-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
588 lines (457 loc) · 22.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
from cmath import nan
import gc
import re, networkx as nx
import pandas as pd
import domain
import tabulate as tb
from typing import Counter, List
from audioop import reverse
from email import header
from itertools import count
import pandas as pd
import domain, utils
import tabulate as tb
from typing import List
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import networkx as nx
import domain, utils
import statistics, math
import igraph
from networkx.algorithms import bipartite as bp
from networkx.algorithms import community as nxcm
import scipy.stats as stats
from sklearn.metrics.pairwise import cosine_similarity
from scipy import spatial
# from apyori import apriori
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, fpmax, fpgrowth
from mlxtend.frequent_patterns import association_rules
from prefixspan import PrefixSpan
import functools
from itertools import count
def find_citation(text : str) -> str:
tokens = text.split('(Citation: ')
tokens = tokens[-1].strip().split(' ')
outputText = ''
for index in range(0, len(tokens)):
outputText = outputText + ' ' + tokens[index]
return outputText[0:-1].strip()
def findYear(text : str) -> str:
regexPattern = r'''[0-9][0-9][0-9][0-9]'''
match = re.search(regexPattern, text)
return text[match.span()[0] : match.span()[1]]
def initializeTactics(tactics : List['domain.Tactic']) -> None:
dfTactic = pd.read_excel('ttps.xlsx', sheet_name='tactic')
for row in dfTactic.itertuples():
tactic = domain.Tactic(row.tacticId, row.tacticName)
if row.tacticId == 'TA0043' : tactic.sequence = 1
if row.tacticId == 'TA0042' : tactic.sequence = 2
if row.tacticId == 'TA0001' : tactic.sequence = 3
if row.tacticId == 'TA0002' : tactic.sequence = 4
if row.tacticId == 'TA0003' : tactic.sequence = 5
if row.tacticId == 'TA0004' : tactic.sequence = 6
if row.tacticId == 'TA0005' : tactic.sequence = 7
if row.tacticId == 'TA0006' : tactic.sequence = 8
if row.tacticId == 'TA0007' : tactic.sequence = 9
if row.tacticId == 'TA0008' : tactic.sequence = 10
if row.tacticId == 'TA0009' : tactic.sequence = 11
if row.tacticId == 'TA0011' : tactic.sequence = 12
if row.tacticId == 'TA0010' : tactic.sequence = 13
if row.tacticId == 'TA0040' : tactic.sequence = 14
tactics.append(tactic)
def initializeTechniques(techniques : List['domain.Technique']) -> None:
dfTechnique = pd.read_excel('ttps.xlsx', sheet_name='technique')
for row in dfTechnique.itertuples():
ifAny = [x for x in techniques if x.id == row.techniqueId]
if len(ifAny) == 0:
technique = domain.Technique(row.techniqueId, row.techniqueName)
techniques.append(technique)
def initializeTacticTechniqueMapping(tactics : List['domain.Tactic'], techniques : List['domain.Technique']) -> None:
dfTechnique = pd.read_excel('ttps.xlsx', sheet_name='technique')
for row in dfTechnique.itertuples():
technique = [x for x in techniques if x.id == row.techniqueId][0]
tactic = [x for x in tactics if x.id == row.tactics][0]
if tactic not in technique.tactics: technique.tactics.append(tactic)
if technique not in tactic.techniques: tactic.techniques.append(technique)
def initializeProcedures(procedures : List['domain.Procedure'], techniques : List['domain.Technique']) -> None:
