forked from enjalot/bart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simplestats.js
986 lines (851 loc) · 38.3 KB
/
simplestats.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// # simple-statistics
//
// A simple, literate statistics system. The code below uses the
// [Javascript module pattern](http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth),
// eventually assigning `simple-statistics` to `ss` in browsers or the
// `exports object for node.js
(function() {
var ss = {};
if (typeof module !== 'undefined') {
// Assign the `ss` object to exports, so that you can require
// it in [node.js](http://nodejs.org/)
exports = module.exports = ss;
} else {
// Otherwise, in a browser, we assign `ss` to the window object,
// so you can simply refer to it as `ss`.
this.ss = ss;
}
// # [Linear Regression](http://en.wikipedia.org/wiki/Linear_regression)
//
// [Simple linear regression](http://en.wikipedia.org/wiki/Simple_linear_regression)
// is a simple way to find a fitted line
// between a set of coordinates.
function linear_regression() {
var linreg = {},
data = [];
// Assign data to the model. Data is assumed to be an array.
linreg.data = function(x) {
if (!arguments.length) return data;
data = x.slice();
return linreg;
};
// Calculate the slope and y-intercept of the regression line
// by calculating the least sum of squares
linreg.mb = function() {
var m, b;
//if there's only one point, arbitrarily choose a slope of 0
//and a y-intercept of whatever the y of the initial point is
if (data.length == 1) {
m = 0;
b = data[0][1];
} else {
// Initialize our sums and scope the `m` and `b`
// variables that define the line.
var sum_x = 0, sum_y = 0,
sum_xx = 0, sum_xy = 0;
// Gather the sum of all x values, the sum of all
// y values, and the sum of x^2 and (x*y) for each
// value.
//
// In math notation, these would be SS_x, SS_y, SS_xx, and SS_xy
for (var i = 0; i < data.length; i++) {
sum_x += data[i][0];
sum_y += data[i][1];
sum_xx += data[i][0] * data[i][0];
sum_xy += data[i][0] * data[i][1];
}
// `m` is the slope of the regression line
m = ((data.length * sum_xy) - (sum_x * sum_y)) /
((data.length * sum_xx) - (sum_x * sum_x));
// `b` is the y-intercept of the line.
b = (sum_y / data.length) - ((m * sum_x) / data.length);
}
// Return both values as an object.
return { m: m, b: b };
};
// a shortcut for simply getting the slope of the regression line
linreg.m = function() {
return linreg.mb().m;
};
// a shortcut for simply getting the y-intercept of the regression
// line.
linreg.b = function() {
return linreg.mb().b;
};
// ## Fitting The Regression Line
//
// This is called after `.data()` and returns the
// equation `y = f(x)` which gives the position
// of the regression line at each point in `x`.
linreg.line = function() {
// Get the slope, `m`, and y-intercept, `b`, of the line.
var mb = linreg.mb(),
m = mb.m,
b = mb.b;
// Return a function that computes a `y` value for each
// x value it is given, based on the values of `b` and `a`
// that we just computed.
return function(x) {
return b + (m * x);
};
};
return linreg;
}
// # [R Squared](http://en.wikipedia.org/wiki/Coefficient_of_determination)
//
// The r-squared value of data compared with a function `f`
// is the sum of the squared differences between the prediction
// and the actual value.
function r_squared(data, f) {
if (data.length < 2) return 1;
// Compute the average y value for the actual
// data set in order to compute the
// _total sum of squares_
var sum = 0, average;
for (var i = 0; i < data.length; i++) {
sum += data[i][1];
}
average = sum / data.length;
// Compute the total sum of squares - the
// squared difference between each point
// and the average of all points.
var sum_of_squares = 0;
for (var j = 0; j < data.length; j++) {
sum_of_squares += Math.pow(average - data[j][1], 2);
}
// Finally estimate the error: the squared
// difference between the estimate and the actual data
// value at each point.
var err = 0;
for (var k = 0; k < data.length; k++) {
err += Math.pow(data[k][1] - f(data[k][0]), 2);
}
// As the error grows larger, it's ratio to the
// sum of squares increases and the r squared
// value grows lower.
