-
Notifications
You must be signed in to change notification settings - Fork 14
/
1_train_motion_prior.py
223 lines (193 loc) · 8.04 KB
/
1_train_motion_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""Training script for EgoAllo diffusion model using HuggingFace accelerate."""
import dataclasses
import shutil
from pathlib import Path
from typing import Literal
import tensorboardX
import torch.optim.lr_scheduler
import torch.utils.data
import tyro
import yaml
from accelerate import Accelerator, DataLoaderConfiguration
from accelerate.utils import ProjectConfiguration
from loguru import logger
from egoallo import network, training_loss, training_utils
from egoallo.data.amass import EgoAmassHdf5Dataset
from egoallo.data.dataclass import collate_dataclass
@dataclasses.dataclass(frozen=True)
class EgoAlloTrainConfig:
experiment_name: str
dataset_hdf5_path: Path
dataset_files_path: Path
model: network.EgoDenoiserConfig = network.EgoDenoiserConfig()
loss: training_loss.TrainingLossConfig = training_loss.TrainingLossConfig()
# Dataset arguments.
batch_size: int = 256
"""Effective batch size."""
num_workers: int = 2
subseq_len: int = 128
dataset_slice_strategy: Literal[
"deterministic", "random_uniform_len", "random_variable_len"
] = "random_uniform_len"
dataset_slice_random_variable_len_proportion: float = 0.3
"""Only used if dataset_slice_strategy == 'random_variable_len'."""
train_splits: tuple[Literal["train", "val", "test", "just_humaneva"], ...] = (
"train",
"val",
)
# Optimizer options.
learning_rate: float = 1e-4
weight_decay: float = 1e-4
warmup_steps: int = 1000
max_grad_norm: float = 1.0
def get_experiment_dir(experiment_name: str, version: int = 0) -> Path:
"""Creates a directory to put experiment files in, suffixed with a version
number. Similar to PyTorch lightning."""
experiment_dir = (
Path(__file__).absolute().parent
/ "experiments"
/ experiment_name
/ f"v{version}"
)
if experiment_dir.exists():
return get_experiment_dir(experiment_name, version + 1)
else:
return experiment_dir
def run_training(
config: EgoAlloTrainConfig,
restore_checkpoint_dir: Path | None = None,
) -> None:
# Set up experiment directory + HF accelerate.
# We're getting to manage logging, checkpoint directories, etc manually,
# and just use `accelerate` for distibuted training.
experiment_dir = get_experiment_dir(config.experiment_name)
assert not experiment_dir.exists()
accelerator = Accelerator(
project_config=ProjectConfiguration(project_dir=str(experiment_dir)),
dataloader_config=DataLoaderConfiguration(split_batches=True),
)
writer = (
tensorboardX.SummaryWriter(logdir=str(experiment_dir), flush_secs=10)
if accelerator.is_main_process
else None
)
device = accelerator.device
# Initialize experiment.
if accelerator.is_main_process:
training_utils.pdb_safety_net()
# Save various things that might be useful.
experiment_dir.mkdir(exist_ok=True, parents=True)
(experiment_dir / "git_commit.txt").write_text(
training_utils.get_git_commit_hash()
)
(experiment_dir / "git_diff.txt").write_text(training_utils.get_git_diff())
(experiment_dir / "run_config.yaml").write_text(yaml.dump(config))
(experiment_dir / "model_config.yaml").write_text(yaml.dump(config.model))
# Add hyperparameters to TensorBoard.
assert writer is not None
writer.add_hparams(
hparam_dict=training_utils.flattened_hparam_dict_from_dataclass(config),
metric_dict={},
name=".", # Hack to avoid timestamped subdirectory.
)
# Write logs to file.
logger.add(experiment_dir / "trainlog.log", rotation="100 MB")
# Setup.
model = network.EgoDenoiser(config.model)
train_loader = torch.utils.data.DataLoader(
dataset=EgoAmassHdf5Dataset(
config.dataset_hdf5_path,
config.dataset_files_path,
splits=config.train_splits,
subseq_len=config.subseq_len,
cache_files=True,
slice_strategy=config.dataset_slice_strategy,
random_variable_len_proportion=config.dataset_slice_random_variable_len_proportion,
),
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
persistent_workers=config.num_workers > 0,
pin_memory=True,
collate_fn=collate_dataclass,
drop_last=True,
)
optim = torch.optim.AdamW( # type: ignore
model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay,
)
scheduler = torch.optim.lr_scheduler.LambdaLR(
optim, lr_lambda=lambda step: min(1.0, step / config.warmup_steps)
)
# HF accelerate setup. We use this for parallelism, etc!
model, train_loader, optim, scheduler = accelerator.prepare(
model, train_loader, optim, scheduler
)
accelerator.register_for_checkpointing(scheduler)
# Restore an existing model checkpoint.
if restore_checkpoint_dir is not None:
accelerator.load_state(str(restore_checkpoint_dir))
# Get the initial step count.
if restore_checkpoint_dir is not None and restore_checkpoint_dir.name.startswith(
"checkpoint_"
):
step = int(restore_checkpoint_dir.name.partition("_")[2])
else:
step = int(scheduler.state_dict()["last_epoch"])
assert step == 0 or restore_checkpoint_dir is not None, step
# Save an initial checkpoint. Not a big deal but currently this has an
# off-by-one error, in that `step` means something different in this
# checkpoint vs the others.
accelerator.save_state(str(experiment_dir / f"checkpoints_{step}"))
# Run training loop!
loss_helper = training_loss.TrainingLossComputer(config.loss, device=device)
loop_metrics_gen = training_utils.loop_metric_generator(counter_init=step)
prev_checkpoint_path: Path | None = None
while True:
for train_batch in train_loader:
loop_metrics = next(loop_metrics_gen)
step = loop_metrics.counter
loss, log_outputs = loss_helper.compute_denoising_loss(
model,
unwrapped_model=accelerator.unwrap_model(model),
train_batch=train_batch,
)
log_outputs["learning_rate"] = scheduler.get_last_lr()[0]
accelerator.log(log_outputs, step=step)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.max_grad_norm)
optim.step()
scheduler.step()
optim.zero_grad(set_to_none=True)
# The rest of the loop will only be executed by the main process.
if not accelerator.is_main_process:
continue
# Logging.
if step % 10 == 0:
assert writer is not None
for k, v in log_outputs.items():
writer.add_scalar(k, v, step)
# Print status update to terminal.
if step % 20 == 0:
mem_free, mem_total = torch.cuda.mem_get_info()
logger.info(
f"step: {step} ({loop_metrics.iterations_per_sec:.2f} it/sec)"
f" mem: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G"
f" lr: {scheduler.get_last_lr()[0]:.7f}"
f" loss: {loss.item():.6f}"
)
# Checkpointing.
if step % 5000 == 0:
# Save checkpoint.
checkpoint_path = experiment_dir / f"checkpoints_{step}"
accelerator.save_state(str(checkpoint_path))
logger.info(f"Saved checkpoint to {checkpoint_path}")
# Keep checkpoints from only every 100k steps.
if prev_checkpoint_path is not None:
shutil.rmtree(prev_checkpoint_path)
prev_checkpoint_path = None if step % 100_000 == 0 else checkpoint_path
del checkpoint_path
if __name__ == "__main__":
tyro.cli(run_training)