-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path4_visualize_outputs.py
272 lines (236 loc) · 8.84 KB
/
4_visualize_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import annotations
import io
from pathlib import Path
from typing import Callable
import cv2
import imageio.v3 as iio
import numpy as np
import torch
import tyro
import viser
from projectaria_tools.core.data_provider import (
VrsDataProvider,
create_vrs_data_provider,
)
from projectaria_tools.core.sensor_data import TimeDomain
from tqdm import tqdm
from egoallo import fncsmpl
from egoallo.data.aria_mps import load_point_cloud_and_find_ground
from egoallo.hand_detection_structs import (
CorrespondedAriaHandWristPoseDetections,
CorrespondedHamerDetections,
)
from egoallo.inference_utils import InferenceTrajectoryPaths
from egoallo.network import EgoDenoiseTraj
from egoallo.transforms import SE3, SO3
from egoallo.vis_helpers import visualize_traj_and_hand_detections
def main(
search_root_dir: Path,
smplh_npz_path: Path = Path("./data/smplh/neutral/model.npz"),
) -> None:
"""Visualization script for outputs from EgoAllo.
Arguments:
search_root_dir: Root directory where inputs/outputs are stored. All
NPZ files in this directory will be assumed to be outputs from EgoAllo.
smplh_npz_path: Path to the SMPLH model NPZ file.
"""
device = torch.device("cuda")
body_model = fncsmpl.SmplhModel.load(smplh_npz_path).to(device)
server = viser.ViserServer()
server.gui.configure_theme(dark_mode=True)
def get_file_list():
return ["None"] + sorted(
str(p.relative_to(search_root_dir))
for p in search_root_dir.glob("**/egoallo_outputs/*.npz")
)
options = get_file_list()
file_dropdown = server.gui.add_dropdown("File", options=options)
refresh_file_list = server.gui.add_button("Refresh File List")
@refresh_file_list.on_click
def _(_) -> None:
file_dropdown.options = get_file_list()
trajectory_folder = server.gui.add_folder("Trajectory")
current_file = "None"
loop_cb = lambda: None
while True:
loop_cb()
if current_file != file_dropdown.value:
current_file = file_dropdown.value
# Clear the scene.
server.scene.reset()
if current_file != "None":
# Clear the folder by removing then re-adding it.
# Perhaps we should expose some API for looping through children?
trajectory_folder.remove()
trajectory_folder = server.gui.add_folder("Trajectory")
with trajectory_folder:
npz_path = Path(search_root_dir / current_file).resolve()
loop_cb = load_and_visualize(
server,
npz_path,
body_model,
device=device,
)
args = npz_path.parent / (npz_path.stem + "_args.yaml")
if args.exists():
with server.gui.add_folder("Args"):
server.gui.add_markdown(
"```\n" + args.read_text() + "\n```"
)
def load_and_visualize(
server: viser.ViserServer,
npz_path: Path,
body_model: fncsmpl.SmplhModel,
device: torch.device,
) -> Callable[[], int]:
# Here's how we saved:
#
# np.savez(
# out_path,
# Ts_world_cpf=Ts_world_cpf[1:, :].numpy(force=True),
# Ts_world_root=Ts_world_root.numpy(force=True),
# body_quats=posed.local_quats[..., :21, :].numpy(force=True),
# left_hand_quats=posed.local_quats[..., 21:36, :].numpy(force=True),
# right_hand_quats=posed.local_quats[..., 36:51, :].numpy(force=True),
# betas=traj.betas.numpy(force=True),
# frame_nums=np.arange(args.start_index, args.start_index + args.traj_length),
# timestamps_ns=(np.array(pose_timestamps_sec) * 1e9).astype(np.int64),
# )
outputs = np.load(npz_path)
expected_keys = [
"Ts_world_cpf",
"Ts_world_root",
"body_quats",
"left_hand_quats",
"right_hand_quats",
"betas",
"frame_nums",
"timestamps_ns",
]
assert all(
key in outputs for key in expected_keys
), f"Missing keys in NPZ file. Expected: {expected_keys}, Found: {list(outputs.keys())}"
(num_samples, timesteps, _, _) = outputs["body_quats"].shape
# We assume the directory structure is:
# - some trajectory root
# - outputs
# - the npz file
traj_dir = npz_path.resolve().parent.parent
paths = InferenceTrajectoryPaths.find(traj_dir)
provider = create_vrs_data_provider(str(paths.vrs_file))
device_calib = provider.get_device_calibration()
T_device_cpf = SE3(
torch.from_numpy(
device_calib.get_transform_device_cpf().to_quat_and_translation()
)
)
assert T_device_cpf.wxyz_xyz.shape == (1, 7)
pose_timestamps_sec = outputs["timestamps_ns"] / 1e9
Ts_world_device = (
SE3(torch.from_numpy(outputs["Ts_world_cpf"])) @ T_device_cpf.inverse()