return 1 - (err / sum_of_squares);
}
// # [Bayesian Classifier](http://en.wikipedia.org/wiki/Naive_Bayes_classifier)
//
// This is a naïve bayesian classifier that takes
// singly-nested objects.
function bayesian() {
// The `bayes_model` object is what will be exposed
// by this closure, with all of its extended methods, and will
// have access to all scope variables, like `total_count`.
var bayes_model = {},
// The number of items that are currently
// classified in the model
total_count = 0,
// Every item classified in the model
data = {};
// ## Train
// Train the classifier with a new item, which has a single
// dimension of Javascript literal keys and values.
bayes_model.train = function(item, category) {
// If the data object doesn't have any values
// for this category, create a new object for it.
if (!data[category]) data[category] = {};
// Iterate through each key in the item.
for (var k in item) {
var v = item[k];
// Initialize the nested object `data[category][k][item[k]]`
// with an object of keys that equal 0.
if (data[category][k] === undefined) data[category][k] = {};
if (data[category][k][v] === undefined) data[category][k][v] = 0;
// And increment the key for this key/value combination.
data[category][k][item[k]]++;
}
// Increment the number of items classified
total_count++;
};
// ## Score
// Generate a score of how well this item matches all
// possible categories based on its attributes
bayes_model.score = function(item) {
// Initialize an empty array of odds per category.
var odds = {}, category;
// Iterate through each key in the item,
// then iterate through each category that has been used
// in previous calls to `.train()`
for (var k in item) {
var v = item[k];
for (category in data) {
// Create an empty object for storing key - value combinations
// for this category.
if (odds[category] === undefined) odds[category] = {};
// If this item doesn't even have a property, it counts for nothing,
// but if it does have the property that we're looking for from
// the item to categorize, it counts based on how popular it is
// versus the whole population.
if (data[category][k]) {
odds[category][k + '_' + v] = (data[category][k][v] || 0) / total_count;
} else {
odds[category][k + '_' + v] = 0;
}
}
}
// Set up a new object that will contain sums of these odds by category
var odds_sums = {};
for (category in odds) {
// Tally all of the odds for each category-combination pair -
// the non-existence of a category does not add anything to the
// score.
for (var combination in odds[category]) {
if (odds_sums[category] === undefined) odds_sums[category] = 0;
odds_sums[category] += odds[category][combination];
}
}
return odds_sums;
};
// Return the completed model.
return bayes_model;
}
// # sum
//
// is simply the result of adding all numbers
// together, starting from zero.
//
// This runs on `O(n)`, linear time in respect to the array
function sum(x) {
var value = 0;
for (var i = 0; i < x.length; i++) {
value += x[i];
}
return value;
}
// # mean
//
// is the sum over the number of values
//
// This runs on `O(n)`, linear time in respect to the array
function mean(x) {
// The mean of no numbers is null
if (x.length === 0) return null;
return sum(x) / x.length;
}
// # geometric mean
//
// a mean function that is more useful for numbers in different
// ranges.
//
// this is the nth root of the input numbers multipled by each other
//
// This runs on `O(n)`, linear time in respect to the array
function geometric_mean(x) {
// The mean of no numbers is null
if (x.length === 0) return null;
// the starting value.
var value = 1;
for (var i = 0; i < x.length; i++) {
// the geometric mean is only valid for positive numbers
if (x[i] <= 0) return null;
// repeatedly multiply the value by each number
value *= x[i];
}
return Math.pow(value, 1 / x.length);
}
// # min
//
// This is simply the minimum number in the set.
//
// This runs on `O(n)`, linear time in respect to the array
function min(x) {
var value;
for (var i = 0; i < x.length; i++) {
// On the first iteration of this loop, min is
// undefined and is thus made the minimum element in the array
if (x[i] < value || value === undefined) value = x[i];
}
return value;
}
// # max
//
// This is simply the maximum number in the set.
