL7vy529F437Xwso/dL097ZwvbVXz9jOnlw3rz12+LfSS1Lh1+/urZpy+F4kfhtxYuQjGCut1tMFxHAq6vrscoOoatQFU0Xx29SyV/XLRG8TS0ierkyof+ZtWWXEPbn7boC9dce3JHE5yf0pzhpostXLJYMcLnSvcYhMa9mp0Nidu8vu/xUrvPeVQMOCCQs6MzrxGVT5986ecr8W6dQmX3ELvzxh7swGyl/I6Xt6/70Qnv7mhfYKbbnQTS8jE7s8wA7B4LrOep1cC1ckMMn1Hl+RVFNlKpZmqrlcuQEq9U9hBOEwa5mQEaKzBKmSBWoSQVlTvPepDFCnPndRKFJtuemosq2GZrG9p/taZv8wfaPbt58TGf7vePdSx/wsv5K9SPtbB87/T/s7H10mU722JDgM67pTN1euaIq8dIsyh+TpOUZ+fg6PcNnz/ZanE5V4I0FhsQsv8m6iSfIBUmS5S2dL8HBXl8ook+LIkFBaLdMkafPPzxZ2v7R5zsmPXeFIQMJ22e1lq48uri9oOMZ9uLa9lNYiho3Z9+6xqU/bcBDAybXN3ZFFJ3LddVEh0mcejw5BCxZZVnUS7wGFxqlMrTMRy+JIqpdWewrCD+6iu3/sre97yvSbCP7xLR8SXyH1LKxZTYkqp/1XIZ4dpmjpLktAEU5bnchWNw5lhxTli9rcMynUdPgGPX+vJ2/2BgiqPTHK2HB5clePsGgXCkPt082oetPnbx1/bDrDtW395oycuG8yJd/3/Xu6MZHa5Zcv2zRrf2wZn1HILfzsvKx+b0rCstHz73+8VXN/8y//JriK/qHR/+30LeE6xuRa8AjToRYDHa7y2UyEIfB4fWZnHbn4JjVYrfL3HVyQt3QpktOVnRhgnBcxKOXvoLpIyFPwCO6cjK3bsas9tdeeHRt8xasYDuu+TD4aeiNN0jGwgknTn4e//yqK4UOT/Gc4zM+cENZ1E8cDrfby3t/j9NoJ7JNtumyPcmJ1sVDgItr7tQYgH+grxdrpR2zt72PpSLjsXRp7XUHt5Mj8dki4Ynt/EpI9JkPcrlm6BV1m0GWiYgIK0G0GNEuC5llKWndDU1X/x0SbTfiOtaElf/INyryZYexkjVJLfFF86aMXUzaumS4AZRtXEaWOMsoSyaOIVng81ETVTMyMjNzVEXJ9plMVLbbMxQ7yDqidR3RdPz2LIDSIO1WQ8wBsin/pGskRZpuUfew19lm7LMwJ1eRcrT7sG6R5NCsqBgvN92NPdk7uARPdt4vtTDH4m9q1lxH/PGvvE03jMkcer4XnuKKI5gApOW6bWqi+YoMaKSUSAQlGWWzQVWtfIZmMSoUAA1mj4T2S2cBqaROkYZeq3KlhdkClOu/mD2BI48cxZHsMWxja46fYO2kPwmyZ7A1fiy+DRewhcJLzK17ycs1KTC73ZrXK0koahm/Jgob/pNT8no0p9XJMTHDAFyVskQJkKKvhBlTUzxHyokifvTqgNsSaw9mmBRz7n4cwoqu+vcfR9RErqqfl+fkfr2/YcZNo8ic866XXnR8Z72xNZI450HXce2MIn+oKqkIYDYgmvQhAm8c7YR/MwyOoefSIULSSMJGySlCWEwR6LrOB4nC0uhAZiCmDrLp6+3xekDI4T38Id7D54ipCHUbcnIcfn+uNTMzIFGXy8qjKd9qSbTzYosp2hbbF7bnuBrm+REWRw08Coc18VTQ4xFQ6+EJhDmL2m6/c/OZG4cpn31T3XpmM9quH32qucGAVz7Z9jEdXMUObcyzBF8xskNVg+knbU8BIO5gJWSlYgMK7tcIpZJMAaCyhONDYlbqCOKOo0cV29lA1ylOauB7yBN7yOHlOmgGQ75bkoI52TabW3Z7qCzl/3/2IIuHzuFynuSi2BZnlftyiBSnzxyCyzwcrImh4e0Xbhz2+9mfKtWtL7xTP39x26LeM2aFPyFVQ7CnuWmyw5K3EXsOrqIfh2dPY5tNjY2nGm7QTxGQIqmCtoEHIlG/Ag4zmKnd7qNeu82mSJSaHQ5QoCRU1lYi9ElBdqqp5pwa1sv/RAMmELwQB0baym968pqFwxaOC99ePv7pgf89chFZcXX5l1NzcyPRii+nphf8lzhBwpbiQanl0rP6Dg26zurbad4v56mukCugE0Wi7Vh7JsTasSV5lIO0dJbKBcljHAhLOdJqfN6cwad7QYchPV3OyCA+n4mYMrPSXCNiBtuIGMiGNH4pGWmKygXqpwH4S8+ePzvOII575nOCTh4R15lS69q26gmSEBt94OCr7YtF6z7vlm8b7mpdcN+rL/fHcyhjZk77c8arjmflv/Bn9kZObzbAuFFEB4A0ST+d2BztZXeaidFqTfd6iV/zO51ado7Fn+avjxnT0sDFqcleG3P6QR7xs+NNXUfUIJTSVqjbjT+pBpRfbpXXFSKawsFwiBuQbNyyZcyzs2sbcS679w9k3/mvbhr+6qufy7sbvojGrt10dOm6WtZ5ttes1keObtl5BAjMBCYFpHXcnkW8R87TLC6j7EsnBrDZ8jIhM/OyYp9LSycWo2xQPZ4ctYBHz/YyHc11H2qb9S+iA4oURXyC3SM+0WGqPrVIoJJaFCmMXFRdbixfuGzBqEk3j1qwfGE43Pbogt+Nn93Y9siC8v1T6+qnzxxRO50cnPC7BcsWhCMLly6MTZs8uu2RtlBo/iNtYyYOnz6ttm7aDBHpCoDEp+PghZnR/7I53U6Plce2UaYyMYkJqxeRED/HBp/idDkbYkCRuuwmm93WEFPtdgt6FMsl5xX9mtiW3kNfypcpEhAfkgPKkCfoEXdAGF7cGCBD0YAVbOGWH374gX38448/vsOW4BViZBv3vHrfq8eO8RdyHMhFiKNCMGoniiKGmUaJSlTVsUcEbCpFdAhyJGBIAFHnAbag8wAAgUm89lnw/0o5D7g2jvTvPzOzu9KCJNSFaAKEBMYHAokSuQpiY04OODjYsWxCcjbkNaluuPdyiXuaS0jHpPfeE0N68fVO/ObSe+8uy39mVlqEzr76oeyi+bG7U3bK83yfkUZBGZwCMyKlaRaXRRTLC6E4JyfkAld4DKmpsbkrK0ttpSafxzc15nHqTVNjepQycUvmivi5NiuyMYtA0qyNo3NOVr9OFfZJmt75WUW7VMhOWtE4fsubj9zRP33SzuaW6LxFB3rWTJj4xSuvXdHyYsOAb/bpj257c+OS5s4tvmrim7appHXPputbn8kPlVdURssit194/xklXdGr7p3261Hh7uKKUGH0uu2nzi8Pxya1V5qmAUYu4UfygiRwVi0/YrQaWIvIdGcQ4pBB7dzU9snCdpLZJF/SOXJNjdRPPa0uMhVd2TKurqk5Mq5FXFPXEB0/7ucNExvqGieOb6wDIIw7lSbR99oBPqhmvm9ikm0mm7/c7yzPc+bV1IrpYEmnX1mlhbZglpActKMVbEo36zBrHWyifBGnSASrw44ZvIhr6bwgFCxiuH4R45HIul+c91p4c3j55tf/fvilPddGFx5b8zJqf5X9DCi9v/m10vvcrj6U09uHsg/0Ke/29invHSBfX7VJ+TAv99nwkcNvfNd82xjlI/4/Su+rLyi3/ObXaPaLTJb0b6xlBfCX+DHKMLqgAOoieZk65HLlmXXU56PLK/RmGI2e9HQbys4GEGweShSEA0F1mAtak3BQbR1SPGxVVo3K6irbp3YM1ToJV3pGr452r7n58XnrWi6tr79h3tY9yqTy/KbYvMvxsYvGRLrPu/BCWegef0l+cNcmpeGP/qIz6oqkNPas06Fd6BEEkMAIbZHRaUaDTKd2RMKCgERqGDdkGNkrBpBGCE4XBIMoIpOMsR4lWko4kLBqJI+K5j8Faab66Q897w8yR4ALIR3yqYfpaPGg8hFyDSo70RG06A12/oayC49HL1E/s9K3DL2QNXzKGb8fhTCZCCJkRZgzSkcQkogAAdYJoQTf6LXQWZQQHjx2hLz1I7pgEIaGErEHWAIzAAhaezTEW+S5kUqBYFHUgcViJEbamxB9uT/ROLFE8QLBIegdsp5+naSN8spKbara53ErgY4FlFnoIwadmhP5X7VaYcvuz5QHAu8h/cO3K+s89eFTJuceP+dft9utd0xUFqDpyj3kqh3K1+H6uhrlzX/ZctHQEckuSNLhJG8MjPTGCNLRbwWDZH+Fr/6Jm7D5hAmyIDMiQ0ZGTrbVkMkqRQ3FUq17vL06HSowmDyctbXd2N5201ln3XjW5a88G6uvnz2nLjJHWMg+7W0766bZL10emd02YWJ7G+NFAYSwiCGdcx+ZGTqdRB35BoSomd9sMRrSZYQkAYOKeoYC8S5MM5WnxriwyfZwnAs9I2/h3kG0RVlFY12UNylYiiCAo/gZTriVRKwOA5LAgiyuTNnkwQ4Hyucer4lJXb96j39EPHUF+JnjK/5+briipGXeqiuf3np9+4YudA6O3jbYEQv6S2bt37Cle8be7rMBwVgcxo+Ir4APJkRy7enY7QbIl/LTzVK65C8mdrvDIed4PSa5IIE5pbQ8dlABTRX6S6xu1DgHrezj3QjuuaN9/n1P7N541ards5oXtJ3REgwFWsOdE/b9v3W9wlu7a432i6at2N7wzOzzq6tvrAr76ePuDExYn+qLI0JEDyCnCdwXdyjui3uFjR/VNMjMIUk6ao6YiGZWHZ0i/DX75U5H1aEgAOK2LmrkhkxmMUmXJFnOsjrBQR/drXNlOGl7yiCq4Y2Z+zTTkbYwT8qwtv73xo0CxS6XhZtDZ7WvpVaAD0ZnlC6fNWF+vigy+yj67YoVdz/PrAF7Z8wo/9mM65SDUhQQLFSOCbslO2RAIOJINwsiAoTMFr0emUykKWYSWc8XiHtk4gMlbe5qgAb7UsMIa0IFwu6bbumd0PqX1/72IW5Tjkmn/3QfCVmPHEWCwiKd8Cj0e7KGEUURmUU6Ebk1RiCQCHSypSLhfEr/+2Eqe2hQsaNeALBCVcRlNjI7Fh1Y7Gaz0W60ySYW9pXNXt9QQI0EXB1/3PjAIiZPQYprQ3RWgnr3Xd88KXuOu/GW5v7s6Kwj6xc5btOZJpzh7hmf2cktXDiKGxPRSYI8MjopD+WfMDoJeePRSb4QbvyciNkVzReismdxFD2z4Oyi0vHr6MwOwnTUfEt8ic9KPBFjIvYqgzhkDw/xTGK3kxc9YlKPgt969IarH3/wwP4nFG9dY+PEiY2NdULbnf0v3Hr7wAu3dHR2dnTMm5cy6s2OlKZTy49OL2AW1Ib01FNiGh70BD7YIdHEB79/Oej1B9UBL+6NL0aoFonqQehRdg4ip/LxIFqsSMPn2KuMXYbaUNsyJZw1fMrGrnIA6Qpa2n5Y+TuAYvg1fgUA6eAP5Nrjj4L8IMFW+uJUVye0D51Au5h8T7W6B7CZSZlyNlXeJ75ClUs8XEnM8as+Eb9qmXpVwDBeWUH+LLTzNU5DpKiQug4YJk0jh0pMoyDbnI1lQp0JPk9rzJdhoRy8xZvKwaN4g9Cm5HHsnddbrUub3bCVWHLF4ldiF1wYPjM27aFzzp37w3lvHP3F7rOrUcnw6jY6d1dT86yJ4eiY0sOnTO6//YLru+j0cyyamXhHhoZU2lu3GPuhiOexHiQ0HfQPYqfoh9HVJ1B0w2//heIgzFQV2SMV52iKgYTCOlIxU1N0cUXaQwR7uWRYkxbXSNDfPYvXhpfEa4MpdD7OPtrg4sg4yUbMNmIRLCjNZEJsvgbgEETRbiYUvqb4syENGQkj/JFkkzkxTAQrMmlscsKiQLvUAAeUNb8G7yQ062PCs0QKkEYsI9rR6nzH9imOvcoLeLew9/ghbKIUT+hoLlq5jiPvcYqZDnXNrC6WKXZGjNP8+VlGYAXOBfY556p5+ZaodTT0KC89ZE+UXqqiG9pSFPdShT1JcXDoO1XhHnmNmZqia+gnXgMYFag1wGbucZ7cAJnQGCmivUCW3ep0GlBamtthAIqVWwGovcRJi9eKLYy8TgmP0+BgddahWmkscQqUlpiPo4MhBwPPA1tV5FzFz7cKwm9+d+CzzzahATIdd1Du/G5GoOPWnR9+ofQoyl1qHsRXeDuriLez36eUA+dUeTlUxtt7N1fgvJMpulHDv1AchOdUhXek4hxNMZBQZI1UzNQUXVzB2vvoeGkj2IAMglnogXTIjaRLBGTZYORGZXcgqMUn8260FqnLBlSM7lL+uB+Vocqr6Rhetkf5tfL7vfj3qKxH+SMavZf++VuaSiUAhD7DLeIHkgA2yIZCCEdyXJ4cuz0tB9LAW+TMK3Ab3QxXJQWpdOWImbyK8arGGFaJqpEG2V2IO/yqihEFV1Wm94Xts3tnv8iA1RevaL1x1sDRP56CjrR2UWL1/ZBiOG0+WqzyvXWXXHDpANrEwNWGNfM3DSi/fHYJ/rbsp+8e6j5uKR4aUmlIXgO18Vocrdaz1uOkKrqR6V8oDkKPqsgfqZipKbq4gr0RJcl9kqDwq4yNv3kb1KtYuCSJSmbrqZpIDiOjjbIoSpJTMDbFZEdTTJAFWdIRyZowKGrdjOZBjePIDroW0tZGwh2UUz1yNcPaH1CQ4fikjst3rbt0NcHv/agMUij5c2Vc18rz5/NZJM3JfMkD1dAaGU3tegXFxQDlWSZTbXkgUGPKKtBBcbEui2SWhkqnxEIQcFgyozFLwnGq7ZUx0g03TH/aTYLqcnOkuuX8iaFL8zhXsVAn4a3SSDRSWl1/RVfoo3fmXTau+ubIbfnTo2vnNjQ0TVjXsWQjbb4+hL9FfuGvkV+cNqai1JldVTJn7srmu+7JLfy6KLhqVGhcaeOylsh5lbWnl49r6TrnKPVMv/LO/azH5ASbVEBr5VQ+UtQfAPb2jbbEazY1vfvCE6Xna+kHfxhi6RUj001a+kAasPTikemClt4lAX+3T+GCYcUDmqJ/lKrwqwogTCEpQjeUQBBOgS2RydU1JDM/P2g3GoNBuabG7/GMKZPlsC/fW50fjVVXsyDp7OxQNJZtNo6aSoF3p+S0NFDHPHgbYiBJgQZGv/ERLZmZ0t5q6wkJKnqMhzBz8MufZG0ZXsZRzHYYrWJk1TDShwoZfiVWbn2rce4L19/03NdfPRtr2nHzvKc/emdx/d3LDyM4XkaJq+cfm/bY8bqFq1fv6FyOvX+1oHvwefbOru7Y0zcz5q91cn3Tq52bInXKZx9RCGvWp8UlOEsQzpxD6T/05acLVrNap952xtZhP0xWx0+0iY+fnCrjtT1FbQ2389oqStRWanr34n+eflDP00eNTBe09C6rWpeVidoeugYAvcGv8LTaXynTgF0DGRLXuBwA/y5J0T00eaRi6JdU8UmS4qDyuqqwJBTvUMXlkqApuriC9Vdu9UkSBIfk5fPVpZGx4MYuV46oJ+kEY0tOTnr6qEKLpcQNmZh+SJ2ImdjppB56CnnSKS02+RpiJifBU2MEnYC8izsQ2clwI9I+1YYLf3