dfProcedures = pd.read_excel('technique.xlsx', sheet_name='procedure')
dfProcedures = dfProcedures[['sourceId', 'targetId', 'citation']]
dfProcedures['targetId'] = dfProcedures['targetId'].apply(lambda row : row[0:5])
dfProcedures['citation'] = dfProcedures['citation'].apply(find_citation)
dfPRef = pd.read_excel('technique.xlsx', sheet_name='citations')
dfPRef['reference'] = dfPRef['reference'].apply(findYear)
dfPRef = dfPRef.drop_duplicates()
dfm = pd.merge(dfProcedures, dfPRef, how='left', left_on=['citation'], right_on=['citation'])
dfm = dfm.drop_duplicates()
dfm = dfm.dropna()
for row in dfm.itertuples():
procedure = domain.Procedure(row.sourceId + ':' + row.targetId + ':' + '-'.join(str(row.citation).split(' ')))
procedure.technique = next( (x for x in techniques if x.id == row.targetId), None)
procedure.year = row.reference
procedure.name = row.sourceId + ':' + row.targetId
procedure.reference = str(row.citation)
if 'G' in procedure.id:
procedure.type = 'group'
else:
procedure.type = 'software'
procedures.append(procedure)
def initializeGroups(groups : List['domain.Group'], techniques : List['domain.Technique']) -> None:
dfGroups = pd.read_excel('groups.xlsx', sheet_name='ttps')
dfGroups = dfGroups[['sourceId', 'targetId']]
dfGroups['targetId'] = dfGroups['targetId'].apply(lambda v : v[0:5])
dfGroups = dfGroups.drop_duplicates()
dfg = dfGroups.groupby(['sourceId'])
for name, group in dfg:
g = domain.Group(name)
for row in group.itertuples():
ttp = [x for x in techniques if x.id == row.targetId][0]
if ttp not in g.techniques:
g.techniques.append(ttp)
groups.append(g)
def initializeSoftwares(softwares : List['domain.Software'], techniques : List['domain.Technique']) -> None:
dfSoftwares = pd.read_excel('software.xlsx', sheet_name='ttps')
dfSoftwares = dfSoftwares[['sourceId', 'targetId']]
dfSoftwares['targetId'] = dfSoftwares['targetId'].apply(lambda v : v[0:5])
dfSoftwares = dfSoftwares.drop_duplicates()
dfg = dfSoftwares.groupby(['sourceId'])
for name, group in dfg:
software = domain.Software(name)
for row in group.itertuples():
ttp = [x for x in techniques if x.id == row.targetId][0]
if ttp not in software.techniques:
software.techniques.append(ttp)
softwares.append(software)
def buildDataSchema(tactics : List['domain.Tactic'], techniques : List['domain.Technique'], procedures : List['domain.Procedure'], groups : List['domain.Group'], softwares : List['domain.Software']) -> None:
initializeTactics(tactics)
initializeTechniques(techniques)
initializeTacticTechniqueMapping(tactics, techniques)
initializeProcedures(procedures, techniques)
initializeGroups(groups, techniques)
initializeSoftwares(softwares, techniques)
return
def degree_centrality(graph):
max = 0
for edge in graph.edges:
if max < graph.edges[edge]['count']:
max = graph.edges[edge]['count']
dc = {}
for node in graph.nodes:
total = 0
for item in graph.neighbors(node):
total += graph.edges[node, item]['count']
dc[f'{node}'] = total/(max*len(graph))
return dc
def initializeCocGraph(groupsList : List['domain.Group'], softwareList : List['domain.Software'], cocTTPs : List[List['domain.Technique']], techniques : List['domain.Technique'], tactics : List['domain.Tactic'], min_cooccurring_technique = 3, min_pct_cooccurrence = 5) -> nx.Graph:
allTechniques = []
for g in groupsList:
for te in g.techniques:
allTechniques.append(te)
allTechniques = list( set(allTechniques) )
for s in softwareList:
for te in s.techniques:
allTechniques.append(te)
allTechniques = list( set(allTechniques) )
allTechniques.sort(key=lambda t : t.id)
# cocTTPs = []
cocTTPs.extend([g.techniques for g in groupsList if len(g.techniques) >= min_cooccurring_technique])
cocTTPs.extend([s.techniques for s in softwareList if len(s.techniques) >= min_cooccurring_technique])
ttpsTuples = []
for ttp1 in allTechniques:
for ttp2 in allTechniques:
count = 0
for item in cocTTPs:
if ttp1 in item and ttp2 in item and ttp1 != ttp2:
count += 1
if (ttp1, ttp2, count) not in ttpsTuples and (ttp2, ttp1, count) not in ttpsTuples and ttp1 != ttp2 and count > len(cocTTPs)*min_pct_cooccurrence/100:
ttpsTuples.append((ttp1, ttp2, count))
ttpsTuples.sort(key= lambda i : i[2], reverse=True)
graph = nx.Graph()
graph.add_nodes_from([x.id for x in allTechniques])
for node in graph.nodes:
graph.nodes[node]['tactic'] = next( (x.tactics[0].id for x in techniques if x.id == node) )
te = next( (x for x in techniques if x.id == node) )
graph.nodes[node]['frequency'] = len([x for x in cocTTPs if te in x])
# print(graph.nodes[node])
for item in ttpsTuples:
graph.add_edge(item[0].id, item[1].id, count = item[2], distance = ttpsTuples[0][2] + 1 - item[2])
return graph
def generateRules(cocTTPs : List[List['domain.Technique']]):
transactions = []
for cases in cocTTPs:
transaction = []
transaction.extend( [x.id for x in cases] )
transactions.append(transaction)
# print(transactions)
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)
# print(df.head())
frequent_itemsets = fpgrowth(df, min_support=0.10, use_colnames=True)
frequent_itemsets['len'] = frequent_itemsets['itemsets'].apply(lambda x : len(x))
dflen = frequent_itemsets.query("len == 2")
ttt = [list(x)[0] for x in dflen['itemsets'].tolist()]
print(f'=========={len(set(ttt))}')
# print(tb.tabulate(dflen.sort_values('support', ascending=False).head(100000), headers='keys', tablefmt='psql'))
# print(tb.tabulate(dflen.describe(), headers='keys', tablefmt='psql'))
lengths = []
for item in frequent_itemsets.itertuples():
lengths.append(len(item.itemsets))
# print(Counter(lengths))
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.505)
# rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.5)
print(f'*** rules ***')
# print(tb.tabulate(rules.sort_values('confidence', ascending=False).head(20), headers='keys', tablefmt='psql'))
# print(tb.tabulate(rules.sort_values('lift', ascending=False).head(20), headers='keys', tablefmt='psql'))
# print(tb.tabulate(rules, headers='keys', tablefmt='psql'))
print(len(rules))
rules['alen'] = rules['antecedents'].apply(lambda x : len(x))
rules['clen'] = rules['consequents'].apply(lambda x : len(x))
dfq = rules.query("alen + clen == 2")
# item = dfq.loc[1, 'antecedents']
# print(list(item)[0])
# print(tb.tabulate(dfq.sort_values(by='confidence', ascending=False).head(20), headers='keys', tablefmt='psql'))
# cofValues = dfq['confidence'].tolist()
# print(f'****** {len(dfq)} {min(cofValues)} {max(cofValues)} {statistics.mean(cofValues)} {statistics.quantiles(cofValues, n=4)}')
return rules
def generateRulesTactic(cocTTPs : List[List['domain.Technique']]):
transactions = []
for cases in cocTTPs:
transaction = []
transaction.extend( [x.tactics[0].id for x in cases] )
transaction = list(set(transaction))
transactions.append(transaction)
# print(transactions)
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)
# print(df.head())
frequent_itemsets = fpgrowth(df, min_support=0.10, use_colnames=True)
frequent_itemsets['len'] = frequent_itemsets['itemsets'].apply(lambda x : len(x))
dflen = frequent_itemsets.query("len == 1")
print(tb.tabulate(dflen.sort_values('support', ascending=False), headers='keys', tablefmt='psql'))
print(len(frequent_itemsets))
lengths = []
for item in frequent_itemsets.itertuples():
lengths.append(len(item.itemsets))
print(Counter(lengths))
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.50)
# rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.75)
print(f'*** rules ***')
# print(tb.tabulate(rules.sort_values('support', ascending=False), headers='keys', tablefmt='psql'))
# print(tb.tabulate(rules, headers='keys', tablefmt='psql'))
# print(rules.dtypes)
return rules
def getTechniqueFrequentSequence(cocTTPs : List[List['domain.Technique']], techniques : List['domain.Technique'], tactics : List['domain.Tactic'] ):
print(f'*** frequent sequence of techniques ***')
transactions = []
for cases in cocTTPs:
transaction = []
sortedTTPs = sorted(cases, key = lambda t : t.tactics[0].sequence )
transaction.extend( [x.name for x in sortedTTPs] )
transactions.append(transaction)
ps = PrefixSpan(transactions)
tactics.sort(key=lambda ta : ta.sequence)
for item in ps.topk(100):
if len(item[1]) > 2:
text = ''
for element in item[1]:
te = next( (x for x in techniques if x.name == element) )
ta = next( (x for x in tactics if te in x.techniques) )
text += f'{te.name}@{ta.name} -->'
print(text)
return
def generateGraph(cocTTPs : List[List['domain.Technique']], techniques : List['domain.Technique'], tactics : List['domain.Tactic']) -> nx.Graph:
df = generateRules(cocTTPs)
df['alen'] = df['antecedents'].apply(lambda x : len(x))
df['clen'] = df['consequents'].apply(lambda x : len(x))
dfq = df.query("alen == 1 and clen == 1")
ttpsTuples = []
for row in dfq.itertuples():
ttpsTuples.append([( list(row.antecedents)[0], list(row.consequents)[0] ), row.confidence, row.support])
techniqueNames = [x.id for x in techniques]
edges = []
for item in ttpsTuples:
edges.append([(item[0][0], item[0][1]), item[1], item[2]])
cocGraph = nx.Graph()
for item in edges:
if item[0][0] not in list(cocGraph.nodes):
cocGraph.add_node(item[0][0])
if item[0][1] not in list(cocGraph.nodes):
cocGraph.add_node(item[0][1])
cocGraph.add_edge(item[0][0], item[0][1], weight = item[1], count = len(cocTTPs) * item[2], distance = 1 - item[1])
for node in cocGraph.nodes():
cocGraph.nodes[node]['tactic'] = next( (x.tactics[0].id for x in techniques if x.id == node) )
te = next( (x for x in techniques if x.id == node) )
cocGraph.nodes[node]['frequency'] = len([x for x in cocTTPs if te in x])
cocGraph.nodes[node]['title'] = f'{cocGraph.nodes[node]["tactic"]}:{node}'
print(f'number of nodes: {len(cocGraph.nodes)}')
print(f'number of edges: {len(cocGraph.edges)}')
cocGraph = nx.minimum_spanning_tree(cocGraph, weight='distance')
print(f'number of nodes: {len(cocGraph.nodes)}')
print(f'number of edges: {len(cocGraph.edges)}')
plt.close()
nx.draw_spring(cocGraph, with_labels=True, node_color='gold')