//
// This runs on `O(n)`, linear time in respect to the array
function max(x) {
var value;
for (var i = 0; i < x.length; i++) {
// On the first iteration of this loop, max is
// undefined and is thus made the maximum element in the array
if (x[i] > value || value === undefined) value = x[i];
}
return value;
}
// # [variance](http://en.wikipedia.org/wiki/Variance)
//
// is the sum of squared deviations from the mean
//
// depends on `mean()`
function variance(x) {
// The variance of no numbers is null
if (x.length === 0) return null;
var mean_value = mean(x),
deviations = [];
// Make a list of squared deviations from the mean.
for (var i = 0; i < x.length; i++) {
deviations.push(Math.pow(x[i] - mean_value, 2));
}
// Find the mean value of that list
return mean(deviations);
}
// # [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation)
//
// is just the square root of the variance.
//
// depends on `variance()`
function standard_deviation(x) {
// The standard deviation of no numbers is null
if (x.length === 0) return null;
return Math.sqrt(variance(x));
}
// The sum of deviations to the Nth power.
// When n=2 it's the sum of squared deviations.
// When n=3 it's the sum of cubed deviations.
//
// depends on `mean()`
function sum_nth_power_deviations(x, n) {
var mean_value = mean(x),
sum = 0;
for (var i = 0; i < x.length; i++) {
sum += Math.pow(x[i] - mean_value, n);
}
return sum;
}
// # [variance](http://en.wikipedia.org/wiki/Variance)
//
// is the sum of squared deviations from the mean
//
// depends on `sum_nth_power_deviations`
function sample_variance(x) {
// The variance of no numbers is null
if (x.length <= 1) return null;
var sum_squared_deviations_value = sum_nth_power_deviations(x, 2);
// Find the mean value of that list
return sum_squared_deviations_value / (x.length - 1);
}
// # [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation)
//
// is just the square root of the variance.
//
// depends on `sample_variance()`
function sample_standard_deviation(x) {
// The standard deviation of no numbers is null
if (x.length <= 1) return null;
return Math.sqrt(sample_variance(x));
}
// # [covariance](http://en.wikipedia.org/wiki/Covariance)
//
// sample covariance of two datasets:
// how much do the two datasets move together?
// x and y are two datasets, represented as arrays of numbers.
//
// depends on `mean()`
function sample_covariance(x, y) {
// The two datasets must have the same length which must be more than 1
if (x.length <= 1 || x.length != y.length){
return null;
}
// determine the mean of each dataset so that we can judge each
// value of the dataset fairly as the difference from the mean. this
// way, if one dataset is [1, 2, 3] and [2, 3, 4], their covariance
// does not suffer because of the difference in absolute values
var xmean = mean(x),
ymean = mean(y),
sum = 0;
// for each pair of values, the covariance increases when their
// difference from the mean is associated - if both are well above
// or if both are well below
// the mean, the covariance increases significantly.
for (var i = 0; i < x.length; i++){
sum += (x[i] - xmean) * (y[i] - ymean);
}
// the covariance is weighted by the length of the datasets.
return sum / (x.length - 1);
}
// # [correlation](http://en.wikipedia.org/wiki/Correlation_and_dependence)
//
// Gets a measure of how correlated two datasets are, between -1 and 1
//
// depends on `sample_standard_deviation()` and `sample_covariance()`
function sample_correlation(x, y) {
var cov = sample_covariance(x, y),
xstd = sample_standard_deviation(x),
ystd = sample_standard_deviation(y);
if (cov === null || xstd === null || ystd === null) {
return null;
}
return cov / xstd / ystd;
}
// # [median](http://en.wikipedia.org/wiki/Median)
//
// The middle number of a list. This is often a good indicator of 'the middle'
// when there are outliers that skew the `mean()` value.
function median(x) {
// The median of an empty list is null
if (x.length === 0) return null;
// Sorting the array makes it easy to find the center, but
// use `.slice()` to ensure the original array `x` is not modified
var sorted = x.slice().sort(function (a, b) { return a - b; });
// If the length of the list is odd, it's the central number
if (sorted.length % 2 === 1) {
return sorted[(sorted.length - 1) / 2];
// Otherwise, the median is the average of the two numbers
// at the center of the list
} else {
var a = sorted[(sorted.length / 2) - 1];
var b = sorted[(sorted.length / 2)];
return (a + b) / 2;
}
}
// # [mode](http://bit.ly/W5K4Yt)
// This implementation is inspired by [science.js](https://github.com/jasondavies/science.js/blob/master/src/stats/mode.js)
function mode(x) {
// Handle edge cases:
// The median of an empty list is null
if (x.length === 0) return null;
else if (x.length === 1) return x[0];
// Sorting the array lets us iterate through it below and be sure
// that every time we see a new number it's new and we'll never
// see the same number twice
var sorted = x.slice().sort(function (a, b) { return a - b; });
// This assumes it is dealing with an array of size > 1, since size
// 0 and 1 are handled immediately. Hence it starts at index 1 in the
// array.