Gtkw8SVgdtm4XAwyNdtX46hDAvXCL2GCmnN3ZetuitjjuuvUr5/0PfKX9DwuFDDfpT17zfga0rz19x8fIFq84TXdXF99Wdtr1n/m5lz4fKh8pLyPrJR8gyV+hdtuva4/Mv2Lj1ih27+lg74MwMf2tPV9/aEPAZUHI97ucl3KK2k5t4PReeOJ319ZfAyRW8pRiS+gUt3aSlD6jpeSPTBS29y6C2pIDWK8yCw0JYeIl7wbKhNGJ1pqWZBQEIyYUcNwVKAXHz0vPBYdBQiw8WTxJRTWOGj2+K1tf/PFpXNzVaf2ojO+KOwcEvTpva/POG6c1EmNrUMqWhpRkIfcaHKAN0OZ81eEfOGnzxWQOjb0jBFAZx/C+zhmCNsJ9hQWsvOLVn0n5GBm1eUrt/zK5jR21o/OiJKy9AhwzKa/6alefjSoYJlXV2dVyL7IwUqpp+Qes1ytH2RjTouvnWlnFKMOP2oSGVpeD1c2ZST4ByefGmpvMavgVOruA1XMnTC0emC1p6V0B9A0u1np977PkV5qi9zXh+BQ8XJOgmziYWsLhqD+1vHQZzli2Dxi8VWsCcbXDIRM6dEpOdxEnL+CQocxLLTDtnDWdWTT4Wyh0nAU7ot8Herhf//uZLf5xv0ulUfvGjOONEDrXMYEgzK+CtE9qVsXpQVixvbB7mnLQ8CVqeut5Qc/0zNdcJKk9oH6byMk5M5VGJGk2mO108BE7wQmekxuJwGFF+vs6WAeDL0umKLHa6drMgI7HQX0YznaWSNBddcwhCLotpRQ5tBcd+ThplmiAy+BMMx2M6XcOLuERnVGvx+3WnH9vn31Wm9Cv3oTPQhPGbvaRDW9Q9dstdd/XVrfR7t8jpaBvqQuejTSZZXeCR145+8+1PDivZbnPyN+hT3SphMXhgNARhQWRMoMKEHQ6/X19RkWu3V+Xr9aEchzvgiMYCATCbfxaNmc3YJNDOmfLEZnDT4VwQvFNiQupwHj45Cp00iOdT56kG4bniI7dDo6KTeT2fSk+Ltyhf7dl5pPfHLSgb4QUvT7nsi2+R+bhTt2fL+U90tDx99FwN5Pu4fbWMBnC3/ZprdiD9/ciByqY1XcvYaf26naXlbOCeHGf7BhavuJhFHD0h/FXwSAVgZP0Zi5ozAMh6jE0ZWF4vsh39sg5pyx2NKqQzEZ2XGU+dFNAgrdc1Ne977elTUafn6kbhr2ed0XJ29tMLqh5sYBENqFX4M4lKD8Q9ehmS1eqmkUWyR8ay7CDxvRTYHVKNZ7qk8YhEdy1YcOklCy+67Pqa0tKaiorSGvGlCzavv+iCDZu7ykKhsrKqKkDwa+HPgkEygQuqIm4KNEUEQjLdBhvobPTrYvM6MzavFyCQ9fpZmoNENQebXw6qkISXvbF5mNVHiE23yjF6xRM27knfvXTUtKZoET+/fAk7F+uray7vKyjOr+KHAr4bGHqI3IN7+G5S+AS7SU0nbeih999Xlbp/qtQllG7Sj/p4jIw7kiaIOqTTySBou5KZB5gLq7jGWhvCumKTs7N6sN5L+p1zkG2h8t3HkHQFCVwRmQhIknSCRC8wvD8WUrffQHtNwbWDkz3iI84XlPdRySFI3luLeVIwEfnuWhIEtNuffHstwOzeZBl/+gzwRczUIGsiggSSZNFlkHRtI0Z+oT8E+bOoWSnwxY/oUzVPdILhSZyRP8ezp2Vz+E4SGJn/ndpNDXwrMFMaMYjsRi+qN9Luoz60qB5QH885cqO31JNM8Ua1DBJFgVlJkOt5SRihMGIaeQcIpN7Ap91gROGgt0eWkkvbi2wunXrfKIyCdLA9wszuRplAgHssUq3uc6/avnXvvku37cGf9hzou3r/LbcAELbTizQXhfm75mXsYF6m6kEvys4gbKuXAofMQuS5LUhtbJnmP9AJy8gdX3yp56m7v+Aps89kZzPacGPqPmctKUf+VkA7vpHbtCsijrgDV9RLQAg9pa0JI9VZmsxW0W/VN5vqlE12xKZeO24nRzp2bfoHPRPEf7z2SBs4vvHEBm8ApCxj83oe25YVSSeAEcaCFtqW8B8j5EX48mN//IKMjge2AeK7BW0S+6EYdkQaJaL3+XI8RW5ntmywWIrSafaLika5cnP12dklBpdLzpRy83Knx0heRt66PJxOMvMy82yFPiiEabFCndlkMzXHbNp2YiNNoxZenyxzKUghO/CtQOhvro/H5DgKdA420DrVfS4oWELdb/7qWvq7BuL7XXhXXu9CVyrtGKN5yj0hZNq9ecn93ynPj9q6VMBLtvjQpG+e6ps7ebnwys5f3ucNFDzwTXgIxqK0Tx5wFVff9zVyT//Q4+XsWgfzjp+0n6MTYDbdHRriMbs/Sh7wQyNfQ04lboD45x8nfd7MPgcMBhzF34tPQRpYGbthFXUmWnBEBixim90k62TJikTRaiW6PJLPDTwBLSYu4RpNwn+8DhpfWI1CfA+zWrZnHP5+zefKBrTh0zXKHkmuzliH39q3rwfXHT/UN3Nu1gWuZ9Wn05u0pyuGRuJWn14KAMTT4QTpzcPp0q6k3PF0dS8BvtMDAcsjIIiIQGKXQLYPAt8FgTU2uvZ8EQDruB3sL/EV7krVDmZIWNNupYoPkxTdQ3NGKoYYgS4mKQ4q76sKS0JxHADfqZupKbq4gq9wuaT6/wCVeR0IAAAAAQAAAAEZmiehT9dfDzz1AAkIAAAAAADJQhegAAAAAMnoSqH7DP2oCo0IjQABAAkAAgAAAAAAAHgBY2BkYODo/buCgYGr9zfPv0quXqAIKrgJAJZXBsIAeAFtkQOsGEEQhv/bnd272rZtG0Ft27ZtW1G9dYMiamrbZlgrqN17M89K8uVfTna/oRs4AwCUGVBCU0zQl7DAlEIZWoPOfhXUs0BbVQAL1CG0ZepQd9STPdUW9dQ61FGN+U5LpOW1pswUpmU0hZj+TGOmWnQ2lPNyV2rEoO/A+mUw0CwATG8cNjkwyXzEYZrG9Of5NUyy+XBY7Q4Hm9a8tgCH/WU4bOcwPfmsjc7GvDcYPWk7StjU2G8qAf5xwHQE6D+zHRXUbqzi96bmrEQNEeim4V965jWnB+ho0sNRHnTn7E5H0V3nQAlaAGsawqkxWKfGhDPoO2Ts/Gdwsk5fIecd011vh9O/OaegHO9toBWAfYLM5JBSxvoNquliyEeDvUucbeXvMd55vIqRtTGMJTnzAkP5bdnsXvTX6VGOPkbfYe+yRgh/6xHoLms6QDmmlvyFPThTB2PEtbczfMbr3XUu1JD7fmqUjaYre68jzpPD3wJIH6QH0RyQ5L6Ui/GeGFqDOZLiPj7iXnpkDsKJ5+TwO3LmEe8JYecb2fcazoXMC/Ed4z0J7EFS3MdH3EuPJJX07gom+ff4/DMcpS1ee85bBLQNGO84cgiqPerpVcghUBEeK/S1jzBBfUZbwUv5X/7bkOlslqCEwJ5TBw4lBFsBJdRuHA4vYk/own8RLYvLrQAAeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDlNxQAADArI3Ydv7Vtm3btm3btm3btm3bD7VvBoIgLXVVqCf0ztXT9dzd3j3cvcX90CN5Snmae/p45np2e356gbeH94HP8Q3x3feH/X38NwJwoHigQ2Ba4GBQCK4NfgxVDE0OnQr7w1nCI8P7wi8jdqR4ZGzkRDQSLRmdH/0UqxTrEVsbux/PHe8b3xh/lgglzESJRJfE6MS6ZChZJzkj+RouCA9GJKQuMhI5hsZRHR2A7kZ/YZWxldhtPDPeFd+IPybyE0OIy2SIrEy2IneSX8mvFKB6UpfodPQYeiOTjmnK3GOzsCPYpexaLjdXiRvBHeJ+8BX5Lvxe/qOACmWEnsJ60SsyYjqxiLhE3CoeE6+LL8RvUlRqJXWThkszpJXSbjkq83JaOZ9cXm4gd5IXKZACK4qSSSmiVFWmq0lVUtOr+dXyagO1oxbRSM3UsmnFtOpaC62nNkqbo7M60HPppfXaemu9j77X4IwUI49RxqhrtDWOGzeM92Y985lFWWWtcdZia4d10/piU3YZu6+91j7rME5xp5szGVAgDcgBioDhYDpYDjaDE+AmeAW+p8R/A5ajfCcAAAABAAAA3QCKABYAWAAFAAIAEAAvAFwAAAEAAQsAAwABeAF9jgNuRAEYhL/aDGoc4DluVNtug5pr8xh7jj3jTpK18pszwBDP9NHTP0IPs1DOexlmtpz3sc9iOe9nmddyPsA8+XI+qI1COZ/kliIXhPkiyDo3vCnG2CaEn0+2lH+gmfIvotowZa3769ULZST4K+cujqTb/j36S4w/QmgDF0tWvalemNWLX+KSMBvYkhQSLG2FZR+afmERIsqPpn7+yvxjfMlsTjlihz3OuZE38bTtlAAa/TAFAHgBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFFSzVCLEEQ7fpjH113V1ybGPd1KRyiibEhxt1vsj3ZngE9AIfgBmMR5fVk8qElsRjHOHAYW+Qwyumxct4bKxXkWDEvx7JjdszQNAZcekzi9Zho8oV8NCbnIT/fEXNRJwqmlaemnQMbN8E1OE7Mzb/P/8xzKZrEMA2hl3rQATa0Uxs2bN+2f8M2AEpwj5yQBvklvJ3AqRcEaMKrWq/19eWakl7NsZbyJoNblqlZc7KywcRbRnBjc00FeF6/enoi05EcG62tsXhkPcdk87BHVC+ZXleUPrOsUHaUI2tb4y/8OwbsTEAJAA==) format("woff")}html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}dfn{font-style:italic}h1{margin:.67em 0;font-size:2em}mark{color:#000;background:#ff0}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{height:0;-moz-box-sizing:content-box;box-sizing:content-box}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}table{border-spacing:0;border-collapse:collapse;width:100%;margin:20px auto}th,td{border-bottom:1px solid #bbb;text-align:left;padding:10px}th{background-color:#63a0e1;color:#fff}tr:nth-child(odd){background-color:#eee}tr:nth-child(even){background-color:#fff}body{font-family:'Open Sans','Helvetica Neue',Helvetica,Arial,sans-serif;font-size:16px;font-weight:400;line-height:1.5;color:#666;background:#fafafa url() 0 0 repeat}p{margin-top:0}a{color:#2879d0}a:hover{color:#2268b2}header{padding-top:40px;padding-bottom:20px;background:#2e7bcf url() 0 0 repeat-x;border-bottom:solid 1px #275da1;text-align:center}header h1{margin-top:0;margin-bottom:.5em;font-size:2em;font-weight:700;line-height:1;color:#fff;letter-spacing:-1px}header h2{margin-top:0;margin-bottom:1em;font-size:1.5em;font-weight:400;line-height:1.3;color:#9ddcff;letter-spacing:0}header h3{margin-top:0;margin-bottom:1em;font-size:1.2em;font-weight:400;line-height:1.2;color:#9ddcff;letter-spacing:0}.inner,.toc{position:relative;width:840px;font-size:1.1em;margin:0 auto}.toc{padding-top:1em;padding-bottom:0}.toc ul{margin-bottom:0}#content-wrapper{padding-top:30px;border-top:solid 1px #fff}#main-content img{max-width:100%}code,pre{margin-bottom:30px;font-family:Monaco,Consolas,"Bitstream Vera Sans Mono","Lucida Console",Terminal,monospace;font-size:1em;color:#222}code{padding:0 3px;background-color:#f2f8fc;border:solid 1px #dbe7f3}pre{padding:20px;overflow:auto;text-shadow:none;background:#fff;border:solid 1px #f2f2f2;font-size:.9em}pre code{padding:0;color:#2879d0;background-color:#fff;border:none}ul,ol,dl{margin-bottom:20px}hr{height:1px;margin-top:1em;margin-bottom:1em;border:0;background:#aaa;background-image:linear-gradient(to right,#eee,#aaa,#eee)}form{padding:20px;background:#f2f2f2}#main-content h1{margin-top:0;margin-bottom:0;font-size:2em;font-weight:700;color:#474747;letter-spacing:-1px}#main-content h1:before{padding-right:.3em;margin-left:-.8em;color:#9ddcff;content:"/"}#main-content h2{margin-bottom:8px;font-size:1.5em;font-weight:700;color:#474747}#main-content h2:before{padding-right:.3em;margin-left:-1.2em;content:"//";color:#9ddcff}#main-content h3{margin-top:24px;margin-bottom:8px;font-size:1.2em;font-weight:700;color:#474747}#main-content h3:before{padding-right:.3em;margin-left:-1.7em;content:"///";color:#9ddcff}#main-content