plt.show()
return cocGraph
def generateDiGraph2(cocTTPs : List[List['domain.Technique']], techniques : List['domain.Technique'], tactics : List['domain.Tactic']) -> nx.DiGraph:
df = generateRules(cocTTPs)
# getTechniqueFrequentSequence(cocTTPs, techniques, tactics)
# print(df)
# print(df.loc[0, 'antecedents'])
df['alen'] = df['antecedents'].apply(lambda x : len(x))
df['clen'] = df['consequents'].apply(lambda x : len(x))
dfq = df.query("alen == 1 and clen == 1")
# item = dfq.loc[1, 'antecedents']
# print(list(item)[0])
# print(tb.tabulate(dfq, headers='keys', tablefmt='psql'))
cofValues = dfq['confidence'].tolist()
print(f'****** {statistics.quantiles(cofValues, n=4)}')
dfqq = df.query("alen == 2 and clen == 1")
# print(f'dfqq ==> {len(dfqq)}')
# print(df.describe())
ttpsTuples = []
for row in dfq.itertuples():
ttpsTuples.append([( list(row.antecedents)[0], list(row.consequents)[0] ), row.confidence, row.support])
techniqueNames = [x.id for x in techniques]
edges = []
for item in ttpsTuples:
edges.append([(item[0][0], item[0][1]), item[1], item[2]])
# for t1 in techniqueNames:
# for t2 in techniqueNames:
# if len([x for x in edges if (t1,t2) == x[0] or (t2,t1) == x[0] ]) == 0:
# pair1 = next( (x for x in ttpsTuples if (t1,t2) == x[0] ), None )
# pair2 = next( (x for x in ttpsTuples if (t2,t1) == x[0] ), None )
# if pair1 == None and pair2 == None:
# continue
# if pair1 != None and pair2 == None:
# edges.append( [(t1, t2), pair1[1]] )
# if pair1 == None and pair2 != None:
# edges.append( [(t2, t1), pair2[1]] )
# if pair1 != None and pair2 != None:
# if pair1[1] > pair2[1] :
# edges.append( [(t1, t2), pair1[1]] )
# else:
# edges.append( [(t2, t1), pair2[1]] )
cocDiGraph = nx.DiGraph()
for item in edges:
if item[0][0] not in list(cocDiGraph.nodes):
cocDiGraph.add_node(item[0][0])
if item[0][1] not in list(cocDiGraph.nodes):
cocDiGraph.add_node(item[0][1])
cocDiGraph.add_edge(item[0][0], item[0][1], weight = item[1], count = len(cocTTPs) * item[2], distance = 1 - item[1])
alph = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T' ]
idx = 0
for node in cocDiGraph.nodes():
cocDiGraph.nodes[node]['tactic'] = next( (x.tactics[0].id for x in techniques if x.id == node) )
te = next( (x for x in techniques if x.id == node) )
cocDiGraph.nodes[node]['frequency'] = len([x for x in cocTTPs if te in x])
cocDiGraph.nodes[node]['title'] = f'{cocDiGraph.nodes[node]["tactic"]}:{node}'
# cocDiGraph.nodes[node]['code'] = f'{alph[idx]}'
# idx += 1
ig = igraph.Graph.from_networkx(cocDiGraph)
edges = ig.feedback_arc_set()
tuples = []
for id in edges:
source = ig.vs[ig.es[id].source]['_nx_name']
target = ig.vs[ig.es[id].target]['_nx_name']
tuples.append((source,target))
# print(tuples)
# print(ig.es[0].source)
# print(ig.es[0].target)
# # print(ig.vs)
# # print(ig.get_edgelist())
# # print(edges)
# cocDiGraph2 = cocDiGraph.copy()
# for e in tuples:
# cocDiGraph.remove_edge(e[0], e[1])
# nodes = [n for n in cocDiGraph.nodes(data=False)]
# for n1 in nodes:
# for n2 in nodes:
# if cocDiGraph.has_edge(n1, n2) and cocDiGraph.has_edge(n2, n1):
# # print(f'{cocDiGraph.edges[n1,n2]} *** {cocDiGraph.edges[n2,n1]}')
# e1 = cocDiGraph.edges[n1,n2]
# e2 = cocDiGraph.edges[n2,n1]
# if e1['weight'] > e2['weight']:
# cocDiGraph.remove_edge(n2, n1)
# else:
# cocDiGraph.remove_edge(n1, n2)
print(f'number of nodes: {len(cocDiGraph.nodes)}')