var last = sorted[0],
// store the mode as we find new modes
value,
// store how many times we've seen the mode
max_seen = 0,
// how many times the current candidate for the mode
// has been seen
seen_this = 1;
// end at sorted.length + 1 to fix the case in which the mode is
// the highest number that occurs in the sequence. the last iteration
// compares sorted[i], which is undefined, to the highest number
// in the series
for (var i = 1; i < sorted.length + 1; i++) {
// we're seeing a new number pass by
if (sorted[i] !== last) {
// the last number is the new mode since we saw it more
// often than the old one
if (seen_this > max_seen) {
max_seen = seen_this;
seen_this = 1;
value = last;
}
last = sorted[i];
// if this isn't a new number, it's one more occurrence of
// the potential mode
} else { seen_this++; }
}
return value;
}
// # [t-test](http://en.wikipedia.org/wiki/Student's_t-test)
//
// This is to compute a one-sample t-test, comparing the mean
// of a sample to a known value, x.
//
// in this case, we're trying to determine whether the
// population mean is equal to the value that we know, which is `x`
// here. usually the results here are used to look up a
// [p-value](http://en.wikipedia.org/wiki/P-value), which, for
// a certain level of significance, will let you determine that the
// null hypothesis can or cannot be rejected.
//
// Depends on `standard_deviation()` and `mean()`
function t_test(sample, x) {
// The mean of the sample
var sample_mean = mean(sample);
// The standard deviation of the sample
var sd = standard_deviation(sample);
// Square root the length of the sample
var rootN = Math.sqrt(sample.length);
// Compute the known value against the sample,
// returning the t value
return (sample_mean - x) / (sd / rootN);
}
// # quantile
// This is a population quantile, since we assume to know the entire
// dataset in this library. Thus I'm trying to follow the
// [Quantiles of a Population](http://en.wikipedia.org/wiki/Quantile#Quantiles_of_a_population)
// algorithm from wikipedia.
//
// Sample is a one-dimensional array of numbers,
// and p is a decimal number from 0 to 1. In terms of a k/q
// quantile, p = k/q - it's just dealing with fractions or dealing
// with decimal values.
function quantile(sample, p) {
// We can't derive quantiles from an empty list
if (sample.length === 0) return null;
// invalid bounds. Microsoft Excel accepts 0 and 1, but
// we won't.
if (p >= 1 || p <= 0) return null;
// Sort a copy of the array. We'll need a sorted array to index
// the values in sorted order.
var sorted = sample.slice().sort(function (a, b) { return a - b; });
// Find a potential index in the list. In Wikipedia's terms, this
// is I<sub>p</sub>.
var idx = (sorted.length) * p;
// If this isn't an integer, we'll round up to the next value in
// the list.
if (idx % 1 !== 0) {
return sorted[Math.ceil(idx) - 1];
} else if (sample.length % 2 === 0) {
// If the list has even-length and we had an integer in the
// first place, we'll take the average of this number
// and the next value, if there is one
return (sorted[idx - 1] + sorted[idx]) / 2;
} else {
// Finally, in the simple case of an integer value
// with an odd-length list, return the sample value at the index.
return sorted[idx];
}
}
// # [Interquartile range](http://en.wikipedia.org/wiki/Interquartile_range)
//
// A measure of statistical dispersion, or how scattered, spread, or
// concentrated a distribution is. It's computed as the difference betwen
// the third quartile and first quartile.
function iqr(sample){
// We can't derive quantiles from an empty list
if (sample.length === 0) return null;
// Interquartile range is the span between the upper quartile,
// at `0.75`, and lower quartile, `0.25`
return quantile(sample, 0.75) - quantile(sample, 0.25);
}
// # [Median Absolute Deviation](http://en.wikipedia.org/wiki/Median_absolute_deviation)
//
// The Median Absolute Deviation (MAD) is a robust measure of statistical
// dispersion. It is more resilient to outliers than the standard deviation.