h4{margin-bottom:8px;font-size:1.1em;font-weight:700;color:#474747}h4:before{padding-right:.3em;margin-left:-2em;content:"////";color:#9ddcff}#main-content h5{margin-bottom:8px;font-size:1em;color:#474747}h5:before{padding-right:.3em;margin-left:-2.4em;content:"/////";color:#9ddcff}#main-content h6{margin-bottom:8px;font-size:.9em;color:#474747}h6:before{padding-right:.3em;margin-left:-3em;content:"//////";color:#9ddcff}p{margin-bottom:20px}a{text-decoration:none}p a{font-weight:400}blockquote{padding:0 0 0 30px;margin-bottom:20px;font-size:1.1em;border-left:10px solid #e9e9e9}ul,ol{padding-left:30px}dl dd{font-style:italic;font-weight:100}.clearfix:after{display:block;height:0;clear:both;visibility:hidden;content:'.'}.clearfix{display:inline-block}* html .clearfix{height:1%}.clearfix{display:block}@media only screen and (max-width: 850px){.toc,.inner{width:93%;font-size:1em}header{padding:10px 0}header h1,header h2{width:100%}header h1{font-size:1.75em}header h2{font-size:1.2em}header h3{font-size:1em}#main-content h1:before,#main-content h2:before,#main-content h3:before,#main-content h4:before,#main-content h5:before,#main-content h6:before{padding-right:0;margin-left:0;content:none}}
code > span.kw { color: #a71d5d; font-weight: normal; }
code > span.dt { color: #795da3; }
code > span.dv { color: #0086b3; }
code > span.bn { color: #0086b3; }
code > span.fl { color: #0086b3; }
code > span.ch { color: #4070a0; }
code > span.st { color: #183691; }
code > span.co { color: #969896; font-style: italic; }
code > span.ot { color: #007020; }
</style>
</head>
<body>
<header>
<div class="inner">
<h1 class="title toc-ignore">Basic data analysis</h1>
<h3 class="author">Gregor Pirs, Jure Demsar and Erik Strumbelj</h3>
<h3 class="date">25/7/2019</h3>
</div>
</header>
<div id="content-wrapper">
<div class="inner clearfix">
<section id="main-content">
<div style="text-align:center">
<p><img src="" alt="drawing" width="128" /></p>
</div>
<div id="basic-data-analysis" class="section level1">
<h1>Basic data analysis</h1>
<div id="descriptive-summary-statistics" class="section level2">
<h2>Descriptive (summary) statistics</h2>
<p>Descriptive statistics are numerical summarizations of a particular data set, which can be either a representation of the entire or a sample of a population. Descriptive statistics can be broken down into measures of central tendency and measures of variability (spread).</p>
<p>Mean, also called mathematical expectation or average, is probably the most basic descriptive statistic, calculated as the sum of all values divided by the number of values. To calculate mean in R we can use the <code>mean()</code> function.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" title="1"><span class="co"># load data</span></a>
<a class="sourceLine" id="cb1-2" title="2">data <-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">"./data/temperature.csv"</span>, <span class="dt">sep=</span><span class="st">";"</span>)</a>
<a class="sourceLine" id="cb1-3" title="3"></a>
<a class="sourceLine" id="cb1-4" title="4"><span class="co"># mean temperature</span></a>
<a class="sourceLine" id="cb1-5" title="5"><span class="kw">mean</span>(data<span class="op">$</span>temperature)</a></code></pre></div>
<pre><code>## [1] 12.55811</code></pre>
<p>The trimmed mean (also truncated mean) involves the calculation of the mean after discarding given parts of a sample at the high and low end. So for example the 5% trimmed mean would first discard the 5% of the lowest and the 5% of the highest values and then calculate mean of the remaining values.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" title="1"><span class="co"># 5% trimmed mean</span></a>