).wxyz_xyz
# Get temporally corresponded HaMeR detections.
if paths.hamer_outputs is not None:
hamer_detections = CorrespondedHamerDetections.load(
paths.hamer_outputs,
pose_timestamps_sec,
)
else:
print("No hand detections found.")
hamer_detections = None
# Get temporally corresponded Aria wrist and palm estimates.
if paths.wrist_and_palm_poses_csv is not None:
aria_detections = CorrespondedAriaHandWristPoseDetections.load(
paths.wrist_and_palm_poses_csv,
pose_timestamps_sec,
Ts_world_device=Ts_world_device.numpy(force=True),
)
else:
aria_detections = None
if paths.splat_path is not None:
print("Found splat at", paths.splat_path)
else:
print("No scene splat found.")
# Get point cloud + floor.
points_data, floor_z = load_point_cloud_and_find_ground(
paths.points_path, "filtered"
)
traj = EgoDenoiseTraj(
betas=torch.from_numpy(outputs["betas"]).to(device),
body_rotmats=SO3(
torch.from_numpy(outputs["body_quats"]),
)
.as_matrix()
.to(device),
# We weren't saving contacts originally. We added it September 28th.
contacts=torch.zeros((num_samples, timesteps, 21), device=device)
if "contacts" not in outputs
else torch.from_numpy(outputs["contacts"]).to(device),
hand_rotmats=SO3(
torch.from_numpy(
np.concatenate(
[
outputs["left_hand_quats"],
outputs["right_hand_quats"],
],
axis=-2,
)
).to(device)
).as_matrix(),
)
Ts_world_cpf = torch.from_numpy(outputs["Ts_world_cpf"]).to(device)
def get_ego_video(
start_index: int,
end_index: int,
total_duration: float,
) -> bytes:
"""Helper function that returns the egocentric video corresponding to
some start/end pose index."""
assert isinstance(provider, VrsDataProvider)
rgb_stream_id = provider.get_stream_id_from_label("camera-rgb")
assert rgb_stream_id is not None
camera_fps = provider.get_configuration(rgb_stream_id).get_nominal_rate_hz()
print(f"{camera_fps=}")
start_ns = int(outputs["timestamps_ns"][start_index])
first_ns = provider.get_first_time_ns(rgb_stream_id, TimeDomain.RECORD_TIME)
image_start_index = int((start_ns - first_ns) / 1e9 * camera_fps)
image_end_index = min(
int(image_start_index + (end_index - start_index) / 30.0 * camera_fps) + 5,
provider.get_num_data(rgb_stream_id),
)
frames = []
for i in tqdm(range(image_start_index, image_end_index)):
image_data = provider.get_image_data_by_index(rgb_stream_id, i)[0]
image_array = image_data.to_numpy_array().copy()
image_array = cv2.resize(
image_array, (800, 800), interpolation=cv2.INTER_AREA
)
image_array = cv2.rotate(image_array, cv2.ROTATE_90_CLOCKWISE)
frames.append(image_array)
fps = len(frames) / total_duration
output = io.BytesIO()
iio.imwrite(
output,
frames,
fps=fps,
extension=".mp4",
codec="libx264",
pixelformat="yuv420p",
quality=None,
ffmpeg_params=["-crf", "23"],
)
return output.getvalue()
return visualize_traj_and_hand_detections(
server,
Ts_world_cpf,
traj,
body_model,
hamer_detections,
aria_detections,
points_data,
paths.splat_path,
floor_z=floor_z,
get_ego_video=get_ego_video,
)
if __name__ == "__main__":
tyro.cli(main)