function mad(x) {
// The mad of nothing is null
if (!x || x.length === 0) return null;
var median_value = median(x),
median_absolute_deviations = [];
// Make a list of absolute deviations from the median
for (var i = 0; i < x.length; i++) {
median_absolute_deviations.push(Math.abs(x[i] - median_value));
}
// Find the median value of that list
return median(median_absolute_deviations);
}
// ## Compute Matrices for Jenks
//
// Compute the matrices required for Jenks breaks. These matrices
// can be used for any classing of data with `classes <= n_classes`
function jenksMatrices(data, n_classes) {
// in the original implementation, these matrices are referred to
// as `LC` and `OP`
//
// * lower_class_limits (LC): optimal lower class limits
// * variance_combinations (OP): optimal variance combinations for all classes
var lower_class_limits = [],
variance_combinations = [],
// loop counters
i, j,
// the variance, as computed at each step in the calculation
variance = 0;
// Initialize and fill each matrix with zeroes
for (i = 0; i < data.length + 1; i++) {
var tmp1 = [], tmp2 = [];
// despite these arrays having the same values, we need
// to keep them separate so that changing one does not change
// the other
for (j = 0; j < n_classes + 1; j++) {
tmp1.push(0);
tmp2.push(0);
}
lower_class_limits.push(tmp1);
variance_combinations.push(tmp2);
}
for (i = 1; i < n_classes + 1; i++) {
lower_class_limits[1][i] = 1;
variance_combinations[1][i] = 0;
// in the original implementation, 9999999 is used but
// since Javascript has `Infinity`, we use that.
for (j = 2; j < data.length + 1; j++) {
variance_combinations[j][i] = Infinity;
}
}
for (var l = 2; l < data.length + 1; l++) {
// `SZ` originally. this is the sum of the values seen thus
// far when calculating variance.
var sum = 0,
// `ZSQ` originally. the sum of squares of values seen
// thus far
sum_squares = 0,
// `WT` originally. This is the number of
w = 0,
// `IV` originally
i4 = 0;
// in several instances, you could say `Math.pow(x, 2)`
// instead of `x * x`, but this is slower in some browsers
// introduces an unnecessary concept.
for (var m = 1; m < l + 1; m++) {
// `III` originally
var lower_class_limit = l - m + 1,
val = data[lower_class_limit - 1];
// here we're estimating variance for each potential classing
// of the data, for each potential number of classes. `w`
// is the number of data points considered so far.
w++;
// increase the current sum and sum-of-squares
sum += val;
sum_squares += val * val;
// the variance at this point in the sequence is the difference
// between the sum of squares and the total x 2, over the number
// of samples.
variance = sum_squares - (sum * sum) / w;
i4 = lower_class_limit - 1;
if (i4 !== 0) {
for (j = 2; j < n_classes + 1; j++) {
// if adding this element to an existing class
// will increase its variance beyond the limit, break
// the class at this point, setting the `lower_class_limit`
// at this point.
if (variance_combinations[l][j] >=
(variance + variance_combinations[i4][j - 1])) {
lower_class_limits[l][j] = lower_class_limit;
variance_combinations[l][j] = variance +
variance_combinations[i4][j - 1];
}
}
}
}
lower_class_limits[l][1] = 1;
variance_combinations[l][1] = variance;
}
// return the two matrices. for just providing breaks, only
// `lower_class_limits` is needed, but variances can be useful to
// evaluage goodness of fit.
return {
lower_class_limits: lower_class_limits,
variance_combinations: variance_combinations
};
}
// ## Pull Breaks Values for Jenks
//
// the second part of the jenks recipe: take the calculated matrices
// and derive an array of n breaks.
function jenksBreaks(data, lower_class_limits, n_classes) {
var k = data.length - 1,
kclass = [],
countNum = n_classes;
// the calculation of classes will never include the upper and
// lower bounds, so we need to explicitly set them
kclass[n_classes] = data[data.length - 1];
kclass[0] = data[0];
// the lower_class_limits matrix is used as indexes into itself
// here: the `k` variable is reused in each iteration.