<a class="sourceLine" id="cb3-2" title="2"><span class="kw">mean</span>(data<span class="op">$</span>temperature, <span class="dt">trim=</span><span class="fl">0.05</span>)</a></code></pre></div>
<pre><code>## [1] 12.81281</code></pre>
<p>Median represents the value that separtes the higher half of the data sample from the lower half of the data sample (50% of values in the sample are lower than the median and 50% of values in the sample are higher than the median).</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" title="1"><span class="co"># some data</span></a>
<a class="sourceLine" id="cb5-2" title="2">some_data <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">2</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="dv">7</span>, <span class="dv">9</span>, <span class="dv">10</span>)</a>
<a class="sourceLine" id="cb5-3" title="3"><span class="kw">median</span>(some_data)</a></code></pre></div>
<pre><code>## [1] 5</code></pre>
<p>The standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values. If data are normally distributed then we can use the <em>68–95–99.7 rule</em> to quickly assess the spread of the data – approximately 68% of the data lies in a band of <span class="math inline">\(\pm SD\)</span> from the mean, 95% lies in a band of <span class="math inline">\(\pm 2SD\)</span> from the mean and 99.7% of the data lies in a band of <span class="math inline">\(\pm 3SD\)</span> from the mean. To calculate the standard deviation in R we can use the <code>sd()</code> function.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" title="1"><span class="co"># standard deviation</span></a>
<a class="sourceLine" id="cb7-2" title="2"><span class="kw">sd</span>(data<span class="op">$</span>temperature)</a></code></pre></div>
<pre><code>## [1] 13.13446</code></pre>
<p>Confidence interval (CI) represents a range of values for which we are fairly sure the true value of a certain population parameter lies in. When calculating the interval we can specify the desired degree of confidence. The example below calculates the 95% CI for the temperature. We can calculate the interval’s lower and upper bounds by using the <code>quantile()</code> function. In the example below we merge the two bounds in a proper mathematical representation of an interval by using the <code>paste0()</code> function.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" title="1"><span class="co"># lower bound - discard bottom 2.5% of the data</span></a>
<a class="sourceLine" id="cb9-2" title="2">lower <-<span class="st"> </span><span class="kw">quantile</span>(data<span class="op">$</span>temperature, <span class="fl">0.025</span>)</a>
<a class="sourceLine" id="cb9-3" title="3"></a>
<a class="sourceLine" id="cb9-4" title="4"><span class="co"># upper bound - discard top 2.5% od the data</span></a>
<a class="sourceLine" id="cb9-5" title="5">upper <-<span class="st"> </span><span class="kw">quantile</span>(data<span class="op">$</span>temperature, <span class="dv">1</span> <span class="op">-</span><span class="st"> </span><span class="fl">0.025</span>)</a>
<a class="sourceLine" id="cb9-6" title="6"></a>
<a class="sourceLine" id="cb9-7" title="7"><span class="co"># merge</span></a>
<a class="sourceLine" id="cb9-8" title="8"><span class="kw">paste0</span>(<span class="st">"["</span>, lower, <span class="st">", "</span>, upper, <span class="st">"]"</span>)</a></code></pre></div>
<pre><code>## [1] "[-12.180925, 32.8248625]"</code></pre>
<p>We can use all of the functions above inside the <code>dplyr</code> framework, for example we can easily calculate mean temperature for each country independently.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" title="1"><span class="co"># load the library</span></a>