print(f'number of edges: {len(cocDiGraph.edges)}')
# print(f'density: {nx.density(cocDiGraph)}')
# print(f'diameter: {nx.diameter(cocDiGraph.to_undirected())}')
# print(f'radius: {nx.radius(cocDiGraph.to_undirected())}')
# print(f'eccentricity: {nx.eccentricity(cocDiGraph.to_undirected())}')
# gcenter = nx.center(cocDiGraph.to_undirected())
# print([x for x in gcenter])
# for node in cocDiGraph.nodes(data=True):
# print(node[1]['tactic])
# for edge in cocDiGraph.edges(data=True):
# print(edge)
# dg = nx.DiGraph()
# dg.add_node('a')
# dg.add_node('b')
# dg.add_edge('a', 'b')
tacticgroups = list(set(nx.get_node_attributes(cocDiGraph,'tactic').values()))
plt.figure(3,figsize=(12,8))
pos = nx.circular_layout(cocDiGraph)
colors = ['yellow', 'orange', 'cyan', 'gold', 'magenta', 'pink', 'lime']
shapes = ['d', 'X', 'P']
shapes = ['o', 'o', 'o']
tacticnames = []
for item in tacticgroups:
tacticnames.append(next( (x.name for x in tactics if x.id == item) ))
labels = [n[1]['title'] for n in cocDiGraph.nodes(data=True)]
labels = {n[0]: n[1]['title'] for n in cocDiGraph.nodes(data=True)}
# labels = {n[0]: n[1]['code'] for n in cocDiGraph.nodes(data=True)}
tacticNameLists = [n[1]['tactic'] for n in cocDiGraph.nodes(data=True)]
print(tacticNameLists)
print(Counter(tacticNameLists))
print({n: n for n in cocDiGraph})
for index in range(0, len(tacticgroups)):
# print(tacticgroups[index])
# print(colors[index])
searchNodes = [x[0] for x in cocDiGraph.nodes(data=True) if x[1]['tactic'] == tacticgroups[index]]
nsizes = [cocDiGraph.nodes[x]['frequency']*2000/669 for x in searchNodes]
# print(nsizes)
# nx.draw_networkx_nodes(cocDiGraph, pos=pos, nodelist=searchNodes, node_size=150, alpha=0.99, node_color=colors[index % 7], node_shape=shapes[index % 3], label=tacticnames[index])
esizes = []
for edge in cocDiGraph.edges:
# print(f'{cocDiGraph.edges[edge[0], edge[1]]["weight"]}')
esizes.append(cocDiGraph.edges[edge[0], edge[1]]["weight"])
# , connectionstyle="arc3,rad=0.4"
nx.draw_networkx_edges(cocDiGraph, pos=pos, width=0.3, edge_color='grey')
# labels=labels,
nx.draw_networkx_labels(cocDiGraph, pos=pos, font_color='blue', font_size=15, font_weight='bold')
plt.legend(scatterpoints = 1)
# plt.show()
# searchNodes = [x for x in cocDiGraph.nodes(data=True) if x[1]['tactic'] == 'TA0005']
# print(searchNodes)
# nx.draw_circular(cocDiGraph, with_labels=True)
# nx.draw_kamada_kawai(cocDiGraph, with_labels=False)
# plt.show()
# print(len(cocDiGraph.nodes))
ig = igraph.Graph.from_networkx(cocDiGraph)
# layout = ig.layout("kk")
# igraph.plot(ig, layout=layout)
# plt.show()
# # out_fig_name = "digraph.eps"
# visual_style = {}
# colours = ['#fecc5c', '#a31a1c']
# visual_style["bbox"] = (3000,3000)
# visual_style["margin"] = 17
# visual_style["vertex_color"] = 'red'
# visual_style["vertex_size"] = 50
# visual_style["vertex_label_size"] = 80
# visual_style["edge_curved"] = False
# my_layout = ig.layout_auto()
# visual_style["layout"] = my_layout
# # igraph.plot(ig, out_fig_name, **visual_style)
# igraph.plot(ig, **visual_style)
return cocDiGraph
def normalizeList(values):
minVal = min(values)
maxVal = max(values)
newValues = [ (x - minVal)/(maxVal + 0.0000000001 - minVal) for x in values]
return newValues