while (countNum > 1) {
kclass[countNum - 1] = data[lower_class_limits[k][countNum] - 2];
k = lower_class_limits[k][countNum] - 1;
countNum--;
}
return kclass;
}
// # [Jenks natural breaks optimization](http://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization)
//
// Implementations: [1](http://danieljlewis.org/files/2010/06/Jenks.pdf) (python),
// [2](https://github.com/vvoovv/djeo-jenks/blob/master/main.js) (buggy),
// [3](https://github.com/simogeo/geostats/blob/master/lib/geostats.js#L407) (works)
//
// Depends on `jenksBreaks()` and `jenksMatrices()`
function jenks(data, n_classes) {
if (n_classes > data.length) return null;
// sort data in numerical order, since this is expected
// by the matrices function
data = data.slice().sort(function (a, b) { return a - b; });
// get our basic matrices
var matrices = jenksMatrices(data, n_classes),
// we only need lower class limits here
lower_class_limits = matrices.lower_class_limits;
// extract n_classes out of the computed matrices
return jenksBreaks(data, lower_class_limits, n_classes);
}
// # [Skewness](http://en.wikipedia.org/wiki/Skewness)
//
// A measure of the extent to which a probability distribution of a
// real-valued random variable "leans" to one side of the mean.
// The skewness value can be positive or negative, or even undefined.
//
// Implementation is based on the adjusted Fisher-Pearson standardized
// moment coefficient, which is the version found in Excel and several
// statistical packages including Minitab, SAS and SPSS.
//
// Depends on `sum_nth_power_deviations()` and `sample_standard_deviation`
function sample_skewness(x) {
// The skewness of less than three arguments is null
if (x.length < 3) return null;
var n = x.length,
cubed_s = Math.pow(sample_standard_deviation(x), 3),
sum_cubed_deviations = sum_nth_power_deviations(x, 3);
return n * sum_cubed_deviations / ((n - 1) * (n - 2) * cubed_s);
}
// # Standard Normal Table
// A standard normal table, also called the unit normal table or Z table,
// is a mathematical table for the values of Φ (phi), which are the values of
// the cumulative distribution function of the normal distribution.
// It is used to find the probability that a statistic is observed below,
// above, or between values on the standard normal distribution, and by
// extension, any normal distribution.
//
// The probabilities are taken from http://en.wikipedia.org/wiki/Standard_normal_table
// The table used is the cumulative, and not cumulative from 0 to mean
// (even though the latter has 5 digits precision, instead of 4).
var standard_normal_table = [
/* z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 */
/* 0.0 */ 0.5000, 0.5040, 0.5080, 0.5120, 0.5160, 0.5199, 0.5239, 0.5279, 0.5319, 0.5359,
/* 0.1 */ 0.5398, 0.5438, 0.5478, 0.5517, 0.5557, 0.5596, 0.5636, 0.5675, 0.5714, 0.5753,
/* 0.2 */ 0.5793, 0.5832, 0.5871, 0.5910, 0.5948, 0.5987, 0.6026, 0.6064, 0.6103, 0.6141,