<a class="sourceLine" id="cb11-2" title="2"><span class="kw">library</span>(dplyr)</a>
<a class="sourceLine" id="cb11-3" title="3"></a>
<a class="sourceLine" id="cb11-4" title="4"><span class="co"># calculate</span></a>
<a class="sourceLine" id="cb11-5" title="5">countries_t <-<span class="st"> </span>data <span class="op">%>%</span></a>
<a class="sourceLine" id="cb11-6" title="6"><span class="st"> </span><span class="kw">group_by</span>(country) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb11-7" title="7"><span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_t =</span> <span class="kw">mean</span>(temperature))</a>
<a class="sourceLine" id="cb11-8" title="8"></a>
<a class="sourceLine" id="cb11-9" title="9">countries_t</a></code></pre></div>
<pre><code>## # A tibble: 3 x 2
## country mean_t
## <fct> <dbl>
## 1 Finland 1.55
## 2 Niger 27.4
## 3 Slovenia 8.77</code></pre>
</div>
<div id="linear-regression-model" class="section level2">
<h2>Linear regression model</h2>
<p>The linear regression model (sometimes also called just the linear model) is a linear approach towards modelling the relationship between the dependent (or response) variable and one or more independent (or explanatory) variables. In this workshop we will take a look at the simplest case with only one explanatory variable, which is called simple linear regression.</p>
<p>The dependent (<span class="math inline">\(y\)</span>) and the independent variable (<span class="math inline">\(x\)</span>) are thus linked via the <span class="math inline">\(y = kx + n\)</span> equation, where <span class="math inline">\(n\)</span> represents the value of the intercept and <span class="math inline">\(k\)</span> the slope. Intercept defines the value of the dependent variable when the independent variable equals 0. The slope determines the correlation between the two variables, if slope is positive, <span class="math inline">\(x\)</span> and <span class="math inline">\(y\)</span> are positively correlated (larger <span class="math inline">\(x\)</span> results in a larger <span class="math inline">\(y\)</span>) and if slope is negative they are negatively correlated (larger <span class="math inline">\(x\)</span> results in a smaller <span class="math inline">\(y\)</span>). Usually the regression line is calculated in way that minimizes squared values of errors. On the image below data points are marked as red circles, errors as green lines and the blue line represents the calculated regression line.</p>
<div style="text-align:center">
<p><img src="" alt="drawing" width="256" /></p>
</div>
<p>In R we can use the <code>lm()</code> function to calculate the linear regression model. The example below calculates how temperature in Slovenia is correlated with the first 6 months (January to June).</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" title="1"><span class="co"># filter the data</span></a>
<a class="sourceLine" id="cb13-2" title="2">t_<span class="dv">6</span> <-<span class="st"> </span>data <span class="op">%>%</span></a>
<a class="sourceLine" id="cb13-3" title="3"><span class="st"> </span><span class="kw">filter</span> (country <span class="op">==</span><span class="st"> "Slovenia"</span> <span class="op">&</span><span class="st"> </span>month <span class="op"><=</span><span class="st"> </span><span class="dv">6</span>)</a>
<a class="sourceLine" id="cb13-4" title="4"></a>
<a class="sourceLine" id="cb13-5" title="5"><span class="co"># set January as month 0</span></a>
<a class="sourceLine" id="cb13-6" title="6">t_<span class="dv">6</span><span class="op">$</span>month_minusone <-<span class="st"> </span>t_<span class="dv">6</span><span class="op">$</span>month <span class="op">-</span><span class="st"> </span><span class="dv">1</span></a>
