-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathActionRecognition.py
45 lines (40 loc) · 1.41 KB
/
ActionRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np;
import cv2;
import tensorflow as tf;
from train_r3dcnn import action_model_fn;
class ActionRecognition:
def __init__(self):
self.buf = list();
self.sequence_lengths = np.full((1),10).astype(np.int32);
self.gesture_classifier = tf.estimator.Estimator(model_fn = action_model_fn, model_dir = "gesture_classifier_model");
def predict(self,frame):
assert len(frame.shape) == 3;
assert frame.shape[0] == 120;
assert frame.shape[1] == 160;
assert frame.shape[2] == 3;
if len(self.buf) == 80:
self.buf.pop(0);
self.buf.append(frame[4:116,24:136]);
elif len(self.buf) < 80:
self.buf.append(frame[4:116,24:136]);
return [0];
else:
raise Exception('buffer size is over 80');
features = np.array(self.buf);
features = features.reshape(1,10,8,112,112,3).astype(np.float32)
input_fn = lambda:{'data':tf.convert_to_tensor(features),'sequence_lengths':tf.convert_to_tensor(self.sequence_lengths)};
predictions = self.gesture_classifier.predict(input_fn);
prediction = next(predictions);
return prediction;
if __name__ == "__main__":
cap = cv2.VideoCapture(-1);
ar = ActionRecognition();
while True:
ret, img = cap.read();
if ret == False: break;
frame = cv2.resize(img,(160,120));
sequence = ar.predict(frame);
for i in range(0,len(sequence)):
cv2.putText(img,str(sequence[i]),(10,30),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2);
cv2.imshow('',img);
cv2.waitKey(10);