/* 0.3 */ 0.6179, 0.6217, 0.6255, 0.6293, 0.6331, 0.6368, 0.6406, 0.6443, 0.6480, 0.6517,
/* 0.4 */ 0.6554, 0.6591, 0.6628, 0.6664, 0.6700, 0.6736, 0.6772, 0.6808, 0.6844, 0.6879,
/* 0.5 */ 0.6915, 0.6950, 0.6985, 0.7019, 0.7054, 0.7088, 0.7123, 0.7157, 0.7190, 0.7224,
/* 0.6 */ 0.7257, 0.7291, 0.7324, 0.7357, 0.7389, 0.7422, 0.7454, 0.7486, 0.7517, 0.7549,
/* 0.7 */ 0.7580, 0.7611, 0.7642, 0.7673, 0.7704, 0.7734, 0.7764, 0.7794, 0.7823, 0.7852,
/* 0.8 */ 0.7881, 0.7910, 0.7939, 0.7967, 0.7995, 0.8023, 0.8051, 0.8078, 0.8106, 0.8133,
/* 0.9 */ 0.8159, 0.8186, 0.8212, 0.8238, 0.8264, 0.8289, 0.8315, 0.8340, 0.8365, 0.8389,
/* 1.0 */ 0.8413, 0.8438, 0.8461, 0.8485, 0.8508, 0.8531, 0.8554, 0.8577, 0.8599, 0.8621,
/* 1.1 */ 0.8643, 0.8665, 0.8686, 0.8708, 0.8729, 0.8749, 0.8770, 0.8790, 0.8810, 0.8830,
/* 1.2 */ 0.8849, 0.8869, 0.8888, 0.8907, 0.8925, 0.8944, 0.8962, 0.8980, 0.8997, 0.9015,
/* 1.3 */ 0.9032, 0.9049, 0.9066, 0.9082, 0.9099, 0.9115, 0.9131, 0.9147, 0.9162, 0.9177,
/* 1.4 */ 0.9192, 0.9207, 0.9222, 0.9236, 0.9251, 0.9265, 0.9279, 0.9292, 0.9306, 0.9319,
/* 1.5 */ 0.9332, 0.9345, 0.9357, 0.9370, 0.9382, 0.9394, 0.9406, 0.9418, 0.9429, 0.9441,
/* 1.6 */ 0.9452, 0.9463, 0.9474, 0.9484, 0.9495, 0.9505, 0.9515, 0.9525, 0.9535, 0.9545,
/* 1.7 */ 0.9554, 0.9564, 0.9573, 0.9582, 0.9591, 0.9599, 0.9608, 0.9616, 0.9625, 0.9633,
/* 1.8 */ 0.9641, 0.9649, 0.9656, 0.9664, 0.9671, 0.9678, 0.9686, 0.9693, 0.9699, 0.9706,
/* 1.9 */ 0.9713, 0.9719, 0.9726, 0.9732, 0.9738, 0.9744, 0.9750, 0.9756, 0.9761, 0.9767,
/* 2.0 */ 0.9772, 0.9778, 0.9783, 0.9788, 0.9793, 0.9798, 0.9803, 0.9808, 0.9812, 0.9817,
/* 2.1 */ 0.9821, 0.9826, 0.9830, 0.9834, 0.9838, 0.9842, 0.9846, 0.9850, 0.9854, 0.9857,
/* 2.2 */ 0.9861, 0.9864, 0.9868, 0.9871, 0.9875, 0.9878, 0.9881, 0.9884, 0.9887, 0.9890,
/* 2.3 */ 0.9893, 0.9896, 0.9898, 0.9901, 0.9904, 0.9906, 0.9909, 0.9911, 0.9913, 0.9916,
/* 2.4 */ 0.9918, 0.9920, 0.9922, 0.9925, 0.9927, 0.9929, 0.9931, 0.9932, 0.9934, 0.9936,
/* 2.5 */ 0.9938, 0.9940, 0.9941, 0.9943, 0.9945, 0.9946, 0.9948, 0.9949, 0.9951, 0.9952,
/* 2.6 */ 0.9953, 0.9955, 0.9956, 0.9957, 0.9959, 0.9960, 0.9961, 0.9962, 0.9963, 0.9964,
/* 2.7 */ 0.9965, 0.9966, 0.9967, 0.9968, 0.9969, 0.9970, 0.9971, 0.9972, 0.9973, 0.9974,
/* 2.8 */ 0.9974, 0.9975, 0.9976, 0.9977, 0.9977, 0.9978, 0.9979, 0.9979, 0.9980, 0.9981,
/* 2.9 */ 0.9981, 0.9982, 0.9982, 0.9983, 0.9984, 0.9984, 0.9985, 0.9985, 0.9986, 0.9986,
/* 3.0 */ 0.9987, 0.9987, 0.9987, 0.9988, 0.9988, 0.9989, 0.9989, 0.9989, 0.9990, 0.9990
];
// # [Cumulative Standard Normal Probability](http://en.wikipedia.org/wiki/Standard_normal_table)
//
// Since probability tables cannot be
// printed for every normal distribution, as there are an infinite variety
// of normal distributions, it is common practice to convert a normal to a
// standard normal and then use the standard normal table to find probabilities
function cumulative_std_normal_probability(z) {
// Calculate the position of this value.