<a class="sourceLine" id="cb13-7" title="7"></a>
<a class="sourceLine" id="cb13-8" title="8">result <-<span class="st"> </span><span class="kw">lm</span>(<span class="dt">formula =</span> temperature <span class="op">~</span><span class="st"> </span>month_minusone, <span class="dt">data =</span> t_<span class="dv">6</span>)</a>
<a class="sourceLine" id="cb13-9" title="9">result</a></code></pre></div>
<pre><code>##
## Call:
## lm(formula = temperature ~ month_minusone, data = t_6)
##
## Coefficients:
## (Intercept) month_minusone
## -2.546 3.720</code></pre>
<p>The output states that the average temperature at month 0 (January) is -2.54 °C and the temperature grows by 3.72 °C each month from January to June. We can also visualize this by using some basic R programming and <code>ggplot</code>.</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb15-1" title="1"><span class="co"># load ggplot library</span></a>
<a class="sourceLine" id="cb15-2" title="2"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb15-3" title="3"></a>
<a class="sourceLine" id="cb15-4" title="4"><span class="co"># intercept is stored in</span></a>
<a class="sourceLine" id="cb15-5" title="5">intercept <-<span class="st"> </span>result<span class="op">$</span>coefficients[<span class="dv">1</span>]</a>
<a class="sourceLine" id="cb15-6" title="6"></a>
<a class="sourceLine" id="cb15-7" title="7"><span class="co"># slope is stored in </span></a>
<a class="sourceLine" id="cb15-8" title="8">slope <-<span class="st"> </span>result<span class="op">$</span>coefficients[<span class="dv">2</span>]</a>
<a class="sourceLine" id="cb15-9" title="9"></a>
<a class="sourceLine" id="cb15-10" title="10"><span class="co"># x - months</span></a>
<a class="sourceLine" id="cb15-11" title="11">x <-<span class="st"> </span><span class="kw">seq</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">6</span>)</a>
<a class="sourceLine" id="cb15-12" title="12"></a>
<a class="sourceLine" id="cb15-13" title="13"><span class="co"># y - temperature</span></a>
<a class="sourceLine" id="cb15-14" title="14">y <-<span class="st"> </span>slope <span class="op">*</span><span class="st"> </span>(x <span class="op">-</span><span class="st"> </span><span class="dv">1</span>) <span class="op">+</span><span class="st"> </span>intercept</a>
<a class="sourceLine" id="cb15-15" title="15"></a>
<a class="sourceLine" id="cb15-16" title="16"><span class="co"># create data frame</span></a>
<a class="sourceLine" id="cb15-17" title="17">reg_line <-<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">x=</span>x, <span class="dt">y=</span>y)</a>
<a class="sourceLine" id="cb15-18" title="18"></a>
<a class="sourceLine" id="cb15-19" title="19"><span class="co"># plot</span></a>
<a class="sourceLine" id="cb15-20" title="20"><span class="kw">ggplot</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb15-21" title="21"><span class="st"> </span><span class="kw">geom_point</span>(<span class="dt">data=</span>t_<span class="dv">6</span>, <span class="kw">aes</span>(<span class="dt">x=</span>month, <span class="dt">y=</span>temperature), <span class="dt">alpha=</span><span class="fl">0.1</span>, <span class="dt">shape=</span><span class="dv">16</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb15-22" title="22"><span class="st"> </span><span class="kw">geom_line</span>(<span class="dt">data=</span>reg_line, <span class="kw">aes</span>(<span class="dt">x=</span>x, <span class="dt">y=</span>y), <span class="dt">size=</span><span class="dv">1</span>)</a></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
</section>
</div>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>