Skip to content

brianpm/wavenumber_frequency

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wavenumber_frequency

A pretty straightforward implementation of the wavenumber-frequency spectral analysis following Wheeler & Kiladis.

The approach closely follows the NCL implementation. The main difference is that the filtering rule is simpler here.

The file wavenumber_frequency_functions.py contains all the functions needed to produce "wheeler-kiladis diagrams." There are lots of notes included, including some directly copied from NCL's source code.

The file example_analysis_script.py shows a skeletal start to analysis. I have omitted the data preparation, but it could be as simple as using x = xarray.open_dataset()['precip'].

The file example_analysis_like_ncl.py shows an example that tries to reproduce the basic example from NCL. This is probably the place to start. I am even including the data file in the github, which I obtained from Dennis Shea / NCL. The output for me, using python 3.8, are these two plots:

symmetric

anti-symmetric

At this point, I believe this approach produces results that are very similar to NCL. This has only been tested, however, using daily mean precipitation from climate model output and the twice-daily example data. Missing/invalid data may not be handled correctly. Other variables should be fine because I do not think there are any hard-coded values or assumptions about the physical units, but I haven't tested.

About

Perform wavenumber-frequency analysis on gridded data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published