var absZ = Math.abs(z),
// Each row begins with a different
// significant digit: 0.5, 0.6, 0.7, and so on. So the row is simply
// this value's significant digit: 0.567 will be in row 0, so row=0,
// 0.643 will be in row 1, so row=10.
row = Math.floor(absZ * 10),
column = 10 * (Math.floor(absZ * 100) / 10 - Math.floor(absZ * 100 / 10)),
index = Math.min((row * 10) + column, standard_normal_table.length - 1);
// The index we calculate must be in the table as a positive value,
// but we still pay attention to whether the input is postive
// or negative, and flip the output value as a last step.
if (z >= 0) {
return standard_normal_table[index];
} else {
// due to floating-point arithmetic, values in the table with
// 4 significant figures can nevertheless end up as repeating
// fractions when they're computed here.
return (1 - standard_normal_table[index]).toFixed(4);
}
}
// # [Z-Score, or Standard Score](http://en.wikipedia.org/wiki/Standard_score)
//
// The standard score is the number of standard deviations an observation
// or datum is above or below the mean. Thus, a positive standard score
// represents a datum above the mean, while a negative standard score
// represents a datum below the mean. It is a dimensionless quantity
// obtained by subtracting the population mean from an individual raw
// score and then dividing the difference by the population standard
// deviation.
//
// The z-score is only defined if one knows the population parameters;
// if one only has a sample set, then the analogous computation with
// sample mean and sample standard deviation yields the
// Student's t-statistic.
function z_score(x, mean, standard_deviation) {
return (x - mean) / standard_deviation;
}
// # Mixin
//
// Mixin simple_statistics to the Array native object. This is an optional
// feature that lets you treat simple_statistics as a native feature
// of Javascript.
function mixin() {
var support = !!(Object.defineProperty && Object.defineProperties);
if (!support) throw new Error('without defineProperty, simple-statistics cannot be mixed in');
// only methods which work on basic arrays in a single step
// are supported
var arrayMethods = ['median', 'standard_deviation', 'sum',
'mean', 'min', 'max', 'quantile', 'geometric_mean'];
// create a closure with a method name so that a reference
// like `arrayMethods[i]` doesn't follow the loop increment
function wrap(method) {
return function() {
// cast any arguments into an array, since they're
// natively objects
var args = Array.prototype.slice.apply(arguments);
// make the first argument the array itself
args.unshift(this);
// return the result of the ss method
return ss[method].apply(ss, args);
};
}
// for each array function, define a function off of the Array
// prototype which automatically gets the array as the first
// argument. We use [defineProperty](https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty)
// because it allows these properties to be non-enumerable:
// `for (var in x)` loops will not run into problems with this
// implementation.
for (var i = 0; i < arrayMethods.length; i++) {
Object.defineProperty(Array.prototype, arrayMethods[i], {
value: wrap(arrayMethods[i]),
configurable: true,
enumerable: false,
writable: true
});
}
}
ss.linear_regression = linear_regression;
ss.standard_deviation = standard_deviation;
ss.r_squared = r_squared;
ss.median = median;
ss.mean = mean;
ss.mode = mode;
ss.min = min;
ss.max = max;
ss.sum = sum;
ss.quantile = quantile;
ss.iqr = iqr;
ss.mad = mad;
ss.sample_covariance = sample_covariance;
ss.sample_correlation = sample_correlation;
ss.sample_variance = sample_variance;
ss.sample_standard_deviation = sample_standard_deviation;
ss.sample_skewness = sample_skewness;
ss.geometric_mean = geometric_mean;
ss.variance = variance;
ss.t_test = t_test;
// jenks
ss.jenksMatrices = jenksMatrices;
ss.jenksBreaks = jenksBreaks;
ss.jenks = jenks;
ss.bayesian = bayesian;
// Normal distribution
ss.z_score = z_score;
ss.cumulative_std_normal_probability = cumulative_std_normal_probability;
ss.standard_normal_table = standard_normal_table;
// Alias this into its common name
ss.average = mean;
ss.interquartile_range = iqr;
ss.mixin = mixin;
ss.median_absolute_deviation = mad;
})(this);