-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathtrain.py
executable file
·146 lines (112 loc) · 4.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import tensorflow as tf
from transformer import model
from transformer.dataset import get_dataset, preprocess_sentence
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model: int, warmup_steps: int = 4000):
super(CustomSchedule, self).__init__()
self.d_model = tf.cast(d_model, dtype=tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * self.warmup_steps**-1.5
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
def inference(hparams, chatbot, tokenizer, sentence):
sentence = preprocess_sentence(sentence)
sentence = tf.expand_dims(
hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
)
output = tf.expand_dims(hparams.start_token, 0)
for i in range(hparams.max_length):
predictions = chatbot(inputs=[sentence, output], training=False)
# select the last word from the seq_len dimension
predictions = predictions[:, -1:, :]
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
# return the result if the predicted_id is equal to the end token
if tf.equal(predicted_id, hparams.end_token[0]):
break
# concatenated the predicted_id to the output which is given to the decoder
# as its input.
output = tf.concat([output, predicted_id], axis=-1)
return tf.squeeze(output, axis=0)
def predict(hparams, chatbot, tokenizer, sentence):
prediction = inference(hparams, chatbot, tokenizer, sentence)
predicted_sentence = tokenizer.decode(
[i for i in prediction if i < tokenizer.vocab_size]
)
return predicted_sentence
def evaluate(hparams, chatbot, tokenizer):
print("\nEvaluate")
sentence = "where have you been?"
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"input: {sentence}\noutput: {output}")
sentence = "it's a trap!"
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"\ninput: {sentence}\noutput: {output}")
sentence = "I am not crazy, my mother had me tested"
for _ in range(5):
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"\ninput: {sentence}\noutput: {output}")
sentence = output
def main(hparams):
tf.keras.utils.set_random_seed(1234)
dataset, tokenizer = get_dataset(hparams)
chatbot = model.transformer(hparams)
optimizer = tf.keras.optimizers.Adam(
CustomSchedule(d_model=hparams.d_model), beta_1=0.9, beta_2=0.98, epsilon=1e-9
)
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
def loss_function(y_true, y_pred):
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
loss = cross_entropy(y_true, y_pred)
mask = tf.cast(tf.not_equal(y_true, 0), dtype=tf.float32)
loss = tf.multiply(loss, mask)
return tf.reduce_mean(loss)
def accuracy(y_true, y_pred):
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
return tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
chatbot.compile(optimizer, loss=loss_function, metrics=[accuracy])
chatbot.fit(dataset, epochs=hparams.epochs)
print(f"\nsaving model to {hparams.save_model}...")
tf.keras.models.save_model(
chatbot, filepath=hparams.save_model, include_optimizer=False
)
print(
f"\nclear TensorFlow backend session and load model from {hparams.save_model}..."
)
del chatbot
tf.keras.backend.clear_session()
chatbot = tf.keras.models.load_model(
hparams.save_model,
custom_objects={
"PositionalEncoding": model.PositionalEncoding,
"MultiHeadAttentionLayer": model.MultiHeadAttentionLayer,
},
compile=False,
)
evaluate(hparams, chatbot, tokenizer)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_model", default="model.h5", type=str, help="path save the model"
)
parser.add_argument(
"--max_samples",
default=25000,
type=int,
help="maximum number of conversation pairs to use",
)
parser.add_argument(
"--max_length", default=40, type=int, help="maximum sentence length"
)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--num_layers", default=2, type=int)
parser.add_argument("--num_units", default=512, type=int)
parser.add_argument("--d_model", default=256, type=int)
parser.add_argument("--num_heads", default=8, type=int)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--activation", default="relu", type=str)
parser.add_argument("--epochs", default=20, type=int)
main(parser.parse_args())